WO2023197090A1 - Edmg multi-static sensing sounding ppdu structure - Google Patents

Edmg multi-static sensing sounding ppdu structure Download PDF

Info

Publication number
WO2023197090A1
WO2023197090A1 PCT/CN2022/085996 CN2022085996W WO2023197090A1 WO 2023197090 A1 WO2023197090 A1 WO 2023197090A1 CN 2022085996 W CN2022085996 W CN 2022085996W WO 2023197090 A1 WO2023197090 A1 WO 2023197090A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
ppdu
start time
edmg
static
Prior art date
Application number
PCT/CN2022/085996
Other languages
French (fr)
Inventor
Yan Xin
Rui DU
Osama Aboul-Magd
Kwok Shum Au
Jung Hoon Suh
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to PCT/CN2022/085996 priority Critical patent/WO2023197090A1/en
Priority to PCT/CN2022/089153 priority patent/WO2023197374A1/en
Publication of WO2023197090A1 publication Critical patent/WO2023197090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas

Definitions

  • the present invention pertains in general to the field of radio communications, and in particular to a sounding physical layer protocol data unit structure to be used in multi-static sensing.
  • the IEEE 802.11bf (11bf) standard is intended to amend the existing wireless local area network (WLAN) standards to enhance sensing capabilities through IEEE 802.11-compliant waveforms.
  • a station STA can detect features (e.g., range, velocity, angular, motion, presence or proximity, gesture, etc. ) of intended targets (e.g., objects, humans, animals, etc. ) in an environment (e.g., house, office, room, vehicle, enterprise, etc. ) using received Wi-Fi signals.
  • the IEEE 802.11bf standard includes modifications to the medium access control (MAC) and physical layer (PHY) of the existing IEEE 802.11 standards to enhance the WLAN sensing capabilities in the unlicensed bands between 1 GHz and 7.125 GHZ (sub-7 GHz) and in the 60 GHz band.
  • WLAN sensing may include multi-static sensing, in which a sounding physical layer protocol data unit (PPDU) is transmitted from an initiator device to a plurality of responder devices. This sounding PPDU can be transmitted with directional beams and can be received by the responder devices.
  • PPDU physical layer protocol data unit
  • An object of embodiments of the present invention is to provide a structure for a multi-sensing sounding physical layer protocol data unit (PPDU) .
  • the sounding PPDU can be used in multi-static sounding sessions with multiple transmitters and a single receiver, or in scenarios with a single transmitter and multiple receivers.
  • the sounding PPDU may also be less complex to implement and transmit, due in part to less antenna switching during the PPDU.
  • a multi-static sensing instance can also include additional timing information in its request frames, which may allow for multiple transmitters to transmit portions of the sounding PPDU.
  • a method which includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU including a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field, one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field, and a plurality of training subfields.
  • the method further includes the device transmitting the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device.
  • AAV antenna weight vector
  • the first continuous portion may also include a legacy short training (L-STF) field, a legacy channel estimation (L-CEF) field, a legacy header (L-Header) field, an enhanced directional multi-gigabit header A (EDMG-Header-A) field, and a padding field.
  • the first continuous portion may also include a data field.
  • the synchronization fields in the one or more additional continuous portions may be additional EDMG-STF fields.
  • Each of the one or more additional continuous portions further may include a STA sync field after the synchronization field.
  • the PPDU may be a sounding PPDU in a multi-static sensing instance.
  • the method can also include, prior to transmitting the PPDU, transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  • the method may also include, prior to transmitting the PPDU, receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  • an apparatus which includes at least one processor and at least one machine-readable medium storing executable instructions. When the instructions are executed, they configured the processor to generate a physical layer (PHY) protocol data unit (PPDU) , the PPDU which includes a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field, one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field, and a plurality of training subfields.
  • PHY physical layer
  • PPDU protocol data unit
  • the PPDU which includes a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field, one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field, and a plurality of training subfields.
  • PHY physical layer
  • the instructions further configure the processor to transmit the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device.
  • the first continuous portion may also include a legacy short training (L-STF) field, a legacy channel estimation (L-CEF) field, a legacy header (L-Header) field, an enhanced directional multi-gigabit header A (EDMG-Header-A) field, and a padding field.
  • the first continuous portion may also include a data field.
  • the synchronization fields in the one or more additional continuous portions may be additional EDMG-STF fields.
  • Each of the one or more additional continuous portions further may include a STA sync field after the synchronization field.
  • the PPDU may be a sounding PPDU in a multi-static sensing instance.
  • the instructions may also configure the processor to, prior to transmitting the PPDU, transmit a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  • the instructions may also configure the processor to, prior to transmitting the PPDU, receive a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  • a method which includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) .
  • the PPDU includes a first continuous portion including an EDMG-STF field and a TRN-Unit P field, a first plurality of training subfields, and one or more additional continuous portions.
  • Each of the one or more continuous portions includes a synchronization field, an additional TRN-Unit P field, and an additional first plurality of training subfields.
  • the method also includes transmitting, by the device, the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device.
  • AAV antenna weight vector
  • the first continuous portion may include an L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-A field, and a padding field.
  • the first continuous portion may include a data field.
  • the synchronization field in the one or more additional continuous portions may be an additional EDMG-STF field.
  • the first continuous portion can include a station synchronization (STA sync) field after the EDMG-STF field, and each of the one or more additional continuous portions can include an additional STA sync field after the synchronization field.
  • STA sync station synchronization
  • the method can also include, prior to transmitting the PPDU, transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  • the method can include, prior to transmitting the PPDU, receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  • a method which includes receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field.
  • the method also includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , where the PPDU includes an EDMG-STF field, a TRN-Unit P field, and a plurality of training fields.
  • the method further includes transmitting, by the device, the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field contained in the request frame.
  • the PPDU can also include an L-STF field, an L-CEF field, a L-Header field, an EDMG-Header-A field, and a padding field.
  • the PPDU can also include a data field.
  • the PPDU may be a portion of a larger PPDU, the larger PPDU including additional portions transmitted by one or more additional devices.
  • the PPDU may be a portion of a sounding PPDU in a multi-static sensing instance and the device may be a transmitter in the multi-static sensing instance.
  • a method in another aspect, includes receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field.
  • the method also includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , where the PPDU includes a synchronization field, a TRN-Unit P field, and a plurality of training fields.
  • the method also includes transmitting, by the device, the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field contained in the request frame.
  • the PPDU may also include a STA sync field after the synchronization field.
  • the synchronization field may be an EDMG-STF field.
  • the PPDU may be a portion of a larger PPDU, the larger PPDU including additional portions transmitted by one or more additional devices.
  • the PPDU may be a portion of a sounding PPDU in a multi-static sensing instance and the device can be a transmitter in the multi-static sensing instance.
  • the present disclosure provides a method which includes transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field.
  • the method also includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , where the PPDU includes a first continuous portion including a L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-A field, and a first EDMG-STF field, one or more additional EDMG-STF fields, a second continuous portion including a synchronization padding field and a TRN-Unit P field, one or more additional TRN-Unit P fields, and a plurality of TRN subfields.
  • PHY physical layer
  • the method also includes transmitting, by the device at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field, the PPDU with the first continuous portion and the second continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and the one or more additional EDMG-STF fields and the one or more additional TRN-Unit P fields transmitted using an AWV associated with a respective additional device.
  • the first continuous portion can include a data field after the first EDMG-STF field.
  • a method in another aspect of the present disclosure, includes generating, by a device, a request frame in a multi-static sounding instance, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field.
  • the method also includes transmitting, by the device, the request frame to a second device.
  • the request frame can include both the start time of instance field and the start time of multi-static PPDU field.
  • the start time of instance field may be an eight-octet field.
  • the start time of instance field can include an eight-octet timestamp.
  • the request frame can include the start time of multi-static PPDU field, which can be an eight-octet field.
  • the start time of instance field can include an eight-octet timestamp.
  • a computer readable medium includes instructions, which when executed by a processor of a device, cause the device to carry out one or more of the methods described herein.
  • a computer program which includes instructions which, when the program is executed by a processor of a computer, cause the computer to carry out one or more of the methods described herein.
  • an apparatus which includes at least one processor and at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out one or more of the methods described herein.
  • Embodiments have been described above in conjunction with aspects of the present invention upon which they can be implemented. Those skilled in the art will appreciate that embodiments may be implemented in conjunction with the aspect with which they are described but may also be implemented with other embodiments of that aspect. When embodiments are mutually exclusive, or are otherwise incompatible with each other, it will be apparent to those skilled in the art. Some embodiments may be described in relation to one aspect, but may also be applicable to other aspects, as will be apparent to those of skill in the art.
  • FIG. 1 illustrates a multi-static sensing setup with one transmitter and two receivers, according to one aspect of the present disclosure.
  • FIG. 2 illustrates the procedure of a multi-static sensing instance with one transmitter and two receivers, according to one aspect of the present disclosure.
  • FIG. 3 illustrates a multi-static sensing setup with one receiver and two transmitters, according to one aspect of the present disclosure.
  • FIG. 4 is an illustration of a physical layer protocol data unit (PPDU) format for the enhanced directional multi-gigabit (EDMG) format.
  • PPDU physical layer protocol data unit
  • EDMG enhanced directional multi-gigabit
  • FIG. 5 illustrates a legacy short training field format for the EDMG format.
  • FIG. 6 illustrates an EDMG short training field format
  • FIG. 7 illustrates a training field structure of an EDMG beam refinement protocol (BRP) transmit (TX) PPDU.
  • BRP beam refinement protocol
  • TX transmit
  • FIG. 8 illustrates a training field structure of an EDMG BRP-TX/RX (receive) PPDU.
  • FIG. 9 illustrates a previously proposed EDMG multi-static sensing sounding PPDU structure.
  • FIG. 10 illustrates a previously proposed sync field structure which can be used with an EDMG multi-static sensing sounding PPDU.
  • FIG. 11 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 12 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 13 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 14 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 15 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 16 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 17 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 18 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 19 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
  • FIG. 20 is a schematic diagram of an electronic device that may perform any or all of operations of the above methods and features explicitly or implicitly described herein, according to different embodiments of the present disclosure.
  • Embodiments of the present disclosure relate to the format of an enhanced directional multi-gigabit (EDMG or the IEEE 802.11ay standard) multi-static sensing sounding physical layer protocol data unit (PPDU) .
  • the PPDU formats can be used in two different multi-static sensing scenarios: Those with one transmitting device (transmitter) and multiple receiving devices (receivers) , and those with one receiver and multiple transmitters.
  • the IEEE 802.11bf (11bf) standard will amend sensing capabilities to wireless location area networks (WLANs) .
  • WLANs wireless location area networks
  • a station STA
  • can detect features e.g., range, velocity, angular, motion, presence or proximity, gesture, etc.
  • intended targets e.g., objects, humans, animals, etc.
  • an environment e.g., house, office, room, vehicle, enterprise, etc.
  • a multi-static sensing system is one in which there are at least three devices, such as stations (STAs) .
  • STAs stations
  • Each of the STAs in a multi-static sensing system may also be an access point (AP) .
  • the multi-static sensing system can include one receiver and two or more transmitters, two or more receivers and one transmitter, or multiple receivers and multiple transmitters.
  • a sensing instance may be initiated by an initiator and may include a plurality of responders. Each of the initiator and the responders may act as one or both of transmitters and receivers in the sensing instance.
  • Some multi-static sensing instances may be transmitted on the 60 GHz band, which is used by directional multi-gigabit (DMG or the IEEE 802.11ad standard) devices and EDMG devices.
  • DMG directional multi-gigabit
  • An EDMG multi-static sensing sounding PPDU may be used as part of the multi-static sensing instance on the 60 GHz band.
  • the sounding PPDU may be transmitted by one or more transmitting devices and received by one or more receiving devices.
  • the sounding PPDU may include training fields, which can be used by receiving devices to measure an environment which can be used to detect features of intended targets in the environment. The measurement results can be fed back from the responders to the initiator.
  • Existing proposed sounding PPDU formats have several potential deficiencies which may be improved upon. For example, existing sounding PPDU formats may not be compatible with multi-static sensing instances with multiple transmitters, and only be compatible with sensing instances with a single transmitter. Therefore, a sounding PPDU format which allows each of multiple transmitters to transmit training fields is proposed, enabling a multi-static sensing instance which includes multiple transmitting devices.
  • a sounding PPDU may be designed which excludes the data field, since the data field of a sounding PPDU may not generally be used to carry useful information.
  • a sounding PPDU may also be designed which includes unique station synchronization (or STA detection) fields for each of the STAs, to identify a specific STA for synchronization.
  • FIG. 1 illustrates a multi-static sensing setup 100 with one transmitter and two receivers, according to one aspect of the present disclosure.
  • the transmitter and the receivers may each be STAs on a wireless communication network.
  • the multi-static sensing setup 100 is illustrated with two receivers but may also be generalized to include more than two receivers.
  • the sensing initiator 105 begins a sensing instance and acts as a transmitter with two sensing responders 111, 112 acting as receivers.
  • the sensing instance may be set up by an exchange of request and response 131 (handshakes) with the first responder 111, and a similar exchange of request and response 132 with the second responder 112.
  • the sensing instance may generally be directed towards detecting features of a given target, such as object 108.
  • the sensing instance includes the sensing initiator 105 transmitting a sounding PPDU.
  • a part of the signal 120, particularly one or more training (TRN) fields in the sounding PPDU, from the sensing initiator 105 may be transmitted from the sensing initiator 105 and strike the object 108.
  • a part of this signal 121 may reflect off the object 108 and propagate towards the first responder 111, and a part of this signal 122 may reflect off the object 108 and propagate towards the second responder 112.
  • each of the responders 111, 112 may be polled and report feedback 141, 142.
  • the feedback 141, 142 may be related to the part of the signal 121, 122 which was received by the responders 111, 112 after it had reflected off the object 108.
  • the feedback 141, 142 may be used by the sensing initiator 105 to detect features of the object 108.
  • the multi-static sensing setup 100 includes a sensing initiator 105 which also acts as the transmitter during the sounding phase of the sensing instance.
  • the sensing initiator may also serve as a receiver in the sensing instance.
  • the sensing initiator may transmit request frames to other devices during a measurement setup phase, but during the sounding phase, one or more other devices may act as transmitters and transmit one or more sounding PPDUs (or parts thereof) , while the sensing initiator acts as a receiver.
  • FIG. 2 illustrates the procedure 200 of a multi-static sensing instance with one transmitter and two receivers, according to one aspect of the present disclosure. A similar procedure may also be used for scenarios with more than two receivers.
  • the initiator acts as a transmitter and each of the responders act as receivers.
  • the procedure 200 begins with a measurement setup phase 220 (or initiation phase) .
  • This phase 220 includes the initiator 205 transmitting a request 230 to the first responder 211.
  • the first responder 211 may respond with a response 232.
  • the initiator 205 then transmits a request 234 to the second responder 212, which may then transmit a response 236 to the initiator 205.
  • These handshakes between the initiator 205 and the responders 211, 212 may be used to provide the responders 211, 212 with the order of sounding and reporting between the devices.
  • the handshakes also inform the initiator 205 of the readiness of the responders 211, 212 to participate in the sensing instance.
  • the procedure 200 then begins the sensing instance 222 with a sounding phase and reporting phase.
  • the sensing instance 222 begins with the initiator transmitting a sounding PPDU 238.
  • the sounding phase may happen in parallel with both responders 211, 212 using the same sounding PPDU 238.
  • the sounding PPDU may be used for synchronization and for sensing purposes.
  • Each of the responders 211, 212 may use parts of the sounding PPDU 238, such as TRN fields, to measure the reflected signal received from one or more target objects.
  • the sensing instance 222 then continues with a reporting phase, during which each of the responders 211, 212 sequentially report to the initiator 205.
  • Each of the responders 211, 212 may report to the initiator 205 in a predefined order, which can be defined and communicated during the handshakes of the measurement setup phase 220.
  • the initiator 205 may transmit a report poll 240 to the first responder 211, and the first responder 211 may respond with its report 242.
  • the initiator 205 may then transmit a report poll 244 to the second responder 212, and the second responder 212 may respond with its report 246.
  • the request frames 230, 234 transmitted by the initiator 205 may be EDMG multi-static sensing request frames. As shown, these frames are transmitted from the initiator 205 to the responders 211, 212. It may be beneficial to provide timing information to the responders 211, 212 in a sensing measurement instance. This timing information can be provided to the responders 211, 212 in the request frames 230, 234.
  • the EDMG multi-static sensing request frames can include one or more of fields to provide this timing information to the responders 211, 212, such as one or more of a start time of instance field and/or a start time of multi-static PPDU field. These fields may be used in multi-static sensing instances with either a single transmitter, or also in multi-static sensing instances with multiple transmitters.
  • a start time of instance field can indicate the start time of instance 250, which may correspond to the time when the initiator 205 begins to transmit its first request frame 230, beginning the measurement setup phase 220.
  • the start time of instance field can be an 8- octet (or 8 byte) field, although it can also be other sizes as is appropriate.
  • the start time of instance field can be an 8-octet timestamp, or a part of this timestamp, when the initiator 205 transmits the first EDMG multi-static sensing request frame 230 to the first responder 211.
  • the timestamp included in the start time of instance field can represent the timing synchronization function (TSF) timer that keeps the timers for all STAs in the same basic service set (BSS) synchronized.
  • TSF timing synchronization function
  • a start time of multi-static PPDU field can indicate the start time of multi-static sounding PPDU 260, which may correspond to the time when the initiator 205 begins to transmit the sounding PPDU 238, beginning the measurement sensing instance 222.
  • the start time of multi-static PPDU field may be an 8-octet (or 8 byte) field.
  • the start time of multi-static PPDU field can be an 8-octet timestamp, or a part of this timestamp, when the initiator 205 transmits the first sounding PPDU 238.
  • the start time of multi-static PPDU field can be calculated by the initiator 205 based in part on the start time of instance 250.
  • a sounding PPDU may be made up of portions that are transmitted by different devices. For example, a first STA may transmit a first portion of the sounding PPDU while additional STAs transmit additional portions of the sounding PPDU.
  • Each of the portions of the sounding PPDU may include, e.g., synchronization information in a synchronization field or an EDMG-STF field, one or more TRN-Unit P fields and TRN subfields.
  • the STAs transmitting the sounding PPDU may not be able to receive the portions of the sounding PPDU transmitted by the other STAs.
  • timing information can be contained, at least in part, in timing information fields in a request frame.
  • the start time of instance field, the start time of multi-static PPDU field, and/or the start sounding time of STA field may be used by STAs, such as the responders 211, 212, to know the timing of particular parts of the sounding PPDU 238.
  • these two fields may assist the STAs in identifying the timing of synchronization (sync) fields which are contained in the sounding PPDU 238, particularly for STAs which may be unable to receive the preamble of the sounding PPDU 238.
  • FIG. 3 illustrates a multi-static sensing setup 300 with one receiver and two transmitters, according to one aspect of the present disclosure.
  • the transmitter and the receivers may each be STAs on a wireless communication network.
  • the multi-static sensing setup 300 is illustrated with two transmitters but may also be generalized to include more than two transmitters.
  • the multi-static sensing setup 300 may be comparable to the setup 100 which included one receiver and two transmitters.
  • each of the responders 311, 312 act as transmitters rather than receivers during the sensing instance.
  • each of the responders 311, 312 transmits signals 321, 322, which may reflect off object 308 and the reflected signals 320 may be received by the initiator 305.
  • the reflected signals 320 can be used by the initiator 305 to detect information about the object 308.
  • the signals 321, 322 used to detect information may be contained in a sounding PPDU, where portions of the sounding PPDU are transmitted by each of the responders 311, 312.
  • each of the responders 311, 312 may transmit portions of the sounding PPDU including a plurality of training subfields. These training subfields may be received by the initiator 305, after they have reflected off the object 308, and this may be used to detect information about the object 308.
  • FIG. 4 is an illustration of a PPDU format 400 for the enhanced directional multi-gigabit (EDMG or IEEE 802.11ay) standard.
  • EDMG multi-static sounding PPDUs may be based on the EDMG PPDU format 400 and include many of the same fields as described in the EDMG standard.
  • An EDMG PPDU may be transmitted on a 60 GHz band, a part of which is also recognized by the directional multi-gigabit (DMG or IEEE 802.11ad) devices.
  • DMG directional multi-gigabit
  • the first three fields 410, 412, 414 of the EDMG PPDU format 400 are defined to be recognizable by legacy DMG stations.
  • the L-STF (legacy short training field) 410 and L-CEF (legacy channel estimation field) 412 are compatible with the preamble defined in IEEE 802.11ad.
  • the L-STF field 410 allows discovery and synchronization of the EDMG/DMG packet, while the L-CEF field 412 enables channel estimation for demodulation of the L-Header field 414 and the EDMG-Header-A field 416.
  • the L-Header field 414 contains information about the EDMG/DMG packet.
  • the EDMG-Header-A field 416 contains information for the EDMG PPDU.
  • Each of the first four fields 410, 412, 414, 416 of the EDMG PPDU may be transmitted in duplicate on each 2.16 GHz subchannel of the packet, as legacy devices may be configured to only use one subchannel.
  • Each of the remaining fields of the EDMG PPDU may be transmitted on the full bandwidth of the packet, such as on a 4.32 GHz, 6.48 GHz, or 8.64 GHz channel.
  • the EDMG-STF field 418 allows synchronization of the EDMG PPDU.
  • the EDMG-CEF field 420 allows channel estimation for demodulation of the EDMG-Header-B field 422 and data field 424.
  • the EDMG-Header-B field 422 includes information for EDMG multi-user (MU) PPDUs.
  • the data field 424 includes the payload data of the packet, padded with zeros if necessary for packaging.
  • the PPDU format 400 includes a training (TRN) sequence field 426 which is used for beam forming training and beam tracking, as part of a beam refinement protocol (BRP) process to allow STAs to improve their antenna configuration for transmission and/or reception.
  • the TRN field 426 may be composed of a plurality of TRN subfields, as described in the EDMG standard.
  • FIG. 5 illustrates a legacy short training field format 500.
  • This L-STF format 500 may be used for the L-STF field 410 in the EDMG PPDU format 400.
  • the legacy short training field format 500 includes 16 repetitions of a Golay sequence Ga 128 (n) of length 128, followed by a single repetition of -Ga 128 (n) , as described in the EDMG standard.
  • the L-STF format 500 may also be used in EDMG multi-static sensing sounding PPDUs, as described herein.
  • FIG. 6 illustrates an enhanced directional multi-gigabit short training field format 600.
  • This EDMG-STF format 600 may be used for the EDMG-STF field 418 in the EDMG PPDU format 400, as described in the EDMG standard.
  • the EDMG-STF format 600 includes 18 repetitions of a Golay sequence as described in the EDMG standard, where is a Golay sequence for the i STS transit chain with the number of bounded 2.16 GHz channels N CB .
  • the EDMG-STF format 600 may also be used in EDMG multi-static sensing sounding PPDUs, as described herein.
  • FIG. 7 illustrates a training field structure 700 of an EDMG beam refinement protocol-transmit (BRP-TX) PPDU.
  • the training field structure 700 may be used as the TRN field 426 in EDMG field structure 400.
  • the training field structure 700 may also be used with EDMG multi-static sensing sounding PPDUs, as described herein.
  • an EDMG BRP PPDU is an EDMG PPDU which includes a training field and enables antenna configuration training for transmission and/or reception.
  • EDMG BRP-TX PPDUs are used for transmit antenna weight vector (AWV) training.
  • the transmitter may change the AWV at the beginning of each set of N TRN subfields present in the last M TRN subfields of each TRN unit in the TRN field.
  • the transmitter may transmit all TRN subfields of a TRN field with the same AWV.
  • the receiver performs measurements during the reception of the EDMG BRP-TX PPDU and sends feedback to the STA that transmitted the PPDU.
  • the TRN field may also be appropriate to use for sensing applications, such as in an EDMG multi-static sensing sounding PPDU.
  • each TRN-Unit includes P plus M repetitions of the TRN subfield, where P is the value indicated by the EDMG TRN-Unit P field and M is the value of the EDMG TRN-Unit M field in the EDMG-Header-A plus one.
  • the first P TRN subfields of each TRN-Unit shall typically be transmitted using the same AWV as the preamble and data fields of the PPDU.
  • FIG. 8 illustrates a training field structure 800 of an EDMG beam refinement protocol-transmit/receive (BRP-TX/RX) PPDU.
  • the training field structure 800 may be used as the TRN field 426 in EDMG field structure 400, as described in the EDMG standard.
  • the training field structure 800 may also be used with EDMG sounding PPDUs, as described herein.
  • EDMG BRP-RX/TX PPDUs are used for simultaneous training of the transmitter’s transmit AWV and the receiver’s receive AWV.
  • the transmitter sends a number of consecutive TRN-Units in which the last M TRN subfields of each TRN-Unit are transmitted with the same AWV configuration.
  • the TRN field may also be appropriate to use for sensing applications, such as in an EDMG multi-static sensing sounding PPDU.
  • FIG. 9 illustrates a previously proposed EDMG multi-static sensing sounding PPDU structure 900.
  • the EDMG multi-static sensing sounding PPDU may use a structure 900 which is adapted from the structure of an EDMG PPDU, but which is optimized for multi-static sensing.
  • the structure 900 includes three STAs but can be altered to include either more or fewer STAs.
  • the structure 900 can be used for multi-static sensing instances where there is one transmitter and a plurality of receivers, such as multi-static sensing setup 100.
  • the structure 900 includes an L-STF field 910, L-CEF field 912, header fields 914, and a data field 916. Each of these fields may be transmitted using an AWV associated with STA1, to transmit to STA1. Other STAs may or may not be able to receive portions of the PPDU which are not transmitted on the AWV trained for transmissions appropriate for those STAs, depending on the physical characteristics of the STAs such as their location relative to one another.
  • the structure 900 further includes a Sync field 918, 920 for each of the other STAs, with each Sync field 918, 920 transmitted using an AWV appropriate for that STA.
  • the structure 900 further includes a Sync PAD field 922 which makes sure that the Sync fields together have a length equal to an integer number of TRN-unit fields.
  • the structure 900 then includes a TRN-Unit P field 924, 926, 928 for each responder STA to allow all STAs to track the frequency and phase, with each TRN-Unit P field 924, 926, 928 transmitted using an AWV appropriate for that STA. This is followed by TRN subfields 930.
  • the structure 900 further includes TRN-Unit P field 932, 934, 936 each directed towards one of the STAs, followed by further TRN subfields 938.
  • the TRN subfields 930, 938 may be transmit as described in the EDMG standard, using, e.g., structure 700 or structure 800.
  • each STA except the first STA may not receive the L-STF field 910, L-CEF field 912, header fields 914, and data field 916 of the PPDU, as these fields of the PPDU are transmitted using the AWV of the first STA (STA1) . Accordingly, the other STAs may need to know when their TRN-Unit P field 924, 926, 928 begin.
  • Each Sync field 918, 920 may be transmitting in the direction of a specific STA, as shown.
  • the Sync field 918, 920 may be unique to each STA, so that if a STA can receive the Sync fields intended for another STA, it will recognize its own Sync fields from those of another device.
  • the Sync fields 918, 920 may ensure that STAs know when their TRN-Unit P fields 926, 928 will be transmitted. Thus, the Sync field 918, 920 may enable accurate synchronization of all STAs, including those which may not receive the PPDU header.
  • the data field 916 can include padding bits in a PPDU.
  • the padding field 922 and TRN-Unit P field 924 are separated from the data field 916 by Sync fields 918, 920.
  • Both padding field 922 and TRN-Unit P field 924 are transmitted using the AWV associated with STA1, as are the first four fields 910, 912, 914, 916 of the PPDU.
  • the Sync fields 918, 920 are transmitted using different AWVs. This ordering may require a transmitting device to switch its antenna beam from field to field, which can increase the implementation complexity of the PPDU. Thus, it may be desirable to use a PPDU structure which requires less beam switching.
  • the structure 900 may only be appropriate for multi-static sensing instances which include a single transmitter and multiple receivers.
  • a sensing structure which can be used with multiple transmitting devices may be desired, such as PPDU structures in which each of multiple transmitters can transmit training subfields.
  • TRN-Unit configurations for each of TRN-Unit P, TRN-Unit M, and TRN-Unit N are assumed to be the same for all STAs. This can result in the loss of some flexibility.
  • the structure 900 appears to be missing an EDMG-STF field, which is needed to allow for receiving devices to demodulate the data field 916 and for operation of the training field 924.
  • FIG. 10 illustrates a previously proposed sync field structure 1000 which can be used with an EDMG multi-static sensing sounding PPDU.
  • the sync field structure 1000 may be used in the Sync fields 918, 920 of EDMG multi-static sensing sounding PPDU structure 900.
  • the sync field structure 1000 includes Golay sequences Ga and Gb which are derived from the basic Golay sequences of length 128 defined in the IEEE 802.11ad standard, where a multiplier M (r, q) is specified for the rth STA and the qth Golay sequence to construct sequences with good autocorrelation for the rth STA and good mutual cross-correlation among the Ua/Ub part of the “Sync” fields.
  • These sync fields are unique for each STA, and the properties of these sync fields ensure that each STA may be able to identify and distinguish its sync fields from those of the other STAs.
  • a multi-static sensing session begins with the exchange of request and response frames between an initiator and each responder.
  • the request frames in this exchange include information such as the number of STAs in a sensing instance, a STA multi-static identification field which indicates the order of each STA in the multi-static sensing PPDU, and TRN unit parameters which will be used in the sensing instance.
  • the request frames can also include additional timing information, such as a start time of instance field and/or a start time of multi-static PPDU field. These fields may provide sufficient information for a STA to determine when its portion of a multi-static sounding PPDU will be transmitted. Accordingly, it may be unnecessary to provide different synchronization fields for each STA, since those devices will know which field is intended for their use by the timing of the transmission, and thus this sync field structure 1000 may introduce unnecessary complexity.
  • FIG. 11 illustrates an EDMG multi-static sensing sounding PPDU structure 1100, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1100 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers.
  • the structure 1100 includes three receivers, STAs 1–3, although the structure 1100 can also be used with more and fewer receivers by duplicating or removing the portions of the structure 1100 for STAs 2 and 3.
  • the structure 1100 includes an L-STF field 1110, L-CEF field 1112, L-Header field 1114, EDMG-Header-A field 1116, EDMG-STF field 1118, data field 1120, Padding field 1122, and TRN-Unit P field 1124.
  • Each of these fields may be transmitted using an AWV intended for STA1, and these fields may include all fields transmitted using the AWV for STA1 prior to the TRN subfields 1134.
  • the contiguous part of a PPDU which are transmitted using the same AWV may be referred to as a portion or a continuous portion of the PPDU.
  • the first continuous portion of a PPDU using structure 1100 may include L-STF field 1110, L-CEF field 1112, L-Header field 1114, EDMG-Header-A field 1116, EDMG-STF field 1118, data field 1120, Padding field 1122, and TRN-Unit P field 1124.
  • the structure 1100 then includes a Sync field 1126 and a TRN-Unit P field 1128 which are transmitted using the AWV intended for STA2.
  • the structure 1100 further includes a Sync field 1130 and a TRN-Unit P field 1132 which are transmitted using the AWV intended for STA3.
  • the structure 1100 then includes TRN subfields 1134, which are used by each of the STAs. This is then followed by another set of TRN-Unit P fields for each of STAs 1–3 1136, 1138, 1140, and then further TRN subfields 1142, which are used by each of the STAs.
  • Each of the fields in structure 1100 may use formats which align with those found in an EMDG PPDU, and the Sync fields 1126, 1130 may use Sync field structure 1000.
  • the structure 1100 may require less antenna switching than structure 900. Generally, structure 1100 groups together the fields which are transmitted using the same AWV as much as possible, increasing the size of each continuous portion of the PPDU as much as possible and minimizing the beam switching needed to transmit the PPDU. For example, structure 900 may require antenna switching five times before TRN subfields 930, including at least Sync field 918, Sync field 920, Sync PAD field 922, TRN-Unit P field 926, and TRN-Unit P field 928. In contrast, structure 1100 may only require antenna switching two times before TRN subfields 1134, switching to the AWV of STA2 at Sync field 1126 and to the AWV of STA3 at Sync field 1130.
  • structure 1100 may require significantly less switching between the AWVs of the various STAs, which can decrease implementation complexity.
  • the structure 1100 includes EDMG-Header-A field 1116 and an EDMG-STF field 1118, which will ensure proper handling of the packet from EDMG devices.
  • the sounding PPDU may also be transmitted without the data field 1120.
  • a sounding PPDU is used for multi-static sensing, with the training fields configured to allow the STAs to detect features of one or more target objects.
  • Such a PPDU is not generally used to transmit data. Accordingly, the multi-static sounding PPDU may not carry any useful information in its data field 1120, so it may be beneficial to remove this field from structure 1100 or from each other multi-static sounding PPDU structure described herein.
  • the structure 1100 is illustrated with two TRN units.
  • Each TRN unit includes at least P TRN subfields for each STA followed by TRN subfields, such as in the first TRN unit including P TRN subfields for each STA 1124, 1128, 1132 followed by TRN subfields 1134 and the second TRN unit including P TRN subfields for each STA 1136, 1138, 1140 followed by TRN subfields 1142.
  • Other numbers of TRN units may also be used in a sounding PPDU, such as one or more TRN units.
  • the PPDU is illustrated with two TRN units, but can also include other numbers of TRN units.
  • the number of TRN units in a given PPDU can be included in a EDMG TRN Length field contained in the EDMG-Header-A field of the PPDU, and can also be communicated by the sensing initiator during the measurement setup phase of the sensing instance.
  • FIG. 12 illustrates an EDMG multi-static sensing sounding PPDU structure 1200, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1200 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers.
  • the structure 1200 includes three receivers, STAs 1–3, although the structure 1200 can also be used with more and fewer receivers by duplicating or removing the continuous portions of the structure 1200 for STAs 2 and 3.
  • structure 1200 is comparable to structure 1100, and includes similar benefits.
  • structure 1200 uses additional EDMG-STF fields 1226, 1230 for the additional STAs, STAs 2 and 3, rather than using more complex synchronization fields 918, 920 in structure 900.
  • These fields 1226, 1230 may be the same format as that used by STA1 in EDMG-STF field 1218, and the same format which is used in the EDMG standard. This field format may rely on each STA already knowing its order from the request and response frames transmitted during a management setup phase of the multi-static sensing instance. Therefore, each STA can use the same sync field as one another, which can be an EDMG-STF field. Using the same sync field may be much less computationally complex than using previously proposed sync field structure 1000.
  • FIG. 13 illustrates an EDMG multi-static sensing sounding PPDU structure 1300, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1300 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers.
  • the structure 1300 includes three receivers, STAs 1–3, although the structure 1300 can also be used with more and fewer receivers by duplicating or removing the continuous portions of the structure 1300 for STAs 2 and 3.
  • the structure 1300 includes an L-STF field 1310, L-CEF field 1312, L-Header field 1314, EDMG-Header-A field 1316, EDMG-STF field 1318, data field 1320, Padding field 1322, and TRN-Unit P field 1324.
  • Each of these fields may be transmitted using an AWV intended for STA1, and these fields may include all fields transmitted using the AWV for STA1 prior to the TRN subfields 1334.
  • two or more STAs may use the same AWV, such as STA1 and STA2 using the same AWV.
  • the data field 1320 in structure 1300 may optionally be excluded from the PPDU, since it will not generally carry useful information for sensing using TRN fields.
  • the structure 1300 then includes a Sync field 1326, a STA sync field 1327, and a TRN-Unit P field 1328 which are transmitted using the AWV intended for STA 2.
  • the structure 1300 further includes a Sync field 1330, a STA sync field 1331, and a TRN-Unit P field 1332 which are transmitted using the AWV intended for STA 3.
  • the structure 1300 then includes TRN subfields 1334, followed by TRN-Unit P field for each of STAs 1–3 1336, 1338, 1340, and then TRN subfields 1342.
  • the structure 1300 is comparable to structure 1100, except for the addition of STA sync fields 1327, 1331 for each of STA2 and STA3 respectively.
  • STA2 and STA3 can be assigned with a unique synchronization signal.
  • the STA sync fields 1327, 1331 (or STA detection fields) can follow immediately after a sync field 1326, 1330.
  • Each of the STA sync fields 1327, 1331 identify a specific STA for synchronization and may offer improved correlation properties compared to other Sync fields such as those in structure 900.
  • Each STA sync field 1327, 1331 is unique and each should have good autocorrelation and cross-correlation properties.
  • the STA sync fields 1327, 1331 may be transmitted using the same AWV as for the corresponding sync field 1326, 1330 respectively.
  • Auto-correlation and cross-correlation are the two main properties to be considered. Auto-correlation is needed to allow good detection and low cross-correlation assists with distinguishing multiple sequences/STAs.
  • Table 1 shows an example of the STA sync field 1327, 1331, which include the following correlations:
  • Ga and Gb are the Golay complementary pair, as described in the IEEE 802.11ay standard.
  • This exemplary design includes a zero-correlation zone on both side of the autocorrelation main peak, and the main peak of autocorrelation is 1024.
  • the first 4 sequences are orthogonal to each other, and the last four sequence are orthogonal to each other within +-127.
  • the maximum cross correlation of the 8 sequences is 80. Accordingly, this scheme may be used to create the STA sync field 1327, 1331 and include good autocorrelation and cross correlation properties.
  • FIG. 14 illustrates an EDMG multi-static sensing sounding PPDU structure 1400, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1400 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers.
  • the structure 1400 includes three receivers, STAs 1– 3, although the structure 1400 can also be used with more and fewer receivers by duplicating or removing the continuous portions of the structure 1400 for STAs 2 and 3.
  • structure 1400 is comparable to structure 1300, and includes the benefits described above. Additionally, structure 1400 uses the same synchronization fields for each of the STAs, with EDMG-STF field 1426 used for STA2 and EDMG-STF field 1430 used for STA3. These fields may be the same format as that used by STA1 in EDMG-STF field 1418, and the same format which is used in the EDMG standard. However, each of the STA sync fields 1427, 1431 may be different from one another and each of the STA sync fields 1427, 1431 is transmitted using the AWV of the appropriate STA.
  • structure 1400 may provide a synchronization sequences which are common for all STAs, in EDMG-STF fields 1418, 1426, 1430, while also providing STA sync fields 1427, 1431 which are unique to STA2 and STA3, respectively.
  • FIG. 15 illustrates an EDMG multi-static sensing sounding PPDU structure 1500, according to one aspect of the present disclosure.
  • the structure 1500 allows for different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M for each STA.
  • the EDMG multi-static sensing sounding PPDU structure 1500 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers.
  • structure 1500 can also be used for multi-static sensing in scenarios with multiple transmitters and a single receiver.
  • the structure 1500 includes three other devices, which may be either transmitters or receivers, STAs 1–3.
  • the structure 1500 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1500 for STAs 2 and 3.
  • the entire PPDU may be transmitted by a single STA, the transmitter.
  • different continuous portions of the PPDU structure 1500 may be transmitted using different AWVs, intended for different devices.
  • the PPDU structure 1500 includes names of devices (i.e., STA 1–3) next to its fields.
  • the fields of PPDU structure 1500 can be transmitted using the AWV of the device listed under the field.
  • each STA may transmit the fields listed above its name, as well as the training fields which follow its transmissions.
  • the first device STA1 may transmit a first continuous portion of the PPDU from the L-STF field 1510 through to transmitting the TRN subfields 1530.
  • each additional device may then transmit a continuous portion of the PPDU, including a synchronization field, followed by two sets of a TRN-Unit P field and TRN subfields, such as STA2 transmitting synchronization field 1532, TRN-Unit P field 1534, TRN subfields 1536, TRN-Unit P field 1538, and TRN subfields 1540.
  • STA2 transmitting synchronization field 1532, TRN-Unit P field 1534, TRN subfields 1536, TRN-Unit P field 1538, and TRN subfields 1540 This can then be followed by STA3 transmitting a continuous portion of the PPDU including synchronization field 1542, TRN-Unit P field 1544, TRN subfields 1546, TRN-Unit P field 1548, and TRN subfields 1550.
  • the PPDU may be transmitted using an AWV associated with the receiving device.
  • timing indications may be transmitted to the STAs during a management setup phase of the sensing instance.
  • one or more transmitters may receive a request frame such as an EDMG multi-static sensing request frame.
  • the request frame can include timing indications which enable the transmitter to learn when it should transmit its continuous portion of the sounding PPDU.
  • the request frame may include one or more of a start time of instance field and a start time of multi-static PPDU field.
  • the structure 1500 includes an L-STF field 1510, L-CEF field 1512, L-Header field 1514, EDMG-Header-A field 1516, EDMG-STF field 1518, Data field 1520, Padding field 1522, TRN-Unit P field 1524, TRN subfields 1526, TRN-Unit P field 1528, and TRN subfields 1530.
  • Each of these fields may be transmitted using an AWV intended for STA1 in a single-transmitter sensing instance, or each of these fields may be transmitted by STA1 in a multiple-transmitter sensing instance.
  • the Data field 1520 in structure 1500 may optionally be excluded from the PPDU, since it will not generally carry useful information for sensing using TRN fields.
  • the structure 1500 then includes synchronization and training fields for STA2, including sync field 1532, TRN-Unit P field 1534, TRN subfields 1536, TRN-Unit P field 1538, and TRN subfields 1540.
  • Each of these fields may be used by STA2 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA2 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1, they may use different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1.
  • the structure 1500 includes synchronization and training fields for STA3, including sync field 1542, TRN-Unit P field 1544, TRN subfields 1546, TRN-Unit P field 1548, and TRN subfields 1550.
  • Each of these fields may be used by STA3 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA3 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1 and STA2, they may use different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1 and STA2. While structure 1500 and others herein are illustrated with three STAs, it may include more or fewer STAs as required by a sensing scenario.
  • FIG. 16 illustrates an EDMG multi-static sensing sounding PPDU structure 1600, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1600 may be used for multi-static sensing in scenarios with both a single transmitter and multiple receivers, and also scenarios with a single receiver and multiple transmitters.
  • the structure 1600 includes three other devices, which may be either transmitters or receivers, STAs 1–3.
  • the structure 1600 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1600 for STAs 2 and 3.
  • structure 1600 is comparable to structure 1500, and includes the benefits described above.
  • the structure 1600 allows for different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M for each STA.
  • structure 1600 uses the same sync field for each of the STAs, with EDMG-STF field 1632 used for STA2 and EDMG-STF field 1642 used for STA3.
  • These fields may be the same format as that used by STA1 in EDMG-STF field 1618, and the same format which is used in the EDMG standard.
  • This sync field format may rely on each STA already knowing its order from the request and response frames transmitted during a management setup phase of the multi-static sensing instance.
  • each STA can use the same sync field as one another, here the EDMG-STF field, although other sync fields may also be used. Using the same sync field may be less computationally complex than using unique sync fields for each STA.
  • FIG. 17 illustrates an EDMG multi-static sensing sounding PPDU structure 1700, according to one aspect of the present disclosure.
  • the structure 1700 allows for different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M for each STA.
  • the structure 1700 may be used for scenarios with either one transmitter and multiple receivers, or scenarios with one receiver and multiple transmitters.
  • the structure 1700 includes three other devices, which may be either transmitters or receivers, STAs 1–3.
  • the structure 1700 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1700 for STAs 2 and 3.
  • the structure 1700 includes an L-STF field 1710, L-CEF field 1712, L-Header field 1714, EDMG-Header-A field 1716, EDMG-STF field 1718, Data field 1720, Padding field 1722, TRN-Unit P field 1724, TRN subfields 1726, TRN-Unit P fields 1728, and further TRN subfields 1730.
  • Each of these fields may be transmitted using an AWV intended for STA1 in a single-transmitter sensing instance, or each of these fields may be transmitted by STA1 in a multiple-transmitter sensing instance.
  • the Data field 1720 in structure 1700 may optionally be excluded from the PPDU, since it will not generally carry useful information for sensing using TRN fields.
  • the structure 1700 then includes synchronization and training fields for STA2, including Sync field 1732, STA sync field 1733, TRN-Unit P field 1734, TRN subfields 1736, TRN-Unit P field 1738, and TRN subfields 1740.
  • Each of these fields may be used by STA2 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA2 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1, they may use different training unit configurations TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1.
  • the structure 1700 includes synchronization and training fields for STA3, including Sync field 1742, STA sync field 1743, TRN-Unit P field 1744, TRN subfields 1746, TRN-Unit P field 1748, and TRN subfields 1750.
  • Each of these fields may be used by STA3 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA3 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1 and STA2, they may use different training unit configurations TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1 and STA2.
  • the STA sync fields 1733, 1743 in structure 1700 may be comparable to those described for structure 1300.
  • Each of the STA sync fields 1733, 1743 may be uniquely assigned to one of the STAs, and may follow the Sync field 1732, 1742 for that STA, and be transmitted using the AWV associated with the STA.
  • One example of these STA sync fields 1733, 1743 can be found in Tables 1 and 2, which may have strong autocorrelation and cross-correlation properties.
  • FIG. 18 illustrates an EDMG multi-static sensing sounding PPDU structure 1800, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1800 may be used for multi-static sensing in scenarios with both a single transmitter and multiple receivers, and scenarios with a single receiver and multiple transmitters.
  • the structure 1800 includes three other devices, which may be either transmitters or receivers, STAs 1–3.
  • the structure 1800 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1800 for STAs 2 and 3.
  • structure 1800 is comparable to structure 1700, and includes the benefits described above. Additionally, structure 1800 uses the same Sync field for each of the STAs, with EDMG-STF field 1832 used for STA2 and EDMG-STF field 1842 used for STA3. These fields may be the same format as that used by STA1 in EDMG-STF field 1818, and the same format which is used in the EDMG standard. Using the same EDMG-STF field for each STA may be less computationally complex than having to calculate unique sync fields for each of the STAs included in the PPDU.
  • FIG. 19 illustrates an EDMG multi-static sensing sounding PPDU structure 1900, according to one aspect of the present disclosure.
  • the EDMG multi-static sensing sounding PPDU structure 1900 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers.
  • the structure 1900 includes three receivers, STAs 1–3, although it can also be used with either more or fewer receivers.
  • the structure 1900 includes an L-STF field 1910, L-CEF field 1912, L-Header field 1914, EDMG-Header-A field 1916, EDMG-STF field 1918, and data field 1920.
  • Each of these fields may be transmitted using an AWV intended for STA1 and may or may not be received by the other STAs.
  • the structure 1900 then includes an EDMG-STF field 1922, 1924 for each of the other STAs included in the PPDU. Each of these EDMG-STF fields 1922, 1924 may be transmitted to the appropriate STA using the AWV associated with that STA.
  • the structure 1900 then includes a sync padding field 1926 and a TRN-Unit P field 1928, which are transmitted using an AWV associated with STA1.
  • the structure further includes TRN-Unit P fields 1930, 1932 transmitted to the appropriate STA using the AWV associated with that STA.
  • the structure then includes TRN subfields 1934. After this, the structure includes a further round of TRN-Unit P fields 1936, 1938, 1940 transmitted to each of the STAs in order, followed by further TRN subfields 1942.
  • the structure 1900 may be comparable to structure 900, but uses the same EDMG-STF fields 1922, 1924 for each of the STAs, rather than calculating unique Sync fields 918, 920 for each of the STAs.
  • the use of the same EDMG-STF fields 1918, 1922, 1924 for each of the STAs may require that each STA already knows its order in the PPDU. This will allow each STA to recognize its EDMG-STF field 1918, 1922, 1924, even though they are the same field.
  • each STA may already know its order in the PPDU based on the handshake procedure in the management setup phase of the sensing instance. Accordingly, it may be advantageous to use the same EDMG-STF fields 1918, 1922, 1924 for each STA to ease computational complexity.
  • FIG. 20 is a schematic diagram of an electronic device 2000 that may perform any or all of operations of the above methods and features explicitly or implicitly described herein, according to different embodiments of the present disclosure.
  • a computer equipped with network functions may be configured as electronic device 2000.
  • the electronic device 2000 may be a user equipment (UE) , an AP, a STA, or the like as appreciated by a person skilled in the art.
  • UE user equipment
  • the electronic device 2000 may include a processor 2010, such as a central processing unit (CPU) or specialized processors such as a graphics processing unit (GPU) or other such processor unit, memory 2020, non-transitory mass storage 2030, input-output interface 2040, network interface 2050, and a transceiver 2060, all of which are communicatively coupled via bi-directional bus 2070.
  • a processor 2010 such as a central processing unit (CPU) or specialized processors such as a graphics processing unit (GPU) or other such processor unit
  • memory 2020 such as a central processing unit (CPU) or specialized processors such as a graphics processing unit (GPU) or other such processor unit
  • memory 2020 such as a central processing unit (CPU) or specialized processors such as a graphics processing unit (GPU) or other such processor unit
  • memory 2020 such as a central processing unit (CPU) or specialized processors such as a graphics processing unit (GPU) or other such processor unit
  • memory 2020 such as a central processing unit (C
  • the memory 2020 may include any type of non-transitory memory such as static random-access memory (SRAM) , dynamic random-access memory (DRAM) , synchronous DRAM (SDRAM) , read-only memory (ROM) , any combination of such, or the like.
  • the mass storage element 2030 may include any type of non-transitory storage device, such as a solid-state drive, hard disk drive, a magnetic disk drive, an optical disk drive, USB drive, or any computer program product configured to store data and machine executable program code. According to certain embodiments, the memory 2020 or mass storage 2030 may have recorded thereon statements and instructions executable by the processor 2010 for performing any of the method operations described above.
  • Embodiments of the present disclosure can be implemented using electronics hardware, software, or a combination thereof.
  • the disclosure is implemented by one or multiple computer processors executing program instructions stored in memory.
  • the disclosure is implemented partially or fully in hardware, for example using one or more field programmable gate arrays (FPGAs) or application specific integrated circuits (ASICs) to rapidly perform processing operations.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • Acts associated with the method described herein can be implemented as coded instructions in a computer program product.
  • the computer program product is a computer-readable medium upon which software code is recorded to execute the method when the computer program product is loaded into memory and executed on the microprocessor of the wireless communication device.
  • each operation of the method may be executed on any computing device, such as a personal computer, server, personal digital assistant (PDA) , or the like and pursuant to one or more, or a part of one or more, program elements, modules or objects generated from any programming language, such as C++, Java, or the like.
  • PDA personal digital assistant
  • each operation, or a file or object or the like implementing each said operation may be executed by special purpose hardware or a circuit module designed for that purpose.
  • the present disclosure may be implemented by using hardware only or by using software and a necessary universal hardware platform. Based on such understandings, the technical solution of the present disclosure may be embodied in the form of a software product.
  • the software product may be stored in a non-volatile or non-transitory storage medium, which can be a compact disc read-only memory (CD-ROM) , USB flash disk, or a removable hard disk.
  • the software product includes instructions that enable a computer device (personal computer, server, or network device) to execute the methods provided in the embodiments of the present disclosure. For example, such an execution may correspond to a simulation of the logical operations as described herein.
  • the software product may additionally or alternatively include instructions that enable a computer device to execute operations for configuring or programming a digital logic apparatus in accordance with embodiments of the present disclosure.

Abstract

A method for using a structure for an EDMG multi-sensing sounding physical layer protocol data unit is provided. The method includes generating a PPDU including a first continuous portion including an enhanced directional multi-gigabit short training field and a training unit P field, one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field, and a plurality of training subfields. The method then includes transmitting the first continuous portion using an antenna weight vector (AWV) associated with a first device, and each additional continuous portion using an AWV associated with a respective additional device.

Description

EDMG multi-static sensing sounding PPDU structure TECHNICAL FIELD
The present invention pertains in general to the field of radio communications, and in particular to a sounding physical layer protocol data unit structure to be used in multi-static sensing.
BACKGROUND
The IEEE 802.11bf (11bf) standard is intended to amend the existing wireless local area network (WLAN) standards to enhance sensing capabilities through IEEE 802.11-compliant waveforms. Using IEEE 802.11bf, a station (STA) can detect features (e.g., range, velocity, angular, motion, presence or proximity, gesture, etc. ) of intended targets (e.g., objects, humans, animals, etc. ) in an environment (e.g., house, office, room, vehicle, enterprise, etc. ) using received Wi-Fi signals.
The IEEE 802.11bf standard includes modifications to the medium access control (MAC) and physical layer (PHY) of the existing IEEE 802.11 standards to enhance the WLAN sensing capabilities in the unlicensed bands between 1 GHz and 7.125 GHZ (sub-7 GHz) and in the 60 GHz band. WLAN sensing may include multi-static sensing, in which a sounding physical layer protocol data unit (PPDU) is transmitted from an initiator device to a plurality of responder devices. This sounding PPDU can be transmitted with directional beams and can be received by the responder devices.
However, existing proposals for the format of this sounding PPDU are incomplete, as they are not compatible with multi-static sensing when there are multiple transmitters and one receiver. Moreover, existing proposals for the sounding PPDU may have an unduly high implementation complexity, as they may require an unnecessary amount of antenna beam switching. Therefore, there is a need for a multi-sensing sounding PPDU structure that obviates or mitigates one or more deficiencies of the prior art.
This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
SUMMARY
An object of embodiments of the present invention is to provide a structure for a multi-sensing sounding physical layer protocol data unit (PPDU) . The sounding PPDU can be used in multi-static sounding sessions with multiple transmitters and a single receiver, or in scenarios with a single transmitter and multiple receivers. The sounding PPDU may also be less complex to implement and transmit, due in part to less antenna switching during the PPDU. A multi-static sensing instance can also include additional timing information in its request frames, which may allow for multiple transmitters to transmit portions of the sounding PPDU.
In accordance with an embodiment of the present disclosure, there is provided a method which includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU including a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field, one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field, and a plurality of training subfields. The method further includes the device transmitting the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device. The first continuous portion may also include a legacy short training (L-STF) field, a legacy channel estimation (L-CEF) field, a legacy header (L-Header) field, an enhanced directional multi-gigabit header A (EDMG-Header-A) field, and a padding field. The first continuous portion may also include a data field. The synchronization fields in the one or more additional continuous portions may be additional EDMG-STF fields. Each of the one or more additional continuous portions further may include a STA sync field after the synchronization field. The PPDU may be a sounding PPDU in a multi-static sensing instance.
The method can also include, prior to transmitting the PPDU, transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field. The method may also include, prior to transmitting the PPDU, receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can  include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
In one aspect, an apparatus is provided which includes at least one processor and at least one machine-readable medium storing executable instructions. When the instructions are executed, they configured the processor to generate a physical layer (PHY) protocol data unit (PPDU) , the PPDU which includes a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field, one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field, and a plurality of training subfields. The instructions further configure the processor to transmit the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device. The first continuous portion may also include a legacy short training (L-STF) field, a legacy channel estimation (L-CEF) field, a legacy header (L-Header) field, an enhanced directional multi-gigabit header A (EDMG-Header-A) field, and a padding field. The first continuous portion may also include a data field. The synchronization fields in the one or more additional continuous portions may be additional EDMG-STF fields. Each of the one or more additional continuous portions further may include a STA sync field after the synchronization field. The PPDU may be a sounding PPDU in a multi-static sensing instance.
The instructions may also configure the processor to, prior to transmitting the PPDU, transmit a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field. The instructions may also configure the processor to, prior to transmitting the PPDU, receive a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
In one aspect, a method is described which includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) . The PPDU includes a first continuous  portion including an EDMG-STF field and a TRN-Unit P field, a first plurality of training subfields, and one or more additional continuous portions. Each of the one or more continuous portions includes a synchronization field, an additional TRN-Unit P field, and an additional first plurality of training subfields. The method also includes transmitting, by the device, the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device. The first continuous portion may include an L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-A field, and a padding field. The first continuous portion may include a data field. The synchronization field in the one or more additional continuous portions may be an additional EDMG-STF field. The first continuous portion can include a station synchronization (STA sync) field after the EDMG-STF field, and each of the one or more additional continuous portions can include an additional STA sync field after the synchronization field.
The method can also include, prior to transmitting the PPDU, transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field. The method can include, prior to transmitting the PPDU, receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and transmitting the PPDU can include transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
In one aspect, a method is provided which includes receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field. The method also includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , where the PPDU includes an EDMG-STF field, a TRN-Unit P field, and a plurality of training fields. The method further includes transmitting, by the device, the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field contained in the request frame. The PPDU can also include an L-STF field, an L-CEF field, a L-Header field, an EDMG-Header-A field, and a padding field. The PPDU can also include a data field. The PPDU  may be a portion of a larger PPDU, the larger PPDU including additional portions transmitted by one or more additional devices. The PPDU may be a portion of a sounding PPDU in a multi-static sensing instance and the device may be a transmitter in the multi-static sensing instance.
In another aspect, a method is provided which includes receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field. The method also includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , where the PPDU includes a synchronization field, a TRN-Unit P field, and a plurality of training fields. The method also includes transmitting, by the device, the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field contained in the request frame. The PPDU may also include a STA sync field after the synchronization field. The synchronization field may be an EDMG-STF field. The PPDU may be a portion of a larger PPDU, the larger PPDU including additional portions transmitted by one or more additional devices. The PPDU may be a portion of a sounding PPDU in a multi-static sensing instance and the device can be a transmitter in the multi-static sensing instance.
In one aspect, the present disclosure provides a method which includes transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field. The method also includes generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , where the PPDU includes a first continuous portion including a L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-A field, and a first EDMG-STF field, one or more additional EDMG-STF fields, a second continuous portion including a synchronization padding field and a TRN-Unit P field, one or more additional TRN-Unit P fields, and a plurality of TRN subfields. The method also includes transmitting, by the device at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field, the PPDU with the first continuous portion and the second continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and the one or more additional EDMG-STF fields and the one or more additional TRN-Unit P fields transmitted using an AWV associated with a respective additional device. The first continuous portion can include a data field after the first EDMG-STF field.
In another aspect of the present disclosure, a method is provided which includes generating, by a device, a request frame in a multi-static sounding instance, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field. The method also includes transmitting, by the device, the request frame to a second device. The request frame can include both the start time of instance field and the start time of multi-static PPDU field. The start time of instance field may be an eight-octet field. The start time of instance field can include an eight-octet timestamp. The request frame can include the start time of multi-static PPDU field, which can be an eight-octet field. The start time of instance field can include an eight-octet timestamp.
According to another aspect, a computer readable medium is provided, where the computer readable medium includes instructions, which when executed by a processor of a device, cause the device to carry out one or more of the methods described herein.
In another aspect, a computer program is provided which includes instructions which, when the program is executed by a processor of a computer, cause the computer to carry out one or more of the methods described herein.
In one aspect, an apparatus is described which includes at least one processor and at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out one or more of the methods described herein.
Embodiments have been described above in conjunction with aspects of the present invention upon which they can be implemented. Those skilled in the art will appreciate that embodiments may be implemented in conjunction with the aspect with which they are described but may also be implemented with other embodiments of that aspect. When embodiments are mutually exclusive, or are otherwise incompatible with each other, it will be apparent to those skilled in the art. Some embodiments may be described in relation to one aspect, but may also be applicable to other aspects, as will be apparent to those of skill in the art.
BRIEF DESCRIPTION OF THE DRAWINGS
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
FIG. 1 illustrates a multi-static sensing setup with one transmitter and two receivers, according to one aspect of the present disclosure.
FIG. 2 illustrates the procedure of a multi-static sensing instance with one transmitter and two receivers, according to one aspect of the present disclosure.
FIG. 3 illustrates a multi-static sensing setup with one receiver and two transmitters, according to one aspect of the present disclosure.
FIG. 4 is an illustration of a physical layer protocol data unit (PPDU) format for the enhanced directional multi-gigabit (EDMG) format.
FIG. 5 illustrates a legacy short training field format for the EDMG format.
FIG. 6 illustrates an EDMG short training field format.
FIG. 7 illustrates a training field structure of an EDMG beam refinement protocol (BRP) transmit (TX) PPDU.
FIG. 8 illustrates a training field structure of an EDMG BRP-TX/RX (receive) PPDU.
FIG. 9 illustrates a previously proposed EDMG multi-static sensing sounding PPDU structure.
FIG. 10 illustrates a previously proposed sync field structure which can be used with an EDMG multi-static sensing sounding PPDU.
FIG. 11 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 12 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 13 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 14 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 15 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 16 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 17 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 18 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 19 illustrates an EDMG multi-static sensing sounding PPDU structure, according to one aspect of the present disclosure.
FIG. 20 is a schematic diagram of an electronic device that may perform any or all of operations of the above methods and features explicitly or implicitly described herein, according to different embodiments of the present disclosure.
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
DETAILED DESCRIPTION
Embodiments of the present disclosure relate to the format of an enhanced directional multi-gigabit (EDMG or the IEEE 802.11ay standard) multi-static sensing sounding physical layer protocol data unit (PPDU) . The PPDU formats can be used in two different multi-static sensing scenarios: Those with one transmitting device (transmitter) and multiple receiving devices (receivers) , and those with one receiver and multiple transmitters.
The IEEE 802.11bf (11bf) standard will amend sensing capabilities to wireless location area networks (WLANs) . Using 11bf, a station (STA) can detect features (e.g., range, velocity, angular, motion, presence or proximity, gesture, etc. ) of intended targets (e.g., objects, humans, animals, etc. ) in an environment (e.g., house, office, room, vehicle, enterprise, etc. ) using received WLAN signals.
A multi-static sensing system is one in which there are at least three devices, such as stations (STAs) . Each of the STAs in a multi-static sensing system may also be an access  point (AP) . The multi-static sensing system can include one receiver and two or more transmitters, two or more receivers and one transmitter, or multiple receivers and multiple transmitters. A sensing instance may be initiated by an initiator and may include a plurality of responders. Each of the initiator and the responders may act as one or both of transmitters and receivers in the sensing instance. Some multi-static sensing instances may be transmitted on the 60 GHz band, which is used by directional multi-gigabit (DMG or the IEEE 802.11ad standard) devices and EDMG devices.
An EDMG multi-static sensing sounding PPDU may be used as part of the multi-static sensing instance on the 60 GHz band. The sounding PPDU may be transmitted by one or more transmitting devices and received by one or more receiving devices. The sounding PPDU may include training fields, which can be used by receiving devices to measure an environment which can be used to detect features of intended targets in the environment. The measurement results can be fed back from the responders to the initiator.
Existing proposed sounding PPDU formats have several potential deficiencies which may be improved upon. For example, existing sounding PPDU formats may not be compatible with multi-static sensing instances with multiple transmitters, and only be compatible with sensing instances with a single transmitter. Therefore, a sounding PPDU format which allows each of multiple transmitters to transmit training fields is proposed, enabling a multi-static sensing instance which includes multiple transmitting devices.
Furthermore, existing sounding PPDU formats may be improved on by using an EDMG-STF (short training field) field in place of the more complex synchronization fields for each additional device after the first device. A sounding PPDU may also be designed which excludes the data field, since the data field of a sounding PPDU may not generally be used to carry useful information. A sounding PPDU may also be designed which includes unique station synchronization (or STA detection) fields for each of the STAs, to identify a specific STA for synchronization.
FIG. 1 illustrates a multi-static sensing setup 100 with one transmitter and two receivers, according to one aspect of the present disclosure. The transmitter and the receivers may each be STAs on a wireless communication network. The multi-static sensing setup 100 is illustrated with two receivers but may also be generalized to include more than two receivers.
In the multi-static sensing setup 100, the sensing initiator 105 begins a sensing instance and acts as a transmitter with two sensing responders 111, 112 acting as receivers. The sensing instance may be set up by an exchange of request and response 131 (handshakes) with the first responder 111, and a similar exchange of request and response 132 with the second responder 112.
The sensing instance may generally be directed towards detecting features of a given target, such as object 108. The sensing instance includes the sensing initiator 105 transmitting a sounding PPDU. A part of the signal 120, particularly one or more training (TRN) fields in the sounding PPDU, from the sensing initiator 105 may be transmitted from the sensing initiator 105 and strike the object 108. A part of this signal 121 may reflect off the object 108 and propagate towards the first responder 111, and a part of this signal 122 may reflect off the object 108 and propagate towards the second responder 112. After the sensing initiator 105 transmits the sounding PPDU, each of the responders 111, 112 may be polled and report  feedback  141, 142. The  feedback  141, 142 may be related to the part of the  signal  121, 122 which was received by the responders 111, 112 after it had reflected off the object 108. The  feedback  141, 142 may be used by the sensing initiator 105 to detect features of the object 108.
The multi-static sensing setup 100 includes a sensing initiator 105 which also acts as the transmitter during the sounding phase of the sensing instance. In some aspects, the sensing initiator may also serve as a receiver in the sensing instance. In this scenario, the sensing initiator may transmit request frames to other devices during a measurement setup phase, but during the sounding phase, one or more other devices may act as transmitters and transmit one or more sounding PPDUs (or parts thereof) , while the sensing initiator acts as a receiver.
FIG. 2 illustrates the procedure 200 of a multi-static sensing instance with one transmitter and two receivers, according to one aspect of the present disclosure. A similar procedure may also be used for scenarios with more than two receivers. In the illustrated sensing instance, the initiator acts as a transmitter and each of the responders act as receivers.
The procedure 200 begins with a measurement setup phase 220 (or initiation phase) . This phase 220 includes the initiator 205 transmitting a request 230 to the first responder 211. The first responder 211 may respond with a response 232. The initiator 205 then transmits a  request 234 to the second responder 212, which may then transmit a response 236 to the initiator 205. These handshakes between the initiator 205 and the  responders  211, 212 may be used to provide the  responders  211, 212 with the order of sounding and reporting between the devices. The handshakes also inform the initiator 205 of the readiness of the  responders  211, 212 to participate in the sensing instance.
The procedure 200 then begins the sensing instance 222 with a sounding phase and reporting phase. The sensing instance 222 begins with the initiator transmitting a sounding PPDU 238. The sounding phase may happen in parallel with both  responders  211, 212 using the same sounding PPDU 238. The sounding PPDU may be used for synchronization and for sensing purposes. Each of the  responders  211, 212 may use parts of the sounding PPDU 238, such as TRN fields, to measure the reflected signal received from one or more target objects.
The sensing instance 222 then continues with a reporting phase, during which each of the  responders  211, 212 sequentially report to the initiator 205. Each of the  responders  211, 212 may report to the initiator 205 in a predefined order, which can be defined and communicated during the handshakes of the measurement setup phase 220. The initiator 205 may transmit a report poll 240 to the first responder 211, and the first responder 211 may respond with its report 242. The initiator 205 may then transmit a report poll 244 to the second responder 212, and the second responder 212 may respond with its report 246.
The request frames 230, 234 transmitted by the initiator 205 may be EDMG multi-static sensing request frames. As shown, these frames are transmitted from the initiator 205 to the  responders  211, 212. It may be beneficial to provide timing information to the  responders  211, 212 in a sensing measurement instance. This timing information can be provided to the  responders  211, 212 in the request frames 230, 234. For example, the EDMG multi-static sensing request frames can include one or more of fields to provide this timing information to the  responders  211, 212, such as one or more of a start time of instance field and/or a start time of multi-static PPDU field. These fields may be used in multi-static sensing instances with either a single transmitter, or also in multi-static sensing instances with multiple transmitters.
A start time of instance field can indicate the start time of instance 250, which may correspond to the time when the initiator 205 begins to transmit its first request frame 230, beginning the measurement setup phase 220. The start time of instance field can be an 8- octet (or 8 byte) field, although it can also be other sizes as is appropriate. The start time of instance field can be an 8-octet timestamp, or a part of this timestamp, when the initiator 205 transmits the first EDMG multi-static sensing request frame 230 to the first responder 211. The timestamp included in the start time of instance field can represent the timing synchronization function (TSF) timer that keeps the timers for all STAs in the same basic service set (BSS) synchronized.
A start time of multi-static PPDU field can indicate the start time of multi-static sounding PPDU 260, which may correspond to the time when the initiator 205 begins to transmit the sounding PPDU 238, beginning the measurement sensing instance 222. The start time of multi-static PPDU field may be an 8-octet (or 8 byte) field. The start time of multi-static PPDU field can be an 8-octet timestamp, or a part of this timestamp, when the initiator 205 transmits the first sounding PPDU 238. The start time of multi-static PPDU field can be calculated by the initiator 205 based in part on the start time of instance 250.
In a multi-static sensing instance with multiple transmitters, a sounding PPDU may be made up of portions that are transmitted by different devices. For example, a first STA may transmit a first portion of the sounding PPDU while additional STAs transmit additional portions of the sounding PPDU. Each of the portions of the sounding PPDU may include, e.g., synchronization information in a synchronization field or an EDMG-STF field, one or more TRN-Unit P fields and TRN subfields. However, the STAs transmitting the sounding PPDU may not be able to receive the portions of the sounding PPDU transmitted by the other STAs. Therefore, it may be necessary for these devices to receive accurate timing information to allow them to transmit their portion of the sounding PPDU at the appropriate time so that it may be received by the one or more receiving devices in the multi-static sensing instance. This information can be contained, at least in part, in timing information fields in a request frame.
Collectively, the start time of instance field, the start time of multi-static PPDU field, and/or the start sounding time of STA field may be used by STAs, such as the  responders  211, 212, to know the timing of particular parts of the sounding PPDU 238. For example, these two fields may assist the STAs in identifying the timing of synchronization (sync) fields which are contained in the sounding PPDU 238, particularly for STAs which may be unable to receive the preamble of the sounding PPDU 238.
FIG. 3 illustrates a multi-static sensing setup 300 with one receiver and two transmitters, according to one aspect of the present disclosure. The transmitter and the receivers may each be STAs on a wireless communication network. The multi-static sensing setup 300 is illustrated with two transmitters but may also be generalized to include more than two transmitters.
Generally, the multi-static sensing setup 300 may be comparable to the setup 100 which included one receiver and two transmitters. However, in setup 300, each of the responders 311, 312 act as transmitters rather than receivers during the sensing instance. Accordingly, each of the responders 311, 312 transmits  signals  321, 322, which may reflect off object 308 and the reflected signals 320 may be received by the initiator 305. The reflected signals 320 can be used by the initiator 305 to detect information about the object 308. Generally, the  signals  321, 322 used to detect information may be contained in a sounding PPDU, where portions of the sounding PPDU are transmitted by each of the responders 311, 312. For example, each of the responders 311, 312 may transmit portions of the sounding PPDU including a plurality of training subfields. These training subfields may be received by the initiator 305, after they have reflected off the object 308, and this may be used to detect information about the object 308.
FIG. 4 is an illustration of a PPDU format 400 for the enhanced directional multi-gigabit (EDMG or IEEE 802.11ay) standard. EDMG multi-static sounding PPDUs may be based on the EDMG PPDU format 400 and include many of the same fields as described in the EDMG standard.
An EDMG PPDU may be transmitted on a 60 GHz band, a part of which is also recognized by the directional multi-gigabit (DMG or IEEE 802.11ad) devices. To enable backward compatibility, the first three  fields  410, 412, 414 of the EDMG PPDU format 400, are defined to be recognizable by legacy DMG stations. The L-STF (legacy short training field) 410 and L-CEF (legacy channel estimation field) 412 are compatible with the preamble defined in IEEE 802.11ad. The L-STF field 410 allows discovery and synchronization of the EDMG/DMG packet, while the L-CEF field 412 enables channel estimation for demodulation of the L-Header field 414 and the EDMG-Header-A field 416. The L-Header field 414 contains information about the EDMG/DMG packet.
The EDMG-Header-A field 416 contains information for the EDMG PPDU. Each of the first four  fields  410, 412, 414, 416 of the EDMG PPDU may be transmitted in duplicate on each 2.16 GHz subchannel of the packet, as legacy devices may be configured to only use one subchannel. Each of the remaining fields of the EDMG PPDU may be transmitted on the full bandwidth of the packet, such as on a 4.32 GHz, 6.48 GHz, or 8.64 GHz channel.
The EDMG-STF field 418 allows synchronization of the EDMG PPDU. The EDMG-CEF field 420 allows channel estimation for demodulation of the EDMG-Header-B field 422 and data field 424. The EDMG-Header-B field 422 includes information for EDMG multi-user (MU) PPDUs. The data field 424 includes the payload data of the packet, padded with zeros if necessary for packaging. Finally, the PPDU format 400 includes a training (TRN) sequence field 426 which is used for beam forming training and beam tracking, as part of a beam refinement protocol (BRP) process to allow STAs to improve their antenna configuration for transmission and/or reception. The TRN field 426 may be composed of a plurality of TRN subfields, as described in the EDMG standard.
FIG. 5 illustrates a legacy short training field format 500. This L-STF format 500 may be used for the L-STF field 410 in the EDMG PPDU format 400. The legacy short training field format 500 includes 16 repetitions of a Golay sequence Ga 128 (n) of length 128, followed by a single repetition of -Ga 128 (n) , as described in the EDMG standard. The L-STF format 500 may also be used in EDMG multi-static sensing sounding PPDUs, as described herein.
FIG. 6 illustrates an enhanced directional multi-gigabit short training field format 600. This EDMG-STF format 600 may be used for the EDMG-STF field 418 in the EDMG PPDU format 400, as described in the EDMG standard. The EDMG-STF format 600 includes 18 repetitions of a Golay sequence as described in the EDMG standard, where 
Figure PCTCN2022085996-appb-000001
is a Golay sequence for the i STS transit chain with the number of bounded 2.16 GHz channels N CB. The EDMG-STF format 600 may also be used in EDMG multi-static sensing sounding PPDUs, as described herein.
FIG. 7 illustrates a training field structure 700 of an EDMG beam refinement protocol-transmit (BRP-TX) PPDU. The training field structure 700 may be used as the TRN  field 426 in EDMG field structure 400. The training field structure 700 may also be used with EDMG multi-static sensing sounding PPDUs, as described herein.
Generally, an EDMG BRP PPDU is an EDMG PPDU which includes a training field and enables antenna configuration training for transmission and/or reception. EDMG BRP-TX PPDUs are used for transmit antenna weight vector (AWV) training. The transmitter may change the AWV at the beginning of each set of N TRN subfields present in the last M TRN subfields of each TRN unit in the TRN field. The transmitter may transmit all TRN subfields of a TRN field with the same AWV. The receiver performs measurements during the reception of the EDMG BRP-TX PPDU and sends feedback to the STA that transmitted the PPDU. The TRN field may also be appropriate to use for sensing applications, such as in an EDMG multi-static sensing sounding PPDU.
For EDMG BRP-TX and EDMG BRP-RX/TX PPDUs, each TRN-Unit includes P plus M repetitions of the TRN subfield, where P is the value indicated by the EDMG TRN-Unit P field and M is the value of the EDMG TRN-Unit M field in the EDMG-Header-A plus one. The first P TRN subfields of each TRN-Unit shall typically be transmitted using the same AWV as the preamble and data fields of the PPDU.
FIG. 8 illustrates a training field structure 800 of an EDMG beam refinement protocol-transmit/receive (BRP-TX/RX) PPDU. The training field structure 800 may be used as the TRN field 426 in EDMG field structure 400, as described in the EDMG standard. The training field structure 800 may also be used with EDMG sounding PPDUs, as described herein.
EDMG BRP-RX/TX PPDUs are used for simultaneous training of the transmitter’s transmit AWV and the receiver’s receive AWV. To enable simultaneous receive and transmit training using the same EDMG BRP-RX/TX PPDU, different from an EDMG BRP-TX PPDU, the transmitter sends a number of consecutive TRN-Units in which the last M TRN subfields of each TRN-Unit are transmitted with the same AWV configuration. The TRN field may also be appropriate to use for sensing applications, such as in an EDMG multi-static sensing sounding PPDU.
FIG. 9 illustrates a previously proposed EDMG multi-static sensing sounding PPDU structure 900. The EDMG multi-static sensing sounding PPDU may use a structure 900 which is adapted from the structure of an EDMG PPDU, but which is optimized for  multi-static sensing. The structure 900 includes three STAs but can be altered to include either more or fewer STAs. The structure 900 can be used for multi-static sensing instances where there is one transmitter and a plurality of receivers, such as multi-static sensing setup 100.
The structure 900 includes an L-STF field 910, L-CEF field 912, header fields 914, and a data field 916. Each of these fields may be transmitted using an AWV associated with STA1, to transmit to STA1. Other STAs may or may not be able to receive portions of the PPDU which are not transmitted on the AWV trained for transmissions appropriate for those STAs, depending on the physical characteristics of the STAs such as their location relative to one another. The structure 900 further includes a  Sync field  918, 920 for each of the other STAs, with each  Sync field  918, 920 transmitted using an AWV appropriate for that STA. The structure 900 further includes a Sync PAD field 922 which makes sure that the Sync fields together have a length equal to an integer number of TRN-unit fields. The structure 900 then includes a TRN- Unit P field  924, 926, 928 for each responder STA to allow all STAs to track the frequency and phase, with each TRN- Unit P field  924, 926, 928 transmitted using an AWV appropriate for that STA. This is followed by TRN subfields 930. The structure 900 further includes TRN- Unit P field  932, 934, 936 each directed towards one of the STAs, followed by further TRN subfields 938. The TRN subfields 930, 938 may be transmit as described in the EDMG standard, using, e.g., structure 700 or structure 800.
Generally, each STA except the first STA may not receive the L-STF field 910, L-CEF field 912, header fields 914, and data field 916 of the PPDU, as these fields of the PPDU are transmitted using the AWV of the first STA (STA1) . Accordingly, the other STAs may need to know when their TRN- Unit P field  924, 926, 928 begin. Each  Sync field  918, 920 may be transmitting in the direction of a specific STA, as shown. The  Sync field  918, 920 may be unique to each STA, so that if a STA can receive the Sync fields intended for another STA, it will recognize its own Sync fields from those of another device. The Sync fields 918, 920 may ensure that STAs know when their TRN-Unit P fields 926, 928 will be transmitted. Thus, the  Sync field  918, 920 may enable accurate synchronization of all STAs, including those which may not receive the PPDU header.
However, potential issues in previously proposed structure 900 may be identified, and improvements to this structure may be desired to remedy those issues. The data field 916 can include padding bits in a PPDU. However, in structure 900, the padding field 922 and  TRN-Unit P field 924 are separated from the data field 916 by  Sync fields  918, 920. Both padding field 922 and TRN-Unit P field 924 are transmitted using the AWV associated with STA1, as are the first four  fields  910, 912, 914, 916 of the PPDU. However, the Sync fields 918, 920 are transmitted using different AWVs. This ordering may require a transmitting device to switch its antenna beam from field to field, which can increase the implementation complexity of the PPDU. Thus, it may be desirable to use a PPDU structure which requires less beam switching.
Moreover, the structure 900 may only be appropriate for multi-static sensing instances which include a single transmitter and multiple receivers. A sensing structure which can be used with multiple transmitting devices may be desired, such as PPDU structures in which each of multiple transmitters can transmit training subfields.
Furthermore, in structure 900, TRN-Unit configurations for each of TRN-Unit P, TRN-Unit M, and TRN-Unit N are assumed to be the same for all STAs. This can result in the loss of some flexibility.
Finally, the structure 900 appears to be missing an EDMG-STF field, which is needed to allow for receiving devices to demodulate the data field 916 and for operation of the training field 924.
FIG. 10 illustrates a previously proposed sync field structure 1000 which can be used with an EDMG multi-static sensing sounding PPDU. The sync field structure 1000 may be used in the Sync fields 918, 920 of EDMG multi-static sensing sounding PPDU structure 900. The sync field structure 1000 includes Golay sequences Ga and Gb which are derived from the basic Golay sequences of length 128 defined in the IEEE 802.11ad standard, where a multiplier M (r, q) is specified for the rth STA and the qth Golay sequence to construct sequences with good autocorrelation for the rth STA and good mutual cross-correlation among the Ua/Ub part of the “Sync” fields. These sync fields are unique for each STA, and the properties of these sync fields ensure that each STA may be able to identify and distinguish its sync fields from those of the other STAs.
However, previously proposed structure 1000 may be more complex than is needed in a multi-static sensing session. As described above, a multi-static sensing session begins with the exchange of request and response frames between an initiator and each responder. The request frames in this exchange include information such as the number of STAs in a  sensing instance, a STA multi-static identification field which indicates the order of each STA in the multi-static sensing PPDU, and TRN unit parameters which will be used in the sensing instance. The request frames can also include additional timing information, such as a start time of instance field and/or a start time of multi-static PPDU field. These fields may provide sufficient information for a STA to determine when its portion of a multi-static sounding PPDU will be transmitted. Accordingly, it may be unnecessary to provide different synchronization fields for each STA, since those devices will know which field is intended for their use by the timing of the transmission, and thus this sync field structure 1000 may introduce unnecessary complexity.
FIG. 11 illustrates an EDMG multi-static sensing sounding PPDU structure 1100, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1100 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers. The structure 1100 includes three receivers, STAs 1–3, although the structure 1100 can also be used with more and fewer receivers by duplicating or removing the portions of the structure 1100 for STAs 2 and 3.
The structure 1100 includes an L-STF field 1110, L-CEF field 1112, L-Header field 1114, EDMG-Header-A field 1116, EDMG-STF field 1118, data field 1120, Padding field 1122, and TRN-Unit P field 1124. Each of these fields may be transmitted using an AWV intended for STA1, and these fields may include all fields transmitted using the AWV for STA1 prior to the TRN subfields 1134. The contiguous part of a PPDU which are transmitted using the same AWV may be referred to as a portion or a continuous portion of the PPDU. For example, the first continuous portion of a PPDU using structure 1100 may include L-STF field 1110, L-CEF field 1112, L-Header field 1114, EDMG-Header-A field 1116, EDMG-STF field 1118, data field 1120, Padding field 1122, and TRN-Unit P field 1124.
The structure 1100 then includes a Sync field 1126 and a TRN-Unit P field 1128 which are transmitted using the AWV intended for STA2. The structure 1100 further includes a Sync field 1130 and a TRN-Unit P field 1132 which are transmitted using the AWV intended for STA3. The structure 1100 then includes TRN subfields 1134, which are used by each of the STAs. This is then followed by another set of TRN-Unit P fields for each of STAs 1–3 1136, 1138, 1140, and then further TRN subfields 1142, which are used by each of the STAs.
Each of the fields in structure 1100 may use formats which align with those found in an EMDG PPDU, and the Sync fields 1126, 1130 may use Sync field structure 1000.
The structure 1100 may require less antenna switching than structure 900. Generally, structure 1100 groups together the fields which are transmitted using the same AWV as much as possible, increasing the size of each continuous portion of the PPDU as much as possible and minimizing the beam switching needed to transmit the PPDU. For example, structure 900 may require antenna switching five times before TRN subfields 930, including at least Sync field 918, Sync field 920, Sync PAD field 922, TRN-Unit P field 926, and TRN-Unit P field 928. In contrast, structure 1100 may only require antenna switching two times before TRN subfields 1134, switching to the AWV of STA2 at Sync field 1126 and to the AWV of STA3 at Sync field 1130. Thus, structure 1100 may require significantly less switching between the AWVs of the various STAs, which can decrease implementation complexity. In addition, the structure 1100 includes EDMG-Header-A field 1116 and an EDMG-STF field 1118, which will ensure proper handling of the packet from EDMG devices.
Although not illustrated, the sounding PPDU may also be transmitted without the data field 1120. Generally, a sounding PPDU is used for multi-static sensing, with the training fields configured to allow the STAs to detect features of one or more target objects. Such a PPDU is not generally used to transmit data. Accordingly, the multi-static sounding PPDU may not carry any useful information in its data field 1120, so it may be beneficial to remove this field from structure 1100 or from each other multi-static sounding PPDU structure described herein.
The structure 1100 is illustrated with two TRN units. Each TRN unit includes at least P TRN subfields for each STA followed by TRN subfields, such as in the first TRN unit including P TRN subfields for each  STA  1124, 1128, 1132 followed by TRN subfields 1134 and the second TRN unit including P TRN subfields for each  STA  1136, 1138, 1140 followed by TRN subfields 1142. Other numbers of TRN units may also be used in a sounding PPDU, such as one or more TRN units. In each of the following PPDU structures, the PPDU is illustrated with two TRN units, but can also include other numbers of TRN units. The number of TRN units in a given PPDU can be included in a EDMG TRN Length field contained in the EDMG-Header-A field of the PPDU, and can also be communicated by the sensing initiator during the measurement setup phase of the sensing instance.
FIG. 12 illustrates an EDMG multi-static sensing sounding PPDU structure 1200, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1200 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers. The structure 1200 includes three receivers, STAs 1–3, although the structure 1200 can also be used with more and fewer receivers by duplicating or removing the continuous portions of the structure 1200 for STAs 2 and 3.
Generally, structure 1200 is comparable to structure 1100, and includes similar benefits. However, structure 1200 uses additional EDMG- STF fields  1226, 1230 for the additional STAs,  STAs  2 and 3, rather than using more complex synchronization fields 918, 920 in structure 900. These  fields  1226, 1230 may be the same format as that used by STA1 in EDMG-STF field 1218, and the same format which is used in the EDMG standard. This field format may rely on each STA already knowing its order from the request and response frames transmitted during a management setup phase of the multi-static sensing instance. Therefore, each STA can use the same sync field as one another, which can be an EDMG-STF field. Using the same sync field may be much less computationally complex than using previously proposed sync field structure 1000.
FIG. 13 illustrates an EDMG multi-static sensing sounding PPDU structure 1300, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1300 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers. The structure 1300 includes three receivers, STAs 1–3, although the structure 1300 can also be used with more and fewer receivers by duplicating or removing the continuous portions of the structure 1300 for STAs 2 and 3.
The structure 1300 includes an L-STF field 1310, L-CEF field 1312, L-Header field 1314, EDMG-Header-A field 1316, EDMG-STF field 1318, data field 1320, Padding field 1322, and TRN-Unit P field 1324. Each of these fields may be transmitted using an AWV intended for STA1, and these fields may include all fields transmitted using the AWV for STA1 prior to the TRN subfields 1334. In some cases, two or more STAs may use the same AWV, such as STA1 and STA2 using the same AWV. As with structure 1100, the data field 1320 in structure 1300 may optionally be excluded from the PPDU, since it will not generally carry useful information for sensing using TRN fields.
The structure 1300 then includes a Sync field 1326, a STA sync field 1327, and a TRN-Unit P field 1328 which are transmitted using the AWV intended for STA 2. The structure 1300 further includes a Sync field 1330, a STA sync field 1331, and a TRN-Unit P field 1332 which are transmitted using the AWV intended for STA 3. The structure 1300 then includes TRN subfields 1334, followed by TRN-Unit P field for each of STAs 1–3 1336, 1338, 1340, and then TRN subfields 1342.
The structure 1300 is comparable to structure 1100, except for the addition of  STA sync fields  1327, 1331 for each of STA2 and STA3 respectively. Each of STA2 and STA3 can be assigned with a unique synchronization signal. The STA sync fields 1327, 1331 (or STA detection fields) can follow immediately after a  sync field  1326, 1330.
Each of the  STA sync fields  1327, 1331 identify a specific STA for synchronization and may offer improved correlation properties compared to other Sync fields such as those in structure 900. Each  STA sync field  1327, 1331 is unique and each should have good autocorrelation and cross-correlation properties. The  STA sync fields  1327, 1331 may be transmitted using the same AWV as for the  corresponding sync field  1326, 1330 respectively.
To ensure the performance of  STA sync fields  1327, 1331 in the multi-static PPDU, auto-correlation and cross-correlation are the two main properties to be considered. Auto-correlation is needed to allow good detection and low cross-correlation assists with distinguishing multiple sequences/STAs.
Figure PCTCN2022085996-appb-000002
Figure PCTCN2022085996-appb-000003
Table 1: Proposed sequences
Table 1 shows an example of the STA sync field 1327, 1331, which include the following correlations:
Figure PCTCN2022085996-appb-000004
Table 2: Correlation of the eight sequences in Table 1
In Table 1, Ga and Gb are the Golay complementary pair, as described in the IEEE 802.11ay standard. This exemplary design includes a zero-correlation zone on both side of the autocorrelation main peak, and the main peak of autocorrelation is 1024. In these sequences, the first 4 sequences are orthogonal to each other, and the last four sequence are orthogonal to each other within +-127. The maximum cross correlation of the 8 sequences is 80. Accordingly, this scheme may be used to create the  STA sync field  1327, 1331 and include good autocorrelation and cross correlation properties.
FIG. 14 illustrates an EDMG multi-static sensing sounding PPDU structure 1400, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1400 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers. The structure 1400 includes three receivers, STAs 1– 3, although the structure 1400 can also be used with more and fewer receivers by duplicating or removing the continuous portions of the structure 1400 for STAs 2 and 3.
Generally, structure 1400 is comparable to structure 1300, and includes the benefits described above. Additionally, structure 1400 uses the same synchronization fields for each of the STAs, with EDMG-STF field 1426 used for STA2 and EDMG-STF field 1430 used for STA3. These fields may be the same format as that used by STA1 in EDMG-STF field 1418, and the same format which is used in the EDMG standard. However, each of the  STA sync fields  1427, 1431 may be different from one another and each of the  STA sync fields  1427, 1431 is transmitted using the AWV of the appropriate STA. Thus, structure 1400 may provide a synchronization sequences which are common for all STAs, in EDMG- STF fields  1418, 1426, 1430, while also providing  STA sync fields  1427, 1431 which are unique to STA2 and STA3, respectively.
FIG. 15 illustrates an EDMG multi-static sensing sounding PPDU structure 1500, according to one aspect of the present disclosure. The structure 1500 allows for different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M for each STA. As with the  prior structures  1100, 1200, 1300, 1400, the EDMG multi-static sensing sounding PPDU structure 1500 may be used for multi-static sensing in scenarios with a single transmitter and with multiple receivers. However, unlike those  structures  1100, 1200, 1300, 1400, structure 1500 can also be used for multi-static sensing in scenarios with multiple transmitters and a single receiver. The structure 1500 includes three other devices, which may be either transmitters or receivers, STAs 1–3. The structure 1500 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1500 for STAs 2 and 3.
When the PPDU structure 1500 is used in a scenario with a single transmitter and multiple receivers, the entire PPDU may be transmitted by a single STA, the transmitter. In this scenario, different continuous portions of the PPDU structure 1500 may be transmitted using different AWVs, intended for different devices. The PPDU structure 1500 includes names of devices (i.e., STA 1–3) next to its fields. In a single transmitter scenario, the fields of PPDU structure 1500 can be transmitted using the AWV of the device listed under the field.
When the PPDU structure 1500 is used in a scenario with multiple transmitters and a single receiver, continuous portions of the PPDU may be transmitted by different devices, such as STAs 1–3. In this scenario, each STA may transmit the fields listed above its name, as well as the training fields which follow its transmissions. For example, when there are three devices, as in structure 1500, acting as transmitters, the first device (STA1) may transmit a first continuous portion of the PPDU from the L-STF field 1510 through to transmitting the TRN subfields 1530. Following this, each additional device may then transmit a continuous portion of the PPDU, including a synchronization field, followed by two sets of a TRN-Unit P field and TRN subfields, such as STA2 transmitting synchronization field 1532, TRN-Unit P field 1534, TRN subfields 1536, TRN-Unit P field 1538, and TRN subfields 1540. This can then be followed by STA3 transmitting a continuous portion of the PPDU including synchronization field 1542, TRN-Unit P field 1544, TRN subfields 1546, TRN-Unit P field 1548, and TRN subfields 1550. In a multiple-transmitter scenario, the PPDU may be transmitted using an AWV associated with the receiving device.
Because each STA may be unable to receive the transmissions of the other STAs, the STAs may need to be synchronized with one another to know the timing of when to begin transmitting their continuous portion of the PPDU. As described above regarding procedure 200, timing indications may be transmitted to the STAs during a management setup phase of the sensing instance. For example, one or more transmitters may receive a request frame such as an EDMG multi-static sensing request frame. Among other fields, the request frame can include timing indications which enable the transmitter to learn when it should transmit its continuous portion of the sounding PPDU. For example, the request frame may include one or more of a start time of instance field and a start time of multi-static PPDU field. These fields, along with the other information contained in a request frame, can inform each STA in a multi-transmitter sensing instance when it should begin transmitting its continuous portion of the PPDU.
The structure 1500 includes an L-STF field 1510, L-CEF field 1512, L-Header field 1514, EDMG-Header-A field 1516, EDMG-STF field 1518, Data field 1520, Padding field 1522, TRN-Unit P field 1524, TRN subfields 1526, TRN-Unit P field 1528, and TRN subfields 1530. Each of these fields may be transmitted using an AWV intended for STA1 in a single-transmitter sensing instance, or each of these fields may be transmitted by STA1 in a  multiple-transmitter sensing instance. As with structure 1100, the Data field 1520 in structure 1500 may optionally be excluded from the PPDU, since it will not generally carry useful information for sensing using TRN fields.
The structure 1500 then includes synchronization and training fields for STA2, including sync field 1532, TRN-Unit P field 1534, TRN subfields 1536, TRN-Unit P field 1538, and TRN subfields 1540. Each of these fields may be used by STA2 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA2 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1, they may use different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1.
Finally, the structure 1500 includes synchronization and training fields for STA3, including sync field 1542, TRN-Unit P field 1544, TRN subfields 1546, TRN-Unit P field 1548, and TRN subfields 1550. Each of these fields may be used by STA3 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA3 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1 and STA2, they may use different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1 and STA2. While structure 1500 and others herein are illustrated with three STAs, it may include more or fewer STAs as required by a sensing scenario.
FIG. 16 illustrates an EDMG multi-static sensing sounding PPDU structure 1600, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1600 may be used for multi-static sensing in scenarios with both a single transmitter and multiple receivers, and also scenarios with a single receiver and multiple transmitters. The structure 1600 includes three other devices, which may be either transmitters or receivers, STAs 1–3. The structure 1600 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1600 for STAs 2 and 3.
Generally, structure 1600 is comparable to structure 1500, and includes the benefits described above. The structure 1600 allows for different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M for each STA. Additionally, structure 1600 uses the same sync field for each of the STAs, with EDMG-STF field 1632 used for STA2 and  EDMG-STF field 1642 used for STA3. These fields may be the same format as that used by STA1 in EDMG-STF field 1618, and the same format which is used in the EDMG standard. This sync field format may rely on each STA already knowing its order from the request and response frames transmitted during a management setup phase of the multi-static sensing instance. Because STAs know this order, each STA can use the same sync field as one another, here the EDMG-STF field, although other sync fields may also be used. Using the same sync field may be less computationally complex than using unique sync fields for each STA.
FIG. 17 illustrates an EDMG multi-static sensing sounding PPDU structure 1700, according to one aspect of the present disclosure. The structure 1700 allows for different training unit configurations of TRN-Unit P, TRN-Unit N, and TRN-Unit M for each STA. The structure 1700 may be used for scenarios with either one transmitter and multiple receivers, or scenarios with one receiver and multiple transmitters. The structure 1700 includes three other devices, which may be either transmitters or receivers, STAs 1–3. The structure 1700 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1700 for STAs 2 and 3.
The structure 1700 includes an L-STF field 1710, L-CEF field 1712, L-Header field 1714, EDMG-Header-A field 1716, EDMG-STF field 1718, Data field 1720, Padding field 1722, TRN-Unit P field 1724, TRN subfields 1726, TRN-Unit P fields 1728, and further TRN subfields 1730. Each of these fields may be transmitted using an AWV intended for STA1 in a single-transmitter sensing instance, or each of these fields may be transmitted by STA1 in a multiple-transmitter sensing instance. As with structure 1100, the Data field 1720 in structure 1700 may optionally be excluded from the PPDU, since it will not generally carry useful information for sensing using TRN fields.
The structure 1700 then includes synchronization and training fields for STA2, including Sync field 1732, STA sync field 1733, TRN-Unit P field 1734, TRN subfields 1736, TRN-Unit P field 1738, and TRN subfields 1740. Each of these fields may be used by STA2 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA2 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1, they may use different training unit configurations TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1.
Finally, the structure 1700 includes synchronization and training fields for STA3, including Sync field 1742, STA sync field 1743, TRN-Unit P field 1744, TRN subfields 1746, TRN-Unit P field 1748, and TRN subfields 1750. Each of these fields may be used by STA3 for the sensing and sounding procedure in a single-transmitter sensing instance, or each of these fields may be transmitted by STA3 in a multiple-transmitter sensing instance. Because these fields are separate from those for STA1 and STA2, they may use different training unit configurations TRN-Unit P, TRN-Unit N, and TRN-Unit M than those of STA1 and STA2.
The  STA sync fields  1733, 1743 in structure 1700 may be comparable to those described for structure 1300. Each of the  STA sync fields  1733, 1743 may be uniquely assigned to one of the STAs, and may follow the  Sync field  1732, 1742 for that STA, and be transmitted using the AWV associated with the STA. One example of these  STA sync fields  1733, 1743 can be found in Tables 1 and 2, which may have strong autocorrelation and cross-correlation properties.
FIG. 18 illustrates an EDMG multi-static sensing sounding PPDU structure 1800, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1800 may be used for multi-static sensing in scenarios with both a single transmitter and multiple receivers, and scenarios with a single receiver and multiple transmitters. The structure 1800 includes three other devices, which may be either transmitters or receivers, STAs 1–3. The structure 1800 can also be used with either more or fewer STAs by duplicating or removing the continuous portions of the structure 1800 for STAs 2 and 3.
Generally, structure 1800 is comparable to structure 1700, and includes the benefits described above. Additionally, structure 1800 uses the same Sync field for each of the STAs, with EDMG-STF field 1832 used for STA2 and EDMG-STF field 1842 used for STA3. These fields may be the same format as that used by STA1 in EDMG-STF field 1818, and the same format which is used in the EDMG standard. Using the same EDMG-STF field for each STA may be less computationally complex than having to calculate unique sync fields for each of the STAs included in the PPDU.
FIG. 19 illustrates an EDMG multi-static sensing sounding PPDU structure 1900, according to one aspect of the present disclosure. The EDMG multi-static sensing sounding PPDU structure 1900 may be used for multi-static sensing in scenarios with a single  transmitter and with multiple receivers. The structure 1900 includes three receivers, STAs 1–3, although it can also be used with either more or fewer receivers.
The structure 1900 includes an L-STF field 1910, L-CEF field 1912, L-Header field 1914, EDMG-Header-A field 1916, EDMG-STF field 1918, and data field 1920. Each of these fields may be transmitted using an AWV intended for STA1 and may or may not be received by the other STAs.
The structure 1900 then includes an EDMG- STF field  1922, 1924 for each of the other STAs included in the PPDU. Each of these EDMG- STF fields  1922, 1924 may be transmitted to the appropriate STA using the AWV associated with that STA. The structure 1900 then includes a sync padding field 1926 and a TRN-Unit P field 1928, which are transmitted using an AWV associated with STA1. The structure further includes TRN- Unit P fields  1930, 1932 transmitted to the appropriate STA using the AWV associated with that STA. The structure then includes TRN subfields 1934. After this, the structure includes a further round of TRN- Unit P fields  1936, 1938, 1940 transmitted to each of the STAs in order, followed by further TRN subfields 1942.
The structure 1900 may be comparable to structure 900, but uses the same EDMG- STF fields  1922, 1924 for each of the STAs, rather than calculating unique Sync fields 918, 920 for each of the STAs. The use of the same EDMG- STF fields  1918, 1922, 1924 for each of the STAs may require that each STA already knows its order in the PPDU. This will allow each STA to recognize its EDMG- STF field  1918, 1922, 1924, even though they are the same field. In the multi-static sensing instance, each STA may already know its order in the PPDU based on the handshake procedure in the management setup phase of the sensing instance. Accordingly, it may be advantageous to use the same EDMG- STF fields  1918, 1922, 1924 for each STA to ease computational complexity.
FIG. 20 is a schematic diagram of an electronic device 2000 that may perform any or all of operations of the above methods and features explicitly or implicitly described herein, according to different embodiments of the present disclosure. For example, a computer equipped with network functions may be configured as electronic device 2000. In some embodiments, the electronic device 2000 may be a user equipment (UE) , an AP, a STA, or the like as appreciated by a person skilled in the art.
As shown, the electronic device 2000 may include a processor 2010, such as a  central processing unit (CPU) or specialized processors such as a graphics processing unit (GPU) or other such processor unit, memory 2020, non-transitory mass storage 2030, input-output interface 2040, network interface 2050, and a transceiver 2060, all of which are communicatively coupled via bi-directional bus 2070. According to certain embodiments, any or all the depicted elements may be utilized, or only a subset of the elements. Further, electronic device 2000 may contain multiple instances of certain elements, such as multiple processors, memories, or transceivers. Also, elements of the hardware device may be directly coupled to other elements without the bi-directional bus. Additionally, or alternatively to a processor and memory, other electronics, such as integrated circuits, may be employed for performing the required logical operations.
The memory 2020 may include any type of non-transitory memory such as static random-access memory (SRAM) , dynamic random-access memory (DRAM) , synchronous DRAM (SDRAM) , read-only memory (ROM) , any combination of such, or the like. The mass storage element 2030 may include any type of non-transitory storage device, such as a solid-state drive, hard disk drive, a magnetic disk drive, an optical disk drive, USB drive, or any computer program product configured to store data and machine executable program code. According to certain embodiments, the memory 2020 or mass storage 2030 may have recorded thereon statements and instructions executable by the processor 2010 for performing any of the method operations described above.
Embodiments of the present disclosure can be implemented using electronics hardware, software, or a combination thereof. In some embodiments, the disclosure is implemented by one or multiple computer processors executing program instructions stored in memory. In some embodiments, the disclosure is implemented partially or fully in hardware, for example using one or more field programmable gate arrays (FPGAs) or application specific integrated circuits (ASICs) to rapidly perform processing operations.
It will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without departing from the scope of the technology. In particular, it is within the scope of the technology to provide a computer program product or program element, or a program storage or memory device such as a magnetic or optical wire, tape or disc, or the like, for storing signals readable by a machine, for controlling the operation of a computer according to the method of the technology and/or to structure some or all of its components in accordance  with the system of the technology.
Acts associated with the method described herein can be implemented as coded instructions in a computer program product. In other words, the computer program product is a computer-readable medium upon which software code is recorded to execute the method when the computer program product is loaded into memory and executed on the microprocessor of the wireless communication device.
Further, each operation of the method may be executed on any computing device, such as a personal computer, server, personal digital assistant (PDA) , or the like and pursuant to one or more, or a part of one or more, program elements, modules or objects generated from any programming language, such as C++, Java, or the like. In addition, each operation, or a file or object or the like implementing each said operation, may be executed by special purpose hardware or a circuit module designed for that purpose.
Through the descriptions of the preceding embodiments, the present disclosure may be implemented by using hardware only or by using software and a necessary universal hardware platform. Based on such understandings, the technical solution of the present disclosure may be embodied in the form of a software product. The software product may be stored in a non-volatile or non-transitory storage medium, which can be a compact disc read-only memory (CD-ROM) , USB flash disk, or a removable hard disk. The software product includes instructions that enable a computer device (personal computer, server, or network device) to execute the methods provided in the embodiments of the present disclosure. For example, such an execution may correspond to a simulation of the logical operations as described herein. The software product may additionally or alternatively include instructions that enable a computer device to execute operations for configuring or programming a digital logic apparatus in accordance with embodiments of the present disclosure.
Although the present invention has been described with reference to specific features and embodiments thereof, it is evident that various modifications and combinations can be made thereto without departing from the invention. The specification and drawings are, accordingly, to be regarded simply as an illustration of the invention as defined by the appended claims, and are contemplated to cover any modifications, variations, combinations, or equivalents that fall within the scope of the present invention.

Claims (58)

  1. A method comprising:
    generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU comprising:
    a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field;
    one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field;
    a plurality of training subfields; and
    transmitting, by the device, the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device.
  2. The method of any claim 1, wherein the first continuous portion further includes a legacy short training (L-STF) field, a legacy channel estimation (L-CEF) field, a legacy header (L-Header) field, an enhanced directional multi-gigabit header A (EDMG-Header-A) field, and a padding field.
  3. The method of claim 1 or claim 2, wherein the first continuous portion further includes a data field.
  4. The method of any one of claims 1 to 3, wherein the synchronization fields in the one or more additional continuous portions comprise an additional EDMG-STF field.
  5. The method of any one of claims 1 to 4, wherein each of the one or more additional continuous portions further includes a STA sync field after the synchronization field.
  6. The method of any one of claims 1 to 5, wherein the PPDU comprises a sounding PPDU in a multi-static sensing instance.
  7. The method of any one of claims 1 to 6, further including, prior to transmitting the PPDU, transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and wherein transmitting the PPDU includes transmitting the PPDU at a time based, at least in  part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  8. The method of any one of claims 1 to 6, further including, prior to transmitting the PPDU, receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and wherein transmitting the PPDU includes transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  9. A computer readable medium comprising instructions, which when executed by a processor of a device, cause the device to carry out the method of any one of claims 1 to 8.
  10. A computer program comprising instructions which, when the program is executed by a processor of a computer, cause the computer to carry out the method of any one of claims 1 to 8.
  11. An apparatus comprising:
    at least one processor; and
    at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to:
    generate a physical layer (PHY) protocol data unit (PPDU) , the PPDU comprising:
    a first continuous portion including an enhanced directional multi-gigabit short training (EDMG-STF) field and a training unit P (TRN-Unit P) field;
    one or more additional continuous portions, each additional continuous portion including a synchronization field and an additional TRN-Unit P field;
    a plurality of training subfields; and
    transmit the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device.
  12. The apparatus of claim 11, wherein the first continuous portion further includes a legacy short training (L-STF) field, a legacy channel estimation (L-CEF) field, a  legacy header (L-Header) field, an enhanced directional multi-gigabit header A (EDMG-Header-A) field, and a padding field
  13. The apparatus of claim 11 or claim 12, wherein the first continuous portion further includes a data field.
  14. The apparatus of any one of claims 11 to 13, wherein the synchronization fields in the one or more additional continuous portions comprises an additional EDMG-STF field.
  15. The apparatus of any one of claims 11 to 14, wherein each of the one or more additional continuous portions further includes a STA sync field after the synchronization field.
  16. The apparatus of any one of claims 11 to 15, wherein the PPDU comprises a sounding PPDU in a multi-static sensing instance.
  17. The apparatus of any one of claims 11 to 16, wherein the instructions further configure the apparatus to, prior to transmitting the PPDU, transmit a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and wherein transmitting the PPDU includes transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  18. The apparatus of any one of claims 11 to 16, wherein the instructions further configure the apparatus to, prior to transmitting the PPDU, receive a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and wherein transmitting the PPDU includes transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  19. A method comprising:
    generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU comprising:
    a first continuous portion including an EDMG-STF field and a TRN-Unit P field;
    a first plurality of training subfields; and
    one or more additional continuous portions, each of the one or more continuous portions including:
    a synchronization field and an additional TRN-Unit P field; an additional first plurality of training subfields; and
    transmitting, by the device, the PPDU with the first continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and each additional continuous portion transmitted using an AWV associated with a respective additional device.
  20. The method of claim 19, wherein the first continuous portion further includes a L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-Afield, and a padding field.
  21. The method of claim 19 or claim 20, wherein the first continuous portion further includes a data field.
  22. The method any one of claims 19 to 21, wherein the synchronization field in the one or more additional continuous portions comprises an additional EDMG-STF field.
  23. The method of any one of claims 19 to 22, wherein the first continuous portion further includes a station synchronization (STA sync) field after the EDMG-STF field, and wherein each of the one or more additional continuous portions further includes an additional STA sync field after the synchronization field.
  24. The method of any one of claims 19 to 23, further including, prior to transmitting the PPDU, transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and wherein transmitting the PPDU includes transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  25. The method of any one of claims 19 to 23, further including, prior to transmitting the PPDU, receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field, and wherein transmitting the PPDU includes transmitting the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field.
  26. A computer readable medium comprising instructions, which when executed by a processor of a device, cause the device to carry out the method of any one of claims 19 to 25.
  27. A computer program comprising instructions which, when the program is executed by a processor of a computer, cause the computer to carry out the method of any one of claims 19 to 25.
  28. An apparatus comprising:
    at least one processor; and
    at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out the method of any one of claims 19 to 25.
  29. A method comprising:
    receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field;
    generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU comprising:
    an EDMG-STF field;
    a TRN-Unit P field; and
    a plurality of training fields; and
    transmitting, by the device, the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field contained in the request frame.
  30. The method of claim 29, wherein the PPDU further includes a L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-Afield, and a padding field.
  31. The method of claim 29 or claim 30, wherein the PPDU further includes a data field.
  32. The method of any one of claims 29 to 31, wherein the PPDU is a portion of a larger PPDU, the larger PPDU including additional portions transmitted by one or more additional devices.
  33. The method of any one of claims 29 to 32, wherein the PPDU is a portion of a sounding PPDU in a multi-static sensing instance and wherein the device is a transmitter in the multi-static sensing instance.
  34. A computer readable medium comprising instructions, which when executed by a processor of a device, cause the device to carry out the method of any one of claims 29 to 33.
  35. A computer program comprising instructions which, when the program is executed by a processor of a computer, cause the computer to carry out the method of any one of claims 29 to 33.
  36. An apparatus comprising:
    at least one processor; and
    at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out the method of any one of claims 29 to 33.
  37. A method comprising:
    receiving a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field;
    generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU comprising:
    a synchronization field;
    a TRN-Unit P field;
    a plurality of training fields; and
    transmitting, by the device, the PPDU at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field contained in the request frame.
  38. The method of claim 37, wherein the PPDU further includes a STA sync field after the synchronization field.
  39. The method of claim 37 or claim 38, wherein the synchronization field comprises an EDMG-STF field.
  40. The method of any one of claims 37 to 39, wherein the PPDU is a portion of a larger PPDU, the larger PPDU including additional portions transmitted by one or more additional devices.
  41. The method of any one of claims 37 to 40, wherein the PPDU is a portion of a sounding PPDU in a multi-static sensing instance and wherein the device is a transmitter in the multi-static sensing instance.
  42. A computer readable medium comprising instructions, which when executed by a processor of a device, cause the device to carry out the method of any one of claims 37 to 41.
  43. A computer program comprising instructions which, when the program is executed by a processor of a computer, cause the computer to carry out the method of any one of claims 37 to 41.
  44. An apparatus comprising:
    at least one processor; and
    at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out the method of any one of claims 37 to 41.
  45. A method comprising:
    transmitting a request frame, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field;
    generating, by a device, a physical layer (PHY) protocol data unit (PPDU) , the PPDU comprising:
    a first continuous portion including a L-STF field, a L-CEF field, a L-Header field, an EDMG-Header-A field, and a first EDMG-STF field;
    one or more additional EDMG-STF fields;
    a second continuous portion including a synchronization padding field and a TRN-Unit P field;
    one or more additional TRN-Unit P fields;
    a plurality of TRN subfields; and
    transmitting, by the device at a time based, at least in part, on the at least one of the start time of instance field and the start time of multi-static PPDU field, the PPDU with the first continuous portion and the second continuous portion transmitted using an antenna weight vector (AWV) associated with a first device and the one or more additional EDMG-STF fields and the one or more additional TRN-Unit P fields transmitted using an AWV associated with a respective additional device.
  46. The method of claim 45, wherein the first continuous portion further includes a data field after the first EDMG-STF field.
  47. A computer readable medium comprising instructions, which when executed by a processor of a device, cause the device to carry out the method of claim 45 or claim 46.
  48. A computer program comprising instructions which, when the program is executed by a processor of a computer, cause the computer to carry out the method of claim 45 or claim 46.
  49. An apparatus comprising:
    at least one processor; and
    at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out the method of claim 45 or claim 46.
  50. A method comprising:
    generating, by a device, a request frame in a multi-static sounding instance, the request frame including at least one of a start time of instance field and a start time of multi-static PPDU field; and
    transmitting, by the device, the request frame to a second device.
  51. The method of claim 50, wherein the request frame includes both the start time of instance field and the start time of multi-static PPDU field.
  52. The method of claim 50, wherein the request frame includes the start time of instance field which is an eight-octet field.
  53. The method of claim 50 or claim 52, wherein the start time of instance field includes an eight-octet timestamp.
  54. The method of claim 50, wherein the request frame includes the start time of multi-static PPDU field which is an eight-octet field.
  55. The method of claim 50 or claim 54, wherein the start time of instance field includes an eight-octet timestamp.
  56. A computer readable medium comprising instructions, which when executed by a processor of a device, cause the device to carry out the method of any one of claims 50 to 55.
  57. A computer program comprising instructions which, when the program is executed by a processor of a computer, cause the computer to carry out the method of any one of claims 50 to 55.
  58. An apparatus comprising:
    at least one processor; and
    at least one machine-readable medium storing executable instructions which when executed by the at least one processor configure the apparatus to carry out the method of any one of claims 50 to 55.
PCT/CN2022/085996 2022-04-11 2022-04-11 Edmg multi-static sensing sounding ppdu structure WO2023197090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/085996 WO2023197090A1 (en) 2022-04-11 2022-04-11 Edmg multi-static sensing sounding ppdu structure
PCT/CN2022/089153 WO2023197374A1 (en) 2022-04-11 2022-04-26 Edmg multi-static sensing sounding ppdu structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085996 WO2023197090A1 (en) 2022-04-11 2022-04-11 Edmg multi-static sensing sounding ppdu structure

Publications (1)

Publication Number Publication Date
WO2023197090A1 true WO2023197090A1 (en) 2023-10-19

Family

ID=88328574

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/085996 WO2023197090A1 (en) 2022-04-11 2022-04-11 Edmg multi-static sensing sounding ppdu structure
PCT/CN2022/089153 WO2023197374A1 (en) 2022-04-11 2022-04-26 Edmg multi-static sensing sounding ppdu structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089153 WO2023197374A1 (en) 2022-04-11 2022-04-26 Edmg multi-static sensing sounding ppdu structure

Country Status (1)

Country Link
WO (2) WO2023197090A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184052B1 (en) * 2008-09-24 2012-05-22 Marvell International Ltd. Digital beamforming scheme for phased-array antennas
WO2016044174A1 (en) * 2014-09-16 2016-03-24 Qualcomm Incorporated Frame structure for mixed-rate wireless communication networks
KR20160040534A (en) * 2013-08-02 2016-04-14 엘지전자 주식회사 Method and device for receiving data unit
US20180048509A1 (en) * 2015-06-03 2018-02-15 Panasonic Intellectual Property Management Co., Ltd. Transmission apparatus and transmission method of an aggregate physical layer protocol data unit
WO2018082071A1 (en) * 2016-11-04 2018-05-11 华为技术有限公司 Reference signal configuration method, training field configuration method, and apparatus
WO2018132428A1 (en) * 2017-01-10 2018-07-19 Marvell World Trade Ltd. Signaling of training field length and guard interval duration
US20190327672A1 (en) * 2016-10-12 2019-10-24 Electronics And Telecommunications Research Institute Method and apparatus for initial negotiation in wireless lan
EP3654601A1 (en) * 2017-07-11 2020-05-20 LG Electronics Inc. -1- Method for transmitting and receiving signals in wireless lan system and apparatus therefor
US20200382173A1 (en) * 2016-09-08 2020-12-03 Lg Electronics Inc. Method for transmitting or receiving signal in wireless lan system and apparatus therefor
GB202019618D0 (en) * 2020-12-11 2021-01-27 Cambium Networks Ltd Forming a beam from a subscriber module of a fixed wireless access communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112402A1 (en) * 2016-12-16 2018-06-21 Intel IP Corporation Training fields for enhanced directional multi-gigabit packets
EP3639384A1 (en) * 2017-06-14 2020-04-22 Interdigital Patent Holdings, Inc. Methods and system for mimo transmissions in millimeter wave wlans
US11729649B2 (en) * 2018-06-15 2023-08-15 Intel Corporation Periodic unsolicited wireless link measurement report
WO2020004782A1 (en) * 2018-06-27 2020-01-02 엘지전자 주식회사 Method for transmitting or receiving signal in wireless lan system, and device therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184052B1 (en) * 2008-09-24 2012-05-22 Marvell International Ltd. Digital beamforming scheme for phased-array antennas
KR20160040534A (en) * 2013-08-02 2016-04-14 엘지전자 주식회사 Method and device for receiving data unit
WO2016044174A1 (en) * 2014-09-16 2016-03-24 Qualcomm Incorporated Frame structure for mixed-rate wireless communication networks
US20180048509A1 (en) * 2015-06-03 2018-02-15 Panasonic Intellectual Property Management Co., Ltd. Transmission apparatus and transmission method of an aggregate physical layer protocol data unit
US20200382173A1 (en) * 2016-09-08 2020-12-03 Lg Electronics Inc. Method for transmitting or receiving signal in wireless lan system and apparatus therefor
US20190327672A1 (en) * 2016-10-12 2019-10-24 Electronics And Telecommunications Research Institute Method and apparatus for initial negotiation in wireless lan
WO2018082071A1 (en) * 2016-11-04 2018-05-11 华为技术有限公司 Reference signal configuration method, training field configuration method, and apparatus
WO2018132428A1 (en) * 2017-01-10 2018-07-19 Marvell World Trade Ltd. Signaling of training field length and guard interval duration
EP3654601A1 (en) * 2017-07-11 2020-05-20 LG Electronics Inc. -1- Method for transmitting and receiving signals in wireless lan system and apparatus therefor
GB202019618D0 (en) * 2020-12-11 2021-01-27 Cambium Networks Ltd Forming a beam from a subscriber module of a fixed wireless access communication system

Also Published As

Publication number Publication date
WO2023197374A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US10142005B2 (en) Beamforming training
US10079709B2 (en) Physical layer data unit format for a wireless communication network
RU2683258C1 (en) Method and device for implementation of training in beamforming for association in wireless network
CN111919477B (en) Ranging protocol improvements for supporting antenna switching
US10638342B2 (en) Device and method for device to device communication
US11910435B2 (en) Method and system for Wi-Fi sensing
CN113973512A (en) System and method for very high throughput sounding procedure indication
RU2020117619A (en) SUPPRESSION OF INTERNAL CHANNEL INTERFERENCE IN THE MILLIMETER RANGE NETWORK
CN105723783B (en) Synchronization signal sending device, reception device and method and system
WO2023197090A1 (en) Edmg multi-static sensing sounding ppdu structure
US10631187B1 (en) Method and apparatus for ranging
US10985817B2 (en) Beamforming training
CN110662263B (en) Apparatus and method for transmitting secure ranging packets with phase tracking
WO2019232726A1 (en) Methods, device and computer-readable medium for determining timing advance
WO2024026581A1 (en) Multi-user edmg aggregate ppdu structure
WO2020156485A1 (en) Method and apparatus for transmitting reference signal
US20230254184A1 (en) Measurement signals for sensing
WO2022026814A1 (en) Devices, systems and methods for accessing random access resource units of a wireless channel
WO2023155859A1 (en) Null data packet announcement (ndpa) frame indication
WO2022008068A1 (en) Measurement signals for sensing
WO2023231788A1 (en) Sensing method, apparatus and system
WO2023174415A1 (en) Resource unit allocation for trigger based sensing measurement instances and channel state information feedback support identifier
WO2023174413A1 (en) Sensing measurement report frame format
US20230102611A1 (en) Protocol and frame format for coordinated beamforming
TW201815091A (en) Method and apparatus for transmitting signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936750

Country of ref document: EP

Kind code of ref document: A1