WO2018079863A1 - Blade pitch adjustment device for wind power generator - Google Patents

Blade pitch adjustment device for wind power generator Download PDF

Info

Publication number
WO2018079863A1
WO2018079863A1 PCT/KR2016/011974 KR2016011974W WO2018079863A1 WO 2018079863 A1 WO2018079863 A1 WO 2018079863A1 KR 2016011974 W KR2016011974 W KR 2016011974W WO 2018079863 A1 WO2018079863 A1 WO 2018079863A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
hub
wind
pitch
blades
Prior art date
Application number
PCT/KR2016/011974
Other languages
French (fr)
Korean (ko)
Inventor
홍순원
Original Assignee
주식회사 와이이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 와이이씨 filed Critical 주식회사 와이이씨
Publication of WO2018079863A1 publication Critical patent/WO2018079863A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/88Arrangement of components within nacelles or towers of mechanical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a blade pitch adjusting device for a wind power generator, and more particularly, an outer blade and an inner blade having a different pitch angle from an outer blade on the same wing shaft line, so that the pitch of the blade is variable according to the wind speed. It is made by itself to prevent the overload of the generator and the damage of the blade to the high power, as well as the wind power generation by the inner blade only in the strong wind of 25 meters per second speed, and control the pitch of the blade as the electromagnetic brake when the wind speed changes from strong wind to low speed It relates to a blade pitch adjusting device for a wind turbine so that this can be done.
  • wind power refers to the generation of electricity by converting wind energy into mechanical energy through a device such as a wind turbine and operating a generator as this energy.
  • Wind turbines are installed on land and at sea depending on the installation site.
  • Horizontal wind turbines lift type
  • vertical shaft wind turbines drag type
  • Blades applied to recent wind generators are wind power generation of the pitch regulated type (Pitch regulated type).
  • Wind power of the wing angle control type has a range of rotational speeds by adjusting the wing angle (pitch) because the cross section has a streamlined wing angle.
  • the blade angle is adjusted to control the torque of the rotational speed, so that the required wind energy can be efficiently converted into mechanical energy, enabling efficient output control above the rated wind speed, which is almost essential in modern wind turbine facilities. It is adopted.
  • Wind power generation can theoretically convert up to 59.3% of wind energy into electrical energy, but in reality there are losses due to the shape of the blades, mechanical friction, and the efficiency of the generator. have.
  • Wind power is a kind of renewable energy, and it is a promising alternative energy source for fossil energy depletion because it is rich in resources, constantly regenerated, distributed in a wide range of regions, and has no greenhouse gas emission during operation.
  • a blade that converts wind energy into rotational force a hub that connects it to the main shaft, and a rotational shaft that transmits the rotational force of the wing to the gearhead or generator, or Spindle, gearbox to increase rotation speed, generator to convert mechanical energy into electrical energy, brake (brake), pitch control system to adjust wing angle, nacelle to adjust blade to wind direction Yawing system that rotates the shaft, and a tower that supports the wind turbine.
  • Such a wind turbine may be classified into a large wind turbine and a small wind turbine according to the capacity or scale of the generator.
  • Large wind turbines usually use a variable pitch or tip control.
  • the small wind power generator uses a control method that stops the braid by generating electric power in stall state or stopping the braid at high wind speed by making the lift drag match at high speed of blade rotation.
  • variable pitch control method can control the overall pitch of the blade to operate the efficiency of the rotor to the maximum state, but there is a disadvantage in that the structure of the hub is complicated.
  • the actuator system since the actuator system must be applied in preparation for sufficient power, failure occurs frequently, and when it is applied to small wind power generation, installation cost increases, so it is difficult to commercialize due to low economic feasibility.
  • the tip control method is a pitch control method of the blade tip only, the hub and blade installation structure is simple, but there is a problem that the cost increases because the actuator or the tip bearing must be used and the actuator must be added.
  • there is a need for a space for installing the actuator inside the blade in particular, a thin blade of high speed rotation is difficult to control, it is difficult to balance the blade, there is a problem to apply to a small wind generator.
  • the stall control method is the simplest and most inexpensive control system, which can use a simple hub or integrated blade and does not require an auxiliary machine for using a power actuator.
  • the rotor speed cannot be controlled independently and over-rotation can not be prevented. Therefore, an aerodynamic brake device is required, and the stall control is characterized by a small area of wind from the middle of the blade to the tip. Because of this very high speed, the blade receives the wind at a low wind speed (wind speed of 4 m / s or less), which is suitable for high wind speeds because it is not started.
  • Blade pitch adjusting device of Patent Literature 1 the pitch of the blade is automatically adjusted by the wind speed, it is possible to continuously develop by the required rotational force, the blade pitch is automatically adjusted by the wind speed more than a certain value to block the rotation of the generator It is configured to prevent overload.
  • the wind turbine starts generating power at the starting wind speed and increases the power in proportion to the square of the wind speed until the rated wind speed is reached, and the blade control system operates after reaching the rated power.
  • the wind speed ranges from 1 m / s to several tens of m / s, so the control range is very wide and expensive to control this wide range.
  • the wind speed in most areas except for some coasts is less than 4m / s, instantaneous wind speed is more than 25 m / s, the blade does not rotate when installing a small wind turbine.
  • the output coefficient of wind energy is known by Betz's law that the maximum energy conversion theoretically has an output coefficient of 0.593.
  • the wind speed range is very wide, the efficiency of the system configuration is up to 40% -50% in the large generator, the small 20% ⁇ 25% system efficiency, which decreases rapidly as the system becomes smaller.
  • wind power generators are proportional to the blade area and proportional to three squares of the wind speed, so wind turbines are advantageous in size.
  • the small wind power generator can compensate to some extent the disadvantages of the large wind power generator, but it is uneconomical because the efficiency is very low as described above.
  • Patent Document 2 discloses a technology for an automatic pitch control device for a wind power generator for converting a strong wind, a middle wind, a small wind into power.
  • the automatic pitch adjusting device in Patent Document 2 has a structure in which blades are automatically adjusted by using springs inside the rack rod and shock absorber blades by wind pressure when wind is applied to the blades.
  • the present invention was devised to solve the above-mentioned problems, and the pitch angles of the outer blade and the inner blade are differently installed on the same wing shaft line, so that the pitch of the blade is varied in the blade itself according to the wind speed.
  • wind power can be generated by the inner blade only in the strong winds of 25 meters per second. It is an object of the present invention to provide a blade pitch adjusting device for a wind turbine.
  • Blade pitch adjusting device for a wind turbine of the present invention for achieving the above object, the hub is connected to the generator shaft rotatably installed in front of the nacelle of the wind turbine; A plurality of blades installed in the hub to be symmetrically disposed with respect to the rotation center of the generator shaft; A pitch adjusting unit installed at the hub to adjust the pitch angle of the blades by interlocking the plurality of blades with each other to allow relative rotation of the blades according to wind speed; An elastic member installed between the pitch adjusting unit and the hub to provide an elastic restoring force so that the plurality of blades return to the initial position when the posture changes from the initial position; And an electronic brake for selectively controlling the pitch adjusting unit to control the rotation of the blade relative to the hub, wherein the blade is rotatably installed at the hub and connected to the pitch adjusting unit. ; It is installed on the wing shaft, characterized in that it comprises an inner and outer blades disposed at different pitch angles to have different resistance values for the wind direction.
  • the outer blade and the inner blade is preferably arranged to have a wing angle of 15 to 30 degrees of deviation from each other.
  • the electromagnetic brake is controlled on and off based on the measured value output from any one of the anemometer, tachometer, and output meter to control the operation of the pitch adjusting unit.
  • the pitch adjustment unit the main bevel gear is installed on the blade shaft of each blade; First and second rotation shafts rotatably installed at the hub and disposed coaxially with each other; A sub bevel gear installed on each of the first and second rotation shafts; And a connecting gear connecting the main bevel gear and the sub bevel gear of any one of the first and second rotation shafts, wherein the electromagnetic brake selectively interrupts any one of the first and second rotation shafts.
  • a stopper is provided to limit the rotation range of the first and second rotary shafts without departing.
  • the outer blade in the high wind speed range (approximately 25 meters per second at about 25 meters per second) in the wind speed corresponding to the wind power generation range is folded in parallel to the horizontally located power generation shaft is a blade by high power
  • the wind power generation can be prevented, and only by rotating the inner blade forming a predetermined angle with the outer blade with respect to the wing shaft.
  • the second rotating shaft of the sub bevel gear meshed with the main bevel gear and the neutral gear of the wing shaft is operated by the electromagnetic brake to maintain the pitch angle of the blade by braking according to the current wind speed.
  • the structure is simpler than the existing complicated mechanical pitch adjusting device by adjusting and maintaining the angle of the blade by the magnetic force according to the corresponding wind speed by the return operation of the spring elastically supporting the second rotating shaft with the tension spring. Efficient wind energy can be obtained.
  • FIG. 1 is a schematic front view of a blade pitch adjusting apparatus for a wind turbine according to an embodiment of the present invention.
  • Figure 2 is a schematic side cross-sectional view of a blade pitch adjusting device for a wind turbine according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view A-A showing the wing angle of the inner blade and the outer blade in FIG.
  • FIG. 4 is a cross-sectional view taken along the line B-B in FIG.
  • FIG. 5 is a side view showing an extract of the pitch adjustment unit shown in FIG.
  • FIG. 6 (a), (b) and (c) are schematic diagrams illustrating a variable pitch of inner and outer blades according to wind speed.
  • the blade pitch adjusting device is installed to the hub 10, which is connected to the generator shaft 1 of the tower constituting the wind turbine, the reciprocating rotation at a predetermined angle to the hub (10)
  • a plurality of blades 20, the pitch adjusting unit 30 for adjusting the rotation angle relative to the hub 10 of the plurality of blades 20, the fixing plate 40, the elastic member 50 and the electromagnetic brake 60 do.
  • the hub 10 is connected to the generator shaft (1) is rotated together when the blade 20 receives the resistance of the wind to rotate the generator shaft (1) to the center of rotation.
  • the blade 20 includes a blade shaft 21 rotatably installed on the hub 10, an inner blade 22 and an outer blade 24 installed on the blade shaft 21.
  • the outer blade 24 has a larger air resistance area than the inner blade 22.
  • the inner blade 22 and the outer blade 24 are arranged to have different wing angles so as to shift from 15 to 30 degrees. That is, as shown in Figure 6, the inner blade 22 is disposed to have a pitch angle that can receive more wind resistance than the outer blade 24 when the same area reference, the outer blade 24 is the wind of It is arranged to have a pitch angle that is relatively low in resistance.
  • the blowing wind is subjected to great resistance in the inner blade 22, and flows toward the outer blade 24 having a relatively low resistance. Accordingly, when the same resistance is received, the wind can be induced to flow to the outer blade 24 which generates a relatively large rotational torque as compared with the inner blade 22. Therefore, at low wind speeds it is possible to increase the output by inducing the direction of the wind toward the outer blade (24).
  • the pitch of the blades 20 is adjusted by the operation of the pitch adjusting unit 30 so that the angle of the blade 20 is less resistance to wind, that is, as shown in FIG. Therefore, at high wind speeds, the outer blade 24 receives little wind resistance, and the rotational force capable of rotating the generator shaft 1 can be obtained only by the air resistance received by the inner blade 22.
  • the blade angle of the inner blade 22 with respect to the outer blade 24 is formed 15 to 30 degrees based on the blade shaft 21 to which the outer blade 24 is fixed.
  • the width of the inner blade 22 having the blade angle with the outer blade 24 is formed on the basis of the wind speed 25m / s, which is preferably formed in proportion to the capacity of the generator.
  • the angle to the wind direction that is, the pitch angle of the blade 20 may be adjusted by the pitch adjusting unit 30 installed in the hub 10.
  • the pitch adjusting unit 30 includes a main bevel gear 30a installed on the blade shaft 21 of the blade 20, first and second rotation shafts 31 and 33 rotatably installed on the hub 10, Sub bevel gears (31a, 33a), the main bevel gear (30a) and the connecting gear (32a) for connecting the sub-bevel gears (33a) are provided on the first and second rotary shafts (31, 33), respectively.
  • the first and second rotary shafts 31 and 33 are disposed coaxially with each other, and the sub bevel gears 31a and 33a provided at the end thereof are disposed to face each other.
  • the sub bevel gear 33a is rotated in conjunction with the main bevel gear 30a by the connecting gear 32a, and the remaining sub bevel gear 31a is directly connected to the main bevel gear 30a and rotated.
  • the shaft 32 of the connecting gear 32a is installed in the hub 10 so as to be freely rotatable.
  • the blade shaft 21 when the blade shaft 21 is rotated, the main bevel gear 30a is rotated while the sub bevel gears 31a and 33a are interlocked in the same direction. Therefore, the blade shafts 21 of the plurality of blades 20 are simultaneously rotated in conjunction with each other. However, since the blades 20 coaxially disposed to face each other are rotated in opposite directions, the pitch angles of the inner and outer blades 22 and 24 may be equally adjusted based on the wind direction.
  • the fixing plate 40 is installed on one side of the hub 10.
  • the rotating body 42 is rotatably supported by the second rotating shaft 33 is installed.
  • the second rotating shaft 33 and the rotating body 42 may be coupled to each other by a fastening screw S to be rotated together.
  • the fastening screw S may be fixed to at least two points with respect to the rotating body 42.
  • An elastic member that is, a tension spring 50 is installed to connect one of the fastening screws S and the fixing plate 40 of the fastening screws to fix the rotating body 42.
  • the tension spring 50 is stretched in proportion to the rotation angle to generate an elastic force.
  • the elastic force of the tension spring 50 allows the blade 20 to be returned to its initial position in a pitch-variable state.
  • the fixing plate 40 is provided with a stopper 44 on one side where the rotating body 42 is installed to limit the tension distance of the tension spring 50, that is, the pitch adjustment range of the blade 20. Therefore, the blade 20 is prevented from rotating beyond the pitch adjusting range even at high wind speeds, thereby controlling the pitch adjusting range of the blade 20.
  • the tension spring 50 causes the pitch angle of the blade 20 to gradually return to the initial position when switching from the high wind speed to the low wind speed.
  • one end of the second rotation shaft 33 disposed through the fixing plate 40 is provided with an electromagnetic brake 60 for selectively intermittently stopping or releasing the rotation of the second rotation shaft 33.
  • the electromagnetic brake 60 may apply a brake that brakes the rotation shaft by compressing the brake shoe to the brake disc using an electromagnetic force.
  • the electronic brake 60 may be installed inside the cover 70 fixed to the hub 10 to be protected from the outside.
  • the electronic brake 60 is controlled on and off by comparing the measured value output from any one of an anemometer, a tachometer, and an output meter installed in the wind power generator with a set reference value to selectively control the rotation of the second rotary shaft 33. can do.
  • the electromagnetic brake 60 When the wind speed gradually increases and the output of the generator exceeds the reference value, when the electromagnetic brake 60 is kept on for a predetermined time, the control of the second rotating shaft 33 is released for a predetermined time (several seconds to several tens of seconds). . Then, the blade 20 is rotated with respect to the blade axis 21 by receiving a large resistance of the wind, the pitch angle is adjusted while the tension spring 50 is tensioned and elastically deformed.
  • the electromagnetic brake 60 is turned off and the blade shaft 21 of the blade 20 is fixed in the pitch adjusted state. Therefore, in the pitch-adjusted state, the blade 20 is able to output at an appropriate level by receiving wind resistance.
  • the electromagnetic brake 60 is driven again to release the interruption of the second rotary shaft 33 for the set time. Then, in a state where the wind resistance is reduced, the blade 20 is rotated in the initial posture direction by the elastic restoring force of the tension spring 50 to change the posture to maintain a pitch angle that receives a lot of wind resistance. Therefore, the wind resistance can be properly received to maintain the output above the rated output.
  • Wind power is usually produced according to the size of the wind turbine, the production of wind energy varies, the blade 20 of the wind turbine according to the present invention to the wind power corresponding to the wind speed corresponding to 5 to 25 meters per second to the medium-sized class or more Can be generated.
  • the wind turbine installed on the ground or at sea rotates the blade 20 including the hub 10 in response to the wind speed at a predetermined height of the tower.
  • FIG. 6B illustrates a state where the inner blade 22 and the outer blade 24 are positioned at a point where the outer blade 24 is flipped toward the generator shaft 1 from the hub 10 at a high wind speed. It is illustrated.
  • the pitch of the blade 20 is equal to or greater than the reference output, or when the reference wind speed or more, or when the rotation speed of the generator shaft 1 is equal to or more than the reference speed, the electromagnetic brake 60 is operated to rotate the second rotation shaft. This is achieved by releasing the interruption of 33 at the moment. That is, when the interruption of the second rotary shaft 33 is released, the angle change of the blade 20 is made by air resistance, but the blades 20 are interlocked with each other by the pitch adjusting unit 30.
  • the tension spring 50 is elastically deformed as shown in FIG. 4 by the rotation of the second rotary shaft 33. In this state where the blade 20 is distorted and the pitch angle is adjusted as shown in FIG. 6 (b), when the interruption of the electromagnetic brake 60 is performed, the blade angle is adjusted. ) Posture is maintained.
  • the tension of the tension spring 50 is made within the pitch adjustment range of the blade (20). As such, by limiting the tension range of the tension spring 50, that is, the twist angle of the blade 20, the blade 20 does not go out of the set pitch adjustment range, so that unnecessary pitch adjustment of the blade is no longer performed at high wind speeds. This can prevent damage to the blade.
  • the blade shaft 21 of the blade 20 in response to the wind speed, as shown in the arrow direction shown in Figure 6 the blade shaft 21 is rotated in conjunction with each other, the pitch adjustment is made of magnetic force, the second rotating shaft 33 is interrupted by the electromagnetic brake 60 and is fixed in posture without being rotated.
  • the electromagnetic brake and the tension spring allows the blade's pitch with respect to the current wind speed to be converted to an angle that is easy to develop.
  • Such pitch adjustment of the blade can prevent damage to the blade 20 and overload of the generator, which may occur due to the high output range caused by the rotation of the blade 20 with respect to the high wind speed, while the wind pressure received by the inner blade 22 alone. By rotating the blade 20 it is possible to generate the required wind energy.
  • the pitch of the inner blade 22 is not controlled by the wind in a gust or typhoon of 30 meters per second, the power generation is stopped by the main brake system provided in the generator. Wind turbines can be protected from
  • FIG. 6C illustrates that when the high wind speed is changed from the low wind speed, the pitch angle of the blade 20 is adjusted by releasing the intermittent state of the electromagnetic brake 60 holding the second rotating shaft 33. It showed the state. That is, in the state (b) of FIG. 6, when the wind speed is reduced so that the output does not reach the reference value, the rotation speed is less than the reference speed, or the wind speed is less than the reference value, the electromagnetic brake 60 temporarily releases the interruption. Then, the second rotating shaft 33 is returned to the position corresponding to the current wind speed by the elastic restoring force of the tension spring 50, and in that state, the electromagnetic brake 60 is turned off, and the pitch angle of the blade is adjusted. By maintaining it, the wind power generation for wind speed is made stable.
  • Blade pitch adjusting device there is no need to install a dedicated motor that is conventionally installed to adjust the blade pitch, and adopts a method of transmitting the power to the electromagnetic force without going through the slip ring which is the contact portion of the motor. Because it can be operated by, it provides an advantage that can significantly reduce the failure rate due to the pitch adjustment of the wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Disclosed is a blade pitch adjustment device of a wind power generator, the device comprising: a hub connected to a power generator shaft rotatably provided at the front of a nacelle of the wind power generator; a plurality of blades provided at the hub so as to be arranged symmetrically to each other around the rotational center of the power generator shaft; a pitch adjustment part provided at the hub and linking the plurality of blades to each other such that the blades can rotate relative to the hub according to wind velocity, thereby enabling the pitch angles of the blades to be adjusted; an elastic member provided between the pitch adjustment part and the hub and providing an elastic restoring force such that the plurality of blades return to the initial positions thereof when the positioning thereof is changed from the initial positions thereof; and an electronic brake selectively regulating the operation of the pitch adjustment part so as to control the relative rotations of a hub of the blades, wherein the blade includes: a blade shaft rotatably provided at the hub, and connected to the pitch adjustment part; and inner and outer blades provided at the blade shaft, and arranged at different pitch angles so as to have different resistance values for wind directions.

Description

[규칙 제26조에 의한 보정 03.11.2016] 풍력발전기용 블레이드 피치 조절장치[Calibration according to Rule 26.11.2016] Blade pitch control device for wind power generator
본 발명은 풍력발전기용 블레이드 피치 조절장치에 관한 것으로서, 좀 더 상세하게는 각각의 동일 날개축 선상에 외측블레이드 및 외측블레이드와 피치각이 다른 내측블레이드를 구비하여 풍속에 따라 블레이드의 피치 가변이 블레이드 자체에서 이루어져 고출력에 대한 발전기의 과부하 및 블레이드의 파손을 방지하도록 함은 물론, 초속 25미터 범위의 강풍에서도 내측블레이드만으로도 풍력발전이 가능하고, 강풍에서 저속으로 풍속 변화시 전자브레이크로서 블레이드의 피치 조절이 이루어질 수 있도록 한 풍력발전기용 블레이드 피치 조절장치에 관한 것이다.The present invention relates to a blade pitch adjusting device for a wind power generator, and more particularly, an outer blade and an inner blade having a different pitch angle from an outer blade on the same wing shaft line, so that the pitch of the blade is variable according to the wind speed. It is made by itself to prevent the overload of the generator and the damage of the blade to the high power, as well as the wind power generation by the inner blade only in the strong wind of 25 meters per second speed, and control the pitch of the blade as the electromagnetic brake when the wind speed changes from strong wind to low speed It relates to a blade pitch adjusting device for a wind turbine so that this can be done.
주지하는 바와 같이 풍력발전(Wind Power)이란 풍력 터빈 등의 장치를 통해 바람에너지를 기계적 에너지로 변환시키고, 이 에너지로서 발전기를 가동하여 전기를 생산하는 것을 말한다.As is well known, wind power refers to the generation of electricity by converting wind energy into mechanical energy through a device such as a wind turbine and operating a generator as this energy.
풍력발전기는 설치장소에 따라 육상, 해상에 시설되고, 회전축에 방향에 의한 분류로는 수평축 풍력발전기(양력식), 수직축 풍력발전기(항력식)가 대표적이라 할 수 있다.Wind turbines are installed on land and at sea depending on the installation site. Horizontal wind turbines (lift type) and vertical shaft wind turbines (drag type) are classified according to the direction of rotation.
최근의 풍력발전기에 적용되는 블레이드는 날개각제어형(Pitch regulated type)의 풍력발전이 이루어진다.Blades applied to recent wind generators are wind power generation of the pitch regulated type (Pitch regulated type).
날개각제어형의 풍력발전은 그 단면이 유선형으로 된 날개각도에 따라 풍속에 대한 양력을 받는 정도가 달라지기 때문에 날개의 각도(피치)를 조정하면, 다양한 범위의 회전속도를 얻을 수 있다. 이와 같은 원리를 이용하여 블레이드의 각도를 조정하여 회전속도의 토크를 제어하여 필요로 하는 바람에너지를 효율적으로 기계에너지로 전환하여 정격 풍속 이상에서 효율적인 출력제어를 할 수 있어 최신 풍력터빈시설에서 거의 필수적으로 채용되고 있다.Wind power of the wing angle control type has a range of rotational speeds by adjusting the wing angle (pitch) because the cross section has a streamlined wing angle. Using this principle, the blade angle is adjusted to control the torque of the rotational speed, so that the required wind energy can be efficiently converted into mechanical energy, enabling efficient output control above the rated wind speed, which is almost essential in modern wind turbine facilities. It is adopted.
풍력발전은 이론상으로 바람에너지의 59.3%까지 전기에너지로 변환시킬 수 있지만, 현실적으로는 날개의 형상, 기계적 마찰, 발전기의 효율 등에 따른 손실요인이 존재하기 때문에 실용상의 효율은 20~40% 수준에 머물고 있다.Wind power generation can theoretically convert up to 59.3% of wind energy into electrical energy, but in reality there are losses due to the shape of the blades, mechanical friction, and the efficiency of the generator. have.
풍력은 재생에너지의 일종으로 자원이 풍부하고, 끊임없이 재생되며, 광범위한 지역에 분포되어 있고, 운전중 온실가스의 배출이 없다는 점에서 화석에너지 고갈 시에 대비한 유망한 대체에너지원으로 각광받고 있다.Wind power is a kind of renewable energy, and it is a promising alternative energy source for fossil energy depletion because it is rich in resources, constantly regenerated, distributed in a wide range of regions, and has no greenhouse gas emission during operation.
최근의 풍력발전기의 구조를 살피면, 바람에너지를 회전력으로 변환시켜주는 회전날개(Blade)와 이를 주축(主軸)과 연결 시켜주는 허브(Hub), 날개의 회전력을 증속기 또는 발전기에 전달해주는 회전축 또는 주축, 회전속도를 올려주는 증속기(기어박스), 기계적 에너지를 전기에너지로 변환하는 발전기, 제동장치(브레이크), 날개각도로 조절하는 피치조절시스템, 블레이드를 바람방향에 맞추기 위하여 나셀( nacelle)을 회전시켜주는 요잉시스템(Yawing system), 풍력발전기를 지지하는 타워로 구성된다.Looking at the structure of recent wind generators, a blade that converts wind energy into rotational force, a hub that connects it to the main shaft, and a rotational shaft that transmits the rotational force of the wing to the gearhead or generator, or Spindle, gearbox to increase rotation speed, generator to convert mechanical energy into electrical energy, brake (brake), pitch control system to adjust wing angle, nacelle to adjust blade to wind direction Yawing system that rotates the shaft, and a tower that supports the wind turbine.
상기와 같은 풍력발전기는 발전기의 용량이나 규모에 따라, 대형 풍력발전기와 소형 풍력발전기로 구분될 수 있다. 대형 풍력발전기는 블레이드 제어방식이 주로 가변 피치방식이나 익단제어방식을 사용한다. 소형 풍력발전기는 블레이드 고속 회전시 양력 항력이 일치하도록 하여 실속상태로 발전, 또는 고풍속시 전자브레이크를 사용해서 브레이드를 정지시키는 제어방식을 사용한다.Such a wind turbine may be classified into a large wind turbine and a small wind turbine according to the capacity or scale of the generator. Large wind turbines usually use a variable pitch or tip control. The small wind power generator uses a control method that stops the braid by generating electric power in stall state or stopping the braid at high wind speed by making the lift drag match at high speed of blade rotation.
가변피치 제어방식은 블레이드 전체 피치를 제어하여 로우터의 효율을 최대 상태로 운전할 수 있지만, 허브의 구조가 복잡한 단점이 있다. 또한, 충분한 출력에 대비하여 액추에이터 시스템을 적용해야 하므로 고장이 자주 발생하고, 소형 풍력발전에 적용시 설치 비용이 증가하게 되어 경제성이 떨어져 상용화가 어려운 단점이 있다.The variable pitch control method can control the overall pitch of the blade to operate the efficiency of the rotor to the maximum state, but there is a disadvantage in that the structure of the hub is complicated. In addition, since the actuator system must be applied in preparation for sufficient power, failure occurs frequently, and when it is applied to small wind power generation, installation cost increases, so it is difficult to commercialize due to low economic feasibility.
또한, 익단제어 방식은 블레이드 선단부만 피치 제어하는 방식으로, 허브와 블레이드 설치 구조가 간단하지만, 액추에이터나 익단 베어링을 사용하고 액추에이터를 부가해야 하기 때문에 비용이 증가하는 문제가 있다. 또한, 블레이드 내부에 액추에이터를 설치하기 위한 공간이 필요하게 되고, 특히 고속 회전의 가느다란 블레이드는 제어가 어렵고, 블레이드 균형을 맞추기 어려워, 소형 풍력 발전기에는 적용하는데 문제가 있다.In addition, the tip control method is a pitch control method of the blade tip only, the hub and blade installation structure is simple, but there is a problem that the cost increases because the actuator or the tip bearing must be used and the actuator must be added. In addition, there is a need for a space for installing the actuator inside the blade, in particular, a thin blade of high speed rotation is difficult to control, it is difficult to balance the blade, there is a problem to apply to a small wind generator.
또한, 실속(失速)제어방식은 가장 간단하고 값이 싼 제어시스템으로서, 단순한 허브나 일체형 블레이드를 이용할 수 있고 파워 액추에이터를 사용하기 위한 보조기계도 필요 없다, 따라서, 500kw 이하 소형풍력 발전기에 많이 적용하지만 로우터 회전수를 독립으로 제어할 수 없고 과회전을 방지할 수 없으므로 공력브레이크 장치가 필요하며, 실속제어를 하려면 블레이드 중간부부터 선단까지 바람을 받는 면적이 작아지는 특징을 가지며, 이는 곧 시동풍속이 매우 높아지므로 저풍속(풍속 4 m/s 이하)에서 블레이드가 바람을 받는 면적이 작아지므로 기동이 되지 않아 고풍속에 적합한 방식이다.In addition, the stall control method is the simplest and most inexpensive control system, which can use a simple hub or integrated blade and does not require an auxiliary machine for using a power actuator. However, the rotor speed cannot be controlled independently and over-rotation can not be prevented. Therefore, an aerodynamic brake device is required, and the stall control is characterized by a small area of wind from the middle of the blade to the tip. Because of this very high speed, the blade receives the wind at a low wind speed (wind speed of 4 m / s or less), which is suitable for high wind speeds because it is not started.
이러한 블레이드의 피치 조절장치와 관련된 선행기술의 일예가, 대한미국 등록특허 제10-737407호(이하, '특허문헌 1'이라 함)에 개시되어 있다.An example of the prior art related to the pitch adjusting device of such a blade is disclosed in Korean Patent Registration No. 10-737407 (hereinafter referred to as 'Patent Document 1').
특허문헌 1의 블레이드 피치 조절장치는, 풍속에 의해 자동으로 블레이드의 피치를 조절하여 필요한 회전력에 의해 지속적인 발전이 가능하고, 일정치 이상의 풍속에 의해 블레이드 피치가 자동조절되어 블레이드의 회전을 차단하여 발전기에 과부하가 발생되는 것을 방지하도록 구성되어 있다. Blade pitch adjusting device of Patent Literature 1, the pitch of the blade is automatically adjusted by the wind speed, it is possible to continuously develop by the required rotational force, the blade pitch is automatically adjusted by the wind speed more than a certain value to block the rotation of the generator It is configured to prevent overload.
하지만, 이와 같은 피치 조절장치는 저풍속의 소형풍력발전기에는 적합하지 않다고 하는 문제점이 있었다.However, there is a problem that such a pitch adjusting device is not suitable for a small wind turbine of low wind speed.
풍력발전기는 시동풍속에서 발전을 시작하고 정격풍속에 도달하기까지는 풍속의 3 제곱에 비례하여 출력을 증가하고, 정격출력에 도달한 후 블레이드 제어 시스템이 작동을 한다. 풍속은 1m/s에서 수십 m/s의 범위를 가지므로 제어범위가 매우 넓고, 이러한 넓은 범위를 제어하기 위해서는 고비용이 든다.The wind turbine starts generating power at the starting wind speed and increases the power in proportion to the square of the wind speed until the rated wind speed is reached, and the blade control system operates after reaching the rated power. The wind speed ranges from 1 m / s to several tens of m / s, so the control range is very wide and expensive to control this wide range.
우리나라는, 풍속의 특성을 보면 일부 해안을 제외하고는 대부분 지역에서의 풍속이 4m/s 이하이고, 순간 풍속은 25 m/s 이상이므로, 소형 풍력발전기 설치시 블레이드가 회전이 되지 않는다.In Korea, the wind speed in most areas except for some coasts is less than 4m / s, instantaneous wind speed is more than 25 m / s, the blade does not rotate when installing a small wind turbine.
통상 풍력에너지의 출력 계수는 베츠의 법칙에 의해 최대 에너지 변환은 이론적으로 0.593의 출력계수를 갖는 것으로 알려졌다. 그러나 바람의 풍속 범위가 매우 넓고 시스템구성에서 효율은 대형 발전기에서 최대 40%~50%, 소형은 20%~25%의 시스템 효율을 가지며, 이는 소형으로 갈수록 시스템효율이 급격히 저하된다.Normally, the output coefficient of wind energy is known by Betz's law that the maximum energy conversion theoretically has an output coefficient of 0.593. However, the wind speed range is very wide, the efficiency of the system configuration is up to 40% -50% in the large generator, the small 20% ~ 25% system efficiency, which decreases rapidly as the system becomes smaller.
특히 소형 풍력발전기는 타워를 높이 세우지 않기 때문에 지형의 영향 등에 의해 풍속의 변화가 심하며 로우터에 자동가변 피치 장치를 장착하여야 하나 크기 원가상승 낮은 기술수준으로 효율적인 시스템 구성이 이루어 지지 않고 강풍시 전자브레이크 장치를 장착하여 정지시키는 시스템이 주류를 이루고 있다.In particular, small wind turbines do not stand high on the tower, so the wind speed varies greatly due to the influence of the terrain, and the variable pitch device must be installed on the rotor, but the cost of the rise is low. Equipped with a stop system is the mainstream.
이로 인해 저풍속에서의 무효에너지를 갖고 고풍속에서 무효에너지를 가지므로 효율이 매우 제한적이다. 그리고 풍력발전기는 블레이드 면적에 비례하고 풍속의 3 제곱에 비례하므로 풍력발전기는 대형이 유리한 측면이 있으나, 설치 지역의 한계, 소음, 전기 소비자와의 거리 등에 의해 규모나 크기 면에서 일정한 한계를 가질 수밖에 없고, 소형풍력 발전기는 대형 풍력 발전기의 단점을 어느 정도 보완이 가능하나 상술한 바와 같이 효율이 매우 적어 비경제적이다.Therefore, the efficiency is very limited because it has reactive energy at low wind speed and reactive energy at high wind speed. In addition, wind power generators are proportional to the blade area and proportional to three squares of the wind speed, so wind turbines are advantageous in size. The small wind power generator can compensate to some extent the disadvantages of the large wind power generator, but it is uneconomical because the efficiency is very low as described above.
또한, 대한민국 공개특허 제10-2010-0035206호(이하, '특허문헌 2'라함)에는 강풍, 중풍, 미풍을 전력으로 변환하는 풍력발전기용 자동 피치조절장치에 대한 기술이 개시되어 있다. In addition, the Republic of Korea Patent Publication No. 10-2010-0035206 (hereinafter referred to as "Patent Document 2") discloses a technology for an automatic pitch control device for a wind power generator for converting a strong wind, a middle wind, a small wind into power.
특허문헌 2에서의 자동 피치조절장치는, 블레이드에 바람이 가해지면 풍압에 의해 랙로드와 쇽업소버 블레이드 내부에 스프링을 사용하여 블레이드가 자동으로 조절되는 구조이다.The automatic pitch adjusting device in Patent Document 2 has a structure in which blades are automatically adjusted by using springs inside the rack rod and shock absorber blades by wind pressure when wind is applied to the blades.
하지만, 상기 블레이드 내에 스프링을 넣어 제작하므로 현실성이 떨어지고 구조가 복잡해지며 비용이 높아질 뿐만 아니라, 피치 조절을 위하여 스프링을 사용하는데 사용기간에 따라 강도변화가 있으므로 장기간 사용시 문제가 된다. 또한, 블레이드 고정부(허브)에 랙로드나 쇽업소버를 적용하므로 로우터 허브의 사이즈가 증가하여 소형풍력발전기에 적용하기 위해서는 넓은 허브가 필요하고 무게가 무거워지는 단점이 있다. 또한, 블레이드 제어가 개별적으로 이루어지므로 고속회전시 불완전한 회전(회전중심점이 틀어짐)으로 블레이드 파손이 발생할 염려가 있고 기어와 쇽업소버를 사용하므로 일정기간 후에 급유를 해야하는 단점이 지적되고 있다.However, since the spring is put into the blade, the reality is poor, the structure is complicated, and the cost is not only high. In addition, the use of the spring for pitch adjustment causes a change in strength depending on the use period, which is a problem in long-term use. In addition, since a rack rod or shock absorber is applied to the blade fixing part (hub), the size of the rotor hub is increased, so that a wide hub is needed and weight is heavy to be applied to a small wind power generator. In addition, since the blade control is made separately, there is a concern that blade damage may occur due to incomplete rotation (rotational center of rotation) during high-speed rotation, and it is pointed out that a disadvantage is to supply oil after a certain period of time because the gear and the shock absorber are used.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 창안된 것으로서, 각각의 동일 날개축 선상에 외측블레이드와 내측블레이드의 피치각이 서로 다르게 설치하여 풍속에 따라 블레이드의 피치 가변이 블레이드 자체에서 이루어져 고출력에 대한 발전기의 과부하 및 블레이드의 파손을 방지함은 물론, 초속 25미터 범위의 강풍에서 내측블레이드만으로도 풍력발전이 가능하고, 강풍에서 저속으로 풍속 변화시 브레이크 기능을 이용하여 블레이드의 피치 조절이 이루어질 수 있는 풍력발전기용 블레이드 피치 조절장치를 제공하는데 그 목적이 있다.The present invention was devised to solve the above-mentioned problems, and the pitch angles of the outer blade and the inner blade are differently installed on the same wing shaft line, so that the pitch of the blade is varied in the blade itself according to the wind speed. In addition to preventing the overload of the generator and damage to the blades, wind power can be generated by the inner blade only in the strong winds of 25 meters per second. It is an object of the present invention to provide a blade pitch adjusting device for a wind turbine.
상기 목적을 달성하기 위한 본 발명의 풍력발전기용 블레이드 피치 조절장치는, 풍력발전기의 나셀 전방에 회전 가능하게 설치된 발전기축에 연결되는 허브; 상기 발전기축의 회전중심을 기준으로 서로 대칭되게 배치되도록 상기 허브에 설치되는 복수의 블레이드; 상기 허브에 설치되어 상기 복수의 블레이드들이 풍속에 따라 상기 허브에 대한 상대적인 회전이 가능하도록 서로 연동시켜 상기 블레이드들의 피치각 조정이 가능하도록 하는 피치조정부; 상기 피치조정부와 상기 허브 사이에 설치되어 복수의 블레이드들이 초기위치에서 자세 변경시 초기위치로 복귀하도록 탄성복원력을 제공하는 탄성부재; 및 상기 피치조정부의 동작을 선택적으로 단속하여 상기 블레이드의 상기 허브에 대한 상대적인 회전을 제어하는 전자브레이크;를 포함하며, 상기 블레이드는, 상기 허브에 회전 가능하게 설치되며 상기 피치조정부에 연결되는 날개축; 상기 날개축에 설치되며, 바람방향에 대해 서로 다른 저항값을 갖도록 서로 다른 피치각으로 배치되는 내측 및 외측블레이드를 포함하는 것을 특징으로 한다.Blade pitch adjusting device for a wind turbine of the present invention for achieving the above object, the hub is connected to the generator shaft rotatably installed in front of the nacelle of the wind turbine; A plurality of blades installed in the hub to be symmetrically disposed with respect to the rotation center of the generator shaft; A pitch adjusting unit installed at the hub to adjust the pitch angle of the blades by interlocking the plurality of blades with each other to allow relative rotation of the blades according to wind speed; An elastic member installed between the pitch adjusting unit and the hub to provide an elastic restoring force so that the plurality of blades return to the initial position when the posture changes from the initial position; And an electronic brake for selectively controlling the pitch adjusting unit to control the rotation of the blade relative to the hub, wherein the blade is rotatably installed at the hub and connected to the pitch adjusting unit. ; It is installed on the wing shaft, characterized in that it comprises an inner and outer blades disposed at different pitch angles to have different resistance values for the wind direction.
여기서, 상기 외측블레이드와 상기 내측블레이드는 서로 15~30도의 편차의 날개각을 갖도록 배치되는 것이 바람직하다.Here, the outer blade and the inner blade is preferably arranged to have a wing angle of 15 to 30 degrees of deviation from each other.
또한, 상기 전자브레이크는 풍속계, 회전속도계, 출력계 중 어느 하나에서 출력된 측정값을 기준으로 온, 오프 제어되어 상기 피치 조정부의 동작단속을 제어하는 것이 좋다.In addition, the electromagnetic brake is controlled on and off based on the measured value output from any one of the anemometer, tachometer, and output meter to control the operation of the pitch adjusting unit.
또한, 상기 피치조정부는, 상기 각 블레이드의 날개축에 설치되는 메인 베벨기어; 상기 허브에 회전 가능하게 설치되며, 서로 동축적으로 배치되는 제1 및 제2회전축; 상기 제1 및 제2회전축 각각에 설치되는 서브 베벨기어; 상기 메인 베벨기어와 상기 제1 및 제2회전축 중 어느 한 회전축의 서브 베벨기어를 연결하는 연결기어;를 포함하고, 상기 전자브레이크는 상기 제1 및 제2회전축 중 어느 하나의 회전을 선택적으로 단속하도록 설치되며, 상기 탄성부재의 일단은 상기 제1 및 제2회전축 중 어느 하나에 연결되고, 타단은 상기 허브에 고정 설치되는 고정플레이트에 연결되며, 상기 고정플레이트에는 상기 외측블레이드가 피치 조절범위를 벗어나지 않게 상기 제1 및 제2회전축의 회전범위를 제한하는 스톱퍼가 설치된 것이 좋다.In addition, the pitch adjustment unit, the main bevel gear is installed on the blade shaft of each blade; First and second rotation shafts rotatably installed at the hub and disposed coaxially with each other; A sub bevel gear installed on each of the first and second rotation shafts; And a connecting gear connecting the main bevel gear and the sub bevel gear of any one of the first and second rotation shafts, wherein the electromagnetic brake selectively interrupts any one of the first and second rotation shafts. Is installed so that, one end of the elastic member is connected to any one of the first and second rotary shaft, the other end is connected to a fixed plate fixed to the hub, the fixed blade is the outer blade has a pitch adjustment range It is preferable that a stopper is provided to limit the rotation range of the first and second rotary shafts without departing.
본 발명에 따른 풍력발전기용 블레이드 피치 조절장치는, 풍력발전 범위에 해당하는 풍속 이상부터 고풍속 범위(초속 25미터 근접 내외)에서 외측블레이드는 수평으로 위치된 발전축과 평행하게 접혀 고출력에 의한 블레이드 파손을 방지하고, 날개축에 대한 외측블레이드와 소정의 각도를 이루는 내측불레이드의 회전만으로도 풍력발전이 가능한 이점이 있다.Blade pitch adjusting device for a wind power generator according to the present invention, the outer blade in the high wind speed range (approximately 25 meters per second at about 25 meters per second) in the wind speed corresponding to the wind power generation range is folded in parallel to the horizontally located power generation shaft is a blade by high power There is an advantage in that the wind power generation can be prevented, and only by rotating the inner blade forming a predetermined angle with the outer blade with respect to the wing shaft.
아울러, 고풍속에서 저풍속으로 전환시 날개축의 메인 베벨기어 및 중립기어와 치합된 서브 베벨기어의 제2회전축을 전자브레이크의 작동으로서 현재 해당하는 풍속에 맞추어 브레이킹 단속하여 블레이드의 피치각을 유지시켜주고, 제2회전축을 인장스프링으로 탄성 지지하는 스프링의 복귀동작으로 해당하는 풍속에 맞추어 블레이드의 각도를 저풍속에 맞게 자력으로 조절 및 유지시켜 줌으로써 기존 복잡한 기구적인 피치조절장치에 비해 구조가 간단하면서도 효율적으로 풍력발전에너지를 얻을 수 있다.In addition, when switching from high wind speed to low wind speed, the second rotating shaft of the sub bevel gear meshed with the main bevel gear and the neutral gear of the wing shaft is operated by the electromagnetic brake to maintain the pitch angle of the blade by braking according to the current wind speed. In addition, the structure is simpler than the existing complicated mechanical pitch adjusting device by adjusting and maintaining the angle of the blade by the magnetic force according to the corresponding wind speed by the return operation of the spring elastically supporting the second rotating shaft with the tension spring. Efficient wind energy can be obtained.
도 1은 본 발명의 실시예에 따른 풍력발전기용 블레이드 피치 조절장치의 개략적인 정면도이다.1 is a schematic front view of a blade pitch adjusting apparatus for a wind turbine according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 풍력발전기용 블레이드 피치 조절장치의 개략적인 측단면도이다.Figure 2 is a schematic side cross-sectional view of a blade pitch adjusting device for a wind turbine according to an embodiment of the present invention.
도 3은 도 1에서 내측블레이드와 외측블레이드의 날개각도를 도시한 A-A단면도이다.Figure 3 is a cross-sectional view A-A showing the wing angle of the inner blade and the outer blade in FIG.
도 4는 도 2의 B-B선 단면도이다.4 is a cross-sectional view taken along the line B-B in FIG.
도 5는 도 2에 도시된 피치조정부를 발췌하여 도시한 측면도이다.5 is a side view showing an extract of the pitch adjustment unit shown in FIG.
도 6의 (a)(b)(c)는 풍속에 따른 내측 및 외측블레이드의 피치 가변상태를 보여주는 개략도이다.6 (a), (b) and (c) are schematic diagrams illustrating a variable pitch of inner and outer blades according to wind speed.
이하, 본 발명을 첨부된 도면을 참조하여 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention, and do not represent all of the technical idea of the present invention, these can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.
도 1 및 도 2를 참조하면, 본 발명에 따른 블레이드 피치 조절장치는 풍력발전기를 이루는 타워의 발전기축(1)과 연결되는 허브(10), 허브(10)에 소정 각도 왕복 회전 가능하게 설치되는 다수의 블레이드(20), 다수의 블레이드(20)의 허브(10)에 대한 상대적인 회전각를 조절하는 피치 조정부(30), 고정플레이트(40), 탄성부재(50) 및 전자브레이크(60)를 구비한다.1 and 2, the blade pitch adjusting device according to the present invention is installed to the hub 10, which is connected to the generator shaft 1 of the tower constituting the wind turbine, the reciprocating rotation at a predetermined angle to the hub (10) A plurality of blades 20, the pitch adjusting unit 30 for adjusting the rotation angle relative to the hub 10 of the plurality of blades 20, the fixing plate 40, the elastic member 50 and the electromagnetic brake 60 do.
상기 허브(10)는 발전기축(1)과 연결되어 블레이드(20)가 바람의 저항을 받아 발전기축(1)을 회전중심으로 회전시 함께 회전된다. 상기 허브(10)의 외측에는 다수의 블레이드(20)가 발전기축(1)의 회전중심을 기준으로 대칭되게 설치된다.The hub 10 is connected to the generator shaft (1) is rotated together when the blade 20 receives the resistance of the wind to rotate the generator shaft (1) to the center of rotation. On the outside of the hub 10 a plurality of blades 20 are installed symmetrically with respect to the rotation center of the generator shaft (1).
상기 블레이드(20)는 허브(10)에 회전 가능하게 설치되는 날개축(21)과, 날개축(21)에 설치되는 내측블레이드(22) 및 외측블레이드(24)를 구비한다. 상기 내측블레이드(22)보다 외측블레이드(24)가 더 넓은 공기 저항면적을 가진다. 내측블레이드(22)와 외측블레이드(24)는 도 3에 도시된 바와 같이, 15~30도로 어긋하도록 서로 다른 날개각을 갖도록 배치된다. 즉, 도 6에 도시된 바와 같이, 내측블레이드(22)는 동일면적 기준일 때 외측블레이드(24) 보다 바람의 저항을 더 많이 받을 수 있는 피치각을 갖도록 배치되고, 외측블레이드(24)는 바람의 저항을 상대적으로 적게 받는 피치각을 갖도록 배치된다.The blade 20 includes a blade shaft 21 rotatably installed on the hub 10, an inner blade 22 and an outer blade 24 installed on the blade shaft 21. The outer blade 24 has a larger air resistance area than the inner blade 22. As shown in FIG. 3, the inner blade 22 and the outer blade 24 are arranged to have different wing angles so as to shift from 15 to 30 degrees. That is, as shown in Figure 6, the inner blade 22 is disposed to have a pitch angle that can receive more wind resistance than the outer blade 24 when the same area reference, the outer blade 24 is the wind of It is arranged to have a pitch angle that is relatively low in resistance.
따라서 불러오는 바람은 내측블레이드(22)에서 큰 저항을 받게 되어, 상대적으로 저항이 적은 외측블레이드(24) 쪽으로 흐르게 된다. 따라서, 동일한 저항을 받을 때 내측블레이드(22)에 비하여 상대적으로 큰 회전 토크를 발생시키는 외측블레이드(24)로 바람이 흐르도록 유도할 수 있게 된다. 그러므로 저풍속시에는 바람의 방향을 외측블레이드(24) 쪽으로 유도하여 출력을 증가시킬 수 있게 된다. 그리고 고풍속시에는 상기 피치 조정부(30)의 작동에 의해 블레이드(20)의 피치가 조절되어 바람에 대해 저항을 적게 받는 각도가 되도록 즉, 도 6의 (b)와 같은 상태가 된다. 따라서, 고풍속시에는 외측블레이드(24)에서는 바람의 저항을 거의 받지 않고, 내측블레이드(22)에서 받는 공기저항만으로도 발전기축(1)을 회전시킬 수 있는 회전력을 얻을 수 있게 된다.Therefore, the blowing wind is subjected to great resistance in the inner blade 22, and flows toward the outer blade 24 having a relatively low resistance. Accordingly, when the same resistance is received, the wind can be induced to flow to the outer blade 24 which generates a relatively large rotational torque as compared with the inner blade 22. Therefore, at low wind speeds it is possible to increase the output by inducing the direction of the wind toward the outer blade (24). At high wind speeds, the pitch of the blades 20 is adjusted by the operation of the pitch adjusting unit 30 so that the angle of the blade 20 is less resistance to wind, that is, as shown in FIG. Therefore, at high wind speeds, the outer blade 24 receives little wind resistance, and the rotational force capable of rotating the generator shaft 1 can be obtained only by the air resistance received by the inner blade 22.
상기 외측블레이드(24)가 고정된 날개축(21)을 기준으로 외측블레이드(24)에 대한 내측블레이드(22)의 날개각은 15~30도로 형성된다. The blade angle of the inner blade 22 with respect to the outer blade 24 is formed 15 to 30 degrees based on the blade shaft 21 to which the outer blade 24 is fixed.
상기와 같이 외측블레이드(24)와 날개각을 갖는 내측블레이드(22)의 폭은 넓이는 풍속 25m/s 기준으로 형성되되, 이는 발전기의 용량에 비례하여 형성됨이 바람직하다.As described above, the width of the inner blade 22 having the blade angle with the outer blade 24 is formed on the basis of the wind speed 25m / s, which is preferably formed in proportion to the capacity of the generator.
*상기 블레이드(20)의 바람방향에 대한 각도 즉, 피치각은 허브(10)에 설치되는 피치조정부(30)에 의해 조정될 수 있다.The angle to the wind direction, that is, the pitch angle of the blade 20 may be adjusted by the pitch adjusting unit 30 installed in the hub 10.
상기 피치조정부(30)는 블레이드(20)의 날개축(21)에 설치되는 메인 베벨기어(30a)와, 허브(10)에 회전 가능하게 설치되는 제1 및 제2회전축(31,33), 제1 및 제2회전축(31,33)에 각각 설치되는 서브 베벨기어(31a,33a), 메인 베벨기어(30a)와 서브 베벨기어(33a)를 연결하는 연결기어(32a)를 구비한다. The pitch adjusting unit 30 includes a main bevel gear 30a installed on the blade shaft 21 of the blade 20, first and second rotation shafts 31 and 33 rotatably installed on the hub 10, Sub bevel gears (31a, 33a), the main bevel gear (30a) and the connecting gear (32a) for connecting the sub-bevel gears (33a) are provided on the first and second rotary shafts (31, 33), respectively.
제1 및 제2회전축(31,33)은 서로 동축적으로 배치되며, 그 단부에 설치되는 서브 베벨기어(31a,33a)는 서로 마주하여 배치된다. 상기 서브 베벨기어(33a)는 연결기어(32a)에 의해 메인 베벨기어(30a)와 연동되어 회전되고, 나머지 서브 베벨기어(31a)는 메인 베벨기어(30a)와 직접 연결되어 회전된다. 연결기어(32a)의 축(32)은 허브(10)에 자유회전 가능하게 설치된다.The first and second rotary shafts 31 and 33 are disposed coaxially with each other, and the sub bevel gears 31a and 33a provided at the end thereof are disposed to face each other. The sub bevel gear 33a is rotated in conjunction with the main bevel gear 30a by the connecting gear 32a, and the remaining sub bevel gear 31a is directly connected to the main bevel gear 30a and rotated. The shaft 32 of the connecting gear 32a is installed in the hub 10 so as to be freely rotatable.
상기 구성에 의하면, 날개축(21)이 회전되면 메인 베벨기어(30a)가 회전되면서 서브 베벨기어(31a,33a)가 동일한 방향으로 연동되어 회전된다. 따라서 복수의 블레이드(20)의 날개축(21)은 서로 연동하여 동시에 회전된다. 다만, 서로 동축적으로 배치되어 서로 마주하는 블레이드(20)는 서로 반대 방향으로 회전됨으로써, 내측 및 외측 블레이드(22,24)의 피치각이 바람 방향을 기준으로 동일하게 조정될 수 있다.According to the above configuration, when the blade shaft 21 is rotated, the main bevel gear 30a is rotated while the sub bevel gears 31a and 33a are interlocked in the same direction. Therefore, the blade shafts 21 of the plurality of blades 20 are simultaneously rotated in conjunction with each other. However, since the blades 20 coaxially disposed to face each other are rotated in opposite directions, the pitch angles of the inner and outer blades 22 and 24 may be equally adjusted based on the wind direction.
상기 허브(10) 일측에는 고정플레이트(40)가 설치된다. The fixing plate 40 is installed on one side of the hub 10.
상기 고정플레이트(40)의 중앙에는 상기 제2회전축(33)이 회전 가능하게 지지되는 회전체(42)가 설치된다. 여기서 상기 제2회전축(33)과 회전체(42)는 체결나사(S)에 의해 서로 결합되어 함께 회전될 수 있다. 상기 체결나사(S)는 회전체(42)에 대해 적어도 2지점 고정 설치될 수 있다.In the center of the fixed plate 40, the rotating body 42 is rotatably supported by the second rotating shaft 33 is installed. Here, the second rotating shaft 33 and the rotating body 42 may be coupled to each other by a fastening screw S to be rotated together. The fastening screw S may be fixed to at least two points with respect to the rotating body 42.
상기 회전체(42)를 고정하는 체결나사 중 어느 하나의 체결나사(S)와 상기 고정플레이트(40)를 연결하도록 탄성부재 즉, 인장스프링(50)이 설치된다. 블레이드(20)가 회전하여 피치 가변에 따라 제2회전축(33)이 회전되면, 회전각도에 비례하여 인장스프링(50)이 인장되어 탄성력이 발생된다. 이러한 인장스프링(50)의 탄성력에 의해 블레이드(20)가 피치 가변된 상태에서 초기위치로 복귀될 수 있게 된다.An elastic member, that is, a tension spring 50 is installed to connect one of the fastening screws S and the fixing plate 40 of the fastening screws to fix the rotating body 42. When the blade 20 is rotated and the second rotation shaft 33 is rotated according to the variable pitch, the tension spring 50 is stretched in proportion to the rotation angle to generate an elastic force. The elastic force of the tension spring 50 allows the blade 20 to be returned to its initial position in a pitch-variable state.
또한, 상기 고정플레이트(40)에는 회전체(42)가 설치되는 일측에는 인장스프링(50)의 인장거리 즉, 블레이드(20)의 피치 조절범위를 제한하기 위한 스토퍼(44)가 설치된다. 따라서, 고풍속시에도 블레이드(20)가 피치 조절범위 이상으로 회전되는 것을 방지하여, 블레이드(20)의 피치 조절범위를 제어할 수 있게 된다.In addition, the fixing plate 40 is provided with a stopper 44 on one side where the rotating body 42 is installed to limit the tension distance of the tension spring 50, that is, the pitch adjustment range of the blade 20. Therefore, the blade 20 is prevented from rotating beyond the pitch adjusting range even at high wind speeds, thereby controlling the pitch adjusting range of the blade 20.
이러한 인장스프링(50)은 고풍속에서 저풍속으로 전환시 블레이드(20)의 피치각을 초기위치로 서서히 복귀하도록 한다.The tension spring 50 causes the pitch angle of the blade 20 to gradually return to the initial position when switching from the high wind speed to the low wind speed.
또한, 상기 고정플레이트(40)를 관통하여 배치되는 제2회전축(33)의 일단에는 제2회전축(33)의 회전을 선택적으로 단속하거나, 해제하기 위한 전자브레이크(60)가 설치된다. 상기 전자브레이크(Electromagnetic brake: 60)는 전자력(電磁力)을 이용하여 브레이크 디스크에 브레이크 슈를 압착시켜 회전축을 제동하는 방식의 브레이크가 적용될 수 있다. 상기 전자브레이크(60)는 허브(10)에 고정되는 커버(70) 내측에 설치되어 외부로부터 보호될 수 있다.In addition, one end of the second rotation shaft 33 disposed through the fixing plate 40 is provided with an electromagnetic brake 60 for selectively intermittently stopping or releasing the rotation of the second rotation shaft 33. The electromagnetic brake 60 may apply a brake that brakes the rotation shaft by compressing the brake shoe to the brake disc using an electromagnetic force. The electronic brake 60 may be installed inside the cover 70 fixed to the hub 10 to be protected from the outside.
이러한 전자브레이크(60)는 풍력발전기에 설치되는 풍속계, 회전속도계, 출력계 중 어느 하나에서 출력된 측정값과 설정된 기준값을 비교하여 온, 오프 제어되어 제2회전축(33)의 회전을 선택적으로 단속할 수 있다.The electronic brake 60 is controlled on and off by comparing the measured value output from any one of an anemometer, a tachometer, and an output meter installed in the wind power generator with a set reference value to selectively control the rotation of the second rotary shaft 33. can do.
풍속이 점점 세져서 발전기의 출력이 기준값을 초과하게 되면, 전자브레이크(60)는 설정된 시간 동안 온 상태로 유지하면, 제2회전축(33)의 단속이 일정 시간(수초 내지 수십 초)동안 해제된다. 그러면, 블레이드(20)는 바람의 저항을 크게 받아 날개축(21)을 기준으로 회전되어 뒤틀리면서 피치각이 조정되고, 인장스프링(50)은 인장되어 탄성 변형된다. When the wind speed gradually increases and the output of the generator exceeds the reference value, when the electromagnetic brake 60 is kept on for a predetermined time, the control of the second rotating shaft 33 is released for a predetermined time (several seconds to several tens of seconds). . Then, the blade 20 is rotated with respect to the blade axis 21 by receiving a large resistance of the wind, the pitch angle is adjusted while the tension spring 50 is tensioned and elastically deformed.
설정시간 이후에는 전자브레이크(60)는 오프상태가 되어 피치조정된 상태에서 블레이드(20)의 날개축(21)이 고정된다. 따라서 피치 조정된 상태에서 블레이드(20)는 바람의 저항을 받아서 적절한 수준으로 출력을 할 수 있게 된다.After the set time, the electromagnetic brake 60 is turned off and the blade shaft 21 of the blade 20 is fixed in the pitch adjusted state. Therefore, in the pitch-adjusted state, the blade 20 is able to output at an appropriate level by receiving wind resistance.
반대로 출력이 정격 이하일 경우에는, 전자브레이크(60)는 다시 온 구동되어 제2회전축(33)의 단속을 설정시간 동안 해제한다. 그러면, 바람의 저항이 줄어든 상태에서 블레이드(20)는 인장스프링(50)의 탄성복원력에 의해 초기자세 방향으로 회전하여 바람의 저항을 많이 받는 피치각을 유지하도록 자세 변경된다. 따라서 바람의 저항을 적절히 받아서 정격출력 이상으로 출력을 유지시킬 수 있게 된다.On the contrary, when the output is below the rated value, the electromagnetic brake 60 is driven again to release the interruption of the second rotary shaft 33 for the set time. Then, in a state where the wind resistance is reduced, the blade 20 is rotated in the initial posture direction by the elastic restoring force of the tension spring 50 to change the posture to maintain a pitch angle that receives a lot of wind resistance. Therefore, the wind resistance can be properly received to maintain the output above the rated output.
상기와 같은 구성을 가지는 본 발명의 실시예에 따른 풍력발전기용 블레이드 피치 조절장치의 작용효과를 기술하면 다음과 같다.Referring to the effect of the blade pitch adjustment device for a wind turbine according to an embodiment of the present invention having the configuration as described above are as follows.
통상 풍력발전은 풍력발전기의 규모에 따라 풍력에너지의 생산이 달라지며, 본 발명에 따른 풍력발전기의 블레이드(20)는 중형급 이상으로 초속 5미터 내지 25미터에 해당하는 풍속에 대응하여 풍력발전에너지를 생성시킬 수 있다.Wind power is usually produced according to the size of the wind turbine, the production of wind energy varies, the blade 20 of the wind turbine according to the present invention to the wind power corresponding to the wind speed corresponding to 5 to 25 meters per second to the medium-sized class or more Can be generated.
지상 또는 해상에 설치된 풍력발전기는 타워의 소정높이에서 풍속에 저항하여 허브(10)를 포함한 블레이드(20)의 회전이 이루어진다.The wind turbine installed on the ground or at sea rotates the blade 20 including the hub 10 in response to the wind speed at a predetermined height of the tower.
블레이드(20)의 회전시 전방에서 불어오는 동압을 블레이드를 거쳐 정압으로 전환시켜 주며, 이때 초속 12미터 이상이 되는 시점부터 외측블레이드(24)는 날개축(21)에 대해 받는 풍속에 저항하여 첨부된 도 6의 (a)에서 (b)상태로 만들어 준다. 도 6의 (a)의 상태에서 고풍속으로 전환되면, 앞서 설명한 바와 같이, 전자브레이크(60)의 단속이 순간 해제된다. 전자브레이크(60)의 단속이 해제된 동안에 블레이드(20)는 바람의 저항에 의해 뒤틀려져서 도 6의 (b)와 같이 피치각이 조정된 뒤, 전자브레이크(60)의 단속에 의해 자세 고정될 수 있다.When the blade 20 rotates, the dynamic pressure blowing from the front is converted to the static pressure through the blade. At this time, the outer blade 24 is attached to the blade shaft 21 against the wind speed received from the point of time more than 12 meters per second. In Figure 6 (a) to (b) is made. When switching to the high wind speed in the state of FIG. 6A, as described above, the cracking of the electromagnetic brake 60 is momentarily released. While the clamping of the electromagnetic brake 60 is released, the blade 20 is twisted by the resistance of the wind so that the pitch angle is adjusted as shown in FIG. 6B, and then the posture is fixed by the clamping of the electromagnetic brake 60. Can be.
한편, 도 6의 (a)의 상태로 유지될 때에는 저풍속의 바람이 부는 상황이다. 이때에는 바람이 내측블레이드(22)에서 저항을 받아서 외측블레이드(24) 쪽으로 유도되어 외측블레이드(24)를 저풍속으로도 원활하게 회전시켜 줌으로써 효율적인 풍력발전이 이루어지게 한다. 즉, 발전기축(1)을 기준으로 먼 위치에 위치된 외측블레이드(24)로 바람이 이동되어 집중되도록 유도함으로써 저풍속으로도 블레이드(20)를 효과적으로 회전시켜서 풍력에어지를 얻을 수 있게된다..On the other hand, when it is maintained in the state of FIG. 6 (a), the wind of low wind speed blows. At this time, the wind receives the resistance from the inner blade 22 is guided toward the outer blade 24 to smoothly rotate the outer blade 24 at low wind speeds to achieve efficient wind power generation. That is, the wind is moved to the outer blade 24 located at a distant position with respect to the generator shaft 1 to concentrate the wind, thereby effectively rotating the blade 20 even at a low wind speed.
도 6의 (b)는 고풍속시 내측블레이드(22) 및 외측블레이드(24)는 허브(10)를 기점으로 외측블레이드(24)가 발전기축(1) 방향으로 젖혀지는 지점까지 위치된 상태를 예시한 것이다.6B illustrates a state where the inner blade 22 and the outer blade 24 are positioned at a point where the outer blade 24 is flipped toward the generator shaft 1 from the hub 10 at a high wind speed. It is illustrated.
상기 블레이드(20)의 피치조정은 앞서 설명한 바와 같이, 기준출력 이상일 때, 또는 기준풍속 이상일 때, 또는 발전기축(1)의 회전속도가 기준속도 이상일 때 전자브레이크(60)가 동작되어 제2회전축(33)의 단속을 순간 해제함으로써 이루어진다. 즉, 제2회전축(33)의 단속이 해제되면, 공기저항에 의한 블레이드(20)의 각도 변화가 이루어지되, 피치조정부(30)에 의해 각 블레이드(20)가 서로 연동되어 동시에 이루어지게 된다. 그리고 제2회전축(33)의 회전에 의해 인장스프링(50)은 도 4와 같이 인장되어 탄성 변형된다. 이와 같이 단속이 해제된 순간 블레이드(20)가 뒤틀려서 도 6의 (b)와 같이 피치각이 조정된 상태에서, 전자브레이크(60)의 단속이 이루어지면 피치각이 조정된 상태로 블레이드(20)의 자세가 유지된다.As described above, the pitch of the blade 20 is equal to or greater than the reference output, or when the reference wind speed or more, or when the rotation speed of the generator shaft 1 is equal to or more than the reference speed, the electromagnetic brake 60 is operated to rotate the second rotation shaft. This is achieved by releasing the interruption of 33 at the moment. That is, when the interruption of the second rotary shaft 33 is released, the angle change of the blade 20 is made by air resistance, but the blades 20 are interlocked with each other by the pitch adjusting unit 30. The tension spring 50 is elastically deformed as shown in FIG. 4 by the rotation of the second rotary shaft 33. In this state where the blade 20 is distorted and the pitch angle is adjusted as shown in FIG. 6 (b), when the interruption of the electromagnetic brake 60 is performed, the blade angle is adjusted. ) Posture is maintained.
상기 인장스프링(50)의 인장은 블레이드(20)의 피치 조정범위 내에서 이루어진다. 이와 같이 인장스프링(50)의 인장범위 즉, 블레이드(20)의 뒤틀림 각을 제한함으로써, 블레이드(20가 설정된 피치 조정범위를 벗어나지 않게 하는 것으로, 고풍속시 불필요한 블레이드의 피치 조정이 더이상 이루어지지 않게 하여 블레이드의 파손을 방지할 수 있다.The tension of the tension spring 50 is made within the pitch adjustment range of the blade (20). As such, by limiting the tension range of the tension spring 50, that is, the twist angle of the blade 20, the blade 20 does not go out of the set pitch adjustment range, so that unnecessary pitch adjustment of the blade is no longer performed at high wind speeds. This can prevent damage to the blade.
상기와 같이, 풍속에 대응하여 블레이드(20)의 날개축(21)은 도 6에서 도시한 화살표방향과 같이 날개축(21)이 각각 회전 연동되어 피치 조절이 자력으로 이루어지고, 상기 제2회전축(33)은 전자브레이크(60)에 의해 단속되어 회전되지 않고 자세 고정된다.As described above, the blade shaft 21 of the blade 20 in response to the wind speed, as shown in the arrow direction shown in Figure 6 the blade shaft 21 is rotated in conjunction with each other, the pitch adjustment is made of magnetic force, the second rotating shaft 33 is interrupted by the electromagnetic brake 60 and is fixed in posture without being rotated.
즉, 상기 전자브레이크 및 인장스프링은 현재 풍속에 대한 블레이드의 피치는 발전하기 용이한 각도로 전환시켜 줄 수 있게 한다.In other words, the electromagnetic brake and the tension spring allows the blade's pitch with respect to the current wind speed to be converted to an angle that is easy to develop.
이와 같은 블레이드의 피치조정는 고풍속에 대한 블레이드(20)의 회전에 따른 고출력범위를 벗어나게 되어 발생할 수 있는 블레이드(20)의 파손 및 발전기의 과부하를 방지할 수 있으면서, 내측블레이드(22)에 받는 풍압만으로도 블레이드(20)를 회전시켜 요구하는 풍력발전에너지를 생성시킬 수 있게 된다.Such pitch adjustment of the blade can prevent damage to the blade 20 and overload of the generator, which may occur due to the high output range caused by the rotation of the blade 20 with respect to the high wind speed, while the wind pressure received by the inner blade 22 alone. By rotating the blade 20 it is possible to generate the required wind energy.
가령 초속 30미터에 달하는 돌풍이나 태풍상태에서 내측블레이드(22)가 바람의 저항을 받지 않는 상태로 피치가 조절된 상태라면, 통상 발전기에 구비된 주 브레이크시스템을 통해 발전을 정지시켜 발전범위 이상의 풍속으로부터 풍력발전기를 보호할 수 있다.For example, if the pitch of the inner blade 22 is not controlled by the wind in a gust or typhoon of 30 meters per second, the power generation is stopped by the main brake system provided in the generator. Wind turbines can be protected from
도 6의 (c)는 고풍속에서 저풍속으로 전환될 경우에, 제2회전축(33)을 홀딩하고 있는 전자브레이크(60)의 단속상태를 순간 해제하여 블레이드(20)의 피치각이 조정된 상태를 보인 것이다. 즉, 도 6의 (b) 상태에서 풍속이 줄어들게 되어 출력이 기준값에 미치지 못하거나, 회전속도가 기준속도 미만이거나, 풍속이 기준값 미만인 경우에 전자브레이크(60)는 순간적으로 단속을 해제한다. 그러면 인장스프링(50)의 탄성복원력에 의해 제2회전축(33)을 현재 해당하는 풍속만큼의 위치로 복귀되고, 그 상태에서 전자브레이크(60)가 오프되어 블레이드의 피치각이 조정된 상태로 자세 유지됨으로써 풍속에 맞는 풍력발전이 안정적으로 이루어지게 된다.FIG. 6C illustrates that when the high wind speed is changed from the low wind speed, the pitch angle of the blade 20 is adjusted by releasing the intermittent state of the electromagnetic brake 60 holding the second rotating shaft 33. It showed the state. That is, in the state (b) of FIG. 6, when the wind speed is reduced so that the output does not reach the reference value, the rotation speed is less than the reference speed, or the wind speed is less than the reference value, the electromagnetic brake 60 temporarily releases the interruption. Then, the second rotating shaft 33 is returned to the position corresponding to the current wind speed by the elastic restoring force of the tension spring 50, and in that state, the electromagnetic brake 60 is turned off, and the pitch angle of the blade is adjusted. By maintaining it, the wind power generation for wind speed is made stable.
본 발명의 실시예에 따른 블레이드 피치 조절장치는, 종래에 블레이드 피치를 조정하기 위해 설치되는 전용 모터의 설치가 불필요하고, 모터의 접점부위인 슬립링을 통하지 않고 전원을 전자력으로 전달하는 방식을 채택하여 운전할 수 있으므로, 풍력발전기의 피치 조정에 따른 고장발생률을 현저히 줄여줄 수 있는 이점을 제공한다.Blade pitch adjusting device according to an embodiment of the present invention, there is no need to install a dedicated motor that is conventionally installed to adjust the blade pitch, and adopts a method of transmitting the power to the electromagnetic force without going through the slip ring which is the contact portion of the motor. Because it can be operated by, it provides an advantage that can significantly reduce the failure rate due to the pitch adjustment of the wind turbine.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.In the present invention as described above has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations are possible from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all of the equivalents and equivalents of the claims, as well as the following claims, will fall within the scope of the present invention. .
[부호의 설명][Description of the code]
1: 발전기축 10: 허브1: generator shaft 10: hub
20: 블레이드 21: 날개축20: blade 21: wing shaft
22: 내측블레이드 24: 외측블레이드22: inner blade 24: outer blade
30: 피치조정부 30a: 메인 베벨기어30: pitch adjusting unit 30a: main bevel gear
31: 제1회전축 31a: 서브 베벨기어31: 1st rotation shaft 31a: sub bevel gear
32: 회전축 32a: 연결기어32: rotating shaft 32a: connecting gear
33: 제2회전축 33a: 서브 베벨기어33: 2nd rotating shaft 33a: sub bevel gear
40: 고정플레이트 42: 회전체40: fixed plate 42: rotating body
44: 스토퍼 50: 인장스프링44: stopper 50: tension spring
60: 전자브레이크 70: 커버60: electromagnetic brake 70: cover
S: 체결나사S: Tightening Screw

Claims (4)

  1. 풍력발전기의 나셀 전방에 회전 가능하게 설치된 발전기축에 연결되는 허브;A hub connected to the generator shaft rotatably installed in front of the nacelle of the wind turbine;
    상기 발전기축의 회전중심을 기준으로 서로 대칭되게 배치되도록 상기 허브에 설치되는 복수의 블레이드;A plurality of blades installed in the hub to be symmetrically disposed with respect to the rotation center of the generator shaft;
    상기 허브에 설치되어 상기 복수의 블레이드들이 풍속에 따라 상기 허브에 대한 상대적인 회전이 가능하도록 서로 연동시켜 상기 블레이드들의 피치각 조정이 가능하도록 하는 피치조정부;A pitch adjusting unit installed at the hub to adjust the pitch angle of the blades by interlocking the plurality of blades with each other to allow relative rotation of the blades according to wind speed;
    상기 피치조정부와 상기 허브 사이에 설치되어 복수의 블레이드들이 초기위치에서 자세 변경시 초기위치로 복귀하도록 탄성복원력을 제공하는 탄성부재; 및An elastic member installed between the pitch adjusting unit and the hub to provide an elastic restoring force so that the plurality of blades return to the initial position when the posture changes from the initial position; And
    상기 피치조정부의 동작을 선택적으로 단속하여 상기 블레이드의 상기 허브에 대한 상대적인 회전을 제어하는 전자브레이크;를 포함하며,And an electronic brake for selectively controlling the pitch adjusting unit to control the rotation of the blade relative to the hub.
    상기 블레이드는,The blade,
    상기 허브에 회전 가능하게 설치되며 상기 피치조정부에 연결되는 날개축; 및A wing shaft rotatably installed at the hub and connected to the pitch adjusting unit; And
    상기 날개축에 설치되며, 바람방향에 대해 서로 다른 저항값을 갖도록 서로 다른 피치각으로 배치되는 내측 및 외측블레이드를 포함하는 것을 특징으로 하는 풍력발전기의 블레이드 피치 조절장치.The blade pitch adjusting device of the wind turbine is installed on the blade shaft, characterized in that it comprises an inner and outer blades arranged at different pitch angles to have different resistance values for the wind direction.
  2. 제1항에 있어서,The method of claim 1,
    상기 외측블레이드와 상기 내측블레이드는 서로 15~30도의 편차의 날개각을 갖도록 배치되는 것을 특징으로 하는 풍력발전기용 블레이드 피치 조절장치.The outer blade and the inner blade blade pitch control device for wind turbines, characterized in that arranged to have a wing angle of 15 to 30 degrees deviation from each other.
  3. 제1항에 있어서,The method of claim 1,
    상기 전자브레이크는 풍속계, 회전속도계, 출력계 중 어느 하나에서 출력된 측정값을 기준으로 온, 오프 제어되어 상기 피치 조정부의 동작단속을 제어하는 것을 특징으로 하는 풍력발전기용 블레이드 피치 조절장치.The electromagnetic brake is on, off based on the measured value output from any one of the anemometer, tachometer, output meter to control the operation of the blade pitch for wind turbine blades, characterized in that for controlling.
  4. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 피치조정부는,The pitch adjusting unit according to any one of claims 1 to 4, wherein
    상기 각 블레이드의 날개축에 설치되는 메인 베벨기어;A main bevel gear installed on the blade shaft of each blade;
    상기 허브에 회전 가능하게 설치되며, 서로 동축적으로 배치되는 제1 및 제2회전축;First and second rotation shafts rotatably installed at the hub and disposed coaxially with each other;
    상기 제1 및 제2회전축 각각에 설치되는 서브 베벨기어;A sub bevel gear installed on each of the first and second rotation shafts;
    상기 메인 베벨기어와 상기 제1 및 제2회전축 중 어느 한 회전축의 서브 베벨기어를 연결하는 연결기어;를 포함하고,And a connecting gear connecting the main bevel gear and the sub bevel gear of any one of the first and second rotary shafts.
    상기 전자브레이크는 상기 제1 및 제2회전축 중 어느 하나의 회전을 선택적으로 단속하도록 설치되며, The electromagnetic brake is installed to selectively interrupt any one rotation of the first and second rotation shafts,
    상기 탄성부재의 일단은 상기 제1 및 제2회전축 중 어느 하나에 연결되고, 타단은 상기 허브에 고정 설치되는 고정플레이트에 연결되며,One end of the elastic member is connected to any one of the first and second rotation shaft, the other end is connected to a fixed plate fixed to the hub,
    상기 고정플레이트에는 상기 외측블레이드가 피치 조절범위를 벗어나지 않게 상기 제1 및 제2회전축의 회전범위를 제한하는 스토퍼가 설치된 것을 특징으로 하는 풍력발전기용 블레이드 피치 조절장치.Blade fixing device for a wind turbine, characterized in that the fixing plate is provided with a stopper for limiting the rotation range of the first and second rotary shaft so that the outer blade does not leave the pitch adjustment range.
PCT/KR2016/011974 2016-10-24 2016-10-24 Blade pitch adjustment device for wind power generator WO2018079863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0138093 2016-10-24
KR1020160138093A KR101723175B1 (en) 2016-10-24 2016-10-24 An apparatus for controlling pitch of blades for wind generator

Publications (1)

Publication Number Publication Date
WO2018079863A1 true WO2018079863A1 (en) 2018-05-03

Family

ID=58586759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011974 WO2018079863A1 (en) 2016-10-24 2016-10-24 Blade pitch adjustment device for wind power generator

Country Status (2)

Country Link
KR (1) KR101723175B1 (en)
WO (1) WO2018079863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017257A (en) * 2021-11-22 2022-02-08 华能黑龙江发电有限公司新能源分公司 Blade rotating device of variable-blade wind driven generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110821747A (en) * 2019-11-06 2020-02-21 王树平 Windmill power generation device capable of changing wind wheel direction
KR102213936B1 (en) 2020-06-22 2021-02-09 이병찬 Variable type blade for wind generator
CN112610418A (en) * 2020-12-10 2021-04-06 刘明 New forms of energy are with high-efficient collection device of wind energy that has anti-wind ability
CN116950847B (en) * 2023-09-19 2024-02-20 华能山西综合能源有限责任公司 Multi-blade wind driven generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294723A1 (en) * 2011-04-29 2012-11-22 Envision Energy (Denmark) Aps Wind turbine and wind turbine blade
KR20130038965A (en) * 2011-10-11 2013-04-19 류주환 Rotor high speed rotation prevention device for wind power generator
KR20140042556A (en) * 2012-09-28 2014-04-07 삼성중공업 주식회사 Braking apparatus for wind power system
JP2014214679A (en) * 2013-04-25 2014-11-17 達也 大竹 Wind force prime mover
KR20150033838A (en) * 2013-09-25 2015-04-02 주식회사서영테크 Feathering Apparatus of Blade of Wind Power Generator Having Back Moving Type Housing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294723A1 (en) * 2011-04-29 2012-11-22 Envision Energy (Denmark) Aps Wind turbine and wind turbine blade
KR20130038965A (en) * 2011-10-11 2013-04-19 류주환 Rotor high speed rotation prevention device for wind power generator
KR20140042556A (en) * 2012-09-28 2014-04-07 삼성중공업 주식회사 Braking apparatus for wind power system
JP2014214679A (en) * 2013-04-25 2014-11-17 達也 大竹 Wind force prime mover
KR20150033838A (en) * 2013-09-25 2015-04-02 주식회사서영테크 Feathering Apparatus of Blade of Wind Power Generator Having Back Moving Type Housing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017257A (en) * 2021-11-22 2022-02-08 华能黑龙江发电有限公司新能源分公司 Blade rotating device of variable-blade wind driven generator

Also Published As

Publication number Publication date
KR101723175B1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2018079863A1 (en) Blade pitch adjustment device for wind power generator
US4088352A (en) Wind-driven power plant
EP0086076B1 (en) A horizontal axis wind energy conversion system with aerodynamic blade pitch control
US8004101B2 (en) Vertical axis variable geometry wind energy collection system
EP2098726B1 (en) A blade support limb structure of vertical axis wind power generator
CA2779641C (en) Vertical axis variable geometry wind energy collection system
JP2017535716A (en) New wind-powered pitch system
JP2008506877A5 (en)
CN102678467A (en) Variable-pitch vertical-shaft wind turbine
JPS61112780A (en) Wind power generator
CA2978494C (en) Wind turbine suitable for mounting without a wind turbine tower
WO2022124697A1 (en) Dual-axis hybrid wind power generator
WO2014193085A1 (en) Blade angle control apparatus of wind power generator and wind power generator having same
WO2011065840A2 (en) Method for turning a wind power plant relative to the wind direction
US4219308A (en) Torque control system for wind energy conversion devices
WO2010071339A2 (en) Variable generating system for wind power generation
WO2014104697A1 (en) Wind power generator having variable-pitch blades
JP2014218975A (en) Wind-force power generator
KR20140085000A (en) Rotor locking position control system for wind power generator and its control method
GB2513674A (en) Vertical wind turbine with constant output speed
US11009006B2 (en) Vertical-axis wind turbine
US20110064574A1 (en) Method and apparatus for extracting fluid motion energy
KR20100019287A (en) Wind power generator of large size
CN101929424B (en) Vertical-shaft wind-driven generator
KR102647729B1 (en) Drag and lift based wind turbine system with adjustable blades

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919689

Country of ref document: EP

Kind code of ref document: A1