JP2008222768A - Branched biodegradable polyester and method for producing the same - Google Patents

Branched biodegradable polyester and method for producing the same Download PDF

Info

Publication number
JP2008222768A
JP2008222768A JP2007059906A JP2007059906A JP2008222768A JP 2008222768 A JP2008222768 A JP 2008222768A JP 2007059906 A JP2007059906 A JP 2007059906A JP 2007059906 A JP2007059906 A JP 2007059906A JP 2008222768 A JP2008222768 A JP 2008222768A
Authority
JP
Japan
Prior art keywords
polyester
biodegradable polyester
branched
branched biodegradable
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059906A
Other languages
Japanese (ja)
Inventor
Yuichi Oya
裕一 大矢
Tatsuro Ouchi
辰郎 大内
Shota Kido
章太 木戸
Koji Nagahama
宏治 長濱
Yotaro Fujita
陽太郎 藤田
Kazuto Ishihara
和人 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Kansai University
Original Assignee
Terumo Corp
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Kansai University filed Critical Terumo Corp
Priority to JP2007059906A priority Critical patent/JP2008222768A/en
Publication of JP2008222768A publication Critical patent/JP2008222768A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe and stably suppliable biodegradable material obtained by improving hard and brittle properties which are problems of a polylactic acid, and to provide a material for medical application such as a footing material for tissue regeneration including the biodegradable material. <P>SOLUTION: The branched biodegradable polyester has a polyglycerol as a main chain, and polyester chains as side chains through the hydroxy groups of the polyglycerol. Concretely, the branched biodegradable polyester is represented by general formula (A) (wherein, R is independently a hydrogen atom or a polyester chain, with the proviso that 50% or more of the R is the polyester chain; and n is 2-20). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生体適合性に優れ、高い柔軟性を示す新規な分岐型生分解性ポリエステル及びその製造方法に関する。   The present invention relates to a novel branched biodegradable polyester having excellent biocompatibility and high flexibility, and a method for producing the same.

医療技術の革新や多様化に伴って、医療分野における生分解性高分子の重要性はますます高まってきており、分解制御型のドラッグデリバリーデバイスや縫合糸、骨固定材、体内での止血・接着剤、癒着防止膜など、役割を果たした後に生体内で無毒な成分に分解し、代謝・吸収される生体内分解吸収性高分子が望まれる用途が増加している。中でも、近年特に注目を集めているのが組織工学(再生医学)用の材料である。組織工学の一つの手法であるGTR(guided tissue regeneration)法では、生分解性材料を足場として細胞を培養し、細胞の増殖・組織形成に伴い、足場を提供していた分解性高分子が消失し、正常組織へと置換されることを目指している。   With the innovation and diversification of medical technology, the importance of biodegradable polymers in the medical field is increasing, and degradation controlled drug delivery devices, sutures, bone fixation materials, hemostasis Applications such as adhesives and anti-adhesion membranes that require biodegradable absorbable polymers that can be broken down into non-toxic components in vivo and metabolized and absorbed are increasing. Among them, materials for tissue engineering (regenerative medicine) have attracted particular attention in recent years. In the GTR (guided tissue regeneration) method, which is one of the tissue engineering methods, cells are cultured using biodegradable materials as scaffolds, and the degradable polymer that provided the scaffolds disappears as cells grow and form tissues. It aims to be replaced with normal tissue.

これまでに医療用材料としてコラーゲンやゼラチン、フィブリンなど、生体由来の物質が多く使用されてきたが、近年ウシ海綿状脳症(BSE)やクロイツフェルトヤコブ病、エイズや肝炎などの感染症の問題が発生し、天然由来物が必ずしも安全ではないことが明らかとなってきている。医療用材料を提供するメーカーでは、原料によるばらつきがなく品質の管理が容易で、生体由来の危険因子を含まない材料として、合成高分子が理想的であるとする声も高い。これまで医療用材料として最も頻繁に研究・使用されてきた生分解性合成高分子は、ポリ−L−乳酸(PLLA)、ポリ−D−乳酸(PDLA)、ポリ−DL−乳酸(PDLLA)とその共重合体であるポリ乳酸系高分子である。   Until now, many bio-derived substances such as collagen, gelatin, and fibrin have been used as medical materials, but recently there have been problems of infectious diseases such as bovine spongiform encephalopathy (BSE), Creutzfeldt-Jakob disease, AIDS and hepatitis. It has emerged that natural products are not necessarily safe. There are many voices that manufacturers that provide medical materials make synthetic polymers ideal as materials that do not vary depending on the raw materials, are easy to control quality, and do not contain risk factors derived from living organisms. The biodegradable synthetic polymers that have been most frequently studied and used as medical materials so far are poly-L-lactic acid (PLLA), poly-D-lactic acid (PDLA), and poly-DL-lactic acid (PDLLA). The copolymer is a polylactic acid polymer.

ポリ乳酸は、その構成成分である乳酸が体内代謝物質であり、安全性に優れ、生体適合性も比較的高く、高結晶性で力学的強度を高く設定できることから、早くから生分解性医用材料としての利用が検討されてきた。最も一般的なポリ乳酸であるPLLAは、L−LAの開環重合あるいはL−乳酸の直接縮合によって合成され、結晶性が高く高強度が得られることから、骨支持プレートや骨固定ねじとして実用化されている。しかし、PLLAは高い結晶性を有するがゆえに、使用目的によっては分解速度が遅すぎることや、固く柔軟性に欠けるために軟組織に対する適合性が乏しいといった問題点も有している。   Polylactic acid is a constituent of the body, lactic acid is a metabolite in the body, is highly safe, has relatively high biocompatibility, is highly crystalline, and can be set to high mechanical strength. The use of has been considered. PLLA, the most common polylactic acid, is synthesized by ring-opening polymerization of L-LA or direct condensation of L-lactic acid, and has high crystallinity and high strength, so it can be used as a bone support plate and bone fixation screw. It has become. However, because PLLA has high crystallinity, it has a problem that its degradation rate is too slow depending on the purpose of use, and it is hard and inflexible, so it has poor compatibility with soft tissues.

これまでに、グリコール酸のダイマー(グリコリド)やエナンチオマーであるD−LA、ε-カプロラクトン等の他の脂肪族ラクトン類など、種々の環状モノマーとの共重合によって結晶性を低下あるいは消失させ、その力学的強度や生分解速度などを制御する試みが数多くなされてきたが、軟組織に適合できるほどの柔軟性は獲得できておらず、反応性官能基を持たないので化学修飾が困難であるという問題は未解決であった。つまり、限定された用途には適合しているものの、生分解性が要求される材料の全域をカバーするほどの広い物性レンジを持つ材料のバリエーションを提供できるには至っていない。   So far, the crystallinity has been reduced or eliminated by copolymerization with various cyclic monomers such as glycolic acid dimer (glycolide) and enantiomers such as D-LA, ε-caprolactone and other aliphatic lactones. Many attempts have been made to control mechanical strength, biodegradation rate, etc., but the problem is that it is difficult to chemically modify because it does not have enough flexibility to adapt to soft tissue and has no reactive functional groups. Was unresolved. In other words, although it is suitable for limited applications, it has not yet been possible to provide a variation of a material having a physical property range wide enough to cover the entire area of the material that requires biodegradability.

従って、PLLAやその共重合体などのポリ乳酸系高分子の優れた特性を維持あるいは向上させながら、これらの問題点を解決し、化学修飾による用途の拡張と物性の制御が可能となれば、ポリ乳酸系材料の応用範囲の拡大が見込まれ、次世代の分解性バイオマテリアル設計においてこれまで以上に重要な素材になると考えられる。   Therefore, while maintaining or improving the excellent properties of polylactic acid polymers such as PLLA and its copolymers, while solving these problems, and possible to expand the application and control the physical properties by chemical modification, The application range of polylactic acid-based materials is expected to expand, and it will be more important than ever in the design of next-generation degradable biomaterials.

これまで、官能基を有する環状コモノマーとのランダムおよびブロック共重合や、ヒドロキシル基を有する機能分子を開始種として用いた重合反応、グラフト重合といった高分子合成の手法を活用して、様々な分子形態(ランダム、ブロック、グラフト、分岐構造)および化学的性質(反応性官能基、親疎水性)を有する乳酸共重合体の合成がなされている。   Up to now, various molecular forms have been utilized by utilizing polymer synthesis techniques such as random and block copolymerization with cyclic comonomers having functional groups, polymerization reactions using functional molecules having hydroxyl groups as starting species, and graft polymerization. Lactic acid copolymers having (random, block, graft, branched structure) and chemical properties (reactive functional groups, hydrophilicity / hydrophobicity) have been synthesized.

このように、様々な様態の埋込材料が開発されてきているが、その必要条件として、生体適合性を有し、必要に応じた生分解挙動の制御が可能であるなど、処置する部位に適合した材料開発が必要とされている。例えば、手術用の縫合糸は、体内での毒性がないこと、適度な平滑性を有すること及び結節強力が高いことなどが求められている。これらの性質を付与するために、例えばラクチド又はグリコリドの単独重合体又は共重合体等の生体吸収性ポリマーからなる縫合糸をポリカプロラクトン、エチレンオキシド重合体などのフィルム形成性重合体からなる組成物等で被覆した縫合糸が提案されている(特許文献1及び2)。しかしながら、これらのポリマーは反応性の官能基を持たないため、化学修飾によるポリマー機能の改質が困難であるといった問題点もあった。   As described above, various types of implant materials have been developed. As necessary conditions, the implant material has biocompatibility and can control biodegradation behavior according to necessity. There is a need for suitable material development. For example, surgical sutures are required not to be toxic in the body, to have moderate smoothness, and to have high knot strength. In order to impart these properties, for example, a composition comprising a film-forming polymer such as polycaprolactone or an ethylene oxide polymer is used as a suture comprising a bioabsorbable polymer such as a lactide or glycolide homopolymer or copolymer, etc. Have been proposed (Patent Documents 1 and 2). However, since these polymers do not have a reactive functional group, there is a problem that it is difficult to modify the polymer function by chemical modification.

また、非特許文献1には、主鎖としてポリグリシドールを用いた櫛型ポリ乳酸が提案されている。これは、ポリ乳酸セグメントがPLLAのみで構成された高分子であり、従来のPLLAが示す高い結晶性に起因した分解性制御の困難さと低い柔軟性・伸縮性を克服する分岐構造を有する高分子である。その結果、直鎖型のPLLAに比べて結晶性とガラス転移温度が効果的に低下し、柔軟で粘り強い力学特性を示すことが報告されている。   Non-Patent Document 1 proposes comb-type polylactic acid using polyglycidol as a main chain. This is a polymer whose polylactic acid segment is composed only of PLLA, and has a branched structure that overcomes the difficulty of degradability control due to the high crystallinity exhibited by conventional PLLA and the low flexibility and stretchability. It is. As a result, it has been reported that the crystallinity and the glass transition temperature are effectively reduced as compared with linear PLLA, and show flexible and tenacious mechanical properties.

従来のPLLAは剛直な材料であるため、細胞のスキャッホールド(足場材料)など軟組織に適合させる材料としては機能せず、さらにはある程度の延性を必要とするアプリケーションには不適であるなどの問題点があった。上記、櫛型PLLAでは、分岐構造化により結晶性を低下させることができるだけでなく、ポリ乳酸鎖部分が光学異性体である共重合どうしのブレンドによって、ステレオコンプレックスを形成させることにより、高い引っ張り伸びを維持したまま破断強度を向上することができるという改善点があった。   Since conventional PLLA is a rigid material, it does not function as a material suitable for soft tissues such as cell scaffolds (scaffolding materials), and is not suitable for applications that require a certain degree of ductility. There was a point. In the above-mentioned comb PLLA, not only can the crystallinity be lowered by the branched structure, but also a high tensile elongation can be achieved by forming a stereocomplex by blending copolymers in which the polylactic acid chain portion is an optical isomer. There was an improvement that the breaking strength could be improved while maintaining the above.

しかし、上記櫛型ポリ乳酸は主鎖としてポリグリシドールを使用しているが、ポリグリシドールは市販されておらず、分解後体外排泄が可能な分子量(約20,000以下)のポリグリシドールを合成することも容易ではないことからその作製上安定的な供給が難しいといった問題点があった。
特公平2−12106号公報 特公平5−53137号公報 Ouchi T,Ichimura S,Ohya Y:Polymer 2006,47:429−434.
However, although the above comb-type polylactic acid uses polyglycidol as a main chain, polyglycidol is not commercially available, and a polyglycidol having a molecular weight (about 20,000 or less) that can be excreted from the body after decomposition is synthesized. Since this is not easy, there is a problem in that it is difficult to stably supply the product.
Japanese Patent Publication No.2-12106 Japanese Patent Publication No. 5-53137 Ouchi T, Ichimura S, Ohya Y: Polymer 2006, 47: 429-434.

本発明は、ポリ乳酸及びそれと類似した構造のポリエステル類の問題点である柔軟性に乏しいという性質を改善した、安全で、しかも安定的供給が可能な生分解性材料を提供することを目的とする。本発明はまた、前述した生分解性材料を含む組織再生用足場材料などの医療用素材を提供することを目的とする。   An object of the present invention is to provide a biodegradable material that is safe and can be stably supplied, which has improved the property of poor flexibility, which is a problem of polyesters having a structure similar to that of polylactic acid. To do. Another object of the present invention is to provide a medical material such as a tissue regeneration scaffold material containing the biodegradable material described above.

本発明者は、上記課題を解決すべく鋭意研究を行った結果、ポリグリセリンを主鎖として用い、この複数の水酸基にポリエステル鎖を伸張して得られる化合物(以下「分岐型ポリエステル」ともいう)が、生分解性を保持しつつ、ポリ乳酸およびそれと類似した構造のポリエステル類の問題点である柔軟性に乏しいという性質が改善され充分な柔軟性を有することを見いだした。また、この化合物は、食品添加物として実績のあるポリグリセリンを主鎖として用いているため、安全で安定的に供給できることも見いだした。かかる知見に基づき、さらに研究を重ねた結果、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventor has obtained a compound obtained by extending a polyester chain to a plurality of hydroxyl groups using polyglycerin as a main chain (hereinafter also referred to as “branched polyester”). However, while maintaining biodegradability, it has been found that the property of poor flexibility, which is a problem of polylactic acid and polyesters having a structure similar thereto, has been improved and has sufficient flexibility. It was also found that this compound can be supplied safely and stably because polyglycerin, which has a proven record as a food additive, is used as the main chain. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は、以下の分岐型生分解性ポリエステル及びその製造方法を提供する。   That is, this invention provides the following branched biodegradable polyester and its manufacturing method.

項1. ポリグリセリンを主鎖として有し、該ポリグリセリンの水酸基を介して側鎖としてポリエステル鎖を有する分岐型生分解性ポリエステル。   Item 1. A branched biodegradable polyester having polyglycerin as a main chain and having a polyester chain as a side chain via a hydroxyl group of the polyglycerin.

項2. 一般式(A):   Item 2. Formula (A):

Figure 2008222768
Figure 2008222768

(式中、Rは独立して水素原子又はポリエステル鎖を示し、Rの50%以上がポリエステル鎖であり、nは2〜20を示す。)
で表される項1に記載の分岐型生分解性ポリエステル。
(In the formula, R independently represents a hydrogen atom or a polyester chain, 50% or more of R is a polyester chain, and n represents 2 to 20.)
Item 2. The branched biodegradable polyester according to item 1, represented by:

項3. 前記一般式(A)におけるRで示されるポリエステル鎖が、脂肪族ポリエステル鎖である項2に記載の分岐型生分解性ポリエステル。   Item 3. Item 3. The branched biodegradable polyester according to item 2, wherein the polyester chain represented by R in the general formula (A) is an aliphatic polyester chain.

項4. 前記一般式(A)におけるRで示されるポリエステル鎖が、ヒドロキシ酸の重合体からなるポリエステル鎖である項2に記載の分岐型生分解性ポリエステル。   Item 4. Item 3. The branched biodegradable polyester according to item 2, wherein the polyester chain represented by R in the general formula (A) is a polyester chain composed of a hydroxy acid polymer.

項5. 前記一般式(A)におけるRで示されるポリエステル鎖が、ポリ−L−乳酸、ポリ−D−乳酸、ポリ−DL−乳酸、ポリグリコール酸、ポリカプロラクトン、及びそれらの共重合体からなる群より選ばれる少なくとも1種である項2に記載の分岐型生分解性ポリエステル。   Item 5. The polyester chain represented by R in the general formula (A) is selected from the group consisting of poly-L-lactic acid, poly-D-lactic acid, poly-DL-lactic acid, polyglycolic acid, polycaprolactone, and copolymers thereof. Item 3. The branched biodegradable polyester according to item 2, which is at least one selected.

項6. 前記一般式(A)におけるRで示されるポリエステル鎖が、一般式(B):   Item 6. The polyester chain represented by R in the general formula (A) is represented by the general formula (B):

Figure 2008222768
Figure 2008222768

(式中、Rは水素原子又はメチル基を示し、mは1〜500を示す。)
で表される項2に記載の分岐型生分解性ポリエステル。
(In the formula, R 1 represents a hydrogen atom or a methyl group, and m represents 1 to 500.)
Item 3. The branched biodegradable polyester according to item 2, represented by:

項7. 前記一般式(A)において、nが5〜20であり、mが20〜200である項6に記載の分岐型生分解性ポリエステル。   Item 7. Item 7. The branched biodegradable polyester according to item 6, wherein n is 5 to 20 and m is 20 to 200 in the general formula (A).

項8. 数平均分子量(Mn)が300〜1,500,000である項1〜7のいずれかに記載の分岐型生分解性ポリエステル。   Item 8. Item 8. The branched biodegradable polyester according to any one of Items 1 to 7, wherein the number average molecular weight (Mn) is 300 to 1,500,000.

項9. 数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.05〜3.00である項1〜8のいずれかに記載の分岐型生分解性ポリエステル。   Item 9. Item 9. The branched biodegradable polyester according to any one of Items 1 to 8, wherein the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 1.05 to 3.00.

項10. ガラス転移温度が−60〜55℃である項1〜9のいずれかに記載の分岐型生分解性ポリエステル。   Item 10. Item 10. The branched biodegradable polyester according to any one of Items 1 to 9, wherein the glass transition temperature is −60 to 55 ° C.

項11. 融点が50〜240℃である項1〜10のいずれかに記載の分岐型生分解性ポリエステル。   Item 11. Item 11. The branched biodegradable polyester according to any one of Items 1 to 10, which has a melting point of 50 to 240 ° C.

項12. pH=7.4のリン酸緩衝生理食塩水(37℃)に28日間浸漬した場合、数平均分子量の減少率が30%以下であることを特徴とする項1〜11のいずれかに記載の分岐型生分解性ポリエステル。   Item 12. Item 12. The item according to any one of Items 1 to 11, wherein the number-average molecular weight reduction rate is 30% or less when immersed in phosphate buffered saline (pH 37) at pH = 7.4 for 28 days. Branched biodegradable polyester.

項13. 前記分岐型生分解性ポリエステルを厚さ約100μm、幅5.0mmダンベル型のフィルムとし、これを引っ張り試験したときの破断強度が0.1〜20MPa、ヤング率が0.1〜20MPa、破断時ひずみが50〜1,000%であることを特徴とする項1〜12のいずれかに記載の分岐型生分解性ポリエステル。   Item 13. The branched biodegradable polyester is a dumbbell-type film having a thickness of about 100 μm and a width of 5.0 mm. When this is subjected to a tensile test, the breaking strength is 0.1 to 20 MPa, the Young's modulus is 0.1 to 20 MPa, and the film is broken. Item 12. The branched biodegradable polyester according to any one of Items 1 to 12, wherein the strain is 50 to 1,000%.

項14. 一般式(A):   Item 14. Formula (A):

Figure 2008222768
Figure 2008222768

(式中、Rは独立して水素原子又は一般式(B): (Wherein R is independently a hydrogen atom or general formula (B):

Figure 2008222768
Figure 2008222768

(式中、Rは水素原子又はメチル基を示し、mは1〜500を示す。)で示されるポリエステル鎖を示し、Rの50%以上は該ポリエステル鎖であり、nは2〜20を示す。)
で表される分岐型生分解性ポリエステルの製造方法であって、一般式(C):
(Wherein R 1 represents a hydrogen atom or a methyl group, m represents 1 to 500), 50% or more of R is the polyester chain, and n represents 2 to 20 Show. )
A branched biodegradable polyester represented by the general formula (C):

Figure 2008222768
Figure 2008222768

(式中、nは前記に同じ。)
で表されるポリグリセリンに、一般式(D):
(Wherein n is the same as above)
In the polyglycerin represented by the general formula (D):

Figure 2008222768
Figure 2008222768

(式中、Rは前記に同じ。)
で表される化合物を重合反応させることを特徴とする製造方法。
(In the formula, R 1 is the same as above.)
A process for producing a compound represented by the formula:

項15. 項1〜13のいずれかに記載の分岐型生分解性ポリエステルを含む医療用材料。   Item 15. Item 14. A medical material comprising the branched biodegradable polyester according to any one of Items 1 to 13.

なお、本発明においてマクロイニシエーターとは、いわゆるマルチファンクショナル・イニシエーター(多官能性開始剤)と同義であり、当業者に容易に理解できる用語である。具体的には、一分子中に重合開始点となる官能基を多数有する分子を意味し、本発明では重合開始点となる水酸基を多数有するポリグリセリンがこれに相当する。また、本発明の分岐型生分解性ポリエステルでは、マクロイニシエーターであるポリグリセリンが主鎖を構成し、複数の水酸基に結合するポリエステル鎖が側鎖を構成する。   In the present invention, the macroinitiator is synonymous with a so-called multi-functional initiator, and is a term that can be easily understood by those skilled in the art. Specifically, it means a molecule having a large number of functional groups serving as polymerization initiation points in one molecule, and in the present invention, this corresponds to polyglycerin having many hydroxyl groups serving as polymerization initiation points. Further, in the branched biodegradable polyester of the present invention, polyglycerol as a macroinitiator constitutes a main chain, and a polyester chain bonded to a plurality of hydroxyl groups constitutes a side chain.

本発明の分岐型生分解性ポリエステルは、ポリグリセリンを主鎖(マクロイニシエーター)として、これにポリエステル鎖(特に、ポリ乳酸鎖)を伸張させることによって得られる。これにより、従来の非晶性ポリ-DL-乳酸よりもさらにガラス転移温度とヤング率,破断強度を低下させことができ、ポリ乳酸自体が有する硬くて脆いという性質を大幅に改善することができる。さらに、入手が容易で、体外排泄が容易な適切な分子量を有し、安全性の高いポリグリセリンをマクロイニシエーターとすることによって、安全で安定的な材料の供給が可能となる。   The branched biodegradable polyester of the present invention can be obtained by using polyglycerin as a main chain (macroinitiator) and extending a polyester chain (particularly, a polylactic acid chain). As a result, the glass transition temperature, Young's modulus, and breaking strength can be further reduced compared to conventional amorphous poly-DL-lactic acid, and the hard and brittle nature of polylactic acid itself can be greatly improved. . Furthermore, a safe and stable material can be supplied by using polyglycerol that has an appropriate molecular weight that is easily available and easily excreted from the body and is highly safe as a macroinitiator.

本発明の分岐型生分解性ポリエステルは、ポリグリセリンを主鎖として有し、該ポリグリセリンの複数の水酸基を介してポリエステル鎖を側鎖として有している。つまり、ポリグリセリンをマクロイニシエーターとして、その水酸基の全部又は一部においてエステル結合を介してポリエステル鎖が連結した化合物である。   The branched biodegradable polyester of the present invention has polyglycerin as a main chain, and has a polyester chain as a side chain through a plurality of hydroxyl groups of the polyglycerin. That is, a compound in which polyglycerin is used as a macroinitiator and polyester chains are linked via ester bonds in all or part of the hydroxyl groups.

本発明の分岐型生分解性ポリエステルの典型例として、例えば一般式(A):   As a typical example of the branched biodegradable polyester of the present invention, for example, the general formula (A):

Figure 2008222768
Figure 2008222768

(式中、Rは独立して水素原子又はポリエステル鎖を示し、Rの50%以上はポリエステル鎖であり、nは2〜20を示す。)
で表される化合物が挙げられる。
(In the formula, R independently represents a hydrogen atom or a polyester chain, 50% or more of R is a polyester chain, and n represents 2 to 20.)
The compound represented by these is mentioned.

一般式(A)において、ポリグリセリンの重合度nは、2〜20が好ましく、5〜20がより好ましく、5〜10が最も好ましい。   In general formula (A), 2-20 are preferable, as for the polymerization degree n of a polyglycerol, 5-20 are more preferable, and 5-10 are the most preferable.

Rで示されるポリエステル鎖としては、好ましくは脂肪族ポリエステル鎖であり、より好ましくはヒドロキシ酸を重合してなるポリエステル鎖である。   The polyester chain represented by R is preferably an aliphatic polyester chain, more preferably a polyester chain obtained by polymerizing a hydroxy acid.

ヒドロキシ酸の重合体からなるポリエステル鎖のヒドロキシ酸としては、例えば、(D−、L−、又はDL−)乳酸、グリコール酸、カプロラクトン等が挙げられ、好ましくはグリコール酸、(D−、L−、又はDL−)乳酸等のα−ヒドロキシカルボン酸である。ヒドロキシ酸を重合してなるポリエステル鎖としては、ポリ−L−乳酸、ポリ−D−乳酸、ポリ−DL−乳酸、ポリグリコール酸、ポリカプロラクトン、及びそれらの共重合体からなるポリエステル鎖が例示される。つまり、これらのヒドロキシ酸うち一種からなるホモポリマーであっても、二種以上からなるコポリマーであっても良い。   Examples of the hydroxy acid of the polyester chain made of a polymer of hydroxy acid include (D-, L-, or DL-) lactic acid, glycolic acid, caprolactone, etc., preferably glycolic acid, (D-, L- Or DL-) α-hydroxycarboxylic acids such as lactic acid. Examples of the polyester chain formed by polymerizing a hydroxy acid include poly-L-lactic acid, poly-D-lactic acid, poly-DL-lactic acid, polyglycolic acid, polycaprolactone, and a polyester chain made of a copolymer thereof. The That is, among these hydroxy acids, it may be a homopolymer composed of one kind or a copolymer composed of two or more kinds.

上記したように、一般式(A)で表される化合物において、全てのRのうちポリエステル鎖の割合が50%以上、好ましくは70%以上、より好ましくは90%以上、特に好ましくは100%である。例えば、マクロイニシエーターであるポリグリセリンがジグリセリン(n=2)の場合は、4個の水酸基のうち2個以上がポリエステル鎖を有していることが好ましく、トリグリセリン(n=3)の場合は、5個の水酸基のうち3個以上がポリエステル鎖を有していることが好ましい。   As described above, in the compound represented by the general formula (A), the proportion of the polyester chain in all R is 50% or more, preferably 70% or more, more preferably 90% or more, and particularly preferably 100%. is there. For example, when the polyglycerol as the macroinitiator is diglycerin (n = 2), it is preferable that two or more of the four hydroxyl groups have a polyester chain, and triglycerin (n = 3) In this case, it is preferable that three or more of the five hydroxyl groups have a polyester chain.

ポリエステル鎖として、ヒドロキシ酸を重合してなるポリエステル鎖が好適である。より具体的には、一般式(B):   As the polyester chain, a polyester chain formed by polymerizing a hydroxy acid is preferable. More specifically, the general formula (B):

Figure 2008222768
Figure 2008222768

(式中、Rは水素原子又はメチル基を示し、mは1〜500を示す。)
で表されるものが好ましい。
(In the formula, R 1 represents a hydrogen atom or a methyl group, and m represents 1 to 500.)
The thing represented by these is preferable.

一般式(B)において、Rは水素原子又はメチル基のいずれでもよいが、好ましくはメチル基である。重合度mは、1〜500が好ましく、20〜200がより好ましく、50〜100が最も好ましい。 In the general formula (B), R 1 may be either a hydrogen atom or a methyl group, but is preferably a methyl group. The polymerization degree m is preferably 1 to 500, more preferably 20 to 200, and most preferably 50 to 100.

ポリエステル鎖として、特に好適にはポリ乳酸である。乳酸には光学異性体として、L−乳酸とD−乳酸が存在し、本発明で用いるポリ乳酸は、それぞれ単独からなるポリL−乳酸、ポリD−乳酸、D−乳酸とL−乳酸の共重合体が挙げられる。D−乳酸とL−乳酸の共重合体の場合、それらの共重合比は特に限定はない。本発明で用いるポリ乳酸の好ましい形態は、ポリエステル鎖の柔軟性の観点から、D−乳酸とL−乳酸の共重合体、特にD−乳酸とL−乳酸が等しい共重合比であるD,L−ポリ乳酸である。   As the polyester chain, polylactic acid is particularly preferable. L-lactic acid includes L-lactic acid and D-lactic acid as optical isomers, and the polylactic acid used in the present invention is composed of poly L-lactic acid, poly D-lactic acid, D-lactic acid and L-lactic acid, each of which is a single compound. A polymer is mentioned. In the case of a copolymer of D-lactic acid and L-lactic acid, the copolymerization ratio is not particularly limited. The preferred form of polylactic acid used in the present invention is a copolymer of D-lactic acid and L-lactic acid, particularly D, L having the same copolymerization ratio of D-lactic acid and L-lactic acid, from the viewpoint of the flexibility of the polyester chain. -Polylactic acid.

本発明の分岐型生分解性ポリエステルの数平均分子量(Mn)は、例えば300〜1,500,000であり、15,000〜600,000が好ましく、30,000〜150,000が最も好ましい。   The number average molecular weight (Mn) of the branched biodegradable polyester of the present invention is, for example, 300 to 1,500,000, preferably 15,000 to 600,000, and most preferably 30,000 to 150,000.

分岐型生分解性ポリエステルの分子量分布、即ち、数平均分子量に対する重量平均分子量の比(Mw/Mn)は、例えば1.05〜3.00であり、1.05〜2.50が好ましく、1.05〜2.00が最も好ましい。数平均分子量及び重量平均分子量は、例えばGPC(eluent:DMF、standard : poly(ethylene glycol))等の公知の方法を用いて測定できる。   The molecular weight distribution of the branched biodegradable polyester, that is, the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is, for example, 1.05 to 3.00, preferably 1.05 to 2.50. 0.05 to 2.00 is most preferable. The number average molecular weight and the weight average molecular weight can be measured using a known method such as GPC (eluent: DMF, standard: poly (ethylene glycol)).

分岐型生分解性ポリエステルのガラス転移温度は、例えば、−60〜55℃であり、−20℃〜40℃が好ましく、−20℃〜30℃が最も好ましい。なお、分岐型生分解性ポリエステルが融点を有する場合には50〜240℃程度、さらに50〜175℃程度を示すこと好ましいが、特に非晶性ポリマーとなり融点を示さないことが最も好ましい。   The glass transition temperature of the branched biodegradable polyester is, for example, -60 to 55 ° C, preferably -20 to 40 ° C, and most preferably -20 to 30 ° C. When the branched biodegradable polyester has a melting point, it is preferably about 50 to 240 ° C., more preferably about 50 to 175 ° C., but most preferably it is an amorphous polymer and does not show a melting point.

本発明の分岐型生分解性ポリエステルは、pH=7.4のリン酸緩衝生理食塩水(37℃)に28日間浸漬した場合、数平均分子量の減少率が30%以下、好ましくは5〜20%、より好ましくは5〜10%である。   When the branched biodegradable polyester of the present invention is immersed in phosphate buffered saline (pH 37) at pH = 7.4 for 28 days, the reduction rate of the number average molecular weight is 30% or less, preferably 5-20. %, More preferably 5 to 10%.

本発明の分岐型生分解性ポリエステルは、厚さ約100μm、幅5.0mmダンベル型のフィルムとし、これを引っ張り試験したときの破断強度が0.1〜20MPa、さらに0.1〜1MPaであり、ヤング率が0.1〜20MPa、さらに0.1〜10MPaであり、破断時ひずみが50〜1,000%、さらに500〜1,000%である。   The branched biodegradable polyester of the present invention is a dumbbell-type film having a thickness of about 100 μm and a width of 5.0 mm, and has a breaking strength of 0.1 to 20 MPa, further 0.1 to 1 MPa when subjected to a tensile test. The Young's modulus is 0.1 to 20 MPa, further 0.1 to 10 MPa, and the strain at break is 50 to 1,000%, further 500 to 1,000%.

本発明の分岐型生分解性ポリエステルはポリグリセリンをマクロイニシエーターとして用い、該ポリグリセリンの水酸基の全部又は一部にポリエステル鎖を構成するモノマーを反応させてポリエステル鎖を伸張させることにより製造することができる。   The branched biodegradable polyester of the present invention is produced by using polyglycerol as a macroinitiator and reacting all or part of the hydroxyl groups of the polyglycerol with a monomer constituting the polyester chain to extend the polyester chain. Can do.

ポリエステル鎖の具体例として、一般式(C):   As a specific example of the polyester chain, the general formula (C):

Figure 2008222768
Figure 2008222768

(式中、nは前記に同じ。)
で表されるポリグリセリンに対し、一般式(D):
(Wherein n is the same as above)
For the polyglycerin represented by the general formula (D):

Figure 2008222768
Figure 2008222768

(式中、Rは前記に同じ。)
で表される化合物を重合反応させることにより、一般式(A):
(In the formula, R 1 is the same as above.)
A compound represented by general formula (A):

Figure 2008222768
Figure 2008222768

(式中、Rは独立して水素原子又は一般式(B): (Wherein R is independently a hydrogen atom or general formula (B):

Figure 2008222768
Figure 2008222768

(式中、R及びmは前記に同じ。)で示されるポリエステル鎖を示し、Rの50%以上は該ポリエステル鎖であり、nは前記に同じ。)
で表される分岐型生分解性ポリエステルを製造することができる。
(Wherein R 1 and m are the same as above), 50% or more of R is the polyester chain, and n is the same as above. )
A branched biodegradable polyester represented by can be produced.

本発明では、一般式(C)で表されるポリグリセリンに対し、触媒の存在下、一般式(D)で表される化合物を重合させることにより、一般式(A)で表される化合物を製造することができる。   In the present invention, the compound represented by the general formula (A) is polymerized by polymerizing the compound represented by the general formula (D) in the presence of a catalyst with respect to the polyglycerin represented by the general formula (C). Can be manufactured.

一般式(D)で表される化合物は、グリコール酸の環状二量体、乳酸の環状二量体(例えば、D−ラクチド(D−LA)、L−ラクチド(L−LA)、DL−ラクチド(DL−LA)、又はそれらの混合物)などが挙げられるが、好ましくはD−LAとL−LAの等量混合物である。一般式(D)で表される化合物の使用量は、一般式(C)で表されるポリグリセリン中の水酸基1モルに対し、10〜100モル、好ましくは20〜50モルである。通常、上記の使用量であれば、ほぼすべてのポリグリセリンの水酸基の水素がポリエステル鎖に置換される。なお、本発明の効果が発揮される範囲でポリグリセリンの水酸基が一部残っていても良い。具体的には、Rの50%以上がポリエステル鎖となるようにすれば良い。   The compound represented by the general formula (D) is a cyclic dimer of glycolic acid, a cyclic dimer of lactic acid (for example, D-lactide (D-LA), L-lactide (L-LA), DL-lactide). (DL-LA) or a mixture thereof) and the like, and an equivalent mixture of D-LA and L-LA is preferred. The usage-amount of the compound represented by general formula (D) is 10-100 mol with respect to 1 mol of hydroxyl groups in the polyglycerol represented by general formula (C), Preferably it is 20-50 mol. Usually, at the above-mentioned use amount, hydrogen of almost all the hydroxyl groups of polyglycerol is replaced with the polyester chain. In addition, some hydroxyl groups of polyglycerol may remain within the range in which the effect of the present invention is exhibited. Specifically, 50% or more of R may be a polyester chain.

触媒としては、例えば、2−エチルヘキサン酸スズ(II)、カリウム/ナフタレン等が例示され、その使用量は、一般式(C)で表されるポリグリセリン中の水酸基1モルに対し、0.01〜0.1モル、好ましくは0.02〜0.05モルである。   Examples of the catalyst include tin (II) 2-ethylhexanoate, potassium / naphthalene, etc., and the amount used is 0.000 per 1 mol of hydroxyl group in the polyglycerol represented by the general formula (C). The amount is 01 to 0.1 mol, preferably 0.02 to 0.05 mol.

反応は、一般式(C)で表されるポリグリセリン、一般式(D)で表される化合物及び触媒を、不活性ガス雰囲気(例えば、アルゴン等)下、重合(バルク重合等)させて行う。一般式(D)で表される化合物及び一般式(C)で表される化合物をともに融解させて反応させることが好適である。反応温度および反応時間は、例えば120〜180℃(好ましくは125〜160℃)で2分〜24時間程度反応させればよい。反応後は、反応物を可溶性の溶媒に溶解させて、これに貧溶媒を加えて目的物を析出させる等の方法を用いて目的物を得ることができる。   The reaction is performed by polymerizing (bulk polymerization or the like) the polyglycerin represented by the general formula (C), the compound represented by the general formula (D) and the catalyst in an inert gas atmosphere (for example, argon or the like). . It is preferable that the compound represented by the general formula (D) and the compound represented by the general formula (C) are both melted and reacted. The reaction temperature and reaction time may be, for example, 120 to 180 ° C. (preferably 125 to 160 ° C.) for about 2 minutes to 24 hours. After the reaction, the desired product can be obtained by using a method such as dissolving the reaction product in a soluble solvent and adding a poor solvent thereto to precipitate the desired product.

本発明の分岐型生分解性ポリエステルは、生分解性および柔軟性を有しており、分岐度を制御することで生分解速度の調節ができる。また、本発明の分岐型生分解性ポリエステルは、生分解性、伸縮性、柔軟性および弾性を有している。   The branched biodegradable polyester of the present invention has biodegradability and flexibility, and the biodegradation rate can be adjusted by controlling the degree of branching. The branched biodegradable polyester of the present invention has biodegradability, stretchability, flexibility and elasticity.

本発明によって得られる素材は、フィルム状、糸状、スポンジ状に成型加工でき、柔軟性や弾性を有する生分解性材料の開発が可能となる。これらは例えば、医療材料および医療製品、電化製品、家具に代表される一般的な造形物、プラスチックボトル、惣菜用容器に代表される一般的な飲食業界に関わる容器などとして応用できる。   The material obtained by the present invention can be molded into a film, thread, or sponge, and a biodegradable material having flexibility and elasticity can be developed. These can be applied as, for example, medical materials and medical products, electrical appliances, general shaped articles typified by furniture, plastic bottles, containers for general food and drink industries typified by prepared food containers, and the like.

本発明の素材は、医療用素材(材料)として好適に用いることができる。例えば、軟組織や、血管や筋肉(心筋、骨格筋、平滑筋等)などの弾性が要求される組織に対して高い力学的適合性を示すため、このような組織の再生に用いる生体内留置物として有用である。例えば、生分解性埋込材料、組織再生用足場材料、可動部位周辺の創傷被覆等が挙げられる。   The material of the present invention can be suitably used as a medical material (material). For example, in vivo indwelling materials used for regeneration of soft tissues and tissues that require elasticity such as blood vessels and muscles (myocardium, skeletal muscle, smooth muscle, etc.) are highly mechanically compatible. Useful as. For example, biodegradable implant materials, tissue regeneration scaffold materials, wound coverings around movable sites, and the like.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
分岐型ポリ−DL−乳酸の合成
20mg(40.0μmol)のポリグリセリン500(阪本薬品製)を溶解させたメタノール溶液を重合管に加え、それをバキュームラインに連結してメタノールをエバポレートした。そこに1,150mg(7.9mmol)のD−LAと1,150mg(7.9mmol)のL−LAを加え、再度バキュームラインに連結した後に5時間凍結乾燥を行い、さらに一晩減圧乾燥を行った。乾燥後、重合管をバキュームラインより取り外し、グローブボックス内(窒素雰囲気下)でTHFに溶解した6.48mg(15.9μmol)の2−エチルヘキサン酸スズ(II)を重合管に加えた。この重合管をバキュームラインに連結し、液体窒素により固化させた後に、脱気とアルゴン置換を一セットとし、これを三セット繰り返した。一晩減圧乾燥させた後に重合管の封管を行い、160℃のオイルバス中でD−LAとL−LAを融解させた後、130℃で24時間反応させた(図1)。クロロホルムに溶解した反応物をジエチルエーテル中に滴下し、生じた沈殿物を回収した。得られた白色沈殿物を減圧乾燥し、目的物である分岐型ポリ−DL−乳酸(PDLLA)を得た。収量は2,080mg、収率は89.4%であった。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[Example 1]
Synthesis of branched poly-DL-lactic acid A methanol solution in which 20 mg (40.0 μmol) of polyglycerin 500 (manufactured by Sakamoto Yakuhin Co., Ltd.) was dissolved was added to a polymerization tube, which was connected to a vacuum line to evaporate methanol. 1,150 mg (7.9 mmol) of D-LA and 1,150 mg (7.9 mmol) of L-LA were added thereto, and after re-connecting to a vacuum line, freeze-drying was performed for 5 hours, followed by drying under reduced pressure overnight. went. After drying, the polymerization tube was removed from the vacuum line, and 6.48 mg (15.9 μmol) of tin (II) 2-ethylhexanoate dissolved in THF was added to the polymerization tube in a glove box (under a nitrogen atmosphere). After this polymerization tube was connected to a vacuum line and solidified with liquid nitrogen, degassing and argon replacement were taken as one set, and this was repeated three sets. After drying under reduced pressure overnight, the polymerization tube was sealed, and D-LA and L-LA were melted in an oil bath at 160 ° C., and then reacted at 130 ° C. for 24 hours (FIG. 1). The reaction product dissolved in chloroform was dropped into diethyl ether, and the resulting precipitate was collected. The obtained white precipitate was dried under reduced pressure to obtain a branched poly-DL-lactic acid (PDLLA) as a target product. The yield was 2,080 mg and the yield was 89.4%.

DMSO-dを溶媒に用いて得られた分岐型PDLLAのH NMR(JEOL製GSX−400)スペクトルを測定したところ、図2の結果となった。H NMR(DMSO−d)、δ(ppm); 1.27 (3H,CH(C )OH)、1.33−1.48(3H, CHC )、4.12−4.23(1H,C(CH)OH)、5.07−5.21(1H,CCH)。
[比較例1]
直鎖型ポリ−DL−乳酸の合成
ポリグリセリンの代わりに一分子中に一個の水酸基を持つラウリルアルコールを開始剤として用いた以外は実施例1と同様な条件で重合反応を行い、直鎖型ポリ−DL−乳酸(PDLLA)を得た。精製も同様な方法で行なった。
[試験例2]
分子量測定
実施例1の分岐型PDLLAおよび比較例1の直鎖型PDLLAの数平均分子量(Mn)と分子量分布(Mw/Mn)をサイズ排除クロマトグラフィー(TOSOH製、Tosoh GPC−8020 series system、eluent: THF、standard:PS)により測定した。ポリマー3mgをDMF 0.5mlに溶かし、これを0.2μm孔のフィルターに通すことでゴミ等の固体を除去し、その後装置にシリンジを用いて打ち込んだ。分岐型PDLLAでは、Mn=62,700、Mw/Mn=1.5、分岐型PDLLAではMn=69,700、Mw/Mn=1.9であった(表1)。
When the 1 H NMR (GSX-400, manufactured by JEOL) spectrum of branched PDLLA obtained using DMSO-d 6 as a solvent was measured, the results shown in FIG. 2 were obtained. 1 H NMR (DMSO-d 6 ), δ (ppm); 1.27 (3H, CH (C H 3 ) OH), 1.33-1.48 (3H, CHC H 3 ), 4.12-4 .23 (1H, C H (CH 3 ) OH), 5.07-5.21 (1H, C H CH 3 ).
[Comparative Example 1]
Synthesis of linear poly-DL-lactic acid A polymerization reaction was carried out under the same conditions as in Example 1 except that lauryl alcohol having one hydroxyl group in one molecule was used as an initiator instead of polyglycerol. Poly-DL-lactic acid (PDLLA) was obtained. Purification was performed in the same manner.
[Test Example 2]
Molecular Weight Measurement The number-average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the branched PDLLA of Example 1 and the straight-chain PDLLA of Comparative Example 1 were subjected to size exclusion chromatography (manufactured by Tosoh, Tosoh GPC-8020 series system, eluent). : THF, standard: PS). 3 mg of the polymer was dissolved in 0.5 ml of DMF, and this was passed through a filter having a pore size of 0.2 μm to remove solids such as dust. In the branched type PDLLA, Mn = 62,700 and Mw / Mn = 1.5, and in the branched type PDLLA, Mn = 69,700 and Mw / Mn = 1.9 (Table 1).

得られたポリマーからクロロホルムを溶媒に用いたキャストフィルムを調製し、以下の物性評価に用いた。6mlのクロロホルムに溶解した360mgの分岐型PDLLAおよび360mgの直鎖型PDLLA(ともにポリマー濃度4wt%) をテフロン(登録商標)シャーレ(Φ=50)にキャストし、室温・常圧下で12時間そして室温・減圧下で24時間乾燥を行なった。得られた分岐型PDLLAフィルムおよび直鎖型PDLLAフィルムの厚さはともに約100μmで、無色透明であった。   A cast film using chloroform as a solvent was prepared from the obtained polymer and used for the following physical property evaluation. 360 mg of branched PDLLA and 360 mg of linear PDLLA (both having a polymer concentration of 4 wt%) dissolved in 6 ml of chloroform were cast on a Teflon (registered trademark) petri dish (Φ = 50) for 12 hours at room temperature and pressure. -Drying was performed under reduced pressure for 24 hours. The thicknesses of the obtained branched PDLLA film and linear PDLLA film were both about 100 μm and were colorless and transparent.

Figure 2008222768
Figure 2008222768

[試験例2]
熱量分析
実施例1の分岐型PDLLAフィルムおよび比較例1の直鎖型PDLLAフィルムの熱分析を次のようにして行った。ポリマー5mgを秤量してアルミパンに入れ、これを示差走査熱量装置(DSC)に設置して測定を行った。測定温度範囲−100〜200℃、昇温速度10℃/min、冷却は液体窒素を用いた。
[Test Example 2]
Calorimetric analysis Thermal analysis of the branched PDLLA film of Example 1 and the linear PDLLA film of Comparative Example 1 was performed as follows. 5 mg of polymer was weighed and placed in an aluminum pan, which was placed in a differential scanning calorimeter (DSC) and measured. Measurement temperature range: −100 to 200 ° C., temperature rising rate: 10 ° C./min, liquid nitrogen was used for cooling.

その結果、直鎖型PDLLAフィルムおよび分岐型PDLLAフィルムのガラス転移温度はそれぞれ28.5℃と17.5℃であり、分岐構造化によりガラス転移温度が効果的に低下することが示された(表1)。また、分岐型PDLLAおよび直鎖型PDLLAともにポリ乳酸由来の融点ピークは検出されず、非晶性であることが示された。
[試験例3]
力学物性解析(引っ張り試験)
分岐構造化に伴うフィルムの力学特性変化を解析するため、実施例1の分岐型PDLLAフィルムおよび比較例1の直鎖型PDLLAフィルムの引っ張り試験を次のようにして行った。調製した各フィルムをダンベル型に切り抜き、1mm/minで引っ張り試験を行った。各サンプルにつき4回測定し、それらの平均的な応力−歪み曲線を図3に示す。
As a result, the glass transition temperatures of the linear PDLLA film and the branched PDLLA film were 28.5 ° C. and 17.5 ° C., respectively, and it was shown that the glass transition temperature is effectively reduced by the branch structuring ( Table 1). In addition, the melting point peak derived from polylactic acid was not detected in both branched PDLLA and linear PDLLA, indicating that it was amorphous.
[Test Example 3]
Mechanical property analysis (tensile test)
In order to analyze the change in the mechanical properties of the film accompanying the branching structure, the tensile test of the branched PDLLA film of Example 1 and the linear PDLLA film of Comparative Example 1 was performed as follows. Each of the prepared films was cut into a dumbbell shape and subjected to a tensile test at 1 mm / min. Each sample was measured four times and their average stress-strain curve is shown in FIG.

直鎖型PDLLAフィルムのヤング率は63.5MPa、最大応力は3.43MPa、最大伸びは15%であった。一方、分岐型PDLLAのヤング率は49.0MPa、最大応力は0.93MPa、最大伸びは610%であり、分岐構造によってフィルムを延伸するために必要な応力は大きく低下し、柔らかさと粘り強さを兼ね備えた素材であることが示された。
[試験例4]
加水分解試験(in vitro)
分岐構造化に伴うフィルムの分解特性変化を解析するため、実施例1の分岐型PDLLAフィルムおよび比較例1の直鎖型PDLLAフィルムの加水分解試験を次のようにして行った。
The linear type PDLLA film had a Young's modulus of 63.5 MPa, a maximum stress of 3.43 MPa, and a maximum elongation of 15%. On the other hand, the branched PDLLA has a Young's modulus of 49.0 MPa, a maximum stress of 0.93 MPa, and a maximum elongation of 610%. The stress required to stretch the film by the branched structure is greatly reduced, and softness and tenacity are reduced. It was shown to be a material that combines.
[Test Example 4]
Hydrolysis test (in vitro)
In order to analyze the change in the decomposition characteristics of the film accompanying the branching structure, the hydrolysis test of the branched PDLLA film of Example 1 and the linear PDLLA film of Comparative Example 1 was performed as follows.

各フィルムを37℃でリン酸緩衝生理食塩水(pH=7.4)に一定期間浸漬させた後の重量減少率と数平均分子量の減少率を調べた。それらの結果を図4に示す。所定時間浸漬した後にフィルムを取り出し、超純水で洗浄して凍結乾燥を行い、その後フィルムの重量を測定し重量減少率を算出した。   Each film was immersed in phosphate buffered saline (pH = 7.4) at 37 ° C. for a certain period, and then the weight reduction rate and the number average molecular weight reduction rate were examined. The results are shown in FIG. After dipping for a predetermined time, the film was taken out, washed with ultrapure water, freeze-dried, and then the weight of the film was measured to calculate the weight reduction rate.

なお、t(日)後の重量減少率は下記式(1)、t(日)後の分子量減少率は下記式(2)から導かれる。   The weight reduction rate after t (day) is derived from the following formula (1), and the molecular weight reduction rate after t (day) is derived from the following formula (2).

重量減少率(wt%)=[(W−W)/W0]×10 (1)
(W0は初期重量(g)、Wはt(日)後の重量(g)を示す。)
分子量減少率(%)=[(Mn0−Mnt)/Mn0]×100 (2)
(Mn0は初期分子量(g/mol)、Mntはt(日)後の分子量(g/mol)を示す。)
また凍結乾燥後のフィルムをTHFに溶解し、GPC(Eluent:THF)測定により分子量減少率を算出した。分岐型PDLLAフィルムの重量減少率は対応する直鎖型PDLLAフィルムとほぼ同等であった。一方、分岐型PDLLAの分子量減少率は、直鎖型PDLLAよりも遅く、分岐型PDLLAフィルムは分解に伴う力学物性の低下がより長期間抑制されることが示唆された。
Weight reduction rate (wt%) = [(W 0 −W t ) / W 0] × 10 (1)
(W 0 represents the initial weight (g), and W t represents the weight (g) after t (days).)
Molecular weight reduction rate (%) = [(M n0 −M nt ) / M n0] × 100 (2)
(M n0 represents the initial molecular weight (g / mol), and M nt represents the molecular weight (g / mol) after t (days).)
Further, the lyophilized film was dissolved in THF, and the molecular weight reduction rate was calculated by GPC (Eluent: THF) measurement. The weight reduction rate of the branched PDLLA film was almost the same as that of the corresponding linear PDLLA film. On the other hand, the molecular weight reduction rate of branched PDLLA is slower than that of linear PDLLA, and it was suggested that the decrease in mechanical properties associated with decomposition of the branched PDLLA film is suppressed for a longer period.

実施例1で示す分岐型PDLLAの合成方法を示す。The synthesis method of the branched PDLLA shown in Example 1 is shown. 実施例1で得られた分岐型PDLLAのH NMR(溶媒:DMSO−d)のチャート及び代表的なプロトンの帰属を示す。The chart of 1 H NMR (solvent: DMSO-d 6 ) of the branched PDLLA obtained in Example 1 and representative proton assignments are shown. 実施例1の分岐型PDLLAフィルム(A)および比較例1の直鎖型PDLLAフィルム(B)の引っ張り試験の結果を示す。The result of the tension test of the branched type PDLLA film (A) of Example 1 and the linear type PDLLA film (B) of Comparative Example 1 is shown. 37℃(in vitro)でのリン酸緩衝生理食塩水(pH=7.4)における、実施例1の分岐型PDLLAフィルム(◆)および比較例1の直鎖型PDLLAフィルム(▲)の重量減少率(A)と分子量減少率(B)の結果を示す。Weight loss of the branched PDLLA film of Example 1 (♦) and the linear PDLLA film of Comparative Example 1 (▲) in phosphate buffered saline (pH = 7.4) at 37 ° C. (in vitro) The results of rate (A) and molecular weight reduction rate (B) are shown.

Claims (15)

ポリグリセリンを主鎖として有し、該ポリグリセリンの水酸基を介して側鎖としてポリエステル鎖を有する分岐型生分解性ポリエステル。   A branched biodegradable polyester having polyglycerin as a main chain and having a polyester chain as a side chain via a hydroxyl group of the polyglycerin. 一般式(A):
Figure 2008222768
(式中、Rは独立して水素原子又はポリエステル鎖を示し、Rの50%以上がポリエステル鎖であり、nは2〜20を示す。)
で表される請求項1に記載の分岐型生分解性ポリエステル。
Formula (A):
Figure 2008222768
(In the formula, R independently represents a hydrogen atom or a polyester chain, 50% or more of R is a polyester chain, and n represents 2 to 20.)
The branched biodegradable polyester according to claim 1, represented by:
前記一般式(A)におけるRで示されるポリエステル鎖が、脂肪族ポリエステル鎖である請求項2に記載の分岐型生分解性ポリエステル。   The branched biodegradable polyester according to claim 2, wherein the polyester chain represented by R in the general formula (A) is an aliphatic polyester chain. 前記一般式(A)におけるRで示されるポリエステル鎖が、ヒドロキシ酸の重合体からなるポリエステル鎖である請求項2に記載の分岐型生分解性ポリエステル。   The branched biodegradable polyester according to claim 2, wherein the polyester chain represented by R in the general formula (A) is a polyester chain made of a hydroxy acid polymer. 前記一般式(A)におけるRで示されるポリエステル鎖が、ポリ−L−乳酸、ポリ−D−乳酸、ポリ−DL−乳酸、ポリグリコール酸、ポリカプロラクトン、及びそれらの共重合体からなる群より選ばれる少なくとも1種である請求項2に記載の分岐型生分解性ポリエステル。   The polyester chain represented by R in the general formula (A) is selected from the group consisting of poly-L-lactic acid, poly-D-lactic acid, poly-DL-lactic acid, polyglycolic acid, polycaprolactone, and copolymers thereof. The branched biodegradable polyester according to claim 2, which is at least one selected. 前記一般式(A)におけるRで示されるポリエステル鎖が、一般式(B):
Figure 2008222768
(式中、Rは水素原子又はメチル基を示し、mは1〜500を示す。)
で表される請求項2に記載の分岐型生分解性ポリエステル。
The polyester chain represented by R in the general formula (A) is represented by the general formula (B):
Figure 2008222768
(In the formula, R 1 represents a hydrogen atom or a methyl group, and m represents 1 to 500.)
The branched biodegradable polyester according to claim 2, which is represented by:
前記一般式(A)において、nが5〜20であり、mが20〜200である請求項6に記載の分岐型生分解性ポリエステル。   The branched biodegradable polyester according to claim 6, wherein in the general formula (A), n is 5 to 20, and m is 20 to 200. 数平均分子量(Mn)が300〜1,500,000である請求項1〜7のいずれかに記載の分岐型生分解性ポリエステル。   The branched biodegradable polyester according to any one of claims 1 to 7, which has a number average molecular weight (Mn) of 300 to 1,500,000. 数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.05〜3.00である請求項1〜8のいずれかに記載の分岐型生分解性ポリエステル。   The ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 1.05 to 3.00, The branched biodegradable polyester according to any one of claims 1 to 8. ガラス転移温度が−60〜55℃である請求項1〜9のいずれかに記載の分岐型生分解性ポリエステル。   The branched biodegradable polyester according to any one of claims 1 to 9, which has a glass transition temperature of -60 to 55 ° C. 融点が50〜240℃である請求項1〜10のいずれかに記載の分岐型生分解性ポリエステル。   Melting | fusing point is 50-240 degreeC, The branched biodegradable polyester in any one of Claims 1-10. pH=7.4のリン酸緩衝生理食塩水(37℃)に28日間浸漬した場合、数平均分子量の減少率が30%以下であることを特徴とする請求項1〜11のいずれかに記載の分岐型生分解性ポリエステル。   The number average molecular weight decrease rate is 30% or less when immersed in phosphate buffered saline (pH 37) at pH = 7.4 for 28 days. Branched biodegradable polyester. 前記分岐型生分解性ポリエステルを厚さ約100μm、幅5.0mmダンベル型のフィルムとし、これ
を引っ張り試験したときの破断強度が0.1〜20MPa、ヤング率が0.1〜20MPa、破断時ひずみが50〜1,000%であることを特徴とする請求項1〜12のいずれかに記載の分岐型生分解性ポリエステル。
The branched biodegradable polyester is a dumbbell-type film having a thickness of about 100 μm and a width of 5.0 mm. When this is subjected to a tensile test, the breaking strength is 0.1 to 20 MPa, the Young's modulus is 0.1 to 20 MPa, and the film is broken. The branched biodegradable polyester according to any one of claims 1 to 12, wherein the strain is 50 to 1,000%.
一般式(A):
Figure 2008222768
(式中、Rは独立して水素原子又は一般式(B):
Figure 2008222768
(式中、Rは水素原子又はメチル基を示し、mは1〜500を示す。)で示されるポリエステル鎖を示し、Rの50%以上は該ポリエステル鎖であり、nは2〜20を示す。)
で表される分岐型生分解性ポリエステルの製造方法であって、一般式(C):
Figure 2008222768
(式中、nは前記に同じ。)
で表されるポリグリセリンに、一般式(D):
Figure 2008222768
(式中、Rは前記に同じ。)
で表される化合物を重合反応させることを特徴とする製造方法。
Formula (A):
Figure 2008222768
(Wherein R is independently a hydrogen atom or general formula (B):
Figure 2008222768
(Wherein R 1 represents a hydrogen atom or a methyl group, m represents 1 to 500), 50% or more of R is the polyester chain, and n represents 2 to 20 Show. )
A branched biodegradable polyester represented by the general formula (C):
Figure 2008222768
(Wherein n is the same as above)
In the polyglycerin represented by the general formula (D):
Figure 2008222768
(In the formula, R 1 is the same as above.)
A process for producing a compound represented by the formula:
請求項1〜13のいずれかに記載の分岐型生分解性ポリエステルを含む医療用材料。   A medical material comprising the branched biodegradable polyester according to any one of claims 1 to 13.
JP2007059906A 2007-03-09 2007-03-09 Branched biodegradable polyester and method for producing the same Pending JP2008222768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059906A JP2008222768A (en) 2007-03-09 2007-03-09 Branched biodegradable polyester and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059906A JP2008222768A (en) 2007-03-09 2007-03-09 Branched biodegradable polyester and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008222768A true JP2008222768A (en) 2008-09-25

Family

ID=39841766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059906A Pending JP2008222768A (en) 2007-03-09 2007-03-09 Branched biodegradable polyester and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008222768A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029967A (en) * 2007-07-27 2009-02-12 Univ Kansai Biodegradable polymer having temperature responding property and method for manufacturing the same
WO2010082639A1 (en) * 2009-01-16 2010-07-22 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
WO2013122245A1 (en) * 2012-02-17 2013-08-22 東洋紡株式会社 Polylactic polyester resin, aqueous polylactic polyester resin dispersion, and production method for aqueous polylactic polyester resin dispersion
JP2016186055A (en) * 2015-03-27 2016-10-27 株式会社クレハ Polyglycolic acid composition and temporary filling material
WO2016204266A1 (en) * 2015-06-19 2016-12-22 東レ株式会社 Polymer film and adhesion-preventive material including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100057A (en) * 1994-09-29 1996-04-16 Dainippon Ink & Chem Inc Production of lactic acid copolymer
JP2002348366A (en) * 2001-03-19 2002-12-04 Toyobo Co Ltd Manufacturing method of biodegradable polyester
JP2002348363A (en) * 2001-03-19 2002-12-04 Toyobo Co Ltd Biodegradable polyester
JP2003039620A (en) * 2001-08-03 2003-02-13 Toyobo Co Ltd Biodegradable laminate
JP2003048963A (en) * 2001-08-03 2003-02-21 Toyobo Co Ltd Biodegradable polyester
JP2003175569A (en) * 2001-12-12 2003-06-24 Toppan Printing Co Ltd Boidegradable releasable sheet
JP2005248139A (en) * 2004-02-03 2005-09-15 Toyobo Co Ltd Pigment masterbatch and resin composition and molded product composed of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100057A (en) * 1994-09-29 1996-04-16 Dainippon Ink & Chem Inc Production of lactic acid copolymer
JP2002348366A (en) * 2001-03-19 2002-12-04 Toyobo Co Ltd Manufacturing method of biodegradable polyester
JP2002348363A (en) * 2001-03-19 2002-12-04 Toyobo Co Ltd Biodegradable polyester
JP2003039620A (en) * 2001-08-03 2003-02-13 Toyobo Co Ltd Biodegradable laminate
JP2003048963A (en) * 2001-08-03 2003-02-21 Toyobo Co Ltd Biodegradable polyester
JP2003175569A (en) * 2001-12-12 2003-06-24 Toppan Printing Co Ltd Boidegradable releasable sheet
JP2005248139A (en) * 2004-02-03 2005-09-15 Toyobo Co Ltd Pigment masterbatch and resin composition and molded product composed of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029967A (en) * 2007-07-27 2009-02-12 Univ Kansai Biodegradable polymer having temperature responding property and method for manufacturing the same
WO2010082639A1 (en) * 2009-01-16 2010-07-22 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin
WO2013122245A1 (en) * 2012-02-17 2013-08-22 東洋紡株式会社 Polylactic polyester resin, aqueous polylactic polyester resin dispersion, and production method for aqueous polylactic polyester resin dispersion
JPWO2013122245A1 (en) * 2012-02-17 2015-05-18 東洋紡株式会社 Polylactic acid-based polyester resin, polylactic acid-based polyester resin aqueous dispersion, and method for producing polylactic acid-based polyester resin aqueous dispersion
US9670311B2 (en) 2012-02-17 2017-06-06 Toyobo Co., Ltd Polylactic polyester resin, aqueous polylactic polyester resin dispersion, and production method for aqueous polylactic polyester resin dispersion
JP2016186055A (en) * 2015-03-27 2016-10-27 株式会社クレハ Polyglycolic acid composition and temporary filling material
WO2016204266A1 (en) * 2015-06-19 2016-12-22 東レ株式会社 Polymer film and adhesion-preventive material including same
JPWO2016204266A1 (en) * 2015-06-19 2017-06-22 東レ株式会社 Polymer film and adhesion preventing material using the same
CN107001615A (en) * 2015-06-19 2017-08-01 东丽株式会社 Polymeric membrane and the adherence preventing material obtained using it
KR101825981B1 (en) 2015-06-19 2018-02-06 도레이 카부시키가이샤 Polymer film and antiadhesive material using the same
US10213530B2 (en) 2015-06-19 2019-02-26 Toray Industries, Inc. Polymer film and antiadhesive material using the same

Similar Documents

Publication Publication Date Title
AU2006271727B2 (en) Resorbable polyether esters for producing medical implants
US5714551A (en) High strength, melt processable, lactide-rich, poly (lactide-co-p-dioxanone) copolymers
US5321113A (en) Copolymers of an aromatic anhydride and aliphatic ester
Oh et al. Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method
NL9001984A (en) METHOD FOR PRODUCING AN ARTICLE OF A COPOLYMER OF LACTIDE AND EPSILON CAPROLACTONE FOR MEDICAL APPLICATIONS.
JP2001514278A (en) Condensation copolymers with suppressed crystallinity
JPH04283227A (en) Hydrolyzable resin composition
JP2008222768A (en) Branched biodegradable polyester and method for producing the same
JP3290179B2 (en) Copolymer of lactone and carbonate and method for producing such copolymer
Mulchandani et al. Effect of block length and stereocomplexation on the thermally processable poly (ε-caprolactone) and poly (lactic acid) block copolymers for biomedical applications
US7652127B2 (en) Absorbable copolyesters of poly(ethoxyethylene diglycolate) and glycolide
Gigli et al. Biocompatible multiblock aliphatic polyesters containing ether-linkages: influence of molecular architecture on solid-state properties and hydrolysis rate
JP5258189B2 (en) Flexible biodegradable polymer
US20220251372A1 (en) Polymer composition, molded body, and nerve regeneration inducing tube
AU2014237773B2 (en) Polylactone polymers prepared from monol and diol polymerization initiators possessing two or more carboxylic acid groups
JP4022220B2 (en) Block copolymer for surgical supplies
Feng et al. Degradable depsipeptide-based multiblock copolymers with polyester or polyetherester segments
US20230323115A1 (en) Polymer composition and molded article
JP2006175153A (en) Biodegradable bio-absorbable material for clinical practice
WO2020122096A1 (en) Medical molded article, medical device, and nerve regeneration inducing tube
JP2020092874A (en) Medical molding
Díaz et al. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers
JP7319466B2 (en) block copolymer
JP2008120888A (en) Biodegradable copolymer and method for producing the same
JPWO2004000376A1 (en) Biodegradable bioabsorbable material for medical use and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612