WO2018082157A1 - 一种时隙调度方法及装置 - Google Patents

一种时隙调度方法及装置 Download PDF

Info

Publication number
WO2018082157A1
WO2018082157A1 PCT/CN2016/109722 CN2016109722W WO2018082157A1 WO 2018082157 A1 WO2018082157 A1 WO 2018082157A1 CN 2016109722 W CN2016109722 W CN 2016109722W WO 2018082157 A1 WO2018082157 A1 WO 2018082157A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
ofdm symbol
idle
slot
transmission
Prior art date
Application number
PCT/CN2016/109722
Other languages
English (en)
French (fr)
Inventor
刘云
王键
王达
曾勇波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2016428724A priority Critical patent/AU2016428724B2/en
Priority to CA3042741A priority patent/CA3042741A1/en
Priority to EP16920539.0A priority patent/EP3537791B1/en
Priority to US16/347,419 priority patent/US11343814B2/en
Priority to JP2019523661A priority patent/JP2020504478A/ja
Priority to KR1020197015500A priority patent/KR102210691B1/ko
Priority to CN201680087542.4A priority patent/CN109417788B/zh
Priority to KR1020217002720A priority patent/KR102364579B1/ko
Publication of WO2018082157A1 publication Critical patent/WO2018082157A1/zh
Priority to AU2020280995A priority patent/AU2020280995B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a time slot scheduling method and apparatus.
  • enhanced mobile broadband eMBB
  • ultra-reliable low-latency communication URLLC
  • eMBB is an enhancement of existing mobile broadband services, supporting more high-bandwidth services, such as 4k video transmission, virtual reality (VR) game rendering and other services.
  • Extremely reliable and extremely low latency service in terms of extremely high reliability, it supports correct demodulation rate to 99.999%, and supports end-to-end delay within 0.5ms in extremely low latency.
  • the main application scenarios of URLLC are applications such as autopilot and networked drones, which have high requirements for reliability and delay.
  • Numerology means a type of transmission, including parameters such as subcarrier spacing and symbol duration.
  • the network device or terminal may adopt various Numerologies, such as 15 kHz, 30 kHz, and 60 kHz, and transmit in different frequency bands (adjacent frequency mode transmission), as shown in FIG. 1 .
  • the network device or terminal can also use multiple Numerology transmissions (same frequency mode transmission) in the same frequency band, as shown in FIG. 2.
  • uplink data transmission and downlink will occur regardless of whether the adjacent frequency mode or the same frequency mode is used. Interference between data transmissions. For example, in the case of the same-frequency mode transmission, in the downlink-based 14-symbol slot, the downlink data transmission may last continuously for 0.8 ms or more in 1 ms per subframe; if a certain frequency band is occupied by downlink data transmission for a long time , the URLLC uplink data transmission in the same frequency band will not achieve an end-to-end delay of 0.5ms.
  • the URLLC downlink transmission in the same frequency band cannot achieve an end-to-end delay of 0.5 ms.
  • adjacent-frequency mode transmission when the same network device supports different services in two adjacent frequency bands, if one frequency band supports eMBB service for downlink transmission of 0.8 ms, interference due to adjacent frequency leakage of adjacent frequency bands causes another interference.
  • One frequency band is an uplink transmission service that cannot support URLLC, and cannot meet the high reliability requirement.
  • the uplink transmission in eMBB is also affected due to adjacent frequency leakage. influences.
  • different network devices support eMBB and URLLC services respectively, when two network devices work in adjacent frequency, there is also interference between uplink data transmission and downlink data transmission.
  • Embodiments of the present invention provide a time slot scheduling method and apparatus to avoid interference between uplink data transmission and downlink data transmission.
  • a time slot scheduling method determines and transmits a time slot, and the UE receives a time slot sent by the eNB, and performs data transmission according to the time slot structure.
  • the time slot determined by the eNB includes a first time slot, where the first time slot includes a first idle time, and a time interval between a start time of the first idle time and a start time of the first time slot is less than or equal to a preset.
  • the time interval threshold, or the time interval between the start time of the first idle time and the end time of the at least one OFDM symbol used for transmitting control signaling in the first time slot is less than or equal to a preset time interval threshold.
  • the preset time interval threshold may be determined according to the minimum delay requirement required for the actually transmitted service. Generally, the preset time interval threshold is less than or equal to 1 millisecond, for example, if the first idle time is used to transmit the URLLC service. For the uplink data or the downlink data, the preset time interval threshold may take 0.5 milliseconds.
  • the transmission time and the idle time are set in the time slot, and the transmission time and the idle time are respectively used to transmit different services in the same frequency mode or the adjacent frequency mode to avoid the same frequency mode or Interference between different services in adjacent frequency mode.
  • the time slot further includes a second time slot, and the second time slot includes a second idle time.
  • the time interval between the start time of the second idle time and the start time of the second time slot is less than or equal to a preset time interval threshold, or the start time of the second idle time is used in the second time slot
  • the time interval of the end time of the at least one OFDM symbol of the transmission control signaling is less than or equal to a preset time interval threshold.
  • the time interval between the start time of the second idle time and the start time of the first idle time is less than or equal to a preset time interval threshold, or the start time of the second idle time and the end of the first idle time
  • the time interval of the time is less than or equal to a preset time interval threshold, or the time interval between the end time of the second idle time and the start time of the first idle time is less than or equal to a preset time interval threshold, or the second
  • the time interval between the end time of the idle time and the end time of the first idle time is less than or equal to a preset time interval threshold.
  • the first time slot includes 7 OFDM symbols, and the Nth OFDM symbol in the first time slot is an OFDM symbol used to transmit uplink data in the 7 OFDM symbols, and the N-1th The Nth or N-2th OFDM symbol belongs to the first idle time or the second idle time.
  • the first time slot includes 7 OFDM symbols, and the Nth OFDM symbol in the first time slot is an OFDM symbol for transmitting downlink data in the 7 OFDM symbols, and the N+1th The N+2th OFDM symbol belongs to the first idle time or the second idle time.
  • the first time slot includes a first transmission time, a first idle time, a second idle time, and a second transmission time.
  • the time interval between the start time of the second idle time and the start time of the second transmission time is less than or equal to a preset time interval threshold, or the start time of the second idle time and the end of the second transmission time
  • the time interval of the time is less than or equal to the preset time interval threshold.
  • a time interval between a start time of the second idle time and a start time of the first idle time is less than or equal to a preset time interval threshold, or a start time of the second idle time and the The time interval of the end time of the first idle time is less than or equal to a preset time interval threshold, or the time interval between the end time of the second idle time and the start time of the first idle time is less than or equal to a preset time interval threshold. Or, the time interval between the end time of the second idle time and the end time of the first idle time is less than or equal to a preset time interval threshold.
  • the first time slot includes 14 OFDM symbols, and the Nth OFDM symbol in the first time slot is one of the first to sixth OFDM symbols in the first time slot.
  • the first idle time includes at least one of an Nth OFDM symbol, an N+1th OFDM symbol, an N+7th OFDM symbol, and an N+8th OFDM symbol in the slot.
  • the first time slot includes 14 OFDM symbols, and the Nth OFDM symbol in the first time slot is an OFDM symbol used to transmit uplink data in the 14 OFDM symbols, where the first time At least one of the N-2th OFDM symbol, the N-1th OFDM symbol, the N-8th OFDM symbol, and the N-7th OFDM symbol in the slot belongs to the first idle time or the second idle time.
  • the first time slot includes 14 OFDM symbols, and the Nth OFDM symbol in the first time slot is an OFDM symbol used to transmit downlink data in the 14 OFDM symbols, where the first time At least one of the N+1th OFDM symbol, the N+2th OFDM symbol, the N+7th OFDM symbol, and the N+8th OFDM symbol in the slot belongs to the first idle time or the second idle time.
  • the first time slot and/or the second time slot occupy at least two frequency bands in a frequency domain, and the at least two frequency bands include a first frequency band and a second frequency band, where An idle time or a second idle time is in the first frequency band.
  • a communication direction of the data transmitted by the OFDM symbol included in the first idle time, the OFDM symbol included in the second idle time, and the OFDM symbol except the Nth OFDM symbol in the first frequency band The data transmitted by the Nth OFDM symbol has the opposite communication direction, and the communication direction includes an uplink communication direction and a downlink communication direction.
  • the communication direction is the same. And dividing the second frequency band with the first idle time in the first frequency band The communication direction of data transmitted by other OFDM symbols other than the OFDM symbol corresponding to the second idle time at the time domain symbol position is opposite to the communication direction of the data transmitted by the Nth symbol.
  • the first time slot includes a first transmission time and a first idle time.
  • the at least one OFDM symbol included in the first transmission time is used to transmit a first service
  • the at least one OFDM symbol included in the first idle time is used to transmit a second service.
  • the indication information may be sent by the eNB to the UE, where the indication information is used to indicate at least one OFDM symbol in the first idle time of the second service, and/or to indicate the at least one first transmission used to transmit the first service. At least one OFDM symbol in time.
  • the indication information may be sent by, for example, Downlink Control Information (DCI) or Radio Resource Control (RRC).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • at least one OFDM symbol in the first idle time for transmitting the second service data may also be defined in a predefined manner.
  • the eNB when performing the first service scheduling, may cancel or not perform scheduling of the first service data transmission in the first idle time. Since the eNB cancels or does not perform transmission of the first service data, the UE does not perform transmission of the first service data during the first idle time.
  • the sixth downlink OFDM symbol or the thirteenth OFDM symbol does not perform the first service in the full downlink time slot.
  • the OFDM symbol that does not perform the first service refers to the OFDM symbol as the first idle time and the second idle time.
  • the time slot of the downlink-based 7 OFDM symbols if the OFDM symbol number of the first service uplink transmission is N, the first service is not performed at the N-2, N-1.
  • the downlink-based slot with 14 OFDM symbols if the OFDM symbol number of the first service uplink transmission starts with N, then the first N-2, N-1, N-8, and N-7 are not performed. business.
  • the second OFDM symbol or the ninth OFDM symbol does not perform the first service in the full uplink slot.
  • the first service downlink transmission ends If the OFDM symbol number is N, then the first service is not performed at the N+1th, N+2.
  • the OFDM symbol number of the first service downlink transmission is N, then the first N+1, N+2, N+7, and N+8 are not performed. business.
  • the sixth or thirteenth OFDM symbol does not perform the first service.
  • the OFDM symbol number of the first service uplink transmission starts with N the first service is not performed at the N-1th and N-8th.
  • the first or eighth OFDM symbol does not perform the first service.
  • the OFDM symbol number of the first service downlink transmission is N
  • the first service is not performed at the N+1th
  • the uplink-based 14 OFDM symbols are used.
  • the time slot if the OFDM symbol number of the first service downlink transmission is N, the first service is not performed at the N+1th, N+8.
  • the seventh or the 14th OFDM symbol does not perform the first service.
  • the first service is not performed at the N-7th.
  • the first OFDM symbol or the eighth OFDM symbol in the full uplink slot does not perform the first service.
  • the time slot of the uplink-based 14 OFDM symbols if the OFDM symbol number of the first service downlink transmission is N, the first service is not performed at the N+7.
  • the seventh or the 14th OFDM symbol does not perform the first service.
  • the first service is not performed at the N-7th.
  • the first or eighth OFDM symbol does not perform the first service.
  • the time slot of the uplink-based 14 OFDM symbols if the OFDM symbol number of the first service downlink transmission is N, the first service is not performed at the N+7.
  • the number of idle OFDM symbols used for transceiving the conversion may be set to at least two.
  • a time slot scheduling apparatus has a function of implementing the scheduling time slot involved in the foregoing first aspect, and the function may be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the time slot scheduling device comprises a processing unit and a communication unit, the functions of the processing unit and the communication unit may correspond to each method step, and the time slot determined by the processing unit has the above first aspect Any of the slot structures involved will not be described here.
  • a network device comprising a processor, a memory, a receiver, and a transmitter.
  • the memory is for storing instructions for executing the memory stored instructions to control reception and transmission of signals by a receiver and a transmitter, the network when the processor executes the instructions stored by the memory
  • the apparatus is for performing a scheduling method of any of the time slots as described in the first aspect.
  • an idle time is set at a specific location of the time slot, and the idle time does not schedule the first service, thereby providing a transmission opportunity for the second service, and uplink transmission and downlink transmission of the first service and the second service.
  • the time domain locations do not overlap, avoiding mutual interference.
  • FIG. 1 is a schematic diagram of current adjacent mode transmission
  • 2 is a schematic diagram of current co-frequency mode transmission
  • FIG. 3 is a structural diagram of a wireless communication system to which a time slot scheduling method according to an embodiment of the present invention is applied;
  • FIG. 4 is a schematic diagram of a self-contained subframe structure
  • 5 is a schematic diagram of a subframe configuration with subcarrier spacing of 15 kHz;
  • FIG. 6 is a flowchart of a time slot scheduling method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a slot structure according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of a slot structure according to an embodiment of the present invention.
  • FIG. 9 is still another schematic diagram of a slot structure according to an embodiment of the present invention.
  • 10 is a schematic diagram of an OFDM symbol number position for scheduling eMBB for downlink transmission and URLLC for uplink transmission;
  • 11 is a schematic diagram of an OFDM symbol number position for scheduling eMBB for uplink transmission and URLLC for downlink transmission;
  • FIG. 12 is a schematic diagram of another OFDM symbol number position for scheduling eMBB for downlink transmission and URLLC for uplink transmission;
  • FIG. 13 is a schematic diagram of another OFDM symbol number position for scheduling eMBB for uplink transmission and URLLC for downlink transmission;
  • FIG. 14 is a schematic diagram of another OFDM symbol number position for scheduling eMBB for downlink transmission and URLLC for uplink transmission;
  • 15 is a schematic diagram of another OFDM symbol number position for scheduling eMBB for uplink transmission and URLLC for downlink transmission;
  • 16 is a schematic diagram of another OFDM symbol number position for scheduling eMBB for downlink transmission and URLLC for uplink transmission;
  • 17 is a schematic diagram of another OFDM symbol number position for scheduling eMBB for uplink transmission and URLLC for downlink transmission;
  • FIG. 18 is a schematic structural diagram of a time slot scheduling apparatus according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • a network device which may be referred to as a radio access network (RAN) device, is a device that connects a terminal to a wireless network, including but not limited to: an evolved Node B (evolved Node B, eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), base station Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BBU), Wireless Fidelity (WIFI) access point (Access) Point, AP), transmission point (transmission and receiver point, TRP or transmission point, TP).
  • RAN radio access network
  • a terminal is a device that provides voice and/or data connectivity to a user, and may include various handheld devices having wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or other processes connected to a wireless modem.
  • the device and various forms of user equipment (User Equipment, UE), mobile station (MS), terminal equipment (Terminal Equipment), transmission point (TRP or transmission point, TP) and the like.
  • the interaction in this application refers to the process in which the two parties exchange information with each other.
  • the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the time slot scheduling method provided by the embodiment of the present invention can be applied to the wireless communication system shown in FIG. 3.
  • the terminal accesses through a Radio Access Network (RAN).
  • Core Network (CN) Core Network
  • the terminal accesses through a Radio Access Network (RAN).
  • RAN Radio Access Network
  • CN Core Network
  • the wireless communication system is a network that provides wireless communication functions.
  • the wireless communication system can employ different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), and time division multiple access (TDMA).
  • Code division multiple access CDMA
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • Frequency division multiple access (FDMA) orthogonal frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network.
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM global system for mobile communications/general packet radio service
  • GPRS general packet radio service
  • a typical 3G network includes a universal mobile communication system (universal mobile communication system).
  • a typical 4G network includes a long term evolution (LTE) network.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (E-).
  • E- evolved universal terrestrial radio access network
  • UTRAN Universal Terrestriality
  • 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, embodiments of the present invention sometimes refer to a wireless communication network as a network.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities. Its main feature is the mobility of the terminal, with handoff and automatic roaming across the local network.
  • Embodiments of the present invention will be described below by taking an example of application to a 5G NR communication system.
  • a network device is used as an eNB, and a terminal is a UE as an example.
  • the solution in the embodiment of the present invention can also be applied to other wireless communication networks, and the corresponding names can also be replaced by the names of corresponding functions in other wireless communication networks.
  • the eNB When the UE performs various communication services, the eNB needs to configure a subframe structure for the UE. It can be understood that the process of configuring the subframe structure may also be referred to as a process of time slot scheduling. In the following description, the subframes and the time slots are frequently used in the description process, but those skilled in the art can understand the meanings. .
  • FIG. 4 is a schematic diagram of a self-contained sub-frame structure. As shown in FIG. 4, the self-contained sub-frame structure includes three parts. The first part is a downlink control (Downlink control, DL control), and can transmit a downlink grant (Downlink grant, DL grant). Or an uplink grant (UL grant) for indicating resource configuration information to the UE.
  • Downlink control Downlink control
  • DL control Downlink control
  • UL grant uplink grant for indicating resource configuration information to the UE.
  • the second part is a data part.
  • the downlink (DL) data can be transmitted by the eNB, or the uplink (UL) data is transmitted by the UE according to the resource allocated by the previous UL grant, and the third part is the uplink control (Uplink control, UL).
  • the eNB may reply to the previous downlink data with an acknowledgement (ACK), a negative acknowledgement (NACK), or a channel state information (CSI) to transmit uplink channel state information (CSI).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • CSI channel state information
  • a subframe in which downlink data is transmitted is referred to as a downlink-based 14-symbol slot
  • a subframe in which uplink data is transmitted is referred to as an uplink-based subframe.
  • the DL control transmits a DL grant to indicate to the UE that the eNB is to perform downlink data transmission in the downlink domain for the UE, so that the UE reaches the corresponding time domain and frequency domain.
  • the resource is listening.
  • the downlink data is transmitted; after the downlink data is transmitted, after a guard period (GP), the UE replies ACK according to the result of decoding the downlink data. NACK.
  • the interval time is composed of idle symbols, which are symbols for which no transmission is performed for a certain service, that is, on idle symbols, such services are not transmitted, but other services can be transmitted on idle symbols, for example, During this period of time, the eNB does not perform eMBB transmission.
  • the DL control part transmits a UL grant to indicate to the UE, which segment of the time-domain frequency domain resource the UE should perform uplink transmission.
  • the eNB allocates the remaining time of the entire subframe to the UE to transmit uplink data, and the UE performs uplink data transmission after the GP until the end of the subframe.
  • the eNB allocates only the data part for the uplink transmission of the UE.
  • the UE transmits the uplink data according to the resource allocated in the UL grant, and after the transmission ends, the uplink control is transmitted by the scheduled UE.
  • Information (such as CSI) and so on.
  • the UE and the eNB can support subframe configurations of a plurality of different types of subcarrier spacing.
  • a subframe configuration with subcarrier spacing of 15 kHz is shown in FIG.
  • FIG. 5 from top to bottom, there are all downlink time slots and downlink-based time slots with 14 symbols (the interval between uplink and downlink transmission and reception conversion is 1 Orthogonal Frequency Division Multiplexing (OFDM)).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the downlink-based 7-symbol slot (the interval between uplink and downlink transmission and reception is 1 OFDM symbol), the full uplink slot, and the uplink-based 14-symbol slot (upstream and downlink transmission and reception conversion) The interval is 1 OFDM symbol), and the uplink-based 7-symbol slot (the interval between uplink and downlink transmission and reception conversion is 1 OFDM symbol).
  • DL ctrl represents DL control
  • UL Ctrl represents UL control
  • numerals 1, 2, ... 14 respectively represent OFDM symbol positions for transmitting DL or UL data.
  • the transmission time and the idle time may be set in the time slot when scheduling the time slot. They are used to transmit different services in the same-frequency mode or adjacent-frequency mode, respectively, to avoid interference between different services in the same-frequency mode or adjacent-frequency mode.
  • the URLLC service and the eMBB service reserve time resources for the URLLC service at a specific location within the 1 ms subframe, satisfying the requirement of the URLLC service 0.5 ms delay, and the remaining time resources can be used for the eMBB service.
  • the URLLC service and the eMBB service reserve time resources for the URLLC service in a specific location within the 1 ms subframe, satisfy the requirement of the URL LC service 0.5 ms delay, and reserve resources on the adjacent frequency.
  • transmission in the opposite direction to the communication direction (uplink communication direction and downlink communication direction) of the data transmitted by the URLLC service does not occur, thereby avoiding mutual interference.
  • FIG. 6 is a flowchart of a time slot scheduling method according to an embodiment of the present invention. See Figure 6, which includes:
  • the eNB determines a first time slot, where the first time slot includes a first idle time.
  • the time interval between the start time of the first idle time and the start time of the first time slot is less than or equal to a preset time interval threshold, or the start time of the first idle time and the The time interval of the end time of the at least one OFDM symbol (control channel) for transmitting control signaling in the first time slot is less than or equal to a preset time interval threshold.
  • the preset time interval threshold may be determined according to the minimum delay requirement required for the actually transmitted service. Generally, the preset time interval threshold is less than or equal to 1 millisecond, for example, if the first idle time is used to transmit the URLLC service. For the uplink data or the downlink data, the preset time interval threshold may take 0.5 milliseconds.
  • FIG. 7 is a schematic diagram of a slot structure according to an embodiment of the present invention.
  • the first time slot includes a first idle time and a first transmission time.
  • the at least one OFDM symbol included in the first transmission time is used to transmit a first service
  • the at least one OFDM symbol included in the first idle time is used to transmit a second service.
  • a time interval between a start time of the first idle time and a start time of the first time slot, and a time of ending with at least one OFDM symbol (control channel) for transmitting control signaling in the first time slot The interval is less than or equal to the preset threshold.
  • the time interval between the start time of the first idle time and the start time of the first time slot is less than or equal to a preset time interval threshold, the start time of the first idle time and the first time slot.
  • the time interval of the end time of the at least one OFDM symbol (control channel) used for transmitting the control signaling is less than or equal to a preset time interval threshold, and the two conditions satisfy one of them, thereby satisfying the avoidance of the same frequency mode or the adjacent frequency mode The need for interference between different services.
  • the eNB sends the determined first time slot including the first idle time, and the UE receives the first time slot sent by the eNB, and performs data transmission according to the time slot structure.
  • the number of OFDM symbols included in the first slot is 7 OFDM in the embodiment of the present invention. Symbols or 14 OFDM symbols can be used in different slot structure scheduling modes.
  • the eNB may determine and transmit a second slot, the second slot including a second idle time.
  • the time interval between the start time of the second idle time and the start time of the second time slot is less than or equal to a preset time interval.
  • the threshold, or a time interval between the start time of the second idle time and the end time of the at least one OFDM symbol (control channel) used for transmitting control signaling in the second time slot is less than or equal to a preset time interval threshold.
  • the time interval between the second idle time and the first idle time needs to meet the preset time interval.
  • the threshold requirement is shown in Figure 8. For example, one of the following conditions may be met: a time interval between a start time of the second idle time and a start time of the first idle time is less than or equal to a preset time interval threshold, or a start of the second idle time.
  • the time interval between the time and the end time of the first idle time is less than or equal to a preset time interval threshold, or the time interval between the end time of the second idle time and the start time of the first idle time is less than or equal to a preset
  • the time interval threshold, or the time interval between the end time of the second idle time and the end time of the first idle time is less than or equal to a preset time interval threshold.
  • the first time slot may include 7 OFDM symbols.
  • the Nth OFDM symbol in the first time slot is an OFDM symbol used for transmitting uplink data in the 7 OFDM symbols
  • the Nth may be set. -1 or the N-2th OFDM symbol belongs to the first idle time or the second idle time.
  • the N+1th or N+2th OFDM symbol may be set to belong to the first idle time. Or the second free time.
  • the second idle time and the second transmission time may be set in the first slot.
  • the time interval between the start time of the first idle time and the start time of the first time slot is less than or equal to Setting a time interval threshold, or a time interval between a start time of the first idle time and an end time of at least one OFDM symbol (control channel) used for transmitting control signaling in the first time slot is less than or equal to a preset time interval a time interval threshold, or a time interval between a start time of the second idle time and a start time of the second transmission time is less than or equal to a preset time interval threshold, or a start time of the second idle time and the first The time interval of the end time of the second transmission time is less than or equal to the preset time interval threshold.
  • the time interval between the start time of the second idle time and the start time of the first idle time is less than or equal to a preset time interval threshold, or the start time of the second idle time and the end of the first idle time
  • the time interval of the time is less than or equal to a preset time interval threshold, or the time interval between the end time of the second idle time and the start time of the first idle time is less than or equal to a preset time interval threshold, or the second
  • the time interval between the end time of the idle time and the end time of the first idle time is less than or equal to a preset time interval threshold.
  • the first time slot includes 14 OFDM symbols. Referring to the full uplink time slot or the full downlink time slot in FIG. 5, if the Nth OFDM symbol in the first time slot is one of the first to sixth OFDM symbols in the time slot, the time slot may be set. At least one of the Nth OFDM symbol, the N+1th OFDM symbol, the N+7th OFDM symbol, and the N+8th OFDM symbol is the first idle time.
  • the OFDM symbol of the uplink data may be configured to set at least the N-2th OFDM symbol, the N-1th OFDM symbol, the N-8th OFDM symbol, and the N-7th OFDM symbol in the first slot.
  • One OFDM symbol is the first idle time or the second idle time.
  • the Nth OFDM symbol in the first time slot is an OFDM symbol used for transmitting downlink data in the 14 OFDM symbols
  • the N+1th OFDM symbol in the first time slot may be set, At least one of the N+2 OFDM symbols, the N+7th OFDM symbol, and the N+8th OFDM symbol is the first idle time or the second idle time.
  • the time slot occupies at least two frequency bands in the frequency domain
  • the at least two frequency bands include a first frequency band and a second frequency band
  • the first idle time or the second idle time is in the first frequency band.
  • the time slot may be scheduled in the following manner: the OFDM symbol included in the first idle time, the OFDM symbol included in the second idle time, and the OFDM symbol included in the second idle time.
  • the communication direction of data transmitted by other OFDM symbols other than the Nth OFDM symbol is opposite to the communication direction of data transmitted by the Nth OFDM symbol.
  • a communication direction of data transmitted by the OFDM symbol corresponding to the first idle time and the second idle time in the first frequency band in the second frequency band, and the data transmitted by the Nth symbol The communication direction is the same.
  • the data transmitted by the N symbols has the opposite communication direction.
  • the communication direction includes an uplink communication direction and a downlink communication direction, where the opposite direction of the communication refers to an OFDM symbol and a second idle time included in the first frequency band except the first idle time.
  • the communication direction of the data transmitted by the OFDM symbol and the OFDM symbol other than the Nth OFDM symbol is the uplink communication direction, and the communication direction of the data transmitted by the Nth OFDM symbol is the downward communication direction.
  • the same communication direction means that if the OFDM symbol included in the first idle time, the OFDM symbol included in the second idle time, and the communication direction of the Nth OFDM symbol are in the first frequency band, the communication direction is uplink.
  • the communication direction of the data transmitted by the OFDM symbol corresponding to the first idle time and the second idle time in the first frequency band in the second frequency band is also the downlink communication direction.
  • the slot includes an idle OFDM symbol for transceiving (for example, the GP in FIG. 5), in order to reserve sufficient time to implement the conversion of the first service and the second service, the number of idle OFDM symbols used for transceiving conversion is set to be at least two.
  • the indication information is used by the eNB to indicate to the UE, where the indication information is used to indicate at least one OFDM symbol in the first idle time of the second service. And/or for indicating at least one OFDM symbol for transmitting at least one first transmission time of the first service.
  • the indication information may be sent by, for example, Downlink Control Information (DCI) or Radio Resource Control (RRC).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • at least one OFDM symbol in the first idle time for transmitting the second service data may also be defined in a predefined manner.
  • the eNB when the idle time is set in the time slot, the eNB may cancel or not schedule the transmission of the first service data during the first idle time when performing the first service scheduling. Since the eNB cancels or does not perform transmission of the first service data, the UE does not perform transmission of the first service data during the first idle time.
  • the first service is an eMBB service
  • the second service is a URLLC service
  • the idle time is set in the 1 millisecond subframe for setting the URLLC service by using various time slot types involved in FIG.
  • the time slot for transmitting the eMBB service data is the full downlink time slot, the downlink-based time slot with 14 OFDM symbols, and the downlink-based time slot with 7 OFDM symbols, and the idle time of the eNB side transmission and reception conversion is defined as The transmission and reception transition idle time 624Ts in the existing LTE standard.
  • the eNB determines an uplink resource time domain location for transmitting the URL LC service data, where the uplink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full downlink time slot and a downlink)
  • the time slot of 14 OFDM symbols and the time slot of 7 OFDM symbols which are mainly downlink) uniquely correspond.
  • the sixth downlink OFDM symbol or the thirteenth OFDM symbol does not perform the eMBB service in the full downlink time slot.
  • the OFDM symbol that does not perform the eMBB service refers to the OFDM symbol as the first idle time and the second idle time.
  • the eMBB service is not performed at the N-2, N-1.
  • the OFDM symbol number of the eMBB uplink transmission starts with N, then at the N-2, N-1, N-8, The N-7 does not perform eMBB services.
  • the sixth OFDM symbol or the thirteenth OFDM symbol is used as an uplink resource time domain location for transmitting URL LC service data.
  • the eNB determines the uplink resource time domain location for transmitting the URLLC service data, and indicates the time slot type by signaling, and schedules the eMBB to perform downlink transmission and URLLC for uplink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the downlink transmission by the eMBB and the time domain location of the uplink transmission by the URLLC may be indicated by the same signaling.
  • the LTE symbol is notified by standard specification or eNB signaling that the URLLC uplink resource is located before the OFDM symbol starting from the eMBB uplink transmission; optionally, the downlink is dominant.
  • the URL LC uplink resource is notified by a standard specification or eNB signaling to be located in the time domain position of one OFDM symbol or 8 OFDM symbols before the start of the eMBB uplink transmission.
  • the OFDM symbol number position for scheduling the eMBB for downlink transmission and URLLC for uplink transmission in the embodiment of the present invention is as shown in FIG.
  • the eNB transmits downlink data in the first to fifth OFDM symbols, and transmits downlink data in the eighth to twelfth OFDM symbols, and vacates the sixth, seventh, and The positions of the 13 and 14th OFDM symbols are used for uplink transmission by the URLLC.
  • the OFDM symbol number vacated in advance may be specified in the standard or indicated by the eNB to the URLLC UE to receive at the location.
  • 1 to 5 URLLC uplink OFDM symbols may be transmitted on the reserved 6th and 7th OFDM symbols.
  • the eNB receives the signal of the URL LC uplink transmission.
  • the URLLC reserves the time for the eNB side to transmit and receive the conversion after the end of the 12th OFDM symbol
  • the eNB receives the signal of the URL LC uplink transmission. Since the URLLC UE may have a transmission delay with the eNB, the URLLC UE needs to estimate the amount of transmission delay time and transmit the URLLC UL data in advance, so that after the transmission delay, the URLLC UL data can be displayed at the position shown in (a) of FIG. come out.
  • the eNB transmits downlink data in the first to fifth OFDM symbols, downlink data in the eighth to eleventh OFDM symbols, and uplink data in the 14th OFDM symbol, and vacates the sixth and seventh in advance.
  • the positions of the 12th and 13th OFDM symbols are used for uplink transmission by the URLLC.
  • URLLC uplink transmission adopts time advance.
  • (c) when only 1 OFDM symbol GP is required between the downlink and uplink of the 15 kHz subcarrier interval, in order to support URLLC transmission, an additional GP is needed to provide a URLLC transmission opportunity, wherein the GP can be increased by the letter. Order instructions.
  • one of the OFDM symbols in the GP may be reserved for URLLC uplink transmission, and the OFDM symbol position reserved in this GP may be specified in the standard or indicated by the eNB to the URLLC UE.
  • the OFDM symbol reserved in this GP is the 13th OFDM symbol.
  • the eNB transmits downlink data in the 1st to 4th OFDM symbols, transmits downlink data in the 8th to 11th OFDM symbols, and receives uplink data in the 7th and 14th OFDM symbols, and vacates the 5th in advance.
  • the positions of the sixth, twelfth, and thirteenth OFDM symbols are used for uplink transmission by the URLLC. Among them, URLLC uplink transmission adopts time advance.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • the time slot in which the eMBB service data is currently transmitted is a full uplink time slot, an uplink-based time slot containing 14 OFDM symbols, and an uplink-based time slot containing 7 OFDM symbols, and the idle time of the eNB side transmission and reception conversion is defined as The transmission and reception transition idle time 624Ts in the existing LTE standard.
  • the eNB determines a downlink resource time domain location for transmitting the URLLC service data, where the downlink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full uplink time slot and an uplink)
  • the time slot containing 14 OFDM symbols or the uplink-based time slot containing 7 OFDM symbols uniquely corresponds.
  • the second OFDM symbol or the ninth OFDM symbol does not perform the eMBB service.
  • the time slot with 7 OFDM symbols in the uplink if the OFDM symbol number of the eMBB downlink transmission is N, the eMBB service is not performed at the N+1th and N+2.
  • the time slot of the uplink-based 14 OFDM symbols if the OFDM symbol number of the eMBB downlink transmission is N, the eMBB service is not performed at the N+1, N+2, N+7, and N+8.
  • the second OFDM symbol or the ninth OFDM symbol is used as a downlink resource time domain position for transmitting URL LC service data.
  • the eNB may indicate the time slot type by signaling, and schedule the eMBB to perform uplink transmission and URLLC for downlink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the uplink transmission by the eMBB and the time domain location of the downlink transmission by the URLLC may be indicated by the same signaling.
  • the time domain location of the OFDM symbol after the OFDM symbol ending in the eMBB downlink transmission is notified by the standard specification or the eNB signaling.
  • the time domain location of the OFDM symbol or the 8 OFDM symbols after the OFDM symbol ending in the eMBB downlink transmission is notified by the standard specification or the eNB signaling.
  • the OFDM symbol number position for scheduling the eMBB for uplink transmission and URLLC for downlink transmission in the embodiment of the present invention is as shown in FIG. 11.
  • the eNB transmits uplink data in the 3rd to 7th OFDM symbols, and transmits uplink data in the 10th to 14th OFDM symbols, and vacates the first and eighth OFDM symbols in advance.
  • the location is used by the URLLC for downstream transmission.
  • the pre-emptied OFDM symbol number may be specified in the standard or indicated by the eNB to the URLLC UE to receive at the location.
  • the URLLC reserves the time (624Ts) from the transmission to the reception of the eNB side, and the eNB transmits the downlink downlink transmission signal.
  • the eNB sends the URL LC downlink transmission signal. Since the UE may have a transmission delay with the eNB, the UE needs to estimate the amount of transmission delay time and transmit the UL data in advance.
  • the difference between (b) and (a) in FIG. 11 is the location of the downlink transmission of the URLLC.
  • the UE will consider the advance amount of 624Ts for transmission. Therefore, the time at which the eNB actually receives the UL is earlier than the position shown in (b) of FIG. 11, and the advance time is 624 Ts.
  • the UL end time is earlier than the position 624Ts of the 8th OFDM symbol shown in (b) of FIG. 11, so that the eNB has enough time to perform transceiving and then continue to transmit the URLLC downlink OFDM symbol.
  • the eNB transmits the downlink in the first OFDM symbol, the uplink transmission in the 4th to 7th OFDM symbols, and the 10th to the 14th OFDM symbols, and vacates the second one in advance.
  • the locations of the 3rd, 8th, and 9th OFDM symbols are used for URLLC downlink transmission.
  • (c) in FIG. 11 when only one OFDM symbol GP is required between the downlink and the uplink of the 15 kHz subcarrier interval, In order to support URLLC transmission, an additional GP is required to provide a URLLC transmission opportunity, wherein the increase GP can be indicated by signaling.
  • one of the OFDM symbols in the GP may be reserved for URLLC uplink transmission, and the OFDM symbol position reserved in this GP may be specified in the standard or indicated by the eNB to the URLLC UE.
  • the OFDM symbol reserved in this GP is the second OFDM symbol.
  • the second embodiment is as shown in (d) of FIG.
  • the eNB transmits downlinks on the 1st and 8th OFDM symbols, and receives uplink transmissions in the 4th to 7th OFDM symbols and in the 11th to 14th OFDM symbols, and vacates the 2nd and 3rd in advance.
  • the positions of the ninth and tenth OFDM symbols are used for URLLC downlink transmission.
  • (d) in FIG. 11 when only one OFDM symbol GP is required between the downlink and uplink of the 15 kHz subcarrier interval, in order to support URLLC transmission, an additional GP is required to provide a URLLC transmission opportunity, wherein,
  • the GP can indicate by signaling.
  • one of the OFDM symbols in the GP may be reserved for URLLC uplink transmission, and the OFDM symbol position reserved in this GP may be specified in the standard or indicated by the eNB to the URLLC UE.
  • the OFDM symbols reserved in this GP are the 2nd OFDM symbol and the 9th OFDM symbol.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the time slot for transmitting the eMBB service data is the full downlink time slot, the downlink-based time slot with 14 OFDM symbols, and the downlink-based time slot with 7 OFDM symbols, and the idle time of the eNB side transmission and reception conversion is defined as
  • the transmit and receive transition idle time in the existing LTE standard is less than or equal to 548Ts. It is worth noting that when the transceiving conversion time is reduced to 548Ts or less, the number of reserved null OFDM symbols for eMBB downlink transmission will be reduced, thereby improving the transmission efficiency of eMBB.
  • the eNB determines an uplink resource time domain location for transmitting the URLLC service data, and the uplink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (when The pre-slot is a full downlink slot, a downlink-based slot containing 14 OFDM symbols, and a downlink-based slot containing 7 OFDM symbols uniquely. Among them, in the full downlink time slot, the sixth or thirteenth OFDM symbol does not perform eMBB service. In the downlink-based slot with 14 OFDM symbols, if the OFDM symbol number starting from the eMBB uplink transmission is N, the eMBB service is not performed at the N-1th and N-8th.
  • the sixth OFDM symbol or the thirteenth OFDM symbol is used as an uplink resource time domain location for transmitting URL LC service data.
  • the eNB determines the uplink resource time domain location for transmitting the URLLC service data, and indicates the time slot type by signaling, and schedules the eMBB to perform downlink transmission and URLLC for uplink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the downlink transmission by the eMBB and the time domain location of the uplink transmission by the URLLC may be indicated by the same signaling.
  • the time-domain location of the OFDM symbol or the 8 OFDM symbols before the OFDM symbol starting from the eMBB uplink transmission is notified by the standard specification or the eNB signaling. .
  • the OFDM symbol number position for scheduling the eMBB for downlink transmission and URLLC for uplink transmission in the embodiment of the present invention is as shown in FIG. 12 .
  • the eNB transmits downlink data in the 1st to 6th OFDM symbols, and transmits downlink data in the 8th to 13th OFDM symbols, and vacates the 7th and 14th OFDM symbols in advance.
  • the location is used by the URLLC for upstream transmission.
  • the pre-emptied OFDM symbol number may be specified in the standard or indicated by the eNB to the URLLC UE to receive at the location.
  • 1 to 2 URLLC uplink OFDM symbols may be transmitted on the reserved 7th and 14th OFDM symbols.
  • the eNB transmits downlink data in the 1st to 5th OFDM symbols, and transmits downlink data in the 7th to 12th OFDM symbols and the 14th OFDM symbol, and vacates the sixth sum in advance.
  • the position of the 13th OFDM symbol is used for uplink transmission by the URLLC.
  • the pre-emptied OFDM symbol number may be specified in the standard or indicated by the eNB to the URLLC UE to receive at the location.
  • 1 to 2 URLLC uplink OFDM symbols can be transmitted. In (a) of FIG.
  • the eNB receives the signal of the URL LC uplink transmission. Similarly, after the URLLC reserves the time for the eNB side to transmit and receive the conversion after the end of the 13th OFDM symbol, the eNB receives the uplink uplink transmission signal of the URL. Since the URLLC UE may have a transmission delay with the eNB, the URLLC UE needs to estimate the amount of transmission delay time and send the URLLC UL data in advance.
  • the eNB transmits downlink data in the first to fifth OFDM symbols, downlink data in the seventh to eleventh OFDM symbols, and uplink data in the 14th OFDM symbol, and vacates the sixth and twelfth in advance. And the position of the 13th OFDM symbol is used for uplink transmission by the URLLC.
  • URLLC uplink transmission adopts time advance.
  • the difference between (d) and (c) in FIG. 12 is whether the 12th OFDM symbol is used for URLLC transmission because the two graphs GP are different, when the GP is two OFDM symbols as shown in (c) of FIG. More resources can be provided for URLLC transmission.
  • the eNB transmits downlink data in the 1st to 4th OFDM symbols, downlink data in the 8th to 11th OFDM symbols, and uplinks in the 7th and 14th OFDM symbols.
  • the positions of the 5th, 6th, 12th, and 13th OFDM symbols are vacated in advance for use by the URLLC for uplink transmission.
  • URLLC uplink transmission adopts time advance.
  • the eNB transmits downlink data in the 1st to 5th OFDM symbols, downlink data in the 8th to 12th OFDM symbols, and receives in the 7th and 14th OFDM symbols.
  • the positions of the sixth and thirteenth OFDM symbols are vacated in advance for the URLLC to perform uplink transmission.
  • the URLLC uplink transmission adopts a time advance, and these OFDM symbol positions may be specified in the standard or indicated by the eNB to the URLLC UE.
  • the shared URLLC resource is located at the 6th OFDM symbol and the 13th OFDM symbol, and the shared URLLC resource location may be specified by a standard or the eNB indicates by broadcast or signaling. Give the URLLC UE these shared URLLC resource locations.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • the third embodiment of the present invention reduces the impact on the eMBB service and improves the spectrum efficiency.
  • the time slot in which the eMBB service data is currently transmitted is a full uplink time slot, an uplink-based time slot containing 14 OFDM symbols, and an uplink-based time slot containing 7 OFDM symbols
  • the idle time of the eNB side transmission and reception conversion is defined as
  • the transmit and receive transition idle time in the existing LTE standard is less than or equal to 548Ts. It is worth noting that when the transceiving conversion time is reduced to 548Ts or less, the number of reserved null OFDM symbols for eMBB downlink transmission will be reduced, thereby improving the transmission efficiency of eMBB.
  • the eNB determines a downlink resource time domain location for transmitting the URLLC service data, where the downlink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full uplink time slot and an uplink)
  • the time slot containing 14 OFDM symbols or the uplink-based time slot containing 7 OFDM symbols uniquely corresponds.
  • the first or eighth OFDM symbol does not perform the eMBB service.
  • the uplink-based slot with 7 OFDM symbols if the OFDM symbol number of the eMBB downlink transmission is N, the eMBB service is not performed at the N+1th; the uplink-based time slot containing 14 OFDM symbols is used. If the OFDM symbol number of the end of the eMBB downlink transmission is N, the eMBB service is not performed at the N+1th, N+8.
  • the second OFDM symbol or the ninth OFDM symbol is used as a downlink resource time domain position for transmitting URL LC service data.
  • the eNB may indicate the time slot type by signaling, and schedule the eMBB to perform uplink transmission and URLLC for downlink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the uplink transmission by the eMBB and the time domain location of the downlink transmission by the URLLC may be indicated by the same signaling.
  • the time domain location of the OFDM symbol after the OFDM symbol ending in the eMBB downlink transmission is notified by the standard specification or the eNB signaling.
  • the time domain location of the OFDM symbol or the 8 OFDM symbols after the OFDM symbol ending in the eMBB downlink transmission is notified by the standard specification or the eNB signaling.
  • the OFDM symbol number position for scheduling the eMBB for uplink transmission and URLLC for downlink transmission in the embodiment of the present invention is as shown in FIG.
  • the eNB transmits uplink data in the second to seventh OFDM symbols, and transmits uplink data in the ninth to the 14th OFDM symbols, and vacates the first and eighth OFDM symbols in advance.
  • the location is used by the URLLC for downstream transmission.
  • the pre-emptied OFDM symbol number may be specified in the standard or indicated by the eNB to the URLLC UE to receive at the location.
  • one to two URLLC downlink OFDM symbols may be transmitted on the reserved first and eighth OFDM symbols.
  • the eNB receives the uplink transmission signal.
  • the URLLC reserves the time for the eNB side to transmit and receive the transmission after the time of the transmission of the seventh OFDM symbol, the eNB receives the downlink LCC downlink signal. Since the URLLC UE may have a transmission delay with the eNB, the URLLC UE needs to estimate the amount of transmission delay time and send the URLLC UL data in advance.
  • the eNB transmits the downlink data in the first OFDM symbol, and receives the uplink data in the 4th to 7th OFDM symbols and the 10th to 14th OFDM symbols, and vacates the second in advance.
  • the locations of the 3rd, 8th, and 9th OFDM symbols are used for downlink transmission by the URLLC service.
  • the difference between (b) and (c) in FIG. 13 is whether the 3rd and 9th OFDM symbols are used for URLLC transmission because the two graphs GP are different, when the GP is two OFDM symbols as shown in FIG. (b), more resources can be provided for URLLC transmission.
  • the eNB transmits downlink data in the 1st OFDM symbol and the 8th OFDM symbol, in the 3rd to 7th OFDM
  • the symbol and the 10th to 14th OFDM symbols receive the uplink data, and the positions of the 2nd and 9th OFDM symbols are vacated in advance for use by the URLLC service for downlink transmission.
  • the location of these reserved OFDM symbols may be specified in the standard or indicated by the eNB to the URLLC UE.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB downlink transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • the fourth embodiment of the present invention reduces the impact on the eMBB service and improves the spectrum efficiency.
  • slot scheduling of idle OFDM symbols in each slot type is implemented in the same-frequency mode, and slot scheduling of idle OFDM symbols in each slot type in the adjacent mode is performed. The process is described.
  • the time slot for transmitting the eMBB service data is the full downlink time slot, the downlink-based time slot with 14 OFDM symbols, and the downlink-based time slot with 7 OFDM symbols, and the idle time of the eNB side transmission and reception conversion is defined as The transmission and reception transition idle time 624Ts in the existing LTE standard.
  • the eNB determines an uplink resource time domain location for transmitting the URL LC service data, where the uplink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full downlink time slot and a downlink)
  • the time slot of 14 OFDM symbols and the time slot of 7 OFDM symbols which are mainly downlink) uniquely correspond. Wherein, in the full downlink time slot, the seventh or the 14th OFDM symbol does not perform the eMBB service.
  • the time slot of the downlink-based 14 OFDM symbols if the OFDM symbol number starting from the eMBB uplink transmission is N, the eMBB service is not performed at the N-7th.
  • the sixth OFDM symbol or the thirteenth OFDM symbol is used as an uplink resource time domain location for transmitting URL LC service data.
  • the eNB determines the uplink resource time domain location for transmitting the URLLC service data, and indicates the time slot type by signaling, and schedules the eMBB to perform downlink transmission and URLLC for uplink transmission. Indicated at the eNB
  • the reserved slot type includes the reserved idle OFDM symbol position.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the downlink transmission by the eMBB and the time domain location of the uplink transmission by the URLLC may be indicated by the same signaling.
  • the time-domain location of the 7 OFDM symbols before the start of the OFDM symbol by the adjacent-frequency eMBB uplink transmission is notified by standard specification or eNB signaling.
  • the OFDM symbol number position for scheduling the eMBB for downlink transmission and URLLC for uplink transmission in the embodiment of the present invention is as shown in FIG. 14.
  • the eNB transmits downlink data in the first to fifth OFDM symbols, and transmits downlink data in the eighth to twelfth OFDM symbols, and vacates the sixth, seventh, thirteenth, and fourteenth OFDM symbols in advance.
  • the location is used for uplink transmission without affecting the adjacent URL.
  • the vacated OFDM symbol number may be specified in the standard or determined by the end position of the eNB scheduling data.
  • 1 to 5 URLLC uplink OFDM symbols may be transmitted on the 6th and 7th OFDM symbols of the adjacent frequency.
  • the eNB transmits downlink data in the first to fifth OFDM symbols, downlink data in the eighth to eleventh OFDM symbols, and uplink data in the 14th OFDM symbol, and vacates the sixth and seventh in advance. Used for URLLC for upstream transmission. Furthermore, the 12th and 13th OFDM symbols are GPs for the eMBB service. Since the GP required for eMBB is greater than 1 OFDM symbol, uplink transmission cannot be performed on the 7th OFDM symbol, so it can only remain blank.
  • the OFDM symbol location that can be reserved can be specified in the standard or indicated by the eNB to the URLLC UE.
  • broadcasting slot type signaling which is a setting for the 15 kHz subcarrier spacing, and another for the 60 kHz subcarrier spacing.
  • the setting is as shown in (c) and (d) of FIG.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB transmission do not overlap. Avoid mutual interference. Moreover, the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement. In addition, the fifth embodiment of the present invention does not schedule the eMBB service at a specific location of the subframe, thereby providing a transmission opportunity for the adjacent URL.
  • the time slot in which the eMBB service data is currently transmitted is a full uplink time slot, an uplink-based time slot containing 14 OFDM symbols, and an uplink-based time slot containing 7 OFDM symbols, and the idle time of the eNB side transmission and reception conversion is defined as The transmission and reception transition idle time 624Ts in the existing LTE standard.
  • the eNB determines a downlink resource time domain location for transmitting the URLLC service data, where the downlink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full uplink time slot and an uplink)
  • the time slot containing 14 OFDM symbols or the uplink-based time slot containing 7 OFDM symbols uniquely corresponds. Wherein, in the full uplink time slot, the first OFDM symbol or the eighth OFDM symbol does not perform the eMBB service.
  • the time slot of the uplink-containing 14 OFDM symbols if the OFDM symbol number of the eMBB downlink transmission is N, the eMBB service is not performed at the N+7.
  • the eNB may indicate the time slot type by signaling, and schedule the eMBB to perform uplink transmission and URLLC for downlink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the uplink transmission by the eMBB and the time domain location of the downlink transmission by the URLLC may be indicated by the same signaling.
  • the URL LC downlink resource is notified by a standard specification or an eNB to be located in a time domain position of the 7 OFDM symbols after the end of the adjacent-frequency eMBB downlink transmission end OFDM symbol.
  • the OFDM symbol number position for scheduling the eMBB for uplink transmission and URLLC for downlink transmission in the embodiment of the present invention is as shown in FIG. 15.
  • the eNB receives uplink data in the 3rd to 7th OFDM symbols and the 10th to 14th OFDM symbols, and vacates the positions of the 1st, 2nd, 8th, and 9th OFDM symbols in advance to avoid affecting neighbors.
  • Frequency URLLC for downlink transmission use.
  • the vacated OFDM symbol number may be specified in the standard or determined by the start and end positions of the eNB scheduling data.
  • 1 to 5 URLLC downlink OFDM symbols may be transmitted on the 1st and 2nd OFDM symbols of the adjacent frequency.
  • the time slot containing 14 OFDM symbols for the uplink is as shown in (b) of FIG.
  • the eNB receives uplink data in the 4th to 7th OFDM symbols and the 10th to 14th OFDM symbols, and transmits downlink transmission data in the 1st OFDM symbol, and vacates the 8th and 9th OFDM symbols in advance.
  • the location is used for downlink transmission without affecting the adjacent URL.
  • the 2nd and 3rd OFDM symbols are GPs for the eMBB service. Since the GP required for eMBB is larger than 1 OFDM symbol, downlink transmission cannot be performed on the 8th OFDM symbol and the ninth OFDM symbol, so it can only remain blank.
  • one of the OFDM symbols in the GP may be reserved for URLLC uplink transmission, and the OFDM symbol position reserved in this GP may be specified in the standard or indicated by the eNB to the URLLC UE. .
  • the same signaling can be broadcasted when broadcasting slot type signaling, which is a setting for the 15 kHz subcarrier spacing, and another for the 60 kHz subcarrier spacing. set up.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • the sixth embodiment of the present invention does not schedule the eMBB service at a specific location of the subframe, thereby providing a transmission opportunity for the adjacent-frequency URLLC.
  • the time slot for transmitting the eMBB service data is the full downlink time slot, the downlink-based time slot with 14 OFDM symbols, and the downlink-based time slot with 7 OFDM symbols, and the idle time of the eNB side transmission and reception conversion is defined as
  • the transmit and receive transition idle time in the existing LTE standard is less than or equal to 548Ts. It is worth noting that when the transceiving conversion time is reduced to 548Ts or less, the number of reserved null OFDM symbols for eMBB downlink transmission will be reduced, thereby improving the transmission efficiency of eMBB.
  • the eNB determines an uplink resource time domain location for transmitting the URL LC service data, where the uplink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full downlink time slot and a downlink)
  • the time slot of 14 OFDM symbols and the time slot of 7 OFDM symbols which are mainly downlink) uniquely correspond. Among them, in the full downlink time slot, the 7th or 14th OFDM symbol does not perform eMBB service.
  • the time slot of the downlink-based 14 OFDM symbols if the OFDM symbol number starting from the eMBB uplink transmission is N, the eMBB service is not performed at the N-7th.
  • the eNB determines the uplink resource time domain location for transmitting the URLLC service data, and indicates the time slot type by signaling, and schedules the eMBB to perform downlink transmission and URLLC for uplink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling and downlink control signaling.
  • the time domain location of the downlink transmission by the eMBB and the time domain location of the uplink transmission by the URLLC may be indicated by the same signaling.
  • the time-domain location of the 7 OFDM symbols before the start of the OFDM symbol by the adjacent-frequency eMBB uplink transmission is notified by standard specification or eNB signaling.
  • the OFDM symbol number position for scheduling the eMBB for downlink transmission and URLLC for uplink transmission in the embodiment of the present invention is as shown in FIG. 16.
  • the eNB transmits downlink data in the first to sixth OFDM symbols, and transmits downlink data in the eighth to thirteenth OFDM symbols, and vacates the positions of the seventh and the 14th OFDM symbols in advance to avoid affecting the adjacent URLs.
  • Uplink transmission is used.
  • the vacated OFDM symbol number may be specified in the standard or determined by the end position of the eNB scheduling data.
  • one to two URLLC uplink OFDM symbols may be transmitted on the adjacent frequency band corresponding to the 7th OFDM symbol and the 14th OFDM symbol.
  • the eNB transmits downlink data in the first to sixth OFDM symbols, transmits downlink data in the 8th to 12th OFDM symbols, and receives uplink data in the 14th OFDM symbol, and vacates the 7th OFDM symbol for URLLC in advance. Use for upstream transmission.
  • the 13th OFDM symbol is for eMBB service. It is GP.
  • the reserved OFDM symbol location may be specified in the standard or indicated by the eNB to the URLLC UE.
  • broadcasting slot type signaling which is a setting for the 15 kHz subcarrier spacing, and another for the 60 kHz subcarrier spacing. set up.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB downlink transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • the seventh embodiment of the present invention reduces the impact on the eMBB service and improves the spectrum efficiency.
  • the time slot in which the eMBB service data is currently transmitted is a full uplink time slot, an uplink-based time slot containing 14 OFDM symbols, and an uplink-based time slot containing 7 OFDM symbols
  • the idle time of the eNB side transmission and reception conversion is defined as
  • the transmit and receive transition idle time in the existing LTE standard is less than or equal to 548Ts. It is worth noting that when the transceiving conversion time is reduced to 548Ts or less, the number of reserved null OFDM symbols for eMBB downlink transmission will be reduced, thereby improving the transmission efficiency of eMBB.
  • the eNB determines a downlink resource time domain location for transmitting the URLLC service data, where the downlink resource time domain location of the transport URL LC service data may be pre-defined by the standard, or according to the current time slot type (the current time slot is a full uplink time slot and an uplink)
  • the time slot containing 14 OFDM symbols or the uplink-based time slot containing 7 OFDM symbols uniquely corresponds. Wherein, in the full uplink time slot, the first or eighth OFDM symbol does not perform the eMBB service.
  • the time slot of the uplink-containing 14 OFDM symbols if the OFDM symbol number of the eMBB downlink transmission is N, the eMBB service is not performed at the N+7.
  • the eNB may indicate the time slot type by signaling, and schedule the eMBB to perform uplink transmission and URLLC for downlink transmission.
  • the reserved idle OFDM symbol position is included in the slot type indicated by the eNB.
  • the signaling may be RRC signaling, Downlink control signaling.
  • the time domain location of the uplink transmission by the eMBB and the time domain location of the downlink transmission by the URLLC may be indicated by the same signaling.
  • the time domain location of the 7 OFDM symbols after the end of the adjacent-frequency eMBB downlink transmission end-of-OFDM transmission may be notified by standard specification or eNB signaling.
  • the OFDM symbol number position for scheduling the eMBB for uplink transmission and URLLC for downlink transmission in the embodiment of the present invention is as shown in FIG. 17.
  • the eNB receives the uplink data in the 2nd to 7th OFDM symbols and the 9th to 14th OFDM symbols, and vacates the 1st and 8th in advance.
  • the position of the OFDM symbol is used for downlink transmission without affecting the adjacent URL.
  • the pre-emptied OFDM symbol position may be specified in the standard or determined by the start and end positions of the eNB scheduling data.
  • 1 to 2 URLLC downlink OFDM symbols may be transmitted on the 1st and 8th OFDM symbols of the adjacent frequency.
  • the eNB receives the uplink data in the 3rd to 7th OFDM symbols and the 9th to 14th OFDM symbols, and transmits the downlink data in the 1st OFDM symbol, and vacates the position of the 8th OFDM symbol in advance to avoid affecting the adjacent frequency.
  • the URLLC is used for downlink transmission.
  • the second OFDM symbol is a GP for the eMBB service.
  • the reserved OFDM symbol location may be specified in the standard or indicated by the eNB to the URLLC UE.
  • broadcasting slot type signaling which is a setting for the 15 kHz subcarrier spacing, and another for the 60 kHz subcarrier spacing. set up.
  • the eMBB service is not scheduled at a specific location of the subframe, thereby providing a transmission opportunity for the URLLC, and the time domain locations of the URLLC uplink transmission and the eMBB downlink transmission do not overlap, thereby avoiding mutual interference.
  • the URLLC uplink transmission does not exceed 0.5 ms between adjacent transmission opportunities, and satisfies the URLLC delay requirement.
  • the eighth embodiment of the invention reduces the impact on the eMBB service and improves the spectrum efficiency.
  • the embodiment of the present invention improves the spatial multiplexing opportunity by using the slot scheduling scheme with reserved idle time, thereby improving system spectrum efficiency and supporting multiple services with different requirements.
  • the embodiment of the present invention further provides a time slot scheduling apparatus based on the time slot scheduling method according to the foregoing embodiment.
  • the time slot scheduling device includes hardware structures and/or software modules corresponding to the execution of the respective functions in order to implement the above functions.
  • the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present invention.
  • the embodiment of the present invention may divide the functional units of the time slot scheduling apparatus according to the foregoing method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 18 is a schematic structural diagram of a time slot scheduling apparatus according to an embodiment of the present invention.
  • the slot scheduling apparatus 100 includes a processing unit 101 and a communication unit 102.
  • the processing unit 101 is configured to determine a time slot of any one of the foregoing method embodiments.
  • the communication unit 102 is configured to send a time slot determined by the processing unit 101.
  • the functions of the processing unit 101 and the communication unit 102 in the embodiments of the present invention may correspond to the functions involved in the foregoing method embodiments, and of course, the functions described above are not limited.
  • the processing unit 101 can process the data carried by the time slot according to the configuration information of the time slot
  • the communication unit 102 can be configured to acquire the time slot configuration information of the current frequency band according to the communication direction of the data transmission of the adjacent frequency band.
  • the processing unit 101 may be a processor.
  • the communication unit 102 can be a communication interface, a receiver, a transmitter, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the time slot scheduling apparatus 100 may be the network device shown in FIG.
  • the network device shown in FIG. 9 may be an eNB.
  • FIG. 19 is a schematic structural diagram of a network device 1000 according to an embodiment of the present invention.
  • the network device 1000 includes a receiver 1001, a transmitter 1002, a processor 1003, and a memory 1004.
  • the receiver 1001, the transmitter 1002, the processor 1003, and the memory 1004 may be connected by a bus or other manner, wherein the bus connection is taken as an example in FIG.
  • the memory 1004 can include read only memory and random access memory and provides instructions and data to the processor 1003. A portion of the memory 1004 may also include a Non-Volatile Random Access Memory (NVRAM).
  • NVRAM Non-Volatile Random Access Memory
  • the memory 1004 stores operating systems and operational instructions, executable modules or data structures, or a subset thereof, or an extended set thereof, wherein the operational instructions can include various operational instructions for implementing various operations.
  • the operating system can include a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1003 is configured to implement the foregoing time slot scheduling and configure a time slot.
  • the processor 1003 may also be referred to as a central processing unit (CPU).
  • CPU central processing unit
  • each component is coupled together by a bus system.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are referred to as bus systems in the figures.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 1003 or implemented by the processor 1003.
  • the processor 1003 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1003 or an instruction in a form of software.
  • the processor 1003 may be a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware groups Pieces.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1004, and the processor 1003 reads the information in the memory 1004 and completes the steps of the above method in combination with its hardware.
  • the processor 1003 is configured to perform the time slot scheduling method and configure the time slot structure in the foregoing embodiment.
  • the configured time slot structure may be stored in the memory 1004.
  • the implementation process of the slot structure configuration and scheduling is not described here.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • first, second, etc. may be used in the embodiments of the present invention to distinguish similar objects, and are not necessarily used to describe a specific order or order, such as the above-mentioned in the embodiments of the present invention.
  • the first idle time and the second idle time are only for convenience of description and distinction The same idle time does not constitute a limitation on the idle time. It is to be understood that the data so used may be interchanged where appropriate, so that the embodiments of the invention described herein can be implemented in a sequence other than those illustrated or described herein.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • FIG. 1 These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

一种时隙调度方法及装置,确定的时隙中包括第一时隙,所述第一时隙中包括第一空闲时间,所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙的中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值。该第一空闲时间不调度第一业务,从而为第二业务提供传输机会,并且第一业务和第二业务的上行传输和下行传输的时域位置不重叠,避免了相互的干扰。

Description

一种时隙调度方法及装置
本申请要求2016年11月04日提交、申请号为201610966024.1、发明名称为“一种支持多种服务类型的新传输模式”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种时隙调度方法及装置。
背景技术
随着通信系统的演进,第五代(5G)新无线通信系统(New Radio,NR)正在进行研究。
在5G NR中,多种服务将被支持,比如加强型移动宽带服务(enhanced mobile broadband,eMBB)和极高可靠极低时延服务(ultra-reliable low-latency communication,URLLC)。其中,eMBB是现有的移动宽带服务的加强,支持更多的高带宽服务,比如4k视频传输、虚拟现实(Virtual Reality,VR)游戏渲染等服务。极高可靠极低时延服务,在极高可靠性方面,支持正确解调率到99.999%,在极低时延方面,支持端到端时延在0.5ms以内。URLLC主要应用场景是自动驾驶、联网无人机等可靠性和时延有很高要求的应用。
从以上两种服务的描述可以看出,不同的服务有不同的时延和带宽需求,相应的,载波间隔也有可能不同。Numerology的含义是一种传输类型,包含子载波间隔、符号时长等参数。当网络设备或终端采用某一种Numerology时,传输就采用该Numerology下的子载波间隔进行传输。网络设备或终端可采用多种Numerology,比如15kHz、30kHz和60kHz等几种不同的子载波间隔,并在频域上相邻的频带传输(邻频模式传输),如图1所示。网络设备或终端还可在同一频带采用多种Numerology传输(同频模式传输),如图2所示。
目前,无论采用邻频模式还是同频模式,均会出现上行数据传输和下行 数据传输之间的干扰。例如同频模式传输情况下,在下行为主的含14个符号的时隙中,每个子帧1ms,下行数据传输可能会连续持续0.8ms或者更多;若某一个频带长时间由下行数据传输占用,则同频带内的URLLC上行数据传输将无法实现0.5ms的端到端时延。同理,在上行为主的子帧中,若某一个频带长时间由上行数据传输占用,则同频带内的URLLC下行传输将无法实现0.5ms的端到端时延。再例如,在邻频模式传输情况下,同一网络设备在两个相邻频带支持不同服务时,若一个频带支持eMBB服务持续0.8ms的下行传输,由于相邻频带的邻频泄露导致干扰,另一个频带是无法支持URLLC的上行传输服务的,无法满足高可靠性要求;同理,若一个频带进行eMBB上行传输,另一个频带采用URLLC下行传输,由于邻频泄露,在eMBB的上行传输也受到影响。当不同网络设备分别支持eMBB和URLLC服务,两个网络设备在邻频工作时,同样存在上行数据传输和下行数据传输之间的干扰问题。
发明内容
本发明实施例提供一种时隙调度方法及装置,以避免上行数据传输与下行数据传输之间的干扰。
第一方面,提供一种时隙调度方法,在该方法中,eNB确定并发送时隙,UE接收eNB发送的时隙,并依据时隙结构进行数据传输。eNB确定的时隙包括第一时隙,所述第一时隙中包括第一空闲时间,所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值。其中,所述预设的时间间隔阈值可根据实际传输的业务所需的最低时延要求来确定,通常该预设的时间间隔阈值小于等于1毫秒,例如若第一空闲时间用于传输URLLC服务的上行数据或下行数据,则该预设的时间间隔阈值可取0.5毫秒。
本发明实施例中,在调度时隙时,在时隙中设置传输时间和空闲时间,传输时间和空闲时间分别用于传输同频模式或邻频模式下的不同业务,以避免同频模式或邻频模式下不同业务之间的干扰。
一种可能的实施方式中,所述时隙中还包括第二时隙,所述第二时隙包括第二空闲时间。所述第二空闲时间的开始时刻与所述第二时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值。所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
其中,所述第一时隙中包括7个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输上行数据的OFDM符号,第N-1个或第N-2个OFDM符号属于所述第一空闲时间或第二空闲时间。
其中,所述第一时隙中包括7个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输下行数据的OFDM符号,第N+1个或第N+2个OFDM符号属于所述第一空闲时间或第二空闲时间。
另一种可能的实施方式中,所述第一时隙中包括第一传输时间,第一空闲时间、第二空闲时间和第二传输时间。
所述第二空闲时间的开始时刻与所述第二传输时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二传输时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述 第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
其中,所述第一时隙中包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述第一时隙中第1~6个OFDM符号中的一个。所述第一空闲时间包含所述时隙中第N个OFDM符号、第N+1个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号。
其中,所述第一时隙包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输上行数据的OFDM符号,所述第一时隙中第N-2个OFDM符号、第N-1个OFDM符号、第N-8个OFDM符号和第N-7个OFDM符号中的至少一个OFDM符号属于所述第一空闲时间或第二空闲时间。
其中,所述第一时隙包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输下行数据的OFDM符号,所述第一时隙中第N+1个OFDM符号、第N+2个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号属于所述第一空闲时间或第二空闲时间。
又一种可能的实施方式中,所述第一时隙和/或第二时隙在频域上占用至少两个频带,所述至少两个频带包括第一频带和第二频带,所述第一空闲时间或第二空闲时间在第一频带中。所述第一频带中除所述第一空闲时间包含的OFDM符号、第二空闲时间包含的OFDM符号和所述第N个OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个OFDM符号传输的数据的通信方向相反,所述通信方向包括上行通信方向和下行通信方向。所述第二频带中与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相同。所述第二频带中除与所述第一频带中第一空闲时 间和第二空闲时间在时域符号位置上对应的OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相反。
一种可能的实施方式中,第一时隙包括第一传输时间和第一空闲时间。所述第一传输时间包含的OFDM符号中的至少一个OFDM符号用于传输第一业务,所述第一空闲时间包含的OFDM符号中的至少一个OFDM符号用于传输第二业务。
当eNB确定了包括用于传输第一业务的第一传输时间内的OFDM符号,以及用于传输第二业务的第一空闲时间内的OFDM符号,为实现对UE的调度,一种实施方式中,可由eNB向UE发送指示信息,所述指示信息用于指示传输第二业务的第一空闲时间内的至少一个OFDM符号,和/或用于指示用于传输第一业务的至少一个第一传输时间内的至少一个OFDM符号。其中,所述指示信息可以通过诸如下行控制信息(Downlink Control Information,DCI)或者无线资源控制信息(Radio Resource Control,RRC)发送。另一种实施方式中,也可采用预定义的方式,定义传输第二业务数据的第一空闲时间内的至少一个OFDM符号。
又一种可能的实施方式中,eNB在进行第一业务调度时,可在所述第一空闲时间上取消或者不进行调度第一业务数据的传输。由于eNB取消或者不进行调度第一业务数据的传输,则UE在第一空闲时间内不进行第一业务数据的传输。
其中,全下行时隙中,第6个OFDM符号或第13个OFDM符号不进行第一业务。所述不进行第一业务的OFDM符号即是指作为第一空闲时间和第二空闲时间内的OFDM符号。下行为主的含7个OFDM符号的时隙中,若第一业务上行传输开始的OFDM符号编号为N,则在第N-2,N-1不进行第一业务。下行为主的含14个OFDM符号的时隙中,若第一业务上行传输开始的OFDM符号编号为N,则在第N-2,N-1,N-8,N-7不进行第一业务。
其中,全上行时隙中,第2个OFDM符号或第9个OFDM符号不进行第一业务。上行为主的含7个OFDM符号的时隙中,若第一业务下行传输结束 的OFDM符号编号为N,则在第N+1,N+2不进行第一业务。上行为主的含14个OFDM符号的时隙中,若第一业务下行传输结束的OFDM符号编号为N,则在第N+1,N+2,N+7,N+8不进行第一业务。
其中,全下行时隙中,第6个或第13个OFDM符号不进行第一业务。下行为主的含14个OFDM符号的时隙中,若第一业务上行传输开始的OFDM符号编号为N,则在第N-1和N-8不进行第一业务。
其中,全上行时隙中,第1个或第8个OFDM符号不进行第一业务。上行为主的含7个OFDM符号的时隙中,若第一业务下行传输结束的OFDM符号编号为N,则在第N+1不进行第一业务;上行为主的含14个OFDM符号的时隙中,若第一业务下行传输结束的OFDM符号编号为N,则在第N+1,N+8不进行第一业务。
其中,全下行时隙中,第七或第14个OFDM符号不进行第一业务。下行为主的含14个OFDM符号的时隙中,若第一业务上行传输开始的OFDM符号编号为N,则在第N-7不进行第一业务。
其中,全上行时隙中,第1个OFDM符号或第8个OFDM符号不进行第一业务。上行为主的含14个OFDM符号的时隙中,若第一业务下行传输结束的OFDM符号编号为N,则在第N+7不进行第一业务。
其中,全下行时隙中,第7个或第14个OFDM符号不进行第一业务。下行为主的含14个OFDM符号的时隙中,若第一业务上行传输开始的OFDM符号编号为N,则在第N-7不进行第一业务。
其中,全上行时隙中,第1个或第8个OFDM符号不进行第一业务。上行为主的含14个OFDM符号的时隙中,若第一业务下行传输结束的OFDM符号编号为N,则在第N+7不进行第一业务。
又一种可能的实施方式中,若所述第一时隙和/或第二时隙中包括用于收发转换的空闲OFDM符号,则为了预留足够的时间实现传输第一业务与传输第二业务的转换,则可设置所述用于收发转换的空闲OFDM符号的数量为至少两个。
第二方面,提供一种时隙调度装置,该时隙调度装置具有实现上述第一方面中涉及的调度时隙的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,所述时隙调度装置包括处理单元和通信单元,所述处理单元和通信单元的功能可以和各方法步骤相对应,并且处理单元确定的时隙具有上述第一方面中涉及的任一种时隙结构,在此不予赘述。
第三方面,提供一种网络设备,所述网络设备包括处理器、存储器、接收器和发射器。
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制接收器和发射器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述网络设备用于完成如第一方面中所描述的任意一种时隙的调度方法。
本发明实施例中,在时隙特定的位置设置空闲时间,该空闲时间不调度第一业务,从而为第二业务提供了传输机会,并且第一业务和第二业务的上行传输和下行传输的时域位置不重叠,避免了相互的干扰。
附图说明
图1为目前邻频模式传输示意图;
图2为目前同频模式传输示意图;
图3为本发明实施例提供的时隙调度方法所应用的无线通信系统架构图;
图4为自包含子帧结构示意图;
图5为以15kHZ为子载波间隔的子帧配置示意图;
图6为本发明实施例提供的时隙调度方法流程图;
图7为本发明实施例提供的时隙结构的一种示意图;
图8为本发明实施例提供的时隙结构的另一种示意图;
图9为本发明实施例提供的时隙结构的又一种示意图;
图10为一种调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置示意图;
图11为一种调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置示意图;
图12为另一种调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置示意图;
图13为另一种调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置示意图;
图14为又一种调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置示意图;
图15为又一种调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置示意图;
图16为又一种调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置示意图;
图17为又一种调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置示意图;
图18为本发明实施例提供的一种时隙调度装置的结构示意图;
图19为本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
以下将结合附图对本发明的实施例进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备,可以称之为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收 发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、无线保真(Wireless Fidelity,WIFI)接入点(Access Point,AP),传输点(transmission and receiver point,TRP或者transmission point,TP)等。
2)、终端,是一种向用户提供语音和/或数据连通性的设备,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端设备(Terminal Equipment),传输点(transmission and receiver point,TRP或者transmission point,TP)等等。
3)、交互,本申请中的交互是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
4)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
5)、名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例提供的时隙调度方法,可应用于图3所示的无线通信系统中,如图3所示,终端通过无线接入网(Radio Access Network,RAN)接入 核心网(Core Network,CN),并进行各种通信服务。
可以理解的是,无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(global system for mobile communications/general packet radio service,GSM)网络或者通用分组无线业务(general packet radio service,GPRS)网络,典型的3G网络包括通用移动通信系统(universal mobile telecommunications system,UMTS)网络,典型的4G网络包括长期演进(long term evolution,LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(universal terrestrial radio access network,UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(wireless local area networks,WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络简称为网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游 功能。
本发明实施例以下以应用于5G NR通信系统为例进行说明。以网络设备为eNB,终端为UE为例进行说明。应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
UE进行各种通信服务时,需要eNB为UE配置子帧结构。可以理解的是,配置子帧结构的过程,也可称为时隙调度的过程,本发明实施例以下在描述过程中子帧和时隙经常交替使用,但本领域的技术人员可以理解其含义。
在5G NR中,为了支持多种通信服务(多种通信服务包括但不限于eMBB服务和URLLC服务),引入了自包含子帧结构。在自包含子帧结构中包括用于传输上行数据的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号和用于传输下行数据的OFDM符号。图4所示为自包含子帧结构示意图,如图4所示,自包含子帧结构包含三部分,第一部分为下行控制(Downlink control,DL control),可传输下行授权(Downlink grant,DL grant)或者上行授权(Uplink grant,UL grant),用于向UE指示资源配置信息。第二部分为数据(data)部分,可由eNB传输下行(Downlink,DL)数据,或者UE根据之前UL grant分配的资源传输上行(Uplink,UL)数据,第三部分为上行控制(Uplink control,UL control),在该资源上,eNB可以对之前的下行数据回复正确应答指令(ACKnowledge,ACK)或错误应答指令(Negative ACKnowledge,NACK),或者传输上行信道状态信息(Channel State Information,CSI),以协助eNB后续对UE的调度。
为区分不同类别的子帧,传输下行数据的子帧被称为下行为主的含14个符号的时隙,而传输上行数据的子帧被称为上行为主的子帧。在下行为主的含14个符号的时隙中,DL control传输DL grant,以指示UE,eNB将要对该UE进行下行数据传输的时域频域位置,以便该UE到对应的时域和频域资源上侦听在。DL grant传输完毕后,传输下行数据;下行数据传输完毕,经过一个间隔时间(guard period,GP),UE根据译码下行数据的结果回复ACK或 者NACK。其中,间隔时间由空闲符号构成,空闲符号是针对某一种服务的不进行任何传输的符号,即在空闲符号上,这种服务不进行传输,但是其他服务可以在空闲符号上进行传输,例如在该段时间中eNB不进行eMBB传输。对于上行为主的子帧中,DL control部分传输UL grant,以指示UE,该UE应在哪一段时域频域资源上进行上行传输。主要包括两种情况,一种情况中,eNB将整个子帧剩余的时间都分配给UE传输上行数据,UE在GP后进行上行数据传输,直至该子帧结束。另一种情况中,eNB只分配data部分用于UE上行传输,此时,在GP后,UE根据UL grant中分配的资源传输上行数据,并在传输结束后,由被调度的UE传输上行控制信息(比如CSI)等。
在5G NR中,UE和eNB可支持多种不同类型的子载波间隔的子帧配置。图5中示出了以15kHZ为子载波间隔的子帧配置。图5中,从上往下依次是全下行时隙、下行为主的含14个符号的时隙(上下行收发转换的间隔为1个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号)、下行为主的含7个符号的时隙(上下行收发转换的间隔为1个OFDM符号)、全上行时隙、上行为主的含14个符号的时隙(上下行收发转换的间隔为1个OFDM符号)、上行为主的含7个符号的时隙(上下行收发转换的间隔为1个OFDM符号)。图5中,DL ctrl表示DL control,UL Ctrl表示UL control,数字1、2……14分别表示用于传输DL或UL数据的OFDM符号位置。
本发明实施例中为避免背景技术部分所提及的上行数据传输与下行数据传输之间的干扰问题,可在调度时隙时,在时隙中设置传输时间和空闲时间,传输时间和空闲时间分别用于传输同频模式或邻频模式下的不同业务,以避免同频模式或邻频模式下不同业务之间的干扰。例如,URLLC服务和eMBB服务在同频模式情况下,在1ms子帧内的特定位置为URLLC服务预留时间资源,满足URLLC服务0.5ms时延的要求,同时剩余的时间资源可用于eMBB服务,这样就不会干扰eMBB服务的上下行传输。再例如,URLLC服务和eMBB服务在邻频模式情况下,在1ms子帧内的特定位置为URLLC服务预留时间资源,满足URLLC服务0.5ms时延的要求,并在邻频上对应预留资源的 时域位置,不出现与URLLC服务传输的数据的通信方向(上行通信方向和下行通信方向)相反方向的传输,从而避免了相互干扰。
图6所示为本发明实施例提供的时隙调度方法流程图。参阅图6所示,包括:
S101:eNB确定第一时隙,所述第一时隙中包括第一空闲时间.
本发明实施例中,所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号(控制信道)的结束时刻的时间间隔小于等于预设的时间间隔阈值。
其中,所述预设的时间间隔阈值可根据实际传输的业务所需的最低时延要求来确定,通常该预设的时间间隔阈值小于等于1毫秒,例如若第一空闲时间用于传输URLLC服务的上行数据或下行数据,则该预设的时间间隔阈值可取0.5毫秒。
图7为本发明实施例提供的时隙结构的示意图,图7中,第一时隙包括第一空闲时间和第一传输时间。所述第一传输时间包含的OFDM符号中的至少一个OFDM符号用于传输第一业务,所述第一空闲时间包含的OFDM符号中的至少一个OFDM符号用于传输第二业务。第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔,以及与所述第一时隙中用于传输控制信令的至少一个OFDM符号(控制信道)的结束时刻的时间间隔,均小于等于预设的阈值。在实际情况中,第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号(控制信道)的结束时刻的时间间隔小于等于预设的时间间隔阈值,这两个条件满足其中一个,即可满足避免同频模式或邻频模式下不同业务之间的干扰的需求。
S102:eNB发送确定的包括第一空闲时间的第一时隙,UE接收eNB发送的第一时隙,并依据时隙结构进行数据传输。
本发明实施例中针对第一时隙中包括的OFDM符号的数量为7个OFDM 符号或者14个OFDM符号,可采用不同的时隙结构调度方式。
针对第一时隙中包括的OFDM符号的数量为7个OFDM符号的情况,eNB可确定并发送第二时隙,所述第二时隙包括第二空闲时间。该包括第二空闲时间的第二时隙的结构,可参阅图7所示,所述第二空闲时间的开始时刻与所述第二时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二时隙中用于传输控制信令的至少一个OFDM符号(控制信道)的结束时刻的时间间隔小于等于预设的时间间隔阈值。
本发明实施例中为避免同频模式或邻频模式下不同业务之间的干扰的需求,所述第二空闲时间与第一空闲时间之间的时间间隔需满足小于等于所述预设时间间隔阈值的需求,如图8所示。例如,满足如下条件之一即可:所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
本发明实施例中,所述第一时隙中可包括7个OFDM符号。为避免上行数据传输与下行数据传输之间的干扰,若所述第一时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输上行数据的OFDM符号,则可设置第N-1个或第N-2个OFDM符号属于所述第一空闲时间或第二空闲时间。若时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输下行数据的OFDM符号,则可设置第N+1个或第N+2个OFDM符号属于所述第一空闲时间或第二空闲时间。
针对第一时隙中包括的OFDM符号的数量为14个OFDM符号的情况,可在所述第一时隙中设置第二空闲时间和第二传输时间。如图9所示,所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预 设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号(控制信道)的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二传输时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二传输时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
本发明实施例中,所述第一时隙中包括14个OFDM符号。参阅图5中的全上行时隙或全下行时隙,若所述第一时隙中的第N个OFDM符号为时隙中第1~6个OFDM符号中的一个,则可设置时隙中第N个OFDM符号、第N+1个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号为所述第一空闲时间。
再次参阅图5所示的时隙结构,为避免上行数据传输与下行数据传输之间的干扰,若所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输上行数据的OFDM符号,则可设置所述第一时隙中第N-2个OFDM符号、第N-1个OFDM符号、第N-8个OFDM符号和第N-7个OFDM符号中的至少一个OFDM符号为所述第一空闲时间或第二空闲时间。若所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输下行数据的OFDM符号,则可设置所述第一时隙中第N+1个OFDM符号、第N+2个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号为所述第一空闲时间或第二空闲时间。
本发明实施例中,针对邻频模式,即时隙在频域上占用至少两个频带, 假设所述至少两个频带包括第一频带和第二频带,所述第一空闲时间或第二空闲时间在第一频带中。为避免上行数据传输与下行数据传输之间的干扰,则可采用如下方式调度时隙:所述第一频带中除所述第一空闲时间包含的OFDM符号、第二空闲时间包含的OFDM符号和所述第N个OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个OFDM符号传输的数据的通信方向相反。所述第二频带中与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相同。所述第二频带中除与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相反。
本发明实施例中,所述通信方向包括上行通信方向和下行通信方向,所述通信方向相反是指,若所述第一频带中除所述第一空闲时间包含的OFDM符号、第二空闲时间包含的OFDM符号和所述第N个OFDM符号之外的其它OFDM符号传输的数据的通信方向为上行通信方向,则所述第N个OFDM符号传输的数据的通信方向为向下通信方向。所述通信方向相同是指,若所述第一频带中除所述第一空闲时间包含的OFDM符号、第二空闲时间包含的OFDM符号和所述第N个OFDM符号传输数据的通信方向为上行通信方向,则所述第二频带中与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号传输的数据的通信方向也为下行通信方向。
本发明实施例中,若时隙中包括用于收发转换的空闲OFDM符号(例如图5中的GP),则为了预留足够的时间实现传输第一业务与传输第二业务的转换,则可设置所述用于收发转换的空闲OFDM符号的数量为至少两个。
本发明实施例中当eNB确定了包括用于传输第一业务的第一传输时间内的OFDM符号,以及用于传输第二业务的第一空闲时间内的OFDM符号,为实现对UE的调度,一种实施方式中,可由eNB向UE发送指示信息,所述指示信息用于指示传输第二业务的第一空闲时间内的至少一个OFDM符号, 和/或用于指示用于传输第一业务的至少一个第一传输时间内的至少一个OFDM符号。其中,所述指示信息可以通过诸如下行控制信息(Downlink Control Information,DCI)或者无线资源控制信息(Radio Resource Control,RRC)发送。另一种实施方式中,也可采用预定义的方式,定义传输第二业务数据的第一空闲时间内的至少一个OFDM符号。
本发明实施例中,在时隙中设置了空闲时间,则eNB在进行第一业务调度时,可在所述第一空闲时间上取消或者不进行调度第一业务数据的传输。由于eNB取消或者不进行调度第一业务数据的传输,则UE在第一空闲时间内不进行第一业务数据的传输。
本发明实施例以下将结合实际应用对上述涉及的时隙结构进行说明。
本发明实施例以下以第一业务为eMBB服务,第二业务为URLLC服务为例,采用图5中所涉及的各种时隙类型,在1毫秒子帧内为中设置URLLC服务设置空闲时间,满足URLLC服务0.5毫秒时延需求,并避免eMBB服务与URLLC服务上行数据和下行数据之间相互干扰的的实施过程进行说明。
实施例一
假设当前传输eMBB服务数据的时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间624Ts。
eNB确定传输URLLC服务数据的上行资源时域位置,该传输URLLC服务数据的上行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙)唯一对应。其中,全下行时隙中,第6个OFDM符号或第13个OFDM符号不进行eMBB服务。所述不进行eMBB服务的OFDM符号即是指作为第一空闲时间和第二空闲时间内的OFDM符号。下行为主的含7个OFDM符号的时隙中,若eMBB上行传输开始的OFDM符号编号为N,则在第N-2,N-1不进行eMBB服务。下行为主的含14个OFDM符号的时隙中,若eMBB上行传输开始的OFDM符号编号为N,则在第N-2,N-1,N-8, N-7不进行eMBB服务。
例如,本发明实施例中将第6个OFDM符号或第13个OFDM符号作为传输URLLC服务数据的上行资源时域位置。
eNB确定传输URLLC服务数据的上行资源时域位置,可通过信令指示时隙类型,并调度eMBB进行下行传输和URLLC进行上行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行下行传输的时域位置和URLLC进行上行传输的时域位置。
可选的,下行为主的含7个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC上行资源位于eMBB上行传输开始的OFDM符号之前一个OFDM符号;可选的,下行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC上行资源位于eMBB上行传输开始的OFDM符号之前一个OFDM符号或8个OFDM符号的时域位置。
本发明实施例中调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置如图10所示。
对于全下行时隙,如图10中的(a)和(b)。(a)和(b)中,eNB在第1个到第5个OFDM符号传输下行数据,在第8个到第12个OFDM符号传输下行数据,预先空出第6个、第7个、第13个和第14个OFDM符号的位置供URLLC进行上行传输使用。其中,预先空出的OFDM符号编号可以在标准中规定或者由eNB指示给URLLC UE在所述位置上接收。可选的,在预留的第6个和第7个OFDM符号上,可以传输1到5个URLLC上行OFDM符号。在(a)中,URLLC在第5个OFDM符号结束后预留出eNB侧从发送转向接收的时间(624Ts)之后,eNB接收到URLLC上行传输的信号。同理,URLLC在第12个OFDM符号结束后预留出eNB侧收发转换的时间之后,eNB接收到URLLC上行传输的信号。由于URLLC UE可能同eNB之间有传输延迟,URLLC UE需要预估传输延迟时间量并提前发送URLLC UL数据,使得经过传输延迟后,URLLC UL数据能在图10的(a)所示的位置显示出来。需要说明 的是(b)与(a)不同之处在于URLLC上行传输的位置,此时,虽然规定了URLLC UE会在第7个OFDM符号的位置进行传输,URLLC UE会考虑624Ts的提前量进行发送,从而使得eNB实际接收到URLLC UL的时间早于(b)中所示的位置,提前的时间为624Ts。这样URLLC UL上行结束之后,URLLC UL结束的时间早于(b)中所示的第8个OFDM符号开始的位置624Ts,这样eNB有足够的时间进行收发转换,之后继续发送第8到第12个下行OFDM符号。本实施例之后如果出现上行结束紧跟的是下行传输,则默认上行传输采用了时间提前的步骤。
对于下行为主的含14个OFDM符号的时隙,如图10中的(c)。eNB在第1个到第5个OFDM符号传输下行数据,在第8个到第11个OFDM符号传输下行数据,并在第14个OFDM符号接收上行数据,预先空出第6个、第7个、第12个和第13个OFDM符号的位置供URLLC进行上行传输使用。其中,URLLC上行传输采用了时间提前。对于(c),15kHz子载波间隔的下行和上行之间只需要1个OFDM符号的GP时,为支持URLLC传输,需要额外增大GP,以提供URLLC传输机会,其中,增大GP可以通过信令进行指示。当GP时长大于1个OFDM符号时,可以预留出GP中某一个OFDM符号用于URLLC上行传输,这个GP中预留的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。可选的,这个GP中预留的OFDM符号是第13个OFDM符号。
对于下行为主的含7个OFDM符号的时隙,如图10中的(d)。eNB在第1个到第4个OFDM符号传输下行数据,在第8个到第11个OFDM符号传输下行数据,并在第7个和第14个OFDM符号接收上行数据,预先空出第5个、第6个、第12个和第13个OFDM符号的位置供URLLC进行上行传输使用。其中,URLLC上行传输采用了时间提前。对于(d),当15kHz子载波间隔的下行和上行之间只需要1个OFDM符号的GP时,为支持URLLC传输,需要额外增大GP,以提供URLLC传输机会,其中,增大GP可以通过信令进行指示。当GP时长大于1个OFDM符号时,可以预留出GP中某一个OFDM 符号用于URLLC上行传输,这个GP中预留的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。可选的,这个GP中预留的OFDM符号是第6个OFDM符号或第13个OFDM符号。
本发明实施例一中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。
实施例二
假设当前传输eMBB服务数据的时隙为全上行时隙、上行为主的含14个OFDM符号的时隙、上行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间624Ts。
eNB确定传输URLLC服务数据的下行资源时域位置,该传输URLLC服务数据的下行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全上行时隙、上行为主的含14个OFDM符号的时隙或上行为主的含7个OFDM符号的时隙)唯一对应。其中,全上行时隙中,第2个OFDM符号或第9个OFDM符号不进行eMBB服务。上行为主的含7个OFDM符号的时隙中,若eMBB下行传输结束的OFDM符号编号为N,则在第N+1,N+2不进行eMBB服务。上行为主的含14个OFDM符号的时隙中,若eMBB下行传输结束的OFDM符号编号为N,则在第N+1,N+2,N+7,N+8不进行eMBB服务。
例如,本发明实施例中将第2个OFDM符号或第9个OFDM符号作为传输URLLC服务数据的下行资源时域位置。
eNB确定传输URLLC服务数据的下行资源时域位置后,可通过信令指示时隙类型,并调度eMBB进行上行传输和URLLC进行下行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行上行传输的时域位置和URLLC进行下行传输的时域位置。
可选的,上行为主的含7个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC下行资源位于eMBB下行传输结束的OFDM符号之后一个OFDM符号的时域位置。可选的,上行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC下行资源位于eMBB下行传输结束的OFDM符号之后一个OFDM符号或8个OFDM符号的时域位置。
本发明实施例中调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置如图11所示。
对于全上行时隙,如图11中的(a)和(b)。(a)和(b)中,eNB在第3个到第7个OFDM符号传输上行数据,在第10个到第14个OFDM符号传输上行数据,预先空出第1个、第8个OFDM符号的位置供URLLC进行下行传输使用。预先空出的OFDM符号编号可以在标准中规定或者由eNB指示给URLLC UE在所述位置上接收。在(a)中,URLLC在第7个OFDM符号结束后预留出eNB侧从发送转向接收的时间(624Ts)之后,eNB发送URLLC下行传输的信号。同理,URLLC在第1个OFDM符号预留出eNB侧收发转换的时间之后,eNB发送URLLC下行传输的信号。由于UE可能同eNB之间有传输延迟,UE需要预估传输延迟时间量并提前发送UL数据。图11中的(b)与(a)不同之处在于URLLC下行传输的位置,此时,虽然规定了UE会在第7个OFDM符号的位置进行传输,UE会考虑624Ts的提前量进行发送,从而使得eNB实际接收到UL的时间早于图11中(b)所示的位置,提前的时间为624Ts。这样UL上行结束之后,UL结束的时间早于图11中(b)所示的第8个OFDM符号开始的位置624Ts,这样eNB有足够的时间进行收发转换,之后继续发送URLLC下行OFDM符号。
对于上行为主的含14个OFDM符号的时隙,如图11中的(c)。图11中的(c),eNB在第一个OFDM符号下行传输、在第4个到第7个OFDM符号和在第10个到第14个OFDM符号接收上行传输,预先空出第2个、第3个、第8个和第9个OFDM符号的位置供URLLC下行传输使用。对于图11中的(c),15kHz子载波间隔的下行和上行之间只需要1个OFDM符号的GP时, 为支持URLLC传输,需要额外增大GP,以提供URLLC传输机会,其中,增大GP可以通过信令进行指示。当GP时长大于1个OFDM符号时,可以预留出GP中某一个OFDM符号用于URLLC上行传输,这个GP中预留的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。可选的,这个GP中预留的OFDM符号是第2个OFDM符号。
对于上行为主的含7个OFDM符号的时隙,实施例二如图11中的(d)。eNB在第1个和第8个OFDM符号下行传输,并在第4个到第7个OFDM符号和在第11个到第14个OFDM符号接收上行传输,预先空出第2个、第3个、第9个和第10个OFDM符号的位置供URLLC下行传输使用。对于图11中的(d),15kHz子载波间隔的下行和上行之间只需要1个OFDM符号的GP时,为支持URLLC传输,需要额外增大GP,以提供URLLC传输机会,其中,增大GP可以通过信令进行指示。当GP时长大于1个OFDM符号时,可以预留出GP中某一个OFDM符号用于URLLC上行传输,这个GP中预留的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。可选的,这个GP中预留的OFDM符号是第2个OFDM符号和第9个OFDM符号。
本发明实施例二中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。
实施例三:
假设当前传输eMBB服务数据的时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间小于或等于548Ts。值得注意的时,当收发转换时间减小到548Ts及以内,对于eMBB下行传输的预留空OFDM符号数将降低,从而提高了eMBB的传输效率。
eNB确定传输URLLC服务数据的上行资源时域位置,该传输URLLC服务数据的上行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当 前时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙)唯一对应。其中,全下行时隙中,第6个或第13个OFDM符号不进行eMBB服务。下行为主的含14个OFDM符号的时隙中,若eMBB上行传输开始的OFDM符号编号为N,则在第N-1和N-8不进行eMBB服务。
例如,本发明实施例中将第6个OFDM符号或第13个OFDM符号作为传输URLLC服务数据的上行资源时域位置。
eNB确定传输URLLC服务数据的上行资源时域位置,可通过信令指示时隙类型,并调度eMBB进行下行传输和URLLC进行上行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行下行传输的时域位置和URLLC进行上行传输的时域位置。
可选的,下行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC上行资源位于eMBB上行传输开始的OFDM符号之前一个OFDM符号或8个OFDM符号的时域位置。
本发明实施例中调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置如图12所示。
对于全下行时隙,如图12中的(a)和(b)。图12中的(a),eNB在第1个到第6个OFDM符号传输下行数据,在第8个到第13个OFDM符号传输下行数据,预先空出第7个和第14个OFDM符号的位置供URLLC进行上行传输使用。预先空出的OFDM符号编号可以在标准中规定或者由eNB指示给URLLC UE在所述位置上接收。可选的,在预留的第7个和第14个OFDM符号上,可以传输1到2个URLLC上行OFDM符号。图12中的(b),eNB在第1个到第5个OFDM符号传输下行数据,在第7个到第12个OFDM符号和第14个OFDM符号传输下行数据,预先空出第6个和第13个OFDM符号的位置供URLLC进行上行传输使用。预先空出的OFDM符号编号可以在标准中规定或者由eNB指示给URLLC UE在所述位置上接收。可选的,在预 留的第6个和第13个OFDM符号上,可以传输1个到2个URLLC上行OFDM符号。在图12中的(a),URLLC在第6个OFDM符号结束后预留出eNB侧从发送转向接收的时间(548Ts)之后,eNB接收到URLLC上行传输的信号。同理,URLLC在第13个OFDM符号结束后预留出eNB侧收发转换的时间之后,eNB接收到URLLC上行传输的信号。由于URLLC UE可能同eNB之间有传输延迟,URLLC UE需要预估传输延迟时间量并提前发送URLLC UL数据。
对于下行为主的含14个OFDM符号的时隙,如图12中的(c)。eNB在第1个到第5个OFDM符号传输下行数据,在第7个到第11个OFDM符号传输下行数据,并在第14个OFDM符号接收上行数据,预先空出第6个、第12个和第13个OFDM符号的位置供URLLC进行上行传输使用。其中,URLLC上行传输采用了时间提前。图12中的(d)与(c)的区别指出在于:第12个OFDM符号是否用于URLLC传输,原因在于两个图GP不同,当GP为两个OFDM符号如图12中的(c)时,可以提供更多的资源供URLLC传输。
对于下行为主的含7个OFDM符号的时隙,如图12中的(e)和(f)。图12中的(e),eNB在第1个到第4个OFDM符号传输下行数据,在第8个到第11个OFDM符号传输下行数据,并在第7个和第14个OFDM符号接收上行数据,预先空出第5个、第6个、第12个和第13个OFDM符号的位置供URLLC进行上行传输使用。其中,URLLC上行传输采用了时间提前。对于图12中的(f),eNB在第1个到第5个OFDM符号传输下行数据,在第8个到第12个OFDM符号传输下行数据,并在第7个和第14个OFDM符号接收上行数据,预先空出第6个和第13个OFDM符号的位置供URLLC进行上行传输使用。其中,URLLC上行传输采用了时间提前,这些OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。
由图12(b)到图12(f)可知,共有的URLLC资源位于第6个OFDM符号和第13个OFDM符号,该共有的URLLC资源位置,可以由标准规定或者eNB通过广播或信令指示给URLLC UE这些共有的URLLC资源位置。
本发明实施例三中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。
并且相对于实施例一,本发明实施例三降低了对eMBB服务的影响,提高了频谱效率。
实施例四
假设当前传输eMBB服务数据的时隙为全上行时隙、上行为主的含14个OFDM符号的时隙、上行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间小于或等于548Ts。值得注意的时,当收发转换时间减小到548Ts及以内,对于eMBB下行传输的预留空OFDM符号数将降低,从而提高了eMBB的传输效率。
eNB确定传输URLLC服务数据的下行资源时域位置,该传输URLLC服务数据的下行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全上行时隙、上行为主的含14个OFDM符号的时隙或上行为主的含7个OFDM符号的时隙)唯一对应。其中,全上行时隙中,第1个或第8个OFDM符号不进行eMBB服务。上行为主的含7个OFDM符号的时隙中,若eMBB下行传输结束的OFDM符号编号为N,则在第N+1不进行eMBB服务;上行为主的含14个OFDM符号的时隙中,若eMBB下行传输结束的OFDM符号编号为N,则在第N+1,N+8不进行eMBB服务。
例如,本发明实施例中将第2个OFDM符号或第9个OFDM符号作为传输URLLC服务数据的下行资源时域位置。
eNB确定传输URLLC服务数据的下行资源时域位置后,可通过信令指示时隙类型,并调度eMBB进行上行传输和URLLC进行下行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行上行传输的时域位置和URLLC进行下行传输的时域位置。
可选的,上行为主的含7个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC下行资源位于eMBB下行传输结束的OFDM符号之后一个OFDM符号的时域位置。可选的,上行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC下行资源位于eMBB下行传输结束的OFDM符号之后一个OFDM符号或8个OFDM符号的时域位置。
本发明实施例中调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置如图13所示。
对于全上行时隙,如图13中的(a)。图13中的(a)中,eNB在第2个到第7个OFDM符号传输上行数据,在第9个到第14个OFDM符号传输上行数据,预先空出第1个和第8个OFDM符号的位置供URLLC进行下行传输使用。预先空出的OFDM符号编号可以在标准中规定或者由eNB指示给URLLC UE在所述位置上接收。可选的,在预留的第1个和第8个OFDM符号上,可以传输1个到2个URLLC下行OFDM符号。在图13中的(a)中,URLLC第1个OFDM符号的传输结束后预留出eNB侧从发送转向接收的时间(548Ts)之后,eNB接收到上行传输的信号。同理,URLLC在第7个OFDM符号所在时间传输结束后预留出eNB侧收发转换的时间之后,eNB接收到URLLC下行传输的信号。由于URLLC UE可能同eNB之间有传输延迟,URLLC UE需要预估传输延迟时间量并提前发送URLLC UL数据。
对于下行为主的含14个OFDM符号的时隙,如图13中的(b)和(c)。图13中的(b)中,eNB第1个OFDM符号传输下行数据,在第4个到第7个OFDM符号和在第10个到第14个OFDM符号接收上行数据,预先空出第2个、第3个、第8个和第9个OFDM符号的位置供URLLC服务下行传输使用。图13中的(b)和(c)的区别之处在于第3个和第9个OFDM符号是否用于URLLC传输,原因在于两个图GP不同,当GP为两个OFDM符号如图13中的(b)时,可以提供更多的资源供URLLC传输。
对于下行为主的含7个OFDM符号的时隙,如图13中的(d)。eNB在第1个OFDM符号和第8个OFDM符号传输下行数据,在第3个到第7个OFDM 符号和第10个到第14个OFDM符号接收上行数据,预先空出第2个和第9个OFDM符号的位置供URLLC服务下行传输使用。这些预留OFDM符号的位置可以在标准中规定或者由eNB指示给URLLC UE。
本发明实施例四中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB下行传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。
并且,相对于实施例二,本发明实施例四降低了对eMBB服务的影响,提高了频谱效率。
本发明实施例一至实施例四中主要是实现了同频模式下,各时隙类型中空闲OFDM符号的时隙调度,以下将对邻频模式下各时隙类型中空闲OFDM符号的时隙调度过程进行说明。
实施例五
假设当前传输eMBB服务数据的时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间624Ts。
eNB确定传输URLLC服务数据的上行资源时域位置,该传输URLLC服务数据的上行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙)唯一对应。其中,全下行时隙中,第七或第14个OFDM符号不进行eMBB服务。下行为主的含14个OFDM符号的时隙中,若eMBB上行传输开始的OFDM符号编号为N,则在第N-7不进行eMBB服务。
例如,本发明实施例中将第6个OFDM符号或第13个OFDM符号作为传输URLLC服务数据的上行资源时域位置。
eNB确定传输URLLC服务数据的上行资源时域位置,可通过信令指示时隙类型,并调度eMBB进行下行传输和URLLC进行上行传输。在eNB指示 的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行下行传输的时域位置和URLLC进行上行传输的时域位置。
可选的,下行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC上行资源位于邻频eMBB上行传输开始OFDM符号之前7个OFDM符号的时域位置。
本发明实施例中调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置如图14所示。
对于全下行时隙,如图14中的(a)。eNB在第1个到第5个OFDM符号传输下行数据,在第8个到第12个OFDM符号传输下行数据,预先空出第6个、第7个、第13个和第14个OFDM符号的位置以免影响邻频的URLLC进行上行传输使用。预先空出的OFDM符号编号可以在标准中规定或者由eNB调度数据的结束位置确定。可选的,在邻频的第6个和第7个OFDM符号上,可以传输1到5个URLLC上行OFDM符号。
对于下行为主的含14个OFDM符号的时隙,如图14中的(b)。eNB在第1个到第5个OFDM符号传输下行数据,在第8个到第11个OFDM符号传输下行数据,并在第14个OFDM符号接收上行数据,预先空出第6个、第7个供URLLC进行上行传输使用。此外,第12个和第13个OFDM符号对于eMBB服务是GP。由于eMBB所需的GP大于1个OFDM符号,在第7个OFDM符号上不能进行上行传输,所以只能保持留空。可以预留出的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。
对于下行为主的含7个OFDM符号的时隙,如图14中的(c)和(d)。若两个频带由同一个eNB调度,在广播时隙类型的信令时,可广播同一个信令,该信令对于15kHz子载波间隔是一种设定,对于60kHz子载波间隔是另外一种设定,如图14的(c)和(d)所示。
本发明实施例五中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB传输的时域位置不重叠, 避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。并且本发明实施例五在子帧特定的位置不调度eMBB服务,从而为邻频的URLLC提供了传输机会。
实施例六
假设当前传输eMBB服务数据的时隙为全上行时隙、上行为主的含14个OFDM符号的时隙、上行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间624Ts。
eNB确定传输URLLC服务数据的下行资源时域位置,该传输URLLC服务数据的下行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全上行时隙、上行为主的含14个OFDM符号的时隙或上行为主的含7个OFDM符号的时隙)唯一对应。其中,全上行时隙中,第1个OFDM符号或第8个OFDM符号不进行eMBB服务。上行为主的含14个OFDM符号的时隙中,若eMBB下行传输结束的OFDM符号编号为N,则在第N+7不进行eMBB服务。
eNB确定传输URLLC服务数据的下行资源时域位置后,可通过信令指示时隙类型,并调度eMBB进行上行传输和URLLC进行下行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行上行传输的时域位置和URLLC进行下行传输的时域位置。
可选的,上行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC下行资源位于邻频eMBB下行传输结束OFDM符号之后7个OFDM符号的时域位置。
本发明实施例中调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置如图15所示。
对于全上行时隙,如图15中的(a)。eNB在第3个到第7个OFDM符号和第10个到第14个OFDM符号接收上行数据,预先空出第1个、第2个、第8个和第9个OFDM符号的位置以免影响邻频的URLLC进行下行传输使 用。预先空出的OFDM符号编号可以在标准中规定或者由eNB调度数据的起始和结束位置确定。可选的,在邻频的第1个和第2个OFDM符号上,可以传输1到5个URLLC下行OFDM符号。
对于上行为主的含14个OFDM符号的时隙如图15中的(b)。eNB在第4个到第7个OFDM符号和第10个到第14个OFDM符号接收上行数据,并在第1个OFDM符号发送下行传输数据,预先空出第8个和第9个OFDM符号的位置以免影响邻频的URLLC进行下行传输使用。此外,第2个和第3个OFDM符号对于eMBB服务是GP。由于eMBB所需的GP大于1个OFDM符号,在第8个OFDM符号和第9个OFDM符号上不能进行下行传输,所以只能保持留空。当GP时长大于1个OFDM符号时,可以预留出GP中某一个OFDM符号用于URLLC上行传输,这个GP中预留的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。。
对于上行为主的含7个OFDM符号的时隙,如图15中的(c)和(d)。若两个频带由同一个eNB调度,在广播时隙类型的信令时,可广播同一个信令,该信令对于15kHz子载波间隔是一种设定,对于60kHz子载波间隔是另外一种设定。
本发明实施例六中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。并且本发明实施例六在子帧特定的位置不调度eMBB服务,从而为邻频的URLLC提供了传输机会。
实施例七
假设当前传输eMBB服务数据的时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间小于或等于548Ts。值得注意的时,当收发转换时间减小到548Ts及以内,对于eMBB下行传输的预留空OFDM符号数将降低,从而提高了eMBB的传输效率。
eNB确定传输URLLC服务数据的上行资源时域位置,该传输URLLC服务数据的上行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全下行时隙、下行为主的含14个OFDM符号的时隙、下行为主的含7个OFDM符号的时隙)唯一对应。其中,全下行时隙中,第7个或第14个OFDM符号不进行eMBB服务。下行为主的含14个OFDM符号的时隙中,若eMBB上行传输开始的OFDM符号编号为N,则在第N-7不进行eMBB服务。
eNB确定传输URLLC服务数据的上行资源时域位置,可通过信令指示时隙类型,并调度eMBB进行下行传输和URLLC进行上行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、下行控制信令。本发明实施例中可由同一信令指示eMBB进行下行传输的时域位置和URLLC进行上行传输的时域位置。
可选的,下行为主的含14个OFDM符号的时隙中,通过标准规定或者eNB信令通知URLLC上行资源位于邻频eMBB上行传输开始OFDM符号之前7个OFDM符号的时域位置。
本发明实施例中调度eMBB进行下行传输和URLLC进行上行传输的OFDM符号编号位置如图16所示。
对于全下行时隙,如图16中的(a)。eNB在第1个到第6个OFDM符号传输下行数据,在第8个到第13个OFDM符号传输下行数据,预先空出第7个和第14个OFDM符号的位置以免影响邻频的URLLC进行上行传输使用。预先空出的OFDM符号编号可以在标准中规定或者由eNB调度数据的结束位置确定。可选的,在第7个OFDM符号和第14个OFDM符号对应的邻频上,可以传输1个到2个URLLC上行OFDM符号。
对于下行为主的含14个OFDM符号的时隙,如图16中的(b)。eNB在第1个到第6个OFDM符号传输下行数据,在第8个到第12个OFDM符号传输下行数据,并在第14个OFDM符号接收上行数据,预先空出第7个OFDM符号供URLLC进行上行传输使用。此外,第13个OFDM符号对于eMBB服 务是GP。预留出的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。
对于下行为主的含7个OFDM符号的时隙,如图16中的(c)。若两个频带由同一个eNB调度,在广播时隙类型的信令时,可广播同一个信令,该信令对于15kHz子载波间隔是一种设定,对于60kHz子载波间隔是另外一种设定。
本发明实施例七中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB下行传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。进一步的,本发明实施例七降低了对eMBB服务的影响,提高了频谱效率。
实施例八
假设当前传输eMBB服务数据的时隙为全上行时隙、上行为主的含14个OFDM符号的时隙、上行为主的含7个OFDM符号的时隙,eNB侧收发转换的空闲时间定义为现有LTE标准中的收发转换空闲时间小于或等于548Ts。值得注意的时,当收发转换时间减小到548Ts及以内,对于eMBB下行传输的预留空OFDM符号数将降低,从而提高了eMBB的传输效率。
eNB确定传输URLLC服务数据的下行资源时域位置,该传输URLLC服务数据的下行资源时域位置可以由标准中预先规定,或根据当前时隙类型(当前时隙为全上行时隙、上行为主的含14个OFDM符号的时隙或上行为主的含7个OFDM符号的时隙)唯一对应。其中,全上行时隙中,第1个或第8个OFDM符号不进行eMBB服务。上行为主的含14个OFDM符号的时隙中,若eMBB下行传输结束的OFDM符号编号为N,则在第N+7不进行eMBB服务。
eNB确定传输URLLC服务数据的下行资源时域位置后,可通过信令指示时隙类型,并调度eMBB进行上行传输和URLLC进行下行传输。在eNB指示的时隙类型中包含预留的空闲OFDM符号位置。其中,信令可为RRC信令、 下行控制信令。本发明实施例中可由同一信令指示eMBB进行上行传输的时域位置和URLLC进行下行传输的时域位置。
可选的,上行为主的含14个OFDM符号的时隙中,可通过标准规定或者eNB信令通知URLLC下行资源位于邻频eMBB下行传输结束OFDM符号之后7个OFDM符号的时域位置。
本发明实施例中调度eMBB进行上行传输和URLLC进行下行传输的OFDM符号编号位置如图17所示。
对于全上行时隙,如图17中的(a),eNB在第2个到第7个OFDM符号和第9个到第14个OFDM符号接收上行数据,预先空出第1个和第8个OFDM符号的位置以免影响邻频的URLLC进行下行传输使用。预先空出的OFDM符号位置可以在标准中规定或者由eNB调度数据的起始和结束位置确定。可选的,在邻频的第1个和第8个OFDM符号上,可以传输1到2个URLLC下行OFDM符号。
对于上行为主的含14个OFDM符号的时隙,如图17中的(b)。eNB在第3个到第7个OFDM符号和第9个到第14个OFDM符号接收上行数据,并在第1个OFDM符号发送下行数据,预先空出第8个OFDM符号的位置以免影响邻频的URLLC进行下行传输使用。此外,第2个OFDM符号对于eMBB服务是GP。其中,预留出的OFDM符号位置可以在标准中规定或者由eNB指示给URLLC UE。
对于上行为主的含7个OFDM符号的时隙,如图17中的(c)。若两个频带由同一个eNB调度,在广播时隙类型的信令时,可广播同一个信令,该信令对于15kHz子载波间隔是一种设定,对于60kHz子载波间隔是另外一种设定。
本发明实施例八中,在子帧特定的位置不调度eMBB服务,从而为URLLC提供了传输机会,并且URLLC上行传输和eMBB下行传输的时域位置不重叠,避免了相互的干扰。并且,URLLC上行传输相邻两次传输机会间不超过0.5ms,满足URLLC时延要求。
相对于实施例六,本发明实施例八降低了对eMBB服务的影响,提高了频谱效率。
本发明实施例通过上述预留空闲时间的时隙调度方案,提高了空间复用机会,从而可提高系统频谱效率,并支持多种要求不同的服务。
基于上述实施例涉及的时隙调度方法,本发明实施例还提供了一种时隙调度装置。可以理解的是,时隙调度装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本发明中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的技术方案的范围。
本发明实施例可以根据上述方法示例对时隙调度装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图18示出了本发明实施例提供的一种时隙调度装置的结构示意图。参阅图18所示,时隙调度装置100包括处理单元101和通信单元102。所述处理单元101用于确定上述方法实施例中的任一种结构的时隙。所述通信单元102,用于发送所述处理单元101确定的时隙。
本发明实施例中处理单元101和通信单元102的功能可以和上述方法实施例中涉及的功能相对应,当然也不限定上述描述的功能。例如,处理单元101可根据时隙的配置信息处理时隙承载的数据,通信单元102可用于根据相邻频带传输数据的通信方向获取当前频带的时隙配置信息。
当采用硬件形式实现时,本发明实施例中,处理单元101可以是处理器, 通信单元102可以是通信接口、接收器、发射器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。
当所述处理单元101是处理器,通信单元102是接收器和发射器时,本发明实施例所涉及的时隙调度装置100可以为图19所示的网络设备。其中,所述图9所示的网络设备可以是eNB。
图19示出了本发明实施例提供的网络设备1000的一种结构示意图。参阅图19所示,网络设备1000包括接收器1001、发射器1002、处理器1003和存储器1004。其中,接收器1001、发射器1002、处理器1003和存储器1004可通过总线或其它方式连接,其中,图19中以通过总线连接为例。
存储器1004可以包括只读存储器和随机存取存储器,并向处理器1003提供指令和数据。存储器1004的一部分还可以包括非易失性随机存取存储器(Non-Volatile Random Access Memory,NVRAM)。存储器1004存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1003用于实现上述时隙调度并配置时隙的功能,处理器1003还可以称为中央处理单元(Central Processing Unit,CPU)。具体的应用中,其中的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本发明实施例揭示的方法可以应用于处理器1003中,或者由处理器1003实现。处理器1003可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1003中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1003可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组 件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1004,处理器1003读取存储器1004中的信息,结合其硬件完成上述方法的步骤。
本发明实施例中,处理器1003,用于执行前述实施例中涉及的时隙调度方法并配置时隙结构,配置好的时隙结构可存储在存储器1004中,详见前述实施例中的时隙结构配置及调度的实现过程,此处不再赘述。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
进一步需要说明的是,在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语“第一”、“第二”等来区别类似的对象,而不必用于描述特定的顺序或先后次序,例如本发明实施例中上述涉及的第一空闲时间和第二空闲时间仅是用于方便描述以及区分不 同的空闲时间,并不构成对空闲时间的限定。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
本发明是参照本发明实施例的方法和设备各自的流程图和方框图来描述的。应理解可由计算机程序指令实现流程图和方框图中的每一流程和方框、以及流程图和方框图中的流程和方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和方框图一个方框或多个方框中指定的功能的装置。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (32)

  1. 一种时隙调度方法,其特征在于,包括:
    确定第一时隙,所述第一时隙中包括第一空闲时间,所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    发送所述时隙。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    确定并发送第二时隙,所述第二时隙包括第二空闲时间;
    所述第二空闲时间的开始时刻与所述第二时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
  3. 如权利要求2所述的方法,其特征在于,所述第一时隙中包括7个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输上行数据的OFDM符号,第N-1个或第N-2个OFDM符号属于所述第一空闲时间或第二空闲时间。
  4. 如权利要求2所述的方法,其特征在于,所述第一时隙中包括7个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述7个OFDM符 号中用于传输下行数据的OFDM符号,第N+1个或第N+2个OFDM符号属于所述第一空闲时间或第二空闲时间。
  5. 如权利要求1所述的方法,其特征在于,所述第一时隙中还包括第二空闲时间和第二传输时间;
    所述第二空闲时间的开始时刻与所述第二传输时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二传输时间的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
  6. 如权利要求5所述的方法,其特征在于,所述第一时隙中包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述第一时隙中第1~6个OFDM符号中的一个;
    所述第一空闲时间包含所述第一时隙中第N个OFDM符号、第N+1个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一时隙包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输上行数据的OFDM符号,所述第一时隙中第N-2个OFDM符号、第N-1个OFDM符号、第N-8个OFDM符号和第N-7个OFDM符号中的至少一个OFDM符号属于所述第一空闲时间或第二空闲时间。
  8. 如权利要求5或6所述的方法,其特征在于,所述第一时隙包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输下行数据的OFDM符号,所述第一时隙中第N+1个OFDM 符号、第N+2个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号属于所述第一空闲时间或第二空闲时间。
  9. 如权利要求2至8任一项所述的方法,其特征在于,所述第一时隙和/或第二时隙在频域上占用至少两个频带,所述至少两个频带包括第一频带和第二频带,所述第一空闲时间或第二空闲时间在第一频带中;
    所述第一频带中除所述第一空闲时间包含的OFDM符号、第二空闲时间包含的OFDM符号和所述第N个OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个OFDM符号传输的数据的通信方向相反,所述通信方向包括上行通信方向和下行通信方向;
    所述第二频带中与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相同;
    所述第二频带中除与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相反。
  10. 如权利要求1至9任一项所述的方法,其特征在于,所述第一时隙中还包括第一传输时间;
    所述第一传输时间包含的OFDM符号中的至少一个OFDM符号用于传输第一业务,所述第一空闲时间包含的OFDM符号中的至少一个OFDM符号用于传输第二业务。
  11. 如权利要求10所述的方法,其特征在于,确定第一时隙之后,所述方法还包括:
    发送指示信息,所述指示信息用于指示传输第二业务的第一空闲时间内的至少一个OFDM符号,和/或用于指示用于传输第一业务的至少一个第一传输时间内的至少一个OFDM符号。
  12. 如权利要求11所述的方法,其特征在于,通过无线资源控制信令或者下行控制信令发送所述指示信息。
  13. 如权利要求10所述的方法,其特征在于,用于传输第二业务数据的第一空闲时间内的至少一个OFDM符号为预定义的。
  14. 如权利要求10至13任一项所述的方法,其特征在于,在所述第一空闲时间上取消或者不进行调度第一业务数据的传输。
  15. 如权利要求2至14任一项所述的方法,其特征在于,所述第一时隙和/或第二时隙中还包括用于收发转换的空闲OFDM符号,所述用于收发转换的空闲OFDM符号的数量为至少两个。
  16. 如权利要求1至15任一项所述的方法,其特征在于,所述预设的时间间隔阈值小于等于1毫秒。
  17. 一种时隙调度装置,其特征在于,包括:
    处理单元,用于确定第一时隙,所述第一时隙中包括第一空闲时间,所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    通信单元,用于发送所述第一时隙。
  18. 如权利要求17所述的装置,其特征在于,所述处理单元,还用于:
    确定第二时隙,所述第二时隙包括第二空闲时间;
    所述第二空闲时间的开始时刻与所述第二时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空 闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    所述通信单元,还用于发送所述第二时隙。
  19. 如权利要求18所述的装置,其特征在于,所述第一时隙中包括7个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输上行数据的OFDM符号,第N-1个或第N-2个OFDM符号属于所述第一空闲时间或第二空闲时间。
  20. 如权利要求18所述的装置,其特征在于,所述第一时隙中包括7个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述7个OFDM符号中用于传输下行数据的OFDM符号,第N+1个或第N+2个OFDM符号属于所述第一空闲时间或第二空闲时间。
  21. 如权利要求17所述的装置,其特征在于,所述第一时隙中还包括第二空闲时间和第二传输时间;
    所述第一空闲时间的开始时刻与所述第一时隙的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第一空闲时间的开始时刻与所述第一时隙中用于传输控制信令的至少一个OFDM符号的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二传输时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第二传输时间的结束时刻的时间间隔小于等于预设的时间间隔阈值;
    所述第二空闲时间的开始时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的开始时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的开始时刻的时间间隔小于等于预设的时间间隔阈值,或者所述第二空闲时间的结束时刻与所述第一空闲时间的结束时刻的时间间隔小于等于预设的时间间隔阈值。
  22. 如权利要求21所述的装置,其特征在于,所述第一时隙中包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述第一时隙中 第1~6个OFDM符号中的一个;
    所述第一空闲时间包含所述第一时隙中第N个OFDM符号、第N+1个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号。
  23. 如权利要求21或22所述的装置,其特征在于,所述第一时隙包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输上行数据的OFDM符号,所述第一时隙中第N-2个OFDM符号、第N-1个OFDM符号、第N-8个OFDM符号和第N-7个OFDM符号中的至少一个OFDM符号属于所述第一空闲时间或第二空闲时间。
  24. 如权利要求21或22所述的装置,其特征在于,所述第一时隙包括14个OFDM符号,且所述第一时隙中的第N个OFDM符号为所述14个OFDM符号中用于传输下行数据的OFDM符号,所述第一时隙中第N+1个OFDM符号、第N+2个OFDM符号、第N+7个OFDM符号和第N+8个OFDM符号中的至少一个OFDM符号属于所述第一空闲时间或第二空闲时间。
  25. 如权利要求18至24任一项所述的装置,其特征在于,所述第一时隙和/或第二时隙在频域上占用至少两个频带,所述至少两个频带包括第一频带和第二频带,所述第一空闲时间或第二空闲时间在第一频带中;
    所述第一频带中除所述第一空闲时间包含的OFDM符号、第二空闲时间包含的OFDM符号和所述第N个OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个OFDM符号传输的数据的通信方向相反,所述通信方向包括上行通信方向和下行通信方向;
    所述第二频带中与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相同;
    所述第二频带中除与所述第一频带中第一空闲时间和第二空闲时间在时域符号位置上对应的OFDM符号之外的其它OFDM符号传输的数据的通信方向,与所述第N个符号传输的数据的通信方向相反。
  26. 如权利要求17至25任一项所述的装置,其特征在于,所述第一时隙中还包括第一传输时间;
    所述第一传输时间包含的OFDM符号中的至少一个OFDM符号用于传输第一业务,所述第一空闲时间包含的OFDM符号中的至少一个OFDM符号用于传输第二业务。
  27. 如权利要求26所述的装置,其特征在于,所述通信单元,还用于:
    在所述处理单元确定时隙之后,发送指示信息;
    所述指示信息用于指示传输第二业务的第一空闲时间内的至少一个OFDM符号,和/或用于指示用于传输第一业务的至少一个第一传输时间内的至少一个OFDM符号。
  28. 如权利要求27所述的装置,其特征在于,所述通信单元通过无线资源控制信令或者下行控制信令发送所述指示信息。
  29. 如权利要求26所述的装置,其特征在于,用于传输第二业务数据的第一空闲时间内的至少一个OFDM符号为预定义的。
  30. 如权利要求26至29任一项所述的装置,其特征在于,在所述第一空闲时间上取消或者不进行调度第一业务数据的传输。
  31. 如权利要求18至30任一项所述的装置,其特征在于,所述第一时隙和/或第二时隙中还包括用于收发转换的空闲OFDM符号,所述用于收发转换的空闲OFDM符号的数量为至少两个。
  32. 如权利要求17至31任一项所述的装置,其特征在于,所述预设的时间间隔阈值小于等于1毫秒。
PCT/CN2016/109722 2016-11-04 2016-12-13 一种时隙调度方法及装置 WO2018082157A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2016428724A AU2016428724B2 (en) 2016-11-04 2016-12-13 Slot scheduling method and apparatus
CA3042741A CA3042741A1 (en) 2016-11-04 2016-12-13 Slot scheduling method and apparatus
EP16920539.0A EP3537791B1 (en) 2016-11-04 2016-12-13 Time slot scheduling method and device
US16/347,419 US11343814B2 (en) 2016-11-04 2016-12-13 Slot scheduling method and apparatus
JP2019523661A JP2020504478A (ja) 2016-11-04 2016-12-13 スロットスケジューリング方法および装置
KR1020197015500A KR102210691B1 (ko) 2016-11-04 2016-12-13 슬롯 스케줄링 방법 및 장치
CN201680087542.4A CN109417788B (zh) 2016-11-04 2016-12-13 一种时隙调度方法及装置
KR1020217002720A KR102364579B1 (ko) 2016-11-04 2016-12-13 슬롯 스케줄링 방법 및 장치
AU2020280995A AU2020280995B2 (en) 2016-11-04 2020-11-30 Slot scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610966024.1 2016-11-04
CN201610966024 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018082157A1 true WO2018082157A1 (zh) 2018-05-11

Family

ID=62076573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109722 WO2018082157A1 (zh) 2016-11-04 2016-12-13 一种时隙调度方法及装置

Country Status (8)

Country Link
US (1) US11343814B2 (zh)
EP (1) EP3537791B1 (zh)
JP (2) JP2020504478A (zh)
KR (2) KR102210691B1 (zh)
CN (2) CN111107644B (zh)
AU (2) AU2016428724B2 (zh)
CA (1) CA3042741A1 (zh)
WO (1) WO2018082157A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830221A (zh) * 2018-08-07 2020-02-21 财团法人资讯工业策进会 用于移动通信系统的基站及用户装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206731A (zh) * 2016-12-16 2018-06-26 上海诺基亚贝尔股份有限公司 一种用于ack/nack报告的方法、设备与系统
EP3566482A4 (en) 2017-01-05 2020-08-19 Motorola Mobility LLC RESOURCE RESERVATION
US11272539B2 (en) 2018-08-09 2022-03-08 Ofinno, Llc Channel access and bandwidth part switching
CN109314969B (zh) * 2018-09-21 2023-09-01 北京小米移动软件有限公司 传输配置方法、装置、设备、系统及存储介质
US11496970B2 (en) 2019-03-06 2022-11-08 Qualcomm Incorporated Support of high pathloss mode
DE202020101364U1 (de) * 2019-03-11 2020-07-21 Marvell Asia Pte, Ltd. Verwaltung bidirektionaler Kommunikation in eingeschränkten Umgebungen
US11477747B2 (en) 2019-04-17 2022-10-18 Qualcomm Incorporated Synchronization signal periodicity adjustment
US11463964B2 (en) 2019-04-17 2022-10-04 Qualcomm Incorporated Communication configuration for high pathloss operations
US11510071B2 (en) 2019-04-17 2022-11-22 Qualcomm Incorporated Beam direction selection for high pathloss mode operations
US11438808B2 (en) 2019-04-17 2022-09-06 Qualcomm Incorporated Acknowledgment messaging for resource reservations
US11445408B2 (en) * 2019-04-17 2022-09-13 Qualcomm Incorporated High pathloss mode multiplexing
CN112566151B (zh) * 2019-09-26 2022-04-29 大唐移动通信设备有限公司 一种消息发送方法及基站
WO2021070354A1 (ja) * 2019-10-11 2021-04-15 株式会社Nttドコモ 端末及び無線通信方法
CN111432350B (zh) * 2020-02-27 2022-04-29 咪咕文化科技有限公司 通信业务复用方法、电子设备与存储介质
US20220039053A1 (en) * 2020-08-03 2022-02-03 Qualcomm Incorporated Methods and apparatus for low latency location via scheduling in advance
US11784779B2 (en) 2021-12-09 2023-10-10 Marvell Asia Pte Ltd Automotive asymmetric ethernet using a frequency-division duplex scheme with a low-rate echo cancelation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457367A (zh) * 2010-10-22 2012-05-16 株式会社Ntt都科摩 消除特殊子帧内干扰的方法
US20160119948A1 (en) * 2014-10-24 2016-04-28 Qualcomm Incorporated Flexible multiplexing and feedback for variable transmission time intervals
CN105580426A (zh) * 2013-09-27 2016-05-11 高通股份有限公司 用于为使用无执照射频频谱的无线通信配置自适应帧结构的技术
CN105763305A (zh) * 2014-12-17 2016-07-13 中国移动通信集团公司 一种数据传输方法及装置
CN105763290A (zh) * 2014-12-16 2016-07-13 中国移动通信集团公司 一种数据传输方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405471B2 (ja) * 2006-01-31 2010-01-27 株式会社東芝 セルラー無線通信システム、基地局、無線端末および無線通信方法
CN101778455B (zh) * 2009-01-09 2012-01-11 中国移动通信集团公司 移动通信终端接收下行数据的控制方法和移动通信终端
CN102202348B (zh) * 2010-03-22 2014-07-30 华为技术有限公司 数据包发送方法及接入点
CN102202261B (zh) * 2010-03-23 2013-08-28 财团法人工业技术研究院 在广播与单播服务之间的切换决策装置与方法及终端装置
US9019921B2 (en) 2012-02-22 2015-04-28 Lg Electronics Inc. Method and apparatus for transmitting data between wireless devices in wireless communication system
US9775151B2 (en) * 2014-07-21 2017-09-26 Intel IP Corporation System and method for TDD communications
CN105357162B (zh) * 2014-08-22 2020-12-11 中兴通讯股份有限公司 一种信号处理方法、基站和终端
US10038581B2 (en) * 2015-06-01 2018-07-31 Huawei Technologies Co., Ltd. System and scheme of scalable OFDM numerology
US10959244B2 (en) * 2015-07-22 2021-03-23 Samsung Electronics Co., Ltd. Method and device for communication in narrow band system
CN109565370B (zh) * 2016-06-15 2021-06-15 康维达无线有限责任公司 用于新无线电的上传控制信令的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457367A (zh) * 2010-10-22 2012-05-16 株式会社Ntt都科摩 消除特殊子帧内干扰的方法
CN105580426A (zh) * 2013-09-27 2016-05-11 高通股份有限公司 用于为使用无执照射频频谱的无线通信配置自适应帧结构的技术
US20160119948A1 (en) * 2014-10-24 2016-04-28 Qualcomm Incorporated Flexible multiplexing and feedback for variable transmission time intervals
CN105763290A (zh) * 2014-12-16 2016-07-13 中国移动通信集团公司 一种数据传输方法和装置
CN105763305A (zh) * 2014-12-17 2016-07-13 中国移动通信集团公司 一种数据传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "On Co-existence of eMBB and URLLC", 3GPP TSG RAN WG1 MEETING #8 R1-167391, 26 August 2016 (2016-08-26), XP051125879 *
See also references of EP3537791A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830221A (zh) * 2018-08-07 2020-02-21 财团法人资讯工业策进会 用于移动通信系统的基站及用户装置
CN110830221B (zh) * 2018-08-07 2022-05-24 财团法人资讯工业策进会 用于移动通信系统的基站及用户装置

Also Published As

Publication number Publication date
KR20210013338A (ko) 2021-02-03
EP3537791A4 (en) 2019-10-16
CN111107644A (zh) 2020-05-05
KR102364579B1 (ko) 2022-02-17
KR20190072628A (ko) 2019-06-25
AU2020280995A1 (en) 2021-01-14
CA3042741A1 (en) 2018-05-11
AU2016428724A1 (en) 2019-05-30
EP3537791B1 (en) 2022-11-30
JP2020504478A (ja) 2020-02-06
US20190313406A1 (en) 2019-10-10
CN109417788B (zh) 2023-07-18
KR102210691B1 (ko) 2021-02-01
CN109417788A (zh) 2019-03-01
JP7150941B2 (ja) 2022-10-11
CN111107644B (zh) 2021-03-23
AU2016428724B2 (en) 2020-09-17
US11343814B2 (en) 2022-05-24
AU2020280995B2 (en) 2022-07-14
JP2021153328A (ja) 2021-09-30
EP3537791A1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2018082157A1 (zh) 一种时隙调度方法及装置
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
CN111181694B (zh) 一种上行控制信息的传输方法及装置
EP3557933B1 (en) Resource scheduling method, apparatus, and system
CN110062464B (zh) 用于管理非授权频段的信道占用时长的方法和设备
CN112261730B (zh) 通信的方法和通信装置
WO2020063630A1 (zh) 一种指示信息的传输方法和装置
WO2019174584A1 (zh) 一种数据传输方法、相关设备及系统
JP7019914B2 (ja) 無線通信方法および装置
WO2018027918A1 (zh) 上行信道发送方法和装置
US20190124705A1 (en) Identifier management method, apparatus, and system
CN109392171B (zh) 半持续调度数据传输方法、通信设备及存储介质
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
KR20190099425A (ko) 무선 통신 방법, 네트워크 장치와 단말 장치
WO2023098574A1 (zh) 一种传输指示方法及通信装置
WO2021013198A1 (zh) 通信的方法和通信装置
WO2023011372A1 (zh) 数据传输方法及装置
WO2020237408A1 (zh) 信号处理方法以及装置
WO2019192408A1 (zh) 通信方法及装置
CN116938652A (zh) 终端参数上报方法及装置、设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3042741

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019523661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015500

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016428724

Country of ref document: AU

Date of ref document: 20161213

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016920539

Country of ref document: EP

Effective date: 20190604