WO2021013198A1 - 通信的方法和通信装置 - Google Patents

通信的方法和通信装置 Download PDF

Info

Publication number
WO2021013198A1
WO2021013198A1 PCT/CN2020/103600 CN2020103600W WO2021013198A1 WO 2021013198 A1 WO2021013198 A1 WO 2021013198A1 CN 2020103600 W CN2020103600 W CN 2020103600W WO 2021013198 A1 WO2021013198 A1 WO 2021013198A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal device
scheduling information
time
time domain
Prior art date
Application number
PCT/CN2020/103600
Other languages
English (en)
French (fr)
Inventor
王俊伟
托斯顿 斯科尔
胡丹
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910946340.6A external-priority patent/CN112261730B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021013198A1 publication Critical patent/WO2021013198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communication, and more specifically, to a communication method and communication device.
  • the bandwidth part refers to a set of continuous physical resource blocks (PRB) configured by a network device for a terminal device in an uplink carrier or a downlink carrier.
  • the network device can configure multiple BWPs for the terminal device, but in a certain time unit, only one BWP can be activated, and the corresponding data reception and transmission can only be performed on the corresponding BWP.
  • the terminal device switching from one BWP to another BWP is a way to activate the BWP.
  • the existing 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) version 15 release 15, R15
  • the present application provides a communication method that can meet the low latency requirement of URLLC services.
  • a communication method is provided, and the execution subject of the method may be a terminal device or a module in the terminal device, such as a chip.
  • the method will be described below with the terminal device as the execution subject.
  • the terminal device receives the first scheduling information in the nth time unit, the first scheduling information instructs the terminal device to switch the activated BWP from the first BWP to the second BWP, and n is a positive integer.
  • the terminal device receives second scheduling information, where the second scheduling information instructs the terminal device to send first data or receive first data on a first time domain resource; the terminal device according to the first time domain resource and the second time Whether the domain resources overlap, determine whether to switch the activated BWP from the first BWP to the second BWP, where the second time domain resource is the nth time unit and the n+kth time unit
  • the time domain resource between time units, the n+kth time unit is the time unit for the terminal device to complete the BWP switching, and k is a positive integer.
  • the data related to the URLLC service is sent or received preferentially on the first time domain resource, thereby reducing the time domain resource in the first time domain.
  • priority execution of the BWP handover command will affect the delay of the URLLC service, thereby meeting the low delay requirement of the URLLC service.
  • Time advanced is determined. Only when the interval between the first time domain resource and the second time domain resource is not less than TA, or not less than the sum of TA and the radio frequency switching time length, can the first The time domain resource and the second time domain resource do not overlap.
  • TA refers to the time advance when the terminal device sends data #1, which can be instructed by the network device to the terminal device.
  • the radio frequency switching time length is the length of time required for the terminal device to switch radio frequencies, and the time length can be determined based on the protocol. The description here is also applicable to the subsequent communication method of the second aspect, for the sake of brevity, it will not be repeated in the following.
  • the determining whether to switch the activated BWP from the first BWP to the second BWP according to whether the first time domain resource and the second time domain resource overlap Including: when the first time domain resource and the second time domain resource overlap partially or completely, the terminal device does not switch the activated BWP from the first BWP to the second BWP, and Send the first data or receive the first data on the first time domain resource; or, when the first time domain resource does not overlap with the second time domain resource, the terminal device The activated BWP is switched from the first BWP to the second BWP, and the first data is sent or the first data is received on the first time domain resource.
  • the first scheduling information and the second scheduling information are received on a first carrier, and the first carrier includes the first BWP and the second BWP.
  • the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource on the second carrier.
  • Handover command to send or receive data related to the URLLC service on the first time domain resource on the second carrier, that is, the second time domain resource on the first carrier and the first time domain on the second carrier
  • the URLLC service-related data is sent or received preferentially on the first time domain resource on the second carrier, thereby reducing the difference between the second time domain resource on the first carrier and the second carrier.
  • the priority execution of the BWP handover command will affect the delay of the URLLC service, thereby meeting the low delay requirement of the URLLC service.
  • the first scheduling information is received on a first carrier
  • the first carrier includes the first BWP and the second BWP
  • the second scheduling information is received on a second carrier.
  • the second scheduling information instructs the terminal equipment to send the first data or receive the first data on the first time domain resource on the second carrier.
  • the first scheduling information further instructs the terminal device to send second data on a third time domain resource
  • the third time domain resource is the same as the first time domain resource and the first time domain resource.
  • the two time domain resources do not overlap.
  • the method further includes: the terminal device does not send the first time domain resource on the third time domain resource. Two data.
  • the first scheduling information further instructs the terminal device to receive second data on a third time domain resource
  • the third time domain resource is related to the first time domain resource and the first time domain resource.
  • the two time domain resources do not overlap.
  • the method further includes: the terminal device does not receive the first time domain resource on the third time domain resource. Two data.
  • a communication method is provided, and the execution subject of the method may be a network device or a module in the network device, such as a chip.
  • the method will be described below with the network device as the execution subject.
  • the network device sends first scheduling information at the nth time unit, where the first scheduling information instructs the terminal device to switch the activated BWP from the first BWP to the second BWP, and n is a positive integer.
  • the network device sends second scheduling information, where the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource.
  • the network device determines whether to switch the activated BWP from the first BWP to the second BWP according to whether the first time domain resource overlaps with the second time domain resource, wherein the second time domain resource Is the time domain resource between the nth time unit and the n+kth time unit, the n+kth time unit is the time unit for the terminal device to complete the BWP switching, and k is a positive integer.
  • the second aspect is a method on the network device side corresponding to the first aspect, so the beneficial effects of the first aspect can also be achieved, and details are not repeated here.
  • the determining whether to switch the activated BWP from the first BWP to the second BWP according to whether the first time domain resource and the second time domain resource overlap Including: when the first time domain resource and the second time domain resource overlap partially or completely, the network device does not switch the activated BWP from the first BWP to the second BWP, and Receive the first data or send the first data on the first time domain resource; or, when the first time domain resource and the second time domain resource do not overlap, the network device will The activated BWP is switched from the first BWP to the second BWP, and the first data is received or the first data is sent on the first time domain resource.
  • the first scheduling information and the second scheduling information are sent on a first carrier, and the first carrier includes the first BWP and the second BWP.
  • the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource on the second carrier.
  • the first scheduling information is sent on a first carrier
  • the first carrier includes the first BWP and the second BWP
  • the second scheduling information is Sent on a second carrier
  • the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource on the second carrier.
  • a communication method is provided.
  • the execution subject of the method may be a terminal device, or a module in the terminal device, such as a chip.
  • the method will be described below with the terminal device as the execution subject.
  • the terminal device receives third scheduling information from the network device on the fourth time domain resource, the third scheduling information instructs the terminal device to switch the activated BWP from the first BWP to the second BWP, and the third scheduling information also indicates The terminal device receives the third data on the fifth time domain resource.
  • the terminal device switches the activated BWP from the first BWP to the second BWP.
  • the terminal device receives fourth scheduling information from the network device on the sixth time domain resource, where the fourth scheduling information indicates that the terminal device receives fourth data on the seventh time domain resource.
  • the terminal device receives the fourth data from the network device on the seventh time domain resource.
  • the terminal device receives the third data from the network device on the fifth time domain resource.
  • the terminal device switches the activated BWP from the first BWP to the second BWP before the sixth time domain resource.
  • a communication method is provided.
  • the execution subject of the method may be a network device, or a module in the network device, such as a chip.
  • the method will be described below with the network device as the execution subject.
  • the network device sends third scheduling information to the terminal device on the fourth time domain resource, the third scheduling information instructs the terminal device to switch the activated BWP from the first BWP to the second BWP, and the third scheduling information also Instruct the terminal device to receive the third data on the fifth time domain resource.
  • the network device switches the activated BWP from the first BWP to the second BWP.
  • the network device sends fourth scheduling information to the terminal device on the sixth time domain resource, where the fourth scheduling information indicates that the terminal device receives fourth data on the seventh time domain resource.
  • the network device sends the fourth data to the terminal device on the seventh time domain resource.
  • the network device sends the third data to the terminal device on the fifth time domain resource.
  • the network device switches the activated BWP from the first BWP to the second BWP before the sixth time domain resource.
  • the third scheduling information is transmitted on the first BWP; the fourth scheduling information is transmitted on the second BWP . That is, the third scheduling information is sent by the network device to the terminal device on the first BWP, and the fourth scheduling information is sent by the network device to the terminal device on the second BWP.
  • the third data and the fourth data are transmitted on the second BWP.
  • the first BWP and the second BWP belong to the same carrier.
  • a communication method is provided, and the execution subject of the method may be a terminal device or a module in the terminal device, such as a chip.
  • the method will be described below with the terminal device as the execution subject.
  • the terminal device receives third scheduling information from the network device on the fourth time domain resource, the third scheduling information instructs the terminal device to switch the activated BWP from the first BWP to the second BWP, and the third scheduling information also indicates The terminal device sends the third data on the fifth time-frequency resource.
  • the terminal device switches the activated BWP from the first BWP to the second BWP before the sixth time domain resource.
  • the terminal device receives sixth scheduling information from the network device on a sixth time domain resource, where the sixth scheduling information instructs the terminal device to cancel sending the third data on the fifth time-frequency resource.
  • a communication method is provided, and the execution subject of the method may be a network device or a module in the network device, such as a chip.
  • the method will be described below with the network device as the execution subject.
  • the network device sends third scheduling information to the first terminal device on the fourth time domain resource.
  • the third scheduling information instructs the first terminal device to switch the activated BWP from the first BWP to the second BWP.
  • the third scheduling information also instructs the first terminal device to send third data on the fifth time-frequency resource.
  • the network device switches the activated BWP of the first terminal device from the first BWP to the second BWP.
  • the network device sends sixth scheduling information to the first terminal device on the sixth time domain resource, where the sixth scheduling information instructs the first terminal device to cancel sending the fifth time-frequency resource The third data.
  • the network device sends fifth scheduling information to the second terminal device on the eighth time domain resource, and the fifth scheduling information indicates that the second terminal device is at the ninth time.
  • the fifth data is sent on the frequency resource, and the ninth time-frequency resource partially or completely overlaps with the fifth time-frequency resource.
  • the network device receives the fifth data from the second terminal device on the ninth time-frequency resource.
  • the sixth scheduling information includes a cancellation indication field, which instructs to cancel sending of the third data.
  • the sixth scheduling information includes information about a tenth time-frequency resource, indicating that data transmission in the tenth time-frequency resource is cancelled, and the first The ten time-frequency resource partially overlaps or completely overlaps the fifth time-frequency resource.
  • the third scheduling information includes an index of the second BWP.
  • the third scheduling information is transmitted on the first BWP; the sixth scheduling information is transmitted on the second BWP .
  • the first BWP and the second BWP belong to the same carrier.
  • the start time of the sixth time domain resource is later than the start time of the fourth time domain resource and earlier than the fifth time domain resource
  • the fifth time domain resource is a time domain resource corresponding to the fifth time-frequency resource.
  • a communication device may be the terminal device in the above method, or a chip applied to the terminal device.
  • the communication device includes a processor, coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the terminal device in the first aspect and any one of its possible implementation modes, or to implement the third aspect and The method executed by the terminal device in any one of its possible implementation manners, or the method executed by the terminal device in any one of the foregoing fifth aspect and any one of its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be the network device in the foregoing method, or a chip applied to the network device.
  • the communication device includes a processor, which is coupled to a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the second aspect and any one of its possible implementation manners.
  • a processor which is coupled to a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the second aspect and any one of its possible implementation manners.
  • the communication device also includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a program which, when executed by a communication device, is used to execute any method in the first aspect and its possible implementations, or to execute the second aspect and its possible implementations Any method in the third aspect and its possible implementation manners, or any method in the fourth aspect and its possible implementation manners, or the fifth aspect Aspect and any method in its possible implementation manners, or used to execute any method in the sixth aspect and its possible implementation manners.
  • a program product comprising: program code, when the program code is run by a communication device, the communication device executes any method in the first aspect and its possible implementation manners , Or used to perform any method in the second aspect and its possible implementations, or used to perform any method in the third aspect and its possible implementations, or used to implement the fourth aspect and its possible implementations Any method in the implementation manners is either used to perform any method in the fifth aspect and its possible implementation manners, or used to perform any method in the sixth aspect and its possible implementation manners.
  • a computer-readable storage medium stores a program.
  • the communication device executes any one of the first aspect and its possible implementation manners.
  • Method, or used to perform any method in the second aspect and its possible embodiments, or used to perform any method in the third aspect and its possible embodiments, or used to perform the fourth aspect and its possible embodiments Any method in the implementation manner of the fifth aspect and any one of the possible implementation manners thereof, or used to implement any one of the sixth aspect and the possible implementation manner thereof.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application
  • Figure 2 is a schematic diagram of BWP switching
  • FIG. 3 is a schematic interaction diagram of the communication method provided by the present application.
  • Figure 4 is a schematic diagram of BWP handover and data transmission in a single carrier scenario
  • Figure 5 is another schematic diagram of BWP handover and data transmission in a single carrier scenario
  • Figure 6 is a schematic diagram of BWP handover and data transmission in a multi-carrier scenario
  • Figure 7 is another schematic diagram of BWP handover and data transmission in a multi-carrier scenario
  • FIG. 8 is another schematic diagram of BWP handover and data transmission in a multi-carrier scenario
  • FIG. 9 is another schematic diagram of BWP handover and data transmission in a multi-carrier scenario
  • FIG. 10 is another schematic diagram of BWP handover and data transmission in a single carrier scenario
  • FIG. 11 is a schematic diagram of the communication method provided by this application.
  • FIG. 12 is a schematic diagram of the scheduling sequence relationship provided by the present application.
  • FIG. 13 is a schematic diagram of the communication method provided by this application.
  • FIG. 14 is a schematic diagram of the scheduling sequence relationship provided by the present application.
  • FIG. 15 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 16 is a schematic block diagram of another communication device provided by the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • NR New Radio
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or they can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location or movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • the radio access network equipment in the embodiments of the present application is an access equipment that a terminal device accesses to the mobile communication system in a wireless manner. It may be a base station NodeB, an evolved base station (evolved NodeB, eNodeB), a transmission and reception point (transmission). reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, or the cloud radio access network (Cloud Radio
  • the wireless controller in the Access Network (CRAN) scenario can also be a relay station, a vehicle-mounted device, a wearable device, and a network device in the future evolved PLMN network.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
  • wireless access network equipment is referred to as network equipment. Unless otherwise specified, network equipment in this application refers to wireless access network equipment.
  • the terminal equipment in the embodiments of the present application may also be referred to as a terminal, a terminal equipment (UE), a mobile station (MS), a mobile terminal (MT), etc.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • the network device and the terminal device can communicate through a licensed spectrum (licensed spectrum), can also communicate through an unlicensed spectrum (unlicensed spectrum), or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the physical downlink shared channel (PDSCH), the physical downlink control channel (PDCCH), and the physical uplink shared channel (PUSCH) It is just an example of a downlink data channel, a downlink control channel, and an uplink data channel.
  • the data channel and the control channel may have different names, which are not limited in the embodiment of the present application.
  • time domain resources used for communication in the embodiments of the present application are briefly described.
  • the time domain resources used by the network device and the terminal device for communication may be divided into multiple time units in the time domain.
  • the multiple time units may be continuous, or there may be a certain time interval between some adjacent time units, which is not particularly limited in the embodiment of the present application.
  • the time unit may include a time unit used for uplink data transmission and/or downlink data transmission.
  • the length of a time unit is not limited.
  • a time unit may be one or more subframes; or, it may be one or more time slots (slot); or, it may be Is one or more symbols.
  • the symbol is also referred to as a time-domain symbol, which can be an orthogonal frequency division multiplexing (OFDM) symbol, or a single carrier-frequency division multiplexing (single carrier-frequency division multiplexing) symbol. , SC-FDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single carrier-frequency division multiplexing
  • the symbols in the embodiments of the present application refer to time-domain symbols.
  • the multiple time units have a time sequence relationship in the time domain, and the time lengths corresponding to any two time units may be the same or different.
  • bandwidth part (BWP) involved in the embodiments of the present application is introduced.
  • BWP refers to a set of continuous physical resource blocks (PRB) configured by network equipment for terminal equipment in an uplink carrier or downlink carrier.
  • the network device can configure multiple BWPs for the terminal device, but in a certain time unit, only one BWP can be activated, and the corresponding data reception and transmission can only be performed on the corresponding BWP.
  • PRB physical resource blocks
  • the terminal device switching from one BWP to another BWP is a way to activate the BWP, as shown in Figure 2, in the time unit corresponding to t0 ⁇ t1, the terminal device works on BWP#1, in t2 ⁇ t3 In the corresponding time unit, the terminal device works on BWP#2, that is, in the time unit corresponding to t1 ⁇ t2, the terminal device switches from BWP#1 to BWP#2. In the time unit corresponding to t4 ⁇ t5, the terminal The device works on BWP#3, that is, the terminal device switches from BWP#2 to BWP#3 in the time unit corresponding to t3 to t4.
  • the existing protocol stipulates that the terminal device cannot receive the information sent by the network device during this period, nor can it send any information to the network device.
  • the embodiment of the present application provides a communication method, in order to meet the low latency requirement of the URLLC service.
  • FIG. 3 is a schematic interaction diagram of a communication method 200 provided by an embodiment of the present application. Hereinafter, each step of the method 200 will be described in detail.
  • the method 200 will be described by taking a terminal device and a network device as an executor of the method 200 as an example.
  • the execution subject of the method 200 may also be a chip corresponding to a terminal device and a chip corresponding to a network device.
  • the network device sends scheduling information #1 (ie, an example of the first scheduling information) to the terminal device on the nth time unit, and the scheduling information #1 indicates that the terminal device will
  • the activated BWP is switched from BWP#1 (ie, an example of the first BWP) to BWP#2 (ie, an example of the second BWP), and both n and k are positive integers.
  • the terminal device receives scheduling information #1 from the network device on the nth time unit.
  • the network device sends scheduling information #1 to the terminal device, and the scheduling information #1 instructs the terminal device to execute the BWP switching command.
  • the scheduling information #1 may include a BWP#2 index to instruct the terminal device to switch the activated BWP from BWP#1 (that is, the currently activated BWP) to BWP#2.
  • scheduling information #1 may not indicate the time when the BWP switching is completed.
  • the value of k is determined by the time required for BWP switching, and the time required for BWP switching is reported to the network device by the terminal device according to its own capabilities, so that the terminal device and the network device can ascertain the time when the BWP switch is completed; or, The time required for BWP switching can be predefined by the protocol.
  • the network device sends scheduling information #1 to the terminal device on the nth time unit to indicate that the activated BWP is switched from BWP#1 to BWP#2.
  • the scheduling information #1 includes the BWP#2 index to instruct the terminal device to switch the activated BWP from BWP#1 (that is, the currently activated BWP) to BWP#2.
  • the network device sends scheduling information #2 (ie, an example of the second scheduling information) to the terminal device, and the scheduling information #2 indicates that the terminal device is on the time domain resource #1 (ie, an example of the first time domain resource) Send data #1 (ie, an example of the first data) or receive data #1.
  • the terminal device receives scheduling information #2 from the network device.
  • Time domain resource #2 is a time domain resource between the nth time unit and the n+kth time unit. It should be noted that the time domain resources between the nth time unit and the n+kth time unit may be between the nth time unit and the n+kth time unit including the nth time unit and the nth time unit.
  • Time domain resources including +k time units, that is, time domain resources from the nth time unit to the n+kth time unit; it can also be between the nth time unit and the n+kth time unit Time domain resources that do not include the nth time unit and the n+kth time unit, that is, the time domain resources from the n+1th time unit to the n+k-1th time unit; it can also be the time domain resource from the n+1th time unit to the n+k-1th time unit;
  • the time domain resources between the n time unit and the n+k time unit include only one of the n time unit and the n+k time unit, that is, from the n time unit to the n+k-th time unit Time domain resources of 1 time unit, or time domain resources from the n+1th time unit to the n+kth time unit.
  • the network device may also determine whether to switch the activated BWP from BWP#1 to BWP#2 according to the description in S230. At this time, the method 200 may further include S240.
  • the network device determines whether to switch the activated BWP from BWP#1 to BWP#2 according to whether the time domain resource #1 and the time domain resource #2 overlap, where the time domain resource #2 is the nth time unit Time domain resources between the n+kth time unit.
  • the terminal device After receiving the scheduling information #1 and the scheduling information #2, the terminal device can determine whether to execute the BWP switching command according to whether the time domain resource #1 and the time domain resource #2 overlap.
  • the terminal device does not switch the activated BWP from BWP#1 to BWP#2. In other words, the terminal device keeps the activated BWP at BWP#1 unchanged.
  • the terminal device may also execute scheduling information #2, and send data #1 or receive data #1 on time domain resource #1 on BWP#1.
  • the terminal device switches the activated BWP from BWP#1 to BWP#2. In other words, the terminal device switches the activated BWP to BWP#2.
  • the terminal device may also execute scheduling information #2, and send data #1 or receive data #1 on time domain resource #1 on BWP#2.
  • timing advance (timing advance, TA). Only when the interval between time domain resource #1 and time domain resource #2 is not less than TA, or not less than the sum of TA and the RF switching time length, can time domain resource #1 and Time domain resource #2 does not overlap.
  • TA refers to the time advance when the terminal device sends data #1, which can be instructed by the network device to the terminal device.
  • the radio frequency switching time length is the length of time required for the terminal device to switch radio frequencies, and the time length can be determined based on the protocol.
  • scheduling information #2 can be control information carried on the PDCCH (for example, downlink control information (DCI)), or it can be high-level signaling, for example, high-level signaling is used for uplink Scheduling allocation configuration grant (configured grant), that is, notifying the terminal device to use the time domain resource #1 configured in advance by high-level signaling to send data #1, or high-level signaling is used to configure semi-persistent scheduling for downlink scheduling (semi-persistent scheduling, SPS), that is, informing the terminal device to use the time domain resource (for example, time domain resource #1) in a certain period pre-configured by high-layer signaling to receive data #1.
  • DCI downlink control information
  • high-level signaling is used for uplink Scheduling allocation configuration grant (configured grant), that is, notifying the terminal device to use the time domain resource #1 configured in advance by high-level signaling to send data #1
  • high-level signaling is used to configure semi-persistent scheduling for downlink scheduling (semi-persisten
  • the time required for BWP switching can include d time units when performing BWP switching, where d is a positive integer less than or equal to k+1, and BWP
  • the start time of the handover is located on time domain resource #2.
  • the value of d and the start time of the BWP handover can be indicated by the network device to the terminal device, or can be determined through negotiation between the terminal device and the network device, or determined based on a protocol .
  • the time domain resource #1 and the time domain resource #2 partially or completely overlap, the data related to the URLLC service is first received or sent on the time domain resource #1, thereby reducing the time domain resource # 1
  • the priority execution of the BWP handover command will affect the delay of the URLLC service, thereby meeting the low delay requirement of the URLLC service.
  • the terminal device receives scheduling information #1 at the nth time unit (for example, the symbol #0 of slot#n).
  • the scheduling information #1 indicates that the terminal device is in the n+kth time unit. (For example, slot#(n+1)) BWP switching is completed before, and the index of BWP#2 may be included in the scheduling information #1.
  • the terminal device receives scheduling information #2 on the symbol #1 of slot#n.
  • the scheduling information #2 is used to schedule URLLC services.
  • the scheduling information #2 indicates that the terminal device is in slot#(n+1) (for example, Time domain resource #1) sends data related to the URLLC service (for example, data #1).
  • the terminal device determines that the completion time of the BWP switch is the last symbol on slot#(n+1) in combination with the value of d. It can be seen that the terminal The device sending data #1 and the BWP switching resource overlap, the terminal device may not execute the BWP switching command, that is, the terminal device maintains the activated BWP at BWP#1 without changing, and the slot#(n+1 on BWP#1) ) To send data related to the URLLC service.
  • the terminal device receives scheduling information #1 on the symbol #0 of slot#n.
  • scheduling information #1 indicates that the terminal device completes BWP switching before slot#(n+1)
  • scheduling information #1 Can include the index of BWP#2.
  • the terminal device receives scheduling information #2 on the symbol #1 of slot#n.
  • the scheduling information #2 is used to schedule URLLC services.
  • the scheduling information #2 instructs the terminal device to send and send on slot#(n+3). URLLC business-related data.
  • the terminal device determines that the completion time of the BWP switch is the last symbol on slot#(n+1) in combination with the value of d. It can be seen that the terminal There is no resource overlap between the device sending data #1 and the BWP switch.
  • the terminal device can execute the BWP switch command, that is, the terminal device switches the activated BWP from BWP#1 to BWP#2, and in slot#(n) on BWP#2 +3) Send data related to the URLLC service.
  • Scenario #2 multi-carrier scenario (take a scenario including two carriers (for example, carrier #1 and carrier #2) as an example for description).
  • carrier #1 and carrier #2 belong to the same frequency band, where carrier #1 works on BWP#1, and carrier # 2Work on BWP#3.
  • the terminal device receives scheduling information #1 on the nth time unit on carrier #1 (for example, the symbol #0 of slot #n). For example, scheduling information #1 indicates that the terminal device is on the n+th time unit on carrier #1.
  • the BWP switching is completed before k time units (for example, slot#(n+1)), and the index of BWP#2 may be included in the scheduling information #1.
  • the terminal device receives scheduling information #2 on the symbol #1 of slot #n on carrier #1, and scheduling information #2 is used to schedule URLLC services.
  • scheduling information #2 indicates that the terminal device is on carrier #2.
  • the time domain resource #1 (for example, slot#(n+1)) transmits data related to the URLLC service.
  • the terminal device determines that the completion time of the BWP switch is the last symbol on slot#(n+1) in combination with the value of d. It can be seen that the terminal The device sending data #1 on carrier #2 and performing BWP switching on carrier #1 overlap in resources.
  • the terminal device may not execute the BWP switching command on carrier #1, that is, the BWP that the terminal device will activate on carrier #1 Keep BWP#1 unchanged, and send data related to the URLLC service on slot#(n+1) on BWP#3 on carrier #2.
  • carrier #1 and carrier #2 appearing in the following are the same as the description of carrier #1 and carrier #2 in FIG.
  • the terminal device receives scheduling information #1 on the nth time unit (for example, symbol #0 of slot #n) on carrier #1.
  • scheduling information #1 indicates that the terminal device is on carrier # BWP switching is completed before the n+kth time unit on 1 (for example, slot#(n+1)), and the index of BWP#2 may be included in scheduling information #1.
  • the terminal device receives scheduling information #2 on the symbol #1 of slot #n on carrier #1, and scheduling information #2 is used to schedule URLLC services.
  • scheduling information #2 indicates that the terminal device is on carrier #2.
  • Time domain resource #1 (for example, slot#(n+3)) transmits data related to the URLLC service.
  • the terminal device determines that the completion time of the BWP switch is the last symbol on slot#(n+1) in combination with the value of d. It can be seen that the terminal The device sends data #1 on carrier #2 and performs BWP switching on carrier #1 and there is no resource overlap.
  • the terminal device can execute the BWP switching command on carrier #1, that is, the terminal device will activate the BWP on carrier #1 Switch from BWP#1 to BWP#2, and send data related to the URLLC service on slot#(n+3) on BWP#3 on carrier #2.
  • FIGS. 6 and 7 illustrate the case where the scheduling information #1 and the scheduling information #2 are transmitted on the same carrier (for example, carrier #1).
  • carrier #1 for example, carrier #1.
  • the following is a description of the scheduling information #1 and the scheduling information with reference to Figs. 8 and 9 #2
  • the case of sending on different carriers is explained.
  • the terminal device receives scheduling information #1 on the nth time unit on carrier #1 (for example, symbol #0 of slot #n). For example, scheduling information #1 indicates that the terminal device is on carrier # BWP switching is completed before the n+k time unit (for example, slot#(n+1)) on 1 and the index of BWP#2 is included in scheduling information #1.
  • the terminal device receives scheduling information #2 on the symbol #1 of slot #n on carrier #2, and scheduling information #2 is used to schedule URLLC services. For example, scheduling information #2 indicates that the terminal device is on carrier #2.
  • Time domain resource #1 (for example, slot#(n+1)) transmits data related to the URLLC service.
  • the terminal device determines that the completion time of the BWP switch is the last symbol on slot#(n+1) in combination with the value of d. It can be seen that the terminal The device sending data #1 on carrier #2 and performing BWP switching on carrier #1 overlap in resources.
  • the terminal device may not execute the BWP switching command on carrier #1, that is, the BWP that the terminal device will activate on carrier #1 Keep BWP#1 unchanged, and send data related to the URLLC service on slot#(n+1) on BWP#3 on carrier #2.
  • the terminal device receives scheduling information #1 on the nth time unit (for example, symbol #0 of slot #n) on carrier #1.
  • scheduling information #1 indicates that the terminal device is on carrier # BWP switching is completed before the n+kth time unit on 1 (for example, slot#(n+1)), and the index of BWP#2 may be included in scheduling information #1.
  • the terminal device receives scheduling information #2 on the symbol #1 of slot #n on carrier #2, and scheduling information #2 is used to schedule URLLC services.
  • scheduling information #2 indicates that the terminal device is on carrier #2.
  • Time domain resource #1 (for example, slot#(n+3)) transmits data related to the URLLC service.
  • the terminal device determines that the completion time of the BWP switch is the last symbol on slot#(n+1) in combination with the value of d. It can be seen that the terminal The device sends data #1 on carrier #2 and performs BWP switching on carrier #1 without resource overlap.
  • the terminal device can execute the BWP switching command on carrier #1, that is, the BWP that the terminal device will activate on carrier #1 Switch from BWP#1 to BWP#2, and send data related to the URLLC service on slot#(n+3) on BWP#3 on carrier #2.
  • scheduling information #1 may also instruct the terminal device to send data #2 (that is, an example of second data) or receive data #2 on time domain resource #3 (that is, an example of the third time domain resource) , That is, scheduling information #1 not only instructs the terminal device to switch the activated BWP from BWP#1 to BWP#2, but also instructs the terminal device to send data #2 or receive data #2 on time domain resource #3, in other words, schedule Information #1 indicates that the terminal device sends data #2 or receives data #2 on time domain resource #3 on BWP#2.
  • the terminal device does not switch the BWP from BWP#1 to BWP#2, that is, the activated BWP remains unchanged on BWP#1, and the terminal device may not send data #2 on the time domain resource #3 on BWP#1 Or receive data #2, that is, the terminal device gives up sending data #2 or receiving data #2.
  • scheduling information #1 is received by the terminal device on the symbol #0 of slot #n on carrier #1, and scheduling information #1 indicates the BWP that the terminal device will activate on carrier #1 Switching from BWP#1 to BWP#2, and instructs the terminal device to receive and enhance mobile broadband (eMBB) on slot#(n+5) (for example, time domain resource #3) on carrier #1 Service-related data (for example, data #2), in other words, scheduling information #1 instructs the terminal device to receive eMBB service-related data on slot#(n+5) on BWP#2 of carrier #1.
  • eMBB mobile broadband
  • the terminal device may not receive eMBB-related services on slot#(n+5) on BWP#1 of carrier #1 That is, the terminal device gives up receiving eMBB service-related data on slot#(n+5) on BWP#1 of carrier #1.
  • the time domain resource #2 on the carrier #1 and the time domain resource #1 on the carrier #2 partially overlap or completely overlap, the time domain resource #2 on the carrier #1 is abandoned to perform BWP Handover command to send or receive data related to the URLLC service on time domain resource #1 on carrier #2, that is, time domain resource #2 on carrier #1 and time domain resource # on carrier #2 1
  • the data related to URLLC service is sent or received preferentially on time domain resource #1 on carrier #2, thereby reducing the time domain resource #2 and carrier #2 on carrier #1.
  • the priority execution of the BWP handover command will affect the delay of the URLLC service, thereby meeting the low delay requirement of the URLLC service.
  • the embodiment of the present application in order to meet the low latency requirement of the URLLC service, the embodiment of the present application also provides another communication method, which is described below.
  • the network device can schedule the URLLC service after the BWP switch is completed. Accordingly, the terminal device can start the URLLC service scheduling information after the BWP switch is completed. Receive, thereby reducing the impact of BWP switching on URLLC services.
  • the network device and the terminal device can agree in advance to schedule only the URLLC service after the BWP switch is completed, so that the terminal device only detects the control channel of the URLLC service after the BWP switch is completed, and does not need to detect other services (for example, eMBB services)
  • the control channel can further save the power consumption of the terminal equipment.
  • the terminal device receives scheduling information #1 at the nth time unit (for example, the symbol #0 of slot#n).
  • the scheduling information #1 indicates that the terminal device is in slot#(n+ 5) Data related to the eMBB service is received, and the scheduling information #1 also instructs the terminal device to complete the BWP switch before the n+k time unit (for example, slot#(n+1)), the scheduling information #1 can Including the index of BWP#2.
  • the terminal device completed the BWP switch before the last symbol of slot#(n+1), and before the BWP switch was completed, the terminal device did not receive scheduling information #2 for scheduling the URLLC service. According to the agreement with the network device, the terminal device will not start the reception of scheduling information #2 until the BWP handover is completed. For example, the terminal device has received scheduling information #2 on the last symbol of slot#(n+2), scheduling information #2 instructs the terminal device to receive data related to the URLLC service in slot#(n+3). Since it is possible for the network device to send scheduling information #2 after the BWP handover is completed, the BWP handover will not affect the URLLC service.
  • the embodiment of the present application also provides another communication method, which is described below.
  • a terminal device in a serving cell that supports URLLC it can ignore all BWP handover commands from network devices.
  • the value of processingType2Enabled in the protocol can be set to TRUE, which means The serving cell supports URLLC services.
  • a terminal device in a serving cell that supports URLLC can ignore the field information of the BWP handover command carried in the DCI; or the terminal device can ignore the timer-based BWP handover command or not enable it for BWP handover Timer.
  • the above timer for BWP switching means that within a certain length of time (the length of time can be configured by the network device), if the terminal device does not receive the scheduling information from the network device, the terminal device will switch to the default BWP .
  • the above timer-based BWP switching command means that if the terminal device does not receive scheduling information from the network device within a certain period of time after the timer is started, the terminal device will not switch to the default BWP.
  • the parameter configuration information may include an indication of enabling or disabling the BWP handover.
  • the BWP handover is disabled.
  • both the network device and the terminal device ignore the BWP switching indication, for example, the BWP switching indication based on the scheduling signaling is ignored, and the timer for the BWP switching is not started.
  • the terminal device only executes the BWP switching command indicated by the DCI for scheduling the URLLC service, and ignores the BWP switching command indicated by the DCI for scheduling the eMBB service. Among them, the terminal device can identify the DCI used to schedule the URLLC service through the following methods:
  • RNTI radio network temporary identity
  • bit may be a reserved bit or a newly added bit, which is not particularly limited in the embodiment of the present application.
  • the embodiments of the present application in order to meet the requirements of high-priority service data, control signaling or signals, the embodiments of the present application also provide another communication method, so that the terminal equipment and network equipment can be timely after completing the BWP handover.
  • the high-priority service data in this application may be URLLC service data or other high-priority service data.
  • the high-priority control signaling can be a pre-emption indication (PI) sent by the network device to the terminal device, indicating that certain time-frequency resources are used by high-priority service data or signaling, but not at these times. Send data to the terminal device on the frequency resource.
  • PI pre-emption indication
  • High-priority control signaling can also be an uplink cancel indication (UL CI) sent by a network device to a terminal device, which is used to indicate that no data, signaling, or signal is sent on some time-frequency resources, or used to Indicates the cancellation of data, signaling or signal transmission.
  • UL CI uplink cancel indication
  • High-priority control signaling can also be uplink scheduling signaling or downlink scheduling signaling for scheduling high-priority service data, and it can also be a hybrid automatic repeat request-acknowledgment corresponding to high-priority service data. , HARQ-ACK) information.
  • the high-priority control signaling can also be a high-priority service data scheduling request (scheduling request, SR), used by the terminal device to request scheduling information from the network device; or, it can be the buffer status sent by the terminal device to the network device Report (buffer status report, BSR).
  • SR high-priority service data scheduling request
  • BSR buffer status report
  • the high priority signal may be the reference signal.
  • the communication method shown in FIG. 11 will be described in detail below. It can be understood that the execution subject of this method may be a terminal device and a network device, or a module in the terminal device and the network device, such as a chip.
  • the network device sends third scheduling information to the terminal device on the fourth time domain resource, where the third scheduling information instructs the terminal device to switch the activated BWP from the first BWP to the second BWP.
  • the corresponding terminal device receives the third scheduling information from the network device on the fourth time domain resource.
  • the third scheduling information includes indication information of the second BWP, for example, an index.
  • the third scheduling information further indicates scheduling of the third data, for example, instructing the terminal device to receive the third data on the fifth time domain resource, or instructing the terminal device to send the third data on the fifth time domain resource.
  • the start time of the fifth time domain resource may be later than the end time of the fourth time domain resource.
  • the terminal device sends the third data through the PUSCH, or receives the third data through the PDSCH.
  • first BWP and the second BWP are two different BWPs in the same carrier (or cell).
  • S320 The network device and the terminal device switch the activated BWP from the first BWP to the second BWP.
  • the terminal device and the network device may determine the completion time of the BWP switching according to the BWP switching capability of the terminal device.
  • the network equipment can schedule the terminal equipment in time, thereby ensuring that high-priority service data, signaling or signals are transmitted in time. For example, after the network device determines that the terminal device has completed the BWP switching according to the BWP switching capability of the terminal device, the network device sends fourth scheduling information to the terminal device on the sixth time domain resource.
  • the network device sends fourth scheduling information to the terminal device on the sixth time domain resource.
  • the terminal device receives the fourth scheduling information from the network device on the sixth time domain resource.
  • the fourth scheduling information indicates that the fourth data is scheduled, for example, instructs the terminal device to receive the fourth data on the seventh time domain resource, or instructs the terminal device to send the fourth data on the seventh time domain resource.
  • the start time of the sixth time domain resource is later than the start time of the fourth time domain resource, and the start time of the seventh time domain resource is earlier than the start time of the fifth time domain resource.
  • This scenario is also called out of order (out of order) transmission scenario.
  • the terminal device sends the fourth data through the PUSCH or receives the fourth data through the PDSCH.
  • S340 The terminal device receives the fourth data on the seventh time domain resource, and correspondingly, the network device sends the fourth data on the seventh time domain resource. Or, the terminal device sends the fourth data on the seventh time domain resource, and correspondingly, the network device receives the fourth data on the seventh time domain resource.
  • the fourth data here may be sent on the newly activated BWP, that is, sent on the second BWP.
  • the terminal device receives the third data on the fifth time domain resource, and correspondingly, the network device sends the third data on the fifth time domain resource. Or, the terminal device sends the third data on the fifth time domain resource, and correspondingly, the network device receives the third data on the fifth time domain resource.
  • the third data here is sent on the newly activated BWP, that is, it is sent on the second BWP.
  • the priority of the fourth data is higher than the priority of the third data.
  • the terminal device can execute S350 only when the terminal device supports the above out-of-order transmission scenario. If the terminal device does not limit the scenario of data transmission, the terminal device can perform S350. If the terminal device has restrictions on the data transmission scenario, the terminal device may determine whether to perform S350 according to the capability of the terminal device and/or the scheduling timing relationship. If it is determined according to the scheduling sequence relationship that the data transmission is an out-of-sequence transmission scenario, and the terminal does not support an out-of-sequence transmission scenario, then the terminal device abandons the reception of the third data or the transmission of the third data. If it is determined that the data transmission is a sequential transmission scenario according to the scheduling time sequence relationship, S350 is executed.
  • the fourth time domain resource is symbol #0 on slot#n
  • the fifth time domain resource is slot#(n+5)
  • the sixth time domain resource is symbol #0 on slot#(n+3).
  • the seventh time domain resource is slot#(n+4) as an example to describe the scheduling process in FIG. 11. The specific scheduling relationship is shown in Figure 12.
  • the network device sends third scheduling information on the symbol #0 of slot#n to instruct the terminal device to send third data on slot#(n+5), and at the same time instructs the terminal device to switch the active BWP to the second BWP.
  • the network device can determine that the terminal device has completed the BWP switching before the symbol #0 of slot#(n+3).
  • the network device received the scheduling request for the fourth data of the terminal device before slot#(n+3), and the priority of the fourth data is higher than the priority of the third data. Therefore, the network device is in slot#(n+3)
  • the fourth scheduling information sent on the symbol #0 instructs the terminal device to send the fourth data through the PUSCH on slot#(n+4).
  • the terminal device receives the third scheduling information on the symbol #0 of slot#n, and executes the BWP switching command. After the terminal device completes the BWP handover, it monitors the downlink control signaling. After the fourth scheduling information is monitored at the symbol #0 of slot#(n+3), it sends the PUSCH to the network device on slot#(n+4). Send the fourth data.
  • fourth scheduling information and fourth data may both be sent on the second BWP; or one of the fourth scheduling information and fourth data may be sent on the second BWP, and the other It is sent on the activated BWP of other carriers. If the terminal device supports the activation of multiple BWPs on one carrier, then one of the fourth scheduling information and the fourth data may be sent on the second BWP, and the other one on the carrier except the first BWP and the second BWP Send on another BWP outside.
  • the execution subject of this method may be a terminal device and a network device, or a module in the terminal device and the network device, such as a chip.
  • the network device sends third scheduling information to the first terminal device on the fourth time domain resource, where the third scheduling information instructs the first terminal device to switch the activated BWP from the first BWP to the second BWP.
  • the corresponding first terminal device receives the third scheduling information from the network device on the fourth time domain resource.
  • the third scheduling information includes indication information of the second BWP, for example, an index.
  • the third scheduling information also instructs the first terminal device to send third data on the fifth time-frequency resource.
  • the time domain resource corresponding to the fifth time-frequency resource is the fifth time domain resource.
  • the start time of the fifth time domain resource is later than the end time of the fourth time domain resource.
  • the first terminal device sends the third data through PUSCH.
  • first BWP and the second BWP are two different BWPs in the same carrier (or cell).
  • S420 The network device and the first terminal device switch the activated BWP to the second BWP.
  • the first terminal device and the network device may determine the completion time of the BWP switching according to the BWP switching capability of the first terminal device.
  • the network device can schedule the first terminal device in time, thereby ensuring that high-priority service data, signaling or signals are transmitted in time. For example, after the network device determines that the terminal device has completed the BWP switching according to the BWP switching capability of the terminal device, the network device sends an uplink cancellation instruction to the first terminal device on the sixth time domain resource.
  • S430 The network device sends sixth scheduling information to the first terminal device on the sixth time domain resource.
  • the first terminal device receives the sixth scheduling information from the network device on the sixth time domain resource.
  • the sixth scheduling information instructs the first terminal device to cancel sending the third data on the fifth time-frequency resource.
  • the start time of the sixth time domain resource is later than the start time of the fourth time domain resource and earlier than the start time of the fifth time domain resource. It can be understood that before the start time of the sixth time domain resource, the activated BWP of the terminal device has been switched to the second BWP.
  • the sixth scheduling information may be a display instruction to cancel the transmission of the third data.
  • the sixth scheduling information includes a cancellation indication field, indicating that the sending of the third data is cancelled.
  • the sixth scheduling information may also include at least one of the identification number of the first terminal device and the hybrid automatic repeat request (HARQ) process number.
  • HARQ hybrid automatic repeat request
  • the sixth scheduling information may also implicitly indicate to cancel the sending of the third data.
  • the sixth scheduling information includes information about the tenth time-frequency resource, indicating that data transmission in the tenth time-frequency resource is cancelled.
  • the tenth time-frequency resource overlaps partially or completely with the fifth time-frequency resource.
  • the terminal device After receiving the sixth scheduling information, the terminal device further determines whether to cancel the transmission of the third data or cancel the transmission of part of the third data according to whether the tenth time-frequency resource overlaps with the fifth time-frequency resource. When the tenth time-frequency resource includes the complete fifth time-frequency resource, the transmission of all the third data is cancelled.
  • the tenth time-frequency resource includes part of the fifth time-frequency resource, cancel the transmission of the third data carried on the part of the time-frequency resource that overlaps the tenth time-frequency resource.
  • the fifth time-frequency resource and the tenth time-frequency resource do not overlap at all, the sending of the third data is not cancelled.
  • the sixth scheduling information may also be referred to as UL CI.
  • the specific design of the CI can refer to the relevant description in section 11.2 of the 3GPP technical specification (technical specification, TS) 38.213V15.7.0 (interrupted transmission indication, ITI), ITI Also called PI.
  • the network device sends CI to the terminal device, and the CI indicates time-frequency resource information without data transmission. After receiving the CI, the terminal device determines whether the time-frequency resource indicated by the CI overlaps with the scheduled time-frequency resource for data transmission, and then determines whether the time-frequency resource for data transmission is preempted or whether data transmission is cancelled .
  • the network device sends fifth scheduling information to the second terminal device on the eighth time domain resource.
  • the second terminal device receives the fifth scheduling information from the network device on the eighth time domain resource.
  • the fifth scheduling information instructs the second terminal device to send the fifth data on the ninth time-frequency resource, and the ninth time-frequency resource partially overlaps or completely overlaps the fifth time-frequency resource.
  • the time domain resource corresponding to the ninth time-frequency resource is the ninth time domain resource.
  • the start time of the eighth time domain resource is later than the start time of the sixth time domain resource and earlier than the start time of the ninth time domain resource.
  • the second terminal device sends the fifth data through PUSCH.
  • S450 The second terminal device sends fifth data to the network device on the ninth time-frequency resource.
  • the network device receives the fifth data from the second terminal device on the ninth time-frequency resource.
  • the first terminal device cancels sending the third data on the fifth time-frequency resource.
  • the network device no longer receives the third data on the fifth time-frequency resource, but receives the fifth data from the second terminal device on the ninth time-frequency resource.
  • the fifth data here is sent on the newly activated BWP, that is, it is sent on the second BWP.
  • the priority of the fifth data is higher than the priority of the third data.
  • the fourth time domain resource is symbol #0 on slot#n
  • the fifth time domain resource is slot#(n+5)
  • the sixth time domain resource is symbol #0 on slot#(n+3)
  • the eighth time domain resource is the symbol #13 of slot#(n+3)
  • the ninth time-frequency resource completely overlaps the fifth time-frequency resource as an example to describe the scheduling process in FIG. 13.
  • the specific scheduling timing relationship is shown in Figure 14.
  • the network device sends third scheduling information on the symbol #0 of slot#n to instruct the first terminal device to send third data on slot#(n+5), and at the same time instructs the first terminal device to switch the active BWP to the second BWP.
  • the network device can determine that the first terminal device has completed the BWP switching before the symbol #0 of slot#(n+3).
  • the network device received the second terminal device SR, requesting the network device to allocate scheduling resources to the second terminal device, and there are no resources available on slot#(n+5), and the first The priority of the uplink data of the second terminal device is higher than that of the uplink data of the first terminal device.
  • the network device sends UL CI on symbol #0 of slot#(n+3) to instruct the first terminal device to cancel sending the third data on the fifth time domain resource.
  • the network device sends fifth scheduling information to the second terminal device at symbol #13 of slot#(n+3), instructing the second terminal device to send fifth data on the fifth time domain resource.
  • the first terminal device receives the third scheduling information from the network device on the symbol #0 of slot#n, and executes the BWP switching command. After the first terminal device completes the BWP handover, it monitors the downlink control signaling. After the UL CI is monitored at the symbol #0 of slot#(n+3), it cancels the PUSCH to the network on slot#(n+5). The device sends the third data.
  • the second terminal device receives the fifth scheduling information from the network device on the symbol #13 of slot#(n+3), indicating that the fifth data is sent on the fifth time domain resource.
  • the fifth scheduling information and the fifth data mentioned above can be sent on the second BWP; it can also be that the fifth data is sent on the second BWP, and the fifth scheduling information is on the activated BWP of other carriers. send. If the terminal device supports the activation of multiple BWPs on one carrier, the fifth data may be sent on the second BWP, and the fifth scheduling information is on another BWP on the carrier except the first BWP and the second BWP send.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • FIG. 15 and FIG. 16 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1, or the wireless access network device 120 as shown in FIG. 1, or it may be applied to terminal equipment. Or a module of a network device (such as a chip).
  • the communication device 300 includes a processing unit 310 and a transceiving unit 320.
  • the communication device 300 is used to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 3, FIG. 11, or FIG.
  • the transceiver unit 320 is used to receive the first scheduling information in the nth time unit, and the first scheduling information indicates the bandwidth that the terminal device will activate Part of the BWP is switched from the first BWP to the second BWP, where n is a positive integer; the transceiver unit 320 is also configured to receive second scheduling information, and the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource.
  • the first scheduling information indicates the bandwidth that the terminal device will activate Part of the BWP is switched from the first BWP to the second BWP, where n is a positive integer
  • the transceiver unit 320 is also configured to receive second scheduling information, and the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource.
  • the processing unit 310 is configured to determine whether to switch the activated BWP from the first BWP to the second BWP according to whether the first time domain resource overlaps the second time domain resource, where the second time domain resource is the nth time
  • the time domain resource between the unit and the n+kth time unit, the n+kth time unit is the time unit for the terminal device to complete the BWP switching, and k is a positive integer.
  • the transceiver unit 320 is used to send the first scheduling information in the nth time unit, and the first scheduling information indicates the BWP to be activated by the terminal device Switch from the first BWP to the second BWP, n is a positive integer; the transceiver unit 320 is also used to send second scheduling information, the second scheduling information instructs the terminal device to send the first data or receive the first data on the first time domain resource .
  • the processing unit 310 is configured to determine whether to switch the activated BWP from the first BWP to the second BWP according to whether the first time domain resource overlaps with the second time domain resource, where the second time domain resource is the nth time unit and The time domain resource between the n+kth time unit, the n+kth time unit is the time unit for the terminal device to complete the BWP switching, and k is a positive integer.
  • the transceiver unit 320 is used to receive the third scheduling information from the network device on the fourth time domain resource, the third scheduling information
  • the terminal device is instructed to switch the activated BWP from the first BWP to the second BWP, and the third scheduling information also instructs the terminal device to receive third data on the fifth time domain resource.
  • the processing unit 310 is configured to switch the activated BWP from the first BWP to the second BWP.
  • the transceiving unit 320 is further configured to receive fourth scheduling information from the network device on a sixth time domain resource, where the fourth scheduling information indicates that the terminal device receives fourth data on a seventh time domain resource.
  • the transceiver unit 320 is further configured to receive the fourth data from the network device on the seventh time domain resource.
  • the transceiver unit 320 is further configured to receive the third data from the network device on the fifth time domain resource.
  • the transceiver unit 320 is used to send third scheduling information to the terminal device on the fourth time domain resource, where the third scheduling information indicates The terminal device switches the activated BWP from the first BWP to the second BWP, and the third scheduling information further indicates that the terminal device receives third data on the fifth time domain resource.
  • the processing unit 310 is configured to switch the activated BWP from the first BWP to the second BWP.
  • the transceiver unit 320 is further configured to send fourth scheduling information to the terminal device on the sixth time domain resource, where the fourth scheduling information indicates that the terminal device receives fourth data on the seventh time domain resource.
  • the transceiver unit 320 is further configured to send the fourth data to the terminal device on the seventh time domain resource.
  • the transceiver unit 320 is further configured to send the third data to the terminal device on the fifth time domain resource.
  • the transceiver unit 320 is used to receive the third scheduling information from the network device on the fourth time domain resource, the third scheduling information
  • the terminal device is instructed to switch the activated BWP from the first BWP to the second BWP, and the third scheduling information also instructs the terminal device to send third data on the fifth time-frequency resource.
  • the processing unit 310 is configured to switch the activated BWP from the first BWP to the second BWP before the sixth time domain resource.
  • the transceiving unit 320 is further configured to receive sixth scheduling information from the network device on a sixth time domain resource, where the sixth scheduling information instructs the terminal device to cancel sending the first scheduling information on the fifth time-frequency resource.
  • the transceiver unit 320 is used to send third scheduling information to the first terminal device on the fourth time domain resource, and the third scheduling The information indicates that the first terminal device switches the activated BWP from the first BWP to the second BWP, and the third scheduling information also indicates that the first terminal device sends third data on the fifth time-frequency resource.
  • the processing unit 310 is configured to switch the activated BWP of the first terminal device from the first BWP to the second BWP before the sixth time domain resource.
  • the transceiver unit 320 is further configured to send sixth scheduling information to the first terminal device on the sixth time domain resource, where the sixth scheduling information instructs the first terminal device to cancel the fifth time-frequency resource
  • the third data is sent on.
  • processing unit 310 and the transceiver unit 320 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 3, FIG. 11 or FIG. 13, and will not be repeated here.
  • the communication device 400 includes a processor 410 and an interface circuit 420.
  • the processor 410 and the interface circuit 420 are coupled to each other.
  • the interface circuit 420 may be a transceiver or an input/output interface.
  • the communication device 400 may further include a memory 430 for storing instructions executed by the processor 410 or storing input data required by the processor 410 to run the instructions or storing data generated after the processor 410 runs the instructions.
  • the processor 410 is used to perform the function of the above-mentioned processing unit 310
  • the interface circuit 420 is used to perform the function of the above-mentioned transceiving unit 320.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in Random Access Memory (RAM), Flash memory, Read-Only Memory (ROM), Programmable ROM (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the associated objects before and after are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,根据进行BWP切换的过渡期对应的时域资源与用于发送或者接收数据的时域资源是否重叠,确定是否执行BWP的切换命令。当进行BWP切换的过渡期对应的时域资源与用于发送或者接收数据的时域资源部分重叠或者全部重叠时,放弃执行BWP切换命令,优先发送或者接收数据,为降低URLLC业务的时延提供了一种解决方案。

Description

通信的方法和通信装置
本申请要求于2019年10月30日提交中国国家知识产权局、申请号为201910946340.6、发明名称为“通信的方法和通信装置”和2019年7月22日提交中国国家知识产权局、申请号为201910662696.7、发明名称为“通信的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体而言,涉及一种通信的方法和通信装置。
背景技术
目前,带宽部分(bandwidth part,BWP)是指网络设备在一个上行载波或者下行载波中为终端设备配置的一组连续的物理资源块(physical resource block,PRB)。网络设备可以为终端设备配置多个BWP,但是在某一时间单元上,只能激活一个BWP,相应的数据的接收和发送只能在对应的BWP上进行。
其中,终端设备从一个BWP切换到另一个BWP上是激活BWP的一种途径,在BWP切换期间,现有第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本15(release 15,R15)协议规定终端设备在此期间不能接收网络设备发送的数据,也不能向网络设备发送任何信号或数据。
在这种情况下,对于时延要求比较高的业务,例如,高可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务,由于在BWP切换期间不允许终端设备进行任何传输,则不能满足URLLC业务对低时延的需求。
发明内容
本申请提供一种通信的方法,能够满足URLLC业务对低时延的需求。
第一方面,提供了一种通信的方法,该方法的执行主体可以是终端设备,也可以是终端设备中的模块,比如,芯片。下面以终端设备作为执行主体对该方法进行描述。终端设备在第n个时间单元接收第一调度信息,所述第一调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,n为正整数。终端设备接收第二调度信息,所述第二调度信息指示所述终端设备在第一时域资源上发送第一数据或者接收第一数据;终端设备根据所述第一时域资源与第二时域资源是否重叠,确定是否将所述激活的BWP从所述第一BWP切换到所述第二BWP,其中,所述第二时域资源为所述第n个时间单元与第n+k个时间单元之间的时域资源,第n+k个时间单元为终端设备完成BWP切换的时间单元,k为正整数。
基于上述技术方案,当第一时域资源与第二时域资源部分重叠或者完全重叠时,优先在第一时域资源上发送或者接收与URLLC业务相关的数据,从而降低在第一时域资源与第二时域资源重叠的情况下优先执行BWP切换命令对URLLC业务的时延造成的影响,进而满足URLLC业务对低时延的需求。
需要说明的是,当第二调度信息指示终端设备在第一时域资源上发送第一数据时,此时,在确定第一时域资源与第二时域资源是否重叠时,还需要结合时间提前量(time advanced,TA)进行确定,只有在第一时域资源与第二时域资源之间的间隔不小于TA, 或者,不小于TA与射频切换时间长度的总和时,才能确定第一时域资源与第二时域资源不重叠。TA是指终端设备发送数据#1时的时间提前量,可以由网络设备向终端设备指示,射频切换时间长度是终端设备切换射频时需要的时间长度,该时间长度可以基于协议确定。此处的说明对后面的第二方面的通信方法同样适用,为了简洁,后续不再赘述。
在一种可能的实现方式中,所述根据所述第一时域资源与第二时域资源是否重叠,确定是否将所述激活的BWP从所述第一BWP切换到所述第二BWP,包括:当所述第一时域资源与所述第二时域资源部分重叠或完全重叠时,则终端设备不将所述激活的BWP从所述第一BWP切换到所述第二BWP,并在所述第一时域资源上发送所述第一数据或者接收所述第一数据;或,当所述第一时域资源与所述第二时域资源不重叠时,则终端设备将所述激活的BWP从所述第一BWP切换到所述第二BWP,并在所述第一时域资源上发送所述第一数据或者接收所述第一数据。
在一种实现方式中,所述第一调度信息与所述第二调度信息是在第一载波上接收的,所述第一载波包括所述第一BWP与所述第二BWP。
在一种实现方式中,所述第二调度信息指示所述终端设备在第二载波上的所述第一时域资源上发送所述第一数据或者接收所述第一数据。
在多载波场景下,对于属于同一频段的第一载波与第二载波而言,当第一载波上的第二时域资源与第二载波上第一时域资源重叠时,此时,尽管第一载波与第二载波为不同载波,但由于第一载波与第二载波属于同一频段,因此,在第一载波上的第二时域资源上执行BWP切换命令会导致第二载波上的第一时域资源上的第一数据的接收中断或者发送中断。基于上述技术方案,通过在第一载波上的第二时域资源与第二载波上的第一时域资源部分重叠或者完全重叠时,放弃在第一载波上的第二时域资源执行BWP的切换命令,转而在第二载波上的第一时域资源上发送或者接收与URLLC业务相关的数据,即,在第一载波上的第二时域资源与第二载波上的第一时域资源部分重叠或者完全重叠时,优先在第二载波上的第一时域资源上发送或者接收与URLLC业务相关的数据,从而降低在第一载波上的第二时域资源与第二载波上的第一时域资源重叠的情况下优先执行BWP切换命令对URLLC业务的时延造成的影响,进而满足URLLC业务对低时延的需求。
在一种实现方式中,所述第一调度信息是在第一载波上接收的,所述第一载波包括所述第一BWP与所述第二BWP,所述第二调度信息是在第二载波上接收的,所述第二调度信息指示所述终端设备在所述第二载波上的所述第一时域资源上发送所述第一数据或者接收所述第一数据。
在一种实现方式中,所述第一调度信息还指示所述终端设备在第三时域资源上发送第二数据,所述第三时域资源与所述第一时域资源、所述第二时域资源均不重叠,当所述第一时域资源与第二时域资源部分重叠或完全重叠时,所述方法还包括:终端设备不在所述第三时域资源上发送所述第二数据。
在一种实现方式中,所述第一调度信息还指示所述终端设备在第三时域资源上接收第二数据,所述第三时域资源与所述第一时域资源、所述第二时域资源均不重叠,当所述第一时域资源与第二时域资源部分重叠或完全重叠时,所述方法还包括:终端设备不 在所述第三时域资源上接收所述第二数据。
第二方面,提供了一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的模块,比如,芯片。下面以网络设备作为执行主体对该方法进行描述。网络设备在第n个时间单元发送第一调度信息,所述第一调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,n为正整数。网络设备发送第二调度信息,所述第二调度信息指示所述终端设备在第一时域资源上发送第一数据或者接收第一数据。网络设备根据所述第一时域资源与第二时域资源是否重叠,确定是否将所述激活的BWP从所述第一BWP切换到所述第二BWP,其中,所述第二时域资源为所述第n个时间单元与第n+k个时间单元之间的时域资源,第n+k个时间单元为终端设备完成BWP切换的时间单元,k为正整数。
第二方面是与第一方面相对应的网络设备侧的方法,因此也能实现第一方面的有益效果,这里不加赘述。
在一种可能的实现方式中,所述根据所述第一时域资源与第二时域资源是否重叠,确定是否将所述激活的BWP从所述第一BWP切换到所述第二BWP,包括:当所述第一时域资源与所述第二时域资源部分重叠或完全重叠时,则网络设备不将所述激活的BWP从所述第一BWP切换到所述第二BWP,并在所述第一时域资源上接收所述第一数据或者发送所述第一数据;或,当所述第一时域资源与所述第二时域资源不重叠时,则网络设备将所述激活的BWP从所述第一BWP切换到所述第二BWP,并在所述第一时域资源上接收所述第一数据或者发送所述第一数据。
在一种可能的实现方式中,所述第一调度信息与所述第二调度信息是在第一载波上发送的,所述第一载波包括所述第一BWP与所述第二BWP。
在一种可能的实现方式中,所述第二调度信息指示所述终端设备在第二载波上的所述第一时域资源上发送所述第一数据或者接收所述第一数据。
在一种可能的实现方式中,所述第一调度信息是在第一载波上发送的,所述第一载波包括所述第一BWP与所述第二BWP,所述第二调度信息是在第二载波上发送的,所述第二调度信息指示所述终端设备在所述第二载波上的所述第一时域资源上发送所述第一数据或者接收所述第一数据。
第三方面,提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是终端设备中的模块,比如,芯片。下面以终端设备作为执行主体对该方法进行描述。终端设备在第四时域资源上接收来自网络设备的第三调度信息,所述第三调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时域资源上接收第三数据。终端设备将所述激活BWP从所述第一BWP切换到所述第二BWP。终端设备在第六时域资源上接收来自所述网络设备的第四调度信息,所述第四调度信息指示所述终端设备在第七时域资源上接收第四数据。终端设备在所述第七时域资源上接收来自所述网络设备的所述第四数据。终端设备在所述第五时域资源上接收来自所述网络设备的所述第三数据。
在第三方面的一种可能的实现方式中,终端设备在第六时域资源之前,将激活BWP从所述第一BWP切换到所述第二BWP。
第四方面,提供了一种通信方法,该方法的执行主体可以是网络设备,也可以是网 络设备中的模块,比如,芯片。下面以网络设备作为执行主体对该方法进行描述。网络设备在第四时域资源上向终端设备发送第三调度信息,所述第三调度信息指示所述终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时域资源上接收第三数据。网络设备将所述激活BWP从所述第一BWP切换到所述第二BWP。网络设备在第六时域资源上向所述终端设备发送第四调度信息,所述第四调度信息指示所述终端设备在第七时域资源上接收第四数据。网络设备在所述第七时域资源上向所述终端设备发送所述第四数据。网络设备在所述第五时域资源上向所述终端设备发送所述第三数据。
在第四方面的一种可能的实现方式中,网络设备在第六时域资源之前,将激活BWP从所述第一BWP切换到所述第二BWP。
在第三方面或第四方面的一种可能的实现方式中,所述第三调度信息是在所述第一BWP上传输的;所述第四调度信息是在所述第二BWP上传输的。即,第三调度信息是网络设备在第一BWP上发送给终端设备的,第四调度信息是网络设备在第二BWP上发送给终端设备的。
在第三方面或第四方面的一种可能的实现方式中,所述第三数据和所述第四数据是在所述第二BWP上传输的。
在第三方面或第四方面的一种可能的实现方式中,所述第一BWP和所述第二BWP属于同一个载波。
第五方面,提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是终端设备中的模块,比如,芯片。下面以终端设备作为执行主体对该方法进行描述。终端设备在第四时域资源上接收来自网络设备的第三调度信息,所述第三调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时频资源上发送第三数据。终端设备在第六时域资源之前,将所述激活BWP从所述第一BWP切换到所述第二BWP。终端设备在第六时域资源上接收来自所述网络设备的第六调度信息,所述第六调度信息指示所述终端设备取消在所述第五时频资源上发送所述第三数据。
第六方面,提供了一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的模块,比如,芯片。下面以网络设备作为执行主体对该方法进行描述。网络设备在第四时域资源上向第一终端设备发送第三调度信息,所述第三调度信息指示所述第一终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述第一终端设备在第五时频资源上发送第三数据。网络设备在第六时域资源之前,将所述第一终端设备的激活BWP从所述第一BWP切换到所述第二BWP。网络设备在所述第六时域资源上向所述第一终端设备发送第六调度信息,所述第六调度信息指示所述第一终端设备取消在所述第五时频资源上发送所述第三数据。
在第六方面的一种可能的实现方式中,网络设备在第八时域资源上向第二终端设备发送第五调度信息,所述第五调度信息指示所述第二终端设备在第九时频资源上发送第五数据,所述第九时频资源与所述第五时频资源部分重叠或完全重叠。
在第六方面的一种可能的实现方式中,网络设备在所述第九时频资源上接收来自所述第二终端设备的所述第五数据。
在第五方面或第六方面的一种可能的实现方式中,所述第六调度信息包括取消指示字段,指示取消所述第三数据的发送。
在第五方面或第六方面的一种可能的实现方式中,所述第六调度信息包括第十时频资源的信息,指示所述第十时频资源中的数据传输被取消,所述第十时频资源与所述第五时频资源部分重叠或完全重叠。
在第五方面或第六方面的一种可能的实现方式中,所述第三调度信息包括第二BWP的索引。
在第五方面或第六方面的一种可能的实现方式中,所述第三调度信息是在所述第一BWP上传输的;所述第六调度信息是在所述第二BWP上传输的。
在第五方面或第六方面的一种可能的实现方式中,所述第一BWP和所述第二BWP属于同一个载波。
在第五方面或第六方面的一种可能的实现方式中,所述第六时域资源的起始时刻晚于所述第四时域资源的起始时刻,且早于第五时域资源的起始时刻,所述第五时域资源为所述第五时频资源对应的时域资源。
第七方面,提供一种通信装置,该通信装置可以为上述方法中的终端设备,或者,为应用于终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其任意一种可能的实现方式中终端设备所执行的方法,或实现上述第三方面及其任意一种可能的实现方式中终端设备所执行的方法,或实现上述第五方面及其任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为应用于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第八方面,提供一种通信装置,该通信装置可以为上述方法中的网络设备,或者,为应用于网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面及其任意一种可能的实现方式中网络设备所执行的方法。可选地,或实现上述第四方面及其任意一种可能的实现方式中网络设备所执行的方法,或实现上述第六方面及其任意一种可能的实现方式中网络设备所执行的方法,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为应用于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第九方面,提供了一种程序,该程序在被通信装置执行时,用于执行第一方面及其可能的实施方式中的任一方法,或者用于执行第二方面及其可能的实施方式中的任一方法,或者用于执行第三方面及其可能的实施方式中的任一方法,或者用于执行第四方面及其可能的实施方式中的任一方法,或者用于执行第五方面及其可能的实施方式中的任一方法,或者用于执行第六方面及其可能的实施方式中的任一方法。
第六方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置运行时,使得通信装置执行上述第一方面及其可能的实施方式中的任一方法,或者用于执行第二方面及其可能的实施方式中的任一方法,或者用于执行第三方面及其可能的实施方式中的任一方法,或者用于执行第四方面及其可能的实施方式中的任一方法,或者用于执行第五方面及其可能的实施方式中的任一方法,或者用于执行第六方面及其可能的实施方式中的任一方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序被执行时,使得通信装置执行上述第一方面及其可能的实施方式中的任一方法,或者用于执行第二方面及其可能的实施方式中的任一方法,或者用于执行第三方面及其可能的实施方式中的任一方法,或者用于执行第四方面及其可能的实施方式中的任一方法,或者用于执行第五方面及其可能的实施方式中的任一方法,或者用于执行第六方面及其可能的实施方式中的任一方法。
附图说明
图1是适用于本申请实施例的移动通信系统的架构示意图;
图2是BWP切换示意图;
图3是本申请提供的通信的方法的示意性交互图;
图4是单载波场景下的BWP切换与数据传输示意图;
图5是单载波场景下的BWP切换与数据传输另一示意图;
图6是多载波场景下的BWP切换与数据传输示意图;
图7是多载波场景下的BWP切换与数据传输另一示意图;
图8是多载波场景下的BWP切换与数据传输再一示意图;
图9是多载波场景下的BWP切换与数据传输再一示意图;
图10是单载波场景下的BWP切换与数据传输再一示意图;
图11是本申请提供的通信方法的示意图;
图12是本申请提供的调度时序关系示意图;
图13是本申请提供的通信方法的示意图;
图14是本申请提供的调度时序关系示意图;
图15是本申请提供的一种通信装置的示意性框图;
图16是本申请提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、第五代(5th Generation,5G)移动通信系统中的新无线(New Radio,NR)以及未来的移动通信系统等。
图1是适用于本申请实施例的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接 入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
本申请实施例中的无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点,还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,还可以是中继站、车载设备、可穿戴设备以及未来演进的PLMN网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。
本申请实施例中的终端设备也可以称为终端Terminal、终端设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)只是作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
首先,对本申请实施例中用于通信的时域资源进行简单说明。
在本申请实施例中,网络设备和终端设备用于通信的时域资源在时域上可以划分为多个时间单元。多个时间单元可以是连续的,也可以是某些相邻的时间单元之间有一定的时间间隔,本申请实施例并未特别限定。时间单元可以是包括用于上行数据传输和/或下行数据传输的时间单元。在本申请的实施例中,对一个时间单元的长度不做限定例如,1个时间单元可以是一个或多个子帧;或者,也可以是一个或多个时隙(slot);或者,也可以是一个或多个符号。在本申请的实施例中,符号也称为时域符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分复用(single carrier-frequency division multiplexing,SC-FDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。在本申请实施例中,对于多个时间单元来说,多个时间单元在时域上是存在时序关系的,且任意两个时间单元对应的时间长度可以相同也可以不同。
下面,为了便于理解,对本申请实施例中涉及的带宽部分(bandwidth part,BWP)进行介绍。
BWP是指网络设备在一个上行载波或者下行载波中为终端设备配置的一组连续的物理资源块(physical resource block,PRB)。网络设备可以为终端设备配置多个BWP,但是在某一时间单元上,只能激活一个BWP,相应的数据的接收和发送只能在对应的BWP上进行。其中,终端设备从一个BWP切换到另一个BWP上是激活BWP的一种途径,如图2所示,在t0~t1对应的时间单元内,终端设备工作在BWP#1上,在t2~t3对应的时间单元内,终端设备工作在BWP#2上,即在t1~t2对应的时间单元内,终端设备从BWP#1切换到了BWP#2上,在t4~t5对应的时间单元内,终端设备工作在BWP#3上,即在t3~t4对应的时间单元内,终端设备从BWP#2切换到了BWP#3上。在BWP切换期间,现有协议规定终端设备在此期间不能接收网络设备发送的信息,也不能向网络设备发送任何信息。
在这种情况下,对于时延要求比较高的业务,例如,URLLC业务,由于在BWP切换期间不允许终端设备进行任何传输,则不能满足URLLC业务对低时延的需求。
有鉴于此,本申请实施例提供了一种通信的方法,以期能够满足URLLC业务对低时延的需求。
以下,结合图3至图10,对本申请实施例提供的通信的方法进行详细说明。
图3是本申请实施例提供的通信的方法200的示意性交互图。下面,对方法200的每个步骤进行详细说明。
在本申请实施例中,以终端设备和网络设备作为执行方法200的执行主体为例,对方法200进行说明。作为示例而非限定,执行方法200的执行主体也可以是对应终端设备的芯片和对应网络设备的芯片。
在S210中,网络设备在第n个时间单元上向终端设备发送调度信息#1(即,第一调度信息的一例),调度信息#1指示该终端设备在第n+k个时间单元之前将激活的BWP从BWP#1(即,第一BWP的一例)切换到BWP#2(即,第二BWP的一例),n、k均为正整数。相应地,终端设备在第n个时间单元上接收来自网络设备的调度信息#1。
换句话说,网络设备向终端设备发送调度信息#1,调度信息#1指示终端设备执行 BWP切换命令。例如,调度信息#1中可以包括BWP#2索引,以指示终端设备将激活的BWP从BWP#1(即当前激活的BWP)切换到BWP#2。
可选的,调度信息#1也可以不指示BWP切换完成的时间。上述k的取值由BWP切换所需要的时间确定,BWP切换所需要的时间由终端设备根据其自身的能力上报给网络设备,从而终端设备和网络设备可以确知BWP切换完成的时间;或者,BWP切换所需要的时间可以由协议预定义。在这种实施方式中,网络设备在第n个时间单元上向终端设备发送调度信息#1指示将激活的BWP从BWP#1切换到BWP#2。例如,调度信息#1中包括BWP#2索引,以指示终端设备将激活的BWP从BWP#1(即当前激活的BWP)切换到BWP#2。
在S220中,网络设备向终端设备发送调度信息#2(即,第二调度信息的一例),调度信息#2指示终端设备在时域资源#1(即,第一时域资源的一例)上发送数据#1(即,第一数据的一例)或者接收数据#1。相应地,终端设备接收来自网络设备的调度信息#2。
在S230中,终端设备根据时域资源#1与时域资源#2(即,第二时域资源的一例)是否重叠,确定是否将激活的BWP从BWP#1切换到BWP#2,其中,时域资源#2为第n个时间单元与第n+k个时间单元之间的时域资源。需要说明的是,第n个时间单元与第n+k个时间单元之间的时域资源可以是第n个时间单元与第n+k个时间单元之间包括第n个时间单元与第n+k个时间单元在内的时域资源,即从第n个时间单元到第n+k个时间单元的时域资源;也可以是第n个时间单元与第n+k个时间单元之间不包括第n个时间单元与第n+k个时间单元在内的时域资源,即从第n+1个时间单元到第n+k-1个时间单元的时域资源;还可以是第n个时间单元与第n+k个时间单元之间只包括第n个时间单元与第n+k个时间单元中的一个的时域资源,即从第n个时间单元到第n+k-1个时间单元的时域资源,或从第n+1个时间单元到第n+k个时间单元的时域资源。
为了与终端设备的行为保持一致,相应地,网络设备也可以按照S230中的描述,确定是否将激活的BWP从BWP#1切换到BWP#2。此时方法200还可以包括S240。
在S240中,网络设备根据时域资源#1与时域资源#2是否重叠,确定是否将激活的BWP从BWP#1切换到BWP#2,其中,时域资源#2为第n个时间单元与第n+k个时间单元之间的时域资源。
终端设备在接收到调度信息#1与调度信息#2后,可以根据时域资源#1与时域资源#2是否重叠,确定是否执行BWP切换命令。
当时域资源#1与时域资源#2部分重叠或完全重叠时,终端设备则不将激活的BWP从BWP#1切换到BWP#2。换句话说,终端设备将激活的BWP维持在BWP#1不改变。此外,当终端设备没有执行BWP切换命令时,终端设备还可以执行调度信息#2,在BWP#1上的时域资源#1上发送数据#1或者接收数据#1。
当时域资源#1与时域资源#2不重叠时,终端设备则将激活的BWP从BWP#1切换到BWP#2。换句话说,终端设备将激活的BWP切换至BWP#2。此外,终端设备在完成BWP切换后,还可以执行调度信息#2,在BWP#2上的时域资源#1上发送数据#1或者接收数据#1。
需要说明的是,当调度信息#2指示终端设备在时域资源#1上发送数据#1,在确定时域资源#1与时域资源#2是否重叠时,还需要结合时间提前量(timing advance,TA) 进行确定,只有在时域资源#1和时域资源#2之间的间隔不小于TA,或者,不小于TA与射频切换时间长度的总和时,才能确定时域资源#1与时域资源#2不重叠。TA是指终端设备发送数据#1时的时间提前量,可以由网络设备向终端设备指示,射频切换时间长度是终端设备切换射频时需要的时间长度,该时间长度可以基于协议确定。
还需要说明的是,调度信息#2可以是承载在PDCCH上的控制信息(例如,下行控制信息(downlink control information,DCI)),也可以是高层信令,例如,高层信令用于为上行调度分配配置授权(configured grant),即通知终端设备使用高层信令事先配置的时域资源#1发送数据#1,或者,高层信令用于为下行调度配置半持续调度(semi-persistent scheduling,SPS),即通知终端设备使用高层信令事先配置的某一个周期内的时域资源(例如,时域资源#1)接收数据#1。
还需要说明的是,如果终端设备确定执行BWP切换命令,在进行BWP切换时,BWP切换所需的时间长度可以包括d个时间单元,其中,d为小于或等于k+1的正整数,BWP切换的起始时刻位于时域资源#2上,d的取值与BWP切换的起始时刻可以由网络设备向终端设备指示,或者,可以由终端设备与网络设备协商确定,或者,基于协议确定。
因此,基于上述技术方案,当时域资源#1与时域资源#2部分重叠或者完全重叠时,优先在时域资源#1上接收或者发送与URLLC业务相关的数据,从而降低在时域资源#1与时域资源#2重叠的情况下优先执行BWP切换命令对URLLC业务的时延造成的影响,进而满足URLLC业务对低时延的需求。
下面对本申请实施例提供的通信的方法200分场景进行详细描述。
场景#1单载波场景
如图4所示,终端设备在第n个时间单元(例如,slot#n的符号#0)上接收到调度信息#1,例如,调度信息#1指示终端设备在第n+k个时间单元(例如,slot#(n+1))之前完成BWP切换,调度信息#1中可以包括BWP#2的索引。此外,终端设备在slot#n的符号#1上接收到调度信息#2,调度信息#2用于调度URLLC业务,例如,调度信息#2指示终端设备在slot#(n+1)(例如,时域资源#1)上发送与URLLC业务相关的数据(例如,数据#1)。
假设BWP切换的起始时刻为slot#n的符号#3,终端设备结合d的取值确定BWP切换的完成时刻为slot#(n+1)上的最后一个符号,可以看出,此时终端设备发送数据#1与BWP切换发生了资源重叠,终端设备可以不执行BWP切换命令,即终端设备将激活的BWP维持在BWP#1不改变,并在BWP#1上的slot#(n+1)上发送与URLLC业务相关的数据。
如图5所示,终端设备在slot#n的符号#0上接收到调度信息#1,例如,调度信息#1指示终端设备在slot#(n+1)之前完成BWP切换,调度信息#1中可以包括BWP#2的索引。此外,终端设备在slot#n的符号#1上接收到调度信息#2,调度信息#2用于调度URLLC业务,例如,调度信息#2指示终端设备在slot#(n+3)上发送与URLLC业务相关的数据。
假设BWP切换的起始时刻为slot#n的符号#3,终端设备结合d的取值确定BWP切换的完成时刻为slot#(n+1)上的最后一个符号,可以看出,此时终端设备发送数据 #1与BWP切换并没有发生资源重叠,终端设备可以执行BWP切换命令,即终端设备将激活的BWP从BWP#1切换至BWP#2,并在BWP#2上的slot#(n+3)上发送与URLLC业务相关的数据。
场景#2多载波场景(以包括两个载波(例如,载波#1与载波#2)的场景为例进行说明)。
如图6所示,假设配置了两个载波(例如,载波#1与载波#2),载波#1与载波#2属于同一个频段,其中,载波#1工作在BWP#1上,载波#2工作在BWP#3上。终端设备在载波#1上的第n个时间单元(例如,slot#n的符号#0)上接收到调度信息#1,例如,调度信息#1指示终端设备在载波#1上的第n+k个时间单元(例如,slot#(n+1))之前完成BWP切换,调度信息#1中可以包括BWP#2的索引。此外,终端设备在载波#1上的slot#n的符号#1上接收到调度信息#2,调度信息#2用于调度URLLC业务,例如,调度信息#2指示终端设备在载波#2上的时域资源#1(例如,slot#(n+1))上发送与URLLC业务相关的数据。
假设BWP切换的起始时刻为slot#n的符号#3,终端设备结合d的取值确定BWP切换的完成时刻为slot#(n+1)上的最后一个符号,可以看出,此时终端设备在载波#2上发送数据#1与在载波#1上进行BWP切换发生了资源重叠,终端设备可以在载波#1上不执行BWP切换命令,即终端设备在载波#1上将激活的BWP维持在BWP#1不改变,并在载波#2上的BWP#3上的slot#(n+1)上发送与URLLC业务相关的数据。
需要说明的是,下文中出现的载波#1与载波#2同图6中关于载波#1与载波#2的说明,为了简洁,后续不再赘述。
如图7所示,终端设备在载波#1上的第n个时间单元(例如,slot#n的符号#0)上接收到调度信息#1,例如,调度信息#1指示终端设备在载波#1上的第n+k个时间单元(例如,slot#(n+1))之前完成BWP切换,调度信息#1中可以包括BWP#2的索引。此外,终端设备在载波#1上的slot#n的符号#1上接收到调度信息#2,调度信息#2用于调度URLLC业务,例如,调度信息#2指示终端设备在载波#2上的时域资源#1(例如,slot#(n+3))上发送与URLLC业务相关的数据。
假设BWP切换的起始时刻为slot#n的符号#3,终端设备结合d的取值确定BWP切换的完成时刻为slot#(n+1)上的最后一个符号,可以看出,此时终端设备在载波#2上发送数据#1与在载波#1上进行BWP切换并没有发生资源重叠,终端设备可以在载波#1上执行BWP切换命令,即终端设备将载波#1上将激活的BWP从BWP#1切换至BWP#2,并在载波#2上的BWP#3上的slot#(n+3)上发送与URLLC业务相关的数据。
上述图6与图7是针对调度信息#1与调度信息#2在同一载波(例如,载波#1)上发送的情况进行说明的,下面结合图8与图9对调度信息#1与调度信息#2在不同载波上发送的情况进行说明。
如图8所示,终端设备在载波#1上的第n个时间单元(例如,slot#n的符号#0)上接收到调度信息#1,例如,调度信息#1指示终端设备在载波#1上的第n+k个时间单元(例如,slot#(n+1))之前完成BWP切换,并且调度信息#1中包括BWP#2的索引。此外,终端设备在载波#2上的slot#n的符号#1上接收到调度信息#2,调度信息#2用于调度URLLC业务,例如,调度信息#2指示终端设备在载波#2上的时域资源#1(例如, slot#(n+1))上发送与URLLC业务相关的数据。
假设BWP切换的起始时刻为slot#n的符号#3,终端设备结合d的取值确定BWP切换的完成时刻为slot#(n+1)上的最后一个符号,可以看出,此时终端设备在载波#2上发送数据#1与在载波#1上进行BWP切换发生了资源重叠,终端设备可以在载波#1上不执行BWP切换命令,即终端设备在载波#1上将激活的BWP维持在BWP#1不改变,并在载波#2上的BWP#3上的slot#(n+1)上发送与URLLC业务相关的数据。
如图9所示,终端设备在载波#1上的第n个时间单元(例如,slot#n的符号#0)上接收到调度信息#1,例如,调度信息#1指示终端设备在载波#1上的第n+k个时间单元(例如,slot#(n+1))之前完成BWP切换,调度信息#1中可以包括BWP#2的索引。此外,终端设备在载波#2上的slot#n的符号#1上接收到调度信息#2,调度信息#2用于调度URLLC业务,例如,调度信息#2指示终端设备在载波#2上的时域资源#1(例如,slot#(n+3))上发送与URLLC业务相关的数据。
假设BWP切换的起始时刻为slot#n的符号#3,终端设备结合d的取值确定BWP切换的完成时刻为slot#(n+1)上的最后一个符号,可以看出,此时终端设备在载波#2上发送数据#1与在载波#1上进行BWP切换并没有发生资源重叠,终端设备可以在载波#1上执行BWP切换命令,即终端设备在载波#1上将激活的BWP从BWP#1切换至BWP#2,并在载波#2上的BWP#3上的slot#(n+3)上发送与URLLC业务相关的数据。
在方法200中,调度信息#1还可以指示终端设备在时域资源#3(即,第三时域资源的一例)上发送数据#2(即,第二数据的一例)或者接收数据#2,即调度信息#1既指示终端设备将激活的BWP从BWP#1切换到BWP#2,又指示终端设备在时域资源#3上发送数据#2或者接收数据#2,换句话说,调度信息#1指示终端设备在BWP#2上的时域资源#3上发送数据#2或者接收数据#2。
当终端设备没有将BWP从BWP#1切换到BWP#2时,即激活的BWP还维持在BWP#1上没有改变,终端设备可以不在BWP#1上的时域资源#3上发送数据#2或者接收数据#2,即,终端设备放弃发送数据#2或者接收数据#2。
例如,在多载波场景下,调度信息#1是终端设备在载波#1上的slot#n的符号#0上接收到的,调度信息#1既指示终端设备在载波#1上将激活的BWP从BWP#1切换到BWP#2,又指示终端设备在载波#1上的slot#(n+5)(例如,时域资源#3)上接收与增强型移动宽带(enhanced mobile broadband,eMBB)业务相关的数据(例如,数据#2),换句话说,调度信息#1指示终端设备在载波#1的BWP#2上的slot#(n+5)上接收与eMBB业务相关的数据。
如果终端设备没有在载波#1上将激活的BWP从BWP#1切换到BWP#2,则终端设备可以不在载波#1的BWP#1上的slot#(n+5)上接收与eMBB业务相关的数据,即,终端设备放弃在载波#1的BWP#1上的slot#(n+5)上接收与eMBB业务相关的数据。
在多载波场景下,对于属于同一频段的载波#1与载波#2而言,当载波#1上的时域资源#2与载波#2上时域资源#1重叠时,此时,尽管载波#1与载波#2为不同载波,但由于载波#1与载波#2属于同一频段,因此,在载波#1上的时域资源#2上执行BWP切换命令会导致载波#2上的时域资源#1上的数据#1的接收中断或者发送中断。基于上述技术方案,通过在载波#1上的时域资源#2与载波#2上的时域资源#1部分重叠或者完全重 叠时,放弃在载波#1上的时域资源#2执行BWP的切换命令,转而在载波#2上的时域资源#1上发送或者接收与URLLC业务相关的数据,即,在载波#1上的时域资源#2与载波#2上的时域资源#1部分重叠或者完全重叠时,优先在载波#2上的时域资源#1上发送或者接收与URLLC业务相关的数据,从而降低在载波#1上的时域资源#2与载波#2上的时域资源#1重叠的情况下优先执行BWP切换命令对URLLC业务的时延造成的影响,进而满足URLLC业务对低时延的需求。
在本申请实施例中,为了满足URLLC业务对低时延的需求,本申请实施例还提供了另外一种通信的方法,下面对该方法进行说明。
为了避免上述时域资源#1与时域资源#2部分重叠或者全部重叠,网络设备可以在BWP切换完成之后调度URLLC业务,相应地,终端设备可以在BWP切换完成之后启动URLLC业务的调度信息的接收,从而降低BWP切换对URLLC业务的影响。
此外,网络设备与终端设备可以事先约定在BWP切换完成之后仅调度URLLC业务,从而使得终端设备在BWP切换完成之后仅对URLLC业务的控制信道进行检测,不需要检测其他业务(例如,eMBB业务)的控制信道,从而还可以进一步节省终端设备的功耗。
例如,如图10所示,终端设备在第n个时间单元(例如,slot#n的符号#0)上接收到调度信息#1,例如,调度信息#1指示终端设备在slot#(n+5)上接收与eMBB业务相关的数据,并且调度信息#1还指示终端设备在第n+k个时间单元(例如,slot#(n+1))之前完成BWP切换,调度信息#1中可以包括BWP#2的索引。
终端设备在slot#(n+1)的最后一个符号之前完成了BWP切换,在BWP切换完成之前,终端设备没有接收到调度URLLC业务的调度信息#2。按照与网络设备的约定,终端设备在BWP切换完成之后才会启动调度信息#2的接收,例如,终端设备在slot#(n+2)的最后一个符号上接收到了调度信息#2,调度信息#2指示终端设备在slot#(n+3)接收与URLLC业务相关的数据。由于在BWP切换完成之后网络设备才有可能发送调度信息#2,因此,BWP切换不会对URLLC业务造成影响。
此外,为了降低BWP切换对URLLC业务造成的影响,即为了满足URLLC业务对低时延的需求,本申请实施例还提供了另外一种通信的方法,下面对该方法进行说明。
方法#1
对于处于支持URLLC的服务小区的终端设备,其可以忽略所有来自网络设备的BWP切换命令,例如,网络设备在配置支持URLLC的服务小区时,可使得协议中的processingType2Enabled的取值为TRUE,则表示该服务小区支持URLLC业务。
具体而言,对于处于支持URLLC的服务小区的终端设备,其可以忽略承载在DCI中的BWP切换命令的字段信息;或者,终端设备可以忽略基于定时器的BWP切换命令或者不启用用于BWP切换的定时器。
上述用于BWP切换的定时器,是指在一定时间长度内(该时间长度可以由网络设备配置),如果终端设备没有收到来自网络设备的调度信息,则终端设备会切换到默认的BWP上。
上述基于定时器的BWP切换命令,是指如果终端设备在定时器启动后的一定时间长度内,没有收到来自网络设备的调度信息,则终端设备也不会切换到默认的BWP上。
示例性的,当网络设备给终端设备发送小区参数配置信息或者BWP参数配置信息时,该参数配置信息中可以包括BWP切换使能或者去使能的指示。当小区或者BWP支持高优先级业务的数据传输时,将BWP切换去使能。当BWP切换去使能(disabled)时,则无论是网络设备还是终端设备,均忽略BWP切换指示,例如,忽略基于调度信令的BWP切换指示,不启动用于BWP切换的定时器。
方法#2
终端设备仅执行用于调度URLLC业务的DCI所指示的BWP切换命令,忽略用于调度eMBB业务的DCI所指示的BWP切换。其中,终端设备可以通过以下方法识别用于调度URLLC业务的DCI:
a,利用无线网络临时标识(radio network temporary identity,RNTI)来识别用于调度URLLC业务的DCI,例如,通过调制和编码方案-RNTI(modulation and coding scheme-RNTI,MCS-RNTI)来识别。
b,根据承载用于调度URLLC业务的DCI的控制资源集合(control resource set,CORESET),或者搜索空间集合来识别用于调度URLLC业务的DCI。
c,通过在DCI中使用若干比特(bit)来指示用于调度URLLC业务的DCI与用于调度eMBB业务的DCI。此处的bit可以是预留比特或者新增的比特,本申请实施例对此不作特别限定。
在本申请实施例中,为了满足高优先级的业务数据、控制信令或信号的需求,本申请实施例还提供了另外一种通信方法,使得终端设备和网络设备在完成BWP切换之后可以及时进行高优先级的业务数据、控制信令或信号的传输。在本申请中的高优先级的业务数据可以是URLLC的业务数据,也可以是其它高优先级的业务数据。高优先级的控制信令可以是网络设备发送给终端设备的抢占指示(pre-emption indication,PI),指示某些时频资源被高优先级的业务数据或信令使用,而没有在这些时频资源上给这个终端设备发送数据。高优先级的控制信令还可以是网络设备发送给终端设备的上行取消指示(uplink cancel indication,UL CI),用于指示在一些时频资源上不发送数据、信令或信号,或者用于指示取消数据、信令或信号的发送。高优先级的控制信令也可以是调度高优先级业务数据的上行调度信令或下行调度信令,还可以是高优先级业务数据对应的混合自动重传请求确认(hybrid automatic repeat request-acknowledgment,HARQ-ACK)信息。高优先级的控制信令还可以是高优先级业务数据的调度请求(scheduling request,SR),用于终端设备向网络设备请求调度信息;或者,可以是终端设备向网络设备发送的缓冲区状态报告(buffer status report,BSR)。高优先级的信号可以是参考信号。
下面对图11所示的通信方法进行详细说明。可以理解的是,该方法的执行主体可以是终端设备和网络设备,也可以是终端设备和网络设备中的模块,如芯片。
S310,网络设备在第四时域资源上向终端设备发送第三调度信息,第三调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP。对应的终端设备在第四时域资源上接收来自网络设备的第三调度信息。可选的,第三调度信息包括第二BWP的指示信息,例如,索引。
第三调度信息还指示对第三数据进行调度,例如,指示终端设备在第五时域资源上接收第三数据,或指示终端设备在第五时域资源上发送第三数据。其中,第五时域资源 的起始时刻可以晚于第四时域资源的结束时刻。可选的,终端设备通过PUSCH发送第三数据,或者通过PDSCH接收第三数据。
可以理解的是,第一BWP和第二BWP是同一个载波(或小区)内的两个不同的BWP。
S320,网络设备和终端设备将激活BWP从第一BWP切换到第二BWP。
在一种实现方式中,终端设备和网络设备可以根据终端设备的BWP切换能力,确定BWP切换的完成时间。在确定BWP切换已经完成的前提下,网络设备可以及时对终端设备进行调度,从而能够确保高优先级业务数据、信令或信号被及时传输。例如,网络设备根据终端设备的BWP切换能力确定终端设备已经完成了BWP切换之后,网络设备在第六时域资源上向终端设备发送第四调度信息。
S330,网络设备在第六时域资源上向终端设备发送第四调度信息。对应的,终端设备在第六时域资源上接收来自网络设备的第四调度信息。
其中,第四调度信息指示对第四数据进行调度,例如,指示终端设备在第七时域资源上接收第四数据,或指示终端设备在第七时域资源上发送第四数据。第六时域资源的起始时刻晚于第四时域资源的起始时刻,第七时域资源的起始时刻早于第五时域资源的起始时刻。这种场景,我们也称为乱序(out of order)传输场景。在第六时域资源的起始时刻之前,终端设备的激活BWP已经切换到第二BWP。可选的,终端设备通过PUSCH发送第四数据,或者通过PDSCH接收第四数据。
S340,终端设备在第七时域资源上接收第四数据,对应的,网络设备在第七时域资源上发送第四数据。或者,终端设备在第七时域资源上发送第四数据,对应的,网络设备在第七时域资源上接收第四数据。
可以理解的是,这里的第四数据可以是在新的激活的BWP上发送的,即是在第二BWP上发送的。
S350,终端设备在第五时域资源上接收第三数据,对应的,网络设备在第五时域资源上发送第三数据。或者,终端设备在第五时域资源上发送第三数据,对应的,网络设备在第五时域资源上接收第三数据。
可以理解的是,这里的第三数据是在新的激活的BWP上发送的,即是在第二BWP上发送的。可选的,第四数据的优先级高于第三数据的优先级。
可以理解的是,只有当终端设备支持上述乱序传输场景,终端设备才能执行S350。如果终端设备对数据传输的场景没有限制,那么终端设备可以执行S350。如果终端设备对数据传输的场景有限制,那么终端设备可以根据该终端设备的能力和/或调度时序关系确定是否执行S350。如果根据调度时序关系判断该数据传输为乱序传输场景,而该终端不支持乱序传输场景,那么终端设备放弃对第三数据的接收或放弃对第三数据的发送。如果根据调度时序关系判断该数据传输为顺序传输场景,则执行S350。
下面以第四时域资源为slot#n上的符号#0,第五时域资源为slot#(n+5),第六时域资源为slot#(n+3)上的符号#0,第七时域资源为slot#(n+4)为例对图11中的调度过程进行描述。具体的调度时序关系如图12所示。
网络设备在slot#n的符号#0上发送第三调度信息指示终端设备在slot#(n+5)上发送第三数据,同时指示终端设备将激活BWP切换到第二BWP。网络设备根据终端设备的 BWP切换能力,可以确定在slot#(n+3)的符号#0之前,终端设备已经完成了BWP的切换。网络设备在slot#(n+3)之前收到了终端设备第四数据的调度请求,而且第四数据的优先级高于第三数据的优先级,因此,网络设备在slot#(n+3)的符号#0上发送第四调度信息指示终端设备在slot#(n+4)上通过PUSCH发送第四数据。终端设备在slot#n的符号#0上接收第三调度信息,执行BWP切换命令。终端设备在完成BWP切换后,对下行控制信令进行监测,在slot#(n+3)的符号#0监测到第四调度信息后,在slot#(n+4)上通过PUSCH向网络设备发送第四数据。
可以理解的是,上述第四调度信息和第四数据可以是都在第二BWP上发送的;也可以是第四调度信息和第四数据中的一个在第二BWP上发送,而另一个在其它载波的激活BWP上发送。如果终端设备支持在一个载波上激活多个BWP,那么可以是第四调度信息和第四数据中的一个在第二BWP上发送,而另外一个在该载波上除第一BWP和第二BWP之外的另外一个BWP上发送。
下面对如图13所示的方法进行详细说明。可以理解的是,该方法的执行主体可以是终端设备和网络设备,也可以是终端设备和网络设备中的模块,如芯片。
S410,网络设备在第四时域资源上向第一终端设备发送第三调度信息,第三调度信息指示第一终端设备将激活的BWP从第一BWP切换到第二BWP。对应的第一终端设备在第四时域资源上接收来自网络设备的第三调度信息。可选的,第三调度信息包括第二BWP的指示信息,例如,索引。
第三调度信息还指示第一终端设备在第五时频资源上发送第三数据。第五时频资源对应的时域资源为第五时域资源。其中,第五时域资源的起始时刻晚于第四时域资源的结束时刻。可选的,第一终端设备通过PUSCH发送第三数据。
可以理解的是,第一BWP和第二BWP是同一个载波(或小区)内的两个不同的BWP。
S420,网络设备和第一终端设备将激活BWP切换到第二BWP。
在一种实现方式中,第一终端设备和网络设备可以根据第一终端设备的BWP切换能力,确定BWP切换的完成时间。在确定BWP切换已经完成的前提下,网络设备可以及时对第一终端设备进行调度,从而能够确保高优先级业务数据、信令或信号被及时传输。例如,网络设备根据终端设备的BWP切换能力确定终端设备已经完成了BWP切换之后,网络设备在第六时域资源上向第一终端设备发送上行取消指示。
S430,网络设备在第六时域资源上向第一终端设备发送第六调度信息。对应的,第一终端设备在第六时域资源上接收来自网络设备的第六调度信息。
其中,第六调度信息指示第一终端设备取消在第五时频资源上发送第三数据。第六时域资源的起始时刻晚于第四时域资源的起始时刻,且早于第五时域资源的起始时刻。可以理解的是,在第六时域资源的起始时刻之前,终端设备的激活BWP已经切换到第二BWP。
第六调度信息可以是显示指示取消第三数据的发送。例如,第六调度信息包括取消指示字段,指示取消第三数据的发送。进一步的,第六调度信息还可以包括第一终端设备的识别号和混合自动重传请求(hybrid automatic repeat request,HARQ)进程号中的至少一个。
第六调度信息也可以是隐式指示取消第三数据的发送。例如,第六调度信息中包括第十时频资源的信息,指示第十时频资源中的数据传输被取消。第十时频资源与第五时频资源部分重叠或完全重叠。终端设备收到第六调度信息后,根据第十时频资源与第五时频资源是否有重叠,进一步确定是否要取消第三数据的发送或者取消部分第三数据的发送。当第十时频资源包括完整的第五时频资源时,取消全部的第三数据的发送。当第十时频资源包括部分第五时频资源时,取消与第十时频资源重叠的那部分时频资源上所承载的第三数据的发送。当第五时频资源与第十时频资源完全不重叠时,不取消第三数据的发送。
第六调度信息也可以称为UL CI。当UL CI采用隐式指示的方式时,CI的具体设计可以参考3GPP技术规范(technical specification,TS)38.213V15.7.0中第11.2节传输中断指示(interrupted transmission indication,ITI)中的相关描述,ITI也称为PI。网络设备向终端设备发送CI,CI指示了没有数据传输的时频资源信息。终端设备收到CI后,通过判断CI指示的时频资源与调度的用于数据传输的时频资源是否有重叠,进而确定用于数据传输的时频资源是否被抢占或是否有数据传输被取消。
S440,可选的,网络设备在第八时域资源上向第二终端设备发送第五调度信息。对应的,第二终端设备在第八时域资源上接收来自网络设备的第五调度信息。
其中,第五调度信息指示第二终端设备在第九时频资源上发送第五数据,第九时频资源与第五时频资源部分重叠或完全重叠。第九时频资源对应的时域资源为第九时域资源。第八时域资源的起始时刻晚于第六时域资源的起始时刻,且早于第九时域资源的起始时刻。可选的,第二终端设备通过PUSCH发送第五数据。
S450,第二终端设备在第九时频资源上向网络设备发送第五数据。对应的,网络设备在第九时频资源上接收来自第二终端设备的第五数据。
可以理解的是,第一终端设备取消了在第五时频资源上发送第三数据。对应的,网络设备也不会再在第五时频资源上接收第三数据,而是在第九时频资源上接收来自第二终端设备的第五数据。
可以理解的是,这里的第五数据是在新的激活的BWP上发送的,即是在第二BWP上发送的。可选的,第五数据的优先级高于第三数据的优先级。
下面以第四时域资源为slot#n上的符号#0,第五时域资源为slot#(n+5),第六时域资源为slot#(n+3)上的符号#0,第八时域资源为slot#(n+3)的符号#13,且第九时频资源与第五时频资源完全重叠为例对图13中的调度过程进行描述。具体的调度时序关系如图14所示。
网络设备在slot#n的符号#0上发送第三调度信息指示第一终端设备在slot#(n+5)上发送第三数据,同时指示第一终端设备将激活BWP切换到第二BWP。网络设备根据第一终端设备的BWP切换能力,可以确定在slot#(n+3)的符号#0之前,第一终端设备已经完成了BWP的切换。在slot#(n+3)之前,网络设备收到了第二终端设备SR,请求网络设备给第二终端设备分配调度资源,而在slot#(n+5)上已经没有可用资源了,而且第二终端设备的上行数据的优先级高于第一终端设备的上行数据。因此,网络设备在slot#(n+3)的符号#0上发送UL CI指示第一终端设备取消在第五时域资源上发送第三数 据。网络设备在slot#(n+3)的符号#13向第二终端设备发送第五调度信息,指示第二终端设备在第五时域资源上发送第五数据。
第一终端设备在slot#n的符号#0上接收来自网络设备的第三调度信息,执行BWP切换命令。第一终端设备在完成BWP切换后,对下行控制信令进行监测,在slot#(n+3)的符号#0监测到UL CI后,取消在slot#(n+5)上通过PUSCH向网络设备发送第三数据。
第二终端设备在slot#(n+3)的符号#13上接收到来自网络设备的第五调度信息,指示在第五时域资源上发送第五数据。
可以理解的是,上述第五调度信息和第五数据可以是都在第二BWP上发送的;也可以是第五数据在第二BWP上发送,而第五调度信息在其它载波的激活BWP上发送。如果终端设备支持在一个载波上激活多个BWP,那么可以是第五数据在第二BWP上发送,而第五调度信息在该载波上除第一BWP和第二BWP之外的另外一个BWP上发送。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图15和图16为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图15所示,通信装置300包括处理单元310和收发单元320。通信装置300用于实现上述图3、图11或图13中所示的方法实施例中终端设备或网络设备的功能。
当通信装置300用于实现图3所示的方法实施例中终端设备的功能时:收发单元320用于在第n个时间单元接收第一调度信息,第一调度信息指示终端设备将激活的带宽部分BWP从第一BWP切换到第二BWP,n为正整数;收发单元320还用于接收第二调度信息,第二调度信息指示终端设备在第一时域资源上发送第一数据或者接收第一数据。处理单元310用于根据第一时域资源与第二时域资源是否重叠,确定是否将所述激活的BWP从第一BWP切换到第二BWP,其中,第二时域资源为第n个时间单元与第n+k个时间单元之间的时域资源,第n+k个时间单元为终端设备完成BWP切换的时间单元,k为正整数。
当通信装置300用于实现图3所示的方法实施例中网络设备的功能时:收发单元320用于在第n个时间单元发送第一调度信息,第一调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,n为正整数;收发单元320还用于发送第二调度信息,第二调度信息指示终端设备在第一时域资源上发送第一数据或者接收第一数据。处理单元310用于根据第一时域资源与第二时域资源是否重叠,确定是否将激活的BWP从第一BWP切换到第二BWP,其中,第二时域资源为第n个时间单元与第n+k个时间单元之间的时域资源,第n+k个时间单元为终端设备完成BWP切换的时间单元,k为正整数。
当通信装置300用于实现图11所示的方法实施例中终端设备的功能时:收发单元320用于在第四时域资源上接收来自网络设备的第三调度信息,所述第三调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时域资源上接收第三数据。处理单元310用于将所述激活BWP从所述第一BWP切换到所述第二BWP。收发单元320还用于在第六时域资源上接收来自所述网络设备的第四调度信息,所述第四调度信息指示所述终端设备在第七时域资源上接收第四数据。收发单元320还用于在所述第七时域资源上接收来自所述网络设备的所述第四数据。收发单元320还用于在所述第五时域资源上接收来自所述网络设备的所述第三数据。
当通信装置300用于实现图11所示的方法实施例中网络设备的功能时:收发单元320用于在第四时域资源上向终端设备发送第三调度信息,所述第三调度信息指示所述终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时域资源上接收第三数据。处理单元310用于将所述激活BWP从所述第一BWP切换到所述第二BWP。收发单元320还用于在第六时域资源上向所述终端设备发送第四调度信息,所述第四调度信息指示所述终端设备在第七时域资源上接收第四数据。收发单元320还用于在所述第七时域资源上向所述终端设备发送所述第四数据。收发单元320还用于在所述第五时域资源上向所述终端设备发送所述第三数据。
当通信装置300用于实现图13所示的方法实施例中终端设备的功能时:收发单元320用于在第四时域资源上接收来自网络设备的第三调度信息,所述第三调度信息指示终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时频资源上发送第三数据。处理单元310用于在第六时域资源之前,将所述激活BWP从所述第一BWP切换到所述第二BWP。收发单元320还用于在第六时域资源上接收来自所述网络设备的第六调度信息,所述第六调度信息指示所述终端设备取消在所述第五时频资源上发送所述第三数据。
当通信装置300用于实现图13所示的方法实施例中网络设备的功能时:收发单元320用于在第四时域资源上向第一终端设备发送第三调度信息,所述第三调度信息指示所述第一终端设备将激活的BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述第一终端设备在第五时频资源上发送第三数据。处理单元310用于在第六时域资源之前,将所述第一终端设备的激活BWP从所述第一BWP切换到所述第二BWP。收发单元320还用于在所述第六时域资源上向所述第一终端设备发送第六调度信息,所述第六调度信息指示所述第一终端设备取消在所述第五时频资源上发送所述第三数据。
有关上述处理单元310和收发单元320更详细的描述可以直接参考图3、图11或图13所示的方法实施例中相关描述直接得到,这里不加赘述。
如图16所示,通信装置400包括处理器410和接口电路420。处理器410和接口电路420之间相互耦合。可以理解的是,接口电路420可以为收发器或输入输出接口。可选的,通信装置400还可以包括存储器430,用于存储处理器410执行的指令或存储处理器410运行指令所需要的输入数据或存储处理器410运行指令后产生的数据。
当通信装置400用于实现图3、图11或图13所示的方法时,处理器410用于执行上述处理单元310的功能,接口电路420用于执行上述收发单元320的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公 式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (17)

  1. 一种通信方法,其特征在于,包括:
    在第四时域资源上接收来自网络设备的第三调度信息,所述第三调度信息指示终端设备将激活的带宽部分BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述终端设备在第五时频资源上发送第三数据;
    在第六时域资源之前,将所述激活BWP从所述第一BWP切换到所述第二BWP;
    在所述第六时域资源上接收来自所述网络设备的第六调度信息,所述第六调度信息指示所述终端设备取消在所述第五时频资源上发送所述第三数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第六调度信息包括取消指示字段,指示取消所述第三数据的发送。
  3. 根据权利要求1所述的方法,其特征在于,所述第六调度信息包括第十时频资源的信息,指示所述第十时频资源中的数据传输被取消,所述第十时频资源与所述第五时频资源部分重叠或完全重叠。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第三调度信息包括所述第二BWP的索引。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第三调度信息是在所述第一BWP上接收到的;所述第六调度信息是在所述第二BWP上接收到的。
  6. 一种通信方法,其特征在于,包括:
    在第四时域资源上向第一终端设备发送第三调度信息,所述第三调度信息指示所述第一终端设备将激活的带宽部分BWP从第一BWP切换到第二BWP,所述第三调度信息还指示所述第一终端设备在第五时频资源上发送第三数据;
    在第六时域资源之前,将所述第一终端设备的激活BWP从所述第一BWP切换到所述第二BWP;
    在所述第六时域资源上向所述第一终端设备发送第六调度信息,所述第六调度信息指示所述第一终端设备取消在所述第五时频资源上发送所述第三数据。
  7. 根据权利要求6所述的方法,其特征在于,所述第六调度信息包括取消指示字段,指示取消所述第三数据的发送。
  8. 根据权利要求6所述的方法,其特征在于,所述第六调度信息包括第十时频资源的信息,指示所述第十时频资源中的数据传输被取消,所述第十时频资源与所述第五时频资源部分重叠或完全重叠。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第三调度信息包括第二BWP的索引。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述第三调度信息是在所述第一BWP上发送的;所述第六调度信息是在所述第二BWP上发送的。
  11. 根据权利要求6至10中任一项所述的方法,其特征在于,所述方法还包括:
    在第八时域资源上向第二终端设备发送第五调度信息,所述第五调度信息指示所述第二终端设备在第九时频资源上发送第五数据,所述第九时频资源与所述第五时频资源部分重叠或完全重叠。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    在所述第九时频资源上接收来自所述第二终端设备的所述第五数据。
  13. 一种通信装置,包括用于执行如权利要求1至5或6至12中任一项所述方法的模块。
  14. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5或6至12中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至5或6至12中任一项所述的方法。
  16. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,实现如权利要求1至5或6至12中任一项所述的方法。
  17. 一种通信系统,其特征在在于,包括:如权利要求13所述的通信装置和如权利要求14所述的通信装置。
PCT/CN2020/103600 2019-07-22 2020-07-22 通信的方法和通信装置 WO2021013198A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910662696.7 2019-07-22
CN201910662696 2019-07-22
CN201910946340.6A CN112261730B (zh) 2019-07-22 2019-10-30 通信的方法和通信装置
CN201910946340.6 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021013198A1 true WO2021013198A1 (zh) 2021-01-28

Family

ID=74193257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103600 WO2021013198A1 (zh) 2019-07-22 2020-07-22 通信的方法和通信装置

Country Status (1)

Country Link
WO (1) WO2021013198A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062867A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) BANDWIDTH PARTS SWITCHING IN A WIRELESS COMMUNICATION NETWORK
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
WO2019104116A1 (en) * 2017-11-24 2019-05-31 Qualcomm Incorporated Bandwidth part signaling and switching
CN110324846A (zh) * 2018-03-28 2019-10-11 维沃移动通信有限公司 一种上行传输取消指令的监听方法及终端
CN110383925A (zh) * 2018-02-13 2019-10-25 联发科技(新加坡)私人有限公司 用于移动通信中的带宽部分切换操作的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062867A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) BANDWIDTH PARTS SWITCHING IN A WIRELESS COMMUNICATION NETWORK
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
WO2019104116A1 (en) * 2017-11-24 2019-05-31 Qualcomm Incorporated Bandwidth part signaling and switching
CN110383925A (zh) * 2018-02-13 2019-10-25 联发科技(新加坡)私人有限公司 用于移动通信中的带宽部分切换操作的方法和装置
CN110324846A (zh) * 2018-03-28 2019-10-11 维沃移动通信有限公司 一种上行传输取消指令的监听方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG.: "GENERAL CORRECTIONS on TS 38.321,", 3GPP DRAFT; 38321_CR0039R1_(REL-15)_R2-1803854, 9 March 2018 (2018-03-09), XP051414527 *

Similar Documents

Publication Publication Date Title
US11317295B2 (en) Communications method and apparatus
US11343814B2 (en) Slot scheduling method and apparatus
CN112261730B (zh) 通信的方法和通信装置
JP7005759B2 (ja) データ伝送方法、端末装置、およびネットワーク装置
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
TWI740362B (zh) 上行鏈路傳輸之通道存取過程之方法、裝置及存儲介質
JP6807947B2 (ja) リソース管理方法および関連デバイス
CN110062464B (zh) 用于管理非授权频段的信道占用时长的方法和设备
WO2017161502A1 (zh) 用于发送上行控制信息的方法、终端和基站
WO2018027918A1 (zh) 上行信道发送方法和装置
WO2018141267A1 (zh) 一种缓存状态报告的触发方法、装置及系统
CN113647182A (zh) 无线通信的方法和设备
JP2024001272A (ja) Ue支援情報を送信することに関するユーザ装置
KR102501134B1 (ko) 무선 통신들에서의 유연한 다운링크 제어 신호 모니터링
WO2022199525A1 (zh) 一种通信方法及装置
WO2021026841A1 (zh) 调度请求传输的方法和设备
JP7503656B2 (ja) リソース決定方法及び装置
TWI698145B (zh) 處理用於邏輯通道的排程請求的裝置及方法
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2021013198A1 (zh) 通信的方法和通信装置
WO2021208768A1 (zh) 数据传输的方法和装置
WO2022002248A1 (zh) 旁链路传输方法、传输装置和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20842933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20842933

Country of ref document: EP

Kind code of ref document: A1