WO2018082071A1 - 一种参考信号配置方法、训练字段配置方法及装置 - Google Patents

一种参考信号配置方法、训练字段配置方法及装置 Download PDF

Info

Publication number
WO2018082071A1
WO2018082071A1 PCT/CN2016/104787 CN2016104787W WO2018082071A1 WO 2018082071 A1 WO2018082071 A1 WO 2018082071A1 CN 2016104787 W CN2016104787 W CN 2016104787W WO 2018082071 A1 WO2018082071 A1 WO 2018082071A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
reference signal
edmg
configuration information
packet
Prior art date
Application number
PCT/CN2016/104787
Other languages
English (en)
French (fr)
Inventor
刘劲楠
李德建
陈佳民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680090531.1A priority Critical patent/CN109923841B/zh
Priority to PCT/CN2016/104787 priority patent/WO2018082071A1/zh
Priority to EP16920869.1A priority patent/EP3531645B1/en
Publication of WO2018082071A1 publication Critical patent/WO2018082071A1/zh
Priority to US16/401,729 priority patent/US11025466B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a reference signal configuration method, a training field configuration method, and an apparatus.
  • IEEE 802.11ad is the first high-frequency standard defined in the Wireless Local Area Network (WLAN), defined in the millimeter-wave band of 60 GHz. In the middle standard of WLAN below 6 GHz, Orthogonal Frequency Division Multiplex (OFDM) technology is generally used to improve spectral efficiency. IEEE 802.11ad defines four physical layer (PHY) layer modes, including control mode, single carrier (SC) mode, low power single carrier Low Power SC mode, and OFDM mode, of which the first three The physical layer transmission adopts a single carrier mode.
  • PHY physical layer
  • the Directional Multi-Gigabit (DMG) packet defined in IEEE 802.11ad includes a Preamble field, a Header field, and a Data field. If this packet is used for beam optimization training, the training field is also suffixed after the Data field.
  • the preamble field includes the short training field Short Training Field (STF) and Channel Estimation (CE). Field, where STF is used by the receiver to obtain appropriate receive gain, time synchronization, initial carrier frequency offset (CFO) estimation, accurate CFO estimation, and estimation of channel and data demodulation.
  • Header includes multiple fields. It is used to describe the transmission mode of the Data field, and the length of the training field and the type information after the data is indicated.
  • the IEEE 802.11ay Enhanced Directional Multi-gigabit (EDMG) discussion requires enhancements to IEEE 802.11ad DMG to introduce new features such as Channel Bonding and Multiple Input Multiple Output ( Multiple input Multiple Output (MIMO) technology.
  • the structure of the EDMG packet includes L-STF, L-CE, and L-Header indicates the part in order to be compatible with the DMG packet format.
  • the structure of the EDMG packet may also include an EDMG header, an EDMG STF, and an EDMG CE to assist in demodulating the data fields.
  • L-CE needs to distinguish between OFDM mode and SC mode before L-Header, so L-CE uses two different sequences of Gv and Gu, and Gv And the design of the OFDM mode and the SC mode are sequentially distinguished from each other.
  • the design of EDMG CE is based on the design of L-CE, and still includes two different sequences of Gv and Gu.
  • the CE included in each training unit TRN-Unit in the training suffix in the Beam Refinement Protocol (BRP) package also follows the design of L-CE, and still includes two different sequences of Gv and Gu. OFDM and SC modes.
  • the embodiments of the present invention provide a reference signal configuration method, a training field configuration method, and a device, which are used to obtain a reference signal of a zero-dc component, thereby facilitating CE-based channel estimation.
  • an embodiment of the present invention provides a reference signal configuration method, including: first generating a reference signal, where the reference signal includes a first portion and a second portion, the first portion and the second portion have the same length, the first portion of the DC component and the first portion The sum of the DC components of the two-part signal is zero; then an enhanced directional gigabit EDMG packet containing the reference signal is generated; finally, the EDMG packet is transmitted, and it can be seen that since the DC of the reference signal itself is zero, subsequent devices receive the In the EDMG package, the DC offset can be easily estimated, which in turn facilitates CFO and channel estimation.
  • sequences of the first portion and the second portion are in phase sequences, or the sequences of the first portion and the second portion are inverted sequences.
  • the reference signal is used as a channel estimate CE for the EDMG packet.
  • the reference signal is used as a training field for the EDMG packet.
  • the number of TRN subfields in each training unit TRN-Unit is greater than four.
  • orthogonal signals or orthogonal masks are used to distinguish reference signals of different antennas.
  • the reference signal further includes a third portion, the third portion is used as a prefix or suffix of the reference signal, and the length of the third portion is N times the length of the first portion or the length of the second portion, and N is less than 1 Positive number.
  • the sequence of the first part is Gu512*M
  • the sequence of the second part is -Gu512*M
  • the sequence of the first part is Gv512*M
  • the sequence of the second part is -Gv512*M
  • Gu512*M [-Gb128*M,-Ga128*M , Gb128*M, -Ga128*M]
  • Gv512*M [-Gb128*M, Ga128*M, -Gb128*M, -Ga128*M]
  • M represents the number of channels, and M is a positive integer.
  • the sequences of the first portion and the second portion are generated in the frequency domain by the target sequence, and the target sequence does not occupy the DC subcarrier.
  • the target sequence occupies two adjacent subcarrier intervals K*M-1 subcarriers, K is a positive integer power of 2, M represents the number of channels, and M is a positive integer.
  • an embodiment of the present invention provides a training field configuration method, including: first sending configuration information, where the configuration information is used to indicate an enhanced TRN subfield number and an antenna weight vector in an enhanced directional gigabit EDMG packet (Antenna) Weight Vector, AWV), wherein at least one TRN subfield uses the same AWV; then a Beam Optimization Protocol BRP packet configured according to the configuration information is transmitted.
  • AWV enhanced directional gigabit EDMG packet
  • the configuration information is configured through the EDMG Header-A.
  • the configuration information is configured through a MAC frame.
  • the configuration information is determined by the number of streams of simultaneously trained multiple input multiple output MIMO.
  • the present invention provides a reference signal configuration apparatus comprising means for performing the method of the first aspect.
  • the present invention provides a training field configuration apparatus comprising means for performing the method of the second aspect.
  • the present invention provides a reference signal configuration apparatus, the reference signal configuration apparatus includes a processor, and the processor is configured to support the reference signal configuration apparatus to perform one of the first aspects. Refer to the corresponding function in the signal configuration method.
  • the reference signal configuration device can also include a memory coupled to the processor for storing program instructions and data necessary for the reference signal configuration device.
  • the reference signal configuration device can also include a communication interface for the reference signal configuration device to communicate with other devices or communication networks.
  • the present invention provides a training field configuration apparatus, where the training field configuration apparatus includes a processor configured to support the training field configuration apparatus to perform a corresponding one of the training field configuration methods provided by the second aspect.
  • the training field configuration device can also include a memory for coupling with the processor that retains program instructions and data necessary for the training field configuration device.
  • the training field configuration device can also include a communication interface for the training field configuration device to communicate with other devices or communication networks.
  • the present invention provides a computer storage medium for storing computer software instructions for use in the reference signal configuration apparatus provided in the above fifth aspect, comprising a program designed to perform the above aspects.
  • the present invention provides a computer storage medium for storing computer software instructions for use in the training field configuration apparatus provided in the sixth aspect above, comprising a program designed to perform the above aspects.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a reference signal configuration method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a format of a possible EDMG packet according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a training field TRN according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a method for configuring a training field according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a reference signal configuration apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a training field configuration apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the transmitting device and the receiving device may be a station (STA), an access point (AP) or a personal basic service set control node (PBSS Control Point, PCP), and STA means each one.
  • STA station
  • AP access point
  • PCP personal basic service set control node
  • STA means each one.
  • a terminal in a wireless network for example, a handheld device having a wireless connection function, an in-vehicle device, or the like.
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile Internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, pedometers, and the like.
  • APs are generally translated as "wireless access nodes" or “bridges". It mainly acts as a wireless workstation and wired local area in the media access control layer MAC. The bridge of the network.
  • the Enhanced Directional Multi-Gigabit (EDMG) package indicates the packet format defined in the IEEE 802.11ay protocol for the 60 GHz millimeter wave band.
  • Antenna Weight Vector which represents a weight vector, describes the amplitude and phase of the antenna element.
  • BRP Beam Refinement Protocol
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the communication system shown in FIG. 1 includes a basic service set (BSS), and network nodes in the basic service set include an AP and an STA.
  • BSS basic service set
  • IEEE 802.11ad introduces a Personal Basic Service Set (PBSS) and a Personal Basic Service Set Control Node (PBSS).
  • PBSS Personal Basic Service Set
  • PBSS Personal Basic Service Set Control Node
  • Each of the personal basic service sets may include an AP/PCP and a plurality of non-PCP-STAs associated with the AP/PCP.
  • the non PCP STA is simply referred to as a STA.
  • the transmitting device and the receiving device can be either STA or AP/PCP.
  • the transmitting device first generates a reference signal, the reference signal comprising a first portion and a second portion, the first portion and the second portion being of the same length, the sum of the DC component of the first portion and the DC component of the second portion being zero; and then generating the reference The enhanced directional Gigabit EDMG packet of the signal; finally the EDMG packet is sent, and when the subsequent receiving device receives the EDMG packet, the DC offset estimation, CFO or channel estimation is performed according to the reference signal in the EDMG packet, due to the reference signal itself With zero dc, the receiving device can easily estimate the DC offset, which in turn facilitates CFO and channel estimation.
  • FIG. 2 is a schematic flowchart of a method for configuring a reference signal according to an embodiment of the present invention, including a transmitting device and a receiving device.
  • the transmitting device is a reference signal configuration device according to an embodiment of the present invention, and includes the following steps:
  • the transmitting device generates a reference signal, where the reference signal includes a first part and a second part.
  • the first portion and the second portion have the same length, and the sum of the direct current component of the first portion and the direct current component of the second portion is zero.
  • the transmitting device performs complex modulation on the reference signal.
  • the modulation method is preferably ⁇ /2 BPSK modulation.
  • the transmitting device generates an enhanced directional gigabit EDMG packet including the reference signal.
  • the transmitting device sends the EDMG packet.
  • the receiving device receives the EDMG packet, and performs DC offset estimation, CFO or channel estimation according to the reference signal in the EDMG packet.
  • sequence of the first part and the second part is an in-phase sequence, or the sequence of the first part and the second part is an inverted sequence.
  • the reference signal further includes a third portion, the third portion serving as a prefix or a suffix of the reference signal, and the length of the third portion is the length of the first portion or the length of the second portion N times, the N is a positive number less than one.
  • the third part is the prefix of the reference signal
  • the third portion is the cyclic prefix of the first part.
  • the third portion is the reference signal suffix
  • the third portion is the cyclic suffix of the second portion.
  • the length of the third portion is N times the length of the first portion or the length of the second portion.
  • the length of the third portion is consistent with the length of the prefix or suffix of the L-CE in the existing DMG packet. It is 1/4 of the first part or the second part, and may of course be other multiples of the first part or the second part, such as 1/2, which is not limited by the invention.
  • FIG. 3 is a schematic diagram of a format of a possible EDMG packet according to an embodiment of the present invention.
  • the reference signal is used as a channel estimation CE of the EDMG packet and/or used as the Training field for the EDMG package. That is, the reference signal is used as the EDMG-CE shown in FIG. 3 and/or as the CE and/or TRN subfield in the TRN field shown in FIG.
  • FIG. 4 is a schematic structural diagram of a training field TRN according to an embodiment of the present invention.
  • the training field TRN includes two parts: an AGC and a training unit TRN, and the AGC is used by the receiving device to obtain an AGC field of a suitable receiving gain. , including 4N AGC subfields (ie, an integer multiple of 4 AGC subfields).
  • the TRN field includes N training units (TRN-Unit), wherein each TRN-Unit has 1 CE and 4 TRN subfields (TRN subfield).
  • T*N AGC subfields ie, integer multiples of T are AGC subfields).
  • TRN field including N training units (TRN-Unit), where each TRN-Unit has 1 CE and T TRN subfields (TRN) Subfield).
  • TRN-Unit training units
  • TRN-Unit training units
  • TRN-Unit has 1 CE
  • the number T of TRN subfields in each training unit TRN-Unit is greater than four. That is to say, the number of TRN subfields in each TRN-Unit shown in FIG. 4 may be not less than four.
  • the sequence of the first part is Gu512*M
  • the sequence of the second part is -Gu512*M
  • the sequence of the first part is Gv512*M
  • the second part The partial sequence is -Gv512*M
  • the Gu512*M [-Gb128*M, -Ga128*M, Gb128*M, -Ga128*M]
  • the Gv512*M [-Gb128*M, Ga128* M, -Gb128*M, -Ga128*M]
  • the M represents the number of channels, and the M is a positive integer.
  • Ga, Gb represents a pair of Gray complementary sequences
  • Gv or Gu is a sequence consisting of Ga and Gb.
  • Gu1536 [-Gb384, -Ga384, Gb384, -Ga384]
  • Gv1536 [-Gb384, Ga384, -Gb384, -Ga384].
  • Ga, Gb represents a pair of Gray complementary sequences
  • Gv or Gu is a sequence consisting of Ga and Gb. The length of the sequence expands with the number of channels M.
  • Ga256, Gb256 Represents a pair of Gray complementary sequences of length 256.
  • Ga512 and Gb512 represent pairs of Gray complementary sequences of length 512.
  • each transmit antenna employs an orthogonal mask and/or an orthogonal sequence spread.
  • Ga and Gc are orthogonal sequences to each other
  • Gb and Gd are orthogonal sequences to each other.
  • the 2 antennas adopt an orthogonal masking method.
  • two transmit antennas [1, 1] and [1, -1]
  • antenna 1 transmits [CE1, CE1]
  • antenna 2 transmits [CE1, -CE1 ].
  • antenna 1 transmits [CE1, CE1]
  • antenna 2 transmits [CE2, CE2]
  • antenna 3 transmits [CE3, -CE3]
  • antenna 4 transmits [ CE4, -CE4]
  • CE1 and CE2 are composed of orthogonal sequences or other sequences with zero cross-correlation regions (ZCZ, Zero Cross Zone)
  • CE3 and CE4 are composed of the first part and the second partial orthogonal sequence or Other sequences with zero cross-correlation regions (ZCZ, Zero Cross Zone) are formed
  • CE1, CE3 and CE2, CE4 form other sequences with zero cross-correlation regions.
  • a pair of antenna 1, antenna 2 and antenna 3, antenna 4 adopt different orthogonal masks.
  • orthogonal signals or orthogonal masks are used to distinguish reference signals of different antennas.
  • the sequence of the first part and the second part is generated by a target sequence in a frequency domain, and the target sequence does not occupy a DC subcarrier.
  • the target sequence In order to make the time domain peaks smaller and reduce the error caused by the nonlinearity of the power amplifier, the target sequence usually selects a sequence of constant envelopes or a sequence with relatively small peaks.
  • the Fast Fourier Transform (FFT) size of one OFDM symbol is 512, and there are 355 subcarriers in the effective bandwidth.
  • the subcarrier of zero is a DC subcarrier.
  • the target sequence does not occupy the DC subcarrier, that is, the target sequence is zero on the zero subcarrier.
  • the target sequence occupies 354 subcarriers out of 355 subcarriers in the effective bandwidth, and is transformed into the time domain by IFFT (Inverse Fast Fourier Transform, IFFT).
  • IFFT Inverse Fast Fourier Transform
  • the first 256 sample points are the first part, and the last 256 sample points are the second part. Since the target sequence does not occupy the DC subcarrier, the DC component of the signal of the first portion and the second portion is zero. In addition, since the phase noise in the high frequency is relatively large, the subcarrier added to the subcarrier of the zero number can also be set to zero. The subcarriers before and after the subcarriers of zero are also set to zero, that is, the target sequence is modulated and occupies 355-3 subcarriers of the 355 subcarriers in the effective bandwidth, and is transformed into the time domain by IFFT.
  • the OFDM symbol with a plurality of DC components is configured to form the reference signal.
  • the first part is modulated to occupy 354 subcarriers of the 355 subcarriers in the effective bandwidth, and is subjected to IFFT (Inverse Fast Fourier Transform, IFFT) transforms into the time domain.
  • IFFT Inverse Fast Fourier Transform, IFFT
  • the sequence of the first portion and the second portion is an in-phase sequence, or the sequence of the first portion and the second portion is an inverted sequence.
  • the FFT/IFFT points When multiple channels are transmitted, the FFT/IFFT points will expand with the number of channels, expanding to 512*M.
  • the effective bandwidth also increases with the number of channels, but since the guard band between the channel and the channel can also be utilized, the number of subcarriers in the effective bandwidth will be greater than 355*M.
  • the specific number is not limited in the present invention.
  • orthogonal antennas or orthogonal masks can be used to distinguish different antennas.
  • the two adjacent subcarriers occupied by the target sequence are separated by K*M-1 subcarriers, K is a positive integer power of 2, the M represents the number of channels, and the M is a positive integer.
  • the DC offset estimation is: finding a starting point of the reference signal, performing a DC offset DC Offset according to the first part and the second part of the received reference signal, and if the phase is in-phase, adopting the first part and the second part of the receiving reference signal The mean of the weighted sum. If it is inverted, the first part of the received reference signal is subtracted from the weighted sum of the second part.
  • the specific weighting method can adopt the prior art and will not be described here.
  • the CFO estimation method find the starting point of the reference signal, according to the receiving reference signal
  • the first part and the second part are operated to obtain the CFO.
  • Step 1 subtract DC offset from the signal
  • Step 2 Receive the reference signal for demodulation, such as ⁇ /2BPSK at the transmitting end, and demodulate at the receiving end to obtain the original sequence r(n), n
  • the range of values is related to the mode. Assuming a single antenna, single channel mode, n ranges from 1 to 1024 (excluding the length 128 of the third part). If it is a single antenna and the two channels are bound, the value of n ranges from 1 to 1024*2.
  • n ranges from 1 to 1024*4. If it is a single antenna and 4 channels are bound, n ranges from 1 to 1024*4. If it is a single channel, 2 antennas, using orthogonal code expansion, then n ranges from 1 to 1024. With orthogonal mask expansion, then n ranges from 1 to 1024*2.
  • Step 3 Take the first part and the second part to perform correlation operations, such as: receive The first partial point is multiplied by the received conjugate term b1 of the second part, and the angle b2, b2 of b1 is multiplied by the sampling rate, divided by (2* ⁇ *length(r1)), where length(r1) indicates the first The number of sampling points in one part, of which
  • the channel estimation method Step 1: find the starting point of the reference signal, compensate the DC offset; Step 2: compensate the CFO, will estimate the CFO compensation to the received signal, that is, exp(-j*2* ⁇ *CFO* (0: (length(r1)-1))/sample_rate) multiply the point to the received reference signal; Step 3: Obtain the correlation peak on the multipath based on the compensated sequence and the local sequence correlation, for channel estimation in the time domain Or frequency domain channel estimation by fft transform to the frequency domain.
  • the transmitting device first generates a reference signal, the reference signal includes a first portion and a second portion, the lengths of the first portion and the second portion are the same, and the DC components of the signals of the first portion and the second portion are zero.
  • the sequence of the first part and the second part is an in-phase sequence, or the sequence of the first part and the second part is an inverted sequence; then an enhanced directional gigabit EDMG packet containing the reference signal is generated; finally the EDMG packet is sent, followed by
  • the receiving device performs DC offset estimation, CFO or channel estimation according to the reference signal in the EDMG packet. Since the DC of the reference signal itself is zero, the receiving device can conveniently estimate the DC offset, thereby facilitating the DC offset. CFO and channel estimation.
  • FIG. 5 is a flowchart diagram of a method for configuring a training field according to an embodiment of the present invention.
  • the intent is to include a transmitting device and a receiving device.
  • the transmitting device is a training field configuration device according to an embodiment of the present invention, and includes the following steps:
  • the transmitting device sends configuration information, where the configuration information is used to indicate the number of training TRN subfields and the number of antenna weight vectors AWV in the enhanced directional gigabit EDMG packet, where at least one TRN subfield uses the same AWV.
  • the transmitting device sends a beam optimization protocol BRP packet that configures the TRN according to the configuration information.
  • the reference signal in the BRP packet is transmitted in a DMG packet compatible manner.
  • the BRP packet includes the reference signal.
  • the reference signal includes a first portion and a second portion, the lengths of the first portion and the second portion being the same, and the sum of the direct current component of the first portion and the direct current component of the second portion is zero.
  • the configuration information may be located in the EDMG Header-A of the BRP packet, or indicated by the MAC layer signaling in the Data field of the BRP packet.
  • the MAC layer signaling indication carried in the Data field of the BRP frame may also be indicated before the BRP packet.
  • the invention may not be limited by the MAC signaling carried in the Data field of the BRP frame and the EDMG Header-A joint indication of the BRP packet.
  • the receiving apparatus receives the BRP packet, and performs channel measurement in the TRN subfield of the same AWV configuration according to the configuration information included in the BRP packet.
  • the configuration information is configured through the EDMG Header-A.
  • the configuration information is configured through a MAC frame.
  • the configuration information is determined by the number of streams of simultaneously trained multiple input multiple output MIMO.
  • the method of configuring the physical layer in the WLAN in particular, by the EDMG Header-A indication, because the number of TRN subfields may have been indicated in the DMG Header, which is 4 of the length indicated by the Training Length field.
  • Times can be indicated by only one step through EDMG Header-A, where each TRN can be used for one AWV measurement, for example, with 2 bits, which can represent 1, 2, 4, 8 modes. It can also be configured through MAC, for example, through some signaling in the BRP establishment phase.
  • the DMG Beam Refinement element for example, represented by 2 bits, can represent four modes: 1, 2, 4, and 8. It can also be carried by other signaling.
  • configuration information such as MAC configuration and physical layer activation may also be indicated by a mixture of MAC and PHY.
  • how many TRNs can be used for one AWV measurement For example, the high-level configuration has 1, 8 two modes. formula.
  • the physical layer indicates by 1 bit in the EDMG Header-A indication, and the current packet adopts 1 or 8. It can also be pre-bound with the number of MIMO streams, for example, if the TRN uses a spreading code for MIMO extension.
  • the number of streams of the transmitted MIMO is 1, it means that each TRN can be measured by one AWV; when the number of streams of the transmitted MIMO is 2, it means that each of the two TRNs can be used with one corresponding one.
  • AWV measurement when the number of streams of MIMO transmission is 3 or 4, it means that every 4 TRNs can be measured by one AWV; when the number of streams of MIMO transmission is 5-8, it means that every 8 TRNs can be used corresponding to one.
  • AWV measurement for example, if the TRN uses orthogonal sequence and spreading code for MIMO extension.
  • each TRN can be measured by one AWV; when the number of streams of the transmitted MIMO is 3 or 4, it means every 2 TRNs. It can be measured with a corresponding AWV; when the number of streams transmitting MIMO is 3-8, it means that every 4 TRNs can be measured with a corresponding AWV.
  • each TRN subfield actually transmits the same sequence, if an AWV only corresponds to one TRN subfield, the receiving end may not be measured in only one TRN subfield. Precise results. Allowing the transmitting device to be flexibly configured is more advantageous for obtaining accurate measurement results on multiple TRNs when MIMO multi-stream simultaneous transmission.
  • a training field configuration method may be used to configure a training field of the EDMG packet in the reference signal configuration method according to the embodiment of the present invention.
  • the embodiment of the present invention further provides a reference signal configuration apparatus 600, as shown in FIG. 6, comprising:
  • a processing module 601 configured to generate a reference signal, where the reference signal includes a first portion and a second portion, the first portion and the second portion are the same length, a DC component of the first portion, and a second portion The sum of the DC components is zero;
  • the processing module 601 is further configured to generate an enhanced directional gigabit EDMG packet including the reference signal;
  • the sending module 602 is configured to send the EDMG packet.
  • sequence of the first part and the second part is an in-phase sequence, or the sequence of the first part and the second part is an inverted sequence
  • the reference signal is used as a channel estimate CE for the EDMG packet.
  • the reference signal is used as a CE in a training field of the EDMG packet.
  • the number of TRN subfields in each training unit TRN-Unit is greater than 4.
  • orthogonal signals or orthogonal masks are used to distinguish reference signals of different antennas.
  • the reference signal further includes a third portion, the third portion serving as a prefix or a suffix of the reference signal packet, the length of the third portion being the first portion length or the second portion N times the length, the N being a positive number less than one.
  • the sequence of the first part is Gu512*M
  • the sequence of the second part is -Gu512*M
  • the sequence of the first part is Gv512*M
  • the second part The partial sequence is -Gv512*M
  • the Gu512*M [-Gb128*M, -Ga128*M, Gb128*M, -Ga128*M]
  • the Gv512*M [-Gb128*M, Ga128* M, -Gb128*M, -Ga128*M]
  • the M represents the number of channels, and the M is a positive integer.
  • the sequence of the first part and the second part is generated by a target sequence in a frequency domain, and the target sequence does not occupy a DC subcarrier.
  • the two adjacent subcarriers occupied by the target sequence are separated by K*M-1 subcarriers, K is a positive integer power of 2, the M represents a number of channels, and the M is a positive integer.
  • each of the above modules (the processing module 601 and the sending module 602) is used to perform the relevant steps of the above method.
  • the processing module 601 is configured to perform the above step S201 and perform the above step S203
  • the sending module 602 is configured to perform the above step S204.
  • the reference signal configuration device 600 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the above processing module 601 can be implemented by the processor 801 of the computer device 800 shown in FIG.
  • the above transmitting module 602 can be implemented by the communication interface 803 of the computer device 800 shown in FIG.
  • the embodiment of the present invention further provides a training field configuration apparatus 700, as shown in FIG. 6, comprising:
  • the processing module 701 is configured to generate configuration information, where the configuration information is used to indicate the number of training TRN subfields and the number of antenna weight vectors AWV in the enhanced directional gigabit EDMG packet, where at least one TRN subfield uses the same AWV;
  • the sending module 702 is configured to send configuration information.
  • the sending module 701 is further configured to send a beam optimization protocol BRP packet configured by the processing module according to the configuration information.
  • the configuration information is configured through the EDMG Header-A.
  • the configuration information is configured by using a MAC frame.
  • the configuration information is determined by the number of streams of simultaneously trained multiple input multiple output MIMO.
  • each of the above modules (the processing module 701 and the sending module 702) is used to perform the relevant steps of the above method.
  • the sending module 701 is configured to perform the above step S501 and the above step S502.
  • the training field configuration device 700 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the above processing module 701 can be implemented by the processor 801 of the computer device 800 shown in FIG.
  • the above transmitting module 701 can be implemented by the 800 communication interface 803 of the computer device shown in FIG.
  • the reference signal configuration apparatus shown in FIG. 6 and the training field configuration apparatus shown in FIG. 7 can be implemented in a configuration in the computer device 800 shown in FIG. 8, which includes at least one processor 801. At least one memory 802 and at least one communication interface 803. The processor 801, the memory 802, and the communication interface 803 are connected by the communication bus and complete communication with each other.
  • the processor 801 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above program.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 803 for communicating with other devices or communication networks, such as Ethernet, wireless access network (RAN), Wireless Local Area Networks (WLAN), etc.
  • RAN wireless access network
  • WLAN Wireless Local Area Networks
  • the memory 802 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 802 is configured to store application code that executes the above solution, and is controlled by the processor 801 for execution.
  • the processor 501 is configured to execute application code stored in the memory 502.
  • the code stored in the memory 802 can execute the above-mentioned reference signal configuration method performed by the terminal device provided above, such as generating a reference signal, the reference signal including the first part and the second part.
  • the length of the first portion and the second portion are the same, the sum of the direct current component of the first portion and the direct current component of the second portion is zero, and the sequence of the first portion and the second portion are in phase a sequence, or the sequence of the first portion and the second portion is an inverted sequence; generating an enhanced directional gigabit EDMG packet containing the reference signal; transmitting the EDMG packet.
  • the computer device shown in FIG. 8 is a training field configuration device, and the code stored in the memory 802 can execute the above-mentioned training field configuration method performed by the terminal device provided above, such as sending configuration information, which is used to indicate enhanced directionality.
  • the number of TRN subfields and the number of antenna weight vectors AWV are trained in the Gigabit EDMG packet, wherein at least one TRN subfield uses the same AWV; and a beam optimization protocol BRP packet configured according to the configuration information is transmitted.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes any one of the reference signal configurations described in the foregoing method embodiments. Part or all of the steps of the method.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, and the program includes some or all of the steps of any one of the training field configuration methods described in the foregoing method embodiments.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable memory.
  • the technical solution of the present invention is essentially or a part contributing to the prior art or all of the technical solution.
  • a portion may be embodied in the form of a software product stored in a memory, including instructions for causing a computer device (which may be a personal computer, server or network device, etc.) to perform various embodiments of the present invention. All or part of the steps of the method.
  • the foregoing memory includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种参考信号配置方法,包括:产生参考信号,所述参考信号包括第一部分和第二部分,所述第一部分和所述第二部分的长度相同,所述第一部分的直流分量和所述第二部分的直流分量的和为零;生成包含所述参考信号的增强的方向性吉比特EDMG包;发送所述EDMG包。本发明实施例还提供了一种参考信号配置装置。采用本发明实施例可得到零直流分量的参考信号,进而有利于基于CE的信道估计。

Description

一种参考信号配置方法、训练字段配置方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种参考信号配置方法、训练字段配置方法及装置。
背景技术
IEEE 802.11ad是无线局域网(Wireless Local Area Network,WLAN)中定义的首个高频标准,定义在60GHz的毫米波频段。在WLAN的6GHz以下的中标准,通常采用正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)技术提高频谱效率。IEEE 802.11ad中定义了4种物理层传输(Physical layer,PHY)模式,有控制Control模式,单载波(Single Carrier,SC)模式,低功率单载波Low Power SC模式,以及OFDM模式,其中前三种物理层传输采用单载波的模式。
IEEE 802.11ad中定义的方向性吉比特包(Directional Multi-Gigabit,DMG)包包括前导(Preamble)字段,头(Header)字段,数据data字段。如果这个包用于波束优化训练,那么在Data字段后,还后缀了训练字段(Training field。其中preamble字段包括短训练字段短训练字段(Short Training Field,STF)和信道估计(Channel Estimation,CE)字段。其中STF用于接收机获得合适的接收增益,时间同步,初步的载波频率偏移(Carrier Frequency Offset,CFO)估计,精确的CFO估计,以及估计信道和数据解调。Header包括多个字段用于描述Data字段的传输方式,以及指示数据后附加训练字段长度,类型信息。
IEEE 802.11ay增强的方向性吉比特(enhanced Directional multi-gigabit,EDMG)讨论需要对IEEE 802.11ad DMG进行增强在中引入一些新的特性,如信道绑定(Channel Bonding)技术和多输入多输出(Multiple input Multiple Output,MIMO)技术。EDMG包的结构包括L-STF,L-CE,L-Header表示为了兼容DMG包格式的部分。该EDMG包的结构还可以包括EDMG头,EDMG STF,以及EDMG CE来辅助数据字段的解调。L-CE需要在L-Header前区分OFDM模式和SC模式,因此L-CE采用了Gv和Gu两个不同序列,以及Gv 和Gu前后顺序区分OFDM模式和SC模式的设计。目前EDMG CE的设计是沿袭L-CE的设计,仍然包括Gv和Gu两个不同的序列。另外波束优化协议(Beam Refinement Protocol,BRP)包中的训练后缀中每个训练单元TRN-Unit中包括的CE,也沿袭了L-CE的设计,仍然包括Gv和Gu两个不同的序列,区分OFDM和SC模式。但由于EDMG包已经在EDMG Header中通过信令指示OFDM和SC模式,已经不需要通过EDMG CE或训练后缀TRN来区分OFDM模式和SC模式。使得EDMG CE和TRN的设计具有更大的灵活性。
发明内容
本发明实施例提供一种参考信号配置方法、训练字段配置方法及装置,用于得到零直流分量的参考信号,进而有利于基于CE的信道估计。
第一方面,本发明实施例提供一种参考信号配置方法,包括:先产生参考信号,该参考信号包括第一部分和第二部分,第一部分和第二部分的长度相同,第一部分直流分量和第二部分的信号的直流分量的和为零;然后生成包含该参考信号的增强的方向性吉比特EDMG包;最后发送EDMG包,可见,由于参考信号本身的直流为零,后续其他设备接收到该EDMG包时,可以方便的估计直流偏置,进而有利于CFO和信道估计。
在一些可行的实施方式中,第一部分和第二部分的序列是同相序列,或者,第一部分和第二部分的序列是反相序列。
在一些可行的实施方式中,该参考信号用作EDMG包的信道估计CE。
在一些可行的实施方式中,该参考信号用作EDMG包的训练字段。
在一些可行的实施方式中,每个训练单元TRN-Unit中的TRN子字段的个数大于4。
在一些可行的实施方式中,在多天线传输时,采用正交序列或正交掩码区分不同天线的参考信号。
在一些可行的实施方式中,参考信号还包括第三部分,第三部分用作参考信号的前缀或后缀,第三部分的长度是第一部分长度或第二部分长度的N倍,N为小于1的正数。
在一些可行的实施方式中,在单载波模式中,第一部分的序列为 Gu512*M,第二部分的序列为-Gu512*M,或者第一部分的序列为Gv512*M,第二部分的序列为-Gv512*M,Gu512*M=[-Gb128*M,-Ga128*M,Gb128*M,-Ga128*M],Gv512*M=[-Gb128*M,Ga128*M,-Gb128*M,-Ga128*M],M表示信道数目,M为正整数。
在一些可行的实施方式中,在单载波模式中,第一部分和第二部分的序列均为Gm512*M,Gm512=[-Gb128*M,-Ga128*M,Gb128*M,Ga128*M],M表示信道数目,M为正整数。
在一些可行的实施方式中,在正交频分复用OFDM模式中,第一部分和第二部分的序列由目标序列在频域产生,目标序列不占用直流子载波。
在一些可行的实施方式中,目标序列占用两个相邻子载波间隔K*M-1个子载波,K为2的正整数次幂,M表示信道数目,M为正整数。
第二方面,本发明实施例提供一种训练字段配置方法,包括:先发送配置信息,该配置信息用于指示增强的方向性吉比特EDMG包中训练TRN子字段个数和天线权重向量(Antenna Weight Vector,AWV)个数,其中,至少一个TRN子字段采用相同的AWV;然后发送根据该配置信息配置的波束优化协议BRP包。可见,由于每个TRN子字段发送的实际上是相同的序列,如果一个AWV仅和一个TRN子字段对应,可能造成接收端无法仅在一个TRN子字段内测量的较为精确的结果。允许发射装置灵活配置,更有利于在MIMO多流同时发射时,多个TRN上获得准确的测量结果。
在一些可行的实施方式中,配置信息是通过EDMG Header-A配置的。
在一些可行的实施方式中,配置信息是通过MAC帧配置的。
在一些可行的实施方式中,配置信息是由同时训练的多输入多输出MIMO的流数确定。
第三方面,本发明提供一种参考信号配置装置,包含用于执行第一方面中的方法的模块。
第四方面,本发明提供一种训练字段配置装置,包含用于执行第二方面中的方法的模块。
第五方面,本发明提供一种参考信号配置装置,该参考信号配置装置中包括处理器,处理器被配置为支持该参考信号配置装置执行第一方面提供的一种 参考信号配置方法中相应的功能。该参考信号配置装置还可以包括存储器,存储器用于与处理器耦合,其保存该参考信号配置装置必要的程序指令和数据。该参考信号配置装置还可以包括通信接口,用于该参考信号配置装置与其他设备或通信网络通信。
第六方面,本发明提供一种训练字段配置装置,该训练字段配置装置中包括处理器,处理器被配置为支持该训练字段配置装置执行第二方面提供的一种训练字段配置方法中相应的功能。该训练字段配置装置还可以包括存储器,存储器用于与处理器耦合,其保存该训练字段配置装置必要的程序指令和数据。该训练字段配置装置还可以包括通信接口,用于该训练字段配置装置与其他设备或通信网络通信。
第七方面,本发明提供一种计算机存储介质,用于储存为上述第五方面提供的参考信号配置装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本发明提供一种计算机存储介质,用于储存为上述第六方面提供的训练字段配置装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种通信系统的示意图;
图2为本发明实施例提供的一种参考信号配置方法的流程示意图;
图3为本发明实施例提供的一种可能的EDMG包的格式示意图;
图4为本发明实施例提供的一种训练字段TRN的结构示意图;
图5为本发明实施例提供的一种训练字段配置方法的流程示意图;
图6为本发明实施例提供的一种参考信号配置装置的结构示意图;
图7为本发明实施例提供的一种训练字段配置装置的结构示意图;
图8为本发明实施例提供的一种计算机设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
以下分别进行详细说明。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、发射装置和接收装置可以为是站点(Station,STA),也可以是接入点(Access Point,AP)或者个人基本服务集控制节点(PBSS Control Point,PCP),STA是指每一个连接到无线网络中的终端,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。AP一般翻译为“无线访问节点”,或“桥接器”。其主要在媒体存取控制层MAC中扮演无线工作站及有线局域 网络的桥梁。
2)增强方向性吉比特(Enhanced Directional Multi-Gigabit,EDMG)包,表示用在60GHz毫米波频段的IEEE 802.11ay协议中定义的包格式。
3)天线权重向量(Antenna Weight Vector,AWV),表示权重向量,描述天线阵元的幅值和相位。
4)波束优化协议(Beam Refinement Protocol,BRP)包,在数据字段后,还缀有训练字段的EDMG包或DMG包。
5)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面结合附图对本申请的实施例进行描述。
请参阅图1,图1是本发明实施例公开的一种通信系统的示意图。图1所示的通信系统包括一个基本服务集合(Basic Service Set,BSS),基本服务集中的网络节点包括AP和STA。IEEE 802.11ad在原有的BSS基础上,引入个人基本服务集(Personal Basic Service Set,PBSS)和个人基本服务集控制节点(PBSS Control Point,PCP)。每个个人基本服务集可以包含一个AP/PCP和多个关联于该AP/PCP的non PCP-STA,在本申请实施例中把non PCP STA简称为STA。发射装置和接收装置既可以是STA,也可以是AP/PCP。发射装置先产生参考信号,该参考信号包括第一部分和第二部分,第一部分和第二部分的长度相同,第一部分的直流分量和第二部分的直流分量的和为零;然后生成包含该参考信号的增强的方向性吉比特EDMG包;最后发送EDMG包,后续接收装置接收到该EDMG包时,根据该EDMG包中的参考信号进行直流偏置估计,CFO或信道估计,由于参考信号本身的直流为零,接收装置可以方便的估计直流偏置,进而有利于CFO和信道估计。
请参见图2,图2为本发明实施例提供的一种参考信号配置方法的流程示意图,包括发射装置和接收装置,发射装置为本发明实施例所述的参考信号配置装置,包括以下步骤:
S201、发射装置产生参考信号,所述参考信号包括第一部分和第二部分, 所述第一部分和所述第二部分的长度相同,所述第一部分的直流分量和所述第二部分的直流分量的和为零。
S202、发射装置对所述参考信号进行复数调制。其中,调制方式优选为π/2BPSK调制。
S203、发射装置生成包含所述参考信号的增强的方向性吉比特EDMG包。
S204、发射装置发送所述EDMG包。
S205、接收装置接收所述EDMG包,以及根据所述EDMG包中的所述参考信号进行直流偏置估计,CFO或信道估计。
可选地,所述第一部分和所述第二部分的序列是同相序列,或者,所述第一部分和所述第二部分的序列是反相序列。
可选地,所述参考信号还包括第三部分,所述第三部分用作所述参考信号的前缀或后缀,所述第三部分的长度是所述第一部分长度或所述第二部分长度的N倍,所述N为小于1的正数。其中,当第三部分为所述参考信号的前缀时,第三部分为第一部分的循环前缀。当第三部分为所述参考信号后缀时,第三部分为第二部分的循环后缀。其中,第三部分的长度是所述第一部分长度或所述第二部分长度的N倍,举例来说,第三部分的长度与现有的DMG包中L-CE的前缀或后缀的长度一致,为第一部分或第二部分的1/4,当然也可以为第一部分或第二部分的其他倍数,比如1/2,本发明不作限定。
如图3所示,图3为本发明实施例提供的一种可能的EDMG包的格式示意图,可选地,所述参考信号用作所述EDMG包的信道估计CE和/或用作所述EDMG包的训练字段。也就是说,参考信号用作图3所示的EDMG-CE和/或用作图3所示的TRN字段中的CE和/或TRN子字段。
如图4所示,图4为本发明实施例提供的一种训练字段TRN的结构示意图,训练字段TRN包括AGC和训练单元TRN两个部分,AGC用于接收设备获得合适的接收增益的AGC字段,包括4N个AGC子字段(即4的整数倍个AGC子字段)。TRN字段,包括N个训练单元(TRN-Unit),其中每个TRN-Unit中有1个CE和4个TRN子字段构成(TRN subfield)。可选地,T*N个AGC子字段(即T的整数倍个AGC子字段)。TRN字段,包括N个训练单元(TRN-Unit),其中每个TRN-Unit中有1个CE和T个TRN子字段构成(TRN  subfield)。每个训练单元TRN-Unit中的TRN子字段的个数T大于4。也就是说,图4所示的每个TRN-Unit中的TRN子字段的个数可以不少于4个。
可选地,在单载波模式中,所述第一部分的序列为Gu512*M,所述第二部分的序列为-Gu512*M,或者所述第一部分的序列为Gv512*M,所述第二部分的序列为-Gv512*M,所述Gu512*M=[-Gb128*M,-Ga128*M,Gb128*M,-Ga128*M],所述Gv512*M=[-Gb128*M,Ga128*M,-Gb128*M,-Ga128*M],所述M表示信道数目,所述M为正整数。其中Ga,Gb表示格雷互补序列对,Gv或Gu是由Ga和Gb组成的序列。例如,当单信道传输时M=1,Ga128,Gb128表示长度为128的格雷互补序列对,这时Gu512=[-Gb128,-Ga128,Gb128,-Ga128],Gv512=[-Gb128,Ga128,-Gb128,-Ga128];当三个信道绑定传输时M=3,Ga384,Gb384表示长度为384的格雷互补序列对,这时Gu1536=[-Gb384,-Ga384,Gb384,-Ga384],Gv1536=[-Gb384,Ga384,-Gb384,-Ga384]。
可选地,在单载波模式中,所述第一部分和所述第二部分的序列均为Gm512*M,所述Gm512*M=[-Gb128*M,-Ga128*M,Gb128*M,Ga128*M],所述M表示信道数目,所述M为正整数。其中Ga,Gb表示格雷互补序列对,Gv或Gu是由Ga和Gb组成的序列。序列的长度随着信道数目M扩展。
举例来说,单信道传输中参考序列为第一部分和第二部分反相[Gu512,-Gu512,-Gv128],其中第一部分为Gu512=[-Gb128,-Ga128,Gb128,-Ga128],第二部分为-Gu512,第三部分为后缀Gv128=[-Gb128],其中第二部分-Gu512中第一个子序列和后缀Gv128相同。由于Gu512+(-Gu512)=0使得信号在第一部分和第二部分区间内的直流分量为零。或者参考序列为第一部分和第二部分同相[Gv512,-Gv512,-Gv128],其中第一部分为Gv512=[-Gb128,Ga128,-Gb128,-Ga128],第二部分为-Gv512,Gv128=[-Gb128],其中-Gv512中第一个子序列和Gv128相同。由于Gv512+(-Gv512)=0使得信号的直流分量为零。
又举例来说,对于2个信道绑定时参考信号[Gu1024,-Gu1024,-Gv256]或[Gv1024,-Gv1024,-Gv256],其中Gu1024=[-Gb256,-Ga256,Gb256,-Ga256],Gv1024=[-Gb256,Ga256,-Gb256,-Ga256],Gv256=[-Gb256]。其中Ga256,Gb256 表示长度为256的格雷互补序列对。那么对于4个信道绑定时参考信号为[Gu2048,-Gu2048,-Gv512]或[Gv2048,-Gv2048,-Gv512],其中,Gu2048=[-Gb512,-Ga512,Gb512,-Ga512],Gv2048=[-Gb512,a512,-Gb512,-Ga512],Gv512=[-Gb512]。其中Ga512,Gb512表示长度为512的格雷互补序列对。又举例来说,对于MIMO的情况,每个发射天线采用正交掩码和/或正交序列扩展。
比如,2天线采用正交序列扩展。天线1发射单天线的CE1=[Gu1,-Gu1,Gb],而对于天线2,CE2=[Gu2,-Gu2,Gd],其中Gu1和Gu2为正交序列,Gv1和Gv2为正交序列,其中Gu1和Gv1由Ga和Gb组成的序列,Gu2和Gv2由Gc和Gd组成的序列。其中Ga和Gc互为正交序列,Gb和Gd互为正交序列。
又如,2天线采用正交掩码的方式。采用2个发射天线采用[1,1]和[1,-1]的情况,假设单天线的发射的参考信号为CE1,那么天线1发送[CE1,CE1],天线2发送[CE1,-CE1]。比如,4个天线采用正交掩码和正交序列扩展的组合,天线1发送[CE1,CE1],天线2发送[CE2,CE2],天线3发送[CE3,-CE3],天线4发送[CE4,-CE4],其中CE1和CE2中由正交序列或者其他具有零互相关区域的序列构成(ZCZ,Zero Cross Zone)构成,而CE3和CE4由中第一部分和第二部分正交序列或者其他具有零互相关区域的序列构成(ZCZ,Zero Cross Zone)构成,而CE1,CE3和CE2,CE4构成其他具有零互相关区域的序列。一对天线1、天线2和天线3、天线4采用的不同的正交掩码。
可选地,在多天线传输时,采用正交序列或正交掩码区分不同天线的参考信号。
可选地,在正交频分复用OFDM模式中,所述第一部分和所述第二部分的序列由目标序列在频域产生,所述目标序列不占用直流子载波。
目标序列为了使得时域峰均比较小,减小功率放大器非线性引起的误差,通常选择恒定包络的序列,或者峰均比较小的序列。
举例来说,单信道传输时,一个OFDM符号的快速傅里叶变换(Fast Fourier Transform,FFT)大小为512,其中,有效带宽中有355个子载波。其中,零号子载波为直流子载波。其中,目标序列不占用直流子载波,即目标序列在零号子载波上为零。目标序列经过调制后占用有效带宽中355个子载波中的354个子载波,经过IFFT(Inverse Fast Fourier Transform,IFFT)变换到时域。
可选地,前256个个采样点为第一部分,后256个采样点为第二部分。由于目标序列没有占用直流子载波,使得第一部分和第二部分一起的信号直流分量为零。另外由于高频中相位噪声比较大,也可以将零号子载波附加的子载波也设置为零。将零号子载波前后的子载波也设置为零,即目标序列经过调制后占用有效带宽中355个子载波中的355-3个子载波,经过IFFT变换到时域。
可选地,采用多个直流分量为零的OFDM符号构成所述参考信号,如第一部分为目标序列经过调制后占用有效带宽中355个子载波中的354个子载波,经过IFFT(Inverse Fast Fourier Transform,IFFT)变换到时域。所述第一部分和所述第二部分的序列是同相序列,或者,所述第一部分和所述第二部分的序列是反相序列。
当多个信道传输的时候FFT/IFFT点数会随着信道数目扩展,扩展为512*M。而有效带宽也会随着信道数目扩展,但是由于信道和信道间的保护带也可以被利用,有效带宽中的子载波数将大于355*M。具体数目本发明不作限制。
多天线传输时,类似单载波时的情况,可以采用正交的序列或正交的掩码区分不同的天线。
进一步地,所述目标序列占用的两个相邻子载波间隔K*M-1个子载波,K为2的正整数次幂,所述M表示信道数目,所述M为正整数。
举例来说,单个信道时,M=1,K等于20时,表示的情况目标序列占用每两个子载波之间间隔1-1,即没有间隔。(和上个实施例相同。)K等于2时,表示目标序列占用每两个子载波之间间隔2-1。即表示目标序列在有效带宽内每隔一个子载波被插入,其他的子载波上都为零。
接收装置:
其中,直流偏置估计:找到参考信号的起始点,根据接收参考信号的第一部分和第二部分进行运算获得直流偏置DC Offset,如果是同相,则采用接收参考信号的第一部分和第二部分的加权和的均值。如果是反相,则采用接收参考信号的第一部分减去第二部分的加权和均值。另外,具体加权方法可以采用现有技术,在此不再叙述。
其中,CFO的估计方法:找到参考信号的起始点,根据接收参考信号的 第一部分和第二部分进行运算获得CFO。具体有:步骤1:在信号中减去直流偏置;步骤2:接收到的参考信号做解调,如发射端采用π/2BPSK,接收端解调获得原始的序列r(n),n的取值范围和模式相关。假设单天线,单信道的方式下,n的取值范围为1到1024(不包括第三部分的长度128)。如果为单天线,两个信道绑定的情况,n的取值范围为1到1024*2。如果为单天线,4个信道绑定的情况,n的取值范围为1到1024*4。如果为单信道,2天线,采用正交码扩展,那么,n的取值范围为1到1024.采用正交掩码扩展,那么,n的取值范围为1到1024*2。如果为单信道,4天线,采用正交码和正交掩码扩展,那么,n的取值范围为1到1024*2;步骤3:取第一部分和第二部分做相关运算,比如:接收到的第一部分点乘接收到的第二部分的共轭项b1,求b1的角度b2,b2乘以采样率,除以(2*π*length(r1)),其中length(r1)表示第一份部分中的采样点数,其中,
CFO=angle(r1.*conj(r2))*sample_rate/(2*π*length(r1))
其中,信道估计方法:步骤1:找到参考信号的起始点,补偿直流偏置;步骤2:补偿了CFO,将估计到CFO补偿到接收信号上,即将exp(-j*2*π*CFO*(0:(length(r1)-1))/sample_rate)点乘到接收参考信号上;步骤3:根据补偿后的序列和本地序列相关获得多径上的相关峰,用于时域的信道估计或通过fft变换到频域进行频域信道估计。
可见,在本发明实施例中,发射装置先产生参考信号,该参考信号包括第一部分和第二部分,第一部分和第二部分的长度相同,第一部分和第二部分的信号的直流分量为零,第一部分和第二部分的序列是同相序列,或者,第一部分和第二部分的序列是反相序列;然后生成包含该参考信号的增强的方向性吉比特EDMG包;最后发送EDMG包,后续接收装置接收到该EDMG包时,根据该EDMG包中的参考信号进行直流偏置估计,CFO或信道估计,由于参考信号本身的直流为零,接收装置可以方便的估计直流偏置,进而有利于CFO和信道估计。
请参见图5,图5为本发明实施例提供的一种训练字段配置方法的流程示 意图,包括发射装置和接收装置,发射装置为本发明实施例所述的训练字段配置装置,包括以下步骤:
S501、发射装置发送配置信息,所述配置信息用于指示增强的方向性吉比特EDMG包中训练TRN子字段个数和天线权重向量AWV个数,其中,至少一个TRN子字段采用相同的AWV。
S502、发射装置发送根据所述配置信息配置TRN的波束优化协议BRP包。
可选地,所述BRP包中参考信号,采用DMG包兼容的方式发射。
可选地,所述BRP包包括所述参考信号。所述参考信号包括第一部分和第二部分,第一部分和第二部分的长度相同,第一部分的直流分量和第二部分的直流分量的和为零。
可选地,配置信息可能位于所述BRP包的EDMG Header-A中,或者所述BRP包的Data字段中通过MAC层信令指示。也可以在所述BRP包前,BRP帧的Data字段中携带的MAC层信令指示。也可以通过BRP帧的Data字段中携带的MAC信令和所述BRP包的EDMG Header-A联合指示,本发明不作限定。
S503、接收装置接收BRP包,以及根据所述BRP包包含的所述配置信息在相同的AWV配置的TRN子字段内,进行信道测量。
可选地,配置信息是通过EDMG Header-A配置的。
可选地,配置信息是通过MAC帧配置的。
可选地,配置信息是由同时训练的多输入多输出MIMO的流数确定。
举例来说,在WLAN中通过物理层配置的方法,具体的讲,通过EDMG Header-A指示,由于DMG Header中可能已经指示了TRN子字段的个数,为其中Training Length字段指示的长度的4倍,可以通过EDMG Header-A仅一步指示,其中每多少个TRN可以用于一个AWV的测量,例如用2比特表示,可以表示,1,2,4,8四种模式。也可以通过MAC配置,例如通过BRP建立阶段某些信令进行配置,DMG Beam Refinement element,例如用2比特表示,可以表示,1,2,4,8四种模式。也可以通过其他信令携带。当然也可以通过MAC和PHY混合指示配置信息,例如MAC配置,物理层激活。在高层配置了其中每多少个TRN可以用于一个AWV的测量。例如高层配置了1,8个两种模 式。而物理层通过EDMG Header-A指示中1比特指示,当前包采用的1还是8。也可以和MIMO流数预先绑定,例如如果TRN采用扩频码的方式进行MIMO扩展。当通过EDMG Header-A指示当传输MIMO的流数为1的时候,表示每1个TRN可以用对应一个AWV测量;当传输MIMO的流数为2的时候,表示每2个TRN可以用对应一个AWV测量;当传输MIMO的流数为3或4的时候,表示每4个TRN可以用对应一个AWV测量;当传输MIMO的流数为5~8的时候,表示每8个TRN可以用对应一个AWV测量;例如如果TRN采用正交序列和扩频码的方式进行MIMO扩展。当通过EDMG Header-A指示当传输MIMO的流数为1或2的时候,表示每1个TRN可以用对应一个AWV测量;当传输MIMO的流数为3或4的时候,表示每2个TRN可以用对应一个AWV测量;当传输MIMO的流数为3~8的时候,表示每4个TRN可以用对应一个AWV测量。
可见,在本发明实施例中,由于每个TRN子字段发送的实际上是相同的序列,如果一个AWV仅和一个TRN子字段对应,可能造成接收端无法仅在一个TRN子字段内测量的较为精确的结果。允许发射装置灵活配置,更有利于在MIMO多流同时发射时,多个TRN上获得准确的测量结果。
另外,本发明实施例所述的一种训练字段配置方法可用于本发明实施例所述的参考信号配置方法中所述EDMG包的训练字段的配置。
本发明实施例还提供了一种参考信号配置装置600,如图6所示,包括:
处理模块601,用于产生参考信号,所述参考信号包括第一部分和第二部分,所述第一部分和所述第二部分的长度相同,所述第一部分的直流分量和所述第二部分的直流分量的和为零;
所述处理模块601,还用于生成包含所述参考信号的增强的方向性吉比特EDMG包;
发送模块602,用于发送所述EDMG包。
可选地,所述第一部分和所述第二部分的序列是同相序列,或者,所述第一部分和所述第二部分的序列是反相序列
可选地,所述参考信号用作所述EDMG包的信道估计CE。
可选地,所述参考信号用作所述EDMG包的训练字段中的CE。
可选地,每个训练单元TRN-Unit中的TRN子字段的个数大于4。
可选地,在多天线传输时,采用正交序列或正交掩码区分不同天线的参考信号。
可选地,所述参考信号还包括第三部分,所述第三部分用作所述参考信号包的前缀或后缀,所述第三部分的长度是所述第一部分长度或所述第二部分长度的N倍,所述N为小于1的正数。
可选地,在单载波模式中,所述第一部分的序列为Gu512*M,所述第二部分的序列为-Gu512*M,或者所述第一部分的序列为Gv512*M,所述第二部分的序列为-Gv512*M,所述Gu512*M=[-Gb128*M,-Ga128*M,Gb128*M,-Ga128*M],所述Gv512*M=[-Gb128*M,Ga128*M,-Gb128*M,-Ga128*M],所述M表示信道数目,所述M为正整数。
可选地,在单载波模式中,所述第一部分和所述第二部分的序列均为Gm512*M,所述Gm512=[-Gb128*M,-Ga128*M,Gb128*M,Ga128*M],所述M表示信道数目,所述M为正整数。
可选地,在正交频分复用OFDM模式中,所述第一部分和所述第二部分的序列由目标序列在频域产生,所述目标序列不占用直流子载波。
可选地,所述目标序列占用的两个相邻子载波间隔K*M-1个子载波,K为2的正整数次幂,所述M表示信道数目,所述M为正整数。
需要说明的是,上述各模块(处理模块601和发送模块602)用于执行上述方法的相关步骤。比如,处理模块601用于执行以上步骤S201和执行以上步骤S203、发送模块602用于执行以上步骤S204。
在本实施例中,参考信号配置装置600是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块601可通过图8所示的计算机设备800的处理器801来实现。以上发送模块602可通过图8所示的计算机设备800的通信接口803来实现。
本发明实施例还提供了一种训练字段配置装置700,如图6所示,包括:
处理模块701,用于生成配置信息,所述配置信息用于指示增强的方向性吉比特EDMG包中训练TRN子字段个数和天线权重向量AWV个数,其中,至少一个TRN子字段采用相同的AWV;
发送模块702,用于发送配置信息;
所述发送模块701,还用于发送所述处理模块根据所述配置信息配置的波束优化协议BRP包。
可选地,所述配置信息是通过EDMG Header-A配置的。
可选地,所述配置信息是通过MAC帧配置的。
可选地,所述配置信息是由同时训练的多输入多输出MIMO的流数确定。
需要说明的是,上述各模块(处理模块701和发送模块702)用于执行上述方法的相关步骤。比如,发送模块701用于执行以上步骤S501和以上步骤S502。
在本实施例中,训练字段配置装置700是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块701可通过图8所示的计算机设备800的处理器801来实现。以上发送模块701可通过图8所示的计算机设备的800通信接口803来实现。
如图8所示,图6所示的参考信号配置装置和图7所示的训练字段配置装置可以图8所示的计算机设备800中的结构来实现,该计算机设备800包括至少一个处理器801,至少一个存储器802以及至少一个通信接口803。所述处理器801、所述存储器802和所述通信接口803通过所述通信总线连接并完成相互间的通信。
处理器801可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口803,用于与其他设备或通信网络通信,如以太网,无线接入网 (RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器802可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器802用于存储执行以上方案的应用程序代码,并由处理器801来控制执行。所述处理器501用于执行所述存储器502中存储的应用程序代码。
假设图8所示的计算机设备为参考信号配置装置,存储器802存储的代码可执行以上提供的终端设备执行的上述参考信号配置方法,比如产生参考信号,所述参考信号包括第一部分和第二部分,所述第一部分和所述第二部分的长度相同,所述第一部分的直流分量和所述第二部分的直流分量的和为零,所述第一部分和所述第二部分的序列是同相序列,或者,所述第一部分和所述第二部分的序列是反相序列;生成包含所述参考信号的增强的方向性吉比特EDMG包;发送所述EDMG包。
假设图8所示的计算机设备为训练字段配置装置,存储器802存储的代码可执行以上提供的终端设备执行的上述训练字段配置方法,比如发送配置信息,所述配置信息用于指示增强的方向性吉比特EDMG包中训练TRN子字段个数和天线权重向量AWV个数,其中,至少一个TRN子字段采用相同的AWV;发送根据所述配置信息配置的波束优化协议BRP包。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种参考信号配置 方法的部分或全部步骤。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种训练字段配置方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部 或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (28)

  1. 一种参考信号配置方法,其特征在于,包括:
    产生参考信号,所述参考信号包括第一部分和第二部分,所述第一部分和所述第二部分的长度相同,所述第一部分的直流分量和所述第二部分的直流分量的和为零,
    生成包含所述参考信号的增强的方向性吉比特EDMG包;
    发送所述EDMG包。
  2. 根据权利要求1所述的方法,其特征在于,所述第一部分和所述第二部分的序列是同相序列,或者,所述第一部分和所述第二部分的序列是反相序列。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参考信号用作所述EDMG包的信道估计CE。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述参考信号用作所述EDMG包的训练字段。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在多天线传输时,采用正交序列或正交掩码区分不同天线的参考信号。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述参考信号还包括第三部分,所述第三部分用作所述参考信号的前缀或后缀,所述第三部分的长度是所述第一部分长度或所述第二部分长度的N倍,所述N为小于1的正数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,在单载波模式中,所述第一部分的序列为Gu512*M,所述第二部分的序列为-Gu512*M,或者所述第一部分的序列为Gv512*M,所述第二部分的序列为-Gv512*M,所述Gu512*M=[-Gb128*M,-Ga128*M,Gb128*M,-Ga128*M],所述Gv512*M=[-Gb128*M,Ga128*M,-Gb128*M,-Ga128*M],所述M表示信道数目,所述M为正整数。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,在单载波模式中,所述第一部分和所述第二部分的序列均为Gm512*M,所述Gm512=[-Gb128*M, -Ga128*M,Gb128*M,Ga128*M],所述M表示信道数目,所述M为正整数。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,在正交频分复用OFDM模式中,所述第一部分和所述第二部分的序列由目标序列在频域产生,所述目标序列不占用直流子载波。
  10. 根据权利要求9所述的方法,其特征在于,所述目标序列占用的两个相邻子载波间隔K*M-1个子载波,K为2的正整数次幂,所述M表示信道数目,所述M为正整数。
  11. 一种训练字段配置方法,其特征在于,包括:
    发送配置信息,所述配置信息用于指示增强的方向性吉比特EDMG包中训练TRN子字段个数和天线权重向量AWV个数,其中,至少一个TRN子字段采用相同的AWV;
    发送根据所述配置信息配置的波束优化协议BRP包。
  12. 根据权利要求11所述的方法,其特征在于,所述配置信息是通过EDMG Header-A配置的。
  13. 根据权利要求11所述的方法,其特征在于,所述配置信息是通过MAC帧配置的。
  14. 根据权利要求10所述的方法,其特征在于,所述配置信息是由同时训练的多输入多输出MIMO的流数确定。
  15. 一种参考信号配置装置,其特征在于,包括:
    处理模块,用于产生参考信号,所述参考信号包括第一部分和第二部分,所述第一部分和所述第二部分的长度相同,所述第一部分的直流分量和所述第二部分的直流分量为零;
    所述处理模块,还用于生成包含所述参考信号的增强的方向性吉比特EDMG包;
    发送模块,用于发送所述EDMG包。
  16. 根据权利要求15所述的装置,其特征在于,所述第一部分和所述第二部分的序列是同相序列,或者,所述第一部分和所述第二部分的序列是反相序列。
  17. 根据权利要求15或16所述的装置,其特征在于,所述参考信号用作 所述EDMG包的信道估计CE。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述参考信号用作所述EDMG包的训练字段。
  19. 根据权利要求15-18任一项所述的装置,其特征在于,在多天线传输时,采用正交序列或正交掩码区分不同天线的参考信号。
  20. 根据权利要求15-19任一项所述的装置,其特征在于,所述参考信号还包括第三部分,所述第三部分用作所述EDMG包的前缀或后缀,所述第三部分的长度是所述第一部分长度或所述第二部分长度的N倍,所述N为小于1的正数。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,在单载波模式中,所述第一部分的序列为Gu512*M,所述第二部分的序列为-Gu512*M,或者所述第一部分的序列为Gv512*M,所述第二部分的序列为-Gv512*M,所述Gu512*M=[-Gb128*M,-Ga128*M,Gb128*M,-Ga128*M],所述Gv512*M=[-Gb128*M,Ga128*M,-Gb128*M,-Ga128*M],所述M表示信道数目,所述M为正整数。
  22. 根据权利要求15-20任一项所述的装置,其特征在于,在单载波模式中,所述第一部分和所述第二部分的序列均为Gm512*M,所述Gm512=[-Gb128*M,-Ga128*M,Gb128*M,Ga128*M],所述M表示信道数目,所述M为正整数。
  23. 根据权利要求15-20任一项所述的装置,其特征在于,在正交频分复用OFDM模式中,所述第一部分和所述第二部分的序列由目标序列在频域产生,所述目标序列不占用直流子载波。
  24. 根据权利要求23所述的装置,其特征在于,所述目标序列占用K*M个子载波,所述K*M个子载波中任意两个子载波之间均存在间隔频段,K为2的整数次幂,所述M表示信道数目,所述M为正整数。
  25. 一种训练字段配置装置,其特征在于,包括:
    处理模块,用于生成配置信息,所述配置信息用于指示增强的方向性吉比特EDMG包中训练TRN子字段个数和天线权重向量AWV个数,其中,至少一个TRN子字段采用相同的AWV;
    发送模块,用于发送所述配置信息;
    所述发送模块,还用于发送所述处理模块根据所述配置信息配置的波束优化协议BRP包。
  26. 根据权利要求25所述的装置,其特征在于,所述配置信息是通过EDMG Header-A配置的。
  27. 根据权利要求25所述的装置,其特征在于,所述配置信息是通过MAC帧配置的。
  28. 根据权利要求25所述的装置,其特征在于,所述配置信息是由同时训练的多输入多输出MIMO的流数确定。
PCT/CN2016/104787 2016-11-04 2016-11-04 一种参考信号配置方法、训练字段配置方法及装置 WO2018082071A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680090531.1A CN109923841B (zh) 2016-11-04 2016-11-04 一种参考信号配置方法、训练字段配置方法及装置
PCT/CN2016/104787 WO2018082071A1 (zh) 2016-11-04 2016-11-04 一种参考信号配置方法、训练字段配置方法及装置
EP16920869.1A EP3531645B1 (en) 2016-11-04 2016-11-04 Reference signal configuration method, training field configuration method, and apparatus
US16/401,729 US11025466B2 (en) 2016-11-04 2019-05-02 Reference signal configuration method and apparatus and training field configuration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104787 WO2018082071A1 (zh) 2016-11-04 2016-11-04 一种参考信号配置方法、训练字段配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,729 Continuation US11025466B2 (en) 2016-11-04 2019-05-02 Reference signal configuration method and apparatus and training field configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018082071A1 true WO2018082071A1 (zh) 2018-05-11

Family

ID=62075491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104787 WO2018082071A1 (zh) 2016-11-04 2016-11-04 一种参考信号配置方法、训练字段配置方法及装置

Country Status (4)

Country Link
US (1) US11025466B2 (zh)
EP (1) EP3531645B1 (zh)
CN (1) CN109923841B (zh)
WO (1) WO2018082071A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088493A1 (en) * 2018-11-01 2020-05-07 Huawei Technologies Co., Ltd. ORTHOGONAL SEQUENCE BASED REFERENCE SIGNAL DESIGN FOR NEXT GENERATION WLANs
WO2023197090A1 (en) * 2022-04-11 2023-10-19 Huawei Technologies Co., Ltd. Edmg multi-static sensing sounding ppdu structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107566022B (zh) * 2016-06-30 2020-10-23 华为技术有限公司 一种波束训练序列设计方法及装置
EP3599747B1 (en) * 2017-04-20 2021-05-05 LG Electronics Inc. Method for transmitting and receiving signal in wireless lan system and apparatus for said method
EP3567821B1 (en) * 2017-07-12 2021-06-23 LG Electronics Inc. Method for transmitting and receiving signal in wireless lan system, and apparatus therefor
US11411779B2 (en) * 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
US20210250761A1 (en) * 2020-10-15 2021-08-12 Intel Corporation Reduction of time-domain correlation for 11az secure sounding signal
WO2023173433A1 (zh) * 2022-03-18 2023-09-21 北京小米移动软件有限公司 一种信道估计方法/装置/设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN103999421A (zh) * 2011-12-16 2014-08-20 三星电子株式会社 用于在无线通信系统中传送信号的装置和方法
CN104584451A (zh) * 2012-08-17 2015-04-29 高通股份有限公司 使用分区图进行波束搜索、跟踪和完善的方法
CN105356746A (zh) * 2015-12-04 2016-02-24 矽力杰半导体技术(杭州)有限公司 用于电源变换器的导通时间产生电路及电源变换器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770912B1 (ko) * 2003-06-16 2007-10-26 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법
US9088504B2 (en) * 2012-01-06 2015-07-21 Qualcomm Incorporated Systems and methods for wireless communication of long data units
US10044635B2 (en) 2014-12-09 2018-08-07 Qualcomm Incorporated Frame formats for channel bonding and MIMO transmissions
US10021695B2 (en) * 2015-04-14 2018-07-10 Qualcomm Incorporated Apparatus and method for generating and transmitting data frames
WO2017150288A1 (ja) * 2016-02-29 2017-09-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
US10075224B2 (en) * 2016-05-04 2018-09-11 Intel IP Corporation Golay sequences for wireless networks
US10511369B2 (en) * 2016-07-22 2019-12-17 Intel Corporation Extending association beamforming training
WO2018034701A1 (en) * 2016-08-18 2018-02-22 Intel Corporation Apparatus, system and method of communicating a channel estimation field with golay sequences
US10355896B2 (en) * 2016-09-09 2019-07-16 Intel Corporation Optimized channel estimation field for enhanced directional multi-gigabit network
US10158434B2 (en) * 2016-10-24 2018-12-18 Infineon Technologies Ag Circuit, system, and method for operating and calibrating a radio frequency transceiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999421A (zh) * 2011-12-16 2014-08-20 三星电子株式会社 用于在无线通信系统中传送信号的装置和方法
CN104584451A (zh) * 2012-08-17 2015-04-29 高通股份有限公司 使用分区图进行波束搜索、跟踪和完善的方法
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN105356746A (zh) * 2015-12-04 2016-02-24 矽力杰半导体技术(杭州)有限公司 用于电源变换器的导通时间产生电路及电源变换器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088493A1 (en) * 2018-11-01 2020-05-07 Huawei Technologies Co., Ltd. ORTHOGONAL SEQUENCE BASED REFERENCE SIGNAL DESIGN FOR NEXT GENERATION WLANs
US10721040B2 (en) 2018-11-01 2020-07-21 Huawei Technologies Co., Ltd. Orthogonal sequence based reference signal design for next generation WLANs
WO2023197090A1 (en) * 2022-04-11 2023-10-19 Huawei Technologies Co., Ltd. Edmg multi-static sensing sounding ppdu structure

Also Published As

Publication number Publication date
EP3531645A1 (en) 2019-08-28
EP3531645A4 (en) 2020-03-18
US20190260621A1 (en) 2019-08-22
CN109923841A (zh) 2019-06-21
EP3531645B1 (en) 2021-03-10
US11025466B2 (en) 2021-06-01
CN109923841B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2018082071A1 (zh) 一种参考信号配置方法、训练字段配置方法及装置
US11665656B2 (en) Information transmission method and information transmission apparatus
US8717865B2 (en) Method and apparatus for constructing very high throughput short training field sequences
CN102150405B (zh) 用于不同发射方案的共模和统一帧格式
CN102057642B (zh) 用于宽带无线通信系统的物理层帧格式设计
JP4881948B2 (ja) 無線送信装置、無線受信装置、およびデータ生成方法
WO2017193867A1 (zh) 传输信号的方法、发送端和接收端
CN102171979B (zh) 用于单载波和ofdm传输的代码和前导码
JP2016048938A (ja) プリアンブル拡張
CN109391403B (zh) 用于无线信号的发送和接收的方法和装置
JP2004153676A (ja) 通信装置、送信機および受信機
WO2008115508A1 (en) Combined precoding vector switch and frequency switch transmit diversity for secondary synchronization channel in evolved utra
WO2017193586A1 (zh) 传输信号的方法、发送端和接收端
KR20110056302A (ko) 주파수 도메인 pn 시퀀스
WO2016029482A1 (zh) 一种发送数据的方法、信道估计方法及装置
CN102833849B (zh) 定位的方法和用户设备
KR20140112905A (ko) 장치 간 직접 통신을 지원하는 무선 통신 시스템에서 주파수 동기를 위한 방법 및 장치
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
CN108476059B (zh) 一种信号的发送方法、接收方法、终端设备、基站及系统
JP3793198B2 (ja) Ofdm信号通信システム及びofdm信号送信機
WO2016138659A1 (zh) 相位偏差计算方法、接入点及站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016920869

Country of ref document: EP

Effective date: 20190520