WO2018079662A1 - Resin composition and hydrolysis method therefor - Google Patents

Resin composition and hydrolysis method therefor Download PDF

Info

Publication number
WO2018079662A1
WO2018079662A1 PCT/JP2017/038728 JP2017038728W WO2018079662A1 WO 2018079662 A1 WO2018079662 A1 WO 2018079662A1 JP 2017038728 W JP2017038728 W JP 2017038728W WO 2018079662 A1 WO2018079662 A1 WO 2018079662A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
hydrolysis
acid
crystallinity
crystalline polymer
Prior art date
Application number
PCT/JP2017/038728
Other languages
French (fr)
Japanese (ja)
Inventor
秀子 大山
大介 谷島
亮平 小川
浦上 達宣
Original Assignee
学校法人立教学院
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立教学院, 三井化学株式会社 filed Critical 学校法人立教学院
Priority to JP2018547757A priority Critical patent/JP6679072B2/en
Publication of WO2018079662A1 publication Critical patent/WO2018079662A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a resin composition having excellent hydrolyzability and a hydrolysis method thereof.
  • Resins typified by polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL) and the like are used as biodegradable resins that are decomposed by moisture and enzymes in a natural environment or in vivo.
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PCL polycaprolactone
  • PLA is used in applications such as disposable containers and packaging materials because it has good workability and excellent mechanical strength of molded products.
  • PLA has a problem that its hydrolysis rate is slower than PGA and PCL.
  • PLA has low hydrophilicity and is hardly compatible with hydrophilic substances such as polyethylene glycol. Therefore, hydrophilic additives may be raised (bleed out) during molding or after molding, resulting in a decrease in mechanical strength of the molded product. Or the appearance such as transparency is impaired, which is not practical.
  • Non-Patent Documents 1 and 2 Regarding hydrolysis of PLA, acidic and alkaline hydrolysis has been reported (Non-Patent Documents 1 and 2). The present applicant has proposed to add a copolymer that promotes hydrolysis to PLA (Patent Documents 1 and 2).
  • Non-Patent Documents 1 and 2 a PLA film is annealed to produce samples having different crystallinity, and the hydrolysis behavior is confirmed.
  • Non-Patent Document 1 it is considered that the degradation of the PLA film is due to the erosion of the amorphous part of the film surface, and the higher the crystallinity, the less the weight loss due to the degradation, that is, the less the hydrolysis is. It has been shown.
  • Non-Patent Document 2 further examines the difference in hydrolysis between acidic, neutral and alkaline, and shows that the hydrolyzability at alkaline (pH 12) is higher than neutral and acidic.
  • Non-Patent Document 1 Similar to Non-Patent Document 1, it has been shown that a sample with a high degree of crystallinity has a slower weight loss rate, whereas a sample with a high degree of crystallinity has a faster decrease in molecular weight.
  • PLA generally has higher heat resistance and mechanical strength due to crystallization, but hydrolysis is slower than when PLA is not crystallized. For this reason, in order to increase the decomposition rate, it is necessary to lower the crystallinity and sacrifice heat resistance and mechanical strength, and it has been difficult to achieve both hydrolysis rate and heat resistance and mechanical strength.
  • Patent Documents 1 and 2 indicate that the hydrolysis rate is improved by the added copolymer (hydrolysis accelerator).
  • hydrolyzability at 50 ° C. to 80 ° C. under almost neutral conditions such as distilled water and ion-exchanged water has been studied, and the dependence on the lower temperature conditions and crystallinity has not been studied.
  • hydrolysis at low temperatures that could not be used until now, for example, heat resistance and machine such as sterilization treatment, etc. It can be used in high temperature and high pressure conditions that require strength.
  • An object of the present invention is to provide a resin composition that rapidly hydrolyzes and a hydrolysis method.
  • the present inventors have improved the crystallinity of a resin composition in which a hydrolysis accelerator is combined with a hydrolyzable crystalline polymer, thereby making it hydrolyzable, particularly in an alkaline aqueous solution, contrary to the conventional teaching. It has been found that the hydrolysis rate is significantly faster.
  • one form of the present invention is a resin composition containing a crystalline polymer (A) having hydrolyzability and a hydrolysis accelerator (B), and the crystallinity of the resin composition is 15 % To 60% or less of the resin composition (C).
  • Another embodiment of the present invention relates to a hydrolysis method for the resin composition (C), wherein the hydrolysis is performed in an aqueous solution having a pH higher than 7.
  • a resin composition having excellent heat resistance and mechanical strength and improved hydrolyzability can be provided.
  • the hydrolysis method according to the present invention can hydrolyze the resin composition in a very short period of time.
  • crystalline polymer (A) having hydrolyzability>
  • the hydrolyzable crystalline polymer (A) used in the present invention (hereinafter simply referred to as “crystalline polymer (A)”) is not particularly limited as long as it is a hydrolyzable crystalline polymer.
  • polyester is exemplified, and an aliphatic polyester resin composed of polyhydroxycarboxylic acid, diol and dicarboxylic acid can be used.
  • polyhydroxycarboxylic acid means a polymer or copolymer having a repeating unit (structural unit) (a-1) derived from hydroxycarboxylic acid having both a hydroxyl group and a carboxyl group.
  • hydroxycarboxylic acid examples include lactic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methyl.
  • the polyhydroxycarboxylic acid may have other structural units (copolymerization components) other than the hydroxycarboxylic acid as long as the hydrolyzability is not greatly impaired, but in 100 mol% of all the structural units of the polyhydroxycarboxylic acid.
  • the structural unit (a-1) derived from hydroxycarboxylic acid is preferably 20 mol% or more, more preferably 50 mol% or more, and particularly preferably 100%.
  • polyhydroxycarboxylic acids from the viewpoint of compatibility with the hydrolysis accelerator (B), a polymer or copolymer in which the hydroxycarboxylic acid is lactic acid is preferable, and polylactic acid (homopolymer) is more preferable.
  • Polylactic acid may be synthesized using lactic acid as a starting material or synthesized using lactide as a starting material.
  • the aliphatic polyester resin composed of diol and dicarboxylic acid means a polymer or copolymer having a repeating unit (constituent unit) derived from diol and dicarboxylic acid.
  • the aliphatic polyester resin may have other structural units (copolymerization components) other than the structural units derived from the diol and the dicarboxylic acid, unless the hydrolyzability as the crystalline polymer (A) is greatly impaired. Good.
  • aliphatic polyester resin composed of diol and dicarboxylic acid examples include polyethylene succinate, polyethylene adipate, polyethylene sebacate, polydiethylene succinate, polydiethylene adipate, polyethylene succinate adipate, polydiethylene sebacate, polybutylene succinate. , Polybutylene adipate, polybutylene succinate adipate, and polybutylene sebacate.
  • the molecular weight of the crystalline polymer (A) is not particularly limited, but is preferably larger than that of the hydrolysis accelerator (B). Considering the ease of mixing with the hydrolysis accelerator (B), the weight average molecular weight of the crystalline polymer (A) is preferably 2,000 to 2,000,000, more preferably 3,000 to 1. 1,000,000, particularly preferably more than 50,000 and 500,000 or less. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.
  • GPC gel permeation chromatography
  • hydrolysis accelerator (B) used in the present invention, any one can be used as long as it promotes the hydrolyzability of the crystalline polymer (A).
  • the “structural unit” is a unit derived from a polymerizable monomer and does not include a terminal group.
  • the hydrolysis accelerator (B) may be a random copolymer, a block copolymer, or a graft copolymer.
  • Examples of the structural unit (a-2) derived from hydroxycarboxylic acid include those exemplified as the structural unit (a-1) derived from hydroxycarboxylic acid constituting the crystalline polymer (A). It is preferable to use the same structural unit (a-1) as (A).
  • the structural unit (a-2) derived from hydroxycarboxylic acid is preferably a unit derived from lactic acid.
  • the structural unit (b-1) is not particularly limited as long as it is a structural unit derived from a polyvalent carboxylic acid.
  • the polyvalent carboxylic acid is preferably at least one selected from divalent or trivalent polyvalent carboxylic acids, among which aminodicarboxylic acid, hydroxydicarboxylic acid, and hydroxytricarboxylic acid are more preferable, aspartic acid, glutamic acid, Particularly preferred is at least one selected from malic acid, citric acid and tartaric acid.
  • These polyvalent carboxylic acids may have one kind or two or more different kinds.
  • the structural unit derived from the polyvalent carboxylic acid may form a ring structure such as an imide ring, the ring structure may be ring-opened, or the ring structure and the ring-opened structure are mixed. Alternatively, two or more different ring structures and / or ring-opened structures may be included.
  • the hydrolysis accelerator (B) is not particularly limited as long as it is a copolymer having the structural unit (a-2) and the structural unit (b-1) described above. Of these, aspartic acid-lactic acid copolymer, malic acid-lactic acid copolymer, and citric acid-lactic acid copolymer are particularly preferable.
  • the molar composition ratio [(a-2) / (b-1)] of the structural unit (a-2) and the structural unit (b-1) in the hydrolysis accelerator (B) is preferably a charged amount at the time of polymerization. Is 1/1 to 50/1, more preferably 10/1 to 20/1. When the molar composition ratio is within these ranges, a copolymer excellent in the decomposition rate promoting effect and excellent in compatibility with the crystalline polymer (A) can be obtained.
  • the hydrolysis accelerator (B) structural units other than the structural units (a-2) and (b-1) (units derived from other copolymerization components) may be present. However, the amount must be such that the properties of the hydrolysis accelerator (B) are not significantly impaired. From this point, the amount of the other structural unit is desirably about 20 mol% or less in 100 mol% of the entire structural unit of the hydrolysis accelerator (B).
  • the weight average molecular weight of the hydrolysis accelerator (B) is 1,000 or more and 50,000 or less, preferably 2,500 or more and 30,000 or less, and particularly preferably in the range of 2,500 to 10,000. Is within.
  • This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.
  • the method for producing the hydrolysis accelerator (B) is not particularly limited. In general, it can be obtained by mixing polycarboxylic acid and hydroxycarboxylic acid at a desired ratio and performing dehydration polycondensation under heating and reduced pressure in the presence or absence of a catalyst. It can also be obtained by reacting an anhydrous cyclic compound of hydroxycarboxylic acid such as lactide, glycolide, caprolactone and the like with a polyvalent carboxylic acid.
  • the resin composition (C) according to the present invention is obtained by mixing the crystalline polymer (A) and the hydrolysis accelerator (B).
  • the mass composition ratio [(A) / (B)] is 95/5 to 50/50, preferably 95/50, where the total amount of the crystalline polymer (A) and the hydrolysis accelerator (B) is 100. 5 to 55/45, more preferably 95/5 to 60/40, and particularly preferably 95/5 to 80/20. It is preferable that the mass composition ratio is within these ranges because the decomposition rate promoting effect by the hydrolysis accelerator (B) is exhibited while maintaining the properties of the crystalline polymer (A).
  • the method of mixing the hydrolysis accelerator (B) with the crystalline polymer (A) is not particularly limited. Preferably, both are melt-kneaded or dissolved in a solvent and mixed with stirring. By such a production method, a uniform resin composition (C) can be obtained from the crystalline polymer (A) and the hydrolysis accelerator (B).
  • the resin composition (C) is an additive that can be added to a polymer other than the hydrolysis accelerator (B) and the crystalline polymer (A) or a normal resin as long as the properties of the crystalline polymer (A) are not significantly impaired.
  • An agent may be included.
  • the crystallinity of the resin composition (C) is 15% or more and 60% or less.
  • the crystallinity referred to in the present invention is determined as a function of melting enthalpy, crystallization enthalpy, and recrystallization enthalpy obtained by differential thermal analysis (DSC), as shown in the examples described later.
  • the lower limit of the crystallinity is preferably 20% and more preferably 25% from the viewpoint of heat resistance.
  • the upper limit of the degree of crystallinity is preferably 55% and more preferably 50% from the viewpoint of heat resistance and simplification of the crystallization process.
  • crystallinity When the crystallinity is less than 15%, not only the effect of improving the heat resistance of the resin composition (C) by crystallization is small, but also the effect of adding the hydrolysis accelerator (B) is manifested, and crystallization and hydrolysis A synergistic effect with the addition of the accelerator (B) does not appear.
  • a known method can be applied to adjust the degree of crystallinity. A method of adjusting the heating temperature, temperature rising rate, cooling rate, etc. during molding of a molded product using the resin composition (C), or crystallization of the molded product.
  • Examples thereof include a method of reheating (annealing) at a temperature not lower than the temperature and lower than the melting temperature.
  • a crystal nucleating agent a method for increasing the degree of crystallinity by stretching treatment, and the like can also be mentioned.
  • polylactic acid which is an example of the crystalline polymer (A)
  • has a low crystallization rate and a product that has been rapidly cooled by molding is low in crystallinity.
  • the molecular weight of the resin composition (C) is not particularly limited. Considering moldability, the weight average molecular weight of the resin composition (C) is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and particularly preferably 50,000 to 300,000. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.
  • GPC gel permeation chromatography
  • the resin composition (C) according to the present invention can be formed into various shapes, for example, films, sheets, fibers, tablets, and the like by a conventionally known molding method.
  • the hydrolysis method according to the present invention is a method in which the resin composition (C) is hydrolyzed in an aqueous solution (referred to as an alkaline aqueous solution) having a pH higher than 7.
  • the pH is preferably 7.1 or higher, more preferably 8 or higher.
  • an aqueous solution having an initial pH greater than 7 before immersion of the resin composition (C) can be mentioned.
  • Another embodiment includes an aqueous solution in which an initial pH is 7 or less and a basic substance is added and dissolved so that the pH becomes higher than 7 after immersion in the resin composition (C).
  • the pH is preferably higher than 7 in most of the decomposition process of the resin composition (C).
  • a molded article made of the resin composition (C) is immersed in an alkaline aqueous solution. Moreover, it can also hydrolyze by spraying alkaline aqueous solution with a spray etc. on the molded article which consists of a resin composition (C).
  • the temperature of the alkaline aqueous solution is not particularly limited, but is preferably 30 ° C. or higher and lower than the melting point of the resin composition (C). The higher the temperature is, the higher the hydrolysis rate can be. However, the energy cost increases accordingly, so that the temperature is appropriately adjusted according to the purpose.
  • the resin composition (C) has improved heat resistance by being crystallized, and can be used for applications that require hydrolysis under high temperature and high pressure.
  • the resin composition (C) melts at the hydrolysis temperature equal to or higher than the melting point of the resin composition (C)
  • the effect of adding the decomposition accelerator (B) is lost. It is necessary to perform hydrolysis below the melting point of the product (C).
  • the basic substance contained in the alkaline aqueous solution is not particularly limited, but in view of versatility and safety, an alkali metal hydroxide is preferable, and sodium hydroxide is more preferable. Moreover, it is good also as a buffer solution by adding inorganic salt and organic salt.
  • ⁇ Weight average molecular weight (Mw)> The sample was dissolved in chloroform (concentration of about 0.5% by mass), and the weight average molecular weight (Mw) was determined as a value in terms of polystyrene by gel permeation chromatography (GPC). The measurement conditions are shown below.
  • RI detector JASCO RI-2031, Column: LF-G and LF-804 manufactured by SHODEX Column temperature: 40 ° C Solvent: chloroform, Flow rate: 1.0 ml / min.
  • ⁇ Crystallinity> Using a DSC apparatus (DSC Q-200TA manufactured by TA Instrument), a sample of about 4 to 5 mg is measured in a temperature range of 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min, and the enthalpy of fusion ( ⁇ Hm) Crystallization enthalpy ( ⁇ Hc), recrystallization enthalpy ( ⁇ Hr), melting point (Tm) and glass transition temperature (Tg) were determined.
  • the crystallinity (Xc) was calculated by the following formula.
  • Xc (%) ⁇ (
  • the melting enthalpy ( ⁇ Hf) when polylactic acid was crystallized 100% was set to 93.1 J / g. Crystallinity was expressed as the crystallinity of the entire blend.
  • ⁇ Hydrolysis test> A sample having a thickness of 0.2 mm and a 20 mm square was placed in a glass container, immersed in the following solutions having different pH values, and allowed to stand in a water bath controlled at 40 ° C. The solution was exchanged to keep the pH constant so that the pH did not change during decomposition. After a predetermined time had elapsed, the sample was collected, washed with distilled water, and then vacuum dried at room temperature for 24 hours to measure the mass. Mass retention by hydrolysis was calculated by the following formula. When the sample could not be collected, the mass retention was set to 0% assuming that the sample was completely decomposed.
  • Mass retention rate (%) (W d / W 0 ) ⁇ 100 Solutions with different pH used (1) pH 7.4: phosphate buffer (2) pH 12.0: KCl-NaOH buffer
  • PAL Lactic Acid-Aspartic Acid Copolymer
  • 39.9 g (0.3 mol) of Wako Pure Chemical Industries L-aspartic acid was added to a 500 ml glass reactor equipped with a stirrer and a degassing port. ), 300.3 g (3.0 mol) of 90% L-lactic acid manufactured by Purac was charged.
  • the reactor was immersed in an oil bath and subjected to dehydration polymerization for 7 hours while flowing nitrogen at 180 ° C.
  • the obtained colorless and transparent solid was pulverized to obtain a powdery polymer (PAL).
  • the weight average molecular weight measured by the above-mentioned method was 3500.
  • Example 1 The press film 1 obtained in Comparative Example 1 was heat-treated for 10 minutes at a crystallization temperature (105 ° C.) observed by DSC measurement in Comparative Example 1 under reduced pressure by hot pressing, and crystallized to obtain the crystallized composition of the present invention.
  • Product 1 was obtained.
  • the crystallinity was measured by the method described above, the crystallinity was 43.3%.
  • the obtained film was subjected to a hydrolysis test by the method described above. The test results at each pH are shown in Tables 1 and 2.
  • Example 2 The press film 2 obtained in Comparative Example 2 was heat-treated for 10 minutes at a crystallization temperature (110 ° C.) observed by DSC measurement in Comparative Example 2 under reduced pressure by hot pressing to obtain a crystallized composition 2 of the present invention. It was. When the crystallinity was measured by the method described above, the crystallinity was 41.6%. The obtained film was subjected to a hydrolysis test by the method described above. The test results at each pH are shown in Tables 1 and 2.
  • the resin composition (C) according to the present invention is, for example, a film, a food packaging material, a sanitary ware packaging material, an agricultural and horticultural material, a fiber, a nonwoven fabric, a sustained-release drug, etc. Applicable to. Moreover, the hydrolysis method which concerns on this invention can hydrolyze the resin composition (C) which concerns on this invention simply and rapidly by using basic aqueous solution.
  • This application claims priority based on Japanese Patent Application No. 2016-2111778 filed on Oct. 28, 2016, the entire disclosure of which is incorporated herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

In order to provide a resin composition that is quickly hydrolyzed, a resin composition that contains a hydrolyzable crystalline polymer (A) and a hydrolysis accelerator (B) is used, wherein the resin composition (C) is characterized in that the degree of crystallinity of the resin composition is 15-60%. In addition, the resin composition (C) is quickly hydrolyzed in an aqueous solution having a pH that is greater than 7.

Description

樹脂組成物及びその加水分解方法Resin composition and hydrolysis method thereof
 本発明は、加水分解性に優れた樹脂組成物と、その加水分解方法に関する。 The present invention relates to a resin composition having excellent hydrolyzability and a hydrolysis method thereof.
 近年、地球環境の悪化に伴い、樹脂のリサイクルや生体に安全で地球環境に対して負荷の少ない添加剤への関心が高まっている。ポリ乳酸(PLA)、ポリグリコール酸(PGA)、ポリカプロラクトン(PCL)等に代表される樹脂は、自然環境下や生体内で水分や酵素により分解される生分解性樹脂として利用されている。
 例えばPLAは、加工性が良く成形品の機械的強度が優れているので、使い捨ての容器、包装材等の用途に利用されている。しかし、PLAは、PGAやPCLに比較して加水分解速度が遅いという問題点がある。
In recent years, with the deterioration of the global environment, there is an increasing interest in resin recycling and additives that are safe for living organisms and have little impact on the global environment. Resins typified by polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL) and the like are used as biodegradable resins that are decomposed by moisture and enzymes in a natural environment or in vivo.
For example, PLA is used in applications such as disposable containers and packaging materials because it has good workability and excellent mechanical strength of molded products. However, PLA has a problem that its hydrolysis rate is slower than PGA and PCL.
 このようなPLAの問題点を克服すべく、PLAの加水分解速度を向上させる方法として、例えば、PLAにポリエチレングリコール等の親水性添加剤を配合する方法が提案されている。しかし、PLAは親水性が低く、ポリエチレングリコール等の親水性物質とは相溶しにくいため、親水性添加剤が成形時や成形後に浮き出したり(ブリードアウト)、成形品の機械的強度が低下したり、透明性等の外観が損なわれたりして、実用的ではない。 In order to overcome such problems of PLA, for example, a method of adding a hydrophilic additive such as polyethylene glycol to PLA has been proposed as a method for improving the hydrolysis rate of PLA. However, PLA has low hydrophilicity and is hardly compatible with hydrophilic substances such as polyethylene glycol. Therefore, hydrophilic additives may be raised (bleed out) during molding or after molding, resulting in a decrease in mechanical strength of the molded product. Or the appearance such as transparency is impaired, which is not practical.
 PLAの加水分解に関して、酸性やアルカリ性での加水分解が報告されている(非特許文献1、2)。
 本出願人は、PLAに加水分解を促進する共重合体を添加することを提案している(特許文献1,2)。
Regarding hydrolysis of PLA, acidic and alkaline hydrolysis has been reported (Non-Patent Documents 1 and 2).
The present applicant has proposed to add a copolymer that promotes hydrolysis to PLA (Patent Documents 1 and 2).
国際公開2012/137681号パンフレットInternational Publication No. 2012/137681 Pamphlet 国際公開2014/038608号パンフレットInternational Publication No. 2014/038608 Pamphlet
 非特許文献1,2ではPLAフィルムをアニールして結晶性の異なるサンプルを作製し、その加水分解の挙動を確認している。非特許文献1によると、PLAフィルムの分解はフィルム表面の非晶質部分の浸食によるものと考えられており、結晶化度が高くなるほど、分解による重量ロスが少ない、すなわち、加水分解しにくくなることが示されている。非特許文献2では、酸性、中性、アルカリ性での加水分解の違いが更に検討され、アルカリ性(pH12)での加水分解性は中性や酸性に比べて高いことが示されている。非特許文献1と同様に、結晶化度の高いサンプルでは重量ロスの速度が遅くなることが示されている一方で、分子量は結晶化度の高いサンプルの方が速く減少している。ただし、いずれも完全に分解するまでに200日程度の長い期間が必要である。つまり、通常PLAは結晶化により耐熱性や機械強度が高くなるが、結晶化させることにより結晶化させない場合と比較して加水分解が遅くなる。このため、分解速度を早くするためには結晶化度を低下させ耐熱性や機械強度を犠牲にする必要があり、加水分解速度と耐熱性や機械強度とを両立することは困難であった。 In Non-Patent Documents 1 and 2, a PLA film is annealed to produce samples having different crystallinity, and the hydrolysis behavior is confirmed. According to Non-Patent Document 1, it is considered that the degradation of the PLA film is due to the erosion of the amorphous part of the film surface, and the higher the crystallinity, the less the weight loss due to the degradation, that is, the less the hydrolysis is. It has been shown. Non-Patent Document 2 further examines the difference in hydrolysis between acidic, neutral and alkaline, and shows that the hydrolyzability at alkaline (pH 12) is higher than neutral and acidic. Similar to Non-Patent Document 1, it has been shown that a sample with a high degree of crystallinity has a slower weight loss rate, whereas a sample with a high degree of crystallinity has a faster decrease in molecular weight. However, it takes a long period of about 200 days to completely decompose. That is, PLA generally has higher heat resistance and mechanical strength due to crystallization, but hydrolysis is slower than when PLA is not crystallized. For this reason, in order to increase the decomposition rate, it is necessary to lower the crystallinity and sacrifice heat resistance and mechanical strength, and it has been difficult to achieve both hydrolysis rate and heat resistance and mechanical strength.
 特許文献1,2では、添加する共重合体(加水分解促進剤)によって、加水分解速度が向上することが示されている。いずれも、蒸留水、イオン交換水等のほぼ中性条件で50℃~80℃での加水分解性について検討されており、より低温条件や結晶化度の依存性については検討されていない。 Patent Documents 1 and 2 indicate that the hydrolysis rate is improved by the added copolymer (hydrolysis accelerator). In any case, hydrolyzability at 50 ° C. to 80 ° C. under almost neutral conditions such as distilled water and ion-exchanged water has been studied, and the dependence on the lower temperature conditions and crystallinity has not been studied.
 上述したように、結晶化による耐熱性や機械強度の向上と、加水分解速度の向上とを両立できれば、これまで使用できなかった低温での加水分解や、例えば滅菌処理のような耐熱性や機械強度が必要となるような高温・高圧条件における使用が可能となる。 As described above, if both heat resistance and mechanical strength improvement by crystallization can be achieved and hydrolysis rate can be improved, hydrolysis at low temperatures that could not be used until now, for example, heat resistance and machine such as sterilization treatment, etc. It can be used in high temperature and high pressure conditions that require strength.
 本発明は、速やかに加水分解する樹脂組成物並びに加水分解方法を提供することを目的とする。 An object of the present invention is to provide a resin composition that rapidly hydrolyzes and a hydrolysis method.
 本発明者らは、加水分解性を有する結晶性ポリマーに加水分解促進剤を組み合わせた樹脂組成物の結晶化度を高めることで、従来の教示に反して加水分解性、特にアルカリ水溶液中での加水分解速度が顕著に速くなることを見いだした。 The present inventors have improved the crystallinity of a resin composition in which a hydrolysis accelerator is combined with a hydrolyzable crystalline polymer, thereby making it hydrolyzable, particularly in an alkaline aqueous solution, contrary to the conventional teaching. It has been found that the hydrolysis rate is significantly faster.
 すなわち、本発明の一形態は、加水分解性を有する結晶性ポリマー(A)と、加水分解促進剤(B)とを含有する樹脂組成物であって、該樹脂組成物の結晶化度が15%以上、60%以下であることを特徴とする樹脂組成物(C)に関する。
 また、本発明の一形態は、上記樹脂組成物(C)の加水分解方法であって、pHが7より大きい水溶液中で、加水分解することを特徴とする加水分解方法に関する。
That is, one form of the present invention is a resin composition containing a crystalline polymer (A) having hydrolyzability and a hydrolysis accelerator (B), and the crystallinity of the resin composition is 15 % To 60% or less of the resin composition (C).
Another embodiment of the present invention relates to a hydrolysis method for the resin composition (C), wherein the hydrolysis is performed in an aqueous solution having a pH higher than 7.
 本発明によれば、耐熱性や機械強度に優れ、加水分解性の向上した樹脂組成物が提供できる。また、本発明に係る加水分解方法は、該樹脂組成物を極めて短期間で加水分解することができる。 According to the present invention, a resin composition having excellent heat resistance and mechanical strength and improved hydrolyzability can be provided. Moreover, the hydrolysis method according to the present invention can hydrolyze the resin composition in a very short period of time.
 <加水分解性を有する結晶性ポリマー(A)>
 本発明に用いる加水分解性を有する結晶性ポリマー(A)(以下、単に「結晶性ポリマー(A)」という)は、加水分解性を有する結晶性ポリマーであれば良く、特に限定されない。例えば、ポリエステルが挙げられ、特にポリヒドロキシカルボン酸、ジオールとジカルボン酸からなる脂肪族ポリエステル樹脂を使用できる。
<Crystalline polymer (A) having hydrolyzability>
The hydrolyzable crystalline polymer (A) used in the present invention (hereinafter simply referred to as “crystalline polymer (A)”) is not particularly limited as long as it is a hydrolyzable crystalline polymer. For example, polyester is exemplified, and an aliphatic polyester resin composed of polyhydroxycarboxylic acid, diol and dicarboxylic acid can be used.
 本発明において、ポリヒドロキシカルボン酸は、水酸基とカルボキシル基とを併せ有するヒドロキシカルボン酸に由来する繰り返し単位(構成単位)(a-1)を有する重合体又は共重合体を意味する。 In the present invention, polyhydroxycarboxylic acid means a polymer or copolymer having a repeating unit (structural unit) (a-1) derived from hydroxycarboxylic acid having both a hydroxyl group and a carboxyl group.
 ヒドロキシカルボン酸の具体例としては、乳酸、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-メチル乳酸、2-ヒドロキシ吉草酸、2-ヒドロキシカプロン酸、2-ヒドロキシラウリン酸、2-ヒドロキシミリスチン酸、2-ヒドロキシパルミチン酸、2-ヒドロキシステアリン酸、リンゴ酸、クエン酸、酒石酸、2-ヒドロキシ-3-メチル酪酸、2-シクロヘキシル-2-ヒドロキシ酢酸、マンデル酸、サリチル酸、カプロラクトン等のラクトン類の開環生成物が挙げられる。これらの2種以上を混合して用いても良い。 Specific examples of the hydroxycarboxylic acid include lactic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methyl. Butyric acid, 2-methyl lactic acid, 2-hydroxyvaleric acid, 2-hydroxycaproic acid, 2-hydroxylauric acid, 2-hydroxymyristic acid, 2-hydroxypalmitic acid, 2-hydroxystearic acid, malic acid, citric acid, tartaric acid Ring-opening products of lactones such as 2-hydroxy-3-methylbutyric acid, 2-cyclohexyl-2-hydroxyacetic acid, mandelic acid, salicylic acid and caprolactone. Two or more of these may be mixed and used.
 ポリヒドロキシカルボン酸は、加水分解性を大きく損なわない限り、ヒドロキシカルボン酸以外の他の構成単位(共重合成分)を有していてもよいが、ポリヒドロキシカルボン酸の全構成単位100モル%中、ヒドロキシカルボン酸由来の構成単位(a-1)は好ましくは20モル%以上であり、より好ましくは50モル%以上であり、特に好ましくは100%である。 The polyhydroxycarboxylic acid may have other structural units (copolymerization components) other than the hydroxycarboxylic acid as long as the hydrolyzability is not greatly impaired, but in 100 mol% of all the structural units of the polyhydroxycarboxylic acid. The structural unit (a-1) derived from hydroxycarboxylic acid is preferably 20 mol% or more, more preferably 50 mol% or more, and particularly preferably 100%.
 ポリヒドロキシカルボン酸のうち、加水分解促進剤(B)との相溶性の点からは、ヒドロキシカルボン酸が乳酸である重合体または共重合体が好ましく、ポリ乳酸(単独重合体)がより好ましい。ポリ乳酸は、乳酸を出発原料として合成されたものであっても、ラクチドを出発原料として合成されたものであっても良い。 Among the polyhydroxycarboxylic acids, from the viewpoint of compatibility with the hydrolysis accelerator (B), a polymer or copolymer in which the hydroxycarboxylic acid is lactic acid is preferable, and polylactic acid (homopolymer) is more preferable. Polylactic acid may be synthesized using lactic acid as a starting material or synthesized using lactide as a starting material.
 本発明において、ジオールとジカルボン酸からなる脂肪族ポリエステル樹脂は、ジオール及びジカルボン酸に由来する繰り返し単位(構成単位)を有する重合体又は共重合体を意味する。該脂肪族ポリエステル樹脂は、結晶性ポリマー(A)としての加水分解性を大きく損なわない限り、ジオールとジカルボン酸に由来する構成単位以外の他の構成単位(共重合成分)を有していてもよい。 In the present invention, the aliphatic polyester resin composed of diol and dicarboxylic acid means a polymer or copolymer having a repeating unit (constituent unit) derived from diol and dicarboxylic acid. The aliphatic polyester resin may have other structural units (copolymerization components) other than the structural units derived from the diol and the dicarboxylic acid, unless the hydrolyzability as the crystalline polymer (A) is greatly impaired. Good.
 ジオールとジカルボン酸からなる脂肪族ポリエステル樹脂の具体例としては、ポリエチレンサクシネート、ポリエチレンアジペート、ポリエチレンセバケート、ポリジエチレンサクシネート、ポリジエチレンアジペート、ポリエチレンサクシネートアジペート、ポリジエチレンセバケート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネートアジペート、ポリブチレンセバケートが挙げられる。 Specific examples of the aliphatic polyester resin composed of diol and dicarboxylic acid include polyethylene succinate, polyethylene adipate, polyethylene sebacate, polydiethylene succinate, polydiethylene adipate, polyethylene succinate adipate, polydiethylene sebacate, polybutylene succinate. , Polybutylene adipate, polybutylene succinate adipate, and polybutylene sebacate.
 結晶性ポリマー(A)の分子量は特に限定されないが、加水分解促進剤(B)よりも分子量の大きなものが好ましい。加水分解促進剤(B)との混合のし易さを考慮すると、結晶性ポリマー(A)の重量平均分子量は、好ましくは2,000~2,000,000、より好ましくは3,000~1,000,000、特に好ましくは50,000超、500,000以下である。この重量平均分子量は、後述する実施例に記載の条件で、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めた値である。 The molecular weight of the crystalline polymer (A) is not particularly limited, but is preferably larger than that of the hydrolysis accelerator (B). Considering the ease of mixing with the hydrolysis accelerator (B), the weight average molecular weight of the crystalline polymer (A) is preferably 2,000 to 2,000,000, more preferably 3,000 to 1. 1,000,000, particularly preferably more than 50,000 and 500,000 or less. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.
 <加水分解促進剤(B)>
 本発明に用いる加水分解促進剤(B)は、結晶性ポリマー(A)の加水分解性を促進するものであれば、いずれのものも使用できるが、特にヒドロキシカルボン酸に由来する構成単位(a-2)と多価カルボン酸に由来する構成単位(b-1)を有する共重合体であることが好ましい。なお、「構成単位」とは、重合性単量体に由来する単位であり、末端基は含まない。加水分解促進剤(B)はランダム共重合体、ブロック共重合体、グラフト共重合体の何れでも構わない。ヒドロキシカルボン酸に由来する構成単位(a-2)としては、結晶性ポリマー(A)を構成するヒドロキシカルボン酸に由来する構成単位(a-1)として例示したものが挙げられ、組み合わせる結晶性ポリマー(A)の構成単位(a-1)と同じものを使用することが好ましい。特にヒドロキシカルボン酸に由来する構成単位(a-2)としては、乳酸に由来する単位であることが好ましい。
<Hydrolysis accelerator (B)>
As the hydrolysis accelerator (B) used in the present invention, any one can be used as long as it promotes the hydrolyzability of the crystalline polymer (A). In particular, the structural unit derived from hydroxycarboxylic acid (a -2) and a copolymer having a structural unit (b-1) derived from a polyvalent carboxylic acid. The “structural unit” is a unit derived from a polymerizable monomer and does not include a terminal group. The hydrolysis accelerator (B) may be a random copolymer, a block copolymer, or a graft copolymer. Examples of the structural unit (a-2) derived from hydroxycarboxylic acid include those exemplified as the structural unit (a-1) derived from hydroxycarboxylic acid constituting the crystalline polymer (A). It is preferable to use the same structural unit (a-1) as (A). In particular, the structural unit (a-2) derived from hydroxycarboxylic acid is preferably a unit derived from lactic acid.
 構成単位(b-1)は多価カルボン酸に由来する構成単位であれば良く、特に限定されない。多価カルボン酸は2価または3価の多価カルボン酸から選択される1種以上であることが好ましく、中でも、アミノジカルボン酸、ヒドロキシジカルボン酸、ヒドロキシトリカルボン酸がより好ましく、アスパラギン酸、グルタミン酸、リンゴ酸、クエン酸、酒石酸から選択される1種以上であることが特に好ましい。これら多価カルボン酸は1種または異なる2種以上を有していてもよい。多価カルボン酸に由来する構成単位は、イミド環等の環構造を形成していてもよく、該環構造が開環していてもよく、またはこれらの環構造および開環構造が混在していてもよく、異なる2種以上環構造および/または開環構造が含まれていてもよい。 The structural unit (b-1) is not particularly limited as long as it is a structural unit derived from a polyvalent carboxylic acid. The polyvalent carboxylic acid is preferably at least one selected from divalent or trivalent polyvalent carboxylic acids, among which aminodicarboxylic acid, hydroxydicarboxylic acid, and hydroxytricarboxylic acid are more preferable, aspartic acid, glutamic acid, Particularly preferred is at least one selected from malic acid, citric acid and tartaric acid. These polyvalent carboxylic acids may have one kind or two or more different kinds. The structural unit derived from the polyvalent carboxylic acid may form a ring structure such as an imide ring, the ring structure may be ring-opened, or the ring structure and the ring-opened structure are mixed. Alternatively, two or more different ring structures and / or ring-opened structures may be included.
 加水分解促進剤(B)は、以上説明した構成単位(a-2)及び構成単位(b-1)を有する共重合体であれば良く、特に限定されない。中でも、アスパラギン酸-乳酸共重合体、リンゴ酸-乳酸共重合体、クエン酸-乳酸共重合体が特に好ましい。 The hydrolysis accelerator (B) is not particularly limited as long as it is a copolymer having the structural unit (a-2) and the structural unit (b-1) described above. Of these, aspartic acid-lactic acid copolymer, malic acid-lactic acid copolymer, and citric acid-lactic acid copolymer are particularly preferable.
 加水分解促進剤(B)における構成単位(a-2)と構成単位(b-1)のモル組成比[(a-2)/(b-1)]は、重合時の仕込量で、好ましくは1/1~50/1、より好ましくは10/1~20/1である。モル組成比がこれらの範囲内にあると、分解速度促進効果に優れ、結晶性ポリマー(A)との相溶性にも優れた共重合体が得られる。 The molar composition ratio [(a-2) / (b-1)] of the structural unit (a-2) and the structural unit (b-1) in the hydrolysis accelerator (B) is preferably a charged amount at the time of polymerization. Is 1/1 to 50/1, more preferably 10/1 to 20/1. When the molar composition ratio is within these ranges, a copolymer excellent in the decomposition rate promoting effect and excellent in compatibility with the crystalline polymer (A) can be obtained.
 加水分解促進剤(B)中には、構成単位(a-2)および(b-1)以外の構成単位(他の共重合成分に由来する単位)が存在していてもよい。ただし、その量は加水分解促進剤(B)の性質を大きく損なわない程度であることが必要である。かかる点から、その他の構成単位の量は加水分解促進剤(B)全体の構成単位100モル%中、およそ20モル%以下であることが望ましい。 In the hydrolysis accelerator (B), structural units other than the structural units (a-2) and (b-1) (units derived from other copolymerization components) may be present. However, the amount must be such that the properties of the hydrolysis accelerator (B) are not significantly impaired. From this point, the amount of the other structural unit is desirably about 20 mol% or less in 100 mol% of the entire structural unit of the hydrolysis accelerator (B).
 加水分解促進剤(B)の重量平均分子量は1,000以上、50,000以下であり、好ましくは2,500以上、30,000以下であり、特に好ましくは2,500~10,000の範囲内である。この重量平均分子量は、後述する実施例に記載の条件で、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めた値である。 The weight average molecular weight of the hydrolysis accelerator (B) is 1,000 or more and 50,000 or less, preferably 2,500 or more and 30,000 or less, and particularly preferably in the range of 2,500 to 10,000. Is within. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.
 加水分解促進剤(B)の製造方法は特に限定されない。一般的には、多価カルボン酸とヒドロキシカルボン酸を所望の比で混合し、触媒の存在下又は非存在下で、加熱減圧下にて脱水重縮合することで得ることができる。また、ラクチド、グリコリド、カプロラクトン等のヒドロキシカルボン酸の無水環状化合物と多価カルボン酸とを反応させることで得ることもできる。 The method for producing the hydrolysis accelerator (B) is not particularly limited. In general, it can be obtained by mixing polycarboxylic acid and hydroxycarboxylic acid at a desired ratio and performing dehydration polycondensation under heating and reduced pressure in the presence or absence of a catalyst. It can also be obtained by reacting an anhydrous cyclic compound of hydroxycarboxylic acid such as lactide, glycolide, caprolactone and the like with a polyvalent carboxylic acid.
 <樹脂組成物(C)>
 本発明に係る樹脂組成物(C)は、結晶性ポリマー(A)と加水分解促進剤(B)とを混合して得られる。その質量組成比[(A)/(B)]は、結晶性ポリマー(A)と加水分解促進剤(B)の合計量を100として、95/5~50/50であり、好ましくは95/5~55/45であり、より好ましくは95/5~60/40であり、特に好ましくは95/5~80/20である。質量組成比がこれらの範囲内にあると、結晶性ポリマー(A)の持つ性質を維持しつつ加水分解促進剤(B)による分解速度促進効果が発揮されるため好ましい。また、加水分解促進剤(B)の量が多いほど分解速度の大きな樹脂組成物(C)が得られる。一方、質量組成比が95/5より大きくなると、加水分解促進剤(B)の添加による分解促進効果が十分ではなく、また50/50より小さくなると樹脂組成物(C)の結晶化度が大きくならず、また、結晶性ポリマー(A)のもつ性質を損なうため好ましくない。
<Resin composition (C)>
The resin composition (C) according to the present invention is obtained by mixing the crystalline polymer (A) and the hydrolysis accelerator (B). The mass composition ratio [(A) / (B)] is 95/5 to 50/50, preferably 95/50, where the total amount of the crystalline polymer (A) and the hydrolysis accelerator (B) is 100. 5 to 55/45, more preferably 95/5 to 60/40, and particularly preferably 95/5 to 80/20. It is preferable that the mass composition ratio is within these ranges because the decomposition rate promoting effect by the hydrolysis accelerator (B) is exhibited while maintaining the properties of the crystalline polymer (A). Moreover, a resin composition (C) with a large decomposition rate is obtained, so that there is much quantity of a hydrolysis accelerator (B). On the other hand, when the mass composition ratio is larger than 95/5, the decomposition promoting effect by addition of the hydrolysis accelerator (B) is not sufficient, and when it is smaller than 50/50, the crystallinity of the resin composition (C) is large. Moreover, since the property which a crystalline polymer (A) has is impaired, it is not preferable.
 結晶性ポリマー(A)に加水分解促進剤(B)を混合する方法は特に限定されない。好ましくは両者を溶融混練するか、溶媒に溶解させ攪拌混合する。このような製法により、結晶性ポリマー(A)と加水分解促進剤(B)とから、均一な樹脂組成物(C)を得ることが出来る。 The method of mixing the hydrolysis accelerator (B) with the crystalline polymer (A) is not particularly limited. Preferably, both are melt-kneaded or dissolved in a solvent and mixed with stirring. By such a production method, a uniform resin composition (C) can be obtained from the crystalline polymer (A) and the hydrolysis accelerator (B).
 樹脂組成物(C)は、結晶性ポリマー(A)のもつ性質を大きく損なわない範囲で、加水分解促進剤(B)及び結晶性ポリマー(A)以外のポリマーや通常の樹脂に添加され得る添加剤が含まれていても良い。 The resin composition (C) is an additive that can be added to a polymer other than the hydrolysis accelerator (B) and the crystalline polymer (A) or a normal resin as long as the properties of the crystalline polymer (A) are not significantly impaired. An agent may be included.
 樹脂組成物(C)の結晶化度は、15%以上、60%以下である。本発明でいう結晶化度とは、後述する実施例に示すように、示差熱分析(DSC)により得られる融解エンタルピー、結晶化エンタルピー、再結晶化エンタルピーの関数として求められる。結晶化度の下限は耐熱性の観点から、20%が好ましく、25%がより好ましい。結晶化度の上限は耐熱性と結晶化工程の簡略化の観点から55%が好ましく、50%がより好ましい。結晶化度が15%未満では、結晶化による樹脂組成物(C)の耐熱性の向上効果が小さいだけでなく、加水分解促進剤(B)の添加効果しか発現せず、結晶化と加水分解促進剤(B)添加との相乗効果が発現しない。60%を超える結晶化度にするには長時間の結晶化工程が必要であるだけでなく、結晶化度が60%を超えると、非晶領域の減少により加水分解され難くなる。
 結晶化度の調整は、公知の方法が適用でき、樹脂組成物(C)を用いた成形品の成形時の加熱温度、昇温速度、冷却速度等を調整する方法や、成形品を結晶化温度以上溶融温度未満の温度で再加熱(アニール)する方法などが挙げられる。また、結晶核剤の使用や、延伸処理により結晶化度を高める方法なども挙げられる。通常、結晶性ポリマー(A)の一例であるポリ乳酸は、結晶化速度が遅く、金型成形して急速冷却したものは結晶化度が低い。
The crystallinity of the resin composition (C) is 15% or more and 60% or less. The crystallinity referred to in the present invention is determined as a function of melting enthalpy, crystallization enthalpy, and recrystallization enthalpy obtained by differential thermal analysis (DSC), as shown in the examples described later. The lower limit of the crystallinity is preferably 20% and more preferably 25% from the viewpoint of heat resistance. The upper limit of the degree of crystallinity is preferably 55% and more preferably 50% from the viewpoint of heat resistance and simplification of the crystallization process. When the crystallinity is less than 15%, not only the effect of improving the heat resistance of the resin composition (C) by crystallization is small, but also the effect of adding the hydrolysis accelerator (B) is manifested, and crystallization and hydrolysis A synergistic effect with the addition of the accelerator (B) does not appear. In order to obtain a crystallinity exceeding 60%, not only a long crystallization step is required, but when the crystallinity exceeds 60%, hydrolysis is difficult due to a decrease in the amorphous region.
A known method can be applied to adjust the degree of crystallinity. A method of adjusting the heating temperature, temperature rising rate, cooling rate, etc. during molding of a molded product using the resin composition (C), or crystallization of the molded product. Examples thereof include a method of reheating (annealing) at a temperature not lower than the temperature and lower than the melting temperature. In addition, the use of a crystal nucleating agent, a method for increasing the degree of crystallinity by stretching treatment, and the like can also be mentioned. Usually, polylactic acid, which is an example of the crystalline polymer (A), has a low crystallization rate, and a product that has been rapidly cooled by molding is low in crystallinity.
 樹脂組成物(C)の分子量は特に限定されない。成形性を考慮すると、樹脂組成物(C)の重量平均分子量は、好ましくは1,000~100万、より好ましくは5,000~50万、特に好ましくは50,000~30万である。この重量平均分子量は、後述する実施例に記載の条件で、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めた値である。 The molecular weight of the resin composition (C) is not particularly limited. Considering moldability, the weight average molecular weight of the resin composition (C) is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and particularly preferably 50,000 to 300,000. This weight average molecular weight is a value determined by gel permeation chromatography (GPC) under the conditions described in the Examples described later.
 本発明に係る樹脂組成物(C)は、従来公知の成形法により、種々の形状、例えば、フィルム、シート、繊維、タブレットなどに成形することができる。 The resin composition (C) according to the present invention can be formed into various shapes, for example, films, sheets, fibers, tablets, and the like by a conventionally known molding method.
 <加水分解方法>
 本発明に係る加水分解方法は、上記樹脂組成物(C)をpHが7より大きい水溶液(アルカリ水溶液という)中で加水分解する方法である。pHは7.1以上が好ましく、8以上がより好ましい。前記水溶液の好ましい態様としては、樹脂組成物(C)浸漬前の初期pHが7より大きい水溶液が挙げられる。また、別の態様としては、初期pHが7以下であって、樹脂組成物(C)浸漬後にpHが7より大きくなるように塩基性物質を添加して溶解した水溶液も挙げられる。いずれの方法においても、樹脂組成物(C)の分解過程の大半において、pHが7より大きいことが好ましい。
 通常は、アルカリ水溶液中に樹脂組成物(C)からなる成形品を浸漬して行う。また、アルカリ水溶液を樹脂組成物(C)からなる成形品にスプレー等で吹きかけることで加水分解することもできる。アルカリ水溶液の温度は特に制限されないが、30℃以上、樹脂組成物(C)の融点未満であることが好ましい。温度が高いほど加水分解速度を高めることができるが、その分、エネルギーコストが高騰することから、目的に応じて適宜好ましい温度に調整する。本発明では、特許文献1,2において検討された温度よりも低い温度で、より速い加水分解が可能となる。また、樹脂組成物(C)は結晶化させることで耐熱性が向上しており、高温・高圧下での加水分解が必要となる用途にも使用可能となる。この場合、樹脂組成物(C)の融点以上の加水分解温度では、樹脂組成物(C)が融解してしまい、分解促進剤(B)を添加した効果が失われてしまうことから、樹脂組成物(C)の融点未満で加水分解を行う必要がある。
<Hydrolysis method>
The hydrolysis method according to the present invention is a method in which the resin composition (C) is hydrolyzed in an aqueous solution (referred to as an alkaline aqueous solution) having a pH higher than 7. The pH is preferably 7.1 or higher, more preferably 8 or higher. As a preferable embodiment of the aqueous solution, an aqueous solution having an initial pH greater than 7 before immersion of the resin composition (C) can be mentioned. Another embodiment includes an aqueous solution in which an initial pH is 7 or less and a basic substance is added and dissolved so that the pH becomes higher than 7 after immersion in the resin composition (C). In any method, the pH is preferably higher than 7 in most of the decomposition process of the resin composition (C).
Usually, a molded article made of the resin composition (C) is immersed in an alkaline aqueous solution. Moreover, it can also hydrolyze by spraying alkaline aqueous solution with a spray etc. on the molded article which consists of a resin composition (C). The temperature of the alkaline aqueous solution is not particularly limited, but is preferably 30 ° C. or higher and lower than the melting point of the resin composition (C). The higher the temperature is, the higher the hydrolysis rate can be. However, the energy cost increases accordingly, so that the temperature is appropriately adjusted according to the purpose. In the present invention, faster hydrolysis is possible at a temperature lower than the temperature studied in Patent Documents 1 and 2. Further, the resin composition (C) has improved heat resistance by being crystallized, and can be used for applications that require hydrolysis under high temperature and high pressure. In this case, since the resin composition (C) melts at the hydrolysis temperature equal to or higher than the melting point of the resin composition (C), the effect of adding the decomposition accelerator (B) is lost. It is necessary to perform hydrolysis below the melting point of the product (C).
 アルカリ水溶液中に含まれる塩基性物質としては、特に制限はないが、汎用性や安全性を考慮すると、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。また、無機塩や有機塩を添加して、緩衝液としてもよい。 The basic substance contained in the alkaline aqueous solution is not particularly limited, but in view of versatility and safety, an alkali metal hydroxide is preferable, and sodium hydroxide is more preferable. Moreover, it is good also as a buffer solution by adding inorganic salt and organic salt.
 以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例中「部」は質量部を示す。実施例における各測定方法は以下の通りである。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the examples, “part” means part by mass. Each measuring method in an Example is as follows.
<重量平均分子量(Mw)>
 試料をクロロホルムに溶解し(濃度約0.5質量%)、ゲル・パーミエーション・クロマトグラフィー(GPC)により、重量平均分子量(Mw)をポリスチレン換算の値として求めた。
測定条件を以下に示す。
  RI検出器:日本分光RI-2031、
  カラム:SHODEX製 LF-GおよびLF-804、
  カラム温度:40℃、
  溶媒:クロロホルム、
  流速:1.0ml/分。
<Weight average molecular weight (Mw)>
The sample was dissolved in chloroform (concentration of about 0.5% by mass), and the weight average molecular weight (Mw) was determined as a value in terms of polystyrene by gel permeation chromatography (GPC).
The measurement conditions are shown below.
RI detector: JASCO RI-2031,
Column: LF-G and LF-804 manufactured by SHODEX
Column temperature: 40 ° C
Solvent: chloroform,
Flow rate: 1.0 ml / min.
<結晶化度>
 DSC装置(TA Instrument社製 DSC Q-200TA)を用い、4~5mg程度の試料を昇温速度10℃/分で0℃~200℃の温度範囲で測定を行い、融解エンタルピー(ΔHm)、結晶化エンタルピー(ΔHc)、再結晶化エンタルピー(ΔHr)、融点(Tm)およびガラス転移温度(Tg)を求めた。なお、結晶化度(Xc)は以下の式により算出した。
  Xc(%)={(|ΔHm|-|ΔHc|-|ΔHr|)/|ΔHf|}×100
 ここで、ポリ乳酸が100%結晶化した際の融解エンタルピー(ΔHf)=93.1J/gとした。結晶化度はブレンド全体の結晶化度として表した。
<Crystallinity>
Using a DSC apparatus (DSC Q-200TA manufactured by TA Instrument), a sample of about 4 to 5 mg is measured in a temperature range of 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min, and the enthalpy of fusion (ΔHm) Crystallization enthalpy (ΔHc), recrystallization enthalpy (ΔHr), melting point (Tm) and glass transition temperature (Tg) were determined. The crystallinity (Xc) was calculated by the following formula.
Xc (%) = {(| ΔHm | − | ΔHc | − | ΔHr |) / | ΔHf |} × 100
Here, the melting enthalpy (ΔHf) when polylactic acid was crystallized 100% was set to 93.1 J / g. Crystallinity was expressed as the crystallinity of the entire blend.
<加水分解試験>
 厚み0.2mm、20mm角の試料をガラス容器に入れ、下記のpHの異なる溶液に浸漬し、40℃に制御した水浴中に静置した。分解中pHが変化しないように液を入れ替えてpHを一定に保った。所定の時間が経過した後試料を回収し、蒸留水で試料を洗浄した後、24時間室温にて真空乾燥して質量を測定した。加水分解による質量保持率は以下の式により算出した。なお、試料が回収できない場合は、試料の分解が完了したものとして質量保持率は0%とした。
 試験前の試料の質量をW、試験後の真空乾燥した試料の質量をWとすると、
     質量保持率(%)=(W/W)×100
用いたpHの異なる溶液
(1) pH7.4:リン酸緩衝液
(2) pH12.0:KCl-NaOH緩衝液
<Hydrolysis test>
A sample having a thickness of 0.2 mm and a 20 mm square was placed in a glass container, immersed in the following solutions having different pH values, and allowed to stand in a water bath controlled at 40 ° C. The solution was exchanged to keep the pH constant so that the pH did not change during decomposition. After a predetermined time had elapsed, the sample was collected, washed with distilled water, and then vacuum dried at room temperature for 24 hours to measure the mass. Mass retention by hydrolysis was calculated by the following formula. When the sample could not be collected, the mass retention was set to 0% assuming that the sample was completely decomposed.
When the mass of the sample before the test is W 0 and the mass of the vacuum-dried sample after the test is W d ,
Mass retention rate (%) = (W d / W 0 ) × 100
Solutions with different pH used (1) pH 7.4: phosphate buffer (2) pH 12.0: KCl-NaOH buffer
<製造例1> 乳酸-リンゴ酸共重合体(PML)の製造
 撹拌装置、脱気口をつけた500mlサイズのガラス製反応器に和光純薬製D,L-リンゴ酸13.4g(0.1モル)、Purac社製90%L-乳酸100.2g(1.0モル)を装入した。反応器をオイルバスに漬け、135℃、1.33kPa(10mmHg)で窒素を流通させながら重合した。得られた無色透明の固体を粉砕し、粉末状ポリマー(PML)を得た。得られたPMLについて、上述の方法により測定した重量平均分子量は3500であった。
<Production Example 1> Production of lactic acid-malic acid copolymer (PML) In a 500 ml glass reactor equipped with a stirrer and a degassing port, 13.4 g (0. 1 mol), 100.2 g (1.0 mol) of 90% L-lactic acid manufactured by Purac was charged. The reactor was immersed in an oil bath and polymerized while flowing nitrogen at 135 ° C. and 1.33 kPa (10 mmHg). The obtained colorless and transparent solid was pulverized to obtain a powdery polymer (PML). About obtained PML, the weight average molecular weight measured by the above-mentioned method was 3500.
<製造例2> 乳酸-アスパラギン酸共重合体(PAL)の製造
 撹拌装置、脱気口をつけた500mlサイズのガラス製反応器に和光純薬製L-アスパラギン酸39.9g(0.3モル)、Purac社製90%L-乳酸300.3g(3.0モル)を装入した。反応器をオイルバスに漬け、180℃で窒素を流通させながら7時間脱水重合した。得られた無色透明の固体を粉砕し、粉末状ポリマー(PAL)を得た。得られたPALについて、上述の方法により測定した重量平均分子量は3500であった。
<Production Example 2> Production of Lactic Acid-Aspartic Acid Copolymer (PAL) 39.9 g (0.3 mol) of Wako Pure Chemical Industries L-aspartic acid was added to a 500 ml glass reactor equipped with a stirrer and a degassing port. ), 300.3 g (3.0 mol) of 90% L-lactic acid manufactured by Purac was charged. The reactor was immersed in an oil bath and subjected to dehydration polymerization for 7 hours while flowing nitrogen at 180 ° C. The obtained colorless and transparent solid was pulverized to obtain a powdery polymer (PAL). About the obtained PAL, the weight average molecular weight measured by the above-mentioned method was 3500.
<比較例1>
 ポリ乳酸(三井化学(株)製、商品名「レイシアH400」、Mw=24万)80部と製造例1で調製したPML20部とをラボプラストミル((株)東洋精機製作所製、商品名「TOYOSEIKI、4M150」)にセグメントミキサー((株)東洋精機製作所製、商品名「TOYOSEIKI、KF-70V2」)を取り付け、50rpm、175℃で5分混練した。得られた組成物を170℃で熱プレスし、0℃で急冷してプレスフィルム1を得た。上述した方法により結晶化度を測定したところ、結晶化度は7.9%であった。得られたフィルムを上述した方法により加水分解試験を実施した。各pHでの試験結果を表1および2に示した。
<Comparative Example 1>
80 parts of polylactic acid (manufactured by Mitsui Chemicals, Inc., trade name “Lacia H400”, Mw = 240,000) and 20 parts of PML prepared in Production Example 1 were manufactured by Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., trade name “ A segment mixer (manufactured by Toyo Seiki Seisakusho, trade name “TOYOSEIKI, KF-70V2”) was attached to TOYOSEIKI, 4M150 ”, and kneaded at 50 rpm and 175 ° C. for 5 minutes. The obtained composition was hot-pressed at 170 ° C. and quenched at 0 ° C. to obtain a press film 1. When the crystallinity was measured by the method described above, the crystallinity was 7.9%. The obtained film was subjected to a hydrolysis test by the method described above. The test results at each pH are shown in Tables 1 and 2.
<比較例2>
 PMLを製造例2で調製したPALに変更し、混練温度を180℃、熱プレス温度を180℃とした以外は比較例1と同様に行い、プレスフィルム2を得た。上述した方法により結晶化度を測定したところ、結晶化度は6.8%であった。得られたフィルムを上述した方法により加水分解試験を実施した。各pHでの試験結果を表1および2に示した。
<Comparative example 2>
PML was changed to PAL prepared in Production Example 2, and the same procedure as in Comparative Example 1 was carried out except that the kneading temperature was 180 ° C. and the hot press temperature was 180 ° C., and a press film 2 was obtained. When the crystallinity was measured by the method described above, the crystallinity was 6.8%. The obtained film was subjected to a hydrolysis test by the method described above. The test results at each pH are shown in Tables 1 and 2.
<実施例1>
 比較例1で得られたプレスフィルム1を減圧下、ホットプレスにより比較例1のDSC測定で観察した結晶化温度(105℃)で10分間熱処理し、結晶化させ、本発明の結晶化した組成物1を得た。上述した方法により結晶化度を測定したところ、結晶化度は43.3%であった。得られたフィルムを上述した方法により加水分解試験を実施した。各pHでの試験結果を表1および2に示した。
<Example 1>
The press film 1 obtained in Comparative Example 1 was heat-treated for 10 minutes at a crystallization temperature (105 ° C.) observed by DSC measurement in Comparative Example 1 under reduced pressure by hot pressing, and crystallized to obtain the crystallized composition of the present invention. Product 1 was obtained. When the crystallinity was measured by the method described above, the crystallinity was 43.3%. The obtained film was subjected to a hydrolysis test by the method described above. The test results at each pH are shown in Tables 1 and 2.
<実施例2>
 比較例2で得られたプレスフィルム2を減圧下、ホットプレスにより比較例2のDSC測定で観察した結晶化温度(110℃)で10分間熱処理し、本発明の結晶化した組成物2を得た。上述した方法により結晶化度を測定したところ、結晶化度は41.6%であった。得られたフィルムを上述した方法により加水分解試験を実施した。各pHでの試験結果を表1および2に示した。
<Example 2>
The press film 2 obtained in Comparative Example 2 was heat-treated for 10 minutes at a crystallization temperature (110 ° C.) observed by DSC measurement in Comparative Example 2 under reduced pressure by hot pressing to obtain a crystallized composition 2 of the present invention. It was. When the crystallinity was measured by the method described above, the crystallinity was 41.6%. The obtained film was subjected to a hydrolysis test by the method described above. The test results at each pH are shown in Tables 1 and 2.
<比較例3>
 ポリ乳酸(三井化学(株)製、商品名「レイシアH400」)を180℃にて熱プレスし、0℃で急冷してプレスフィルム3を得た。上述した方法により結晶化度を測定したところ、結晶化度は1.9%であった。
<Comparative Example 3>
Polylactic acid (trade name “Lacia H400” manufactured by Mitsui Chemicals, Inc.) was hot-pressed at 180 ° C. and rapidly cooled at 0 ° C. to obtain a press film 3. When the crystallinity was measured by the method described above, the crystallinity was 1.9%.
<比較例4>
 比較例3で得られたプレスフィルム3を減圧下、ホットプレスにより比較例3のDSC測定で観察した結晶化温度(120℃)で1時間熱処理し、加水分解促進剤(B)を含まない結晶化したPLAフィルムを得た。上述した方法により結晶化度を測定したところ、結晶化度は52.1%であった。
<Comparative example 4>
The press film 3 obtained in Comparative Example 3 was heat-treated for 1 hour at a crystallization temperature (120 ° C.) observed by DSC measurement in Comparative Example 3 under reduced pressure by hot pressing, and crystals containing no hydrolysis accelerator (B) A modified PLA film was obtained. When the crystallinity was measured by the method described above, the crystallinity was 52.1%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2からは、結晶化させた場合、急冷したフィルムに比べ重量減少速度が速くなることが明らかとなった。特にアルカリ水溶液中においては結晶化しているにもかかわらず極めて短時間でポリ乳酸を完全に分解させることが可能であることが分かる。
 通常ポリ乳酸は結晶化させることで分解が遅くなる(非特許文献1、2)。本発明における結晶化した組成物は、結晶化させることで従来とは反対に、分解に伴う質量減少が加速される。これは、結晶化させることで非晶部に本発明に係る加水分解促進剤(B)が集まりやすくなり、結果として非晶部の分解促進を加速することで、組成物全体としての重量減を加速するとともに、結晶領域の崩壊にも寄与していると考えられる。
From Tables 1 and 2, it was found that when crystallized, the rate of weight loss was faster than that of a rapidly cooled film. In particular, it can be seen that polylactic acid can be completely decomposed in an extremely short time in an alkaline aqueous solution despite crystallization.
Usually, polylactic acid is decomposed slowly by crystallization (Non-patent Documents 1 and 2). Contrary to the conventional case, the crystallized composition of the present invention is crystallized to accelerate the mass loss accompanying decomposition. This is because the hydrolysis accelerator (B) according to the present invention is easily collected in the amorphous part by crystallization, and as a result, acceleration of the decomposition of the amorphous part is accelerated, thereby reducing the weight of the entire composition. It is thought that it accelerates and contributes to the collapse of the crystal region.
 本発明に係る樹脂組成物(C)は、例えばフィルム、食品包装材、衛生用品用包装材、農園芸資材、繊維、不織布、徐放性薬剤等、優れた分解速度の要求される成形品用途に適用できる。また、本発明に係る加水分解方法は、塩基性水溶液を用いることで、簡便に速やかに本発明に係る樹脂組成物(C)を加水分解することができる。
 この出願は、2016年10月28日に出願された日本出願特願2016-211778を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The resin composition (C) according to the present invention is, for example, a film, a food packaging material, a sanitary ware packaging material, an agricultural and horticultural material, a fiber, a nonwoven fabric, a sustained-release drug, etc. Applicable to. Moreover, the hydrolysis method which concerns on this invention can hydrolyze the resin composition (C) which concerns on this invention simply and rapidly by using basic aqueous solution.
This application claims priority based on Japanese Patent Application No. 2016-2111778 filed on Oct. 28, 2016, the entire disclosure of which is incorporated herein.

Claims (7)

  1.  加水分解性を有する結晶性ポリマー(A)と、加水分解促進剤(B)とを含有する樹脂組成物であって、該樹脂組成物の結晶化度が15%以上、60%以下であることを特徴とする樹脂組成物(C)。 A resin composition containing a hydrolyzable crystalline polymer (A) and a hydrolysis accelerator (B), wherein the crystallinity of the resin composition is 15% or more and 60% or less. The resin composition (C) characterized by these.
  2.  前記結晶性ポリマー(A)がポリエステルであることを特徴とする、請求項1に記載の樹脂組成物(C)。 The resin composition (C) according to claim 1, wherein the crystalline polymer (A) is a polyester.
  3.  前記結晶性ポリマー(A)がポリ乳酸であることを特徴とする、請求項1に記載の樹脂組成物(C)。 The resin composition (C) according to claim 1, wherein the crystalline polymer (A) is polylactic acid.
  4.  前記結晶性ポリマー(A)がヒドロキシカルボン酸に由来する構成単位(a-1)を含有し、
     前記加水分解促進剤(B)がヒドロキシカルボン酸に由来する構成単位(a-2)と多価カルボン酸に由来する構成単位(b-1)とを含有することを特徴とする、請求項1に記載の樹脂組成物(C)。
    The crystalline polymer (A) contains a structural unit (a-1) derived from hydroxycarboxylic acid,
    2. The hydrolysis accelerator (B) contains a structural unit (a-2) derived from a hydroxycarboxylic acid and a structural unit (b-1) derived from a polyvalent carboxylic acid. (C).
  5.  前記結晶性ポリマー(A)と前記加水分解促進剤(B)との質量比が、95/5~50/50である請求項1~4のいずれか1項に記載の樹脂組成物(C)。 The resin composition (C) according to any one of claims 1 to 4, wherein a mass ratio of the crystalline polymer (A) to the hydrolysis accelerator (B) is 95/5 to 50/50. .
  6.  請求項1~5のいずれか1項に記載の樹脂組成物(C)を、pHが7より大きい水溶液中で、加水分解することを特徴とする加水分解方法。 A hydrolysis method comprising hydrolyzing the resin composition (C) according to any one of claims 1 to 5 in an aqueous solution having a pH higher than 7.
  7.  前記水溶液の温度が、30℃以上、前記樹脂組成物(C)の融点未満であることを特徴とする、請求項6に記載の加水分解方法。 The hydrolysis method according to claim 6, wherein the temperature of the aqueous solution is 30 ° C or higher and lower than the melting point of the resin composition (C).
PCT/JP2017/038728 2016-10-28 2017-10-26 Resin composition and hydrolysis method therefor WO2018079662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547757A JP6679072B2 (en) 2016-10-28 2017-10-26 Resin composition and hydrolysis method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-211778 2016-10-28
JP2016211778 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079662A1 true WO2018079662A1 (en) 2018-05-03

Family

ID=62025035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038728 WO2018079662A1 (en) 2016-10-28 2017-10-26 Resin composition and hydrolysis method therefor

Country Status (2)

Country Link
JP (1) JP6679072B2 (en)
WO (1) WO2018079662A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345033A (en) * 1999-03-31 2000-12-12 Mitsui Chemicals Inc Resin composition
JP2008024851A (en) * 2006-07-21 2008-02-07 Mitsui Chemicals Inc Biodegradable composition, and molded article and use of the same
JP2009007489A (en) * 2007-06-28 2009-01-15 Mitsui Chemicals Inc Biodegradable shape-retaining material
JP2010116481A (en) * 2008-11-13 2010-05-27 Toyo Seikan Kaisha Ltd Decomposition method for easily decomposing resin composition
JP2010116480A (en) * 2008-11-13 2010-05-27 Toyo Seikan Kaisha Ltd Crystallization molded article of polylactic acid resin and its manufacturing method
JP2011213374A (en) * 2010-03-31 2011-10-27 Toyo Seikan Kaisha Ltd Biodegradable multilayer container
WO2012137681A1 (en) * 2011-04-01 2012-10-11 三井化学株式会社 Biodegradable resin composition and molded article thereof
WO2014038608A1 (en) * 2012-09-07 2014-03-13 三井化学株式会社 Aqueous dispersion, and additive for fracturing work
JP2017132967A (en) * 2016-01-29 2017-08-03 株式会社カネカ Biodegradation promoting method of poly(3-hydroxybutylate)-based resin, polyester resin composition by the method, and molded body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345033A (en) * 1999-03-31 2000-12-12 Mitsui Chemicals Inc Resin composition
JP2008024851A (en) * 2006-07-21 2008-02-07 Mitsui Chemicals Inc Biodegradable composition, and molded article and use of the same
JP2009007489A (en) * 2007-06-28 2009-01-15 Mitsui Chemicals Inc Biodegradable shape-retaining material
JP2010116481A (en) * 2008-11-13 2010-05-27 Toyo Seikan Kaisha Ltd Decomposition method for easily decomposing resin composition
JP2010116480A (en) * 2008-11-13 2010-05-27 Toyo Seikan Kaisha Ltd Crystallization molded article of polylactic acid resin and its manufacturing method
JP2011213374A (en) * 2010-03-31 2011-10-27 Toyo Seikan Kaisha Ltd Biodegradable multilayer container
WO2012137681A1 (en) * 2011-04-01 2012-10-11 三井化学株式会社 Biodegradable resin composition and molded article thereof
WO2014038608A1 (en) * 2012-09-07 2014-03-13 三井化学株式会社 Aqueous dispersion, and additive for fracturing work
JP2017132967A (en) * 2016-01-29 2017-08-03 株式会社カネカ Biodegradation promoting method of poly(3-hydroxybutylate)-based resin, polyester resin composition by the method, and molded body

Also Published As

Publication number Publication date
JP6679072B2 (en) 2020-04-15
JPWO2018079662A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
Fukushima et al. Stereocomplexed polylactides (Neo‐PLA) as high‐performance bio‐based polymers: their formation, properties, and application
JP5157035B2 (en) POLYLACTIC ACID RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE
TWI331164B (en)
JP4511890B2 (en) Stereocomplex polylactic acid and process for producing the same
JP2006265486A (en) Resin composition containing stereocomplex polylactic acid and molded article thereof
JPH04283227A (en) Hydrolyzable resin composition
AU2020202896A1 (en) Copolymer, method for producing same and resin composition
JP5250178B2 (en) Stereocomplex polylactic acid, process for producing the same, composition and molded article
Mulchandani et al. Effect of block length and stereocomplexation on the thermally processable poly (ε-caprolactone) and poly (lactic acid) block copolymers for biomedical applications
JP5823500B2 (en) Biodegradable resin composition and molded body thereof
Dominici et al. Improving the flexibility and compostability of starch/poly (butylene cyclohexanedicarboxylate)-based blends
CN104497512B (en) Method for preparing degradable material modified polylactic acid polymer
JP2003342452A (en) Injection moldings
JP6679072B2 (en) Resin composition and hydrolysis method thereof
Han et al. Biodegradation behavior of amorphous polyhydroxyalkanoate-incorporated poly (l-lactic acid) under modulated home-composting conditions
JP7049627B2 (en) Hydrolysis method of resin composition
CN104140522A (en) Degradable polyhydroxyalkanoate
JP2008222768A (en) Branched biodegradable polyester and method for producing the same
JP6950885B2 (en) Biodegradable resin porous body
JP4811772B2 (en) Biodegradation method of poly-D-hydroxybutyric acid
JP4634566B2 (en) Resin composition and method for producing the same
JP2008208172A (en) Solid polylactic acid and method for producing the same
Yin et al. Influences of terminal POSS on crystallization and degradation behavior of PCL‐PLLA block copolymer
JP2007070412A (en) Polylactic acid composition and method for producing the same
EP2464678B1 (en) Semi-crystalline, fast absorbing polymer formulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864045

Country of ref document: EP

Kind code of ref document: A1