WO2010051779A1 - 编码方法和装置 - Google Patents

编码方法和装置 Download PDF

Info

Publication number
WO2010051779A1
WO2010051779A1 PCT/CN2009/075197 CN2009075197W WO2010051779A1 WO 2010051779 A1 WO2010051779 A1 WO 2010051779A1 CN 2009075197 W CN2009075197 W CN 2009075197W WO 2010051779 A1 WO2010051779 A1 WO 2010051779A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
signal
dtx
indicates
Prior art date
Application number
PCT/CN2009/075197
Other languages
English (en)
French (fr)
Inventor
范叔炬
李靖
刘铮
马雪利
王宗杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13196774.7A priority Critical patent/EP2723013B1/en
Priority to EP09824434.6A priority patent/EP2256984B1/en
Publication of WO2010051779A1 publication Critical patent/WO2010051779A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the ACK/NACK feedback information on the two carriers (cells) needs to be jointly coded, where the joint coding refers to the joint signals of various HARQ-ACK (Hybrid Automatic Repeat Request-Acknowledgement). Maps to a 1 Obit 0-1 sequence.
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • the downlink dual-carrier technology is introduced in the R8 version of WCDMA, and the UE needs to perform HARQ-ACK feedback on the data sent by the two carriers.
  • a feasible method is to jointly encode the feedback information on the two carriers to feed back on one HS-DPCCH channel; however, the prior art does not give a suitable joint coding scheme to implement on one HS-DPCCH channel. Feedback.
  • the present invention provides an encoding method and apparatus for jointly encoding feedback information on two carriers on one HS-DPCCH channel when the downlink dual carrier is satisfied.
  • An aspect of the present invention provides an encoding method for jointly encoding a hybrid automatic repeat request-acknowledgment HARQ-ACK signal, the method comprising: encoding a HARQ-ACK signal, and outputting a codeword.
  • the output codeword is ⁇ 1,1,1,1,1,1,1,1,1 ⁇
  • the HARQ-ACK signal is When NACK/DTX, the output codeword is ⁇ 0,0,0,0,0,0,0,0,0,0,0,0 ⁇ ;
  • the HARQ-ACK signal is DTX/ACK, the output codeword is ⁇ 1,1,1,1,0,0,0,0,0 ⁇ ;
  • the HARQ-ACK signal is DTX/NACK, the output codeword is ⁇ 0,0,0,0,0 1,1,1,1,1 ⁇ ;
  • the output codeword is ⁇ 1,0,1,0,1,0,1,0,1,0,1,0
  • the carrier is correctly received; DTX/NACK indicates that the primary carrier does not detect data, and the secondary carrier receives incorrectly; ACK/ACK indicates that the primary carrier is correctly received, and the secondary carrier receives correctly; ACK/NACK indicates that the primary carrier is correctly received, and the secondary carrier receives incorrectly; NACK/ ACK indicates that the primary carrier is incorrectly received, and the secondary carrier receives correctly; NACK/NACK indicates primary carrier error reception and secondary carrier error reception.
  • Another aspect of the present invention provides an encoding apparatus for jointly encoding a hybrid automatic repeat request-acknowledgment HARQ-ACK signal, the apparatus comprising: a unit that encodes a HARQ-ACK signal and outputs a codeword; The output codeword is the same as in the above encoding method.
  • Another aspect of the present invention provides an encoding method, the method comprising: selecting a code group structure, and having a plurality of mapping relationships between a codeword and a signal to be encoded in each code group structure; A signal transition probability of the to-be-coded signal and a probability of generating the to-be-coded signal, obtaining a high-level retransmission probability, and obtaining a high-level retransmission cost according to the high-layer retransmission probability; and selecting a mapping relationship corresponding to a predetermined high-level retransmission cost, And as an encoding scheme of the to-be-encoded signal, and encoding the to-be-encoded signal according to the encoding scheme.
  • FIG. 1 is a flowchart of an encoding method according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of an encoding apparatus according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of another encoding apparatus according to an embodiment of the present invention.
  • An embodiment of the present invention provides an encoding method, and proposes a method for jointly encoding a HARQ-ACK when using an HS-DPCCH for ACK/NACK feedback in a downlink multi-carrier mode.
  • the code group structure is selected, and the codewords in each code group structure and the signals to be encoded have multiple mapping relationships. Under each mapping relationship, the high-level retransmission probability is obtained according to the signal transition probability of the signal to be encoded and the probability of generating the signal to be encoded, and the high-level retransmission cost is obtained according to the high-level retransmission probability.
  • the mapping relationship corresponding to the predetermined high-level retransmission cost is selected as the coding scheme of the signal to be encoded, and the coded signal is encoded according to the coding scheme.
  • a schematic flowchart of an encoding method according to an embodiment of the present invention includes: Step S101: Select a code group structure, and the codewords in each code group structure and the signals to be encoded have multiple mapping relationships.
  • a code group structure corresponding to a maximum minimum code distance or an average code distance may be selected; or, a code group structure corresponding to a maximum total code distance or a weighted average code distance may be selected; or can choose Structure-symmetric code group structure.
  • a code containing a predetermined number of codewords and having a predetermined minimum code distance is constructed according to a maximum code group having a minimum code interval of 6, and a code group obtained by performing row and column transformation on a maximum code group having a minimum code distance of 6. Group structure.
  • the method for constructing the code group structure is a preferred mode of the embodiment of the present invention, but the embodiment of the present invention is not limited thereto.
  • Step S102 in each mapping relationship, according to the signal transition probability of the signal to be encoded and the probability of generating the signal to be encoded, obtain a high-level retransmission probability, for example, an RLC (Radio Link Control) layer retransmission probability, And the high-level retransmission cost is obtained according to the high-level retransmission probability.
  • a high-level retransmission probability for example, an RLC (Radio Link Control) layer retransmission probability
  • RLC Radio Link Control
  • obtaining the high-level retransmission cost may include: obtaining a high-level retransmission probability in each state when the user data is sent according to a signal transition probability of generating a high-level retransmission in the to-be-coded signal and a probability of generating the signal to be encoded.
  • the high-level retransmission cost is obtained according to the proportion or probability of various states when a given user data is transmitted, and the high-level retransmission probability.
  • Step S103 selecting a mapping relationship corresponding to a predetermined high-level retransmission cost, as an encoding scheme of the signal to be encoded, and encoding the coded signal according to the encoding scheme.
  • the mapping relationship corresponding to the predetermined high-level retransmission cost may be: selecting a mapping relationship corresponding to the minimum high-level retransmission cost.
  • the embodiment of the present invention is not limited thereto, and a mapping relationship corresponding to a high-level retransmission cost within a certain range may be selected that is different from a minimum high-level retransmission cost.
  • the above coding method selects a code group structure according to a minimum code distance or an average code distance, and according to a mapping relationship between a codeword in a plurality of code groups and a signal to be coded, according to a signal transition probability of a signal to be coded and a probability of generation of a signal to be coded Obtaining a high-level retransmission probability, and obtaining a high-level retransmission cost according to the high-layer retransmission probability, selecting a mapping relationship corresponding to a predetermined high-level retransmission cost, as a coding scheme of the to-be-coded signal, and treating the coded signal according to the coding scheme Encode.
  • the signal to be encoded is a HARQ-ACK signal as an example.
  • the embodiment of the present invention is not limited thereto, and the signal to be encoded may also be a signal on other code channels.
  • the high-level retransmission cost of the data is considered when encoding the HARQ-ACK signal.
  • One measure of the cost of high-level retransmission is the high-level retransmission probability.
  • the high-level retransmission cost P tans _ H can be calculated according to the high-level retransmission probability, P State 1 Ptransl-H +Pstate2 Ptrans2-H +Pstate3 Ptrans3-H ( 1 )
  • P statel ⁇ P state3 a statistical result obtained by measuring, for example, a statistical result obtained by measuring the presence or absence of the primary carrier and the secondary carrier data.
  • P State3 takes a value in the range of 0.3 to 0.7.
  • P transl - H ⁇ Pt rans3 _H is related to the coded block structure; in addition, even if the same codeword is used, the different mapping relationship between the signal and the codeword will affect the high-level retransmission probability.
  • p tansl _ value of H ⁇ p tans3 _ H In the various possible code group structure, to obtain a different P tansl - H ⁇ P trans3 - value H, in a given scene (P statel ⁇ P state3 known value), can be obtained by comparing
  • P tranS nS optimal set value lH ⁇ Ptm 3-H can be obtained at the minimum level of the scene probability of retransmission.
  • the signals jointly coded in the embodiment of the present invention are as shown in Table 2, wherein the DTX/DTX signal is a null signal, and no codeword needs to be transmitted, so a total of 8 signals need to be encoded, and 8 different codewords are needed. Mapping signals ( Table 2 HARQ-ACK signal number signal signal short
  • DTX/DTX The following describes the specific calculation method of the high-level retransmission probability P tans3 _ H in the State3 case.
  • the NodeB Node B
  • DTX empty data
  • the receiving situation of the UE can be as shown in Table 3. This can obtain the event probability that the UE generates a joint signal in the State3 case, as shown in Table 4. Show.
  • Table 3 NodeB transmits data, each event probability (single carrier) of the UE receiving data
  • the DTX P D is not detected .
  • P A 90%, P D ⁇ 1% is generally required.
  • No DTX/DTX PDPD detected When the NodeB first transmits user data to the UE, the UE feeds back the HARQ-ACK signal to the NodeB, and the signal received by the NodeB may or may not be consistent with the HARQ-ACK signal sent by the UE (ie, signal transfer occurs). The signal transfer will cause the NodeB to perform data retransmission.
  • the specific data retransmission behavior is shown in Table 5.
  • the corresponding signal transition probability is shown in Table 6. NodeB data retransmission behavior triggered by signal transfer
  • L indicates physical layer retransmission, H indicates high-level retransmission, and 0 indicates no retransmission.
  • L/H indicates the primary carrier physical layer retransmission, and the secondary carrier retransmission at the upper layer;
  • L/L indicates the primary carrier physical layer retransmission, and the secondary carrier physical layer retransmission;
  • H/L indicates the primary carrier high layer retransmission, and the secondary carrier physical layer weight H/H indicates that the primary carrier is retransmitted on the upper layer, and the secondary carrier is retransmitted on the upper layer;
  • H/0 indicates that the primary carrier is retransmitted at the upper layer, and the secondary carrier is not retransmitted;
  • 0/H indicates that the primary carrier is not retransmitted, and the secondary carrier is retransmitted at the upper layer;
  • L/0 indicates that the primary carrier is retransmitted, and the secondary carrier is not retransmitted;
  • 0/L indicates that the primary carrier is not retransmitted, and the secondary carrier is
  • PNPN PSI+P83+ PS5+ PS6+ PSV
  • PDP D P 9 I+P93+ P95+ P 96 + P97
  • P tansl _ H , P tans2 _ H is introduced below.
  • the NodeB transmits user data on the primary carrier, and the DTX is transmitted on the secondary carrier.
  • the event probability of the UE receiving the data is as shown in Table 7.
  • the data returned by the UE when the HARQ-ACK signal is received by the NodeB is heavy.
  • the transmission behavior, and the corresponding signal transition probabilities are shown in Table 8 and Table 9, respectively.
  • the NodeB will only judge the received signal in A_D, N_D, D_D.
  • the NodeB will only judge the received signal in D_A, D_N, D_D. If the receiver decoding algorithm is still determined in the nine signals described in Table 2, equations (3) and (4) need to be modified accordingly.
  • Table 7 shows the probability of generation of each signal when the primary carrier transmits user data and the secondary carrier transmits DTX.
  • the calculation method of the high-level retransmission probability P trans2 _ H in the case of State 2 is similar to the calculation method of P tansl _ H , and will not be described here.
  • the calculation expression of the high-level retransmission probability P trans2 - H in the state 2 case is:
  • the simulation shows that the high-level retransmission probability is mainly generated by false alarms when only one carrier is used to transmit user data, that is, the following formula is established:
  • the A group (including Al, A2, A3, A4, A5, A6) code group is a code distance of 6
  • group B including Bl, B2, B3, B4, B5, B6
  • Any codeword of group C including Cl, C2, C3, C4, C5, C6) has a code spacing of 5 with any codeword in group A, and a code spacing of 6 between codewords.
  • Group D (including Dl, D2, D3, D4, D5, D6) is a code group consisting of the inverse of the C group, and the code distance between code words is 6.
  • the minimum code distance between group C and group D is 4.
  • the A group codeword can be transformed into any maximum code group with a code distance of 6. Any one of the largest code groups with a code spacing of 6 can uniquely identify the other three code groups that accompany it.
  • the code group structure with a minimum code interval of 5 can be: 6A+2C, 6A+C+D, 5A+3C, 4A+4C, ...
  • the code group structure with a minimum code distance of 4 can be: 6A+2B, 5A +3B, 4A+4B, 2A+2B+2C+2D,
  • 6A+2C represents a code group consisting of 6 code words of group A and 2 code words of any group C
  • 6A+C+D represents 6 code words of group A a code group consisting of one codeword of group C and one codeword of group D
  • the codeword of D codeword is the inverse of C codeword: if there are both group A codewords and group B codewords (or C The group code word and the D group code word), the selected B group code word requirement is the inverse code corresponding to the group A code word..., and so on, and will not be repeated here.
  • 6A+2C and 6A+2D, 6B+2C, and 6B+2D are essentially the same structure.
  • group A can be converted into any code group with a code distance of 6, it can of course be converted into group C code words in Table 10, as long as the group A and group C, group B and group D code words in Table 10 are exchanged. Another example of Table 10 can be obtained. Therefore, 6C+2A, 6C+2B, 6D+2A, 6D+2B are also essentially equivalent structures to 6A+2C.
  • the code group structure also has correspondingly identical structures, which are not described herein.
  • Table 11 lists the code spacing performance of various code group structures. Considering the minimum code distance and the average code distance, it is found that the code spacing performance of the three code group structures of 6A+C+D, 4A+4B, 2A+2B+2C+2D is better. Table 11 Code spacing performance comparison of code group structure Minimum code distance average code distance
  • the coding method under the 6A+C+D code group structure is introduced below.
  • the 6A+C+D code group structure refers to a code group consisting of 6 code words of the A group in Table 10, any one code word of the C group, and an inverse code corresponding to the code word of the C group of the D group. After the code group structure is fixed, the transition probability between 8 code words can be measured under the condition of given transmission power and the like. There are 28 mapping relationships between 8 code words and 8 HARQ-ACK signals under the 6A+C+D code group structure.
  • the signal transition probability of 8 HARQ-ACK signals can be obtained, that is, P u , P 12 , P 13 , ... ... P 99 o
  • a statistical value of P Statel ⁇ P State3 can be obtained by measurement.
  • P A ⁇ 90 % and P D ⁇ 1 % are generally required.
  • Ptransi-H, Ptra ns2 -H and Ptran S 3-H can be obtained by substituting the above values into equations (2), (3) and (4), respectively.
  • the mapping relationship corresponding to the minimum high-level retransmission cost Ptrans-H is an optimal mapping relationship, and the optimal mapping relationship may have one or more.
  • the optimal coding scheme of the 6A+C+D code group structure is as shown in Table 1 of Table 12. If the compatibility between the joint coding mode and the single-carrier coding mode is considered, the scheme 2 can be adopted. Option 2 still has a small probability of high-level retransmission.
  • the coding scheme given in Table 12 can be used to make the NodeB have the lowest high-level retransmission probability when transmitting data.
  • A1 to A6 may be any arrangement of 6 codewords of group A of Table 10, and C1 may be any codeword of group C, and D1 and C1 are mutually inverted.
  • the code group structure of the scheme is 6A+C+D, that is, 8 codewords are composed of 6 A group codewords, plus 1 C group codeword, plus 1 D group codeword, wherein the D group codeword is C.
  • the inverse of the group codeword is also, if the PRE (Preamble)/POST (Postamble) function is to be supported, the PRE/POST codeword under single carrier is still used if compatibility with single carrier coding is considered.
  • one C2 codeword and one D2 codeword can be added as PRE and POST respectively, and the code group structure is expanded to 6A+2C+2D, wherein the two codewords of the D group are respectively two codewords of the C group.
  • Corresponding inverse code corresponds to
  • Table 13 gives an example when the scheme 2 of Table 12 is employed.
  • the 6C+A+B code group structure which is essentially the same as 6A+C+D is actually used.
  • the embodiment of the present invention is not limited thereto, no matter what codeword is used, as long as the code group structure is 6A+C+D or a code group structure equivalent thereto, and the minimum high-level retransmission in a given scenario.
  • the mapping between the HARQ-ACK signal and the codeword should fall within the protection scope of the embodiment of the present invention.
  • you want to support the PRE (Preamble, Prefix) / POST (Postamble) function you can add 1 C2 code word and 1 D2 code word as PRE and POST respectively, and expand the code group structure to 6A+2C+2D.
  • the two codewords of the D group are the inverse codes corresponding to the two codewords of the C group.
  • the C1 codeword and the D1 code can be reused in a single carrier.
  • Word for example: ACK uses C1 codeword, NACK uses D1 codeword.
  • the coding method under the 4A+4B code group structure is introduced below.
  • the 4A+4B code group structure refers to a code group consisting of 4 code words of Group A in Table 10 and 4 inverse codes corresponding to Group B and Group A.
  • the transition probability between 8 code words can be measured under the condition of given transmission power and the like.
  • the 8 codewords under the 4A+4B code group structure and the 8 HARQ-ACK signals have 840 essentially different mapping relationships. Under each mapping relationship, the same optimal value and principle can be obtained under the 6A+C+D codeword structure, as shown in Scheme 1 and Scheme 2 of Table 14. If the compatibility between the joint coding mode and the single-carrier coding mode is considered, that is, the codewords corresponding to the A_D signal and the N_D signal are mutually inverted, the scheme 3 of Table 14 can be used.
  • A1 to A4 may be any arrangement of 4 code words of group A of Table 10, and B1 to B4 are inverse codes corresponding to A1 to A4.
  • the code group structure of the scheme is 4A+4B, that is, 8 codewords are composed of 4 A-group codewords and 4 B-group codewords, and the B-group codewords are the inverse of the A-group codewords.
  • the NodeB transmission data has the smallest high-level retransmission probability; and because of the use of 4 pairs of inverse codes, it brings certain convenience to demodulation.
  • the PRE/POST function is to be supported, the PRE/POST codeword under single carrier is still used if compatibility with the single-carrier coding scheme is considered. Otherwise, you can add 1 A5 codeword and 1 B5 codeword (or 1 C1 codeword, 1 D1 codeword) as PRE and POST respectively, and expand the code group structure to 5A+5B (or 4A+4B). +C+D).
  • Table 15 An example of coding for the 4A+4B code group structure Signal code word
  • the A group codeword can be a code group having a code interval of 6 between any one of the codewords.
  • the group B codeword is the inverse of the A group codeword.
  • Any code group structure is 4A+4B, and the mapping relationship between the signal and the codeword satisfies the coding scheme of minimizing the high-level retransmission probability criterion under the premise that the given requirement (such as the A_D signal and the N_D signal must use a pair of inverse codes, etc.) All of them are within the protection scope of the embodiments of the present invention.
  • the NodeB may turn off the secondary carrier to become a single carrier state according to actual needs
  • the A1 codeword and the B1 code can be reused in a single carrier.
  • Word for example: ACK uses A1 codeword, NACK uses B1 codeword.
  • the coding method under the 2A+2B+2C+2D code group structure is introduced below.
  • the 2A+2B+2C+2D code group structure refers to a code group consisting of 2 code words of group A, 2 code words of group B, 2 code words of group C, and 2 code words of group D in Table 10. .
  • the transition probability between 8 code words can be measured under the condition of given transmission power and the like.
  • the same values and principles as in the 6A+C+D code group structure can be used to obtain corresponding
  • the optimal coding scheme as shown in Table 16, is Scheme 1 to Scheme 4. If the compatibility between the joint coding mode and the single-carrier coding mode is considered, that is, the codewords corresponding to the A_D signal and the N_D signal are mutually inverted, the schemes 5 to 7 can be adopted.
  • the NodeB has the lowest high-level retransmission probability when transmitting data.
  • the code distance distribution is relatively uniform, and 4 pairs of inverse codes are used, it brings certain convenience for data demodulation.
  • the PRE/POST function is to be supported, the PRE/POST codeword under a single carrier is still used if compatibility with the single-carrier coding scheme is considered. Otherwise, you can add 1 A3 codeword and 1 B3 codeword (or 1 C3 codeword, 1 D3 codeword) as PRE and POST respectively, and expand the code group structure to 3A+2B+3C+2D (or 2A+2B+3C+3D).
  • the A group codeword may be a code group having a code interval of 6 between any one of the codewords.
  • Group B, Group C, and Group D codewords are three code groups uniquely identified by Group A codewords, as shown in Table 10. Any code group structure is 2A+2B+2C+2D.
  • the coding scheme of the signal and the codeword to satisfy the minimum high-level retransmission probability criterion should fall within the protection scope of the embodiment of the present invention.
  • the A1 codeword and the B1 code may be reused in a single carrier.
  • Word for example: ACK uses A1 codeword, NACK uses B1 codeword.
  • the mapping relationship between the optimal signal and the codeword is selected, and the error probability of the transition between signals is reduced.
  • the probability of errors that may lead to high-level retransmissions reduces unnecessary high-level retransmissions and increases the transmission rate of the system.
  • FIG. 2 it is a structural diagram of an encoding apparatus according to an embodiment of the present invention, including:
  • the selection module 21 is configured to select a code group structure, and the code words in each code group structure and the signals to be encoded have multiple mapping relationships.
  • the first obtaining module 22 is configured to obtain a high level according to a signal transition probability of the signal to be encoded and a probability of generating the signal to be encoded, in each mapping relationship between the codeword and the signal to be encoded in the code group structure selected by the selecting module 21 Retransmission probability.
  • the second obtaining module 23 is configured to obtain a high-level retransmission cost according to the high-level retransmission probability obtained by the first obtaining module 22.
  • the relationship selection module 24 is configured to select a mapping relationship corresponding to a predetermined high-level retransmission cost, as an encoding scheme of the signal to be encoded, and encode the coded signal according to the encoding scheme.
  • the selecting module 21 is specifically configured to select a code group structure corresponding to a maximum minimum code distance or an average code distance; or, select a code group structure corresponding to a maximum total code distance or a weighted average code distance; or, select a structure symmetry The code group structure.
  • the first obtaining module 22 is specifically configured to obtain a high-level retransmission probability of various states when the user data is transmitted according to the signal transition probability of the high-level retransmission generated in the to-be-coded signal and the generation probability of the to-be-coded signal.
  • the second obtaining module 23 is specifically configured to obtain a high-level retransmission cost by using the proportion or probability of various states when transmitting according to predetermined user data, and the state probability of each state when the user data is transmitted and the high-level retransmission probability.
  • the relationship selection module 24 is specifically configured to select a mapping relationship corresponding to a minimum high-level retransmission cost.
  • the embodiment of the present invention is not limited thereto, and the relationship selection module 24 may also select a mapping relationship corresponding to a high-level retransmission cost within a certain range that differs from the minimum high-level retransmission cost.
  • the encoding apparatus may further include: a constructing module 25, configured to: use a maximum code group with a minimum code distance of 6 and a code group obtained by performing row and column transformation on a maximum code group with a minimum code distance of 6.
  • a code group structure containing a predetermined number of codewords and having a predetermined minimum code distance is constructed.
  • the selection module 21 selects a code group structure according to the minimum code distance or the average code distance. Under each mapping relationship between the codeword and the to-be-coded signal in the code group structure, the first obtaining module 22 determines the signal according to the signal to be encoded.
  • the transition probability and the probability of generating the signal to be encoded are obtained, and the high-level retransmission probability is obtained.
  • the second obtaining module 23 obtains the high-level retransmission cost according to the high-level retransmission probability, and then the relationship selecting module 24 treats the mapping relationship corresponding to the minimum high-level retransmission cost.
  • the encoded signal is encoded. Thereby, the error probability of inter-signal transfer is reduced, especially those that may cause high-level retransmission, reducing unnecessary high-level retransmission and increasing the transmission rate of the system.
  • FIG. 4 is a schematic structural diagram of another apparatus for encoding according to an embodiment of the present invention.
  • the apparatus is for joint coding of a hybrid automatic repeat request-acknowledgment HARQ-ACK signal.
  • the apparatus for encoding includes a unit for encoding a HARQ-ACK signal and outputting a codeword;
  • the output codeword is ⁇ 1, 1, 1, 1, 1, 1, 1, 1, 1 ⁇ ; when the HARQ-ACK signal is NACK/ In DTX, the output codeword is ⁇ 0,0,0,0,0,0,0,0,0 ⁇ ; when the HARQ-ACK signal is DTX/ACK, the output codeword is ⁇ 1 1,1,1,1,0,0,0,0,0 ⁇ ; When the HARQ-ACK signal is DTX/NACK, the output codeword is ⁇ 0,0,0,0,0,1 1,1,1,1 ⁇ ; When the HARQ-ACK signal is ACK/ACK, the output codeword is ⁇ 1,0,1,0,1,0,1,0 ⁇ ; When the HARQ-ACK signal is ACK/NACK, the output codeword is ⁇ 1, 1, 0, 1, 1, 0, 0, 1, 1 ⁇ ; when the HARQ-ACK signal is NACK/ When ACK, the output codeword is ⁇ 0,0,
  • the embodiment of the present invention further provides a user equipment UE, which includes the foregoing encoding apparatus, and the UE may include all or part of the modules of the foregoing encoding apparatus.
  • the present invention can be implemented by hardware, or by software plus necessary general hardware platform.
  • the technical solution of the present invention can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, a U disk, a mobile hard disk, a random access memory ( a plurality of media, such as a RAM), a magnetic disk, or an optical disk, which can store program code, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the embodiments of the present invention.
  • a non-volatile storage medium which can be a CD-ROM, a U disk, a mobile hard disk, a random access memory ( a plurality of media, such as a RAM), a magnetic disk, or an optical disk, which can store program code, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network

Description

编码方法和装置 本申请要求于 2008年 11月 5日提交中国专利局、 申请号为 200810169195.7、 发明 名称为 "一种编码方法、 装置、 基站和用户设备"的中国专利申请的优先权, 以及 2009 年 6月 16日提交中国专利局、申请号为 200910149413.5、发明名称为"编码方法和装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 特别涉及编码方法和装置。 背景技术 在 WCDMA (Wide Code Division Multiple Access, 宽带码分多址) 系统中, 如果配 置 DC-HSDPA (Dual Cell High-Speed Downlink Packet Access, 双小区高速下行链路分组 接入) 且下行的两个载波使用两个 HS-DPCCH (Uplink High-Speed Dedicated Physical Control Channel, 上行链路高速专用物理控制信道) 时, 会存在功率受限的情形, 影响 覆盖范围。 为了节约功率资源, 在 UE (User Equipment, 用户设备) 没有配置 MIMO ( Multiple Input Multiple Output, 多输入多输出) 的情形下, 两个载波只使用一个 HS-DPCCH信道进行 ACK( Acknowledgement,确认) /NACK( Negative acknowledgement, 非确认)反馈是一种可行方案。 为此需要对两个载波(小区)上的 ACK/NACK反馈信息 进行联合编码,这里的联合编码指将各种 HARQ-ACK (Hybrid Automatic Repeat Request- Acknowledgement, 混合自动重传请求 -确认) 联合信号映射为一个 1 Obit的 0- 1序列。
WCDMA的 R8版本中引入了下行双载波技术, UE需要对两个载波发送的数据进行 HARQ-ACK反馈。 一个可行的方法是对两个载波上的反馈信息进行联合编码在一个 HS-DPCCH信道上进行反馈; 然而, 现有技术中并没有给出合适的联合编码方案来实现 在一个 HS-DPCCH信道上反馈信息。 发明内容 本发明提供一种编码方法和装置, 以满足下行双载波时, 在一个 HS-DPCCH信道上 对两个载波上的反馈信息进行联合编码。 本发明一方面提供一种编码方法, 用于对混合自动重传请求 -确认 HARQ-ACK信号 进行联合编码, 该方法包括: 对 HARQ-ACK信号进行编码, 并输出码字。 其中, 当所述 HARQ-ACK信号为 ACK/DTX时, 输出的码字为 {1,1,1,1,1,1,1,1,1,1}; 当所述 HARQ-ACK信号为 NACK/DTX时, 输出的码字为 {0,0,0,0,0,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/ACK时,输出的码字为 {1,1,1,1,1,0,0,0,0,0}; 当所述 HARQ-ACK 信号为 DTX/NACK时, 输出的码字为 {0,0,0,0,0,1,1,1,1,1}; 当所述 HARQ-ACK信号为 ACK/ACK时,输出的码字为{1,0,1,0,1,0,1,0,1,0}; 当所述 HARQ-ACK信号为 ACK/NACK 时, 输出的码字为{1,1,0,0,1,1,0,0,1,1}; 当所述 HARQ-ACK信号为 NACK/ACK时, 输出 的码字为 {0,0,1,1,0,0,1,1,0,0}; 当所述 HARQ-ACK信号为 NACK/NACK时, 输出的码字 ¾ {0,1,0,1,0,1,0,1,0,1} ο 其中, ACK/DTX表示主载波正确接收, 辅载波未检测到数据; NACK/DTX表示主 载波错误接收, 辅载波未检测到数据; DTX/ACK表示主载波未检测到数据, 辅载波正 确接收; DTX/NACK表示主载波未检测到数据, 辅载波错误接收; ACK/ACK表示主载 波正确接收, 辅载波正确接收; ACK/NACK表示主载波正确接收, 辅载波错误接收; NACK/ACK表示主载波错误接收,辅载波正确接收; NACK/NACK表示主载波错误接收, 辅载波错误接收。 本发明另一方面还提供一种编码装置, 用于对混合自动重传请求 -确认 HARQ-ACK 信号进行联合编码, 该装置包括: 对 HARQ-ACK信号进行编码, 并输出码字的单元; 其 中, 输出的码字与上述编码方法中的一致。 本发明另一方面还提供一种编码方法, 该方法包括: 选择码组结构, 每种码组结构 中的码字和待编码信号具有多种映射关系; 在每种映射关系下, 根据所述待编码信号的 信号转移概率和所述待编码信号的产生概率, 获得高层重传概率, 并根据所述高层重传 概率获得高层重传代价; 选择预定的高层重传代价所对应的映射关系, 作为所述待编码 信号的编码方案, 并根据所述编码方案对所述待编码信号进行编码。 采用本发明提供的编码方法和编码装置, 实现了在一个 HS-DPCCH信道上对两个载 波上的反馈信息进行联合编码的需求。 附图说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其 他的附图。 图 1为本发明实施例一种编码方法的流程图; 图 2为本发明实施例一种编码装置的结构图; 图 3为本发明实施例另一种编码装置的结构图。 具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整 地描述。 显然, 所描述的实施例仅仅是本发明的一部分实施例, 而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都属于本发明保护的范围。 本发明一个实施例提供一种编码方法, 提出了一种在下行多载波模式下使用一个 HS-DPCCH进行 ACK/NACK反馈时, 对 HARQ-ACK进行联合编码的方法。 本实施例 中, 选择码组结构, 每种码组结构中的码字和待编码信号具有多种映射关系。 在每种映 射关系下, 根据待编码信号的信号转移概率和待编码信号的产生概率, 获得高层重传概 率, 并根据该高层重传概率获得高层重传代价。 选择预定的高层重传代价所对应的映射 关系, 作为待编码信号的编码方案, 并根据该编码方案对待编码信号进行编码。 本实施例提供的编码方法不仅实现了在一个 HS-DPCCH信道上对两个载波上的反 馈信息进行联合编码的需求; 还减小了信号间转移的错误概率, 尤其是那些可能导致高 层重传的错误概率, 减少了不必要的高层重传, 提高了系统的传输速率。 如图 1所示, 为本发明实施例一种编码方法的流程示意图, 包括: 步骤 S101 , 选择码组结构, 每种码组结构中的码字和待编码信号具有多种映射关 系。 例如, 在选择码组结构时, 可以选择最大的最小码距或平均码距所对应的码组结 构; 或者, 可以选择最大的总码距或加权平均码距所对应的码组结构; 或者, 可以选择 结构对称的码组结构。 例如, 根据最小码距为 6的最大码组, 以及通过对最小码距为 6的最大码组进行 行列变换得到的码组来构造包含预定的码字个数且具有预定的最小码距的码组结构。上 述构造码组结构的方法是本发明实施例的一种优选方式,但是本发明实施例并不局限于 此, 在构造码组结构时, 还可以根据最小码距为其他值的最大码组来构造。 步骤 S102, 在每种映射关系下, 根据待编码信号的信号转移概率和待编码信号的 产生概率, 获得高层重传概率, 例如, RLC (Radio Link Control, 无线链路控制)层重传 概率, 并根据该高层重传概率获得高层重传代价。 例如, 获得高层重传代价可以包括: 根据待编码信号中产生高层重传的信号转移 概率和待编码信号的产生概率, 获得用户数据发送时每种状态下的高层重传概率。 根据 给定的用户数据发送时各种状态所占的比重或概率, 以及高层重传概率获得高层重传代 价。 步骤 S103, 选择预定的高层重传代价所对应的映射关系, 作为待编码信号的编码 方案, 并根据该编码方案对待编码信号进行编码。 例如, 选择预定的高层重传代价所对应的映射关系具体可以为: 选择最小的高层 重传代价所对应的映射关系。 当然, 本发明实施例并不局限于此, 也可以选择与最小的 高层重传代价相差在一定范围内的高层重传代价所对应的映射关系。 上述编码方法, 根据最小码距或平均码距选择码组结构, 在多个码组中的码字与 待编码信号的映射关系下, 根据待编码信号的信号转移概率和待编码信号的产生概率, 获得高层重传概率, 并根据该高层重传概率获得高层重传代价, 选择预定的高层重传代 价所对应的映射关系, 作为该待编码信号的编码方案, 并根据该编码方案对待编码信号 进行编码。 从而减小了信号间转移的错误概率, 尤其是那些可能导致高层重传的错误概 率, 减少了不必要的高层重传, 提高了系统的传输速率。 在本发明实施例中, 以待编码信号为 HARQ-ACK信号为例进行说明,但本发明实 施例并不局限于此, 该待编码信号也可以为其他码道上的信号。 本发明实施例中,在对 HARQ-ACK信号进行编码时,考虑了数据的高层重传代价。 衡量高层重传代价的一个指标为高层重传概率。 在一个单位时间内, 两载波上发送用户数据时可能存在的状态如表 1所示, 该单 位时间可以为 1个子帧 2ms。 表 1 主载波 辅载波
状态 状态概率
有无数据 有无数据
有 无 Pstatel Ptransl-H 无 有 Pstate2 Ptrans2-H
有 Pstate3 Ptrans3-H 如式 (1 ) 所示, 高层重传代价 Ptans_H可以根据高层重传概率进行计算, P State 1 Ptransl-H +Pstate2 Ptrans2-H +Pstate3 Ptrans3-H ( 1 )
Pstatel〜Pstate3可以通过测量得到一个统计结果, 例如, 通过测量主载波和辅载波有 无数据得到一个统计结果。一般来说, 系统处于一种混合状态, 即 PState3取值在 0.3〜0.7 的范围内。 Ptransl-H〜 Ptrans3_H和编码的码组结构有关; 另外即使是使用相同的码字, 信 号和码字的不同映射关系也会影响高层重传概率。在给定码字和信号的映射关系的情形 下, 通过仿真可以获得 ptansl_H〜ptans3_H的值。在各种可能的码组结构下, 可以获得不同 的 Ptansl-H〜Ptrans3-H的值, 在给定的场景下(Pstatel〜Pstate3的值已知), 通过比较可以得到
PtranSl-H〜PtmnS3-H的一组最优值, 根据 PtranSl-H〜PtmnS3-H的这组最优值, 可以获得在该场景 下的最小高层重传概率。 本发明实施例进行联合编码的信号如表 2所示, 其中 DTX/DTX信号为空信号, 不需要发送任何码字, 因此共需要对 8个信号进行编码, 也就需要 8个不同的码字对信 号进行映射 ( 表 2 HARQ-ACK信号 编号 信号 信号简称
1 ACK/DTX A D
2 NACK/DTX N D
3 DTX/ACK D A
4 DTX/NACK D N
ACK/ACK A_A ACK/NACK
NACK/ACK
NACK/NACK
DTX/DTX 下面介绍在 State3情形下的高层重传概率 Ptans3_H的具体计算方法。 在单个载波上 NodeB (节点 B) 发送用户数据和发送 DTX (空数据), UE的接收 情形可以如表 3所示, 由此可以得到 State3情形下 UE产生联合信号的事件概率, 如表 4所示。 表 3 NodeB发送数据, UE接收数据的各事件概率 (单载波)
ΤΉ接收 逻辑响应 (发出信号) 事件概率
正确接收 ACK PA
错误接收 NACK PN
未检测到 DTX PD 根据 3GPP (3rd Generation Partnership Project, 第三代合作伙伴计划)物理层协议 的规定, 一般要求 PA≥ 90 %, PD < 1 % ; 为分析计算方便, 本发明实施例中可以取 PA = 0.9, PN= 0.1 , PD = 0.01。 两个载波上都发送用户数据 (State3 ) 时各信号的产生概率
TTI接收
逻辑响应 (发出信号) 事件概率 主载波 辅载波
正确接收 ACK/ACK PAPA 正确接收 错误接收 ACK/NACK PAPN
未检测到 ACK/DTX PAPD 正确接收 NACK/ACK PNPA 错误接收 错误接收 NACK/NACK PNPN
未检测到 NACK/DTX PNPD 正确接收 DTX/ACK PDPA 未检测到 错误接收 DTX/NACK PDPN
未检测到 DTX/DTX PDPD NodeB在初次传送用户数据给 UE时, UE反馈 HARQ-ACK信号给 NodeB, 而 NodeB接收到的信号与 UE发送的 HARQ-ACK信号可能一致也可能不一致 (即发生信 号转移)。发生信号转移会导致 NodeB进行数据重传,具体的数据重传行为如表 5所示, 对应的信号转移概率如表 6所示。 信号转移触发的 NodeB数据重传行为
Figure imgf000009_0001
表 5中, L表示物理层重传, H表示高层重传, 0表示不重传。 L/H表示主载波物 理层重传, 辅载波高层重传; L/L表示主载波物理层重传, 辅载波物理层重传; H/L表 示主载波高层重传, 辅载波物理层重传; H/H表示主载波高层重传, 辅载波高层重传; H/0表示主载波高层重传, 辅载波不重传; 0/H表示主载波不重传, 辅载波高层重传; L/0表示主载波物理层重传,辅载波不重传; 0/L表示主载波不重传,辅载波物理层重传; 0/0表示主载波不重传, 辅载波不重传。 表 6 信号转移概率
A D N D D A D N A_A A_N N_A N_N D D
A D Pll P12 Pl3 Pl4 Pl5 Pi6 Pl7 Pis Pl9
N D P21 P22 P23 P24 P25 P26 P27 P28 P29
D A P31 P32 P33 P34 P35 P36 P37 P38 P39
D N P41 P42 P43 P44 P45 P46 P47 P48 P49
A_A P51 P52 P53 P54 P55 P56 PSV P58 P59
A_N P61 P62 P63 P64 P65 P66 P67 P68 ?69 N_A Pvi P72 PV3 PV4 PV5 PV6 PV7 PV8 PV9
N_N Psi P82 P83 P84 P85 P86 PS7 P88 P89
D D P91 P 2 P 3 P 4 P95 P 6 P 7 P 8 P 于是, State3情形下的高层重传概率 Ptrans3-H的具体表达式为: PAPD(Pl3 + Pl5+ Piv)+ PNPD(P21 + P23 + P25+ P26+ P27)+ PD P A(P31 + P35+ P36)+PDPN(P41 +P43 + P45+ P46+ P47) + PAPN(P63 + P65+ P67) +PNPA(P71 + P75+ P76)+
PNPN(PSI+P83+ PS5+ PS6+ PSV) + PDP D(P9I+P93+ P95+ P96+ P97) ( 2 ) 式 (2) 中的 P13, P15, P17, P21, P23, P25, ..., 为表 6中的高层重传行为所对应 的信号转移概率。 下面介绍 Ptansl_H, Ptans2_H的具体计算方法。 在 Statel情形下, NodeB在主载波上发送用户数据, 辅载波上发送 DTX, UE接 收数据的事件概率如表 7所示; UE反馈的 HARQ-ACK信号在 NodeB接收时发生信号 转移导致的数据重传行为, 以及对应的信号转移概率分别如表 8和表 9所示。 在 Statel 情形下, NodeB对接收的信号只会在 A_D, N_D, D_D里进行判决, 在 State2情形下, NodeB对接收的信号只会在 D_A, D_N, D_D里进行判决。 如果接收机译码算法仍然 是在表 2所述 9个信号里判决, 则公式 (3 ) 和公式 (4) 需要做相应修改。 表 7 主载波发送用户数据, 辅载波发送 DTX时各信号的产生概率。 TTI接收
逻辑响应 (发出信号) 事件概率 主载波 辅载波
正确接收 ACK/DTX PA 正确接收 ACK/ACK 0
错误接收
ACK/NACK 0 正确接收 NACK/DTX PN
Figure imgf000010_0001
正确接收 DTX/DTX PD 未检测到 DTX/ACK 0
错误接收
DTX/NACK 0 表 8 信号转移触发的 NodeB数据重传行为
Figure imgf000011_0003
表 9 信号转移概率
Figure imgf000011_0004
于是, Statel情形下的高层重传概率 Ptransl_H的计算表达式为:
Figure imgf000011_0001
State2情形下的高层重传概率 Ptrans2_H的计算方法与 Ptansl_H的计算方法类似, 在此 不再赘述。 State2情形下的高层重传概率 Ptrans2-H的计算表达式为:
Figure imgf000011_0002
通过仿真表明, 只使用单载波发送用户数据的情形下, 其高层重传概率主要由虚 警产生, 即有以下式子成立:
Ptransl-H ^ PD P9l ' ( 5 ) Ptrans2-H ^ PD 93 " ( 6) 下面介绍码组结构的选取 < 在 10位 0-1序列的码字空间中, 最小码距为 6的码组最多含有 6个码字。 任何一 组最小码距为 6的码组中各个码字间的码距都为 6, 且所有这样的码组彼此等价, 即可 以通过线性变换互相转化。 其中, 表 10给出了四组码距为 6的码组。 表 10 编号 码字 编号 码字
A1 1 1 1 1 1 1 1 1 1 1 B1 0 0 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 1 1 0 0 B2 1 1 0 0 1 1 0 0 1 1 A3 1 0 0 1 0 1 0 0 1 0 B3 0 1 1 0 1 0 1 1 0 1
A4 1 0 0 0 1 0 0 1 0 1 B4 0 1 1 1 0 1 1 0 1 0
A5 0 1 0 0 1 1 1 0 0 0 B5 1 0 1 1 0 0 0 1 1 1
A6 0 1 1 0 0 0 0 0 1 1 B6 1 0 0 1 1 1 1 1 0 0 编号 码字 编号 码字
CI 1 1 1 1 1 0 0 0 0 0 Dl 0 0 0 0 0 1 1 1 1 1
C2 0 1 0 1 0 1 0 1 0 1 D2 1 0 1 0 1 0 1 0 1 0
C3 1 1 0 0 0 0 1 1 1 0 D3 0 0 1 1 1 1 0 0 0 1
C4 0 0 0 1 1 0 1 0 1 1 D4 1 1 1 0 0 1 0 1 0 0
C5 0 0 1 0 1 1 0 1 1 0 D5 1 1 0 1 0 0 1 0 0 1
C6 1 0 1 0 0 1 1 0 0 1 D6 0 1 0 1 1 0 0 1 1 0 表 10中, A组 (包括 Al, A2, A3 , A4, A5, A6) 码组是一个码距为 6的最大 码组, B组 (包括 Bl, B2, B3, B4, B5, B6) 是由 A组的反码组成的码组, 码字间 码距为 6。 C组 (包括 Cl, C2, C3, C4, C5, C6) 的任一码字与 A组中的任一码字的 码距为 5, 码字间码距为 6。 D组 (包括 Dl, D2, D3, D4, D5, D6)是由 C组的反码 组成的码组, 码字间码距为 6。
A组和 B组之间, C组和 D组之间的最小码距为 4。 本发明实施例中, A组码字可以变换为任意一个码距为 6的最大码组。 任意一个 码距为 6的最大码组都可以唯一确定与之伴随的另外三个码组。 最小码距为 5的码组结构可以为: 6A+2C , 6A+C+D, 5A+3C, 4A+4C, ... 最小码距为 4 的码组结构可以为: 6A+2B, 5A+3B, 4A+4B, 2A+2B+2C+2D,
4A+2C+2D, ... 其中, 6A+2C表示由 A组的 6个码字, C组任意的 2个码字组成的码组; 6A+C+D 表示 A组的 6个码字, C组的 1个码字和 D组的 1个码字组成的码组, 且 D码字是 C 码字对应的反码: 若同时有 A组码字和 B组码字(或是 C组码字和 D组码字), 则所选 取的 B组码字要求是 A组码字对应的反码..., 其余以此类推, 在此不再赘述。 另夕卜, 对 A组(或 B组)码字来说, C组、 D组与 A组(或 B组) 的码距都为 5, 因此是等价的: 反之亦然。 6A+2C与 6A+2D, 6B+2C, 6B+2D本质上是同一种结构。 又由于 A组可以变换为任意一个码距为 6的码组, 当然也能变换为表 10中 C组码字, 只要将表 10中的 A组与 C组, B组与 D组码字交换就可以得到表 10的另一个实例。 因此, 6C+2A, 6C+2B, 6D+2A, 6D+2B也与 6A+2C是本质上等价的结构。 对于其它 码组结构, 也有各自对应的本质上相同的结构, 在此不再赘述。 表 11列出了各种码组结构的码距性能。从最小码距和平均码距两个方面进行考虑, 发现 6A+C+D, 4A+4B, 2A+2B+2C+2D三种码组结构的码距性能较佳。 表 11 各种码组结构的码距性能比较 码组结构 最小码距 平均码距
6A+2C 5 156/28
5A+3C 5 153/28
4A+4C 5 152/28
6A+C+D 5 160/28
6A+2B 4 156/28
5A+3B 4 156/28
4A+4B 4 160/28
2A+2B+2C+2D 4 160/28
4A+2C+2D 4 156/28 下面对 6A+C+D码组结构下的编码方法进行介绍。 6A+C+D码组结构指由表 10 中 A组的 6个码字、 C组的任意一个码字和 D组一个与 C组的码字对应的反码组成的 码组。 码组结构固定后, 在给定发送功率等条件下, 可以测得 8个码字间的转移概率。 6A+C+D码组结构下的 8个码字和 8个 HARQ-ACK信号有 28种映射关系。在每种映射 关系下, 根据测得的 8个码字间的转移概率, 可以获得 8个 HARQ-ACK信号的信号转 移概率, 即表 6中的 Pu, P12, P13, ...... P99 o 在给定的场景下, 可以通过测量得到 PStatel〜PState3的一个统计值。根据 3GPP物理 层协议的规定, 一般要求 PA≥90 %, PD≤1 %, 为分析计算方便, 可以取 PA=0.9, PN= 0.1, PD=0.01。 在上述 28种不同的映射关系下, 将以上述值分别代入式 (2)、 式 (3 ) 和式 (4) 计算, 可以获得 Ptransi-H 、 Ptrans2-H禾口 PtranS3-H, ¾ Ptransl-H 、 Ptans2-H禾口 PtanS3-H代入式 ( 1 ), 可以获得高层重传代价 Ptans-H。 与最小的高层重传代价 Ptrans-H对应的映射关系为 最优的映射关系, 最优的映射关系可以有一个或多个。 在双载波模式下, 当在两个载波上都有用户数据发送时, 6A+C+D 码组结构的最 优编码方案如表 12方案 1所示。若考虑到联合编码方式和单载波下编码方式的兼容性, 则可以采用方案 2。 方案 2仍然具有较小的高层重传概率。
表 12 6A+C+D 最优编码方案
Figure imgf000014_0001
在采用 6A+C+D码组结构时, 利用表 12给出的编码方案, 可以使得 NodeB在发送 数据时, 具有最小的高层重传概率。
其中, A1〜A6可以为表 10的 A组 6个码字的任意排列, C1可以为 C组的任意一 个码字, D1和 C1互为反码。 该方案的码组结构为 6A+C+D, 即 8个码字由 6个 A组 码字, 加 1个 C组码字, 加 1个 D组码字组成, 其中 D组码字是 C组码字的反码。 另 夕卜, 如果要支持 PRE (Preamble, 前缀) /POST (Postamble, 后缀) 功能, 若考虑与单 载波编码的兼容性, 仍然沿用单载波下的 PRE/POST码字。 否则, 可以添加 1个 C2码 字与 1个 D2码字分别作为 PRE和 POST, 将码组结构扩充为 6A+2C+2D, 其中 D组的 2个码字分别是 C组的 2个码字对应的反码。
表 13给出采用表 12的方案 2时的一种实例。 本实例中, 实际使用的是与 6A+C+D 本质上相同的 6C+A+B码组结构。
表 13 6A+C+D码组结构的一种编码实例
Figure imgf000014_0002
本发明实施例并不局限于此, 不论使用什么码字, 只要满足码组结构为 6A+C+D或 与其本质上等价的码组结构, 以及在给定场景下按照最小的高层重传概率进行
HARQ-ACK信号与码字的映射, 均应落入本发明实施例的保护范围。 另外, 如果要支持 PRE (Preamble, 前缀) /POST (Postamble, 后缀) 功能, 可以 添加 1个 C2码字与 1个 D2码字分别作为 PRE和 POST,将码组结构扩充为 6A+2C+2D, 其中 D组的 2个码字分别是 C组的 2个码字对应的反码。
在进行单 /双载波间切换 (根据实际需要, NodeB可能会关闭辅载波, 变成单载波 状态) 时, 为减少码本空间的码字总数, 可以在单载波时重用 C1码字和 D1码字, 例 如: ACK使用 C1码字, NACK使用 D1码字。
下面对 4A+4B码组结构下的编码方法进行介绍。 4A+4B码组结构指由表 10中 A 组的 4个码字和 B组与 A组对应的 4个反码组成的码组。
码组结构固定后, 在给定发送功率等条件下, 可以测得 8 个码字间的转移概率。 4A+4B码组结构下的 8个码字和 8个 HARQ-ACK信号有 840种本质上不同的映射关系。 在每种映射关系下,采用与 6A+C+D码字结构下相同的取值和原则,可以获得相应的最 优编码方案, 如表 14的方案 1和方案 2所示。 若考虑到联合编码方式和单载波下编码 方式的兼容性, 即要求 A_D信号和 N_D信号对应的码字互为反码, 则可采用表 14的 方案 3。
表 14 4A+4B 最优编码方案
Figure imgf000015_0001
在采用 4A+4B码组结构时,利用表 14给出的编码方案,在满足给定要求的前提下, 可以使得 NodeB在发送数据时, 具有最小的高层重传概率。其中, A1〜A4可以为表 10 的 A组 4个码字的任意排列, B1〜B4是与 A1〜A4对应的反码。 该方案的码组结构为 为 4A+4B, 即 8个码字由 4个 A组的码字加 4个 B组码字组成, 且 B组码字是 A组码 字的反码。 该码组结构在以上映射下, NodeB发送数据具有最小的高层重传概率; 另外 由于使用了 4对反码, 给解调带来一定的方便。 另外, 如果要支持 PRE/POST功能, 若 考虑到和单载波下编码方式的兼容性, 仍然沿用单载波下的 PRE/POST码字。 否则, 可 以添加 1个 A5码字与 1个 B5码字 (或者 1个 C1码字, 1个 D1码字) 分别作为 PRE 禾口 POST, 将码组结构扩充为 5A+5B (或 4A+4B+C+D)。
以下根据表 14方案 1, 且 PRE/POST沿用单载波下的码字, 给出一个编码实例, 如表 15所示。
表 15 4A+4B码组结构的一种编码实例 信号 码字
ACK/DTX 1 1 1 1 1 1 1 1 1 1
NACK/DTX 0 0 1 1 0 0 1 1 0 0
DTX/ACK 1 0 0 1 0 1 0 0 1 0
DTX/NACK 1 0 0 0 1 0 0 1 0 1
ACK/ACK 0 1 1 1 0 1 1 0 1 0
ACK/NACK 0 1 1 0 1 0 1 1 0 1
NACK/ACK 0 0 0 0 0 0 0 0 0 0
NACK/NACK 1 1 0 0 1 1 0 0 1 1
PRE 0 0 1 0 0 1 0 0 1 0
POST 0 1 0 0 1 0 0 1 0 0
在表 14所给的方案中, A组码字可以为任意一组码字间码距为 6的码组。 B组码字是 A组码字对应的反码。 任何码组结构为 4A+4B, 在满足给定要求 (如 A_D信号和 N_D信 号必须使用一对反码等)的前提下信号和码字的映射关系满足最小化高层重传概率准则 的编码方案均在本发明实施例的保护范围之内。
另夕卜, 如果要支持 PRE/POST功能, 可以添加 1个 A5码字与 1个 B5码字(或者 1 个 C1 码字, 1个 D1码字) 分别作为 PRE和 POST, 将码组结构扩充为 5A+5B (或 4A+4B+C+D) o
在进行单 /双载波间切换 (根据实际需要, NodeB 可能会关闭辅载波, 变成单载波 状态) 时, 为减少码本空间的码字总数, 可以在单载波时重用 A1码字和 B1码字, 例 如: ACK使用 A1码字, NACK使用 B1码字。
下面对 2A+2B+2C+2D码组结构下的编码方法进行介绍。 2A+2B+2C+2D码组结构 指由表 10中 A组的 2个码字、 B组的 2个码字、 C组的 2个码字和 D组的 2个码字组 成的码组。
码组结构固定后, 在给定发送功率等条件下, 可以测得 8个码字间的转移概率。 在 2A+2B+2C+2D码组结构的 8个码字和 8个 HARQ-ACK信号的不同映射关系下, 采用 与 6A+C+D码组结构下相同的取值和原则, 可以获得相应的最优编码方案, 如表 16所 示方案 1〜方案 4。 若考虑到联合编码方式和单载波下编码方式的兼容性, 即要求 A_D 信号和 N_D信号对应的码字互为反码, 则可以采用方案 5〜方案 7。
表 16 2A+2B+2C+2D码组结构下的最优编码方案
Figure imgf000016_0001
方案 3 A1 C1 B1 D1 C2 B2 A2 D2 方案 4 A1 C1 B1 D1 D2 B2 A2 C2 方案 5 A1 B1 C1 D1 B2 C2 D2 A2 方案 6 A1 B1 C1 D1 D2 B2 A2 C2 方案 7 A1 B1 C1 C2 D2 B2 A2 D1 上述方案的码组结构为 2A+2B+2C+2D, 即从 A、 B、 C、 D组中各选两个码字组成, 且 A组和 B组的码字互为反码; C组和 D组的码字互为反码。 在以上的映射关系下, NodeB发送数据时具有最小的高层重传概率; 另外由于码距分布比较均匀, 且使用了 4 对反码, 为数据解调带来了一定的方便。 另外, 如果要支持 PRE/POST功能, 若考虑到 和单载波下编码方式的兼容性, 仍然沿用单载波下的 PRE/POST码字。 否则, 可以添加 1个 A3码字与 1个 B3码字(或者 1个 C3码字, 1个 D3码字)分别作为 PRE和 POST, 将码组结构扩充为 3A+2B+3C+2D (或 2A+2B+3C+3D)。
以下根据表 16所示的方案 5,且 PRE/POST沿用单载波下的码字给出一个编码实例, 如表 17所示。
表 17 2A+2B+2C+2D码组结构的一种编码实例
Figure imgf000017_0001
在表 16给出的编码方案中, A组码字可以是任何一组码字间码距为 6的码组。 B 组、 C组和 D组码字是由 A组码字唯一确定的三个码组, 如表 10所示。 任何码组结构 为 2A+2B+2C+2D, 在给定的要求下, 信号和码字的映射关系满足最小化高层重传概率 准则的编码方案均应落入本发明实施例的保护范围。
另夕卜, 如果要支持 PRE/POST功能, 可以添加 1个 A3码字与 1个 B3码字(或者 1 个 C3码字, 1个 D3码字) 分别作为 PRE和 POST, 将码组结构扩充为 3A+2B+3C+2D (或 2A+2B+3C+3D)。 在进行单 /双载波间切换(根据实际需要, NodeB可能会关闭辅载波, 变成单载波状 态) 时, 为减少码本空间的码字总数, 可以在单载波时重用 A1码字和 B1码字, 例如: ACK使用 A1码字, NACK使用 B1码字。
本发明实施例在最小化最小码距或平均码距的前提下,根据最小化高层重传概率的 准则, 选取最优的信号与码字的映射关系, 减小了信号间转移的错误概率, 尤其是那些 可能导致高层重传的错误概率, 减少了不必要的高层重传, 提高了系统的传输速率。
如图 2所示, 为本发明实施例一种编码装置的结构图, 包括:
选择模块 21,用于选择码组结构,每种码组结构中的码字和待编码信号具有多种映 射关系。
第一获得模块 22, 用于在选择模块 21选择的码组结构中的码字和待编码信号的每 种映射关系下, 根据待编码信号的信号转移概率和待编码信号的产生概率, 获得高层重 传概率。
第二获得模块 23, 用于根据第一获得模块 22获得的高层重传概率获得高层重传代 价。
关系选择模块 24,用于选择预定的高层重传代价所对应的映射关系,作为待编码信 号的编码方案, 并根据该编码方案对待编码信号进行编码。
其中, 选择模块 21 具体用于选择最大的最小码距或平均码距所对应的码组结构; 或者, 选择最大的总码距或加权平均码距所对应的码组结构; 或者, 选择结构对称的码 组结构。
第一获得模块 22具体用于根据待编码信号中产生高层重传的信号转移概率和待编 码信号的产生概率, 获得用户数据发送时各种状态的高层重传概率。
第二获得模块 23具体用于根据预定的用户数据发送时各种状态所占的比重或概率, 以及用户数据发送时每种状态的状态概率和高层重传概率获得高层重传代价。
关系选择模块 24具体用于选择最小的高层重传代价所对应的映射关系。 当然, 本 发明实施例并不局限于此, 关系选择模块 24也可以选择与最小的高层重传代价相差在 一定范围内的高层重传代价所对应的映射关系。
如图 3所示, 该编码装置还可以包括: 构造模块 25, 用于根据最小码距为 6的最 大码组, 以及通过对最小码距为 6的最大码组进行行列变换得到的码组来构造包含预定 的码字个数且具有预定的最小码距的码组结构。 上述编码装置, 选择模块 21根据最小码距或平均码距选择码组结构, 在码组结构 中的码字和待编码信号的每种映射关系下, 第一获得模块 22根据待编码信号的信号转 移概率和待编码信号的产生概率, 获得高层重传概率, 第二获得模块 23根据该高层重 传概率获得高层重传代价, 然后关系选择模块 24根据最小的高层重传代价对应的映射 关系对待编码信号进行编码。 从而减小了信号间转移的错误概率, 尤其是那些可能导致 高层重传的错误概率, 减少了不必要的高层重传, 提高了系统的传输速率。
图 4为本发明实施例提供的另一种编码的装置结构示意图。该装置用于对混合自动 重传请求 -确认 HARQ-ACK信号进行联合编码。如图 4所示, 该编码的装置包括一个对 HARQ-ACK信号进行编码, 并输出码字的单元; 其中,
当所述 HARQ-ACK信号为 ACK/DTX时, 输出的码字为 {1,1,1,1,1,1,1,1,1,1}; 当所述 HARQ-ACK信号为 NACK/DTX时, 输出的码字为 {0,0,0,0,0,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/ACK时, 输出的码字为 {1,1,1,1,1,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/NACK时, 输出的码字为 {0,0,0,0,0,1,1,1,1,1}; 当所述 HARQ-ACK信号为 ACK/ACK时, 输出的码字为 {1,0,1,0,1,0,1,0,1,0} ; 当所述 HARQ-ACK信号为 ACK/NACK时, 输出的码字为 {1,1,0,0,1,1,0,0,1,1}; 当所述 HARQ-ACK信号为 NACK/ACK时, 输出的码字为 {0,0, 1, 1,0,0, 1, 1,0,0}; 当所述 HARQ-ACK信号为 NACK/NACK时, 输出的码字为 {0, 1,0, 1,0, 1,0, 1,0, 1 }。 本发明实施例还提供了一种基站, 包括上述的一种编码装置, 该基站可以包括上述 的一种编码装置的全部或部分模块。
本发明实施例还提供了一种用户设备 UE, 包括上述的一种编码装置, 该 UE可以 包括上述的一种编码装置的全部或部分模块。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可以通过 硬件实现, 也可以借助软件加必要的通用硬件平台的方式来实现。 基于这样的理解, 本 发明的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质 (可以是 CD-ROM, U盘, 移动硬盘, 随机存取存储器 (RAM)、 磁碟或者光 盘等各种可以存储程序代码的介质) 中, 包括若干指令用以使得一台计算机设备(可以 是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块或流程 并不一定是实施本发明所必须的。 本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布 于实施例的装置中, 也可以进行相应变化位于不同于本实施例的一个或多个装置中。 上 述实施例的模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上公开的仅为本 发明的几个具体实施例, 但是, 本发明并非局限于此, 任何本领域的技术人员能思之的 变化都应落入本发明的保护范围。

Claims

权利要求
1、一种编码方法, 用于对混合自动重传请求 -确认 HARQ-ACK信号进行联合编码, 其特征在于, 包括:
对 HARQ-ACK信号进行编码, 并输出码字; 其中,
当所述 HARQ-ACK信号为 ACK/DTX时, 输出的码字为 {1,1,1,1,1,1,1,1,1,1}; 当所述 HARQ-ACK信号为 NACK/DTX时, 输出的码字为 {0,0,0,0,0,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/ACK时, 输出的码字为 {1,1,1,1,1,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/NACK时, 输出的码字为 {0,0,0,0,0,1,1,1,1,1}; 当所述 HARQ-ACK信号为 ACK/ACK时, 输出的码字为 {1,0,1,0,1,0,1,0,1,0}; 当所述 HARQ-ACK信号为 ACK/NACK时, 输出的码字为 {1,1,0,0,1,1,0,0,1,1}; 当所述 HARQ-ACK信号为 NACK/ACK时, 输出的码字为 {0,0,1,1,0,0,1,1,0,0}; 当所述 HARQ-ACK信号为 NACK/NACK时, 输出的码字为 {0,1,0,1,0,1,0,1,0,1}; 其中,
ACK/DTX表示主载波正确接收, 辅载波未检测到数据; NACK/DTX表示主载波错 误接收, 辅载波未检测到数据; DTX/ACK表示主载波未检测到数据, 辅载波正确接收; DTX/NACK表示主载波未检测到数据, 辅载波错误接收; ACK/ACK表示主载波正确接 收,辅载波正确接收; ACK/NACK表示主载波正确接收,辅载波错误接收; NACK/ACK 表示主载波错误接收, 辅载波正确接收; NACK/NACK表示主载波错误接收, 辅载波错 误接收。
2、根据权利要求 1所述的方法, 其特征在于, 对所述 HARQ-ACK信号进行编码包 括: 根据下表所示的映射关系对所述 HARQ-ACK信号进行映射;
Figure imgf000021_0001
3、 根据权利要求 1所述的方法, 其特征在于, 当支持 PRE/POST前缀 /后缀时, 所 述方法还包括:
将所述 PRE/POST编码为单载波模式下 PRE/POST对应的码字。
4、 根据权利要求 1所述的方法, 其特征在于, 所述 ACK/DTX, 所述 NACK/DTX, 所述 DTX/ACK,所述 DTX/NACK,所述 ACK/ACK,所述 ACK/NACK,所述 NACK/ACK, 所述 NACK/NACK对应的所述码字为满足最小高层重传概率的码字。
5、 一种编码的装置, 用于对混合自动重传请求 -确认 HARQ-ACK信号进行联合编 码, 其特征在于, 包括:
对 HARQ-ACK信号进行编码, 并输出码字的单元; 其中,
当所述 HARQ-ACK信号为 ACK/DTX时, 输出的码字为 { 1,1,1,1,1,1,1,1,1,1 }; 当所述 HARQ-ACK信号为 NACK/DTX时, 输出的码字为 {0,0,0,0,0,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/ACK时, 输出的码字为 { 1,1,1,1,1,0,0,0,0,0}; 当所述 HARQ-ACK信号为 DTX/NACK时, 输出的码字为 {0,0,0,0,0,1,1,1,1,1 }; 当所述 HARQ-ACK信号为 ACK/ACK时, 输出的码字为 { 1,0,1,0,1,0,1,0,1,0}; 当所述 HARQ-ACK信号为 ACK/NACK时, 输出的码字为 { 1,1,0,0,1,1,0,0,1,1 }; 当所述 HARQ-ACK信号为 NACK/ACK时, 输出的码字为 {0,0,1,1,0,0,1,1,0,0}; 当所述 HARQ-ACK信号为 NACK/NACK时, 输出的码字为 {0,1,0,1,0,1,0,1,0,1 }; 其中,
ACK/DTX表示主载波正确接收, 辅载波未检测到数据; NACK/DTX表示主载波错 误接收, 辅载波未检测到数据; DTX/ACK表示主载波未检测到数据, 辅载波正确接收; DTX/NACK表示主载波未检测到数据, 辅载波错误接收; ACK/ACK表示主载波正确接 收,辅载波正确接收; ACK/NACK表示主载波正确接收,辅载波错误接收; NACK/ACK 表示主载波错误接收, 辅载波正确接收; NACK/NACK表示主载波错误接收, 辅载波错 误接收。
6、 根据权利要求 5所述的装置, 其特征在于,
所述对 HARQ-ACK 信号编码的单元, 用于根据下表所示的映射关系对所述 HARQ-ACK信号进行映射:
Figure imgf000022_0001
DTX/ACK 1 1 1 1 1 0 0 0 0 0
DTX/NACK 0 0 0 0 0 1 1 1 1 1
ACK/ACK 1 0 1 0 1 0 1 0 1 0
ACK/NACK 1 1 0 0 1 1 0 0 1 1
NACK/ACK 0 0 1 1 0 0 1 1 0 0
NACK/NACK 0 1 0 1 0 1 0 1 0 1
7、 根据权利要求 5所述的装置, 其特征在于, 当支持 PRE/POST前缀 /后缀时, 所 述装置还包括:
将所述 PRE/POST编码为单载波模式下 PRE/POST对应的码字的单元。
8、 根据权利要求 5所述的装置, 其特征在于, 所述 ACK/DTX, 所述 NACK/DTX, 所述 DTX/ACK,所述 DTX/NACK,所述 ACK/ACK,所述 ACK/NACK,所述 NACK/ACK, 所述 NACK/NACK对应的所述码字为满足最小高层重传概率的码字。
9、 一种编码方法, 其特征在于, 包括:
选择码组结构, 每种码组结构中的码字和待编码信号具有多种映射关系; 在每种映射关系下,根据所述待编码信号的信号转移概率和所述待编码信号的产生 概率, 获得高层重传概率, 并根据所述高层重传概率获得高层重传代价;
选择预定的高层重传代价所对应的映射关系, 作为所述待编码信号的编码方案, 并 根据所述编码方案对所述待编码信号进行编码。
10、 根据权利要求 9所述的编码方法, 其特征在于, 所述映射关系如下表所示:
Figure imgf000023_0001
其中, ACK/DTX表示主载波正确接收, 辅载波未检 到数据; NACK/DTX表示主 载波错误接收, 辅载波未检测到数据; DTX/ACK表示主载波未检测到数据, 辅载波正 确接收; DTX/NACK表示主载波未检测到数据, 辅载波错误接收; ACK/ACK表示主载 波正确接收, 辅载波正确接收; ACK/NACK表示主载波正确接收, 辅载波错误接收; NACK/ACK表示主载波错误接收, 辅载波正确接收; NACK/NACK表示主载波错误接 收, 辅载波错误接收。
11、 根据权利要求 9所述的编码方法, 其特征在于, 所述待编码信号为 HARQ-ACK 信号。
12、 一种编码装置, 其特征在于, 包括: 选择模块, 用于选择码组结构, 每种码组结构中的码字和待编码信号具有多种映射 关系;
第一获得模块,用于在选择模块选择的码组结构中的码字和待编码信号的每种映射 关系下,根据待编码信号的信号转移概率和待编码信号的产生概率,获得高层重传概率; 第二获得模块, 用于根据第一获得模块获得的高层重传概率获得高层重传代价; 以 及
关系选择模块, 用于选择预定的高层重传代价所对应的映射关系, 作为待编码信号 的编码方案, 并根据该编码方案对待编码信号进行编码。
13、 根据权利要求 12所述的编码装置, 其特征在于, 所述映射关系如下表所示:
Figure imgf000024_0001
其中, ACK/DTX表示主载波正确接收, 辅载波未检测到数据; NACK/DTX表示主 载波错误接收, 辅载波未检测到数据; DTX/ACK表示主载波未检测到数据, 辅载波正 确接收; DTX/NACK表示主载波未检测到数据, 辅载波错误接收; ACK/ACK表示主载 波正确接收, 辅载波正确接收; ACK/NACK表示主载波正确接收, 辅载波错误接收; NACK/ACK表示主载波错误接收, 辅载波正确接收; NACK/NACK表示主载波错误接 收, 辅载波错误接收。
14、根据权利要求 12所述的编码装置, 其特征在于, 所述待编码信号为 HARQ-ACK 信号。
PCT/CN2009/075197 2008-11-05 2009-11-28 编码方法和装置 WO2010051779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13196774.7A EP2723013B1 (en) 2008-11-05 2009-11-28 Encoding method and device
EP09824434.6A EP2256984B1 (en) 2008-11-05 2009-11-28 Method and system for encoding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810169195.7 2008-11-05
CN200810169195 2008-11-05
CN2009101494135A CN101741512B (zh) 2008-11-05 2009-06-16 编码方法和装置
CN200910149413.5 2009-06-16

Publications (1)

Publication Number Publication Date
WO2010051779A1 true WO2010051779A1 (zh) 2010-05-14

Family

ID=42152518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075197 WO2010051779A1 (zh) 2008-11-05 2009-11-28 编码方法和装置

Country Status (4)

Country Link
EP (2) EP2723013B1 (zh)
CN (1) CN101741512B (zh)
RU (1) RU2465734C2 (zh)
WO (1) WO2010051779A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106357275A (zh) * 2016-08-30 2017-01-25 国网冀北电力有限公司信息通信分公司 一种哈夫曼压缩方法及装置
CN108023719A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 混合自动重传请求harq码本的生成方法及相关设备
CN109792322A (zh) * 2016-08-12 2019-05-21 诺基亚通信公司 针对5g通信系统的细粒度ack/nack反馈

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474061C1 (ru) 2009-03-17 2013-01-27 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство кодирования сигнала обратной связи
WO2014019174A1 (zh) * 2012-08-01 2014-02-06 华为技术有限公司 一种基于多流传输技术的信息反馈方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441948A (zh) * 2000-07-13 2003-09-10 旭化成株式会社 语音识别装置与语音识别方法
CN1954573A (zh) * 2004-05-31 2007-04-25 三星电子株式会社 在正交频分多址通信系统中发送上行链路确认信息的方法和设备
CN101222304A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输harq ack/nack的设备和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101167291B (zh) * 2005-04-28 2012-09-12 松下电器产业株式会社 使用高阶调制方案进行数字数据传输的方法和发射机
RU2319199C2 (ru) * 2006-03-27 2008-03-10 Станислав Антонович Осмоловский Универсальный способ передачи информации с контролируемыми параметрами
US8005107B2 (en) * 2007-02-06 2011-08-23 Research In Motion Limited Method and system for robust MAC signaling
RU2344546C1 (ru) * 2007-04-18 2009-01-20 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Адаптация скорости передачи данных в ofdm-системе при наличии помех

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441948A (zh) * 2000-07-13 2003-09-10 旭化成株式会社 语音识别装置与语音识别方法
CN1954573A (zh) * 2004-05-31 2007-04-25 三星电子株式会社 在正交频分多址通信系统中发送上行链路确认信息的方法和设备
CN101222304A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输harq ack/nack的设备和方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792322A (zh) * 2016-08-12 2019-05-21 诺基亚通信公司 针对5g通信系统的细粒度ack/nack反馈
CN109792322B (zh) * 2016-08-12 2022-05-24 诺基亚通信公司 通信的方法、计算机可读介质和用于通信的装置
CN106357275A (zh) * 2016-08-30 2017-01-25 国网冀北电力有限公司信息通信分公司 一种哈夫曼压缩方法及装置
CN106357275B (zh) * 2016-08-30 2019-12-17 国网冀北电力有限公司信息通信分公司 一种哈夫曼压缩方法及装置
CN108023719A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 混合自动重传请求harq码本的生成方法及相关设备
WO2018082506A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 混合自动重传请求harq码本的生成方法及相关设备
CN108023719B (zh) * 2016-11-04 2020-01-21 华为技术有限公司 混合自动重传请求harq码本的生成方法及相关设备
US10880050B2 (en) 2016-11-04 2020-12-29 Huawei Technologies Co., Ltd. Hybrid automatic repeat request HARQ codebook generation method and related device

Also Published As

Publication number Publication date
EP2256984A4 (en) 2011-06-29
EP2723013A3 (en) 2015-11-25
CN101741512A (zh) 2010-06-16
EP2723013A2 (en) 2014-04-23
EP2256984B1 (en) 2016-09-07
EP2256984A1 (en) 2010-12-01
EP2723013B1 (en) 2021-10-27
RU2465734C2 (ru) 2012-10-27
CN101741512B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
US8289943B2 (en) Signal encoding method and device, method for encoding joint feedback signal
TWI531180B (zh) 每時間間隔傳輸/接收傳輸區塊的方法及裝置
KR101188001B1 (ko) 피기백 긍정 ack/부정 ack 필드 표시자 및 폴링 표시자를 제공하기 위한 방법 및 장치
US11658775B2 (en) Method and system to improve link budget of a wireless system
BRPI0717221B1 (pt) Método e aparelho de proteção de erro em um sistema de radiocomunicações de múltiplas entradas e múltiplas saídas
JP2013523032A (ja) 肯定応答情報を送受信するためのシステムおよび方法
US20200136760A1 (en) Method and apparatus for hybrid automatic repeat request in sidelink communications
WO2010051779A1 (zh) 编码方法和装置
WO2012088877A1 (zh) 一种应答信息的发送方法及用户终端
WO2012122802A1 (zh) 数据重传方法、中继站、基站和通信系统
US20210075542A1 (en) Phy-based hybrid automatic repeat request (harq)
EP3979530A1 (en) Polar code retransmission method and device
CN101699780A (zh) 一种数据传输方法、用户设备、基站及数据传输系统
US10021219B2 (en) Method and apparatus for encoding feedback signal
US20100103882A1 (en) Early termination of low data rate traffic in a wireless network
WO2016179790A1 (zh) 反馈信息传输方法、用户设备及网络设备
US20230224097A1 (en) Hybrid automatic repeat request codebook generation in wireless communication systems
WO2022236752A1 (zh) 无线通信方法、第一设备和第二设备
KR20210127100A (ko) 사이드링크 통신에서 harq 응답의 송수신을 위한 방법 및 장치
WO2021197609A1 (en) Method and system for codeword transmission
Cheng et al. Virtual Flows Allocation Algorithm in Collision Resistant Multiple Access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824434

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009824434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009824434

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010133960

Country of ref document: RU