WO2018079765A1 - 画像処理装置、眼底撮像システム、画像処理方法、およびプログラム - Google Patents
画像処理装置、眼底撮像システム、画像処理方法、およびプログラム Download PDFInfo
- Publication number
- WO2018079765A1 WO2018079765A1 PCT/JP2017/039069 JP2017039069W WO2018079765A1 WO 2018079765 A1 WO2018079765 A1 WO 2018079765A1 JP 2017039069 W JP2017039069 W JP 2017039069W WO 2018079765 A1 WO2018079765 A1 WO 2018079765A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- region
- area
- detection
- optical coherence
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
Definitions
- the present invention relates to an image processing device, a fundus imaging system, an image processing method, and a program.
- This application claims priority in October 31, 2016 based on Japanese Patent Application No. 2016-213815 for which it applied to Japan, and uses the content for it here.
- An apparatus that captures a tomographic image of the fundus using OCT (Optical Coherence Tomography) (hereinafter referred to as an OCT imaging apparatus) is known.
- a high-luminance part called Hyperreflective foci (hereinafter referred to as HRF) may be observed from an image captured by the OCT imaging device (hereinafter referred to as OCT image).
- HRF Hyperreflective foci
- This HRF is said to represent lipoproteins and macrophages.
- the present invention has been made in consideration of such circumstances, and an image processing apparatus, a fundus imaging system, and the like that can detect an event occurring in an eyeball (retina) such as an HRF by image processing from an OCT image,
- An object is to provide an image processing method and a program.
- One embodiment of the present invention that solves the above problem is generated by irradiating the eyeball with light by optical coherence tomography, and the resolution in the first direction is higher than the resolution in the second direction orthogonal to the first direction.
- An acquisition unit that acquires a plurality of optical coherence tomographic images that are arranged in a third direction orthogonal to each of the first direction and the second direction, and the acquisition unit In a virtual three-dimensional image formed by a plurality of acquired optical coherence tomographic images, the detection is performed based on a comparison of pixel values between a detection region and a control region set in a region surrounding the detection region.
- a determination unit that determines whether or not the region is a predetermined image region in which a predetermined event occurs in the eyeball.
- an event that has occurred in an eyeball such as an HRF can be detected from an OCT image by image processing.
- FIG. 2 is a diagram illustrating an example of a configuration of an OCT unit 110.
- FIG. 2 is a diagram illustrating an example of a configuration of an image processing apparatus 200.
- FIG. It is a figure which shows the OCT three-dimensional data 212 typically.
- 6 is a diagram illustrating an example of scanning position information 214.
- FIG. 5 is a flowchart illustrating an example of a series of processes performed by a control unit 220. It is a figure for demonstrating a segmentation process. It is a figure for demonstrating a segmentation process.
- FIG. 1 is a diagram illustrating an example of a configuration of a fundus imaging system 1 including an image processing device 200 according to the first embodiment.
- the fundus imaging system 1 includes, for example, an OCT imaging device (optical coherence tomographic imaging device) 100 and an image processing device 200.
- the OCT imaging apparatus 100 irradiates light on an eyeball E such as a human and measures interference light in which reflected light of the light and part of the irradiated light interfere with each other. It is a device that measures displacement. Thereby, for example, an OCT image IM in which the fundus oculi Er including the retina is projected is acquired.
- the resolution of the eyeball E in the depth direction is higher than the resolution in the direction orthogonal to the depth direction (for example, the x direction in the figure). To do.
- the resolution in the depth direction is, for example, about 2 [ ⁇ m].
- the OCT imaging apparatus 100 according to the present embodiment includes a Fourier-domain OCT (Fourier-domain OCT) such as a spectral-domain OCT (SD-OCT) or a swept-source OCT (SS-OCT). FD-OCT), but is not limited to this.
- the OCT imaging apparatus 100 may employ, for example, a time domain OCT (Time-domain OCT; TD-OCT) or other methods.
- the image processing apparatus 200 performs various image processing on the OCT image IM generated by the OCT imaging apparatus 100, and extracts an image area where a predetermined event occurs in the eyeball E from the OCT image IM.
- the predetermined event is, for example, HRF.
- the image processing apparatus 200 extracts a high-luminance part indicating HRF from the OCT image IM.
- the OCT imaging apparatus 100 includes, for example, an OCT unit 110, an illumination optical system 120, and an imaging optical system 130.
- the OCT unit 110 emits light and causes the reflected light and the irradiated light to interfere with each other to generate an OCT image IM.
- the OCT unit 110 and the imaging optical system 130 are connected to each other by an optical fiber Fa, for example. Irradiation light irradiated by the OCT unit 110 is guided to the imaging optical system 130 via the optical fiber Fa. In addition, the irradiation light irradiated by the OCT unit 110 is guided to the imaging optical system 130 via the optical fiber Fa.
- FIG. 2 is a diagram illustrating an example of the configuration of the OCT unit 110.
- the OCT unit 110 includes a light source 111, a signal detection unit 112, an optical coupler 113, optical fibers 113a to 113d, reference light side collimators 114 and 117, a glass block 115, and a filter 116. And a reference mirror 118.
- the light source 111 irradiates, for example, irradiation light (probe light) having a wavelength of near infrared (for example, about 700 to 1100 nm).
- the light source 111 may be, for example, a wavelength swept light source such as an SLD (super luminescent diode) or an ultrashort pulse laser.
- the irradiation light emitted from the light source 111 is guided in the optical fiber 113a, and is guided to the reference light side collimator 114 side by the optical coupler 113, and to the optical fiber Fa side, that is, the imaging optical system 130 side.
- the light is divided into light to be guided.
- reference light LR light guided to the reference light side collimator 114 side
- measurement light LS measurement light guided to the imaging optical system 130 side
- the reference light LR is guided to the reference light side collimator 114 via the optical fiber 113b, for example, and is converted into parallel light by the reference light side collimator 114. Thereafter, the parallel light passes through the glass block 115 and the filter 116 and is guided to the reference light side collimator 117.
- the glass block 115 and the filter 116 are provided to match the optical path lengths of the reference light LR and the measurement light LS and to match the dispersion characteristics.
- the parallel light guided to the reference light side collimator 117 is collected by the reference light side collimator 117.
- the light (reference light) collected by the reference light side collimator 117 is reflected by the reference mirror 118.
- the reference light reflected by the reference mirror 118 is converted into, for example, parallel light by the reference light side collimator 117, and then the parallel light is collected by the reference light side collimator 114 and guided to the optical coupler 113 through the optical fiber 113b. Lighted.
- the reference mirror 118 is not fixed, and the reference mirror 118 or other optical system is driven so that the optical path length from the light source 111 to the reference mirror 118 is changed. You can keep it.
- the measurement light LS is guided to the imaging optical system 130 through the optical fibers 113c and Fa, and is irradiated to the eyeball E.
- the measurement light LS (reflected light) irradiated on the eyeball E is reflected by the reflecting surface (such as the fundus oculi Er) of the eyeball E and is incident on the optical fibers 113c and Fa.
- the optical coupler 113 guides the reference light LR reflected by the reference mirror 118 and the measurement light LS reflected by the eyeball E to the signal detection unit 112 via, for example, a coaxial optical fiber 113d.
- the reference light LR and the measurement light LS guided to the optical fiber 113d interfere with each other inside the optical coupler 113.
- the reference light LR and the measurement light LS that interfere with each other are referred to as “interference light LC”.
- the signal detection unit 112 includes, for example, an interference light side collimator lens 112a, a diffraction grating 112b, an imaging lens 112c, and a light receiving element 112d.
- the interference light LC guided to the signal detection unit 112 is converted into parallel light through the interference light side collimator lens 112a, and then is split by the diffraction grating 112b.
- the light dispersed by the diffraction grating 112b is imaged on the light receiving surface of the light receiving element 112d by the imaging lens 112c.
- the light receiving element 112d is, for example, a photodiode sensor such as a CCD (Charge-Coupled Device), detects light passing through the imaging lens 112c, and generates a detection signal corresponding to the detected light.
- the signal detection unit 112 then generates an OCT image (optical interference) indicating a tomogram in the depth direction (z direction in the figure) of the eyeball E based on detection signals sequentially generated according to the scanning of the irradiation light by the imaging optical system 130.
- OCT image optical interference
- the OCT image IM is a so-called B-mode image or B-scan image.
- the illumination optical system 120 includes an illumination light source (not shown) such as a halogen lamp or a xenon lamp, and illuminates the fundus Er by guiding light emitted from the light source to the fundus Er.
- an illumination light source such as a halogen lamp or a xenon lamp
- the imaging optical system 130 guides the reflected light reflected from the fundus Er to the OCT unit 110 side via the optical fiber Fa.
- the imaging optical system 130 guides the irradiation light guided from the OCT unit 110 via the optical fiber Fa to the eyeball E while scanning.
- the imaging optical system 130 includes a collimator, a galvanometer mirror (not shown), and the like, and the irradiation direction (z direction in the drawing) of the irradiation light irradiated to the eyeball E is orthogonal to the irradiation direction.
- the horizontal direction (x direction or y direction in the figure) is changed. That is, the imaging optical system 130 scans the irradiation light by a raster scan method. Thereby, the irradiation light irradiated to the eyeball E is scanned in the x direction and the y direction.
- FIG. 3 is a diagram illustrating an example of the configuration of the image processing apparatus 200.
- the image processing apparatus 200 includes a communication interface 202, a display unit 204, a storage unit 210, and a control unit 220.
- the communication interface 202 communicates with the OCT imaging apparatus 100 by, for example, wired or wireless. Further, the communication interface 202 may communicate with devices other than the OCT imaging device 100.
- the display unit 204 is a display device such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence) display.
- LCD Liquid Crystal Display
- organic EL Electrode
- the storage unit 210 is realized by, for example, an HDD (Hard Disc Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), or the like.
- the storage unit 210 stores, for example, a program referred to by the control unit 220, OCT three-dimensional data 212, scanning position information 214, and the like.
- FIG. 4 is a diagram schematically showing the OCT three-dimensional data 212.
- the OCT three-dimensional data 212 includes a plurality of OCT images IM n (n is an arbitrary natural number).
- the z direction of each OCT image IM j (1 ⁇ j ⁇ n) represents the direction along the irradiation direction of the irradiation light (the optical axis of the irradiation light), and represents the depth direction of the eyeball E.
- the direction along the irradiation direction of the irradiation light is, for example, a direction that allows an error (angle width) of about several degrees to tens of degrees with respect to the optical axis of the irradiation light.
- each OCT image IM j represents one direction of a plane orthogonal to the z direction.
- These OCT images IM n are arranged in the y direction orthogonal to both the z direction and the x direction.
- the y direction corresponds to the imaging time t of each OCT image IM. That is, the OCT images IM are arranged in order of imaging time.
- the OCT image IM is captured by the OCT imaging apparatus 100 in which the resolution in the depth direction (z direction) is higher than the resolution in the other direction, so the resolution in the z direction of each OCT image IM j is The resolution is smaller than the resolution in the x and y directions.
- the example of the OCT three-dimensional data 212 shown in the drawing schematically shows only the configuration of a plurality of OCT images IM.
- the imaging time t and the y direction at the time of imaging are shown. May be treated as a set of data associated with the position information.
- the z direction is an example of a “first direction”
- the x direction is an example of a “second direction”
- the y direction is an example of a “third direction”.
- FIG. 5 is a diagram illustrating an example of the scanning position information 214.
- the scanning position information 214 is information relating to a setting position of the detection region Ra described later, and is information in which a high-luminance part flag is associated with the xz coordinate in each OCT image IM.
- the xz coordinate indicates the coordinate of the pixel in each OCT image IM.
- the high luminance part flag is a flag for indicating whether or not the pixel indicated by the xz coordinate is a high luminance part. For example, when it is determined that an image region that overlaps a certain detection region Ra is a high-luminance part, a flag of “1” is assigned to the coordinates of all the pixels included in the image region and overlaps the detection region Ra.
- a flag of “0” is given.
- “0” is assigned in advance to the high-intensity part flags of all the pixels included in the OCT image IM before determining whether the pixel is a high-intensity part. This process is performed every time the position of the detection area is changed (the position is changed), and finally a pixel to which a flag of “1” is given even once (a pixel whose flag has been rewritten from “0” to “1”) Is a pixel which is a high luminance part, and the high luminance part flag shown in FIG. 5 is “1”. That is, once the high-luminance part flag is changed from “0” to “1”, the flag is held in the state of “1”.
- control unit 220 includes an acquisition unit 222, an image preprocessing unit 224, a detection region scanning unit 226, a luminance calculation unit 228, a high luminance part determination unit 230, a group generation unit 232, and a diagnosis determination unit 234. And a display control unit 236.
- a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit 210.
- some or all of the components of the control unit 220 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array). It may be realized by cooperation of software and hardware.
- FIG. 6 is a flowchart illustrating an example of a series of processes performed by the control unit 220. The processing of this flowchart may be repeatedly performed at a predetermined cycle.
- the acquisition unit 222 acquires the OCT image IM from the OCT imaging apparatus 100 via the communication interface 202 (step S100), and stores the acquired OCT image IM in the storage unit 210 as the OCT three-dimensional data 212. Further, when the communication interface 202 communicates with a storage device (for example, a cloud server) that stores the OCT image IM, the acquisition unit 222 may acquire the OCT image IM from the storage device. In addition, when acquiring the OCT images IM one by one from the OCT imaging apparatus 100 or the like, the acquisition unit 222 acquires sequentially by referring to the imaging time t of each OCT image IM and the positional information in the y direction at the time of imaging. The OCT images IM may be arranged in the y direction. At this time, the acquisition unit 222 may appropriately rearrange the OCT images IM with respect to the y direction so as to be in chronological order, for example.
- a storage device for example, a cloud server
- the image preprocessing unit 224 performs various preprocessing on all the OCT images IM included in the OCT three-dimensional data 212 (step S102).
- the preprocessing includes distortion correction processing, noise removal processing, segmentation (layer boundary automatic detection) processing, processing for setting a prohibited area and a permitted area separately.
- the image preprocessing unit 224 is an example of a “segmentation processing unit”.
- the distortion correction process is, for example, a process for correcting the positional deviation between the OCT images IM, and corrects the positional deviation for some or all of the x direction, the y direction, and the z direction.
- the noise removal process is a process for replacing the luminance value of a certain pixel of interest in the OCT image IM with an average value or a median value of luminance values of peripheral pixels of the pixel of interest.
- noise removal processing generally includes noise removal processing for the reflection intensity, hue, brightness, and saturation instead of the luminance value, but an OCT image usually expresses the strength of the interference signal in gray shades. Since this is a gray scale image or a pseudo color image that expresses the intensity of the gray scale image with a difference in color, noise processing is performed by paying attention to the luminance value or the reflection intensity.
- the segmentation process is a process performed in advance to perform a process of dividing the OCT image IM into a prohibited area where the setting of the detection area Ra is prohibited and a permitted area where the setting of the detection area Ra is allowed.
- FIG. 7 and 8 are diagrams for explaining the segmentation process. Since the z (axis) direction in FIG. 7 is a positive direction from the anterior segment toward the fundus, when viewed from the retina position, the side of the eyeball E where the vitreous body is present is the minus side. It shows a shallower direction. Conversely, the positive side in the z direction indicates a deeper direction in the eyeball E.
- the image preprocessing unit 224 detects a line ILM and a line RPE from the OCT image IM.
- the line ILM is a boundary line with the vitreous body on the inner layer side of the retina, that is, the side closer to the center of the eyeball.
- the line RPE is a boundary line with the outer layer side of the retina, that is, the choroid.
- the image preprocessing unit 224 sets the line ILM # at a position a certain distance away from the detected line ILM on the positive side in the z direction, and moves the detected line RPE from the detected line RPE to the negative side in the z direction.
- a line RPE # is set at a position separated by a certain distance. The setting of these four lines is a segmentation process. Then, the image preprocessing unit 224 sets an image area between the line ILM # and the line RPE # as a permitted area, and sets an image area excluding the permitted area as a prohibited area.
- the image pre-processing unit 224 sets the detection area and the control area so that the permitted area is included in all or a part of its own area.
- a part of the detection area or the control area may be set on the prohibited area, and the setting of the detection area or the control area including only the prohibited area is prohibited.
- control unit 220 performs high-intensity site extraction processing on the pre-processed OCT image (step S104). Details of the process of extracting the high luminance part will be described with reference to another flowchart.
- FIG. 9 is a flowchart showing an example of extraction processing of a high luminance part. The process of this flowchart corresponds to the process of step S104 shown in FIG.
- the detection area scanning unit 226 determines the size of the extraction object (HRF) to be extracted from the OCT image IM in accordance with the resolution of the OCT image IM that has been pre-processed by the image pre-processing unit 224 (step). S200).
- the size of the extraction target is the length in the z direction compared to the x direction. Is apparently larger.
- the detection area scanning unit 226 selects one OCT image IM from among the plurality of OCT images IM that have been pre-processed by the image pre-processing unit 224, and for this OCT image IM, an extraction target object is selected.
- the detection region Ra is set in accordance with the size of the detection region Ra, and the detection region Ra is scanned with respect to the OCT image IM by shifting the set position of the set detection region Ra by several pixels at a predetermined cycle (step S202).
- the detection area scanning unit 226 sets the detection area Ra for the permission area determined by the segmentation process.
- the detection area Ra may be a two-dimensional area in the xz direction or a three-dimensional area in the xyz direction.
- the size of the extraction target (HRF) is larger than that in the x direction and the y direction.
- the length in the z direction is apparently larger. That is, the extraction target object appears to be long and thin. Therefore, when set as a two-dimensional area, the detection area Ra is set to be larger in the z direction than in the x direction.
- the detection area Ra set as a three-dimensional area is set to be larger in the z direction than in the x direction and the y direction. In the following description, in order to simplify the description, a detection area Ra of a two-dimensional area is set.
- the luminance calculation unit 228 calculates the maximum luminance value A of the detection region Ra when the detection region Ra is scanned by the detection region scanning unit 226 (step S204). That is, the luminance calculation unit 228 calculates the maximum luminance value A of the detection region Ra every time the detection region Ra is set at a predetermined cycle by the detection region scanning unit 226.
- the maximum luminance value A is the maximum luminance value among the luminance values of a plurality of pixels included in the image area that overlaps the detection area Ra.
- the high luminance part determination unit 230 determines whether or not the maximum luminance value A is equal to or greater than the maximum luminance threshold THa (step S206). For example, when the luminance value of the pixel in the OCT image IM is represented by a range from 0 to 255, the maximum luminance threshold value THa is set to about 100. When determining that the maximum luminance value A is less than the maximum luminance threshold value THa, the high luminance region determination unit 230 determines that the detection region Ra is not an image region indicating a high luminance region (step S208).
- the maximum luminance threshold THa is an example of a “second threshold”.
- the luminance calculation unit 228 calculates the average luminance value B of the detection region Ra (step S210).
- the average luminance value B is an average of the luminance values of a plurality of pixels included in the image area that overlaps the detection area Ra.
- the high luminance part determination unit 230 determines whether or not the average luminance value B is equal to or higher than the average luminance threshold THb (step S212). For example, when the luminance value of the pixel in the OCT image IM is expressed in the range of 0 to 255 as in the numerical example described above, the average luminance threshold value THb is set to about 30. When it is determined that the average luminance value B is less than the average luminance threshold THb, the high luminance part determination unit 230 proceeds to the processing of S208 and determines that the detection area Ra is not an image area indicating a high luminance part.
- the average luminance threshold THb is an example of a “third threshold”.
- the detection area scanning unit 226 selects the plurality of OCT images IM that have been preprocessed by the image preprocessing unit 224 from S202.
- OCT images before and after the OCT image IM selected in the process are selected (step S214).
- the “front and back OCT images” are adjacent images in the OCT three-dimensional data 212 that are adjacent immediately before and after in the y direction. For example, if the OCT image IM j is selected in the processing of S202, OCT image IM j-1 and the OCT image IM j + 1 is selected as the front and rear of the OCT image.
- the detection region scanning unit 226 performs the control region Rb for each of the OCT image IM selected in the process of S202 (hereinafter referred to as the focused OCT image IM) and the OCT images IM before and after the focused OCT image. Is set (step S216).
- 10 to 12 are diagrams for explaining an example of a method for setting the control region Rb.
- 10 represents an OCT image IM j ⁇ 1 (an OCT image before the focused OCT image)
- FIG. 11 represents an OCT image IM j (the focused OCT image)
- FIG. 12 illustrates an OCT image IM j + 1 (the focused OCT image). OCT image after the image).
- the detection region scanning unit 226 sets the control region Rb adjacent to the detection region Ra in the x direction. Specifically, when the size of the detection region Ra in the z direction is ⁇ z, the size in the x direction is ⁇ x, and the center coordinate P d of the detection region Ra is (x d , z d ), the detection region scanning unit 226 Sets the reference region Rb with the coordinates P c 1 (x d ⁇ x, z d ) and the coordinates P c 2 (x d + ⁇ x, z d ) as the center coordinates.
- the detection region scanning unit 226 sets the center coordinates P d (x of the detection region Ra set for the OCT image IM j d, sets the control region Rb z d) same coordinates as P c (x d, the z d) as the center coordinates.
- These control regions Rb are set to have the same size and / or shape as the detection region Ra. Thereby, the control region Rb is set as a region surrounding the detection region Ra at least in the xy plane of the three-dimensional image.
- the “same size” means, for example, that the difference between the area of the detection region Ra and the area of the control region Rb is within a certain range (for example, about plus or minus 20 [%]), or the aspect of the detection region Ra.
- the difference between the ratio and the aspect ratio of the control region Rb is within a certain range (for example, about plus or minus 10 [%]).
- the “same shape” includes, for example, that the shape of the detection region Ra and the shape of the control region Rb are similar to each other.
- FIGS. 13 to 15 are diagrams for explaining another example of the method for setting the reference region Rb.
- FIG. 13 shows the OCT image IM j-1 (the OCT image before the focused OCT image), as in FIG. 10, and
- FIG. 14 shows the OCT image IM j (the focused OCT image), as in FIG. 15 represents an OCT image IM j + 1 (an OCT image after the focused OCT image), similarly to FIG.
- the detection region scanning unit 226, as shown in FIGS. 13 and 15 detects the size of the detection region Ra in the x direction ( ⁇ x ) May be set as a control region Rb having a size (3 ⁇ x) that is approximately three times as large as.
- the luminance calculation unit 228 calculates an average luminance value C of the control region Rb among the image regions of each OCT image IM (step S218).
- the average luminance value C is an average of the luminance values of a plurality of pixels included in the image area that overlaps the control area Rb.
- the high luminance part determination unit 230 determines whether or not a value (BC) obtained by subtracting the average luminance value C from the average luminance value B is equal to or greater than the difference luminance threshold THc (step S220). For example, when the luminance value of the pixel in the OCT image IM is expressed in the range of 0 to 255 as in the numerical example described above, the difference luminance threshold value THc is set to about 15. When it is determined that the value obtained by subtracting the average luminance value C from the average luminance value B is less than the difference luminance threshold THc, the high luminance part determination unit 230 proceeds to the processing of S208 and the image in which the detection region Ra indicates the high luminance part It is determined that it is not an area.
- the difference luminance threshold THc is an example of a “first threshold”.
- the detection region Ra is an image region indicating a high luminance region. Determination is made (step S222).
- the high luminance part determination unit 230 updates the high luminance part flag corresponding to each pixel included in the detection region Ra in the scanning position information 214 (step S224). For example, when the high luminance part determination unit 230 determines in the process of S208 that the detection area Ra is not an image area indicating a high luminance part, the high luminance part flag of the pixel of the detection area Ra in the scanning position information 214 is obtained. Is set to “0”. Further, when the high luminance part determination unit 230 determines in the process of S222 that the detection area Ra is an image area indicating a high luminance part, the high luminance part flag of the pixel of the detection area Ra in the scanning position information 214 is obtained. Is set to “1”.
- the detection area scanning unit 226 determines whether or not scanning of the detection area Ra is completed for all image areas (permitted areas) of the OCT image IM selected in the process of S202 (step S226). When the detection area scanning unit 226 determines that the scanning of the detection area Ra is not completed, the detection area scanning unit 226 returns to the process of S202 and changes the setting position of the detection area Ra. As a result, the above-described determination of the high luminance part is repeated.
- control unit 220 ends the process of this flowchart.
- the group generation unit 232 generates an image region group GP in which image regions having the same average luminance value B are grouped among image regions indicating a high luminance part (Ste S106).
- Luminance values are about the same means, for example, the same in a range that allows an error of about several [%] to several tens [%] with respect to a luminance value to be compared. Therefore, “similar luminance values” include that the luminance values are the same.
- 16 to 18 are diagrams showing an example of a method for generating the image area group GP.
- the group generation unit 232 performs an average luminance value among the plurality of detection regions Ra by a labeling process.
- the regions having the same B are combined to form one image region group GP.
- the group generation unit 232 selects, as a target pixel, a pixel that has not yet been assigned a label among all the pixels of the OCT image IM, and assigns a certain label to the target pixel.
- the group generation unit 232 determines whether or not a label has already been assigned to pixels around the pixel of interest to which the label is attached (for example, a pixel adjacent to the pixel of interest in the x and z directions). If no label is given to the surrounding pixels and the luminance value is about the same as that of the pixel of interest, the group generation unit 232 gives the same label as the label assigned to the pixel of interest to the surrounding pixels.
- the group generation unit 232 treats the surrounding pixels to which the label is attached as a new pixel of interest, and further adds a label by confirming whether or not the label is attached and the luminance value. In this way, the group generation unit 232 assigns labels to all the pixels of the OCT image IM, and extracts a set of pixels that are assigned the same label and are adjacent to each other as one image region group GP. .
- the group generation unit 232 determines whether or not the size of the image area group GP is within the allowable size (step S108).
- the allowable size is an expected size obtained by expanding or reducing the actual size of the largest HRF assumed to be present in the eyeball E according to the resolution of the apparatus that has captured the OCT image IM.
- the group generation unit 232 compares the maximum size ⁇ LX in the x direction of the image region group GP with the allowable size TH ⁇ LX in the x direction. In addition, the group generation unit 232 compares the maximum size ⁇ LZ in the z direction of the image region group GP with the allowable size TH ⁇ LZ in the z direction. Group generation unit 232 determines the maximum size DerutaLX is below TH DerutaLX, and if the maximum size DerutaLZ is below TH DerutaLZ, the size of the image area groups GP is within the allowable size.
- the group generation unit 232 determines that if the maximum size DerutaLX exceeds TH DerutaLX, or the maximum size DerutaLZ is when it exceeds TH DerutaLZ, the size of the image area groups GP is not within the allowable size. Note that the group generation unit 232 may determine that the size of the image area group GP is within the allowable size if either the maximum size ⁇ LX or the maximum size ⁇ LZ is equal to or smaller than the corresponding allowable size.
- the group generation unit 232 generates the image region group GP by combining the image regions with respect to the x direction and the z direction.
- the present invention is not limited to this.
- the group generation unit 232 may generate the image region group GP by combining the image regions with respect to the x direction, the z direction, and the y direction.
- FIG. 19 to 21 are diagrams showing another example of the method for generating the image area group GP.
- the group generation unit 232 when the detection region Ra is set for each OCT image IM arranged in the y direction, the group generation unit 232 has the same average luminance value as shown in FIG. By synthesizing the image areas having B with respect to the y direction, one image area group GP is generated.
- the group generation unit 232 may combine the image regions in consideration of a virtual width ⁇ y that is in contact with or overlaps each other with respect to the y direction.
- the detection regions Ra set in each OCT image IM are set at the same position in the x direction in order to simplify the description.
- the interval between the OCT images IM in the y direction (that is, the scanning interval of the irradiation light in the y direction) is, for example, equal to or less than the assumed maximum size of the HRF.
- the group generation unit 232 compares the maximum size ⁇ LX and the maximum size ⁇ LZ with the corresponding allowable sizes, and the maximum size ⁇ LY in the y direction of the image region group GP in the y direction. By comparing with the allowable size TH ⁇ LY , it may be determined whether or not the size of the image region group GP is within the allowable size.
- the group generation unit 232 has an object in which the high-intensity part indicated by the image region group GP is different from the extraction target HRF if the size of the image region group GP is not within the allowable size.
- the high-luminance part flag associated with the pixels of the plurality of image regions that are the basis of the image region group GP is changed from “1” to “0” (step S110). ).
- the determination result that is a high-luminance part made for the plurality of image areas that are the basis of the image area group GP is rejected, and the image area is treated as not being a high-luminance part.
- the image region indicated by the image region group GP is detected as HRF.
- the group generation unit 232 calculates the number of image area groups GP for which the determination result that the region is a high-luminance part has not been rejected, that is, the number of detected HRFs (step S112).
- control unit 220 determines whether or not a series of processing from S104 to S112 has been performed on all the OCT images IM included in the OCT three-dimensional data 212 (step S114). When it is determined that the above-described example processing has not been performed for all the OCT images IM, the control unit 220 returns to the processing of S104.
- the diagnosis determination unit 234 is based on the number of HRFs calculated by the group generation unit 232 (hereinafter referred to as the number of HRFs). Then, the eyeball E as the subject is diagnosed (step S116).
- the diagnosis determination unit 234 refers to the number of HRFs for each OCT image IM or the number of HRFs for each OCT three-dimensional data 212, and when the number of HRFs is larger than a reference value, “the subject is a specific disease (for example, diabetic retina May be suffering from symptom). " For example, the reference value may be appropriately determined based on the correlation result between the observed number of HRFs and the presence or absence of the onset of a specific disease.
- the display control unit 236 causes the display unit 204 to display an image based on the diagnosis result by the diagnosis determination unit 234 (step S118). Thereby, the process of this flowchart is complete
- FIG. 22 is a diagram illustrating an example of the display unit 204 on which an image based on the diagnosis result by the diagnosis determination unit 234 is displayed.
- the display control unit 236 controls the display unit 204 to display a diagnosis result including the number of HRFs, a reference value of the number of HRFs, and the presence or absence of a specific disease (or the probability).
- a representative OCT image IM (for example, an image having the largest number of HRFs) is displayed with the extracted HRF superimposed on the extraction position.
- the display control unit 236 may simply cause the display unit 204 to display an image that associates the number of HRFs calculated by the group generation unit 232 with the OCT image IM that is the calculation source. This makes it possible to objectively quantify at least the number of HRF.
- the segmentation process by the image pre-processing unit 224 and the process of setting the prohibited area and the permitted area separately are performed before the high-luminance part extraction process shown in S104.
- the segmentation process and the process of setting the prohibited area and the permitted area separately may be performed after the high luminance part extraction process shown in S104.
- the detection area Ra is set for the entire OCT image IM, and a high-luminance part can be extracted from an image area corresponding to the prohibited area.
- the high-intensity part determination unit 230 determines whether or not the high-intensity part extracted from the entire OCT image IM belongs to the prohibited area before the generation of the image area group GP.
- the high-intensity part determination unit 230 changes the high-intensity part flag corresponding to the extraction area of the high-intensity part to “0” in the scanning position information 214. Therefore, the determination result that it is a high-luminance part is rejected. As a result, the processing load is maintained while maintaining the detection accuracy of the HRF in the same manner as both the segmentation process and the process of separately setting the prohibited area and the permitted area are performed before the extraction process of the high luminance part. Can be reduced.
- control region Rb is a OCT image IM j of interest, to have been described as being set to the OCT image IM j-1 and OCT image IM j + 1 before and after Not limited.
- the detection region Ra extends in the y direction, that is, when the detection region Ra is handled as a three-dimensional region, the detection region Ra is set across a plurality of OCT images IM arranged in the y direction.
- the control region Rb is the previous OCT image IM j OCT image IM j- 1 and the previous OCT image IM j-2 , the OCT image IM j + 2 after the OCT image IM j + 1 , and the subsequent OCT image IM j + 3 . That is, a plurality of OCT images IM in which the same detection area Ra is set are considered as one block (hereinafter referred to as a detection block), and blocks of the same size (hereinafter referred to as the control area Rb) are set before and after the detection block.
- the same size means that the number of OCT images IM included in the detection block is the same. For example, if two OCT images IM are included in the detection block, the front and rear control blocks are set to include two OCT images IM, respectively. Note that the size of the control block may be different from that of the detection block. For example, the size of the control block may be twice or three times the size of the detection block.
- the detection region Ra is based on the comparison of the pixel values of the detection region Ra and the control region Rb surrounding the detection region Ra.
- the image processing apparatus 200 in the second embodiment is different from the first embodiment in that, for example, the method disclosed in Non-Patent Document 1 is applied and a gap is provided between the detection region Ra and the control region Rb. .
- the following description will focus on the differences from the first embodiment, and a description of parts common to the first embodiment will be omitted.
- FIG. 23 is a diagram for explaining an example of a method for setting the reference region Rb by providing a gap between the detection region Ra and FIG.
- the detection region scanning unit 226 provides a gap for one detection region Ra on both sides of the detection region Ra with respect to the x direction. Rb is set.
- the detection region scanning unit 226 sets the reference region Rb with the coordinates P c 1 (x d ⁇ 2 ⁇ x, z d ) and the coordinates P c 2 (x d + 2 ⁇ x, z d ) as the central coordinates.
- the detection region scanning unit 226 displays the OCT image IM j ⁇ 1 and the OCT image IM j + 1 that are arranged in front and rear with respect to the OCT image IM j in which the detection region Ra is set.
- the control region Rb removed from the subject of the image to set, and next to OCT image IM j-2 and the OCT image IM j + 2 and OCT image IM j-3 and OCT image IM j + 3 OCT image IM j of interest, such as
- the control region Rb is set for an image that does not exist.
- a gap can be provided between the detection region Ra and the control region Rb in the y direction in addition to the x direction.
- FIG. 24 is a diagram illustrating an example of a detection result of a high-luminance region when no gap is provided between the detection region Ra and the control region Rb.
- FIG. 25 is a diagram illustrating an example of a detection result of a high-luminance region when a gap is provided between the detection region Ra and the control region Rb.
- the size in the x direction of the high-luminance region that is the detection target may be approximately the same as the size in the x direction of both the detection region Ra and the control region Rb. In such a case, as shown in FIG. 24, when a gap is not provided between the detection region Ra and the control region Rb, a high-luminance region that is a detection target is superimposed on both the detection region Ra and the control region Rb.
- the value (BC) obtained by subtracting the average luminance value C of the control region Rb from the average luminance value B of the detection region Ra is likely to be less than the difference luminance threshold THc. Can be determined that the detection area Ra is not an image area indicating a high-luminance part.
- the high-luminance part is large, and the region is adjacent to the detection region Ra. Even so, since the overlapping region is a region provided as a gap, a value (BC) obtained by subtracting the average luminance value C of the control region Rb from the average luminance value B of the detection region Ra is a difference luminance threshold THc. As described above, it is easy to accurately detect an image region showing a high luminance part.
- FIG. 26 to FIG. 30 are diagrams showing an example of variations of the method of setting the reference region Rb when providing a gap.
- an xy plane with a three-dimensional image is represented.
- the detection area scanning unit 226 uses the coordinates (x d , y d ⁇ 2 ⁇ x).
- the detection area scanning unit 226 uses the coordinates (x d , y d ⁇ 2 ⁇ x) and (x d , y d + 2 ⁇ y) as center coordinates, and the size of the detection area Ra in the x direction.
- a control region Rb having a size (5 ⁇ x) that is about five times ( ⁇ x) may be set.
- the detection region scanning unit 226 provides a reference region Rb by providing a gap in a direction intersecting with respect to the x direction and the y direction (in the illustrated example, a direction intersecting at an angle of 45 °). It may be set.
- the detection region scanning unit 226 may set a plurality of control regions Rb so that the control regions Rb partially overlap each other. Accordingly, an apparently one control region Rb in which the region continues is set around the detection region Ra.
- the detection region scanning unit 226 has, for example, half the size of the detection region Ra as illustrated in FIG.
- the control region Rb may be set at a position where a gap is provided, or the control region Rb may be set at a position where a gap having the same size as twice or three times the detection region Ra is provided.
- control region Rb is set by providing a gap between the detection region Ra, the shape of a high-luminance region such as HRF is distorted or its size varies. Even if it is, a high-intensity part can be detected accurately. As a result, events occurring in the eyeball E such as HRF can be detected with higher accuracy.
- FIG. 31 is a diagram illustrating an example of a hardware configuration of the image processing apparatus 200 according to the embodiment.
- the image processing apparatus 200 includes a communication interface 200-1 such as a NIC (Network Interface Card), a CPU 200-2, a RAM 200-3, a ROM 200-4, a secondary storage device 200-5 such as a flash memory or an HDD, and a drive device 200.
- a communication interface 200-1 such as a NIC (Network Interface Card)
- a CPU 200-2 a CPU 200-2
- a RAM 200-3 a ROM 200-4
- a secondary storage device 200-5 such as a flash memory or an HDD
- a drive device 200. -6 are mutually connected by an internal bus or a dedicated communication line.
- the drive device 200-6 is loaded with a portable storage medium such as an optical disk.
- the program 200-5a stored in the secondary storage device 200-5 is expanded in the RAM 200-3 by a DMA controller (not shown) or the like and executed by the CPU 200-2, whereby the control unit 220 is realized.
- the program referred to by the CPU 200-2 may be stored in a portable storage medium attached to
- Storage to store information;
- a processor that executes a program stored in the storage, The processor executes the program,
- a plurality of optical coherence tomographic images generated by irradiating the eyeball with light by optical coherence tomography, wherein the resolution in the first direction is higher than the resolution in the second direction orthogonal to the first direction,
- the detection region is based on a comparison of pixel values between a detection region and a control region set in a region surrounding the detection region.
- Is an image processing device configured to determine whether or not the eyeball is a predetermined image region where a predetermined event occurs.
- SYMBOLS 1 ... Fundus imaging system, 100 ... OCT imaging device, 110 ... OCT unit, 120 ... Illumination optical system, 130 ... Imaging optical system, 200 ... Image processing device, 202 ... Communication interface, 204 ... Display unit, 210 ... Storage unit, 212 ... OCT three-dimensional data, 214 ... scanning position information, 220 ... control unit, 222 ... acquisition unit, 224 ... image preprocessing unit, 226 ... detection area scanning unit, 228 ... luminance calculation unit, 230 ... high luminance region determination unit 232 ... Group generation unit, 234 ... Diagnosis determination unit, 236 ... Display control unit, E ... Eyeball, Er ... Fundus
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Eye Examination Apparatus (AREA)
Abstract
実施形態の画像処理装置は、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、を備える。
Description
本発明は、画像処理装置、眼底撮像システム、画像処理方法、およびプログラムに関する。
本願は、2016年10月31日に、日本に出願された特願2016‐213815号に基づき優先権を主張し、その内容をここに援用する。
本願は、2016年10月31日に、日本に出願された特願2016‐213815号に基づき優先権を主張し、その内容をここに援用する。
OCT(Optical Coherence Tomography)を用いて眼底の断層像を撮像する装置(以下、OCT撮像装置と称する)が知られている。OCT撮像装置により撮像された画像(以下、OCT画像と称する)から、Hyperreflective foci(以下、HRFと称する)と呼ばれる高輝度部位が観測される場合がある。このHRFは、リポタンパクやマクロファージを表すものだといわれている。近年、糖尿病網膜症を患った患者の眼球のOCT画像から観測されたHRFの数と、その患者の視機能とに関連があるという学術的報告がなされている。
Yabusaki, Katsumi, Joshua D. Hutcheson, Payal Vyas, Sergio Bertazzo, Simon C. Body, Masanori Aikawa, and Elena Aikawa. 2016. "Quantification of Calcified Particles in Human Valve Tissue Reveals Asymmetry of Calcific Aortic Valve Disease Development." Frontiers in Cardiovascular Medicine 3 (1): 44.doi:10.3389/fcvm.2016.00044. http://dx.doi.org/10.3389/fcvm.2016.00044.
しかしながら、従来の技術では、医師などがOCT画像からHRFを認識していたが、画像処理によってHRFを検出するのは困難であった。
本発明は、このような事情を考慮してなされたものであり、OCT画像から画像処理によって、HRFなどの眼球(網膜)に生じた事象を検出することができる画像処理装置、眼底撮像システム、画像処理方法、およびプログラムを提供することを目的の一つとする。
上記問題を解決する本発明の一態様は、光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、を備える画像処理装置である。
本発明によれば、OCT画像から画像処理によって、HRFなどの眼球に生じた事象を検出することができる。
以下、図面を参照し、本発明の画像処理装置、眼底撮像システム、画像処理方法、およびプログラムの実施形態について説明する。
(第1実施形態)
[全体構成]
図1は、第1実施形態における画像処理装置200を含む眼底撮像システム1の構成の一例を示す図である。眼底撮像システム1は、例えば、OCT撮像装置(光干渉断層画像撮像装置)100と、画像処理装置200とを備える。本実施形態におけるOCT撮像装置100は、人間などの眼球Eに光を照射し、その光の反射光と照射した一部の光とが互いに干渉した干渉光を計測することで、眼球E内部の変位を測定する装置である。これによって、例えば、網膜を含む眼底Erが写し出されたOCT画像IMが取得される。本実施形態におけるOCT撮像装置100は、眼球Eの深さ方向(図中z方向)の分解能が、その深さ方向に直交する方向(例えば図中x方向)の分解能に比して高いものとする。深さ方向の分解能は、例えば、2[μm]程度である。また、本実施形態におけるOCT撮像装置100は、スペクトラルドメインOCT(Spectral-domain OCT;SD-OCT)や波長掃引OCT(Swept-source OCT;SS-OCT)等のフーリエドメインOCT(Fourier-domain OCT;FD-OCT)として説明するが、これに限られない。OCT撮像装置100は、例えば、タイムドメインOCT(Time-domain OCT;TD-OCT)やその他の方式を採用したものであってもよい。
[全体構成]
図1は、第1実施形態における画像処理装置200を含む眼底撮像システム1の構成の一例を示す図である。眼底撮像システム1は、例えば、OCT撮像装置(光干渉断層画像撮像装置)100と、画像処理装置200とを備える。本実施形態におけるOCT撮像装置100は、人間などの眼球Eに光を照射し、その光の反射光と照射した一部の光とが互いに干渉した干渉光を計測することで、眼球E内部の変位を測定する装置である。これによって、例えば、網膜を含む眼底Erが写し出されたOCT画像IMが取得される。本実施形態におけるOCT撮像装置100は、眼球Eの深さ方向(図中z方向)の分解能が、その深さ方向に直交する方向(例えば図中x方向)の分解能に比して高いものとする。深さ方向の分解能は、例えば、2[μm]程度である。また、本実施形態におけるOCT撮像装置100は、スペクトラルドメインOCT(Spectral-domain OCT;SD-OCT)や波長掃引OCT(Swept-source OCT;SS-OCT)等のフーリエドメインOCT(Fourier-domain OCT;FD-OCT)として説明するが、これに限られない。OCT撮像装置100は、例えば、タイムドメインOCT(Time-domain OCT;TD-OCT)やその他の方式を採用したものであってもよい。
画像処理装置200は、OCT撮像装置100により生成されたOCT画像IMに対して種々の画像処理を行って、OCT画像IMから、眼球Eにおいて所定の事象が発生している画像領域を抽出する。所定の事象とは、例えば、HRFである。例えば、画像処理装置200は、OCT画像IMからHRFを示す高輝度部位を抽出する。
[OCT撮像装置の構成]
以下、眼底撮像システム1における各装置について説明する。図1に示すように、OCT撮像装置100は、例えば、OCTユニット110と、照明光学系120と、撮像光学系130とを備える。OCTユニット110は、光を照射すると共に、反射光と照射光とを干渉させてOCT画像IMを生成する。OCTユニット110と撮像光学系130は、例えば、光ファイバFaによって互いに接続される。OCTユニット110により照射された照射光は、光ファイバFaを介して撮像光学系130に導光される。また、OCTユニット110により照射された照射光は、光ファイバFaを介して撮像光学系130に導光される。
以下、眼底撮像システム1における各装置について説明する。図1に示すように、OCT撮像装置100は、例えば、OCTユニット110と、照明光学系120と、撮像光学系130とを備える。OCTユニット110は、光を照射すると共に、反射光と照射光とを干渉させてOCT画像IMを生成する。OCTユニット110と撮像光学系130は、例えば、光ファイバFaによって互いに接続される。OCTユニット110により照射された照射光は、光ファイバFaを介して撮像光学系130に導光される。また、OCTユニット110により照射された照射光は、光ファイバFaを介して撮像光学系130に導光される。
図2は、OCTユニット110の構成の一例を示す図である。図示の例のように、OCTユニット110は、光源111と、信号検出部112と、光カプラ113と、光ファイバ113aから113dと、参照光側コリメータ114および117と、ガラスブロック115と、フィルタ116と、参照ミラー118とを備える。
光源111は、例えば、近赤外(例えば700~1100nm程度)の波長の照射光(プローブ光)を照射する。光源111は、例えば、SLD(スーパールミネッセントダイオード)や超短波パルスレーザ等の波長掃引光源であってよい。
光源111から照射された照射光は、光ファイバ113a内を導光し、光カプラ113によって、参照光側コリメータ114側へ導光される光と、光ファイバFa側、すなわち撮像光学系130側へ導光される光とに分割される。以下、参照光側コリメータ114側へ導光する光を、「参照光LR」と称し、撮像光学系130側へ導光する光を、「測定光LS」と称する。
参照光LRは、例えば、光ファイバ113bを介して参照光側コリメータ114に導光され、参照光側コリメータ114によって平行光に変化される。その後平行光は、ガラスブロック115およびフィルタ116を通過して参照光側コリメータ117に導光される。ガラスブロック115およびフィルタ116は、参照光LRと測定光LSとの光路長を合わせたり、分散特性を合わせたりするために設けられる。参照光側コリメータ117に導光された平行光は、参照光側コリメータ117によって集光される。参照光側コリメータ117によって集光された光(参照光)は、参照ミラー118によって反射される。参照ミラー118によって反射された参照光は、例えば、参照光側コリメータ117によって平行光に変化され、その後平行光が参照光側コリメータ114によって集光され、光ファイバ113bを介して光カプラ113に導光される。なお、OCT撮像装置100がタイムドメインOCTの場合、参照ミラー118を固定せず、光源111から参照ミラー118までの光路長を変化させるように参照ミラー118或いは他の光学系を駆動可能な状態にしておいてよい。
一方、測定光LSは、光ファイバ113cおよびFaを介して撮像光学系130に導光され、眼球Eに照射される。眼球Eに照射された測定光LS(反射光)は、眼球Eの反射面(眼底Erなど)にて反射され、光ファイバ113cおよびFaに入射される。
光カプラ113は、参照ミラー118によって反射された参照光LRと眼球Eにて反射された測定光LSとを、例えば同軸の光ファイバ113dを介して、信号検出部112に導光する。光ファイバ113dに導光される参照光LRおよび測定光LSは、光カプラ113内部において互いに干渉する。以下、互いに干渉した参照光LRおよび測定光LSを、「干渉光LC」と称する。
信号検出部112は、例えば、干渉光側コリメータレンズ112aと、回折格子112bと、結像レンズ112cと、受光素子112dとを備える。信号検出部112に導光された干渉光LCは、干渉光側コリメータレンズ112aを介して平行光に変化された後、回折格子112bによって分光される。回折格子112bによって分光された光は、結像レンズ112cによって、受光素子112dの受光面に結像される。受光素子112dは、例えば、CCD(Charge Coupled Device)等のフォトダイオードセンサであり、結像レンズ112cを介した光を検出し、検出した光に応じた検出信号を生成する。そして、信号検出部112は、撮像光学系130による照射光の走査に応じて順次生成する検出信号に基づいて、眼球Eの深さ方向(図中z方向)の断層を示すOCT画像(光干渉断層画像)IMを生成する。OCT画像IMは、所謂Bモード画像、或いはBスキャン画像のことである。
図1の説明に戻る。照明光学系120は、例えば、ハロゲンランプやキセノンランプ等の照明用の光源(不図示)を備え、この光源から照射された光を眼底Erに導光することで眼底Erを照らす。
撮像光学系130は、眼底Erにおいて反射された反射光を、光ファイバFaを介してOCTユニット110側に導光する。また、撮像光学系130は、OCTユニット110から光ファイバFaを介して導光された照射光を走査しながら眼球Eに導光する。例えば、撮像光学系130は、コリメータやガルバノミラー(いずれも不図示)などを備え、眼球Eに対して照射される照射光の照射方向(図中z方向)を、その照射方向に対して直交する水平方向(図中x方向またはy方向)に関して変更する。すなわち、撮像光学系130は、ラスタースキャン方式によって照射光を走査する。これによって、眼球Eに照射される照射光は、x方向およびy方向に関して走査されることになる。
[画像処理装置の構成]
図3は、画像処理装置200の構成の一例を示す図である。図示の例のように、画像処理装置200は、通信インターフェース202と、表示部204と、記憶部210と、制御部220とを備える。
図3は、画像処理装置200の構成の一例を示す図である。図示の例のように、画像処理装置200は、通信インターフェース202と、表示部204と、記憶部210と、制御部220とを備える。
通信インターフェース202は、例えば、有線または無線によってOCT撮像装置100と通信を行う。また、通信インターフェース202は、OCT撮像装置100以外の他装置と通信を行ってもよい。
表示部204は、例えば、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)ディスプレイなどの表示装置である。
記憶部210は、例えば、HDD(Hard Disc Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)等により実現される。記憶部210は、例えば、制御部220において参照されるプログラムや、OCT三次元データ212、走査位置情報214等を格納する。
図4は、OCT三次元データ212を模式的に示す図である。図示のように、OCT三次元データ212は、複数のOCT画像IMn(nは任意の自然数)から構成される。各OCT画像IMj(1≦j≦n)のz方向は、照射光の照射方向(照射光の光軸)に沿う方向を表し、眼球Eの深さ方向を表している。照射光の照射方向に沿う方向とは、例えば、照射光の光軸に対して数度から十数度程度の誤差(角度幅)を許容した方向である。
また、各OCT画像IMjのx方向は、z方向に直交する平面のいずれか一方向を表している。これらのOCT画像IMnは、z方向およびx方向の双方に対して直交するy方向において並べられている。y方向は、各OCT画像IMの撮像時刻tに対応する。すなわち、各OCT画像IMは、撮像時刻順に並べられている。本実施形態では、OCT画像IMは、深さ方向(z方向)の分解能が他の方向の分解能よりも高いOCT撮像装置100によって撮像されているため、各OCT画像IMjのz方向の解像度が、x方向やy方向の解像度と比べて細かいものとなっている。なお、図示のOCT三次元データ212の例は、あくまでも複数のOCT画像IMの構成について模式的に示すものであり、実際は、各OCT画像IMに対して、撮像時刻tやその撮像時のy方向における位置情報が対応付けられたデータの集合として扱われてよい。z方向は、「第1方向」の一例であり、x方向は、「第2方向」の一例であり、y方向は、「第3方向」の一例である。
図5は、走査位置情報214の一例を示す図である。走査位置情報214は、後述する検出領域Raの設定位置に関する情報であり、各OCT画像IMにおけるx-z座標に対して、高輝度部位フラグが対応付けられた情報である。x-z座標は、各OCT画像IMにおける画素の座標を示している。また、高輝度部位フラグは、x-z座標が示す画素が高輝度部位であるのかどうかを示すためのフラグである。例えば、ある検出領域Raと重なる画像領域が高輝度部位であると判定された場合、当該画像領域に含まれる全ての画素の座標に対して「1」のフラグが付与され、検出領域Raと重なる画像領域が高輝度部位でない場合、「0」のフラグが付与される。このとき、OCT画像IMに含まれる全ての画素の高輝度部位フラグは、高輝度部位であるか否かの判定前に、予め「0」が付与されているものとする。この処理を検出領域の位置を変える(位置をずらす)毎に行い、最終的に1回でも「1」のフラグが付与された画素(フラグが「0」から「1」に書き換えられた画素)は高輝度部位である画素とされ、図5に示されている高輝度部位フラグは「1」となる。すなわち、一度でも高輝度部位フラグが「0」から「1」に変更されると、当該フラグは、「1」の状態で保持される。
制御部220は、例えば、取得部222と、画像前処理部224と、検出領域走査部226と、輝度演算部228と、高輝度部位判定部230と、グループ生成部232と、診断判定部234と、表示制御部236とを備える。これらの構成要素の一部または全部は、CPU(Central Processing Unit)などのプロセッサが記憶部210に格納されたプログラムを実行することにより実現される。また、制御部220の構成要素の一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
以下、制御部220による一連の処理についてフローチャートを用いて説明する。図6は、制御部220による一連の処理の一例を示すフローチャートである。本フローチャートの処理は、所定の周期で繰り返し行われてよい。
まず、取得部222は、通信インターフェース202を介してOCT撮像装置100からOCT画像IMを取得し(ステップS100)、取得したOCT画像IMをOCT三次元データ212として記憶部210に記憶させる。また、通信インターフェース202がOCT画像IMを記憶する記憶装置(例えばクラウドサーバ等)と通信する場合、取得部222は、この記憶装置からOCT画像IMを取得してもよい。なお、取得部222は、OCT撮像装置100等から一つずつOCT画像IMを取得する場合、各OCT画像IMの撮像時刻tやその撮像時のy方向における位置情報を参照することで、順次取得したOCT画像IMをy方向に関して並べてよい。このとき取得部222は、例えば、時系列順になるように、適宜OCT画像IMをy方向に関して並び替えてよい。
次に、画像前処理部224は、OCT三次元データ212に含まれる全てのOCT画像IMに対して、種々の前処理を行う(ステップS102)。例えば、前処理には、歪み補正処理、ノイズ除去処理、セグメンテーション(層境界自動検出)処理、禁止領域および許可領域を区分して設定する処理などが含まれる。画像前処理部224は、「セグメンテーション処理部」の一例である。
歪み補正処理は、例えば、OCT画像IM同士の位置ずれを補正する処理であり、x方向、y方向、z方向のうち、一部または全部に関して位置ずれを補正する。
また、ノイズ除去処理は、例えば、OCT画像IM内のある着目画素の輝度値を、その着目画素の周辺画素の輝度値の平均値や中央値に置き換える処理である。なお、ノイズ除去処理は、一般的には輝度値の代わりに反射強度、色相、明度、彩度に関してノイズを除去する処理もあるが、OCT画像は通常、干渉信号の強弱を灰色の濃淡で表現したグレイスケール画像、または、その強弱を色の違いで表現した擬似カラー画像であるため、輝度値または反射強度に着目してノイズ処理を行うこととなる。
また、セグメンテーション処理は、OCT画像IMを、検出領域Raの設定を禁止する禁止領域と、検出領域Raの設定を許可する許可領域とに区分する処理を行うために事前に行う処理である。
図7および図8は、セグメンテーション処理を説明するための図である。図7におけるz(軸)の方向は前眼部から眼底に向かう方向をプラス方向としているので、網膜の位置から見ると、眼球Eの硝子体が存在する側がマイナス側であり、眼球E内のより浅い方向を示している。また逆に、z方向のプラス側は、眼球E内のより深い方向を示している。例えば、画像前処理部224は、OCT画像IMから、ラインILMおよびラインRPEを検出する。ラインILMは、網膜の内層側、つまり眼球の中心に近い側の硝子体との境界線である。ラインRPEは、網膜の外層側、つまり脈絡膜との境界線である。画像前処理部224は、図8に示すように、検出したラインILMからz方向のプラス側に一定距離離れた位置にラインILM#を設定すると共に、検出したラインRPEからz方向のマイナス側に一定距離離れた位置にラインRPE#を設定する。この4つのラインの設定がセグメンテーション処理となる。そして、画像前処理部224は、ラインILM#およびラインRPE#の間の画像領域を許可領域に設定し、この許可領域を除く画像領域を禁止領域に設定する。そして、画像前処理部224は、検出領域及び対照領域を、自身の領域内の全部または一部に許可領域を含むように設定する。言い換えれば、検出領域または対照領域の一部は、禁止領域上に設定されてもよく、禁止領域のみを含む検出領域または対照領域は、その設定が禁止される。
例えば、ラインILMおよびラインILM#の間の画像領域、またはラインRPEおよびラインRPEの間の画像領域には、ロドプシンなどの光感受性蛋白や毛細血管等が存在するため、これらが高輝度部位として検出される可能性がある。すなわち、高輝度部位がHRF由来のものであるのかどうかの区別がつき難い。従って、このような領域をセグメンテーション処理によって予め禁止領域として設定しておくことで、後段の高輝度部位の抽出処理から当該領域を除外することができ、HRFの検出精度を維持しつつ処理負荷を軽減することができる。
次に、制御部220は、前処理を行ったOCT画像に対して高輝度部位の抽出処理を行う(ステップS104)。高輝度部位の抽出処理の詳細については、別のフローチャートを用いて説明する。
図9は、高輝度部位の抽出処理の一例を示すフローチャートである。本フローチャートの処理は、上述した図6に示すステップS104の処理に相当する。
まず、検出領域走査部226は、画像前処理部224により前処理が行われたOCT画像IMの分解能に合わせて、OCT画像IMから抽出する抽出対象物(HRF)の大きさを決定する(ステップS200)。本実施形態では、OCT画像IMは、x方向の分解能に比してz方向の分解能の方が大きい画像であるため、抽出対象物の大きさは、x方向に比してz方向の長さの方が見かけ上大きくなる。
次に、検出領域走査部226は、画像前処理部224により前処理が行われた複数のOCT画像IMの中から一つのOCT画像IMを選択し、このOCT画像IMに対して、抽出対象物の大きさに合わせた検出領域Raを設定し、設定した検出領域Raの設定位置を所定の周期で数画素ずつずらすことで、OCT画像IMに対して検出領域Raを走査する(ステップS202)。このとき、検出領域走査部226は、セグメンテーション処理により定められた許可領域に対して検出領域Raを設定する。検出領域Raは、x-z方向に関する二次元領域であってもよいし、x-y-z方向に関する三次元領域であってもよい。本実施形態におけるOCT画像IMは、x方向やy方向の解像度に比して、z方向の解像度が大きいことから、抽出対象物(HRF)の大きさは、x方向およびy方向に比してz方向の長さの方が見かけ上大きくなる。すなわち、抽出対象物は、見かけ上長細くなる。従って、二次元領域として設定される場合、検出領域Raは、x方向よりもz方向に関して大きくなるように設定される。三次元領域として設定される検出領域Raは、x方向およびy方向よりもz方向に関して大きくなるように設定される。以下の説明では、説明を簡略化するために、二次元領域の検出領域Raを設定するものとする。
次に、輝度演算部228は、検出領域走査部226により検出領域Raが走査されるときに、検出領域Raの最大輝度値Aを算出する(ステップS204)。すなわち、輝度演算部228は、検出領域走査部226により所定の周期で検出領域Raが設定される度に、検出領域Raの最大輝度値Aを算出する。最大輝度値Aは、検出領域Raと重なる画像領域に含まれる複数の画素の輝度値の中で最大をとる輝度値である。
次に、高輝度部位判定部230は、最大輝度値Aが最大輝度閾値THa以上であるのか否かを判定する(ステップS206)。例えば、OCT画像IMにおける画素の輝度値が0から255のレンジで表される場合、最大輝度閾値THaは、100程度に設定される。高輝度部位判定部230は、最大輝度値Aが最大輝度閾値THa未満であると判定した場合、検出領域Raが高輝度部位を示す画像領域ではないと判定する(ステップS208)。最大輝度閾値THaは、「第2閾値」の一例である。
一方、最大輝度値Aが最大輝度閾値THa以上であると判定された場合、輝度演算部228は、検出領域Raの平均輝度値Bを算出する(ステップS210)。平均輝度値Bは、検出領域Raと重なる画像領域に含まれる複数の画素の輝度値の平均である。
次に、高輝度部位判定部230は、平均輝度値Bが平均輝度閾値THb以上であるのか否かを判定する(ステップS212)。例えば、OCT画像IMにおける画素の輝度値が上述した数値例と同様に0から255のレンジで表される場合、平均輝度閾値THbは、30程度に設定される。高輝度部位判定部230は、平均輝度値Bが平均輝度閾値THb未満であると判定した場合、S208の処理に移り、検出領域Raが高輝度部位を示す画像領域ではないと判定する。平均輝度閾値THbは、「第3閾値」の一例である。
一方、平均輝度値Bが平均輝度閾値THb以上であると判定された場合、検出領域走査部226は、画像前処理部224により前処理が行われた複数のOCT画像IMの中から、S202の処理で選択したOCT画像IMの前後のOCT画像を選択する(ステップS214)。「前後のOCT画像」とは、OCT三次元データ212において、y方向に関して直前直後の関係で隣り合う画像のことである。例えば、S202の処理でOCT画像IMjが選択された場合、OCT画像IMj-1とOCT画像IMj+1が前後のOCT画像として選択される。
次に、検出領域走査部226は、S202の処理で選択したOCT画像IM(以下、着目OCT画像IMと称する)と、着目OCT画像の前後のOCT画像IMとのそれぞれに対して、対照領域Rbを設定する(ステップS216)。
図10から図12は、対照領域Rbの設定方法の一例を説明するための図である。図10は、OCT画像IMj-1(着目OCT画像の前のOCT画像)を表し、図11は、OCT画像IMj(着目OCT画像)を表し、図12は、OCT画像IMj+1(着目OCT画像の後のOCT画像)を表している。
例えば、OCT画像IMjに対して対照領域Rbを設定する場合、検出領域走査部226は、x方向に関して検出領域Raの両隣なりに対照領域Rbを設定する。具体的には、検出領域Raのz方向の大きさがΔz、x方向の大きさがΔx、検出領域Raの中心座標Pdが(xd,zd)である場合、検出領域走査部226は、座標Pc1(xd-Δx,zd)と、座標Pc2(xd+Δx,zd)とを中心座標として対照領域Rbを設定する。
また、OCT画像IMj-1およびOCT画像IMj+1に対して対照領域Rbを設定する場合、検出領域走査部226は、OCT画像IMjに対して設定した検出領域Raの中心座標Pd(xd,zd)と同じ座標Pc(xd,zd)を中心座標として対照領域Rbを設定する。これらの対照領域Rbは、検出領域Raと同程度の大きさおよび/または形状で設定される。これによって、対照領域Rbは、三次元画像の少なくともx-y平面において、検出領域Raを囲む領域として設定される。
大きさが「同程度」とは、例えば、検出領域Raの面積と対照領域Rbの面積との差が一定範囲内(例えばプラスマイナス20[%]程度)であることや、検出領域Raのアスペクト比と対照領域Rbのアスペクト比との差が一定範囲内(例えばプラスマイナス10[%]程度)であることを含む。また、形状が「同程度」とは、例えば、検出領域Raの形状と対照領域Rbの形状とが互いに相似形であることを含む。
図13から図15は、対照領域Rbの設定方法の他の例を説明するための図である。図13は、図10と同様に、OCT画像IMj-1(着目OCT画像の前のOCT画像)を表し、図14は、図11と同様に、OCT画像IMj(着目OCT画像)を表し、図15は、図12と同様に、OCT画像IMj+1(着目OCT画像の後のOCT画像)を表している。OCT画像IMj-1およびOCT画像IMj+1に対して対照領域Rbを設定する場合、検出領域走査部226は、図13および図15に示すように、検出領域Raのx方向の大きさ(Δx)の3倍程度の大きさ(3Δx)をもつ対照領域Rbを設定してよい。
ここで図9のフローチャートの説明に戻る。次に、輝度演算部228は、各OCT画像IMの画像領域のうち、対照領域Rbの平均輝度値Cを算出する(ステップS218)。平均輝度値Cは、対照領域Rbと重なる画像領域に含まれる複数の画素の輝度値の平均である。
次に、高輝度部位判定部230は、平均輝度値Bから平均輝度値Cを減算した値(B-C)が差分輝度閾値THc以上であるのか否かを判定する(ステップS220)。例えば、OCT画像IMにおける画素の輝度値が上述した数値例と同様に0から255のレンジで表される場合、差分輝度閾値THcは、15程度に設定される。高輝度部位判定部230は、平均輝度値Bから平均輝度値Cを減算した値が差分輝度閾値THc未満であると判定した場合、S208の処理に移り、検出領域Raが高輝度部位を示す画像領域ではないと判定する。差分輝度閾値THcは、「第1閾値」の一例である。
一方、高輝度部位判定部230は、平均輝度値Bから平均輝度値Cを減算した値が差分輝度閾値THc以上であると判定した場合、検出領域Raが高輝度部位を示す画像領域であると判定する(ステップS222)。
次に、高輝度部位判定部230は、走査位置情報214において、検出領域Raに含まれる画素の各々に対応した高輝度部位フラグを更新する(ステップS224)。例えば、高輝度部位判定部230は、S208の処理で、検出領域Raが高輝度部位を示す画像領域ではないと判定した場合、走査位置情報214において、この検出領域Raの画素の高輝度部位フラグを「0」にする。また、高輝度部位判定部230は、S222の処理で、検出領域Raが高輝度部位を示す画像領域であると判定した場合、走査位置情報214において、この検出領域Raの画素の高輝度部位フラグを「1」にする。
次に、検出領域走査部226は、S202の処理で選択したOCT画像IMの全画像領域(許可領域)について、検出領域Raの走査が完了したか否かを判定する(ステップS226)。検出領域走査部226は、検出領域Raの走査が完了していないと判定した場合、S202の処理に戻り、検出領域Raの設定位置を変更する。これによって、上述した高輝度部位の判定を繰り返す。
一方、検出領域Raの走査が完了したと判定した場合、制御部220は、本フローチャートの処理を終了する。
ここで、図6のフローチャートの説明に戻る。次に、グループ生成部232は、走査位置情報214を参照して、高輝度部位を示す画像領域のうち、平均輝度値Bが同程度の画像領域をグループ化した画像領域グループGPを生成する(ステップS106)。「輝度値が同程度」とは、例えば、比較対象とする輝度値に対して数[%]から十数[%]程度の誤差を許容した範囲で同じであることをいう。従って、「輝度値が同程度」には、輝度値が同じであることも含まれる。
図16から図18は、画像領域グループGPの生成方法の一例を示す図である。例えば、図16および図17に示す例のように、OCT画像IMに複数の検出領域Raが設定されると、グループ生成部232は、ラベリング処理によって、複数の検出領域Raのうち、平均輝度値Bが同程度の領域同士を合成し、一つの画像領域グループGPにする。
例えば、グループ生成部232は、OCT画像IMの全画素のうち、未だラベルが付与されていない画素を着目画素として選択し、当該着目画素に対して、あるラベルを付与する。次に、グループ生成部232は、ラベルを付与した着目画素の周囲の画素(例えば、x、z方向で着目画素に隣接する画素)に対して、既にラベルを付与したか否かを判定する。周囲の画素にラベルを付与しておらず、且つ着目画素と同程度の輝度値であれば、グループ生成部232は、着目画素に付与したラベルと同じラベルを周囲の画素に付与する。このとき、同じ画像領域グループGPに属する画素は、同じ輝度値(例えば平均輝度値B)として扱われるため、同じラベルが付与される。次に、グループ生成部232は、ラベルを付与した周囲の画素を新たな着目画素として扱い、更に周囲の画素についてラベルの付与の有無と輝度値の確認を行ってラベルを付与する。このようにして、グループ生成部232は、OCT画像IMの全画素に対してラベルを付与し、同じラベルが付与され、且つ互いに隣接関係にある画素の集合を一つの画像領域グループGPとして抽出する。
次に、グループ生成部232は、画像領域グループGPの大きさが許容サイズ内であるのか否かを判定する(ステップS108)。許容サイズとは、眼球E内に存在することが想定される最も大きいHRFの実サイズを、OCT画像IMを撮像した装置の分解能に応じて拡縮した見込み上のサイズのことである。
例えば、グループ生成部232は、上述した図18に示すように、画像領域グループGPのx方向の最大サイズΔLXと、x方向における許容サイズTHΔLXとを比較する。また、グループ生成部232は、画像領域グループGPのz方向の最大サイズΔLZと、z方向における許容サイズTHΔLZとを比較する。グループ生成部232は、最大サイズΔLXがTHΔLX以下であり、且つ最大サイズΔLZがTHΔLZ以下である場合に、画像領域グループGPの大きさが許容サイズ内であると判定する。一方、グループ生成部232は、最大サイズΔLXがTHΔLXを超える場合、または最大サイズΔLZがTHΔLZを超える場合に、画像領域グループGPの大きさが許容サイズ内でないと判定する。なお、グループ生成部232は、最大サイズΔLXまたは最大サイズΔLZのいずれか一方でも対応する許容サイズ以下であれば、画像領域グループGPの大きさが許容サイズ内であると判定してもよい。
また、上述した例では、グループ生成部232は、x方向およびz方向に関して画像領域を合成することで画像領域グループGPを生成しているが、これに限られない。例えば、グループ生成部232は、x方向、z方向、およびy方向に関して画像領域を合成することで画像領域グループGPを生成してもよい。
図19から図21は、画像領域グループGPの生成方法の他の例を示す図である。例えば、図19に示すように、y方向において並べられた各OCT画像IMに対して検出領域Raが設定された場合、グループ生成部232は、図20に示すように、同程度の平均輝度値Bを有する画像領域同士をy方向に関して合成することで、一つの画像領域グループGPを生成する。図20に示すように、グループ生成部232は、y方向に関して、互いに接するまたは重なる程度の仮想的な幅Δyを考慮して、画像領域同士を合成してよい。なお、図示の例では、説明を簡略化するために、各OCT画像IMに設定する検出領域Raは、x方向に関して同じ位置としている。また、y方向におけるOCT画像IMの間隔(すなわちy方向における照射光の走査間隔)は、例えば、想定されるHRFの最大サイズ以下であるものとする。
そして、グループ生成部232は、上述したように、最大サイズΔLXおよび最大サイズΔLZと、それぞれに対応する許容サイズとを比較すると共に、画像領域グループGPのy方向の最大サイズΔLYと、y方向における許容サイズTHΔLYとを比較することで、画像領域グループGPの大きさが許容サイズ内であるのか否かを判定してよい。
図21に示すように、例えば、グループ生成部232は、画像領域グループGPの大きさが許容サイズ内でなければ、その画像領域グループGPが示す高輝度部位が抽出対象のHRFとは異なる対象物(例えば血管等)であると判断して、画像領域グループGPの元となった複数の画像領域の画素に対応付けられた高輝度部位フラグを「1」から「0」に変更する(ステップS110)。これによって、画像領域グループGPの元となった複数の画像領域に対してなされた、高輝度部位であるという判定結果が棄却され、当該画像領域が高輝度部位ではないものとして扱われることになる。一方、画像領域グループGPの大きさが許容サイズ内であれば、その画像領域グループGPが示す画像領域はHRFとして検出される。
次に、グループ生成部232は、高輝度部位であるという判定結果が棄却されなかった画像領域グループGPの数、すなわち検出されたHRFの数を算出する(ステップS112)。
次に、制御部220は、OCT三次元データ212に含まれる全てのOCT画像IMについて、S104からS112までの一連の処理を行ったか否かを判定する(ステップS114)。全てのOCT画像IMについて、上述した一例の処理を行っていないと判定した場合、制御部220は、S104の処理に戻る。
一方、全てのOCT画像IMについて、上述した一例の処理を行ったと判定された場合、診断判定部234は、グループ生成部232により算出されたHRFの数(以下、HRF数と称する)に基づいて、被検体である眼球Eの診断を行う(ステップS116)。例えば、診断判定部234は、OCT画像IMごとのHRF数、或いはOCT三次元データ212ごとのHRF数を参照し、HRF数が基準値よりも大きい場合、「被験者は特定の疾病(例えば糖尿病網膜症)を患っている可能性がある」、といった診断結果を下してよい。例えば、基準値は、観測されたHRF数と、特定の疾病の発症の有無との相関結果などに基づいて適宜決定されてよい。
次に、表示制御部236は、診断判定部234による診断結果に基づく画像を表示部204に表示させる(ステップS118)。これによって、本フローチャートの処理が終了する。
図22は、診断判定部234による診断結果に基づく画像が表示された表示部204の一例を示す図である。図示の例では、表示制御部236は、表示部204を制御して、HRF数と、HRF数の基準値と、特定の疾病の有無(或いはその蓋然性)とを含む診断結果を表示させると共に、代表的なOCT画像IM(例えば、最もHRF数が多い画像)に、抽出されたHRFをその抽出位置に重畳させて表示させている。このような画像を表示部204に表示させることによって、読影者(例えば医師や看護師など)ごとの経験や技量等に依存せずに、定量的かつ客観的に診断結果を下すことができる。なお、表示制御部236は、単にグループ生成部232により算出されたHRF数と、その算出元のOCT画像IMとを関連付けた画像を表示部204に表示させてもよい。これによって、少なくともHRF数について客観的に定量化することができる。
なお、上述したフローチャートの処理において、画像前処理部224によるセグメンテーション処理と、禁止領域および許可領域を区分して設定する処理とは、S104に示す高輝度部位の抽出処理の前に行われるものとして説明したがこれに限られない。例えば、セグメンテーション処理と、禁止領域および許可領域を区分して設定する処理とは、S104に示す高輝度部位の抽出処理の後に行われてもよい。この場合、検出領域RaはOCT画像IMの全体に設定され、禁止領域に相当する画像領域からも高輝度部位が抽出され得る。高輝度部位判定部230は、画像領域グループGPの生成前の段階において、OCT画像IMの全体から抽出された高輝度部位が、禁止領域に属するのか否かを判定する。例えば、高輝度部位判定部230は、禁止領域から抽出された高輝度部位については、走査位置情報214において、その高輝度部位の抽出領域に対応する高輝度部位フラグを「0」に変更することで、高輝度部位であるという判定結果を棄却する。この結果、セグメンテーション処理と、禁止領域および許可領域を区分して設定する処理との双方が高輝度部位の抽出処理の前に行われるのと同様に、HRFの検出精度を維持しつつ処理負荷を軽減することができる。
また、上述した第1実施形態では、対照領域Rbは、ある着目するOCT画像IMjと、その前後のOCT画像IMj-1およびOCT画像IMj+1とに設定されるものとして説明したがこれに限られない。例えば、検出領域Raがy方向にも延在する場合、すなわち検出領域Raが三次元領域として扱われる場合、y方向に並んだ複数のOCT画像IMに跨って検出領域Raが設定される。このとき、例えば、y方向に関して互いに隣接する2つのOCT画像IMjとIMj+1に対して同じ検出領域Raが設定されると、対照領域Rbは、OCT画像IMjの前のOCT画像IMj-1と、前々のOCT画像IMj-2とに設定されると共に、OCT画像IMj+1の後のOCT画像IMj+2と、後々のOCT画像IMj+3とに設定されてよい。すなわち、同じ検出領域Raが設定される複数のOCT画像IMを一つのブロック(以下、検出ブロックと称す)と考え、その検出ブロックの前後に対照領域Rbを設定するための同サイズのブロック(以下、対照ブロックと称す)を設定してもよい。同サイズとは、検出ブロックに含まれるOCT画像IMの数が同じであることをいう。例えば、検出ブロックに2つのOCT画像IMが含まれれば、前後の対照ブロックは、それぞれ2つのOCT画像IMを含むように設定される。なお、対照ブロックのサイズは、検出ブロックと異なっていてもよい。例えば、対照ブロックのサイズは、検出ブロックのサイズの2倍や3倍などであってもよい。
以上説明した第1実施形態によれば、OCT三次元データが示す三次元画像において、検出領域Raと、検出領域Raを囲む対照領域Rbとの画素値の比較に基づいて、検出領域Raが、HRFを示す高輝度部位などの所定の画像領域であるのか否かを判定することにより、OCT画像IMから画像処理によって、HRFなどの眼球Eに生じた事象を検出することができる。
(第2実施形態)
以下、第2実施形態における画像処理装置200について説明する。第2実施形態における画像処理装置200では、例えば、非特許文献1に開示された手法を応用し、検出領域Raと対照領域Rbとの間にギャップを設ける点で、第1実施形態と相違する。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する部分についての説明は省略する。
以下、第2実施形態における画像処理装置200について説明する。第2実施形態における画像処理装置200では、例えば、非特許文献1に開示された手法を応用し、検出領域Raと対照領域Rbとの間にギャップを設ける点で、第1実施形態と相違する。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する部分についての説明は省略する。
図23は、検出領域Raとの間にギャップを設けて対照領域Rbを設定する方法の一例を説明するための図である。例えば、OCT画像IMjに対して対照領域Rbを設定する場合、検出領域走査部226は、x方向に関して検出領域Raの両隣なりに、それぞれ検出領域Ra一つ分のギャップを設けて、対照領域Rbを設定する。具体的には、検出領域Raのz方向の大きさがΔz、x方向の大きさがΔx、検出領域Raの中心座標Pdが(xd,zd)である場合、検出領域走査部226は、座標Pc1(xd-2Δx,zd)と、座標Pc2(xd+2Δx,zd)とを中心座標にして対照領域Rbを設定する。
また、検出領域走査部226は、y方向に関して照領域Rbを設定する場合、検出領域Raが設定されたOCT画像IMjに対して前後に並んだOCT画像IMj-1およびOCT画像IMj+1を、対照領域Rbを設定する対象の画像から除き、OCT画像IMj-2およびOCT画像IMj+2やOCT画像IMj-3およびOCT画像IMj+3などの着目しているOCT画像IMjに隣接していない画像に対照領域Rbを設定する。これによって、x方向に加えてy方向に関しても検出領域Raと対照領域Rbとの間にギャップを設けることができる。
図24は、検出領域Raと対照領域Rbとの間にギャップを設けない場合の高輝度部位の検出結果の一例を示す図である。また、図25は、検出領域Raと対照領域Rbとの間にギャップを設けた場合の高輝度部位の検出結果の一例を示す図である。例えば、検出対象である高輝度部位のx方向の大きさが、検出領域Raおよび対照領域Rbの双方のx方向の大きさと同程度である場合がある。このような場合において、図24に示すように、検出領域Raと対照領域Rbとの間にギャップを設けない場合、検出対象である高輝度部位が検出領域Raと対照領域Rbとの双方に重畳される可能性があり、検出領域Raの平均輝度値Bから対照領域Rbの平均輝度値Cを減算した値(B-C)が差分輝度閾値THc未満となりやすく、本来であれば、検出領域Raが高輝度部位を示す画像領域であると判定されるべきところが、検出領域Raが高輝度部位を示す画像領域でないと判定され得る。これに対して、図25に示すように、検出領域Raと対照領域Rbとの間にギャップを設けた場合、高輝度部位が大きく、検出領域Raに隣接した領域にも重畳するような場合であっても、その重畳する領域がギャップとして設けられた領域であるため、検出領域Raの平均輝度値Bから対照領域Rbの平均輝度値Cを減算した値(B-C)が差分輝度閾値THc以上となりやすく、高輝度部位を示す画像領域を精度良く検出することができる。
図26から図30は、ギャップを設けるときの対照領域Rbの設定方法のバリエーションの一例を示す図である。いずれの図でも、三次元画像のあるx-y平面を表している。例えば、図26に例示するように、x-y平面において、検出領域Raの中心座標が(xd,yd)である場合、検出領域走査部226は、座標(xd,yd-2Δx)、(xd+2Δx,yd)、(xd,yd+2Δy)、(xd-2Δx,yd)の其々を中心座標とした4つの対照領域Rbを設定することで、x方向において検出領域Raの幅Δx分のギャップを設けることができ、y方向において検出領域Raの幅Δy分のギャップを設けることができる。
また、図27に例示するように、検出領域走査部226は、座標(xd,yd-2Δx)および(xd,yd+2Δy)を中心座標として、検出領域Raのx方向の大きさ(Δx)の5倍程度の大きさ(5Δx)をもつ対照領域Rbを設定してもよい。
また、図28に例示するように、検出領域走査部226は、x方向およびy方向に関して交差する方向(図示の例では45°の角度で交差する方向)に、ギャップを設けて対照領域Rbを設定してもよい。
また、図29に例示するように、検出領域走査部226は、対照領域Rb同士が互いに一部重なるように、複数の対照領域Rbを設定してもよい。これによって、検出領域Raの周囲に、その領域が連続した見かけ上一つの対照領域Rbが設定される。
また、検出領域走査部226は、検出領域Ra一つ分のギャップを設けた位置に対照領域Rbを設定する代わりに、図30に例示するように、例えば、検出領域Raの半分の大きさのギャップを設けた位置に対照領域Rbを設定してもよいし、検出領域Raの2倍や3倍などの等倍の大きさのギャップを設けた位置に対照領域Rbを設定してもよい。
以上説明した第2実施形態によれば、検出領域Raとの間にギャップを設けて対照領域Rbを設定するため、HRFなどの高輝度部位の形状が歪であったり、その大きさがばらついていたりしても、精度良く高輝度部位を検出することができる。この結果、HRFなどの眼球Eに生じた事象を、より精度良く検出することができる。
[ハードウェア構成]
上述した実施形態の画像処理装置200は、例えば、図31に示すようなハードウェアの構成により実現される。図31は、実施形態の画像処理装置200のハードウェア構成の一例を示す図である。
上述した実施形態の画像処理装置200は、例えば、図31に示すようなハードウェアの構成により実現される。図31は、実施形態の画像処理装置200のハードウェア構成の一例を示す図である。
画像処理装置200は、NIC(Network Interface Card)等の通信インターフェース200-1、CPU200-2、RAM200-3、ROM200-4、フラッシュメモリやHDD等の二次記憶装置200-5、およびドライブ装置200-6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置200-6には、光ディスク等の可搬型記憶媒体が装着される。二次記憶装置200-5に格納されたプログラム200-5aがDMAコントローラ(不図示)等によってRAM200-3に展開され、CPU200-2によって実行されることで、制御部220が実現される。また、CPU200-2が参照するプログラムは、ドライブ装置200-6に装着された可搬型記憶媒体に格納されていてもよいし、ネットワークを介して他の装置からダウンロードされてもよい。
上記実施形態は、以下のように表現することができる。
情報を記憶するストレージと、
前記ストレージに格納されたプログラムを実行するプロセッサと、を備え、
前記プロセッサは、前記プログラムを実行することにより、
光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得し、
取得した複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定するように構成された画像処理装置。
情報を記憶するストレージと、
前記ストレージに格納されたプログラムを実行するプロセッサと、を備え、
前記プロセッサは、前記プログラムを実行することにより、
光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得し、
取得した複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定するように構成された画像処理装置。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1‥眼底撮像システム、100…OCT撮像装置、110…OCTユニット、120…照明光学系、130…撮像光学系、200…画像処理装置、202…通信インターフェース、204…表示部、210…記憶部、212…OCT三次元データ、214…走査位置情報、220…制御部、222…取得部、224…画像前処理部、226…検出領域走査部、228…輝度演算部、230…高輝度部位判定部、232…グループ生成部、234…診断判定部、236…表示制御部、E…眼球、Er…眼底
Claims (19)
- 光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得する取得部と、
前記取得部により取得された複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する判定部と、
を備える画像処理装置。 - 前記第1方向は、前記光干渉断層画像の生成過程において前記眼球に照射される光の照射方向に沿う方向である、
請求項1に記載の画像処理装置。 - 前記対照領域は、前記第1方向周りに前記検出領域を囲む領域である、
請求項1または2に記載の画像処理装置。 - 前記検出領域の長手方向は、前記第1方向である、
請求項1から3のうちいずれか1項に記載の画像処理装置。 - 前記判定部は、前記検出領域の画素値の平均値と、前記対照領域の画素値の平均値との差分が第1閾値以上である場合に、前記検出領域が、所定の画像領域であると判定する、
請求項1から4のうちいずれか1項に記載の画像処理装置。 - 前記判定部は、更に、前記検出領域の画素値の最大値が第2閾値以上であるのか否かを判定し、前記検出領域の画素値の最大値が第2閾値以上でない場合に、前記検出領域が、所定の画像領域でないと判定する、
請求項1から5のうちいずれか1項に記載の画像処理装置。 - 前記判定部は、更に、前記検出領域の画素値の平均値が第3閾値以上であるのか否かを判定し、前記検出領域の画素値の平均値が第3閾値以上でない場合に、前記検出領域が、所定の画像領域でないと判定する、
請求項1から6のうちいずれか1項に記載の画像処理装置。 - 前記対照領域は、前記検出領域が設定された前記光干渉断層画像上に設定される、
請求項1から7のうちいずれか1項に記載の画像処理装置。 - 前記対照領域は、前記第2方向において前記検出領域と隣り合う位置のいずれか一方または双方に設定される、
請求項8に記載の画像処理装置。 - 前記対照領域は、前記取得部により取得された複数の光干渉断層画像のうち、前記第3方向において、前記検出領域が設定された前記光干渉断層画像と隣り合う、少なくとも1つ以上の光干渉断層画像上に設定される、
請求項8または9に記載の画像処理装置。 - 前記対照領域は、前記第1方向において、前記検出領域の位置に基づく位置に設定される、
請求項8から10のうちいずれか1項に記載の画像処理装置。 - 前記対照領域は、少なくとも前記第1方向において前記検出領域と同程度の大きさで設定される、
請求項8から11のうちいずれか1項に記載の画像処理装置。 - 前記判定部により所定の画像領域であると判定された画像領域のうち、画素値の平均値が同程度の画像領域をグループ化した画像領域グループを生成するグループ生成部と、
前記グループ生成部により生成された画像領域グループの数と、前記検出領域が設定された前記光干渉断層画像とを関連付けて表示部に表示させる表示制御部と、を更に備える、
請求項1から12のうちいずれか1項に記載の画像処理装置。 - 前記検出領域が設定される予定の前記光干渉断層画像を、前記検出領域の設定を禁止する禁止領域と、前記検出領域の設定を許可する許可領域とに分割するセグメンテーション処理部を更に備える、
請求項13に記載の画像処理装置。 - 前記検出領域が設定された前記光干渉断層画像を、前記検出領域の設定を禁止する禁止領域と、前記検出領域の設定を許可する許可領域とに分割するセグメンテーション処理部を更に備える、
請求項13に記載の画像処理装置。 - 前記グループ生成部により生成された画像領域グループの数に基づいて、前記眼球の病状を診断する診断部を更に備え、
前記表示制御部は、前記診断部による診断結果に基づく画像を前記表示部に表示させる、
請求項13から15のうちいずれか1項に記載の画像処理装置。 - 請求項1から16のうちいずれか1項に記載の画像処理装置と、
前記第1方向の分解能が前記第2方向の分解能に比して高く、前記光干渉断層法により眼球に光を照射することで前記複数の光干渉断層画像を生成する光干渉断層画像撮像装置と、
を備える眼底撮像システム。 - コンピュータが、
光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得し、
前記取得した複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定する、
画像処理方法。 - コンピュータに、
光干渉断層法により眼球に光を照射することで生成され、第1方向の解像度が、前記第1方向に直交する第2方向の解像度に比して高い複数の光干渉断層画像であって、前記第1方向および前記第2方向のそれぞれと直交する第3方向に並べられた複数の光干渉断層画像を取得させ、
前記取得させた複数の光干渉断層画像により形成される仮想的な三次元画像において、検出領域と、前記検出領域を囲む領域内に設定される対照領域との画素値の比較に基づいて、前記検出領域が、前記眼球において所定の事象が発生している所定の画像領域であるのか否かを判定させる、
プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018547816A JP6860884B2 (ja) | 2016-10-31 | 2017-10-30 | 画像処理装置、眼底撮像システム、画像処理方法、およびプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213815 | 2016-10-31 | ||
JP2016-213815 | 2016-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079765A1 true WO2018079765A1 (ja) | 2018-05-03 |
Family
ID=62023688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039069 WO2018079765A1 (ja) | 2016-10-31 | 2017-10-30 | 画像処理装置、眼底撮像システム、画像処理方法、およびプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6860884B2 (ja) |
WO (1) | WO2018079765A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220035725A (ko) * | 2020-09-14 | 2022-03-22 | 충북대학교 산학협력단 | 난치성 당뇨황반부종 조기 재발의 예측 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008154704A (ja) * | 2006-12-22 | 2008-07-10 | Topcon Corp | 眼底観察装置、眼底画像表示装置及びプログラム |
JP2009175845A (ja) * | 2008-01-22 | 2009-08-06 | Fuji Xerox Co Ltd | 画像処理装置、ペン・デバイスおよびプログラム |
-
2017
- 2017-10-30 WO PCT/JP2017/039069 patent/WO2018079765A1/ja active Application Filing
- 2017-10-30 JP JP2018547816A patent/JP6860884B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008154704A (ja) * | 2006-12-22 | 2008-07-10 | Topcon Corp | 眼底観察装置、眼底画像表示装置及びプログラム |
JP2009175845A (ja) * | 2008-01-22 | 2009-08-06 | Fuji Xerox Co Ltd | 画像処理装置、ペン・デバイスおよびプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220035725A (ko) * | 2020-09-14 | 2022-03-22 | 충북대학교 산학협력단 | 난치성 당뇨황반부종 조기 재발의 예측 방법 |
KR102455767B1 (ko) * | 2020-09-14 | 2022-10-18 | 충북대학교 산학협력단 | 난치성 당뇨황반부종 조기 재발의 예측 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP6860884B2 (ja) | 2021-04-21 |
JPWO2018079765A1 (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11935241B2 (en) | Image processing apparatus, image processing method and computer-readable medium for improving image quality | |
JP6624945B2 (ja) | 画像形成方法及び装置 | |
WO2020036182A1 (ja) | 医用画像処理装置、医用画像処理方法及びプログラム | |
US12039704B2 (en) | Image processing apparatus, image processing method and computer-readable medium | |
JP5628636B2 (ja) | 眼底画像処理装置及び眼底観察装置 | |
US10362939B2 (en) | Fundus analysis apparatus and fundus observation apparatus | |
US10856735B2 (en) | Optical coherence tomography (OCT) system with improved image quality | |
JP2009034480A (ja) | 眼科情報処理装置及び眼科検査装置 | |
JP2018038611A (ja) | 眼科解析装置、眼科解析プログラム | |
CN113543695B (zh) | 图像处理装置和图像处理方法 | |
JP2011015850A (ja) | 撮影装置及びその制御方法 | |
JP2018075229A (ja) | 画像処理方法、画像処理装置およびプログラム | |
WO2020075719A1 (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP7220509B2 (ja) | 眼科装置及び眼科画像処理方法 | |
JP7106304B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP6375760B2 (ja) | 光コヒーレンストモグラフィー装置、および眼底画像処理プログラム | |
WO2020050308A1 (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP5975650B2 (ja) | 画像形成方法及び装置 | |
WO2018079765A1 (ja) | 画像処理装置、眼底撮像システム、画像処理方法、およびプログラム | |
JP7005382B2 (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP7297952B2 (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP5669885B2 (ja) | 画像処理装置及び画像処理方法 | |
JP2017221741A (ja) | 画像生成装置、画像生成方法およびプログラム | |
JP2018191761A (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP7086708B2 (ja) | 画像処理装置、画像処理方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17864772 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018547816 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17864772 Country of ref document: EP Kind code of ref document: A1 |