WO2018079750A1 - Speed reduction mechanism and flame arrester provided with speed reduction mechanism - Google Patents

Speed reduction mechanism and flame arrester provided with speed reduction mechanism Download PDF

Info

Publication number
WO2018079750A1
WO2018079750A1 PCT/JP2017/039008 JP2017039008W WO2018079750A1 WO 2018079750 A1 WO2018079750 A1 WO 2018079750A1 JP 2017039008 W JP2017039008 W JP 2017039008W WO 2018079750 A1 WO2018079750 A1 WO 2018079750A1
Authority
WO
WIPO (PCT)
Prior art keywords
orifice
speed reduction
reduction mechanism
flame
space
Prior art date
Application number
PCT/JP2017/039008
Other languages
French (fr)
Japanese (ja)
Inventor
史岳 沖野
和臣 阿部
哲郎 小原
慎市 前田
Original Assignee
金子産業株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金子産業株式会社, 国立大学法人埼玉大学 filed Critical 金子産業株式会社
Priority to CN201780066770.8A priority Critical patent/CN110050158B/en
Priority to KR1020197011534A priority patent/KR20190100165A/en
Priority to JP2018547807A priority patent/JP7117717B2/en
Publication of WO2018079750A1 publication Critical patent/WO2018079750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/82Preventing flashback or blowback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/10Flame flashback

Definitions

  • the present invention relates to a speed reduction mechanism and a frame arrester with a speed reduction mechanism.
  • Piping that transports flammable gases, tanks that store flammable liquids, etc., may ignite for any reason, causing a flame to propagate in the piping or tank, causing a major accident that may cause an explosion or detonation. There is.
  • a flame arrester for extinguishing the flame propagating in the pipe.
  • the principle is to subdivide the flame and take away the heat and extinguish it.
  • a general frame arrester is configured to have a predetermined axial dimension, and is configured by winding a corrugated sheet metal in a spiral shape.
  • Such a flame arrester allows a flammable gas to pass through under normal conditions, but is required to exhibit a flame extinguishing performance when a flame is generated. Therefore, it is necessary to consider the flame extinguishing performance and the pressure loss in the design.
  • An object of the present invention is to provide a speed reduction mechanism and a frame arrester with a speed reduction mechanism aiming at achieving both desired flame extinguishing performance and pressure loss reduction (flow rate securing).
  • the speed reduction mechanism of the present invention is provided on at least one side in the axial direction of the pipe of a flame arrester provided in a pipe through which a flammable fluid flows to extinguish a flame propagating through the pipe.
  • a speed reducing mechanism for slowing the flame propagation speed and having a plurality of members communicated in the axial direction of the pipe and configured in a cylindrical shape, and an inner surface of each member is It has at least 1 parallel non-parallel surface, The said non-parallel surface is provided along with the said axial direction, It is characterized by the above-mentioned.
  • a plurality of members are provided so as to communicate with each other in the axial direction of the pipe, and the inner surface of each member has at least one non-parallel surface that is non-parallel to the shaft.
  • the non-parallel surfaces are provided side by side in the axial direction. According to such a configuration, the number of members can be changed according to the required performance. Therefore, it can be made highly versatile.
  • the non-parallel surface is provided so that the center extends along the surface extending direction of the non-parallel surface. Turn away from the axis. Since the non-parallel surfaces are provided side by side in the axial direction, the phenomenon that the flame wraps around in the direction away from the central axis is repeated. In this way, the flame propagating through the pipe is decelerated by repeating the phenomenon of turning around.
  • a deceleration mechanism that decelerates the flame propagating in the pipe is provided downstream in the flow direction of the flammable fluid in the flame arrester (one side in the axial direction) or upstream in the flow direction of the flammable fluid in the flame arrester. It may be provided on the side (the other side in the axial direction) or on both sides in the flow direction of the combustible fluid (both sides in the axial direction) in the frame arrester. For example, if there is a possibility that a flame may occur upstream of the flame arrester in the flow direction of the combustible fluid, the speed reduction mechanism should be installed upstream of the flame arrester in the flow direction of the combustible fluid.
  • the speed reduction mechanism should be placed downstream of the flame arrester in the flow direction of the combustible fluid. However, it may be provided upstream in the flow direction. Also, in the flame arrester, if there is a possibility that a flame may occur on both sides of the flammable fluid flow direction, a pair of reduction mechanisms may be provided on both sides of the flame arrester in the flammable fluid flow direction. Although it is preferable, the speed reduction mechanism may be provided on either the upstream side or the downstream side.
  • the number of members constituting the speed reduction mechanism is preferably 4 or more.
  • the number of the members is preferably 4 or more. According to this, it is possible to achieve both of ensuring the desired flame extinguishing performance and reducing the pressure loss (securing the flow rate).
  • the number of members constituting the speed reduction mechanism is preferably 30 or less.
  • the number of the members is 31 or more, although a predetermined effect is recognized, there are cases where the manufacturing cost and the cost of assembling work are increased. For this reason, the number of the members is preferably 30 or less. According to this, it is possible to suppress an increase in manufacturing cost, assembly work, and the like.
  • the angles formed by the non-parallel surface and the axis are substantially equal. According to such a configuration, the flame propagating through the pipe is decelerated by repeating the phenomenon of turning around.
  • an angle formed between the non-parallel surface and the axis is approximately 90 degrees. According to such a configuration, the volume of the space having the non-parallel plane as a constituent plane can be made sufficiently large, so that the flame propagating in the pipe is sufficiently decelerated.
  • the speed reduction mechanism of the present invention has a plurality of space forming portions provided eccentric to each other, the adjacent space forming portions communicate with each other, and the non-parallel surface is provided at the boundary thereof. It is preferable. According to such a structure, the flame which propagates piping is decelerated.
  • the flame arrester with a speed reduction mechanism of the present invention is characterized by comprising the speed reduction mechanism and a flame arrester for extinguishing a flame propagating in the pipe.
  • the flame propagating in the pipe is decelerated by providing the speed reducing mechanism for decelerating the flame propagating in the pipe. For this reason, even when the frame arrester is downsized in the axial direction of the pipe, the desired flame extinguishing performance can be ensured while reducing the pressure loss. Therefore, by providing the speed reduction mechanism at least on the side of the flow direction of the combustible fluid in the frame arrester, it is possible to achieve both a desired flame extinguishing performance and a reduced pressure loss (secure flow rate).
  • the speed reduction mechanism is provided on both sides of the flame arrester in the direction in which the combustible fluid flows. According to such a configuration, it is possible to sufficiently achieve both a desired flame extinguishing performance and a reduction in pressure loss (ensuring a flow rate).
  • the frame arrester 1 with a speed reduction mechanism of the present embodiment is connected to a pipe 2 through which a flammable gas (flammable fluid) flows, a frame arrester 3 communicating with the pipe 2, and a frame arrester 3. And a ring-shaped gasket 6 interposed between the pipe 2, the frame arrester 3, and the speed reduction mechanism 4.
  • the flame arrester 3 is a mechanism for extinguishing a flame that flows backward in the flow of combustible gas in the pipe 2 and propagates in the flame propagation direction F2 when ignition occurs in the pipe 2 for some reason.
  • FIG. 1 is a cross-sectional view showing a frame arrester 1 with a speed reduction mechanism according to a first embodiment of the present invention. In FIG. 1, hatching showing the cross section of the pipe 2 and the frame arrester 3 is omitted.
  • the pipe 2 includes a pair of bodies 20 and 21 and a fixing member 7 that fixes the pair of bodies 20 and 21.
  • the pair of bodies 20 and 21 are provided apart from each other in the axial direction, and are fixed by a fixing member 7 in a state in which the frame arrester 3 and the speed reduction mechanism 4 are supported therebetween.
  • the pair of bodies 20 and 21 one located upstream in the fluid flow direction F ⁇ b> 1 is referred to as “upstream body 20”, and the other located downstream is referred to as “downstream body 21”.
  • the upstream body 20 is configured integrally with a cylindrical upstream body body 22 and an upstream flange 23 positioned on the downstream side in the flow direction of the upstream body body 22.
  • the upstream body body 22 is configured such that the outside and the interior communicate with both sides of the upstream body body 22 in the axial direction, and the inner diameter increases from the upstream to the downstream in the flow direction. Is formed.
  • the upstream flange 23 is formed with a pair of upstream bolt holes 24 for inserting bolts 71 constituting the fixing member 7.
  • the pair of upstream bolt holes 24 are spaced apart in the radial direction of the upstream flange 23 (a direction perpendicular to the axis).
  • each upstream bolt hole 24 and a downstream bolt hole 25 described later of the downstream body 21 are in positions spaced apart in the axial direction, and are fixed to the upstream bolt hole 24 and the downstream bolt hole 25.
  • the bolt 71 of the member 7 is inserted.
  • the upstream flange 23 has an orthogonal surface 23A orthogonal to the axis of the upstream body 20 on the downstream side in the flow direction.
  • the flame extinguishing element frame 31 of the frame arrester 3 is in contact with the orthogonal surface 23A via the gasket 6.
  • the downstream body 21 is configured integrally with a cylindrical downstream body body 26 and a downstream flange 27 located upstream in the flow direction of the downstream body body 26.
  • the downstream body body 26 is configured such that the outside and the interior communicate with both sides of the downstream body body 26 in the axial direction, and from the upstream end to the downstream end in the flow direction,
  • the inner diameter dimension ⁇ 4 is formed to be substantially constant.
  • the downstream flange 27 is formed with a pair of downstream bolt holes 25 and 25 for inserting the bolts 71 constituting the fixing member 7.
  • the pair of downstream bolt holes 25, 25 are spaced apart in the radial direction of the downstream flange 27 (direction perpendicular to the axis).
  • downstream flange 27 has an orthogonal surface 27A that is orthogonal to the axis of the downstream body 21 on the upstream side in the flow direction.
  • the speed reduction mechanism frame 41 of the speed reduction mechanism 4 is in contact with the orthogonal surface 27 ⁇ / b> A via the gasket 6.
  • the fixing member 7 includes a pair of bolts 71 and a pair of nuts 72 and 72 that are screwed to both ends of each bolt 71.
  • the bolt 71 is inserted into the upstream bolt hole 24 and the downstream bolt hole 25 in the assembled state of the frame arrester 1 with a speed reduction mechanism, and nuts 72 are screwed to both ends.
  • the upstream body 20, the frame arrester 3, the speed reduction mechanism 4, and the downstream body 21 are arranged in the order of the upstream body 20, the frame arrester 3, the speed reduction mechanism 4, and the downstream body 21 from the upstream side in the flow direction. It is fixed on the same axis.
  • the flame arrester 3 is for subdividing the flame to remove heat and extinguish it, and is configured to have a breathable flame extinguishing element.
  • a flame extinguishing element 30 having a crimp ribbon (corrugated plate) structure is used as the frame arrester 3.
  • the flame extinguishing element 30 having a crimp ribbon (corrugated sheet) structure is used, but the present invention is not limited to this.
  • the flame arrester may have any shape or structure as long as it has a flame extinguishing element for subdividing the flame to take heat and extinguish it.
  • the flame arrester 3 includes a plurality of (two in the illustrated example) flame extinguishing elements 30, 30, a cylindrical flame extinguishing element frame 31 for accommodating the two flame extinguishing elements 30, 30, and the flame extinguishing elements 30, 30. And a flame extinguishing element spacer 32 for positioning.
  • the frame arrester 3 includes two flame extinguishing elements 30 and 30, but the present invention is not limited to this.
  • the flame arrester may be configured to include one or more flame extinguishing elements 30.
  • the two flame extinguishing elements 30 and 30 have substantially the same configuration and substantially the same function.
  • Each flame extinguishing element 30 has a concavo-convex shape in the plate thickness direction, and is formed by winding a sheet metal provided with the concavo-convex shape aligned in the plate extending direction in the axial direction of the pipe 2. It is provided in a disk shape having a thickness.
  • Each flame extinguishing element 30 is provided in such a manner that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2, and is provided coaxially with the central axis P of the pipe 2. Yes.
  • the flame extinguishing element frame 31 is formed in a cylindrical shape having openings at both ends in the axial direction so that the outside and the inside communicate with each other in the axial direction of the pipe 2.
  • the flame extinguishing element frame 31 includes a first flame extinguishing space 33 having a first inner diameter dimension ⁇ 2 that is equal to or smaller than the inner diameter dimension ⁇ 1 of the downstream opening 20a of the upstream body 20, and an outer diameter of the flame extinguishing element 30 that is larger than the first inner diameter dimension ⁇ 2.
  • a second flame extinguishing space 34 having a second inner diameter dimension ⁇ 3 substantially equal to the dimension, and a third flame having a third inner diameter dimension ⁇ 5 larger than the second inner diameter dimension ⁇ 3 and substantially equal to the outer diameter dimension of the speed reduction mechanism frame 41 of the speed reduction mechanism 4.
  • a flame extinguishing space 35 is provided with a first flame extinguishing space 33, a second flame extinguishing space 34, and a third flame extinguishing space 35 in this order from the upstream side in the flow direction.
  • the second flame extinguishing space 34 is configured to accommodate two flame extinguishing elements 30 and 30 and a flame extinguishing element spacer 32.
  • the axial dimension of the second flame extinguishing space 34 is such that a gap is formed between the second flame extinguishing element 35 and the third extinguishing element 35 in a state where the two extinguishing elements 30 and 30 and the extinguishing element spacer 32 are accommodated. Is formed.
  • the flame extinguishing element spacer 32 can be screwed onto the peripheral surface of the second flame extinguishing space 34 from a position separated from the upstream end by the axial dimension of two extinguishing elements to the downstream end. The screw is cut.
  • the third flame extinguishing space 35 is configured to accommodate the gasket 6 and the upstream opening 41A of the speed reduction mechanism frame 41 (described later) of the speed reduction mechanism 4.
  • the flame extinguishing element spacer 32 is provided in a disk shape having a thickness in the axial direction of the pipe 2.
  • the flame extinguishing element spacer 32 is provided so that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2. Further, the flame extinguishing element spacer 32 is configured to be able to be screwed into a threaded portion on the peripheral surface of the second flame extinguishing space 34 of the flame extinguishing element frame 31.
  • the flame extinguishing element spacer 32 is screwed onto a threaded portion of the peripheral surface of the second flame extinguishing space 34 in a state where the two flame extinguishing elements 30 are accommodated in the second flame extinguishing space 34 of the flame extinguishing element frame 31. Are combined.
  • the two flame extinguishing elements 30 and 30 are fixed at predetermined positions in the second flame extinguishing space 34 by the flame extinguishing element spacer 32.
  • the space between the extinguishing element spacer 32 and the third flame extinguishing space 35 is a space in which no member is accommodated.
  • the axial dimension of the second flame extinguishing space 34 is any member between the third flame extinguishing space 35 in a state in which the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 are accommodated.
  • the axial dimension of the second flame extinguishing space 34 is formed such that a space S is not formed between the third flame extinguishing space 35 in a state where the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 are accommodated. May be. That is, the axial dimension of the second flame extinguishing space 34 may be formed so as to be approximately equal to the axial dimension of the two flame extinguishing elements 30, 30 and the flame extinguishing element spacer 32.
  • Such a flame arrester 3 inserts the two flame extinguishing elements 30 and 30 into the second flame extinguishing space 34 through the third flame extinguishing space 35 from the downstream opening 31B of the flame extinguishing element frame 31, and the flame extinguishing element spacer. 32 is screwed into a threaded portion on the peripheral surface of the second flame extinguishing space 34.
  • the frame arrester 3 is assembled.
  • the upstream opening 31A of the flame extinguishing element frame 31 is brought into contact with the orthogonal surface 23A of the upstream flange 23 of the upstream body 20 with the gasket 6 interposed therebetween.
  • the downstream opening 31B of the flame extinguishing element frame 31 is supported by the upstream body 20, and the upstream opening in the flow direction of the gasket 6 and the speed reduction mechanism frame 41 of the speed reduction mechanism 4 is formed in the third flame extinguishing space 35. 41 A is inserted, and is supported by the speed reduction mechanism 4.
  • the flame extinguishing element 30, the flame extinguishing element frame 31, and the flame extinguishing element spacer 32 are fixed coaxially with the central axis P of the pipe 2. ing.
  • the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 and the flame extinguishing element frame 31 are fixed by directly screwing the flame extinguishing element spacer 32 into the flame extinguishing element frame 31.
  • the present invention is not limited to this.
  • the fixing of the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 and the flame extinguishing element frame 31 may be established using a fixing member such as a bolt, for example. May be used.
  • the frame arrester 3 and the speed reduction mechanism 4 are in close contact with each other via a gasket, and are sandwiched between the upstream flange 23 of the upstream body 20 and the downstream flange 27 of the downstream body 21 and tightened with a pair of bolts 71. Therefore, a configuration in which the flame extinguishing elements 30 and 30 are fixed may be employed.
  • the speed reduction mechanism 4 includes a plurality of (four in the illustrated example) orifice members 15 (members), a cylindrical speed reduction mechanism frame 41 for accommodating the four orifice members 15, and 4 And an orifice spacer 42 for positioning the orifice members 15.
  • the speed reduction mechanism 4 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3.
  • the speed reduction mechanism 4 includes four orifice members 15, but the present invention is not limited to this.
  • the speed reduction mechanism may be configured to include two or more orifice members (members).
  • the four orifice members 15 are configured to have substantially the same configuration and substantially the same function.
  • the four orifice members 15 are configured separately from each other in a state before assembly.
  • Each orifice member 15 is provided in a disk shape having a thickness in the axial direction.
  • Each orifice member 15 is provided so that the axial exterior and interior of each orifice member 15 communicate with each other so that flammable gas flows in the axial direction, and is provided coaxially with the central axis P of the pipe 2. It has been.
  • each orifice member 15 has an outer peripheral surface 5A that is a cylindrical surface in contact with the peripheral surface constituting the first deceleration space 43 in the deceleration mechanism frame 41, and has an outer diameter dimension ⁇ 6 ( (Shown in FIG. 2B).
  • each orifice member 15 has a first orifice space 50A for allowing combustible gas to pass therethrough and a downstream side in the flow direction of the first orifice space 50A. And a second orifice space 150B continuous with the first orifice space 50A. Further, as shown in FIG.
  • the axial dimension L1 of the first orifice space 50A and the axial dimension L2 of the second orifice space 150B are formed to be substantially equal,
  • the shaft dimensions L1 and L2 are formed to be about 30 mm.
  • the inner diameter dimension ⁇ 7 of the first orifice space 50A is formed to be about 150 mm.
  • the volume of the first orifice space 50A is formed to be larger than the volume of the second orifice space 150B.
  • such an orifice member 15 constitutes a part of the inner surface 40 (orifice inner surface 4A) through which combustible gas passes in an assembled state.
  • the orifice inner surface 4A is located at the boundary between the first orifice space 50A and the second orifice space 150B, and orthogonal surfaces 5B and 5C (non-parallel surfaces) orthogonal to the axis and the orthogonal surfaces 5C.
  • each of the through-holes 150 extending, and these are continuously repeated from the upper side in the flow direction in the order of the upstream inner peripheral surface 5D, the orthogonal surface 5C, the penetrating portion 5E, and the orthogonal surface 5B. It is configured by being provided.
  • the first orifice space 50A is a space located inside the upstream inner peripheral surface 5D
  • the second orifice space 150B is a space located inside the penetrating portion 5E.
  • the second orifice space 150B includes a plurality (37) of through holes 150 formed in the through portion 5E.
  • a region viewed from a direction orthogonal to the central axis P (axis) is referred to as a penetrating region T.
  • the penetrating region T is formed to have a circular shape as indicated by a one-dot chain line in FIG. 2B.
  • the diameter 5 of the penetrating portion 5E (penetrating region T) is formed to be about 20 mm.
  • each through-hole 150 is formed so that the cross section orthogonal to the axis
  • each through-hole 150 is formed so that the inner diameter dimension ⁇ 10 is about 2 mm. Thirty-seven through holes 150 are formed in the through portion 5E (through region T).
  • each through hole 150 is formed so that the inner diameter dimension ⁇ 10 is about 2 mm, but the present invention is not limited to this.
  • the inner diameter dimension ⁇ 10 of each through hole 150 may be 2 mm or less. Further, the inner diameter dimension ⁇ 10 of each through hole 150 may be 1 mm or more.
  • Each through hole 150 may have an inner diameter dimension ⁇ 10 of 2 mm or more.
  • Each through-hole 150 may have an inner diameter dimension ⁇ 10 of 5 mm or more, or 8 mm or more.
  • the inner diameter dimension ⁇ 10 of each through-hole 150 may be 10 mm or less.
  • the orthogonal surface 5 ⁇ / b> C of each orifice member 15 is provided substantially orthogonal to the central axis P of the orifice member 15. That is, the orthogonal surface 5 ⁇ / b> C of each orifice member 15 is a surface (plane) that is not parallel to the central axis P of the orifice member 15.
  • the upstream inner peripheral surface 5D of each orifice member 15 has a cylindrical surface with the central axis P of the orifice member 15 as an axis.
  • the upstream inner peripheral surface 5 ⁇ / b> D of each orifice member 15 is composed of a surface (curved surface) parallel to the central axis P of the orifice member 15. Further, as shown in FIGS.
  • the diameter dimension ⁇ 8 (shown in FIG. 2B) of the through-hole 5E of each orifice member 15 and the inner diameter dimension ⁇ 4 (shown in FIG. 1) of the downstream body 21 are substantially equal. It is formed to have dimensions.
  • the “surface parallel to the central axis P (curved surface)” is a surface having a substantially equal distance from the central axis P at any position in the axial direction of the surface.
  • the “plane (plane) non-parallel to the central axis P” is a plane having a predetermined angle with respect to the central axis P.
  • the inner diameter dimension ⁇ 7 (shown in FIG. 2B) of the first orifice space 50A is defined to be about 150 mm, but the present invention is not limited to this.
  • the inner diameter dimension ⁇ 7 may be 100 mm or less.
  • the inner diameter dimension ⁇ 7 may be approximately 100 mm or less, or 80 mm or less.
  • the inner diameter ⁇ 7 of the first orifice space 50A may be 60 mm or more.
  • the inner diameter ⁇ 7 of the first orifice space 50A may be 100 mm or more.
  • the inner diameter dimension ⁇ 7 may be 100 mm or more, or 200 mm or more.
  • the inner diameter dimension ⁇ 7 of the first orifice space 50A may be approximately 300 mm or less.
  • the axial dimensions L1 and L2 of each orifice member 15 are defined to be about 30 mm, but the present invention is not limited to this.
  • the shaft dimensions L1 and L2 may be 30 mm or less.
  • the shaft dimensions L1 and L2 may be 20 mm or less, 10 mm or less, or 5 mm or less.
  • the axial dimensions L1 and L2 of each orifice member 15 may be approximately 2 mm or more.
  • the speed reduction mechanism frame 41 has a cylindrical shape having openings 41 ⁇ / b> A and 41 ⁇ / b> B at both ends in the axial direction so that the outside and the inside communicate with each other in the axial direction of the upstream body 20 and the downstream body 21. It is configured.
  • the openings 41A and 41B of the speed reduction mechanism frame 41 one located upstream of the fluid flow direction F1 is referred to as an “upstream opening 41A” and the other located downstream is the “downstream opening 41B”. .
  • the deceleration mechanism frame 41 includes a first deceleration space 43 having an inner diameter dimension substantially equal to an outer diameter dimension ⁇ 6 (shown in FIG. 2B) of each orifice member 15, and a first deceleration space 43. And a second deceleration space 44 having a fifth inner diameter dimension ⁇ 9 smaller than the inner diameter dimension.
  • the first deceleration space 43 is provided on the upstream side in the flow direction of the second deceleration space 44.
  • the inner peripheral surface 44 ⁇ / b> A constituting the second deceleration space 44 is configured by a curved surface parallel to the central axis P of each orifice member 15.
  • the inner peripheral surface 44A constituting the second deceleration space 44 and the upstream inner peripheral surface 5D of each orifice member 15 extend from the central axis P of the deceleration mechanism frame 41 and each orifice member 15 to the respective inner peripheral surfaces 44A, 5D. Are formed such that the distance D1 is substantially equal.
  • the first deceleration space 43 is configured to accommodate the four orifice members 15 and the orifice spacers 42. Further, the axial dimension of the first deceleration space 43 is such that a gap is formed with the upstream opening 41 ⁇ / b> A of the deceleration mechanism frame 41 in a state where the four orifice members 15 and the orifice spacers 42 are accommodated. It is formed in various dimensions. Further, on the peripheral surface of the first deceleration space 43, the orifice spacer 42 can be screwed from the downstream opening 41B to the upstream opening 41A from a position separated from the orifice member 15 by the axial dimension of four pieces. So that it is threaded.
  • the orifice spacer 42 is provided in a disk shape having a thickness in the axial direction of the pipe 2 as shown in FIG.
  • the orifice spacer 42 is provided so that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2.
  • the orifice spacer 42 includes an upstream orthogonal surface 42A and a downstream orthogonal surface 42C that face each other, and an inner peripheral surface 42B that is continuous with each inner edge of the upstream orthogonal surface 42A and the downstream orthogonal surface 42C.
  • the upstream orthogonal surface 42A and the downstream orthogonal surface 42C are provided orthogonal to the axis of the orifice spacer 42, and the inner peripheral surface 42B is provided parallel to the axis.
  • the distance (dimension) D2 from the central axis P of the orifice spacer 42 to the inner peripheral surface 42B and the diameter dimension ⁇ 8 of the penetrating portion 5E (penetrating region T) of each orifice member 15 are formed to be substantially equal. Yes.
  • Such an orifice spacer 42 is configured so that it can be screwed into a threaded portion on the peripheral surface of the first deceleration space 43 of the deceleration mechanism frame 41.
  • the orifice spacer 42 is screwed into a threaded portion on the peripheral surface of the first deceleration space 43 in a state where the four orifice members 15 are accommodated in the first deceleration space 43 of the deceleration mechanism frame 41. Yes.
  • the four orifice members 15 are fixed at predetermined positions in the first deceleration space 43 by the orifice spacers 42.
  • the orifice spacer 42 constitutes a part of the inner surface 40 (the spacer inner surface 4 ⁇ / b> B) through which the combustible gas passes in the speed reduction mechanism 4 in the assembled state.
  • the spacer inner surface 4B includes a downstream orthogonal surface 42C continuous with the upstream inner peripheral surface 5D of the orifice member 52 (15) positioned most upstream in the assembled state, and parallel to the axis from the inner edge of the downstream orthogonal surface 42C.
  • the inner circumferential surface 42B extends and the upstream orthogonal surface 42A is continuous with the upper edge of the inner circumferential surface 42B and orthogonal to the axis.
  • the four orifice members 15 and orifice spacers 42 and the speed reduction mechanism frame 41 are fixed by directly screwing the orifice spacers 42 to the speed reduction mechanism frame 41.
  • the four orifice members 15 and the orifice spacers 42 and the speed reduction mechanism frame 41 may be fixed using, for example, a fixing member such as a bolt, or another known fixing method may be used. May be.
  • the frame arrester 3 and the speed reduction mechanism 4 are in close contact with each other via a gasket, and are sandwiched between the upstream flange 23 of the upstream body 20 and the downstream flange 27 of the downstream body 21 and tightened with a pair of bolts 71.
  • a configuration in which the orifice member 15 is fixed may be employed.
  • a part 43A on the upstream side of the peripheral surface of the first deceleration space 43 of the deceleration mechanism frame 41 is provided with a space in which no member is accommodated, but the present invention is limited to this. Is not to be done.
  • the peripheral surface of the first deceleration space 43 of the deceleration mechanism frame 41 there may be no space in the part 43A on the upstream side. That is, the axial dimension of the first deceleration space 43 may be formed so as to be approximately equal to the axial dimension of the four orifice members 15 and the orifice spacers 42.
  • the gap between the orifice member 51 (15) located on the most downstream side and the downstream opening 41B of the deceleration mechanism frame 41 is as follows. It is a space (second deceleration space 44) in which no member is accommodated. That is, the second deceleration space 44 includes an inner peripheral surface 44 ⁇ / b> A that constitutes the space 44.
  • the inner peripheral surface 44A is continuous with the orthogonal surface 5B of the orifice member 51 located on the most downstream side and constitutes a part of the inner surface 40 of the speed reduction mechanism.
  • the speed reduction mechanism 4 having the inner surface 40 having the part 43A of the peripheral surface of the speed reduction mechanism frame 41, the spacer inner surface 4B, the orifice inner surface 4A, and the inner peripheral surface 44A of the speed reduction mechanism frame 41 is assembled.
  • the orthogonal surfaces 5B and 5C of each orifice member 15 and the downstream orthogonal surface 42C of the orifice spacer 42 function as “non-parallel surfaces”.
  • the orthogonal surfaces 5B and 5C of the orifice members 15 and the downstream orthogonal surface 42C of the orifice spacer 42 may be collectively referred to as “non-parallel surfaces”.
  • the frame arrester 3 and the speed reduction mechanism 4 are each assembled in advance.
  • the flame arrester 3 brings the upstream opening 31A of the flame extinguishing element frame 31 into contact with the orthogonal surface 23A of the upstream flange 23 of the upstream body 20 with the gasket 6 interposed therebetween, and the downstream opening of the flame extinguishing element frame 31 31B is inserted into the third flame extinguishing space 35.
  • the speed reduction mechanism 4 brings the downstream opening 41B of the speed reduction mechanism frame 41 into contact with the orthogonal surface 27A of the downstream flange 27 of the downstream body 21 with the gasket 6 interposed therebetween.
  • the bolts 71 are inserted into the bolt holes 24 and 25 of the upstream body 20 and the downstream body 21, and the nuts 72 are screwed to both ends of the bolt 71.
  • the pipe 2, the frame arrester 3, and the speed reduction mechanism 4 constituted by the upstream body 20 and the downstream body 21 assemble the frame arrester 1 with a speed reduction mechanism provided coaxially with the central axis P of the pipe 2.
  • a frame arrester 1 with a speed reduction mechanism has a plurality of orifice members 15 (members) so as to communicate with each other in the axial direction of the pipe 2 and is configured in a cylindrical shape, and the inner surface of each orifice member 15 (member) However, it has at least one non-parallel surface 5B, 5C, 42C that is non-parallel to the axis, and the non-parallel surfaces 5B, 5C, 42C are provided side by side in the axial direction. According to such a configuration, the number of members can be changed according to the required performance. Therefore, it can be made highly versatile.
  • the flame when a flame is generated in the pipe 2, the flame flows forward or backward in the fluid flow direction F1, but the non-parallel surfaces 5B, 5C, and 42C are provided, so that the non-parallel surfaces 5B, 5C, It wraps around in the direction away from the central axis P along the surface extending direction of 42C (the radial direction of the pipe 2). Since the non-parallel surfaces 5B, 5C, and 42C are provided side by side in the axial direction, the phenomenon that the flame wraps around in the direction away from the central axis P is repeated. In this way, the flame propagating through the pipe 2 is decelerated by repeating the phenomenon of turning around.
  • first orifice space 50A and the second orifice space 150B communicating with each other in the axial direction of the pipe 2 are alternately provided.
  • the first orifice space 50A includes one opening, and the second orifice space 150B is narrower than the opening.
  • a plurality (37) of through holes 150 are formed in the through region T.
  • the volume configured by including the first orifice space 50 ⁇ / b> A including the non-parallel surfaces 5 ⁇ / b> B and 5 ⁇ / b> C and having a large volume composed of one opening and the plurality of (37) through holes 150 is provided.
  • Small second orifice spaces 150B are formed alternately and continuously in the axial direction.
  • the inventors of the present invention have found an appropriate range of the number of orifice members (members). That is, the number of orifice members 15 (members) constituting the speed reduction mechanism 4 is preferably 4 or more. When the number of orifice members 15 is 3 or less, it may be difficult to ensure a desired flame extinguishing performance. For this reason, the number of orifice members 15 (members) is preferably 4 or more, and more preferably 7 or more.
  • the number of orifice members 15 (members) constituting the speed reduction mechanism 4 is preferably 30 or less.
  • the number of orifice members 15 (members) is preferably 30 or less, and more preferably 15 or less.
  • the angles formed by the non-parallel surfaces 5B, 5C, and 42C and the central axis P (axis) are substantially equal to each other in the non-parallel surfaces 5B, 5C, and 42C. Is formed. According to such a structure, the flame which propagates the piping 2 can decelerate a flame by repeating the phenomenon which wraps around.
  • the angle formed by the non-parallel surfaces 5B, 5C, 42C and the central axis P (axis) is formed to be approximately 90 degrees. According to such a configuration, the volume of the space including the non-parallel surfaces 5B, 5C, and 42C can be made sufficiently large, so that the flame propagating in the pipe 2 can be sufficiently decelerated. Can do.
  • the inner diameter dimension ⁇ 7 of the first orifice space 50A is appropriately set in the range of 30 to 60 mm, and the diameter dimension ⁇ 8 of the penetrating portion 5E is set to be 20 mm.
  • the axial dimension L1 of the member 15 was appropriately set in the range of 7 to 42 mm, each through hole 150 had a diameter of 2 mm, and 37 through holes 150 were formed in the through portion 5E.
  • the number of orifice members 15 constituting the speed reduction mechanism 4 was appropriately set in the range of 1 to 15, and the flame propagation speed was measured. The results are shown in FIG. The number (n) of the orifice members 15 was set to each number from 1 to 15, and each number was acquired three times. Only when the number (n) of the orifice members 15 was 5, 10, and 15, it was obtained five times.
  • the vertical axis represents the flame propagation velocity (Flame velocity) [m / s] and the horizontal axis represents the number of orifice members (Number of orifice: n).
  • the inner diameter dimension ⁇ 7 of the first orifice space 50A is set to 60 mm
  • the axial dimension L1 of each orifice member 15 is set to 14 mm
  • the diameter dimension ⁇ 8 of the penetrating part 5E is set to 20 mm
  • the opening in the penetrating part 5E is set. It was confirmed that the flame propagation speed was reduced when the rate was set to 37%. In addition, it was confirmed that the flame propagation speed was reduced when the aperture ratio in the penetrating portion 5E was set to be 58%.
  • the four orifice members 15 in the assembled state of the speed reduction mechanism 4, have the first orifice space 50A and the second orifice space 150B alternately repeated from the upper side in the flow direction.
  • the four orifice members 15 are arranged in the axial direction so that the second orifice space 150B and the first orifice space 50A are alternately arranged from the upper side in the flow direction. One end and the other end may be reversed and used.
  • the speed reduction mechanism 4 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3, but the present invention is not limited to this.
  • the speed reduction mechanism 4 may be provided on both sides of the frame arrester 3 adjacent to the frame arrester 3. That is, as shown in FIG. 4, the flame arrester 10 with a speed reduction mechanism includes a pipe 2 through which a flammable gas (flammable fluid) flows, a frame arrester 3 communicating with the pipe 2, and both sides of the frame arrester 3.
  • a pair of reduction mechanisms 4, 4 provided in communication with the frame arrester 3, and a ring-shaped gasket 6 interposed between the pipe 2, the frame arrester 3, and the reduction mechanism 4. May be.
  • FIG. 4 is a cross-sectional view showing a modification of the frame arrester 1 with a speed reduction mechanism shown in FIG.
  • members having substantially the same functions and configurations as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. According to such a configuration, it is possible to reduce pressure loss while sufficiently securing desired flame extinguishing performance.
  • the first orifice space 50A is a space located inside the upstream inner peripheral surface 5D
  • the second orifice space 150B is a space located inside the through-hole 5E ′.
  • the penetrating part 5E ′ may be formed in a regular hexagonal shape as indicated by a one-dot chain line in FIG. 5B.
  • 5A and 5B are diagrams showing a modification of the speed reduction mechanism 4 shown in FIG. 5A and 5B, members having substantially the same functions and configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. According to this, the effect substantially the same as 1st Embodiment is show
  • each through hole 150 is formed so that the cross section perpendicular to the axis of the orifice member 15 is circular, but the present invention is not limited to this.
  • each through hole 250 ⁇ / b> B formed in the through portion 5 ⁇ / b> E ′′ is formed so that a cross section perpendicular to the axis of the orifice member 15 ′′ has a regular hexagonal shape (regular polygonal shape). May be.
  • each through hole may have a polygonal, elliptical, or indefinite shape in cross section perpendicular to the axis of the orifice member.
  • the equivalent circle diameter of each through hole may be formed to be substantially the same as the inner diameter dimension ⁇ 10 of each through hole 150. According to this, the effect substantially the same as 1st Embodiment is show
  • the assembled orifice member 15 is continuously repeated from the upper side in the flow direction in the order of the upstream inner peripheral surface 5D, the orthogonal surface 5C, the penetrating portion 5E, and the orthogonal surface 5B.
  • the present invention is not limited to this.
  • the assembled orifice member 105 is continuous in the order of the upstream inner peripheral surface 105E (non-parallel surface), the penetrating portion 105F, and the orthogonal surface 105C (non-parallel surface) from the upstream side in the flow direction.
  • it may be configured by being repeatedly provided.
  • the boundary m between the upstream inner peripheral surface 105 ⁇ / b> E of each orifice member 105 and the penetrating portion 105 ⁇ / b> F is located in the middle in the axial direction of each orifice member 105.
  • the upstream inner peripheral surface 105E is configured to have an inclination such that the diameter dimension gradually decreases as it goes downstream in the fluid flow direction F1.
  • Each through hole 350 of the through portion 105 ⁇ / b> F extends in parallel with the central axis P of the pipe 2.
  • the first orifice space 350A is a space located inside the upstream inner peripheral surface 105E
  • the second orifice space 350B is a space located inside the penetrating portion 105F
  • the through portion 105F may be configured to have a plurality of through holes 350.
  • Each through hole 350 may be formed so that a cross section perpendicular to the axis of the orifice member 105 is circular. According to this, the effect substantially the same as 1st Embodiment is show
  • FIG. 9A is a cross-sectional view showing the speed reduction mechanism 14 and FIG. 9B is a plan view of FIG. 9A.
  • FIG. 8 members having substantially the same function and substantially the same configuration as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the speed reduction mechanism 14 includes a plurality of (four in the illustrated example) orifice members 5 (members) and a cylindrical speed reduction mechanism for accommodating the four orifice members 5.
  • a mechanism frame 41 and an orifice spacer 42 for positioning the four orifice members 5 are provided.
  • the speed reduction mechanism 14 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3.
  • the speed reduction mechanism 14 includes four orifice members 5, but the present invention is not limited to this.
  • the speed reduction mechanism may be configured to include one or more orifice members (members).
  • the four orifice members 5 have substantially the same configuration and substantially the same function.
  • the four orifice members 5 are configured separately from each other in a state before assembly.
  • Each orifice member 5 is provided in a disk shape having a thickness in the axial direction.
  • Each orifice member 5 is provided so that the axial exterior and interior of each orifice member 5 communicate with each other so that flammable gas flows in the axial direction, and is provided coaxially with the central axis P of the pipe 2. It has been.
  • each orifice member 5 has an outer peripheral surface 5A that is a cylindrical surface that contacts the peripheral surface constituting the first deceleration space 43 in the deceleration mechanism frame 41, and has an outer diameter dimension ⁇ 6. It has a disk shape. Further, as shown in FIG. 8, each orifice member 5 is provided on the downstream side in the flow direction of the first orifice space 50A for allowing the passage of combustible gas and the first orifice space 50A. And a second orifice space 50B continuous to 50A.
  • the axial dimension L1 of the first orifice space 50A and the axial dimension L2 of the second orifice space 50B are formed so as to be approximately equal and approximately 30 mm.
  • the first orifice space 50A is formed so that the inner diameter dimension ⁇ 7 is about 150 mm
  • the second orifice space 50B is formed so that the inner diameter dimension ⁇ 8 is about 50 mm. That is, the volume of the first orifice space 50A is formed to be larger than the volume of the second orifice space 50B.
  • the four orifice members 5 are provided side by side so that the first orifice space 50A and the second orifice space 50B are alternately repeated from the upper side in the flow direction.
  • the orifice member 5 constitutes a part of the inner surface 40 (orifice inner surface 4 ⁇ / b> A) through which the combustible gas passes in the speed reduction mechanism 14 in the assembled state.
  • the orifice inner surface 4A has a boundary surface 5C (non-parallel surface) located at the boundary between the first orifice space 50A and the second orifice space 50B, and an upstream inner periphery extending parallel to the axis from the outer edge b of the boundary surface 5C.
  • These surfaces are continuous from the upper side in the flow direction in the order of the upstream inner peripheral surface 5D, the boundary surface 5C, the downstream inner peripheral surface 5E, and the orthogonal surface 5B, and are repeatedly provided. It consists of In each orifice member 5, the first orifice space 50A is a space located inside the upstream inner circumferential surface 5D, and the second orifice space 50B is a space located inside the downstream inner circumferential surface 5E. is there.
  • the boundary surface 5C of each orifice member 5 is provided substantially orthogonal to the central axis P of the orifice member 5. That is, the boundary surface 5 ⁇ / b> C of each orifice member 5 is a surface (plane) that is not parallel to the central axis P of the orifice member 5.
  • the upstream inner peripheral surface 5D and the downstream inner peripheral surface 5E of each orifice member 5 are each configured to have a cylindrical surface with the central axis P of the orifice member 5 as an axis.
  • the upstream inner peripheral surface 5D and the downstream inner peripheral surface 5E of each orifice member 5 are each composed of a surface (curved surface) parallel to the central axis P of the orifice member 5. Further, as shown in FIGS.
  • the inner diameter dimension ⁇ 8 (shown in FIG. 9B) of the downstream inner peripheral surface 5E of each orifice member 5 and the inner diameter dimension ⁇ 4 (shown in FIG. 8) of the downstream body 21 are , So as to have substantially the same dimensions.
  • the “surface parallel to the central axis P (curved surface)” is a surface having a substantially equal distance from the central axis P at any position in the axial direction of the surface.
  • the “plane (plane) non-parallel to the central axis P” is a plane having a predetermined angle with respect to the central axis P.
  • the inner diameter dimension ⁇ 7 of the first orifice space 50A is defined to be about 150 mm, but the present invention is not limited to this.
  • the inner diameter dimension ⁇ 7 may be 100 mm or less.
  • the inner diameter dimension ⁇ 7 may be approximately 100 mm or less, or 80 mm or less.
  • the inner diameter ⁇ 7 of the first orifice space 50A may be 60 mm or more.
  • the inner diameter ⁇ 7 of the first orifice space 50A may be 100 mm or more.
  • the inner diameter dimension ⁇ 7 may be 100 mm or more, or 200 mm or more.
  • the inner diameter dimension ⁇ 7 of the first orifice space 50A may be approximately 300 mm or less.
  • the axial dimensions L1 and L2 of each orifice member 5 are defined to be about 30 mm, but the present invention is not limited to this.
  • the shaft dimensions L1 and L2 may be 30 mm or less.
  • the shaft dimensions L1 and L2 may be 20 mm or less, 10 mm or less, or 5 mm or less.
  • the axial dimensions L1 and L2 of each orifice member 5 may be approximately 2 mm or more.
  • the four orifice members 5 are configured so that the first orifice space 50A and the second orifice space 50B are alternately repeated from the upper side in the flow direction.
  • the four orifice members 5 are arranged in the axial direction so that the second orifice space 50B and the first orifice space 50A are alternately arranged from the upper side in the flow direction. One end and the other end may be reversed and used.
  • the speed reduction mechanism 14 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3, but the present invention is not limited to this.
  • the speed reduction mechanism 14 may be provided adjacent to the frame arrester 3 on both sides of the frame arrester 3. That is, as shown in FIG. 10, the flame arrester 10 with a speed reduction mechanism includes a pipe 2 through which a flammable gas (flammable fluid) flows, a frame arrester 3 communicating with the pipe 2, and both sides of the frame arrester 3.
  • a pair of reduction mechanisms 14, 14 provided in communication with the frame arrester 3, and a ring-shaped gasket 6 interposed between the pipe 2, the frame arrester 3, and the reduction mechanism 14 are configured. May be.
  • FIG. 10 is a cross-sectional view showing a modification of the frame arrester 1 with a speed reduction mechanism shown in FIG.
  • members having substantially the same functions and configurations as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted. According to such a configuration, it is possible to reduce pressure loss while sufficiently securing desired flame extinguishing performance.
  • FIG. 11 is a cross-sectional view showing a speed reduction mechanism 104 ′ according to the third embodiment of the present invention.
  • members having substantially the same functions and configurations as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the shapes of the orifice members 5 and 105 ′ are different. Therefore, in the third embodiment, each orifice member 105 ′ will be described.
  • the inner surface of the orifice member 105 ′ in the assembled state has an upstream inner peripheral surface 105E ′ (non-parallel surface) and a downstream inner peripheral surface 105F from the upstream side in the flow direction. 'And the orthogonal surface 105C' (non-parallel surface) are arranged in this order and are repeatedly provided.
  • the boundary m between the upstream inner peripheral surface 105E ′ and the downstream inner peripheral surface 105F ′ of each orifice member 105 ′ is located in the middle in the axial direction of each orifice member 105 ′.
  • the upstream inner peripheral surface 105E ′ is configured to have an inclination such that the diameter dimension gradually decreases as it goes downstream in the fluid flow direction F1.
  • the downstream inner peripheral surface 105 ⁇ / b> F ′ extends in parallel with the central axis P of the pipe 2.
  • the inner surface of the orifice member 115 in the assembled state is continuous in the order of the inclined surface 115D (non-parallel surface) and the orthogonal surface 115C (non-parallel surface) from the upstream side in the flow direction.
  • the speed reduction mechanism 114 is configured to have an inclination such that the diameter of the inclined surface 115D gradually decreases as it goes downstream in the flow direction, and the orthogonal surface 115C is orthogonal to the axis. It may be provided.
  • FIG. 12 is a cross-sectional view showing a modification of the speed reduction mechanism according to the third embodiment of the present invention.
  • members having substantially the same functions and configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the inner surface of the orifice member 125 in the assembled state is, from the upstream side in the flow direction, an upstream inclined surface 125E (non-parallel surface) and a downstream inclined surface 125F (non-parallel surface), It may be configured by being repeatedly provided in this order.
  • the upstream inclined surface 125E is configured to have an inclination such that the diameter dimension gradually decreases as it goes downstream in the fluid flow direction F1
  • the downstream inclined surface 125F You may be comprised with the inclination which a radial dimension becomes large gradually as it goes downstream of the flow direction F1.
  • FIG. 13 is a cross-sectional view showing another modification of the speed reduction mechanism according to the third embodiment of the present invention.
  • members having substantially the same function and substantially the same configuration as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the upstream inclined surface 125E gradually decreases in diameter as it goes downstream in the fluid flow direction F1.
  • the downstream inclined surface 125F is configured to have an inclination that gradually increases in diameter as it goes downstream in the fluid flow direction F1. That is, the upstream side inclined surface 125E and the downstream side inclined surface 125F are each configured from a plane, but the present invention is not limited to this.
  • the upstream inclined surface 135E and the downstream inclined surface 135F may each be formed of a curved surface.
  • FIG. 14 is a cross-sectional view showing still another modification of the speed reduction mechanism according to the third embodiment of the present invention.
  • members having substantially the same functions and configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIGS. 15A and 15B are cross-sectional views showing the speed reduction mechanism 144
  • FIG. 15B is a plan view of FIG. 15A.
  • members having substantially the same function and substantially the same configuration as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the speed reduction mechanism 144 according to the fourth embodiment includes a plurality of spaces 145A to 145D inside and a single orifice member 145 formed from a single continuous member.
  • the orifice member 145 is provided such that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2. It is provided coaxially with P.
  • the orifice member 145 is provided on the downstream side of the first orifice space 145A, the fluid flow direction F1 of the first orifice space 145A, the second orifice space 145B continuing to the first orifice space 145A, and the second orifice
  • the third orifice space 145C is provided downstream of the space 145B in the flow direction, and is continuous with the second orifice space 145B.
  • the third orifice space 145C is provided downstream of the flow direction of the third orifice space 145C. And a fourth orifice space 145D that is continuous, and these spaces 145A, 145B, 145C, and 145D are formed repeatedly. Further, these orifice spaces 145A to 145D are spaces formed so as to have substantially the same volume.
  • the four space forming portions that form the orifice spaces 145A to 145D are provided so as to be shifted clockwise by 90 degrees when viewed from the upper side in the flow direction. That is, the four space forming portions forming the orifice spaces 145A to 145D are provided eccentric to each other.
  • the first orifice space 145A has an inner surface 14A1 parallel to the central axis P, and orthogonal surfaces 14A2 and 14A3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14A1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised.
  • the orthogonal surface 14A2 is provided on the upstream side in the flow direction, and the orthogonal surface 14A3 is provided on the downstream side in the flow direction from the orthogonal surface 14A2.
  • the second orifice space 145B has an inner surface 14B1 parallel to the central axis P, and orthogonal surfaces 14B2 and 14B3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14B1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised.
  • the orthogonal surface 14B2 is provided on the upstream side in the flow direction, and the orthogonal surface 14B3 is provided on the downstream side in the flow direction from the orthogonal surface 14B2.
  • the third orifice space 145C has an inner surface 14C1 parallel to the central axis P, and orthogonal surfaces 14C2 and 14C3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14C1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised.
  • the orthogonal surface 14C2 is provided on the upstream side in the flow direction, and the orthogonal surface 14C3 is provided on the downstream side in the flow direction from the orthogonal surface 14C2.
  • the fourth orifice space 145D has an inner surface 14D1 parallel to the central axis P, and orthogonal surfaces 14D2 and 14D3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14D1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised.
  • the orthogonal surface 14D2 is provided on the upstream side in the flow direction, and the orthogonal surface 14D3 is provided on the downstream side in the flow direction from the orthogonal surface 14D2.
  • the flame can be sufficiently decelerated. That is, in the speed reduction mechanism 14 of the second embodiment described above, the orifice space 50A having a large volume and the orifice space 50B having a small volume are alternately and continuously formed in the axial direction.
  • the flame propagating through the pipe 2 is sufficiently decelerated by repeatedly passing through the large and small spaces 50A and 50B, but the present invention is not limited to this. Even when it repeatedly passes through the orifice spaces 145A to 145D formed so as to have substantially the same volume, substantially the same effect as the speed reduction mechanism 14 of the second embodiment is obtained.
  • each of the orifice spaces 245A to 245D has an orifice space 245A, an orifice space 245C, and an orifice space 245B in the axial direction from the upper side in the flow direction as shown in FIGS. 16A and 16B.
  • FIG. 16 is a view showing a modification of the speed reduction mechanism shown in FIG. 15, FIG. 16A is a cross-sectional view showing the speed reduction mechanism, and FIG. 16B is a plan view of FIG. 16A. According to this, the substantially same effect as the speed reduction mechanism 14 of 2nd Embodiment is show
  • the orifice member 345 of the speed reduction mechanism 344 has the orifice spaces 345A and 345C in the axial direction from the upper side in the flow direction as shown in FIGS. 17A and 17B. They may be formed in order, and the orifice spaces 345A and 345C may be provided side by side so as to be in positions facing each other across the central axis P.
  • 17 is a view showing a modification of the speed reduction mechanism shown in FIG. 15, FIG. 17A is a sectional view showing the speed reduction mechanism, and FIG. 17B is a plan view of FIG. 17A. According to this, the substantially same effect as the speed reduction mechanism 14 of 2nd Embodiment is show
  • the speed reduction mechanisms 144, 244, and 344 are configured to have four space forming portions, but the present invention is not limited to this.
  • the speed reduction mechanism may be configured to include two or more (plural) space forming portions.
  • the plurality of space forming portions may be provided so as to be eccentric from each other so as to include the central axis P in the axial direction from the upper side in the flow direction, and these space forming portions are not regular (randomly). They may be provided side by side in the axial direction. According to this, the substantially same effect as the speed reduction mechanism 14 of 2nd Embodiment is show

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Gas Burners (AREA)
  • Pipe Accessories (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

The purpose of the present invention is to provide a speed reduction mechanism and a flame arrester provided with a speed reduction mechanism that are aimed at both ensuring desired flame-extinguishing performance and achieving reduced pressure loss (ensuring flow rate). A speed reduction mechanism (4): is provided on at least one side, in the axial direction of a pipe (2), of a flame arrester (3), which is provided in the pipe (2), through which inflammable fluid flows, to extinguish a flame propagating in the pipe (2); serves to reduce the speed of the flame propagating in the pipe (2); has a plurality of members; and is configured to have a tubular shape so as to be continuous in the axial direction of the pipe (2); an inner surface 40 of each member having at least one non-parallel plane (5B), (5C), which is not parallel with the axis, and the plurality of non-parallel planes being arranged side-by-side in the axial direction.

Description

減速機構、及び減速機構付きフレームアレスタReduction mechanism and frame arrester with reduction mechanism
 本発明は、減速機構、及び減速機構付きフレームアレスタに関する。 The present invention relates to a speed reduction mechanism and a frame arrester with a speed reduction mechanism.
 可燃性ガスを輸送する配管、可燃性液体を貯蔵するタンク等においては、何らかの原因により発火が生じると、配管内あるいはタンク内に火炎が伝播し、爆発や爆轟が生じる大事故を引き起こす可能性がある。 Piping that transports flammable gases, tanks that store flammable liquids, etc., may ignite for any reason, causing a flame to propagate in the piping or tank, causing a major accident that may cause an explosion or detonation. There is.
 この危険性を防ぐ手段として、例えば、配管内を伝播する火炎を途中で消炎させるためのフレームアレスタがある。その原理は火炎を細分化して熱を奪い消滅させることにある。このため、一般的なフレームアレスタは、所定の軸寸法を有して構成されているとともに、波形を有する板金が渦巻き状に巻かれて構成されている。 As a means for preventing this danger, for example, there is a flame arrester for extinguishing the flame propagating in the pipe. The principle is to subdivide the flame and take away the heat and extinguish it. For this reason, a general frame arrester is configured to have a predetermined axial dimension, and is configured by winding a corrugated sheet metal in a spiral shape.
 このようなフレームアレスタは、平常時においては可燃性ガスを通過させるが、火炎が発生した場合には、消炎性能を発揮することが要求される。従ってその設計には、消炎性能と圧力損失の二つを考慮する必要がある。 Such a flame arrester allows a flammable gas to pass through under normal conditions, but is required to exhibit a flame extinguishing performance when a flame is generated. Therefore, it is necessary to consider the flame extinguishing performance and the pressure loss in the design.
特開2003-207108公報JP 2003-207108 A
 しかしながら、所望の消炎性能を確保するためには、火炎を消滅させるための距離が必要であり、フレームアレスタの軸寸法を増加させることが考えられる。即ち、フレームアレスタが配管の軸方向に大型化するため、圧力損失が増加してしまう。圧力損失を減少させるために、フレームアレスタを配管の軸方向に小型化させることが考えられるが、そうすると所望の消炎性能を確保することができない。即ち、所望の消炎性能を確保しつつ、圧力損失の低減(流量の確保)を図るのは困難だった。 However, in order to secure the desired flame extinguishing performance, a distance for extinguishing the flame is necessary, and it is conceivable to increase the axial dimension of the flame arrester. That is, since the frame arrester increases in size in the axial direction of the pipe, the pressure loss increases. In order to reduce the pressure loss, it is conceivable to reduce the size of the flame arrester in the axial direction of the pipe, but it is impossible to ensure the desired flame extinguishing performance. That is, it has been difficult to reduce the pressure loss (ensure the flow rate) while ensuring the desired flame extinguishing performance.
 本発明の目的は、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を図ることを目的とした減速機構、及び減速機構付きフレームアレスタを提供することにある。 An object of the present invention is to provide a speed reduction mechanism and a frame arrester with a speed reduction mechanism aiming at achieving both desired flame extinguishing performance and pressure loss reduction (flow rate securing).
 本発明の減速機構は、可燃性の流体が流れる配管に設けられて当該配管内を伝播する火炎を消炎するためのフレームアレスタの前記配管の軸方向の少なくとも一方側に設けられて、この配管内を伝播する火炎伝播速度を減速させるための減速機構であって、前記配管の軸方向に連通するように複数の部材を有して筒状に構成され、前記各部材の内面が、軸に非平行な非平行面を少なくとも1有し、前記非平行面が、前記軸方向に並んで設けられていることを特徴とする。 The speed reduction mechanism of the present invention is provided on at least one side in the axial direction of the pipe of a flame arrester provided in a pipe through which a flammable fluid flows to extinguish a flame propagating through the pipe. A speed reducing mechanism for slowing the flame propagation speed, and having a plurality of members communicated in the axial direction of the pipe and configured in a cylindrical shape, and an inner surface of each member is It has at least 1 parallel non-parallel surface, The said non-parallel surface is provided along with the said axial direction, It is characterized by the above-mentioned.
 以上のような本発明によれば、配管の軸方向に連通するように複数の部材を有して筒状に構成され、各部材の内面が、軸に非平行な非平行面を少なくとも1有し、非平行面が、軸方向に並んで設けられている。このような構成によれば、求められる性能に応じて、部材の個数を変更することができる。従って、汎用性が高いものとすることができる。 According to the present invention as described above, a plurality of members are provided so as to communicate with each other in the axial direction of the pipe, and the inner surface of each member has at least one non-parallel surface that is non-parallel to the shaft. However, the non-parallel surfaces are provided side by side in the axial direction. According to such a configuration, the number of members can be changed according to the required performance. Therefore, it can be made highly versatile.
 ここで、配管内に火炎が発生した場合、火炎は流体の流れ方向に順流又は、逆流するが、非平行面が設けられていることで、非平行面の面延在方向に沿って、中心軸から離れる方向に回り込む。非平行面が、軸方向に並んで設けられているから、火炎が、中心軸から離れる方向に回りこむ現象が繰り返される。このようにして、配管を伝播する火炎は、回り込む現象が繰り返されることにより、火炎が減速される。 Here, when a flame occurs in the pipe, the flame flows forward or backward in the flow direction of the fluid, but the non-parallel surface is provided so that the center extends along the surface extending direction of the non-parallel surface. Turn away from the axis. Since the non-parallel surfaces are provided side by side in the axial direction, the phenomenon that the flame wraps around in the direction away from the central axis is repeated. In this way, the flame propagating through the pipe is decelerated by repeating the phenomenon of turning around.
 また、配管内を伝播する火炎を減速させる減速機構を、フレームアレスタにおいて可燃性の流体の流れ方向の下流側(軸方向の一方側)、若しくは、フレームアレスタにおいて可燃性の流体の流れ方向の上流側(軸方向の他方側)、又は、フレームアレスタにおいて可燃性の流体の流れ方向の両側(軸方向の両側)に設けてもよい。例えば、フレームアレスタよりも、可燃性の流体の流れ方向の上流側で火炎が発生する可能性がある場合には、減速機構を、フレームアレスタよりも、可燃性の流体の流れ方向の上流側に設けることが好ましいが流れ方向の下流側に設けてもよい。また、フレームアレスタよりも、可燃性の流体の流れ方向の下流側で火炎が発生する可能性がある場合には、減速機構を、フレームアレスタよりも、可燃性の流体の流れ方向の下流側に設けることが好ましいが流れ方向の上流側に設けてもよい。また、フレームアレスタにおいて、可燃性の流体の流れ方向の両側で火炎が発生する可能性がある場合には、一対の減速機構を、フレームアレスタの可燃性の流体の流れ方向の両側に設けることが好ましいが、減速機構を上流側又は下流側の何れか一方に設けてもよい。 In addition, a deceleration mechanism that decelerates the flame propagating in the pipe is provided downstream in the flow direction of the flammable fluid in the flame arrester (one side in the axial direction) or upstream in the flow direction of the flammable fluid in the flame arrester. It may be provided on the side (the other side in the axial direction) or on both sides in the flow direction of the combustible fluid (both sides in the axial direction) in the frame arrester. For example, if there is a possibility that a flame may occur upstream of the flame arrester in the flow direction of the combustible fluid, the speed reduction mechanism should be installed upstream of the flame arrester in the flow direction of the combustible fluid. However, it may be provided on the downstream side in the flow direction. Also, if there is a possibility that a flame may occur downstream of the flame arrester in the flow direction of the combustible fluid, the speed reduction mechanism should be placed downstream of the flame arrester in the flow direction of the combustible fluid. However, it may be provided upstream in the flow direction. Also, in the flame arrester, if there is a possibility that a flame may occur on both sides of the flammable fluid flow direction, a pair of reduction mechanisms may be provided on both sides of the flame arrester in the flammable fluid flow direction. Although it is preferable, the speed reduction mechanism may be provided on either the upstream side or the downstream side.
 このような減速機構を、フレームアレスタの可燃性の流体の流れ方向の少なくとも一方側に設けた場合には、フレームアレスタに到達する火炎は、火炎が減速される。このため、フレームアレスタを配管の軸方向に小型化した場合においても、圧力損失の低減と流量確保を図りつつ、所望の消炎性能を確保することができる。さらに、このような減速機構を、フレームアレスタの可燃性の流体の流れ方向の少なくとも一方側に設けることにより、火炎は減速されフレームアレスタをより圧力損失が少ない構造とできるため、径方向に小型化することができ、この場合においても、圧力損失の低減(流量の確保)を図りつつ、所望の消炎性能を確保することができる。従って、減速機構を、フレームアレスタにおいて可燃性の流体の流れ方向の少なくとも一方側に設けることで、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を図ることができる。 When such a speed reduction mechanism is provided on at least one side of the flow direction of the flammable fluid of the flame arrester, the flame reaching the flame arrester is decelerated. For this reason, even when the frame arrester is downsized in the axial direction of the pipe, the desired flame extinguishing performance can be ensured while reducing the pressure loss and ensuring the flow rate. Furthermore, by providing such a speed reduction mechanism on at least one side of the flame arrester in the direction of the flow of combustible fluid, the flame is decelerated and the flame arrester can be structured to have less pressure loss. Even in this case, the desired flame extinguishing performance can be ensured while reducing the pressure loss (securing the flow rate). Therefore, by providing the speed reduction mechanism on at least one side of the flow direction of the flammable fluid in the frame arrester, it is possible to achieve both of ensuring the desired flame extinguishing performance and reducing the pressure loss (securing the flow rate). .
 また、減速機構を構成する部材の個数としては4以上であることが好ましい。前記部材の個数が3以下である場合には、所望の消炎性能を確保するのが困難となる場合がある。このため、前記部材の個数としては4以上であることが好ましい。これによれば、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を図ることができる。 Further, the number of members constituting the speed reduction mechanism is preferably 4 or more. When the number of the members is 3 or less, it may be difficult to ensure desired flame extinguishing performance. For this reason, the number of the members is preferably 4 or more. According to this, it is possible to achieve both of ensuring the desired flame extinguishing performance and reducing the pressure loss (securing the flow rate).
 また、減速機構を構成する部材の個数としては30以下であることが好ましい。前記部材の個数が31以上である場合には、所定の効果は認められるものの製造コストや組立て作業等のコストアップになる場合がある。このため、前記部材の個数としては30以下であることが好ましい。これによれば、製造コストや組立て作業等のコストアップの抑制を図ることができる。 Further, the number of members constituting the speed reduction mechanism is preferably 30 or less. When the number of the members is 31 or more, although a predetermined effect is recognized, there are cases where the manufacturing cost and the cost of assembling work are increased. For this reason, the number of the members is preferably 30 or less. According to this, it is possible to suppress an increase in manufacturing cost, assembly work, and the like.
 また、本発明の減速機構では、前記非平行面と前記軸との成す角が略等しいことが好ましい。このような構成によれば、配管を伝播する火炎は、回り込む現象が繰り返されることにより、火炎が減速される。 Moreover, in the speed reduction mechanism of the present invention, it is preferable that the angles formed by the non-parallel surface and the axis are substantially equal. According to such a configuration, the flame propagating through the pipe is decelerated by repeating the phenomenon of turning around.
 また、本発明の減速機構では、前記非平行面と前記軸との成す角が、略90度であることが好ましい。このような構成によれば、非平行面を構成面とする空間の体積を十分な大きさにすることができるから、配管内を伝播する火炎が、十分に減速される。 In the speed reduction mechanism of the present invention, it is preferable that an angle formed between the non-parallel surface and the axis is approximately 90 degrees. According to such a configuration, the volume of the space having the non-parallel plane as a constituent plane can be made sufficiently large, so that the flame propagating in the pipe is sufficiently decelerated.
 また、本発明の減速機構は、相互に偏心して設けられた複数の空間形成部を有し、隣接する前記空間形成部が連通するとともに、その境界には、前記非平行面が設けられていることが好ましい。このような構成によれば、配管を伝播する火炎が減速される。 In addition, the speed reduction mechanism of the present invention has a plurality of space forming portions provided eccentric to each other, the adjacent space forming portions communicate with each other, and the non-parallel surface is provided at the boundary thereof. It is preferable. According to such a structure, the flame which propagates piping is decelerated.
 一方、本発明の減速機構付きフレームアレスタは、前記減速機構と、前記配管内を伝播する火炎を消炎するためのフレームアレスタと、を備えたことを特徴とする。 On the other hand, the flame arrester with a speed reduction mechanism of the present invention is characterized by comprising the speed reduction mechanism and a flame arrester for extinguishing a flame propagating in the pipe.
 以上のような本発明によれば、配管内を伝播する火炎を減速させる減速機構を設けることで、配管内を伝播する火炎は減速される。このため、フレームアレスタを配管の軸方向に小型化した場合においても、圧力損失の低減を図りつつ、所望の消炎性能を確保することができる。従って、減速機構を、フレームアレスタにおいて可燃性の流体の流れ方向の少なくとも側に設けることで、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を図ることができる。 According to the present invention as described above, the flame propagating in the pipe is decelerated by providing the speed reducing mechanism for decelerating the flame propagating in the pipe. For this reason, even when the frame arrester is downsized in the axial direction of the pipe, the desired flame extinguishing performance can be ensured while reducing the pressure loss. Therefore, by providing the speed reduction mechanism at least on the side of the flow direction of the combustible fluid in the frame arrester, it is possible to achieve both a desired flame extinguishing performance and a reduced pressure loss (secure flow rate).
 また、本発明の減速機構付きフレームアレスタは、前記減速機構が、前記フレームアレスタの可燃性の流体が流れる方向の両側に設けられていることが好ましい。このような構成によれば、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を十分に図ることができる。 In the frame arrester with a speed reduction mechanism of the present invention, it is preferable that the speed reduction mechanism is provided on both sides of the flame arrester in the direction in which the combustible fluid flows. According to such a configuration, it is possible to sufficiently achieve both a desired flame extinguishing performance and a reduction in pressure loss (ensuring a flow rate).
 本発明の減速機構及び、減速機構付きフレームアレスタによれば、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を図ることができる。 According to the speed reduction mechanism and the frame arrester with the speed reduction mechanism of the present invention, it is possible to achieve both a desired flame extinguishing performance and a reduced pressure loss (a flow rate).
本発明の第1実施形態に係る減速機構付きフレームアレスタを示す断面図である。It is sectional drawing which shows the flame arrester with a speed-reduction mechanism which concerns on 1st Embodiment of this invention. 前記第1実施形態に係る減速機構を示す断面図である。It is sectional drawing which shows the deceleration mechanism which concerns on the said 1st Embodiment. 前記第1実施形態に係る減速機構を示す平面図である。It is a top view which shows the deceleration mechanism which concerns on the said 1st Embodiment. 本発明の効果を確認するための実験結果を示すグラフである。It is a graph which shows the experimental result for confirming the effect of this invention. 図1に示された減速機構付きフレームアレスタの変形例を示す断面図である。It is sectional drawing which shows the modification of the flame arrester with a speed-reduction mechanism shown by FIG. 前記減速機構の変形例を示す断面図である。It is sectional drawing which shows the modification of the said deceleration mechanism. 前記減速機構の変形例を示す平面図である。It is a top view which shows the modification of the said deceleration mechanism. 前記減速機構の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the said deceleration mechanism. 前記減速機構の他の変形例を示す平面図である。It is a top view which shows the other modification of the said deceleration mechanism. 前記減速機構のさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of the said deceleration mechanism. 本発明の第2実施形態に係る減速機構付きフレームアレスタを示す断面図である。It is sectional drawing which shows the flame arrester with a reduction mechanism which concerns on 2nd Embodiment of this invention. 前記第2実施形態に係る減速機構を示す断面図である。It is sectional drawing which shows the deceleration mechanism which concerns on the said 2nd Embodiment. 前記第2実施形態に係る減速機構を示す平面図である。It is a top view which shows the deceleration mechanism which concerns on the said 2nd Embodiment. 図8に示された減速機構付きフレームアレスタの変形例を示す断面図である。It is sectional drawing which shows the modification of the flame arrester with a deceleration mechanism shown by FIG. 本発明の第3実施形態に係る減速機構を示す断面図である。It is sectional drawing which shows the deceleration mechanism which concerns on 3rd Embodiment of this invention. 前記減速機構の変形例を示す断面図である。It is sectional drawing which shows the modification of the said deceleration mechanism. 前記減速機構の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the said deceleration mechanism. 前記減速機構のさらに他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of the said deceleration mechanism. 前記第4実施形態に係る減速機構を示す断面図である。It is sectional drawing which shows the deceleration mechanism which concerns on the said 4th Embodiment. 前記第4実施形態に係る減速機構を示す平面図である。It is a top view which shows the deceleration mechanism which concerns on the said 4th Embodiment. 前記減速機構の変形例を示す断面図である。It is sectional drawing which shows the modification of the said deceleration mechanism. 前記減速機構の変形例を示す平面図である。It is a top view which shows the modification of the said deceleration mechanism. 前記減速機構の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the said deceleration mechanism. 前記減速機構の他の変形例を示す平面図である。It is a top view which shows the other modification of the said deceleration mechanism.
(第1実施形態)
 以下、本発明の第1実施形態に係る減速機構付きフレームアレスタを、図1、図2を参照して説明する。本実施形態の減速機構付きフレームアレスタ1は、図1に示すように、可燃性ガス(可燃性の流体)が流れる配管2と、この配管2に連通するフレームアレスタ3と、フレームアレスタ3に連通して設けられた減速機構4と、配管2、フレームアレスタ3、及び減速機構4の間に介在するリング状のガスケット6と、を有して構成されている。フレームアレスタ3は、何らかの原因により配管2内で発火が生じた際に、配管2内を可燃性ガスの流れに逆流して火炎伝播方向F2に伝播する火炎を消炎するための機構であり、減速機構4は、配管2内を伝播する火炎を減速させるための機構である。図1は、本発明の第1実施形態に係る減速機構付きフレームアレスタ1を示す断面図である。図1において、配管2、フレームアレスタ3の断面を示すハッチングは省略する。
(First embodiment)
Hereinafter, a frame arrester with a speed reduction mechanism according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the frame arrester 1 with a speed reduction mechanism of the present embodiment is connected to a pipe 2 through which a flammable gas (flammable fluid) flows, a frame arrester 3 communicating with the pipe 2, and a frame arrester 3. And a ring-shaped gasket 6 interposed between the pipe 2, the frame arrester 3, and the speed reduction mechanism 4. The flame arrester 3 is a mechanism for extinguishing a flame that flows backward in the flow of combustible gas in the pipe 2 and propagates in the flame propagation direction F2 when ignition occurs in the pipe 2 for some reason. The mechanism 4 is a mechanism for decelerating the flame propagating through the pipe 2. FIG. 1 is a cross-sectional view showing a frame arrester 1 with a speed reduction mechanism according to a first embodiment of the present invention. In FIG. 1, hatching showing the cross section of the pipe 2 and the frame arrester 3 is omitted.
 配管2は、一対のボディ20、21と、一対のボディ20、21を固定する固定部材7と、を有して構成されている。一対のボディ20、21は、軸方向に離間して設けられ、互いの間にフレームアレスタ3及び減速機構4を支持した状態で、固定部材7により固定されている。一対のボディ20、21のうち、流体の流れ方向F1の上流側に位置する一方を「上流側ボディ20」と記し、下流側に位置する他方を「下流側ボディ21」と記す。 The pipe 2 includes a pair of bodies 20 and 21 and a fixing member 7 that fixes the pair of bodies 20 and 21. The pair of bodies 20 and 21 are provided apart from each other in the axial direction, and are fixed by a fixing member 7 in a state in which the frame arrester 3 and the speed reduction mechanism 4 are supported therebetween. Of the pair of bodies 20 and 21, one located upstream in the fluid flow direction F <b> 1 is referred to as “upstream body 20”, and the other located downstream is referred to as “downstream body 21”.
 上流側ボディ20は、筒状の上流側ボディ本体22と、上流側ボディ本体22の流れ方向の下流側に位置する上流側フランジ23と、を一体に有して構成されている。上流側ボディ本体22は、外部と内部とが当該上流側ボディ本体22の軸方向の両側に連通するように構成されているとともに、内径が、流れ方向の上流から下流に向かうにしたがって大きくなるように形成されている。 The upstream body 20 is configured integrally with a cylindrical upstream body body 22 and an upstream flange 23 positioned on the downstream side in the flow direction of the upstream body body 22. The upstream body body 22 is configured such that the outside and the interior communicate with both sides of the upstream body body 22 in the axial direction, and the inner diameter increases from the upstream to the downstream in the flow direction. Is formed.
 上流側フランジ23には、固定部材7を構成するボルト71を挿入するための一対の上流側ボルト孔24が形成されている。一対の上流側ボルト孔24は、上流側フランジ23の径方向(軸に直交方向)に離間して設けられている。また、各上流側ボルト孔24と、下流側ボディ21の後述する下流側ボルト孔25とは、軸方向に離間する位置にあり、これらの上流側ボルト孔24及び下流側ボルト孔25に、固定部材7のボルト71が挿入される。上流側フランジ23は、流れ方向の下流側に、上流側ボディ20の軸に直交する直交面23Aを有している。この直交面23Aに、フレームアレスタ3の消炎素子フレーム31が、ガスケット6を介して当接されている。 The upstream flange 23 is formed with a pair of upstream bolt holes 24 for inserting bolts 71 constituting the fixing member 7. The pair of upstream bolt holes 24 are spaced apart in the radial direction of the upstream flange 23 (a direction perpendicular to the axis). In addition, each upstream bolt hole 24 and a downstream bolt hole 25 described later of the downstream body 21 are in positions spaced apart in the axial direction, and are fixed to the upstream bolt hole 24 and the downstream bolt hole 25. The bolt 71 of the member 7 is inserted. The upstream flange 23 has an orthogonal surface 23A orthogonal to the axis of the upstream body 20 on the downstream side in the flow direction. The flame extinguishing element frame 31 of the frame arrester 3 is in contact with the orthogonal surface 23A via the gasket 6.
 下流側ボディ21は、筒状の下流側ボディ本体26と、下流側ボディ本体26の流れ方向の上流側に位置する下流側フランジ27と、を一体に有して構成されている。下流側ボディ本体26は、外部と内部とが当該下流側ボディ本体26の軸方向の両側に連通するように構成されているとともに、流れ方向の上流側の端部から下流側の端部まで、内径寸法φ4が略一定となるように形成されている。下流側フランジ27には、固定部材7を構成するボルト71を挿入するための一対の下流側ボルト孔25、25が形成されている。一対の下流側ボルト孔25、25は、下流側フランジ27の径方向(軸に直交方向)に離間して設けられている。また、下流側フランジ27は、流れ方向の上流側に、下流側ボディ21の軸に直交する直交面27Aを有している。この直交面27Aに、減速機構4の減速機構フレーム41が、ガスケット6を介して当接されている。 The downstream body 21 is configured integrally with a cylindrical downstream body body 26 and a downstream flange 27 located upstream in the flow direction of the downstream body body 26. The downstream body body 26 is configured such that the outside and the interior communicate with both sides of the downstream body body 26 in the axial direction, and from the upstream end to the downstream end in the flow direction, The inner diameter dimension φ4 is formed to be substantially constant. The downstream flange 27 is formed with a pair of downstream bolt holes 25 and 25 for inserting the bolts 71 constituting the fixing member 7. The pair of downstream bolt holes 25, 25 are spaced apart in the radial direction of the downstream flange 27 (direction perpendicular to the axis). Further, the downstream flange 27 has an orthogonal surface 27A that is orthogonal to the axis of the downstream body 21 on the upstream side in the flow direction. The speed reduction mechanism frame 41 of the speed reduction mechanism 4 is in contact with the orthogonal surface 27 </ b> A via the gasket 6.
 固定部材7は、一対のボルト71と、各ボルト71の両端部に螺合される各一対のナット72、72と、を有して構成されている。ボルト71は、減速機構付きフレームアレスタ1の組立状態において、上流側ボルト孔24及び下流側ボルト孔25に挿入され、両端部に各ナット72が螺合されている。こうして、ボルト71、及び一対のナット72、72により、
上流側ボディ20、フレームアレスタ3、減速機構4、及び下流側ボディ21は、流れ方向の上流側から、上流側ボディ20、フレームアレスタ3、減速機構4、及び下流側ボディ21の順で、互いに同軸に固定されている。
The fixing member 7 includes a pair of bolts 71 and a pair of nuts 72 and 72 that are screwed to both ends of each bolt 71. The bolt 71 is inserted into the upstream bolt hole 24 and the downstream bolt hole 25 in the assembled state of the frame arrester 1 with a speed reduction mechanism, and nuts 72 are screwed to both ends. Thus, with the bolt 71 and the pair of nuts 72, 72,
The upstream body 20, the frame arrester 3, the speed reduction mechanism 4, and the downstream body 21 are arranged in the order of the upstream body 20, the frame arrester 3, the speed reduction mechanism 4, and the downstream body 21 from the upstream side in the flow direction. It is fixed on the same axis.
 フレームアレスタ3は、火炎を細分化して熱を奪い消炎するためのものであり、通気性のある消炎素子を有して構成されている。本実施形態では、フレームアレスタ3として、クリンプリボン(波板)構造の消炎素子30が用いられている。なお、本実施形態では、クリンプリボン(波板)構造の消炎素子30が用いられているが、本発明はこれに限定されるものではない。フレームアレスタとして、火炎を細分化して熱を奪い消炎するための消炎素子を有して構成されていれば、如何なる形状や構造を有していてもよい。 The flame arrester 3 is for subdividing the flame to remove heat and extinguish it, and is configured to have a breathable flame extinguishing element. In the present embodiment, a flame extinguishing element 30 having a crimp ribbon (corrugated plate) structure is used as the frame arrester 3. In this embodiment, the flame extinguishing element 30 having a crimp ribbon (corrugated sheet) structure is used, but the present invention is not limited to this. The flame arrester may have any shape or structure as long as it has a flame extinguishing element for subdividing the flame to take heat and extinguish it.
 フレームアレスタ3は、複数(図示例では2個)の消炎素子30、30と、2個の消炎素子30、30を収容するための筒状の消炎素子フレーム31と、当該消炎素子30、30を位置決めするための消炎素子スペーサ32と、を有して構成されている。なお、本実施形態では、フレームアレスタ3は、2個の消炎素子30、30を備えて構成されているが、本発明はこれに限定されるものではない。フレームアレスタは、1個以上の消炎素子30を備えて構成されていればよい。 The flame arrester 3 includes a plurality of (two in the illustrated example) flame extinguishing elements 30, 30, a cylindrical flame extinguishing element frame 31 for accommodating the two flame extinguishing elements 30, 30, and the flame extinguishing elements 30, 30. And a flame extinguishing element spacer 32 for positioning. In the present embodiment, the frame arrester 3 includes two flame extinguishing elements 30 and 30, but the present invention is not limited to this. The flame arrester may be configured to include one or more flame extinguishing elements 30.
 2個の消炎素子30、30は、略同一構成や略同一機能を有して構成されている。各消炎素子30は、板厚方向に凹凸形状を有し、凹凸形状が板延在方向に並んで設けられた板金を渦巻き状に巻くことで形成されたものであり、配管2の軸方向に厚みを有する円盤状に設けられている。各消炎素子30は、配管2の軸方向に可燃性ガスが通気するように、軸方向の外部と内部とが連通して設けられているとともに、配管2の中心軸Pと同軸に設けられている。 The two flame extinguishing elements 30 and 30 have substantially the same configuration and substantially the same function. Each flame extinguishing element 30 has a concavo-convex shape in the plate thickness direction, and is formed by winding a sheet metal provided with the concavo-convex shape aligned in the plate extending direction in the axial direction of the pipe 2. It is provided in a disk shape having a thickness. Each flame extinguishing element 30 is provided in such a manner that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2, and is provided coaxially with the central axis P of the pipe 2. Yes.
 消炎素子フレーム31は、配管2の軸方向に外部と内部とが連通するように当該軸方向の両端に開口を有する筒状に構成されている。 The flame extinguishing element frame 31 is formed in a cylindrical shape having openings at both ends in the axial direction so that the outside and the inside communicate with each other in the axial direction of the pipe 2.
 消炎素子フレーム31は、上流側ボディ20の下流側開口部20aの内径寸法φ1以下の第1内径寸法φ2を有する第1消炎空間33と、第1内径寸法φ2より大きいとともに消炎素子30の外径寸法と略等しい第2内径寸法φ3を有する第2消炎空間34と、第2内径寸法φ3より大きいとともに減速機構4の減速機構フレーム41の外径寸法と略等しい第3内径寸法φ5を有する第3消炎空間35と、を有して構成されている。消炎素子フレーム31には、流れ方向の上流側から、第1消炎空間33、第2消炎空間34、第3消炎空間35の順で設けられている。 The flame extinguishing element frame 31 includes a first flame extinguishing space 33 having a first inner diameter dimension φ2 that is equal to or smaller than the inner diameter dimension φ1 of the downstream opening 20a of the upstream body 20, and an outer diameter of the flame extinguishing element 30 that is larger than the first inner diameter dimension φ2. A second flame extinguishing space 34 having a second inner diameter dimension φ3 substantially equal to the dimension, and a third flame having a third inner diameter dimension φ5 larger than the second inner diameter dimension φ3 and substantially equal to the outer diameter dimension of the speed reduction mechanism frame 41 of the speed reduction mechanism 4. And a flame extinguishing space 35. The flame extinguishing element frame 31 is provided with a first flame extinguishing space 33, a second flame extinguishing space 34, and a third flame extinguishing space 35 in this order from the upstream side in the flow direction.
 第2消炎空間34は、2個の消炎素子30、30及び、消炎素子スペーサ32を収容可能に構成されている。また、第2消炎空間34の軸寸法は、2個の消炎素子30、30及び、消炎素子スペーサ32が収容された状態で、第3消炎空間35との間に隙間が形成されるような寸法に形成されている。また、第2消炎空間34の周面には、その上流側端部から消炎素子2つ分の軸寸法だけ離間した位置から、下流側端部まで、消炎素子スペーサ32が螺合可能なようにねじが切られている。 The second flame extinguishing space 34 is configured to accommodate two flame extinguishing elements 30 and 30 and a flame extinguishing element spacer 32. The axial dimension of the second flame extinguishing space 34 is such that a gap is formed between the second flame extinguishing element 35 and the third extinguishing element 35 in a state where the two extinguishing elements 30 and 30 and the extinguishing element spacer 32 are accommodated. Is formed. Further, the flame extinguishing element spacer 32 can be screwed onto the peripheral surface of the second flame extinguishing space 34 from a position separated from the upstream end by the axial dimension of two extinguishing elements to the downstream end. The screw is cut.
 第3消炎空間35は、ガスケット6及び、減速機構4の(後述する)減速機構フレーム41の上流側開口部41Aを収容可能に構成されている。 The third flame extinguishing space 35 is configured to accommodate the gasket 6 and the upstream opening 41A of the speed reduction mechanism frame 41 (described later) of the speed reduction mechanism 4.
 消炎素子スペーサ32は、配管2の軸方向に厚みを有する円盤状に設けられている。消炎素子スペーサ32は、配管2の軸方向に可燃性ガスが通気するように、その軸方向の外部と内部とが連通して設けられている。また、消炎素子スペーサ32は、消炎素子フレーム31の第2消炎空間34の周面において、ねじ切られた部分に螺合可能なように構成されている。そして、消炎素子スペーサ32は、消炎素子フレーム31の第2消炎空間34に2個の消炎素子30、30が収容された状態で、第2消炎空間34の周面において、ねじ切られた部分に螺合されている。消炎素子スペーサ32により、2個の消炎素子30、30は、第2消炎空間34における所定の位置に固定される。消炎素子スペーサ32が第2消炎空間34の周面に螺合した状態で、消炎素子スペーサ32と、第3消炎空間35との軸方向の間は、何れの部材も収容されない空間となっている。 The flame extinguishing element spacer 32 is provided in a disk shape having a thickness in the axial direction of the pipe 2. The flame extinguishing element spacer 32 is provided so that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2. Further, the flame extinguishing element spacer 32 is configured to be able to be screwed into a threaded portion on the peripheral surface of the second flame extinguishing space 34 of the flame extinguishing element frame 31. The flame extinguishing element spacer 32 is screwed onto a threaded portion of the peripheral surface of the second flame extinguishing space 34 in a state where the two flame extinguishing elements 30 are accommodated in the second flame extinguishing space 34 of the flame extinguishing element frame 31. Are combined. The two flame extinguishing elements 30 and 30 are fixed at predetermined positions in the second flame extinguishing space 34 by the flame extinguishing element spacer 32. In a state where the flame extinguishing element spacer 32 is screwed into the peripheral surface of the second flame extinguishing space 34, the space between the extinguishing element spacer 32 and the third flame extinguishing space 35 is a space in which no member is accommodated. .
 なお、本実施形態では、第2消炎空間34の軸寸法は、2個の消炎素子30、30及び、消炎素子スペーサ32が収容された状態で、第3消炎空間35との間に何れの部材も収容されない空間Sが形成されるような寸法に形成されているが、本発明はこれに限定されるものではない。第2消炎空間34の軸寸法は、2個の消炎素子30、30及び、消炎素子スペーサ32が収容された状態で、第3消炎空間35との間に空間Sが形成されないような寸法に形成されていてもよい。即ち、第2消炎空間34の軸寸法は、2個の消炎素子30、30及び、消炎素子スペーサ32の軸寸法と略等しい寸法となるように形成されていてもよい。 In the present embodiment, the axial dimension of the second flame extinguishing space 34 is any member between the third flame extinguishing space 35 in a state in which the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 are accommodated. However, the present invention is not limited to this. The axial dimension of the second flame extinguishing space 34 is formed such that a space S is not formed between the third flame extinguishing space 35 in a state where the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 are accommodated. May be. That is, the axial dimension of the second flame extinguishing space 34 may be formed so as to be approximately equal to the axial dimension of the two flame extinguishing elements 30, 30 and the flame extinguishing element spacer 32.
 このようなフレームアレスタ3は、消炎素子フレーム31の下流側開口部31Bから、第3消炎空間35を通過して第2消炎空間34に2個の消炎素子30、30を挿入し、消炎素子スペーサ32を、第2消炎空間34の周面において、ねじ切られた部分に螺合する。こうしてフレームアレスタ3を組み立てる。このような組立状態のフレームアレスタ3にあっては、消炎素子フレーム31の上流側開口部31Aは、上流側ボディ20の上流側フランジ23の直交面23Aに、ガスケット6を挟んで当接されることで、上流側ボディ20に支持され、消炎素子フレーム31の下流側開口部31Bは、第3消炎空間35に、ガスケット6及び、減速機構4の減速機構フレーム41の流れ方向の上流側開口部41Aが挿入されることで、減速機構4に支持される。フレームアレスタ3が、上流側ボディ20と減速機構4との間で支持された状態で、消炎素子30、消炎素子フレーム31、及び消炎素子スペーサ32は、配管2の中心軸Pと同軸に固定されている。 Such a flame arrester 3 inserts the two flame extinguishing elements 30 and 30 into the second flame extinguishing space 34 through the third flame extinguishing space 35 from the downstream opening 31B of the flame extinguishing element frame 31, and the flame extinguishing element spacer. 32 is screwed into a threaded portion on the peripheral surface of the second flame extinguishing space 34. In this way, the frame arrester 3 is assembled. In the frame arrester 3 in such an assembled state, the upstream opening 31A of the flame extinguishing element frame 31 is brought into contact with the orthogonal surface 23A of the upstream flange 23 of the upstream body 20 with the gasket 6 interposed therebetween. Thus, the downstream opening 31B of the flame extinguishing element frame 31 is supported by the upstream body 20, and the upstream opening in the flow direction of the gasket 6 and the speed reduction mechanism frame 41 of the speed reduction mechanism 4 is formed in the third flame extinguishing space 35. 41 A is inserted, and is supported by the speed reduction mechanism 4. With the frame arrester 3 supported between the upstream body 20 and the speed reduction mechanism 4, the flame extinguishing element 30, the flame extinguishing element frame 31, and the flame extinguishing element spacer 32 are fixed coaxially with the central axis P of the pipe 2. ing.
 なお、本実施形態において、2個の消炎素子30、30及び消炎素子スペーサ32と、消炎素子フレーム31との固定は、消炎素子フレーム31に対して、消炎素子スペーサ32を直接螺合することにより成立させていたが、本発明はこれに限定されるものではない。2個の消炎素子30、30及び消炎素子スペーサ32と、消炎素子フレーム31との固定を、例えば、ボルト等の固定部材を用いて成立させてもよく、これとは別の公知の固定方法を用いて行ってもよい。さらに、フレームアレスタ3と減速機構4とをガスケットを介して密接させた状態で、上流側ボディ20の上流側フランジ23と下流側ボディ21の下流側フランジ27とで挟み込み、一対のボルト71で締め付けることで、消炎素子30、30が固定される構成であってもよい。 In the present embodiment, the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 and the flame extinguishing element frame 31 are fixed by directly screwing the flame extinguishing element spacer 32 into the flame extinguishing element frame 31. However, the present invention is not limited to this. The fixing of the two flame extinguishing elements 30 and 30 and the flame extinguishing element spacer 32 and the flame extinguishing element frame 31 may be established using a fixing member such as a bolt, for example. May be used. Further, the frame arrester 3 and the speed reduction mechanism 4 are in close contact with each other via a gasket, and are sandwiched between the upstream flange 23 of the upstream body 20 and the downstream flange 27 of the downstream body 21 and tightened with a pair of bolts 71. Therefore, a configuration in which the flame extinguishing elements 30 and 30 are fixed may be employed.
 減速機構4は、図1に示すように、複数(図示例では4個)のオリフィス部材15(部材)と、4個のオリフィス部材15を収容するための筒状の減速機構フレーム41と、4個のオリフィス部材15を位置決めするオリフィススペーサ42と、を有して構成されている。減速機構4は、本実施形態では、フレームアレスタ3の流れ方向の下流側に隣接する位置に設けられている。なお、本実施形態では、減速機構4は、4個のオリフィス部材15を備えて構成されているが、本発明はこれに限定されるものではない。減速機構は、2以上のオリフィス部材(部材)を備えて構成されていればよい。 As shown in FIG. 1, the speed reduction mechanism 4 includes a plurality of (four in the illustrated example) orifice members 15 (members), a cylindrical speed reduction mechanism frame 41 for accommodating the four orifice members 15, and 4 And an orifice spacer 42 for positioning the orifice members 15. In this embodiment, the speed reduction mechanism 4 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3. In the present embodiment, the speed reduction mechanism 4 includes four orifice members 15, but the present invention is not limited to this. The speed reduction mechanism may be configured to include two or more orifice members (members).
 4個のオリフィス部材15は、図1に示すように、略同一構成や略同一機能を有して構成されている。4個のオリフィス部材15は、組立て前の状態では、互いに別体に構成されている。各オリフィス部材15は、軸方向に厚みを有する円盤状に設けられている。各オリフィス部材15は、軸方向に可燃性ガスが通気するように、各オリフィス部材15の軸方向の外部と内部とが連通して設けられているとともに、配管2の中心軸Pと同軸に設けられている。 As shown in FIG. 1, the four orifice members 15 are configured to have substantially the same configuration and substantially the same function. The four orifice members 15 are configured separately from each other in a state before assembly. Each orifice member 15 is provided in a disk shape having a thickness in the axial direction. Each orifice member 15 is provided so that the axial exterior and interior of each orifice member 15 communicate with each other so that flammable gas flows in the axial direction, and is provided coaxially with the central axis P of the pipe 2. It has been.
 各オリフィス部材15は、図2A、図2Bに示すように、減速機構フレーム41における第1減速空間43を構成する周面に接触する円筒面である外周面5Aを有し、外径寸法φ6(図2Bに示す)を有する円盤状に形成されている。また、各オリフィス部材15は、図1、図2Aに示すように、に示すように、可燃性ガスを通過させるための第1オリフィス空間50Aと、第1オリフィス空間50Aの流れ方向の下流側に設けられて、第1オリフィス空間50Aに連続する第2オリフィス空間150Bと、を有している。また、図1に示すように、本実施形態において、第1オリフィス空間50Aの軸寸法L1と、及び第2オリフィス空間150Bの軸寸法L2は、略等しい寸法となるように形成されているとともに、軸寸法L1、L2は30mm程度となるように形成されている。また、図2Bに示すように、第1オリフィス空間50Aの内径寸法φ7が150mm程度となるように形成されている。また、第1オリフィス空間50Aの体積は、第2オリフィス空間150Bの体積よりも大きくなるように形成されている。4個のオリフィス部材15は、組立て状態で、流れ方向の上方側から、第1オリフィス空間50Aと第2オリフィス空間150Bとが、交互に繰り返されるように、並んで設けられている。 As shown in FIGS. 2A and 2B, each orifice member 15 has an outer peripheral surface 5A that is a cylindrical surface in contact with the peripheral surface constituting the first deceleration space 43 in the deceleration mechanism frame 41, and has an outer diameter dimension φ6 ( (Shown in FIG. 2B). As shown in FIGS. 1 and 2A, each orifice member 15 has a first orifice space 50A for allowing combustible gas to pass therethrough and a downstream side in the flow direction of the first orifice space 50A. And a second orifice space 150B continuous with the first orifice space 50A. Further, as shown in FIG. 1, in the present embodiment, the axial dimension L1 of the first orifice space 50A and the axial dimension L2 of the second orifice space 150B are formed to be substantially equal, The shaft dimensions L1 and L2 are formed to be about 30 mm. Further, as shown in FIG. 2B, the inner diameter dimension φ7 of the first orifice space 50A is formed to be about 150 mm. Further, the volume of the first orifice space 50A is formed to be larger than the volume of the second orifice space 150B. In the assembled state, the four orifice members 15 are provided side by side so that the first orifice space 50A and the second orifice space 150B are alternately repeated from the upper side in the flow direction.
 このようなオリフィス部材15は、図1に示すように、組立て状態で、可燃性ガスを通過させる内面40の一部(オリフィス内面4A)を構成する。オリフィス内面4Aは、図2Aに示すように、第1オリフィス空間50Aと第2オリフィス空間150Bとの境界に位置するとともに軸に直交する直交面5B、5C(非平行面)と、直交面5Cの外縁bから軸と平行に延在する上流側内周面5Dと、直交面5B、5C間でかつ直交面5Cの内縁aが囲む位置に形成された貫通領域Tに位置し、軸と平行に延在する各貫通孔150と、を有し、これらが、流れ方向の上方側から、上流側内周面5D、直交面5C、貫通部5E、直交面5Bの順で連続されるとともに、繰り返し設けられることで構成されている。また、各オリフィス部材15において、第1オリフィス空間50Aは、上流側内周面5Dの内側に位置する空間であり、第2オリフィス空間150Bは、貫通部5Eの内側に位置する空間である。第2オリフィス空間150Bは、貫通部5Eに形成された複数(37個)の貫通孔150から構成されている。以下では、貫通部5Eにおいて、中心軸P(軸)に直交する方向から見た領域を、貫通領域Tと記す。本実施形態において、貫通領域Tは、図2B中の一点鎖線で示すように、円形状となるように形成されている。貫通部5E(貫通領域T)の径寸法φ8は20mm程度となるように形成されている。また、各貫通孔150は、図2Bに示すように、オリフィス部材15の軸に直交する断面が円形状となるように形成されている。また、本実施形態では、各貫通孔150は、内径寸法φ10が2mm程度となるように形成されている。貫通孔150は、貫通部5E(貫通領域T)に37個形成されている。 As shown in FIG. 1, such an orifice member 15 constitutes a part of the inner surface 40 (orifice inner surface 4A) through which combustible gas passes in an assembled state. As shown in FIG. 2A, the orifice inner surface 4A is located at the boundary between the first orifice space 50A and the second orifice space 150B, and orthogonal surfaces 5B and 5C (non-parallel surfaces) orthogonal to the axis and the orthogonal surfaces 5C. Located in a through region T formed between the upstream inner peripheral surface 5D extending from the outer edge b parallel to the axis and the orthogonal surfaces 5B and 5C and surrounded by the inner edge a of the orthogonal surface 5C, and parallel to the axis Each of the through-holes 150 extending, and these are continuously repeated from the upper side in the flow direction in the order of the upstream inner peripheral surface 5D, the orthogonal surface 5C, the penetrating portion 5E, and the orthogonal surface 5B. It is configured by being provided. Further, in each orifice member 15, the first orifice space 50A is a space located inside the upstream inner peripheral surface 5D, and the second orifice space 150B is a space located inside the penetrating portion 5E. The second orifice space 150B includes a plurality (37) of through holes 150 formed in the through portion 5E. Hereinafter, in the penetrating portion 5E, a region viewed from a direction orthogonal to the central axis P (axis) is referred to as a penetrating region T. In the present embodiment, the penetrating region T is formed to have a circular shape as indicated by a one-dot chain line in FIG. 2B. The diameter 5 of the penetrating portion 5E (penetrating region T) is formed to be about 20 mm. Moreover, each through-hole 150 is formed so that the cross section orthogonal to the axis | shaft of the orifice member 15 becomes circular shape, as shown to FIG. 2B. Moreover, in this embodiment, each through-hole 150 is formed so that the inner diameter dimension φ10 is about 2 mm. Thirty-seven through holes 150 are formed in the through portion 5E (through region T).
 また、本実施形態において各貫通孔150は、内径寸法φ10が2mm程度となるように形成されているが、本発明はこれに限定されない。各貫通孔150の内径寸法φ10が2mm以下であってもよい。また、各貫通孔150の内径寸法φ10が1mm以上であればよい。また、各貫通孔150は内径寸法φ10が2mm以上であってもよい。また、各貫通孔150は内径寸法φ10が5mm以上であってもよく、8mm以上であってもよい。各貫通孔150の内径寸法φ10は10mm以下であればよい。 In the present embodiment, each through hole 150 is formed so that the inner diameter dimension φ10 is about 2 mm, but the present invention is not limited to this. The inner diameter dimension φ10 of each through hole 150 may be 2 mm or less. Further, the inner diameter dimension φ10 of each through hole 150 may be 1 mm or more. Each through hole 150 may have an inner diameter dimension φ10 of 2 mm or more. Each through-hole 150 may have an inner diameter dimension φ10 of 5 mm or more, or 8 mm or more. The inner diameter dimension φ10 of each through-hole 150 may be 10 mm or less.
 各オリフィス部材15の直交面5Cは、オリフィス部材15の中心軸Pに対して略直交して設けられている。即ち、各オリフィス部材15の直交面5Cは、オリフィス部材15の中心軸Pに非平行な面(平面)である。各オリフィス部材15の上流側内周面5Dは、オリフィス部材15の中心軸Pを軸とする円筒面を有して構成されている。各オリフィス部材15の上流側内周面5Dは、オリフィス部材15の中心軸Pに平行な面(曲面)から構成されている。また、図1、図2Bに示すように、各オリフィス部材15の貫通部5Eの径寸法φ8(図2Bに示す)と、下流側ボディ21の内径寸法φ4(図1に示す)は、略等しい寸法となるように形成されている。なお、本実施形態において、「中心軸Pに平行な面(曲面)」とは、当該面の軸方向の何れの位置においても、中心軸Pからの距離が略等しい面のことであり、「中心軸Pに非平行な面(平面)」とは、中心軸Pに対して所定の角度を有する面のことである。 The orthogonal surface 5 </ b> C of each orifice member 15 is provided substantially orthogonal to the central axis P of the orifice member 15. That is, the orthogonal surface 5 </ b> C of each orifice member 15 is a surface (plane) that is not parallel to the central axis P of the orifice member 15. The upstream inner peripheral surface 5D of each orifice member 15 has a cylindrical surface with the central axis P of the orifice member 15 as an axis. The upstream inner peripheral surface 5 </ b> D of each orifice member 15 is composed of a surface (curved surface) parallel to the central axis P of the orifice member 15. Further, as shown in FIGS. 1 and 2B, the diameter dimension φ8 (shown in FIG. 2B) of the through-hole 5E of each orifice member 15 and the inner diameter dimension φ4 (shown in FIG. 1) of the downstream body 21 are substantially equal. It is formed to have dimensions. In the present embodiment, the “surface parallel to the central axis P (curved surface)” is a surface having a substantially equal distance from the central axis P at any position in the axial direction of the surface. The “plane (plane) non-parallel to the central axis P” is a plane having a predetermined angle with respect to the central axis P.
 本実施形態では、第1オリフィス空間50Aの内径寸法φ7(図2Bに示す)は150mm程度となるように規定しているが、本発明はこれに限定されない。内径寸法φ7として、100mm以下であっても構わない。内径寸法φ7として、略100mm以下であってもよく、80mm以下であってもよい。また、第1オリフィス空間50Aの内径寸法φ7は、60mm以上であればよい。また、第1オリフィス空間50Aの内径寸法φ7は、100mm以上であっても構わない。内径寸法φ7として、100mm以上であってもよく、200mm以上であってもよい。第1オリフィス空間50Aの内径寸法φ7は、略300mm以下であればよい。 In the present embodiment, the inner diameter dimension φ7 (shown in FIG. 2B) of the first orifice space 50A is defined to be about 150 mm, but the present invention is not limited to this. The inner diameter dimension φ7 may be 100 mm or less. The inner diameter dimension φ7 may be approximately 100 mm or less, or 80 mm or less. Further, the inner diameter φ7 of the first orifice space 50A may be 60 mm or more. Further, the inner diameter φ7 of the first orifice space 50A may be 100 mm or more. The inner diameter dimension φ7 may be 100 mm or more, or 200 mm or more. The inner diameter dimension φ7 of the first orifice space 50A may be approximately 300 mm or less.
 また、本実施形態では、各オリフィス部材15の軸寸法L1、L2は、30mm程度となるように規定しているが、本発明はこれに限定されない。軸寸法L1、L2として、30mm以下であっても構わない。軸寸法L1、L2として、20mm以下であってもよく、10mm以下であってもよく、5mm以下であってもよい。各オリフィス部材15の軸寸法L1、L2は、略2mm以上であればよい。 In the present embodiment, the axial dimensions L1 and L2 of each orifice member 15 are defined to be about 30 mm, but the present invention is not limited to this. The shaft dimensions L1 and L2 may be 30 mm or less. The shaft dimensions L1 and L2 may be 20 mm or less, 10 mm or less, or 5 mm or less. The axial dimensions L1 and L2 of each orifice member 15 may be approximately 2 mm or more.
 減速機構フレーム41は、図1に示すように、上流側ボディ20及び下流側ボディ21の軸方向に外部と内部とが連通するように軸方向の両端に開口部41A、41Bを有する筒状に構成されている。減速機構フレーム41の開口部41A、41Bのうち、流体の流れ方向F1の上流側に位置する一方を「上流側開口部41A」と記し、下流側に位置する他方を「下流側開口部41B」と記す。 As shown in FIG. 1, the speed reduction mechanism frame 41 has a cylindrical shape having openings 41 </ b> A and 41 </ b> B at both ends in the axial direction so that the outside and the inside communicate with each other in the axial direction of the upstream body 20 and the downstream body 21. It is configured. Of the openings 41A and 41B of the speed reduction mechanism frame 41, one located upstream of the fluid flow direction F1 is referred to as an “upstream opening 41A” and the other located downstream is the “downstream opening 41B”. .
 減速機構フレーム41は、図1、図2Bに示すように、各オリフィス部材15の外径寸法φ6(図2Bに示す)と略等しい内径寸法を有する第1減速空間43と、第1減速空間43の内径寸法より小さい第5内径寸法φ9を有する第2減速空間44と、を有して構成されている。第1減速空間43は、第2減速空間44の流れ方向の上流側に設けられている。第2減速空間44を構成する内周面44Aは、各オリフィス部材15の中心軸Pと平行な曲面から構成されている。第2減速空間44を構成する内周面44A、及び各オリフィス部材15の上流側内周面5Dは、減速機構フレーム41及び各オリフィス部材15の中心軸Pから当該各内周面44A、5Dまでの距離D1が略等しい距離となるように形成されている。 As shown in FIGS. 1 and 2B, the deceleration mechanism frame 41 includes a first deceleration space 43 having an inner diameter dimension substantially equal to an outer diameter dimension φ6 (shown in FIG. 2B) of each orifice member 15, and a first deceleration space 43. And a second deceleration space 44 having a fifth inner diameter dimension φ9 smaller than the inner diameter dimension. The first deceleration space 43 is provided on the upstream side in the flow direction of the second deceleration space 44. The inner peripheral surface 44 </ b> A constituting the second deceleration space 44 is configured by a curved surface parallel to the central axis P of each orifice member 15. The inner peripheral surface 44A constituting the second deceleration space 44 and the upstream inner peripheral surface 5D of each orifice member 15 extend from the central axis P of the deceleration mechanism frame 41 and each orifice member 15 to the respective inner peripheral surfaces 44A, 5D. Are formed such that the distance D1 is substantially equal.
 第1減速空間43は、4個のオリフィス部材15及び、オリフィススペーサ42を収容可能に構成されている。また、第1減速空間43の軸寸法は、4個のオリフィス部材15及び、オリフィススペーサ42が収容された状態で、減速機構フレーム41の上流側開口部41Aとの間に隙間が形成されるような寸法に形成されている。また、第1減速空間43の周面において、その下流側開口部41Bからオリフィス部材15、4個分の軸寸法だけ離間した位置から、上流側開口部41Aまで、オリフィススペーサ42が螺合可能なようにねじが切られている。 The first deceleration space 43 is configured to accommodate the four orifice members 15 and the orifice spacers 42. Further, the axial dimension of the first deceleration space 43 is such that a gap is formed with the upstream opening 41 </ b> A of the deceleration mechanism frame 41 in a state where the four orifice members 15 and the orifice spacers 42 are accommodated. It is formed in various dimensions. Further, on the peripheral surface of the first deceleration space 43, the orifice spacer 42 can be screwed from the downstream opening 41B to the upstream opening 41A from a position separated from the orifice member 15 by the axial dimension of four pieces. So that it is threaded.
 オリフィススペーサ42は、図1に示すように、配管2の軸方向に厚みを有する円盤状に設けられている。オリフィススペーサ42は、配管2の軸方向に可燃性ガスが通気するように、その軸方向の外部と内部とが連通して設けられている。 The orifice spacer 42 is provided in a disk shape having a thickness in the axial direction of the pipe 2 as shown in FIG. The orifice spacer 42 is provided so that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2.
 オリフィススペーサ42は、互いに対向する上流側直交面42A及び下流側直交面42Cと、上流側直交面42A及び下流側直交面42Cの各内縁に連続される内周面42Bと、を有して構成されている。上流側直交面42A及び下流側直交面42Cは、オリフィススペーサ42の軸に直交して設けられ、内周面42Bは、当該軸に平行に設けられている。オリフィススペーサ42の中心軸Pから内周面42Bまでの距離(寸法)D2と、及び各オリフィス部材15の貫通部5E(貫通領域T)の径寸法φ8は略等しい寸法となるように形成されている。 The orifice spacer 42 includes an upstream orthogonal surface 42A and a downstream orthogonal surface 42C that face each other, and an inner peripheral surface 42B that is continuous with each inner edge of the upstream orthogonal surface 42A and the downstream orthogonal surface 42C. Has been. The upstream orthogonal surface 42A and the downstream orthogonal surface 42C are provided orthogonal to the axis of the orifice spacer 42, and the inner peripheral surface 42B is provided parallel to the axis. The distance (dimension) D2 from the central axis P of the orifice spacer 42 to the inner peripheral surface 42B and the diameter dimension φ8 of the penetrating portion 5E (penetrating region T) of each orifice member 15 are formed to be substantially equal. Yes.
 このようなオリフィススペーサ42は、減速機構フレーム41の第1減速空間43の周面において、ねじ切られた部分に螺合可能なように構成されている。そして、オリフィススペーサ42は、減速機構フレーム41の第1減速空間43に4個のオリフィス部材15が収容された状態で、第1減速空間43の周面において、ねじ切られた部分に螺合されている。オリフィススペーサ42により、4個のオリフィス部材15は、第1減速空間43における所定の位置に固定される。 Such an orifice spacer 42 is configured so that it can be screwed into a threaded portion on the peripheral surface of the first deceleration space 43 of the deceleration mechanism frame 41. The orifice spacer 42 is screwed into a threaded portion on the peripheral surface of the first deceleration space 43 in a state where the four orifice members 15 are accommodated in the first deceleration space 43 of the deceleration mechanism frame 41. Yes. The four orifice members 15 are fixed at predetermined positions in the first deceleration space 43 by the orifice spacers 42.
 また、オリフィススペーサ42は、図1に示すように、組立て状態で、減速機構4において、可燃性ガスを通過させる内面40の一部(スペーサ内面4B)を構成する。スペーサ内面4Bは、組立て状態で最も上流側に位置するオリフィス部材52(15)の上流側内周面5Dに連続される下流側直交面42Cと、下流側直交面42Cの内縁から軸と平行に延在する内周面42Bと、内周面42Bの上縁に連続されるとともに、軸に直交する上流側直交面42Aと、を有して構成されている。 Further, as shown in FIG. 1, the orifice spacer 42 constitutes a part of the inner surface 40 (the spacer inner surface 4 </ b> B) through which the combustible gas passes in the speed reduction mechanism 4 in the assembled state. The spacer inner surface 4B includes a downstream orthogonal surface 42C continuous with the upstream inner peripheral surface 5D of the orifice member 52 (15) positioned most upstream in the assembled state, and parallel to the axis from the inner edge of the downstream orthogonal surface 42C. The inner circumferential surface 42B extends and the upstream orthogonal surface 42A is continuous with the upper edge of the inner circumferential surface 42B and orthogonal to the axis.
 このような減速機構4は、減速機構フレーム41の上流側開口部41Aから、第1減速空間43に4個のオリフィス部材15を挿入し、この状態で、オリフィススペーサ42を第1減速空間43の周面に螺合させる。こうして、4個のオリフィス部材15及びオリフィススペーサ42を、減速機構フレーム41に固定する。 In such a speed reduction mechanism 4, four orifice members 15 are inserted into the first speed reduction space 43 from the upstream side opening 41 </ b> A of the speed reduction mechanism frame 41, and in this state, the orifice spacer 42 is moved to the first speed reduction space 43. Screw onto the circumference. In this way, the four orifice members 15 and the orifice spacers 42 are fixed to the speed reduction mechanism frame 41.
 なお、本実施形態において、4個のオリフィス部材15及びオリフィススペーサ42と、減速機構フレーム41との固定は、減速機構フレーム41に対して、オリフィススペーサ42を直接螺合することにより成立させていたが、本発明はこれに限定されるものではない。4個のオリフィス部材15及びオリフィススペーサ42と、減速機構フレーム41との固定を、例えば、ボルト等の固定部材を用いて成立させてもよく、これとは別の公知の固定方法を用いて行ってもよい。さらに、フレームアレスタ3と減速機構4とをガスケットを介して密接させた状態で、上流側ボディ20の上流側フランジ23と下流側ボディ21の下流側フランジ27とで挟み込み、一対のボルト71で締め付けることで、オリフィス部材15が固定される構成であってもよい。 In this embodiment, the four orifice members 15 and orifice spacers 42 and the speed reduction mechanism frame 41 are fixed by directly screwing the orifice spacers 42 to the speed reduction mechanism frame 41. However, the present invention is not limited to this. The four orifice members 15 and the orifice spacers 42 and the speed reduction mechanism frame 41 may be fixed using, for example, a fixing member such as a bolt, or another known fixing method may be used. May be. Further, the frame arrester 3 and the speed reduction mechanism 4 are in close contact with each other via a gasket, and are sandwiched between the upstream flange 23 of the upstream body 20 and the downstream flange 27 of the downstream body 21 and tightened with a pair of bolts 71. Thus, a configuration in which the orifice member 15 is fixed may be employed.
 オリフィススペーサ42が第1減速空間43の周面に螺合した状態で、オリフィススペーサ42の螺合位置と、減速機構フレーム41の上流側開口部41Aとの間は、何れの部材も収容されない空間となっている。即ち、減速機構4の組立て状態で、オリフィススペーサ42の螺合位置と、減速機構フレーム41の上流側開口部41Aとの間(空間)は、減速機構フレーム41の第1減速空間43の周面のうち上流側の一部43Aから構成されている。この上流側の一部43Aは、オリフィススペーサ42の上流側直交面42Aに連続されて、減速機構4の内面40の一部を構成する。 A space in which no member is accommodated between the screwing position of the orifice spacer 42 and the upstream opening 41 </ b> A of the speed reduction mechanism frame 41 in a state where the orifice spacer 42 is screwed to the peripheral surface of the first speed reduction space 43. It has become. That is, in the assembled state of the speed reduction mechanism 4, the space (space) between the screwing position of the orifice spacer 42 and the upstream opening 41 </ b> A of the speed reduction mechanism frame 41 is the circumferential surface of the first speed reduction space 43 of the speed reduction mechanism frame 41. Among them, it is composed of a part 43A on the upstream side. The upstream portion 43A is continued to the upstream orthogonal surface 42A of the orifice spacer 42 and constitutes a part of the inner surface 40 of the speed reduction mechanism 4.
 なお、本実施形態では、減速機構フレーム41の第1減速空間43の周面のうち上流側の一部43Aは、何れの部材も収容されない空間が設けられているが、本発明はこれに限定されるものではない。減速機構フレーム41の第1減速空間43の周面のうち上流側の一部43Aにある空間はなくてもよい。即ち、第1減速空間43の軸寸法は、4個のオリフィス部材15及びオリフィススペーサ42の軸寸法と略等しい寸法となるように形成されていてもよい。 In the present embodiment, a part 43A on the upstream side of the peripheral surface of the first deceleration space 43 of the deceleration mechanism frame 41 is provided with a space in which no member is accommodated, but the present invention is limited to this. Is not to be done. Of the peripheral surface of the first deceleration space 43 of the deceleration mechanism frame 41, there may be no space in the part 43A on the upstream side. That is, the axial dimension of the first deceleration space 43 may be formed so as to be approximately equal to the axial dimension of the four orifice members 15 and the orifice spacers 42.
 また、オリフィススペーサ42が第1減速空間43の周面に螺合した状態で、最も下流側に位置するオリフィス部材51(15)と、減速機構フレーム41の下流側開口部41Bとの間は、何れの部材も収容されない空間(第2減速空間44)となっている。即ち、第2減速空間44は、当該空間44を構成する内周面44Aから構成されている。当該内周面44Aは、最も下流側に位置するオリフィス部材51の直交面5Bに連続されて、減速機構の内面40の一部を構成する。 Further, in a state where the orifice spacer 42 is screwed into the peripheral surface of the first deceleration space 43, the gap between the orifice member 51 (15) located on the most downstream side and the downstream opening 41B of the deceleration mechanism frame 41 is as follows. It is a space (second deceleration space 44) in which no member is accommodated. That is, the second deceleration space 44 includes an inner peripheral surface 44 </ b> A that constitutes the space 44. The inner peripheral surface 44A is continuous with the orthogonal surface 5B of the orifice member 51 located on the most downstream side and constitutes a part of the inner surface 40 of the speed reduction mechanism.
 こうして、減速機構フレーム41の周面の一部43A、スペーサ内面4B、オリフィス内面4A、及び減速機構フレーム41の内周面44A、を有する内面40を有する減速機構4を組み立てる。 Thus, the speed reduction mechanism 4 having the inner surface 40 having the part 43A of the peripheral surface of the speed reduction mechanism frame 41, the spacer inner surface 4B, the orifice inner surface 4A, and the inner peripheral surface 44A of the speed reduction mechanism frame 41 is assembled.
 減速機構4の組立て状態では、各オリフィス部材15の直交面5B、5C、及びオリフィススペーサ42の下流側直交面42Cが、「非平行面」として機能する。以下では、各オリフィス部材15の直交面5B、5C、及びオリフィススペーサ42の下流側直交面42Cを総称して「非平行面」と記す場合がある。 In the assembled state of the speed reduction mechanism 4, the orthogonal surfaces 5B and 5C of each orifice member 15 and the downstream orthogonal surface 42C of the orifice spacer 42 function as “non-parallel surfaces”. Hereinafter, the orthogonal surfaces 5B and 5C of the orifice members 15 and the downstream orthogonal surface 42C of the orifice spacer 42 may be collectively referred to as “non-parallel surfaces”.
 次に、減速機構付きフレームアレスタ1を組み立てる手順について説明する。 Next, the procedure for assembling the frame arrester 1 with a speed reduction mechanism will be described.
 フレームアレスタ3及び減速機構4は、それぞれ、予め組み立てられている。フレームアレスタ3は、消炎素子フレーム31の上流側開口部31Aを、上流側ボディ20の上流側フランジ23の直交面23Aに、ガスケット6を挟んで当接させ、消炎素子フレーム31の下流側開口部31Bを、第3消炎空間35に挿入する。また、減速機構4は、減速機構フレーム41の下流側開口部41Bを、下流側ボディ21の下流側フランジ27の直交面27Aに、ガスケット6を挟んで当接させる。この状態で、上流側ボディ20及び下流側ボディ21の各ボルト孔24、25にボルト71を挿入し、ボルト71の両端に各ナット72を螺合する。こうして、上流側ボディ20及び下流側ボディ21から構成された配管2、フレームアレスタ3、及び減速機構4が、配管2の中心軸Pと同軸に設けられた減速機構付きフレームアレスタ1を組み立てる。 The frame arrester 3 and the speed reduction mechanism 4 are each assembled in advance. The flame arrester 3 brings the upstream opening 31A of the flame extinguishing element frame 31 into contact with the orthogonal surface 23A of the upstream flange 23 of the upstream body 20 with the gasket 6 interposed therebetween, and the downstream opening of the flame extinguishing element frame 31 31B is inserted into the third flame extinguishing space 35. Further, the speed reduction mechanism 4 brings the downstream opening 41B of the speed reduction mechanism frame 41 into contact with the orthogonal surface 27A of the downstream flange 27 of the downstream body 21 with the gasket 6 interposed therebetween. In this state, the bolts 71 are inserted into the bolt holes 24 and 25 of the upstream body 20 and the downstream body 21, and the nuts 72 are screwed to both ends of the bolt 71. In this way, the pipe 2, the frame arrester 3, and the speed reduction mechanism 4 constituted by the upstream body 20 and the downstream body 21 assemble the frame arrester 1 with a speed reduction mechanism provided coaxially with the central axis P of the pipe 2.
 このような減速機構付きフレームアレスタ1によれば、配管2の軸方向に連通するように複数のオリフィス部材15(部材)を有して筒状に構成され、各オリフィス部材15(部材)の内面が、軸に非平行な非平行面5B、5C、42Cを少なくとも1有し、非平行面5B、5C、42Cが、軸方向に並んで設けられている。このような構成によれば、求められる性能に応じて、部材の個数を変更することができる。従って、汎用性が高いものとすることができる。 According to such a frame arrester 1 with a speed reduction mechanism, it has a plurality of orifice members 15 (members) so as to communicate with each other in the axial direction of the pipe 2 and is configured in a cylindrical shape, and the inner surface of each orifice member 15 (member) However, it has at least one non-parallel surface 5B, 5C, 42C that is non-parallel to the axis, and the non-parallel surfaces 5B, 5C, 42C are provided side by side in the axial direction. According to such a configuration, the number of members can be changed according to the required performance. Therefore, it can be made highly versatile.
 また、配管2内に火炎が発生した場合、火炎は流体の流れ方向F1に順流又は、逆流するが、非平行面5B、5C、42Cが設けられていることで、非平行面5B、5C、42Cの面延在方向(配管2の径方向)に沿って、中心軸Pから離れる方向に回り込む。非平行面5B、5C、42Cが、軸方向に並んで設けられているから、火炎が、中心軸Pから離れる方向に回りこむ現象が繰り返される。このようにして、配管2を伝播する火炎は、回り込む現象が繰り返されることにより、火炎が減速される。このように配管2内を伝播する火炎を減速させる減速機構4を、フレームアレスタ3において可燃性の流体の流れ方向F1側(軸方向の一方側)に設けることで、フレームアレスタ3に到達する火炎は減速される。このため、フレームアレスタ3を配管2の軸方向に小型化した場合においても、圧力損失の低減と流量確保を図りつつ、所望の消炎性能を確保することができる。さらに、このような減速機構4を、フレームアレスタ3の可燃性の流体の流れ方向F1の少なくとも一方側に設けることにより、フレームアレスタ3を配管2の径方向に小型化することができ、この場合においても、圧力損失の低減と流量確保を図りつつ、所望の消炎性能を確保することができる。従って、減速機構4を、フレームアレスタ3において可燃性の流体の流れ方向F1の少なくとも一方側に設けることで、所望の消炎性能の確保と、圧力損失の低減(流量の確保)との両立を図ることができる。 Further, when a flame is generated in the pipe 2, the flame flows forward or backward in the fluid flow direction F1, but the non-parallel surfaces 5B, 5C, and 42C are provided, so that the non-parallel surfaces 5B, 5C, It wraps around in the direction away from the central axis P along the surface extending direction of 42C (the radial direction of the pipe 2). Since the non-parallel surfaces 5B, 5C, and 42C are provided side by side in the axial direction, the phenomenon that the flame wraps around in the direction away from the central axis P is repeated. In this way, the flame propagating through the pipe 2 is decelerated by repeating the phenomenon of turning around. The flame that reaches the flame arrester 3 by providing the deceleration mechanism 4 that decelerates the flame propagating in the pipe 2 in this manner on the flame arrester 3 flow direction F1 side (one side in the axial direction). Is slowed down. For this reason, even when the frame arrester 3 is downsized in the axial direction of the pipe 2, desired flame extinguishing performance can be ensured while reducing pressure loss and ensuring the flow rate. Further, by providing such a speed reduction mechanism 4 on at least one side of the flow direction F1 of the combustible fluid of the frame arrester 3, the frame arrester 3 can be reduced in size in the radial direction of the pipe 2. The desired flame extinguishing performance can be ensured while reducing the pressure loss and ensuring the flow rate. Therefore, by providing the speed reduction mechanism 4 on at least one side of the flame arrester 3 in the flow direction F1 of the combustible fluid, it is possible to achieve both a desired flame extinguishing performance and a reduction in pressure loss (a flow rate). be able to.
 さらに、配管2の軸方向に連通する第1オリフィス空間50Aと第2オリフィス空間150Bとを交互に備え、第1オリフィス空間50Aが、1つの開口からなり、第2オリフィス空間150Bが、開口より狭い貫通領域Tに、複数(37個)の貫通孔150が穿たれてなる。このような構成によれば、非平行面5B、5Cを含みつつ1つの開口からなる体積が大きい第1オリフィス空間50Aと、複数(37個)の貫通孔150を有して構成された体積が小さい第2オリフィス空間150Bとが、軸方向に交互に連続して形成されている。これにより、配管2内を伝播する火炎は、大小の空間を繰り返し通過する。従って、配管2内を伝播する火炎の火炎伝播速度が十分に減速させることができる。 Further, the first orifice space 50A and the second orifice space 150B communicating with each other in the axial direction of the pipe 2 are alternately provided. The first orifice space 50A includes one opening, and the second orifice space 150B is narrower than the opening. A plurality (37) of through holes 150 are formed in the through region T. According to such a configuration, the volume configured by including the first orifice space 50 </ b> A including the non-parallel surfaces 5 </ b> B and 5 </ b> C and having a large volume composed of one opening and the plurality of (37) through holes 150 is provided. Small second orifice spaces 150B are formed alternately and continuously in the axial direction. Thereby, the flame propagating in the pipe 2 repeatedly passes through the large and small spaces. Therefore, the flame propagation speed of the flame propagating in the pipe 2 can be sufficiently reduced.
 次に、本発明の発明者らは、数多くの実験乃至シミュレーションを行った結果、オリフィス部材(部材)の個数の適切な範囲を見出した。即ち、減速機構4を構成するオリフィス部材15(部材)の個数としては4以上であることが好ましい。オリフィス部材15の個数が3以下で構成された場合には、所望の消炎性能を確保するのが困難となる場合がある。このため、オリフィス部材15(部材)の個数としては4以上であることが好ましく、又、7以上であることがより好ましい。 Next, as a result of many experiments and simulations, the inventors of the present invention have found an appropriate range of the number of orifice members (members). That is, the number of orifice members 15 (members) constituting the speed reduction mechanism 4 is preferably 4 or more. When the number of orifice members 15 is 3 or less, it may be difficult to ensure a desired flame extinguishing performance. For this reason, the number of orifice members 15 (members) is preferably 4 or more, and more preferably 7 or more.
 また、減速機構4を構成するオリフィス部材15(部材)の個数としては30以下であることが好ましい。オリフィス部材15(部材)の個数が31以上で構成された場合には、所定の効果は認められるものの製造コストや組立て作業等のコストアップになる場合がある。このため、オリフィス部材15(部材)の個数としては30以下であることが好ましく、又、15以下であることがより好ましい。 Further, the number of orifice members 15 (members) constituting the speed reduction mechanism 4 is preferably 30 or less. When the number of the orifice members 15 (members) is 31 or more, although a predetermined effect is recognized, there are cases where the manufacturing cost, the assembly work, and the like are increased. For this reason, the number of orifice members 15 (members) is preferably 30 or less, and more preferably 15 or less.
 また、本実施形態の減速機構4では、複数の非平行面5B、5C、42Cは、それぞれ、当該非平行面5B、5C、42Cと中心軸P(軸)との成す角が略等しくなるように形成されている。このような構成によれば、配管2を伝播する火炎は、回り込む現象が繰り返されることにより、火炎を減速させることができる。 In the speed reduction mechanism 4 of the present embodiment, the angles formed by the non-parallel surfaces 5B, 5C, and 42C and the central axis P (axis) are substantially equal to each other in the non-parallel surfaces 5B, 5C, and 42C. Is formed. According to such a structure, the flame which propagates the piping 2 can decelerate a flame by repeating the phenomenon which wraps around.
 また、本実施形態の減速機構4では、非平行面5B、5C、42Cと中心軸P(軸)との成す角が、略90度となるように形成されている。このような構成によれば、非平行面5B、5C、42Cを構成面とする空間の体積を十分な大きさにすることができるから、配管2内を伝播する火炎を、十分に減速させることができる。 Further, in the speed reduction mechanism 4 of the present embodiment, the angle formed by the non-parallel surfaces 5B, 5C, 42C and the central axis P (axis) is formed to be approximately 90 degrees. According to such a configuration, the volume of the space including the non-parallel surfaces 5B, 5C, and 42C can be made sufficiently large, so that the flame propagating in the pipe 2 can be sufficiently decelerated. Can do.
 本発明の発明者らが行った数多くの実験乃至シミュレーションのうちの一部について、以下説明する。本実施形態の減速機構付きフレームアレスタ1において、第1オリフィス空間50Aの内径寸法φ7を30~60mmの範囲で適宜設定し、貫通部5Eの径寸法φ8を20mmとなるように設定し、各オリフィス部材15の軸寸法L1を7~42mmの範囲で適宜設定し、各貫通孔150は直径2mmとして、貫通部5Eに貫通孔150を37個形成した。 Some of many experiments or simulations conducted by the inventors of the present invention will be described below. In the frame arrester 1 with the speed reduction mechanism of the present embodiment, the inner diameter dimension φ7 of the first orifice space 50A is appropriately set in the range of 30 to 60 mm, and the diameter dimension φ8 of the penetrating portion 5E is set to be 20 mm. The axial dimension L1 of the member 15 was appropriately set in the range of 7 to 42 mm, each through hole 150 had a diameter of 2 mm, and 37 through holes 150 were formed in the through portion 5E.
 減速機構4を構成するオリフィス部材15の個数を1~15の範囲で適宜設定して、火炎伝播速度を計測した。結果を図3に記す。オリフィス部材15の個数(n)を、1~15の各個数に設定し、各個数で3回ずつ取得した。オリフィス部材15の個数(n)が、5、10、15の場合のみ、5回ずつ取得した。 The number of orifice members 15 constituting the speed reduction mechanism 4 was appropriately set in the range of 1 to 15, and the flame propagation speed was measured. The results are shown in FIG. The number (n) of the orifice members 15 was set to each number from 1 to 15, and each number was acquired three times. Only when the number (n) of the orifice members 15 was 5, 10, and 15, it was obtained five times.
 図3において、縦軸は、火炎伝播速度(Flame velocity)[m/s]であり、横軸は、オリフィス部材の個数(Number of Orifice:n)である。第1オリフィス空間50Aの内径寸法φ7を60mmに設定し、各オリフィス部材15の軸寸法L1を14mmに設定し、貫通部5Eの径寸法φ8を20mmとなるように設定し、貫通部5Eにおける開口率は37%となるように設定した際に、火炎伝播速度が減速することが確認された。また、貫通部5Eにおける開口率は58%となるように設定した際に、火炎伝播速度が減速することが確認された。 3, the vertical axis represents the flame propagation velocity (Flame velocity) [m / s], and the horizontal axis represents the number of orifice members (Number of orifice: n). The inner diameter dimension φ7 of the first orifice space 50A is set to 60 mm, the axial dimension L1 of each orifice member 15 is set to 14 mm, the diameter dimension φ8 of the penetrating part 5E is set to 20 mm, and the opening in the penetrating part 5E is set. It was confirmed that the flame propagation speed was reduced when the rate was set to 37%. In addition, it was confirmed that the flame propagation speed was reduced when the aperture ratio in the penetrating portion 5E was set to be 58%.
 減速機構4を構成するオリフィス部材15の個数が2以上の場合には火炎伝播速度が減速することが確認された。また、4以上の場合には効果がより安定的となり、7以上の場合にはさらに高い効果が得られることが確認された。さらに8以上のとき、オリフィス部材15の個数が増えるにしたがって、火炎伝播速度がより一層減速することが確認された。 It was confirmed that when the number of orifice members 15 constituting the speed reduction mechanism 4 is 2 or more, the flame propagation speed is reduced. Further, it was confirmed that the effect was more stable when the number was 4 or more, and that a higher effect was obtained when the number was 7 or more. Further, when the number was 8 or more, it was confirmed that the flame propagation speed further decreased as the number of orifice members 15 increased.
 なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形例も本発明に含まれる。 Note that the present invention is not limited to the above-described embodiment, and includes other configurations and the like that can achieve the object of the present invention, and the following modifications are also included in the present invention.
 また、上述した第1実施形態では、減速機構4の組立て状態で、4個のオリフィス部材15は、流れ方向の上方側から、第1オリフィス空間50Aと第2オリフィス空間150Bとが、交互に繰り返されるように並んで設けられているが、本発明はこれに限定されるものではない。4個のオリフィス部材15は、流れ方向の上方側から、第2オリフィス空間150Bと第1オリフィス空間50Aとが、交互に繰り返されるように並んで設けられるように、減速機構4は、軸方向の一端と他端とを反転して用いてもよい。 In the first embodiment described above, in the assembled state of the speed reduction mechanism 4, the four orifice members 15 have the first orifice space 50A and the second orifice space 150B alternately repeated from the upper side in the flow direction. However, the present invention is not limited to this. The four orifice members 15 are arranged in the axial direction so that the second orifice space 150B and the first orifice space 50A are alternately arranged from the upper side in the flow direction. One end and the other end may be reversed and used.
 また、上述した第1実施形態では、減速機構4は、フレームアレスタ3の流れ方向の下流側に隣接する位置に設けられているが、本発明はこれに限定されるものではない。減速機構4は、図4に示すように、フレームアレスタ3の両側に当該フレームアレスタ3に隣接して設けられていてもよい。即ち、図4に示すように、減速機構付きフレームアレスタ10は、可燃性ガス(可燃性の流体)が流れる配管2と、この配管2に連通するフレームアレスタ3と、フレームアレスタ3の両側に、当該フレームアレスタ3に連通して設けられた一対の減速機構4、4と、配管2、フレームアレスタ3、及び減速機構4の間に介在するリング状のガスケット6と、を有して構成されていてもよい。また、減速機構4は、フレームアレスタ3の流れ方向の下流側に設けられていてもよい。また、減速機構4と、フレームアレスタ3とは、隣接する位置になくともよい。即ち、減速機構4と、フレームアレスタ3との間には、他の部材が設けられていてもよい。図4は、図1に示された減速機構付きフレームアレスタ1の変形例を示す断面図である。なお、図4において、第1実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、説明を省略する。このような構成によれば、所望の消炎性能を十分に確保しつつ、圧力損失の低減を図ることができる。 Further, in the first embodiment described above, the speed reduction mechanism 4 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3, but the present invention is not limited to this. As shown in FIG. 4, the speed reduction mechanism 4 may be provided on both sides of the frame arrester 3 adjacent to the frame arrester 3. That is, as shown in FIG. 4, the flame arrester 10 with a speed reduction mechanism includes a pipe 2 through which a flammable gas (flammable fluid) flows, a frame arrester 3 communicating with the pipe 2, and both sides of the frame arrester 3. A pair of reduction mechanisms 4, 4 provided in communication with the frame arrester 3, and a ring-shaped gasket 6 interposed between the pipe 2, the frame arrester 3, and the reduction mechanism 4. May be. Further, the speed reduction mechanism 4 may be provided on the downstream side in the flow direction of the frame arrester 3. Further, the speed reduction mechanism 4 and the frame arrester 3 do not have to be adjacent to each other. That is, another member may be provided between the speed reduction mechanism 4 and the frame arrester 3. FIG. 4 is a cross-sectional view showing a modification of the frame arrester 1 with a speed reduction mechanism shown in FIG. In FIG. 4, members having substantially the same functions and configurations as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. According to such a configuration, it is possible to reduce pressure loss while sufficiently securing desired flame extinguishing performance.
 また、各オリフィス部材15´において、第1オリフィス空間50Aは、上流側内周面5Dの内側に位置する空間であり、第2オリフィス空間150Bは、貫通部5E´の内側に位置する空間であってもよく、貫通部5E´は、図5B中の一点鎖線で示すように、正六角形状に形成されていてもよい。図5A、図5Bは、図2に示された減速機構4の変形例を示す図である。なお、図5A、図5Bにおいて、上述した実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、説明を省略する。これによれば、第1実施形態と略同様の効果が奏される。 In each orifice member 15 ′, the first orifice space 50A is a space located inside the upstream inner peripheral surface 5D, and the second orifice space 150B is a space located inside the through-hole 5E ′. Alternatively, the penetrating part 5E ′ may be formed in a regular hexagonal shape as indicated by a one-dot chain line in FIG. 5B. 5A and 5B are diagrams showing a modification of the speed reduction mechanism 4 shown in FIG. 5A and 5B, members having substantially the same functions and configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. According to this, the effect substantially the same as 1st Embodiment is show | played.
 また、上述した第1実施形態では、各貫通孔150は、オリフィス部材15の軸に直交する断面が円形となるように形成されているが、本発明はこれに限定されるものではない。貫通部5E´´に形成された各貫通孔250Bは、図6A、図6Bに示すように、オリフィス部材15´´の軸に直交する断面が正六角形状(正多角形状)となるように形成されていてもよい。または、各貫通孔は、オリフィス部材の軸に直交する断面が多角形状、楕円形状あるいは不定形状であってもよい。この際、各貫通孔の円相当径が、各貫通孔150の内径寸法φ10と略等しい寸法となるように形成されていてもよい。これによれば、第1実施形態と略同様の効果が奏される。 In the first embodiment described above, each through hole 150 is formed so that the cross section perpendicular to the axis of the orifice member 15 is circular, but the present invention is not limited to this. As shown in FIGS. 6A and 6B, each through hole 250 </ b> B formed in the through portion 5 </ b> E ″ is formed so that a cross section perpendicular to the axis of the orifice member 15 ″ has a regular hexagonal shape (regular polygonal shape). May be. Alternatively, each through hole may have a polygonal, elliptical, or indefinite shape in cross section perpendicular to the axis of the orifice member. At this time, the equivalent circle diameter of each through hole may be formed to be substantially the same as the inner diameter dimension φ10 of each through hole 150. According to this, the effect substantially the same as 1st Embodiment is show | played.
 また、第1実施形態では、組立て状態のオリフィス部材15は、流れ方向の上方側から、上流側内周面5D、直交面5C、貫通部5E、直交面5Bの順で連続されるとともに、繰り返し設けられることで構成されているが、本発明はこれに限定されるものではない。組立て状態のオリフィス部材105は、図7に示すように、流れ方向の上流側から、上流側内周面105E(非平行面)、貫通部105F、直交面105C(非平行面)の順で連続されるとともに、繰り返し設けられることで構成されていていてもよい。各オリフィス部材105の上流側内周面105Eと貫通部105Fとの境界mは、各オリフィス部材105の軸方向の中間に位置している。上流側内周面105Eは、流体の流れ方向F1の下流に向かうにしたがって、径寸法が徐々に小さくなるような傾斜を有して構成されている。貫通部105Fの各貫通孔350は、配管2の中心軸Pと平行に延在している。 Further, in the first embodiment, the assembled orifice member 15 is continuously repeated from the upper side in the flow direction in the order of the upstream inner peripheral surface 5D, the orthogonal surface 5C, the penetrating portion 5E, and the orthogonal surface 5B. However, the present invention is not limited to this. As shown in FIG. 7, the assembled orifice member 105 is continuous in the order of the upstream inner peripheral surface 105E (non-parallel surface), the penetrating portion 105F, and the orthogonal surface 105C (non-parallel surface) from the upstream side in the flow direction. In addition, it may be configured by being repeatedly provided. The boundary m between the upstream inner peripheral surface 105 </ b> E of each orifice member 105 and the penetrating portion 105 </ b> F is located in the middle in the axial direction of each orifice member 105. The upstream inner peripheral surface 105E is configured to have an inclination such that the diameter dimension gradually decreases as it goes downstream in the fluid flow direction F1. Each through hole 350 of the through portion 105 </ b> F extends in parallel with the central axis P of the pipe 2.
 また、各オリフィス部材105において、第1オリフィス空間350Aは、上流側内周面105Eの内側に位置する空間であり、第2オリフィス空間350Bは、貫通部105Fの内側に位置する空間であってもよく、貫通部105Fは、複数の貫通孔350を有して構成されていてもよい。また、各貫通孔350は、オリフィス部材105の軸に直交する断面が円形となるように形成されていてもよい。これによれば、第1実施形態と略同様の効果が奏される。 Further, in each orifice member 105, the first orifice space 350A is a space located inside the upstream inner peripheral surface 105E, and the second orifice space 350B is a space located inside the penetrating portion 105F. In addition, the through portion 105F may be configured to have a plurality of through holes 350. Each through hole 350 may be formed so that a cross section perpendicular to the axis of the orifice member 105 is circular. According to this, the effect substantially the same as 1st Embodiment is show | played.
(第2実施形態)
 続いて、第2実施形態に係る減速機構を、図8、図9A、図9Bを参照して説明する。図9Aは、減速機構14を示す断面図であり、図9Bは、図9Aの平面図である。なお、図8、図9A、図9Bにおいて、第1実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、その説明を省略する。
(Second Embodiment)
Next, the speed reduction mechanism according to the second embodiment will be described with reference to FIGS. 8, 9A, and 9B. 9A is a cross-sectional view showing the speed reduction mechanism 14 and FIG. 9B is a plan view of FIG. 9A. In FIG. 8, FIG. 9A, and FIG. 9B, members having substantially the same function and substantially the same configuration as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第2実施形態に係る減速機構14は、図8に示すように、複数(図示例では4個)のオリフィス部材5(部材)と、4個のオリフィス部材5を収容するための筒状の減速機構フレーム41と、4個のオリフィス部材5を位置決めするオリフィススペーサ42と、を有して構成されている。減速機構14は、本実施形態では、フレームアレスタ3の流れ方向の下流側に隣接する位置に設けられている。なお、本実施形態では、減速機構14は、4個のオリフィス部材5を備えて構成されているが、本発明はこれに限定されるものではない。減速機構は、1個以上のオリフィス部材(部材)を備えて構成されていればよい。 As shown in FIG. 8, the speed reduction mechanism 14 according to the second embodiment includes a plurality of (four in the illustrated example) orifice members 5 (members) and a cylindrical speed reduction mechanism for accommodating the four orifice members 5. A mechanism frame 41 and an orifice spacer 42 for positioning the four orifice members 5 are provided. In this embodiment, the speed reduction mechanism 14 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3. In the present embodiment, the speed reduction mechanism 14 includes four orifice members 5, but the present invention is not limited to this. The speed reduction mechanism may be configured to include one or more orifice members (members).
 4個のオリフィス部材5は、図8に示すように、略同一構成や略同一機能を有して構成されている。4個のオリフィス部材5は、組立て前の状態では、互いに別体に構成されている。各オリフィス部材5は、軸方向に厚みを有する円盤状に設けられている。各オリフィス部材5は、軸方向に可燃性ガスが通気するように、各オリフィス部材5の軸方向の外部と内部とが連通して設けられているとともに、配管2の中心軸Pと同軸に設けられている。 As shown in FIG. 8, the four orifice members 5 have substantially the same configuration and substantially the same function. The four orifice members 5 are configured separately from each other in a state before assembly. Each orifice member 5 is provided in a disk shape having a thickness in the axial direction. Each orifice member 5 is provided so that the axial exterior and interior of each orifice member 5 communicate with each other so that flammable gas flows in the axial direction, and is provided coaxially with the central axis P of the pipe 2. It has been.
 各オリフィス部材5は、図9A、図9Bに示すように、減速機構フレーム41における第1減速空間43を構成する周面に接触する円筒面である外周面5Aを有し、外径寸法φ6を有する円盤状に形成されている。また、各オリフィス部材5は、図8に示すように、可燃性ガスを通過させるための第1オリフィス空間50Aと、第1オリフィス空間50Aの流れ方向の下流側に設けられて、第1オリフィス空間50Aに連続する第2オリフィス空間50Bと、を有している。また、本実施形態において、第1オリフィス空間50Aの軸寸法L1と、及び第2オリフィス空間50Bの軸寸法L2は、略等しい寸法となるように形成されているとともに略30mm程度となるように形成され、第1オリフィス空間50Aの内径寸法φ7が略150mm程度となるように形成され、第2オリフィス空間50Bの内径寸法φ8が略50mm程度となるように形成されている。即ち、第1オリフィス空間50Aの体積は、第2オリフィス空間50Bの体積よりも大きくなるように形成されている。4個のオリフィス部材5は、組立て状態で、流れ方向の上方側から、第1オリフィス空間50Aと第2オリフィス空間50Bとが、交互に繰り返されるように、並んで設けられている。 As shown in FIGS. 9A and 9B, each orifice member 5 has an outer peripheral surface 5A that is a cylindrical surface that contacts the peripheral surface constituting the first deceleration space 43 in the deceleration mechanism frame 41, and has an outer diameter dimension φ6. It has a disk shape. Further, as shown in FIG. 8, each orifice member 5 is provided on the downstream side in the flow direction of the first orifice space 50A for allowing the passage of combustible gas and the first orifice space 50A. And a second orifice space 50B continuous to 50A. Further, in the present embodiment, the axial dimension L1 of the first orifice space 50A and the axial dimension L2 of the second orifice space 50B are formed so as to be approximately equal and approximately 30 mm. The first orifice space 50A is formed so that the inner diameter dimension φ7 is about 150 mm, and the second orifice space 50B is formed so that the inner diameter dimension φ8 is about 50 mm. That is, the volume of the first orifice space 50A is formed to be larger than the volume of the second orifice space 50B. In the assembled state, the four orifice members 5 are provided side by side so that the first orifice space 50A and the second orifice space 50B are alternately repeated from the upper side in the flow direction.
 このようなオリフィス部材5は、図8に示すように、組立て状態で、減速機構14において、可燃性ガスを通過させる内面40の一部(オリフィス内面4A)を構成する。オリフィス内面4Aは、第1オリフィス空間50Aと第2オリフィス空間50Bとの境界に位置する境界面5C(非平行面)と、境界面5Cの外縁bから軸と平行に延在する上流側内周面5Dと、境界面5Cの内縁aから軸と平行に延在する下流側内周面5Eと、下流側内周面5Eに連続されるとともに軸に直交する直交面5B(非平行面)と、を有し、これらの面が、流れ方向の上方側から、上流側内周面5D、境界面5C、下流側内周面5E、直交面5Bの順で連続されるとともに、繰り返し設けられることで構成されている。また、各オリフィス部材5において、第1オリフィス空間50Aは、上流側内周面5Dの内部に位置する空間であり、第2オリフィス空間50Bは、下流側内周面5Eの内部に位置する空間である。 As shown in FIG. 8, the orifice member 5 constitutes a part of the inner surface 40 (orifice inner surface 4 </ b> A) through which the combustible gas passes in the speed reduction mechanism 14 in the assembled state. The orifice inner surface 4A has a boundary surface 5C (non-parallel surface) located at the boundary between the first orifice space 50A and the second orifice space 50B, and an upstream inner periphery extending parallel to the axis from the outer edge b of the boundary surface 5C. A surface 5D, a downstream inner peripheral surface 5E extending in parallel with the axis from the inner edge a of the boundary surface 5C, and an orthogonal surface 5B (non-parallel surface) continuous to the downstream inner peripheral surface 5E and orthogonal to the axis. These surfaces are continuous from the upper side in the flow direction in the order of the upstream inner peripheral surface 5D, the boundary surface 5C, the downstream inner peripheral surface 5E, and the orthogonal surface 5B, and are repeatedly provided. It consists of In each orifice member 5, the first orifice space 50A is a space located inside the upstream inner circumferential surface 5D, and the second orifice space 50B is a space located inside the downstream inner circumferential surface 5E. is there.
 各オリフィス部材5の境界面5Cは、オリフィス部材5の中心軸Pに対して略直交して設けられている。即ち、各オリフィス部材5の境界面5Cは、オリフィス部材5の中心軸Pに非平行な面(平面)である。各オリフィス部材5の上流側内周面5D、及び下流側内周面5Eは、それぞれ、オリフィス部材5の中心軸Pを軸とする円筒の面を有して構成されている。各オリフィス部材5の上流側内周面5D、及び下流側内周面5Eは、それぞれ、オリフィス部材5の中心軸Pに平行な面(曲面)から構成されている。また、図8、図9Bに示すように、各オリフィス部材5の下流側内周面5Eの内径寸法φ8(図9Bに示す)と、下流側ボディ21の内径寸法φ4(図8に示す)は、略等しい寸法となるように形成されている。なお、本実施形態において、「中心軸Pに平行な面(曲面)」とは、当該面の軸方向の何れの位置においても、中心軸Pからの距離が略等しい面のことであり、「中心軸Pに非平行な面(平面)」とは、中心軸Pに対して所定の角度を有する面のことである。 The boundary surface 5C of each orifice member 5 is provided substantially orthogonal to the central axis P of the orifice member 5. That is, the boundary surface 5 </ b> C of each orifice member 5 is a surface (plane) that is not parallel to the central axis P of the orifice member 5. The upstream inner peripheral surface 5D and the downstream inner peripheral surface 5E of each orifice member 5 are each configured to have a cylindrical surface with the central axis P of the orifice member 5 as an axis. The upstream inner peripheral surface 5D and the downstream inner peripheral surface 5E of each orifice member 5 are each composed of a surface (curved surface) parallel to the central axis P of the orifice member 5. Further, as shown in FIGS. 8 and 9B, the inner diameter dimension φ8 (shown in FIG. 9B) of the downstream inner peripheral surface 5E of each orifice member 5 and the inner diameter dimension φ4 (shown in FIG. 8) of the downstream body 21 are , So as to have substantially the same dimensions. In the present embodiment, the “surface parallel to the central axis P (curved surface)” is a surface having a substantially equal distance from the central axis P at any position in the axial direction of the surface. The “plane (plane) non-parallel to the central axis P” is a plane having a predetermined angle with respect to the central axis P.
 本実施形態では、第1オリフィス空間50Aの内径寸法φ7は、150mm程度となるように規定しているが、本発明はこれに限定されない。内径寸法φ7として、100mm以下であっても構わない。内径寸法φ7として、略100mm以下であってもよく、80mm以下であってもよい。また、第1オリフィス空間50Aの内径寸法φ7は、60mm以上であればよい。また、第1オリフィス空間50Aの内径寸法φ7は、100mm以上であっても構わない。内径寸法φ7として、100mm以上であってもよく、200mm以上であってもよい。第1オリフィス空間50Aの内径寸法φ7は、略300mm以下であればよい。 In the present embodiment, the inner diameter dimension φ7 of the first orifice space 50A is defined to be about 150 mm, but the present invention is not limited to this. The inner diameter dimension φ7 may be 100 mm or less. The inner diameter dimension φ7 may be approximately 100 mm or less, or 80 mm or less. Further, the inner diameter φ7 of the first orifice space 50A may be 60 mm or more. Further, the inner diameter φ7 of the first orifice space 50A may be 100 mm or more. The inner diameter dimension φ7 may be 100 mm or more, or 200 mm or more. The inner diameter dimension φ7 of the first orifice space 50A may be approximately 300 mm or less.
 また、本実施形態では、各オリフィス部材5の軸寸法L1、L2は、30mm程度となるように規定しているが、本発明はこれに限定されない。軸寸法L1、L2として、30mm以下であっても構わない。軸寸法L1、L2として、20mm以下であってもよく、10mm以下であってもよく、5mm以下であってもよい。各オリフィス部材5の軸寸法L1、L2は、略2mm以上であればよい。 In this embodiment, the axial dimensions L1 and L2 of each orifice member 5 are defined to be about 30 mm, but the present invention is not limited to this. The shaft dimensions L1 and L2 may be 30 mm or less. The shaft dimensions L1 and L2 may be 20 mm or less, 10 mm or less, or 5 mm or less. The axial dimensions L1 and L2 of each orifice member 5 may be approximately 2 mm or more.
 なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形例も本発明に含まれる。 Note that the present invention is not limited to the above-described embodiment, and includes other configurations and the like that can achieve the object of the present invention, and the following modifications are also included in the present invention.
 上述した第2実施形態では、減速機構14の組立て状態で、4個のオリフィス部材5は、流れ方向の上方側から、第1オリフィス空間50Aと第2オリフィス空間50Bとが、交互に繰り返されるように並んで設けられているが、本発明はこれに限定されるものではない。4個のオリフィス部材5は、流れ方向の上方側から、第2オリフィス空間50Bと第1オリフィス空間50Aとが、交互に繰り返されるように並んで設けられるように、減速機構14は、軸方向の一端と他端とを反転して用いてもよい。 In the second embodiment described above, in the assembled state of the speed reduction mechanism 14, the four orifice members 5 are configured so that the first orifice space 50A and the second orifice space 50B are alternately repeated from the upper side in the flow direction. However, the present invention is not limited to this. The four orifice members 5 are arranged in the axial direction so that the second orifice space 50B and the first orifice space 50A are alternately arranged from the upper side in the flow direction. One end and the other end may be reversed and used.
 また、上述した第2実施形態では、減速機構14は、フレームアレスタ3の流れ方向の下流側に隣接する位置に設けられているが、本発明はこれに限定されるものではない。減速機構14は、図10に示すように、フレームアレスタ3の両側に当該フレームアレスタ3に隣接して設けられていてもよい。即ち、図10に示すように、減速機構付きフレームアレスタ10は、可燃性ガス(可燃性の流体)が流れる配管2と、この配管2に連通するフレームアレスタ3と、フレームアレスタ3の両側に、当該フレームアレスタ3に連通して設けられた一対の減速機構14、14と、配管2、フレームアレスタ3、及び減速機構14の間に介在するリング状のガスケット6と、を有して構成されていてもよい。また、減速機構14は、フレームアレスタ3の流れ方向の下流側に設けられていてもよい。また、減速機構14と、フレームアレスタ3とは、隣接する位置になくともよい。即ち、減速機構14と、フレームアレスタ3との間には、他の部材が設けられていてもよい。図10は、図8に示された減速機構付きフレームアレスタ1の変形例を示す断面図である。なお、図10において、第2実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、説明を省略する。このような構成によれば、所望の消炎性能を十分に確保しつつ、圧力損失の低減を図ることができる。 In the second embodiment described above, the speed reduction mechanism 14 is provided at a position adjacent to the downstream side in the flow direction of the frame arrester 3, but the present invention is not limited to this. As shown in FIG. 10, the speed reduction mechanism 14 may be provided adjacent to the frame arrester 3 on both sides of the frame arrester 3. That is, as shown in FIG. 10, the flame arrester 10 with a speed reduction mechanism includes a pipe 2 through which a flammable gas (flammable fluid) flows, a frame arrester 3 communicating with the pipe 2, and both sides of the frame arrester 3. A pair of reduction mechanisms 14, 14 provided in communication with the frame arrester 3, and a ring-shaped gasket 6 interposed between the pipe 2, the frame arrester 3, and the reduction mechanism 14 are configured. May be. Further, the speed reduction mechanism 14 may be provided on the downstream side in the flow direction of the frame arrester 3. Further, the speed reduction mechanism 14 and the frame arrester 3 do not have to be in adjacent positions. That is, another member may be provided between the speed reduction mechanism 14 and the frame arrester 3. FIG. 10 is a cross-sectional view showing a modification of the frame arrester 1 with a speed reduction mechanism shown in FIG. In FIG. 10, members having substantially the same functions and configurations as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted. According to such a configuration, it is possible to reduce pressure loss while sufficiently securing desired flame extinguishing performance.
(第3実施形態)
 続いて、第3実施形態に係る減速機構を、図11を参照して説明する。図11は、本発明の第3実施形態に係る減速機構104´を示す断面図である。なお、図11において、第2実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、その説明を省略する。第2実施形態に係る減速機構14と第3実施形態に係る減速機構104´は、各オリフィス部材5、105´の形状が異なる。従って、第3実施形態では、各オリフィス部材105´について説明する。
(Third embodiment)
Next, the speed reduction mechanism according to the third embodiment will be described with reference to FIG. FIG. 11 is a cross-sectional view showing a speed reduction mechanism 104 ′ according to the third embodiment of the present invention. In FIG. 11, members having substantially the same functions and configurations as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted. In the speed reduction mechanism 14 according to the second embodiment and the speed reduction mechanism 104 ′ according to the third embodiment, the shapes of the orifice members 5 and 105 ′ are different. Therefore, in the third embodiment, each orifice member 105 ′ will be described.
 第3実施形態において、組立状態のオリフィス部材105´の内面は、図11に示すように、流れ方向の上流側から、上流側内周面105E´(非平行面)、下流側内周面105F´、直交面105C´(非平行面)の順で連続されるとともに、繰り返し設けられることで構成されている。各オリフィス部材105´の上流側内周面105E´と下流側内周面105F´との境界mは、各オリフィス部材105´の軸方向の中間に位置している。上流側内周面105E´は、流体の流れ方向F1の下流に向かうにしたがって、径寸法が徐々に小さくなるような傾斜を有して構成されている。下流側内周面105F´は、配管2の中心軸Pと平行に延在している。 In the third embodiment, as shown in FIG. 11, the inner surface of the orifice member 105 ′ in the assembled state has an upstream inner peripheral surface 105E ′ (non-parallel surface) and a downstream inner peripheral surface 105F from the upstream side in the flow direction. 'And the orthogonal surface 105C' (non-parallel surface) are arranged in this order and are repeatedly provided. The boundary m between the upstream inner peripheral surface 105E ′ and the downstream inner peripheral surface 105F ′ of each orifice member 105 ′ is located in the middle in the axial direction of each orifice member 105 ′. The upstream inner peripheral surface 105E ′ is configured to have an inclination such that the diameter dimension gradually decreases as it goes downstream in the fluid flow direction F1. The downstream inner peripheral surface 105 </ b> F ′ extends in parallel with the central axis P of the pipe 2.
 または、組立状態のオリフィス部材115の内面は、図12に示すように、流れ方向の上流側から、傾斜面115D(非平行面)と、直交面115C(非平行面)と、の順で連続されるとともに、繰り返し設けられることで構成されていてもよい。この場合には、減速機構114は、傾斜面115Dが、流れ方向の下流に向かうにしたがって、径寸法が徐々に小さくなるような傾斜を有して構成され、直交面115Cは、軸に直交して設けられていてもよい。図12は、本発明の第3実施形態に係る減速機構の変形例を示す断面図である。なお、図12において、上述した実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、説明を省略する。 Or, as shown in FIG. 12, the inner surface of the orifice member 115 in the assembled state is continuous in the order of the inclined surface 115D (non-parallel surface) and the orthogonal surface 115C (non-parallel surface) from the upstream side in the flow direction. In addition, it may be configured by being repeatedly provided. In this case, the speed reduction mechanism 114 is configured to have an inclination such that the diameter of the inclined surface 115D gradually decreases as it goes downstream in the flow direction, and the orthogonal surface 115C is orthogonal to the axis. It may be provided. FIG. 12 is a cross-sectional view showing a modification of the speed reduction mechanism according to the third embodiment of the present invention. In FIG. 12, members having substantially the same functions and configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
 または、組立状態のオリフィス部材125の内面は、図13に示すように、流れ方向の上流側から、上流側傾斜面125E(非平行面)と、下流側傾斜面125F(非平行面)と、の順で連続されるとともに、繰り返し設けられることで構成されていてもよい。この場合には、上流側傾斜面125Eは、流体の流れ方向F1の下流に向かうにしたがって、径寸法が徐々に小さくなるような傾斜を有して構成され、下流側傾斜面125Fは、流体の流れ方向F1の下流に向かうにしたがって、径寸法が徐々に大きくなるような傾斜を有して構成されていてもよい。即ち、減速機構124は、オリフィス部材125において、上流側傾斜面125Eと下流側傾斜面125Fとが交差する境界mが山部となり、隣接する各オリフィス部材125の上流側傾斜面125Eと下流側傾斜面125Fとが交差する境界nが谷部となり、これら山部と谷部とが軸方向に交互に並ぶように設けられていてもよい。また、上流側傾斜面125Eと下流側傾斜面125Fとの境界mが各オリフィス部材125の軸方向の中間に位置していてもよい。図13は、本発明の第3実施形態に係る減速機構の他の変形例を示す断面図である。なお、図13において、上述した実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、説明を省略する。 Alternatively, as shown in FIG. 13, the inner surface of the orifice member 125 in the assembled state is, from the upstream side in the flow direction, an upstream inclined surface 125E (non-parallel surface) and a downstream inclined surface 125F (non-parallel surface), It may be configured by being repeatedly provided in this order. In this case, the upstream inclined surface 125E is configured to have an inclination such that the diameter dimension gradually decreases as it goes downstream in the fluid flow direction F1, and the downstream inclined surface 125F You may be comprised with the inclination which a radial dimension becomes large gradually as it goes downstream of the flow direction F1. That is, in the speed reduction mechanism 124, in the orifice member 125, the boundary m where the upstream inclined surface 125E and the downstream inclined surface 125F intersect becomes a peak, and the upstream inclined surface 125E and the downstream inclined surface of each adjacent orifice member 125 are inclined. The boundary n where the surface 125F intersects may be a valley, and the peaks and valleys may be provided alternately in the axial direction. Further, the boundary m between the upstream inclined surface 125E and the downstream inclined surface 125F may be positioned in the middle of the axial direction of each orifice member 125. FIG. 13 is a cross-sectional view showing another modification of the speed reduction mechanism according to the third embodiment of the present invention. In FIG. 13, members having substantially the same function and substantially the same configuration as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 また、図13に示すように、組立状態のオリフィス部材125の内面にあっては、上流側傾斜面125Eは、流体の流れ方向F1の下流に向かうにしたがって、径寸法が徐々に小さくなるような傾斜を有して構成され、下流側傾斜面125Fは、流体の流れ方向F1の下流に向かうにしたがって、径寸法が徐々に大きくなるような傾斜を有して構成されている。即ち、上流側傾斜面125E及び下流側傾斜面125Fは、それぞれ、平面から構成されているが、本発明はこれに限定されるものではない。組立状態のオリフィス部材135の内面にあっては、図14に示すように、減速機構134は、上流側傾斜面135E及び下流側傾斜面135Fが、それぞれが曲面から構成されていてもよい。その場合には、上流側傾斜面135Eと下流側傾斜面135Fとが交差する境界mが山部となり、隣接する各オリフィス部材135の下流側傾斜面135Fと上流側傾斜面135Eとが交差する境界nが谷部となり、これらの山部と谷部とが軸方向に交互に並ぶような波型形状を有していてもよい。図14は、本発明の第3実施形態に係る減速機構のさらに他の変形例を示す断面図である。なお、図14において、上述した実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、説明を省略する。 Further, as shown in FIG. 13, on the inner surface of the assembled orifice member 125, the upstream inclined surface 125E gradually decreases in diameter as it goes downstream in the fluid flow direction F1. The downstream inclined surface 125F is configured to have an inclination that gradually increases in diameter as it goes downstream in the fluid flow direction F1. That is, the upstream side inclined surface 125E and the downstream side inclined surface 125F are each configured from a plane, but the present invention is not limited to this. On the inner surface of the orifice member 135 in the assembled state, as shown in FIG. 14, in the speed reduction mechanism 134, the upstream inclined surface 135E and the downstream inclined surface 135F may each be formed of a curved surface. In that case, a boundary m where the upstream inclined surface 135E and the downstream inclined surface 135F intersect becomes a peak, and a boundary where the downstream inclined surface 135F and the upstream inclined surface 135E of each adjacent orifice member 135 intersect. n may be a trough and may have a corrugated shape in which these crests and troughs are alternately arranged in the axial direction. FIG. 14 is a cross-sectional view showing still another modification of the speed reduction mechanism according to the third embodiment of the present invention. In FIG. 14, members having substantially the same functions and configurations as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
(第4実施形態)
 続いて、第4実施形態に係る減速機構を、図15A、図15Bを参照して説明する。図15Aは、減速機構144を示す断面図であり、図15Bは、図15Aの平面図である。なお、図15A、図15Bにおいて、第2実施形態と略同一機能や略同一構成を有する部材には、同一符号を付して、その説明を省略する。第4実施形態に係る減速機構144は、内部に複数の空間145A~145Dを有するとともに、連続する1つの部材から構成された1個のオリフィス部材145を有して構成されている。
(Fourth embodiment)
Next, the speed reduction mechanism according to the fourth embodiment will be described with reference to FIGS. 15A and 15B. 15A is a cross-sectional view showing the speed reduction mechanism 144, and FIG. 15B is a plan view of FIG. 15A. In FIG. 15A and FIG. 15B, members having substantially the same function and substantially the same configuration as those of the second embodiment are denoted by the same reference numerals, and description thereof is omitted. The speed reduction mechanism 144 according to the fourth embodiment includes a plurality of spaces 145A to 145D inside and a single orifice member 145 formed from a single continuous member.
 オリフィス部材145は、図15Aに示すように、配管2の軸方向に可燃性ガスが通気するように、その軸方向の外部と内部とが連通して設けられているとともに、配管2の中心軸Pと同軸に設けられている。このオリフィス部材145は、第1オリフィス空間145Aと、第1オリフィス空間145Aの流体の流れ方向F1の下流側に設けられて、第1オリフィス空間145Aに連続する第2オリフィス空間145Bと、第2オリフィス空間145Bの流れ方向の下流側に設けられて、第2オリフィス空間145Bに連続する第3オリフィス空間145Cと、第3オリフィス空間145Cの流れ方向の下流側に設けられて、第3オリフィス空間145Cに連続する第4オリフィス空間145Dと、を有し、これらの空間145A、145B、145C、145D、が繰り返し形成されている。また、これらのオリフィス空間145A~145Dは、略同じ大きさの体積となるように形成された空間である。 As shown in FIG. 15A, the orifice member 145 is provided such that the outside and the inside in the axial direction communicate with each other so that the combustible gas flows in the axial direction of the pipe 2. It is provided coaxially with P. The orifice member 145 is provided on the downstream side of the first orifice space 145A, the fluid flow direction F1 of the first orifice space 145A, the second orifice space 145B continuing to the first orifice space 145A, and the second orifice The third orifice space 145C is provided downstream of the space 145B in the flow direction, and is continuous with the second orifice space 145B. The third orifice space 145C is provided downstream of the flow direction of the third orifice space 145C. And a fourth orifice space 145D that is continuous, and these spaces 145A, 145B, 145C, and 145D are formed repeatedly. Further, these orifice spaces 145A to 145D are spaces formed so as to have substantially the same volume.
 これらの各オリフィス空間145A~145Dを形成する4つの空間形成部は、流れ方向の上方側から見て、90度ずつ時計回りに位置をずらして設けられている。即ち、オリフィス空間145A~145Dそれぞれを形成する4つの空間形成部は、相互に偏心して設けられている。 The four space forming portions that form the orifice spaces 145A to 145D are provided so as to be shifted clockwise by 90 degrees when viewed from the upper side in the flow direction. That is, the four space forming portions forming the orifice spaces 145A to 145D are provided eccentric to each other.
 第1オリフィス空間145Aは、中心軸Pに平行な内面14A1と、内面14A1の軸方向の両端に連続するとともに、中心軸Pに直交する直交面14A2、14A3(非平行面)と、を有して構成された空間形成部の内部空間である。直交面14A2が、流れ方向の上流側に設けられ、直交面14A3が、直交面14A2より、流れ方向の下流側に設けられている。第2オリフィス空間145Bは、中心軸Pに平行な内面14B1と、内面14B1の軸方向の両端に連続するとともに、中心軸Pに直交する直交面14B2、14B3(非平行面)と、を有して構成された空間形成部の内部空間である。直交面14B2が、流れ方向の上流側に設けられ、直交面14B3が、直交面14B2より、流れ方向の下流側に設けられている。第3オリフィス空間145Cは、中心軸Pに平行な内面14C1と、内面14C1の軸方向の両端に連続するとともに、中心軸Pに直交する直交面14C2、14C3(非平行面)と、を有して構成された空間形成部の内部空間である。直交面14C2が、流れ方向の上流側に設けられ、直交面14C3が、直交面14C2より、流れ方向の下流側に設けられている。第4オリフィス空間145Dは、中心軸Pに平行な内面14D1と、内面14D1の軸方向の両端に連続するとともに、中心軸Pに直交する直交面14D2、14D3(非平行面)と、を有して構成された空間形成部の内部空間である。直交面14D2が、流れ方向の上流側に設けられ、直交面14D3が、直交面14D2より、流れ方向の下流側に設けられている。 The first orifice space 145A has an inner surface 14A1 parallel to the central axis P, and orthogonal surfaces 14A2 and 14A3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14A1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised. The orthogonal surface 14A2 is provided on the upstream side in the flow direction, and the orthogonal surface 14A3 is provided on the downstream side in the flow direction from the orthogonal surface 14A2. The second orifice space 145B has an inner surface 14B1 parallel to the central axis P, and orthogonal surfaces 14B2 and 14B3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14B1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised. The orthogonal surface 14B2 is provided on the upstream side in the flow direction, and the orthogonal surface 14B3 is provided on the downstream side in the flow direction from the orthogonal surface 14B2. The third orifice space 145C has an inner surface 14C1 parallel to the central axis P, and orthogonal surfaces 14C2 and 14C3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14C1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised. The orthogonal surface 14C2 is provided on the upstream side in the flow direction, and the orthogonal surface 14C3 is provided on the downstream side in the flow direction from the orthogonal surface 14C2. The fourth orifice space 145D has an inner surface 14D1 parallel to the central axis P, and orthogonal surfaces 14D2 and 14D3 (non-parallel surfaces) that are continuous with both axial ends of the inner surface 14D1 and are orthogonal to the central axis P. It is the internal space of the space formation part comprised. The orthogonal surface 14D2 is provided on the upstream side in the flow direction, and the orthogonal surface 14D3 is provided on the downstream side in the flow direction from the orthogonal surface 14D2.
 このようなオリフィス部材145を有する減速機構144によれば、火炎を十分に減速させることができる。即ち、上述した第2実施形態の減速機構14では、体積が大きいオリフィス空間50Aと、体積が小さいオリフィス空間50Bとが、軸方向に交互に連続して形成され、配管2内を伝播する火炎は、大小の空間50A、50Bを繰り返し通過することで、配管2内を伝播する火炎が、十分に減速されていたが、本発明はこれに限定されるものではない。略同じ大きさの体積となるように形成されたオリフィス空間145A~145Dを繰り返し通過した場合においても、第2実施形態の減速機構14と略同様の効果が奏される。 According to the deceleration mechanism 144 having such an orifice member 145, the flame can be sufficiently decelerated. That is, in the speed reduction mechanism 14 of the second embodiment described above, the orifice space 50A having a large volume and the orifice space 50B having a small volume are alternately and continuously formed in the axial direction. The flame propagating through the pipe 2 is sufficiently decelerated by repeatedly passing through the large and small spaces 50A and 50B, but the present invention is not limited to this. Even when it repeatedly passes through the orifice spaces 145A to 145D formed so as to have substantially the same volume, substantially the same effect as the speed reduction mechanism 14 of the second embodiment is obtained.
 また、上述した第4実施形態では、各オリフィス空間145A~145Dを形成する4つの空間形成部は、流れ方向の上方側から見て、90度ずつ時計回りに位置をずらして設けられているが、本発明はこれに限定されるものではない。例えば、減速機構244のオリフィス部材245は、各オリフィス空間245A~245Dが、図16A、図16Bに示すように、流れ方向の上方側から軸方向に、オリフィス空間245A、オリフィス空間245C、オリフィス空間245B、オリフィス空間245D、の順に形成されていてもよく、中心軸Pを挟んで対向する位置にあるオリフィス空間245A及びオリフィス空間245Cと、中心軸Pを挟んで対向する位置にあるオリフィス空間245B及びオリフィス空間245Dと、が中心軸Pを中心として90度変位した位置にあってもよい。図16は、図15に示された減速機構の変形例を示す図であり、図16Aは、減速機構を示す断面図であり、図16Bは、図16Aの平面図である。これによれば、第2実施形態の減速機構14と略同様の効果が奏される。 Further, in the fourth embodiment described above, the four space forming portions forming the orifice spaces 145A to 145D are provided with their positions shifted by 90 degrees clockwise as viewed from the upper side in the flow direction. However, the present invention is not limited to this. For example, in the orifice member 245 of the speed reduction mechanism 244, each of the orifice spaces 245A to 245D has an orifice space 245A, an orifice space 245C, and an orifice space 245B in the axial direction from the upper side in the flow direction as shown in FIGS. 16A and 16B. , Orifice space 245D, and orifice space 245A and orifice space 245C that are opposed to each other with the central axis P interposed therebetween, and orifice space 245B and orifice that are opposed to each other with the central axis P interposed therebetween The space 245D may be at a position displaced 90 degrees around the central axis P. 16 is a view showing a modification of the speed reduction mechanism shown in FIG. 15, FIG. 16A is a cross-sectional view showing the speed reduction mechanism, and FIG. 16B is a plan view of FIG. 16A. According to this, the substantially same effect as the speed reduction mechanism 14 of 2nd Embodiment is show | played.
 また、例えば、減速機構344のオリフィス部材345は、各オリフィス空間345A、345Cが、図17A、図17Bに示すように、流れ方向の上方側から軸方向に、オリフィス空間345A、オリフィス空間345C、の順に形成されていてもよく、オリフィス空間345A、345Cが、中心軸Pを挟んで対向する位置にあるように、並んで設けられていてもよい。図17は、図15に示された減速機構の変形例を示す図であり、図17Aは、減速機構を示す断面図であり、図17Bは、図17Aの平面図である。これによれば、第2実施形態の減速機構14と略同様の効果が奏される。 Further, for example, the orifice member 345 of the speed reduction mechanism 344 has the orifice spaces 345A and 345C in the axial direction from the upper side in the flow direction as shown in FIGS. 17A and 17B. They may be formed in order, and the orifice spaces 345A and 345C may be provided side by side so as to be in positions facing each other across the central axis P. 17 is a view showing a modification of the speed reduction mechanism shown in FIG. 15, FIG. 17A is a sectional view showing the speed reduction mechanism, and FIG. 17B is a plan view of FIG. 17A. According to this, the substantially same effect as the speed reduction mechanism 14 of 2nd Embodiment is show | played.
 なお、本実施形態では、減速機構144、244、344は、4つの空間形成部を有して構成されていたが、本発明はこれに限定されるものではない。減速機構は、2以上(複数)の空間形成部を備えて構成されていればよい。 In the present embodiment, the speed reduction mechanisms 144, 244, and 344 are configured to have four space forming portions, but the present invention is not limited to this. The speed reduction mechanism may be configured to include two or more (plural) space forming portions.
 また、複数の空間形成部は、流れ方向の上方側から軸方向に、中心軸Pを含むように互いに偏心して設けられていればよく、これらの空間形成部は、規則性なく(ランダムに)軸方向に並んで設けられていてもよい。これによれば、第2実施形態の減速機構14と略同様の効果が奏される Further, the plurality of space forming portions may be provided so as to be eccentric from each other so as to include the central axis P in the axial direction from the upper side in the flow direction, and these space forming portions are not regular (randomly). They may be provided side by side in the axial direction. According to this, the substantially same effect as the speed reduction mechanism 14 of 2nd Embodiment is show | played.
 その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想及び、目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。 In addition, the best configuration and method for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but with respect to the embodiments described above without departing from the spirit and scope of the invention. Various modifications can be made by those skilled in the art in terms of shape, material, quantity, and other detailed configurations. Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of some or all of these is included in this invention.
1、10        減速機構付きフレームアレスタ
2           配管
3           フレームアレスタ
4、14、104、104´、114、124、134、144、244、344
            減速機構
5、15、15´、105、105´、115、125、135、145、245、345
            オリフィス部材(部材)
5B          直交面(非平行面)
5C          境界面(非平行面)
42C         オリフィススペーサの下流側直交面(非平行面)
P           中心軸
1, 10 Frame arrester with reduction mechanism 2 Piping 3 Frame arrester 4, 14, 104, 104 ', 114, 124, 134, 144, 244, 344
Deceleration mechanism 5, 15, 15 ', 105, 105', 115, 125, 135, 145, 245, 345
Orifice member
5B orthogonal plane (non-parallel plane)
5C interface (non-parallel surface)
42C Downstream orthogonal surface (non-parallel surface) of orifice spacer
P Center axis

Claims (8)

  1.  可燃性の流体が流れる配管に設けられて当該配管内を伝播する火炎を消炎するためのフレームアレスタの前記配管の軸方向の少なくとも一方側に設けられて、この配管内を伝播する火炎伝播速度を減速させるための減速機構であって、
     前記配管の軸方向に連通するように複数の部材を有して筒状に構成され、
     前記各部材の内面が、軸に非平行な非平行面を少なくとも1有し、
     前記非平行面が、前記軸方向に並んで設けられていることを特徴とする減速機構。
    The flame propagation velocity that is provided in at least one side of the pipe in the axial direction of the flame arrester provided in the pipe through which the flammable fluid flows and extinguishes the flame propagating in the pipe is determined. A deceleration mechanism for decelerating,
    It has a plurality of members so as to communicate in the axial direction of the pipe, and is configured in a cylindrical shape.
    The inner surface of each member has at least one non-parallel surface that is non-parallel to the axis;
    The speed reducing mechanism, wherein the non-parallel surfaces are provided side by side in the axial direction.
  2.  前記部材の個数が4以上であることを特徴とする請求項1に記載の減速機構。 2. The speed reduction mechanism according to claim 1, wherein the number of the members is 4 or more.
  3.  前記部材の個数が30以下であることを特徴とする請求項1または請求項2に記載の減速機構。 The speed reduction mechanism according to claim 1 or 2, wherein the number of the members is 30 or less.
  4.  前記非平行面と前記軸との成す角が略等しいことを特徴とする請求項1~請求項3のうち何れか一項に記載の減速機構。 The speed reduction mechanism according to any one of claims 1 to 3, wherein angles formed by the non-parallel plane and the axis are substantially equal.
  5.  前記非平行面と前記軸との成す角が、略90度であることを特徴とする請求項4に記載の減速機構。 The speed reduction mechanism according to claim 4, wherein an angle formed by the non-parallel plane and the axis is approximately 90 degrees.
  6.  相互に偏心して設けられた複数の空間形成部を有し、
     隣接する前記空間形成部が連通するとともにその境界には、前記非平行面が設けられていることを特徴とする請求項1乃至請求項5のうち何れか一項に記載の減速機構。
    Having a plurality of space forming portions provided eccentric to each other;
    The speed reduction mechanism according to any one of claims 1 to 5, wherein the adjacent space forming portions communicate with each other and the non-parallel surface is provided at a boundary thereof.
  7.  請求項1乃至請求項6のうち何れか一項に記載の減速機構と、
     前記配管内を伝播する火炎を消炎するための前記フレームアレスタと、を備えたことを特徴とする減速機構付きフレームアレスタ。
    A speed reduction mechanism according to any one of claims 1 to 6,
    A flame arrester with a speed reduction mechanism, comprising: the flame arrester for extinguishing a flame propagating in the pipe.
  8.  前記減速機構が、前記フレームアレスタの前記配管の軸方向の両側に設けられていることを特徴とする請求項7に記載の減速機構付きフレームアレスタ。 The frame arrester with a speed reduction mechanism according to claim 7, wherein the speed reduction mechanism is provided on both sides in the axial direction of the pipe of the frame arrester.
PCT/JP2017/039008 2016-10-28 2017-10-27 Speed reduction mechanism and flame arrester provided with speed reduction mechanism WO2018079750A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780066770.8A CN110050158B (en) 2016-10-28 2017-10-27 Speed reduction mechanism and flame arrester with speed reduction mechanism
KR1020197011534A KR20190100165A (en) 2016-10-28 2017-10-27 Reduction mechanism and flame arrester with reduction mechanism
JP2018547807A JP7117717B2 (en) 2016-10-28 2017-10-27 Reduction mechanism and flame arrester with reduction mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082143 WO2018078814A1 (en) 2016-10-28 2016-10-28 Speed reduction mechanism and flame arrester provided with speed reduction mechanism
JPPCT/JP2016/082143 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079750A1 true WO2018079750A1 (en) 2018-05-03

Family

ID=62023677

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2016/082143 WO2018078814A1 (en) 2016-10-28 2016-10-28 Speed reduction mechanism and flame arrester provided with speed reduction mechanism
PCT/JP2017/039007 WO2018079749A1 (en) 2016-10-28 2017-10-27 Speed reduction mechanism and flame arrester provided with speed reduction mechanism
PCT/JP2017/039008 WO2018079750A1 (en) 2016-10-28 2017-10-27 Speed reduction mechanism and flame arrester provided with speed reduction mechanism

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/082143 WO2018078814A1 (en) 2016-10-28 2016-10-28 Speed reduction mechanism and flame arrester provided with speed reduction mechanism
PCT/JP2017/039007 WO2018079749A1 (en) 2016-10-28 2017-10-27 Speed reduction mechanism and flame arrester provided with speed reduction mechanism

Country Status (4)

Country Link
JP (3) JP6811464B2 (en)
KR (3) KR102571832B1 (en)
CN (3) CN109952471B (en)
WO (3) WO2018078814A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1701805A (en) * 1927-02-11 1929-02-12 Irwin L Dunn Explosion arrester
US1839655A (en) * 1929-07-20 1932-01-05 John P Dobbins Flame arrester
US2277294A (en) * 1939-08-11 1942-03-24 Stephen H Brooks Self-contained flame arrester bank or unit
US5415233A (en) * 1992-06-30 1995-05-16 Chem-Mech Flame arrestor apparatus
JPH09303305A (en) * 1996-05-14 1997-11-25 Yamatake Honeywell Co Ltd Flame arrester
US5816333A (en) * 1994-05-25 1998-10-06 Schlumberger Industries, S.A. Flame barrier device
JP2010284530A (en) * 2009-06-09 2010-12-24 Leinemann Gmbh & Co Kg Flame arrester device
WO2015114335A2 (en) * 2014-01-28 2015-08-06 Elmac Technologies Limited Flame arresters

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB723936A (en) * 1952-07-01 1955-02-16 West Midlands Gas Board Improved flame and explosion traps
DE1429088A1 (en) * 1963-06-27 1968-12-12 Neumann Dr Ing Jan Impervious capillary protection for adjusting the flame in a pipeline
US4751874A (en) * 1986-11-03 1988-06-21 Quarterman Edward A Blast wave choke
US5402603A (en) * 1992-01-03 1995-04-04 Henley; Robert L. Flapper plate detonation flame arrester
JPH05296438A (en) * 1992-04-16 1993-11-09 Kobe Steel Ltd Detonation suppressor
CN2147875Y (en) * 1992-12-04 1993-12-01 张选华 Labyrinth sealed flame trap
US6644961B2 (en) * 2001-03-27 2003-11-11 The Protectoseal Company Flame arrestor with reflection suppressor
US6632261B2 (en) * 2001-07-13 2003-10-14 Mark Hamilton Method and apparatus for pyrophoric and other type gas line explosion suppression
JP2003207108A (en) 2002-01-18 2003-07-25 Kaneko Sangyo Kk Wire mesh flame arrestor
JP3919197B2 (en) * 2004-04-16 2007-05-23 金子産業株式会社 Flame arrestor
CN102698391A (en) * 2011-03-27 2012-10-03 施冲 Improved flame arrester
CN203628288U (en) * 2013-12-31 2014-06-04 盂县京德煤层气利用有限公司 Special-purpose explosion-proof device for detachable type gas pipeline
DE102014205672A1 (en) * 2014-03-26 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Manufacturer-independent positioning system for inductive charging
WO2016103386A1 (en) * 2014-12-25 2016-06-30 金子産業株式会社 Filter structure and flame arrestor
CN105521574B (en) * 2016-01-15 2020-08-25 中国人民解放军后勤工程学院 Explosion damper for cave depot oil tank breathing pipeline

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1701805A (en) * 1927-02-11 1929-02-12 Irwin L Dunn Explosion arrester
US1839655A (en) * 1929-07-20 1932-01-05 John P Dobbins Flame arrester
US2277294A (en) * 1939-08-11 1942-03-24 Stephen H Brooks Self-contained flame arrester bank or unit
US5415233A (en) * 1992-06-30 1995-05-16 Chem-Mech Flame arrestor apparatus
US5816333A (en) * 1994-05-25 1998-10-06 Schlumberger Industries, S.A. Flame barrier device
JPH09303305A (en) * 1996-05-14 1997-11-25 Yamatake Honeywell Co Ltd Flame arrester
JP2010284530A (en) * 2009-06-09 2010-12-24 Leinemann Gmbh & Co Kg Flame arrester device
WO2015114335A2 (en) * 2014-01-28 2015-08-06 Elmac Technologies Limited Flame arresters

Also Published As

Publication number Publication date
KR102389545B1 (en) 2022-04-21
KR20190100165A (en) 2019-08-28
JPWO2018079749A1 (en) 2019-09-19
CN110050158B (en) 2021-07-27
JPWO2018078814A1 (en) 2019-09-05
CN109952471A (en) 2019-06-28
JP6980197B2 (en) 2021-12-15
KR102571832B1 (en) 2023-08-28
CN109952471B (en) 2021-05-14
WO2018078814A1 (en) 2018-05-03
CN109937327B (en) 2021-07-27
CN110050158A (en) 2019-07-23
WO2018079749A1 (en) 2018-05-03
JP7117717B2 (en) 2022-08-15
CN109937327A (en) 2019-06-25
JPWO2018079750A1 (en) 2019-09-19
JP6811464B2 (en) 2021-01-13
KR20190100164A (en) 2019-08-28
KR20190100163A (en) 2019-08-28

Similar Documents

Publication Publication Date Title
US4105048A (en) High energy loss device
JP4458854B2 (en) Noise reduction device for fluid flow system
EP3403016B1 (en) Noise-attenuation apparatus for pressure regulators
EP0958466B1 (en) Fluid pressure reduction device
KR101233653B1 (en) A device for reducing pressure and velocity of flowing fluid
CN106170320B (en) Fire arrestor
EP3448530A1 (en) Flame arresters
CN108506510B (en) Ball valve with modal silencer
WO2018079750A1 (en) Speed reduction mechanism and flame arrester provided with speed reduction mechanism
US20210108739A1 (en) Additively manufactured control valve flow element
US9395136B1 (en) Flexible monocore baffle apparatus and related methods
WO2016103386A1 (en) Filter structure and flame arrestor
US11168883B2 (en) Flame arrestor with fluid drainage capabilities
GB2522476A (en) Flame arrester
JP6200362B2 (en) Exhaust system
EP3554649A1 (en) Flame arrester block for protection devices against the propagation of flames
KR20140136099A (en) Cylindrical Multi Helical One Step Stage Trim, Flow Control Valve
EP4169587A1 (en) Flame arrester
CN118105649A (en) Flame arrestor and terminal housing for flame arrestor
CN101623788A (en) Elastic membrane type tempering preventing device with fire-stopping pipe
KR20060135333A (en) Flame arrester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197011534

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864420

Country of ref document: EP

Kind code of ref document: A1