WO2018079262A1 - Polymer, electrode, electric-storage device, and process for producing polymer - Google Patents

Polymer, electrode, electric-storage device, and process for producing polymer Download PDF

Info

Publication number
WO2018079262A1
WO2018079262A1 PCT/JP2017/036857 JP2017036857W WO2018079262A1 WO 2018079262 A1 WO2018079262 A1 WO 2018079262A1 JP 2017036857 W JP2017036857 W JP 2017036857W WO 2018079262 A1 WO2018079262 A1 WO 2018079262A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polymer
independently
bonded
Prior art date
Application number
PCT/JP2017/036857
Other languages
French (fr)
Japanese (ja)
Inventor
山本 圭一
相田 一成
香奈 増田
大地 末政
遠藤 剛
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2018547538A priority Critical patent/JP6969570B2/en
Priority to CN201780065226.1A priority patent/CN109863192A/en
Publication of WO2018079262A1 publication Critical patent/WO2018079262A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer, an electrode, an electricity storage device, and a method for producing the polymer.
  • Aromatic amine polymers such as polyaniline are known as conductive polymers, and they can be used as hole transport materials used in organic EL, organic transistors, solar cells, and electrode materials such as lithium ion secondary batteries. Expected.
  • an aromatic amine polymer for example, a linear polyarylene amine proposed in Patent Document 1 is known in addition to polyaniline.
  • aromatic diamine compounds such as N, N, N ′, N′-tetramethyl-benzidine are useful as electrode active materials for power storage devices (see Patent Document 2).
  • one embodiment of the present invention provides a novel aromatic amine polymer excellent in solubility in an organic solvent and a method for producing the same.
  • another embodiment of the present invention provides a novel aromatic amine polymer that provides satisfactory characteristics when used as an electrode active material of an electricity storage device, and a method for producing the same.
  • a configuration example of the present invention is as follows.
  • a polymer having at least one of the structures represented by the following formulas (1) and (2) (hereinafter also referred to as “the present polymer 1”); A polymer having a structure represented by the following formulas (3) and (R ′) and having a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography of 2,000 or more (hereinafter “present polymer 2”) Or) A polymer having a structure represented by the following formulas (1) and (6) (hereinafter also referred to as “present polymer 3”) is provided. These polymers 1 to 3 are also collectively referred to as this polymer A.
  • one embodiment of the present invention provides an electrode containing the present polymer A, and further provides an electricity storage device comprising the electrode as a positive electrode.
  • an embodiment of the present invention In the presence of a base, a method for producing a polymer comprising a step of reacting a compound represented by the following formula (7) with a compound represented by the following formula (8) (hereinafter also referred to as “the present method I”). Or a method for producing a polymer comprising a step of reacting a compound represented by the following formula (9) with a compound represented by the following formula (10) in the presence of a base (hereinafter also referred to as “the present method II”) .)I will provide a.
  • an aromatic amine polymer having excellent solubility in an organic solvent can be obtained. Therefore, the polymer is extremely useful as a positive electrode transport material applied to a liquid phase process. Further, by using the polymer, an electricity storage device satisfying satisfactory characteristics, specifically, high discharge capacity, high cycle characteristics, and high rate characteristics can be easily obtained. Therefore, the polymer is extremely useful as an electrode material for an electricity storage device.
  • the present polymer A is any one of the following present polymers 1 to 3.
  • the present polymer 1 is represented by the structure represented by the following formula (1) (hereinafter also referred to as “structure (1)”. Other structures may be expressed in the same manner) and the following formula (2).
  • the present polymer 1 having the structure (1) (hereinafter also referred to as “the present polymer 1a”) is particularly excellent in solubility in an organic solvent, and is extremely useful as a positive electrode transport material or the like applied to a liquid phase process. Moreover, when this polymer 1a is used as an electrode material, particularly as an active material, an electricity storage device having excellent cycle characteristics can be easily obtained.
  • Ar 1 is an independently substituted or unsubstituted aromatic hydrocarbon group, and a bond bonded to Ar 1 is bonded to N.
  • aromatic ring constituting the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenyl ring, and the like, and a benzene ring is preferable.
  • the substituent include a hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, a fluoro group, and a carboxy group.
  • Ar 1 is preferably an unsubstituted aromatic hydrocarbon group, more preferably a p-phenylene group.
  • Y independently represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to each of two Ar 1 groups.
  • the linking group include —O—, —NR— (R is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms), —S—, —CO—, an alkylene group having 1 to 4 carbon atoms, and the like.
  • the substituent include the same groups as the substituent for Ar 1 .
  • Y is preferably a single bond, two hydrogen atoms bonded to each of —S— or Ar 1 .
  • Several Y in Formula (1) may be the same respectively, and may differ. The same description in this specification shows the same meaning.
  • N represents an integer of 4 or more, and is preferably an integer such that the weight average molecular weight of the obtained polymer falls within the following range, and more preferably 10 to 100.
  • polymer 1a examples include the following polymers.
  • N in the following polymer has the same meaning as n in the formula (1).
  • the present polymer 1a is the present polymer 3 having a structure represented by the above formula (1) and the following formula (6) from the viewpoint that a polymer excellent in solubility in an organic solvent is obtained. preferable.
  • “*” in the following formula (6) represents a bond that bonds to Ar 1 in the formula (1).
  • Ar 4 represents a substituted or unsubstituted aromatic hydrocarbon group independently of each other.
  • aromatic rings and substituents constituting the aromatic hydrocarbon group in Ar 4 and preferred groups are the same as those for Ar 1 .
  • R 2 independently represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group, or an organic group.
  • the organic group include a hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • the halo group is preferably a fluoro group or a bromo group, and more preferably a fluoro group.
  • R 2 is a polar group such as a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group, or an alkoxy group
  • a polymer that can swell in a general electrolyte solution can be obtained.
  • an electricity storage device exhibiting high rate characteristics and excellent cycle characteristics can be easily obtained.
  • this polymer 3 in which R 2 is a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, particularly a hydrogen atom or a methoxy group is used as an electrode material, particularly an active material, an electricity storage device having excellent cycle characteristics can be easily obtained. Obtainable.
  • R 2 is a hydrogen atom, a fluoro group or a hydrocarbon group, particularly a fluoro group or a methyl group
  • an electricity storage device having a high discharge capacity can be easily obtained.
  • R 2 is preferably a hydrogen atom, a fluoro group, a bromo group, a methyl group, or a methoxy group.
  • Z represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to each of two Ar 4 groups.
  • Examples of the linking group and substituent in Z, and preferred groups are the same as those for Y.
  • R in the following structure has the same meaning as R 2 in formula (6), and is preferably a hydrogen atom, a methyl group, a methoxy group, a fluoro group, or a bromo group.
  • Formula (6) shows that R ⁇ 1 > couple
  • R 1 represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group.
  • Examples of the organic group for R 1 include the same groups as the organic group for R 2 , and substituted or unsubstituted aromatic hydrocarbon groups.
  • the organic group includes “ ⁇ N—Ar — **”. [Ar represents a substituted or unsubstituted aromatic hydrocarbon group, and ** represents a bond bonded to N in the structure (1). It is preferably a group other than a group including a structure represented by R 1 is preferably a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group, and particularly preferably a hydrogen atom.
  • present polymer 1a and / or the present polymer 3 include polymers of the following groups (a1) to (a4).
  • N in the following polymer has the same meaning as n in the formula (1).
  • the present polymer 1 may be a polymer having a structure represented by the following formula (2) (hereinafter also referred to as “present polymer 1b”).
  • present polymer 1b When the polymer 1b is used as an electrode material, particularly as an active material, an electricity storage device that is excellent in balance between discharge capacity and rate characteristics can be easily obtained.
  • Ar 2 represents a group containing an aromatic ring independently of each other (provided that all of Ar 2 are all biphenyl-4,4′-diyl), and Ar 3 represents a mutual group. Independently represents a group containing an aromatic ring.
  • Examples of the group containing an aromatic ring in Ar 2 and Ar 3 include a group in which a plurality of the aromatic hydrocarbon groups are linked by a divalent linking group in addition to the aromatic hydrocarbon group exemplified for Ar 1. .
  • Examples of the divalent linking group include —O—, —S—, —SO 2 —, —NH—, —NHCO—, —COO—, a substituted or unsubstituted divalent hydrocarbon group, —N (C 6 H 5 ) — and the like.
  • Examples of the substituent include the same groups as the substituent for Ar 1 .
  • Ar 2 and Ar 3 a group containing an unsubstituted benzene ring is preferable, and a group containing 1 to 5 unsubstituted benzene rings is particularly preferable. Note that a group bonded to N in —Ar 3 — (N) b ⁇ may be bonded to Ar 2 to form a ring.
  • a represents an integer of 1 to 10.
  • b shows 1 or 2 mutually independently.
  • the present polymer 1b has a structure represented by the following formula (2 ′) from the viewpoint that a discharge capacity and rate characteristics are excellent in balance and an electric storage device having a particularly large discharge capacity can be easily obtained. Polymers are preferred.
  • polymer 1b examples include the following polymers.
  • This polymer 2 has a structure represented by the following formulas (3) and (R ′), and has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 2,000 or more. It is.
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography
  • GPC gel permeation chromatography
  • Such a polymer 2 is particularly excellent in solubility in an organic solvent, and is extremely useful as a positive electrode transport material or the like applied to a liquid phase process. Further, the polymer 2 is used as an electrode material, particularly an active material. When used as a substance, an electricity storage device having excellent cycle characteristics can be easily obtained.
  • Ar 1 and Y are independently of one another have the same meanings as defined above Ar 1 and Y.
  • m represents an integer of 2 or more.
  • the organic group in R 1 include the same groups as the organic group in R 2 , and substituted or unsubstituted aromatic hydrocarbon groups.
  • R 1 is preferably a hydrogen atom or a substituted or unsubstituted group.
  • An aromatic hydrocarbon group particularly preferably a hydrogen atom.
  • This polymer 2 has a repeating unit represented by the following formula (3-1) and a structure represented by the above formula (6) from the viewpoint of obtaining a polymer excellent in solubility in an organic solvent. Is preferred.
  • “*” represents a bond that bonds to Ar 1 in the following formula (3-1).
  • the repeating unit represented by the following formula (3-1) is between the core of the polymer 2 represented by R 1 — and the terminal of the polymer 2 represented by the formula (6). It means a repeating unit derived from a monomer.
  • the present polymer 2 preferably has one or more structural units represented by the following formula (3-2) between repeating units represented by the following formula (3-1).
  • Ar 1, Ar 4, R 2, Y and Z are independently of one another have the same meanings as defined above Ar 1, Ar 4, R 2 , Y and Z.
  • * 1 represents a bond that is bonded to N in the repeating unit represented by Formula (3-1) or N in Structure (3-2).
  • * 2 indicates a bond that binds to an Ar 1 in the formula at least one or the structure of Ar 1 in the repeating unit represented by (3-1) (3-2).
  • the present polymer 2 preferably contains 10 to 100 repeating units represented by the formula (3-1).
  • Specific examples of the present polymer 2 include, for example, the polymers represented by the groups (a1) to (a3), and those represented by the groups (a1) to (a3) in addition to the polymers having n of 2 or more.
  • a polymer having one or a plurality of structural units represented by the above formula (3-2) between a repeating unit (structural unit enclosed in parentheses) and the repeating unit is given. It is done.
  • the Mw of the present polymer A is preferably 2, from the viewpoint that, when the polymer A is used as an electrode material, particularly an active material, an electricity storage device having excellent rate characteristics and cycle characteristics can be easily obtained.
  • Mw is measured by the method described in the following examples.
  • the production method of the present polymer A is not particularly limited, but from the viewpoint that a polymer having a desired structure can be easily produced, the present polymer A is produced by the following method I or this method. It is preferable to manufacture by II.
  • a compound represented by the following formula (7) (hereinafter also referred to as “compound (7)”.
  • Other compounds may be expressed in the same manner) and the following formula (8).
  • the method of reacting with the compound represented by this According to this method, a polymer having a branched chain structure such as the present polymer 1a, the present polymer 2 and the present polymer 3, particularly a hyperbranched polymer can be easily produced.
  • Ar 1 and Y have the same meanings as Ar 1 and Y in the formulas independently of one another (1).
  • X represents a chloro group, a bromo group, or an iodo group independently of each other, and a bromo group is preferable from the viewpoint that the reaction proceeds more easily.
  • Compound (7) used in Method I may be one type or two or more types.
  • Compound (7) may be a commercially available product or may be synthesized by a conventionally known method. As the compound (7), the following compounds are preferable.
  • Ar 4, R 2 and Z are as defined Ar 4, R 2 and Z in formula independently of one another (6).
  • Compound (8) used in Method I may be one type or two or more types.
  • the following compounds are preferable.
  • Compound (8) may be a commercially available product, or may be synthesized by a conventionally known method.
  • Examples of the conventionally known method for example, a compound represented by R 2 -Ar 4 -NH 2 (wherein R 2 and Ar 4 has the same meaning as R 2 and Ar 4 in the formula (8).), R 2 -Ar 4 -X (wherein R 2 and Ar 4 has the same meaning as R 2 and Ar 4 in the formula (8), X is a halo group.) and a compound represented by the following Pd (P (t -Bu) 3 ) A method of reacting in the presence of a catalyst such as 2, and the like.
  • a precursor thereof is a compound represented by the R 2 —Ar 4 —NH 2
  • a compound represented by the R 2 —Ar 4 —X May be used.
  • the base is not particularly limited, and a conventionally known base can be used, but is preferably a strong base, more preferably a base with low nucleophilicity, specifically, a metal alkoxide, Examples thereof include metal amides, preferably sodium t-butoxide, potassium t-butoxide and the like.
  • the base used in Method I may be one type or two or more types.
  • a catalyst In the reaction in the present method I, it is preferable to use a catalyst.
  • the catalyst conventionally known catalysts can be used, and specific examples include the following compounds. Of these, a catalyst comprising a trialkylphosphine and a palladium compound is preferable.
  • the catalyst may be one type or two or more types.
  • Ms represents a mesylate group
  • Cy represents a cyclohexyl group
  • L represents a ligand
  • iprO represents an isopropoxy group
  • the reaction in Method I is usually performed in the presence of a solvent.
  • a solvent a conventionally known solvent can be used, and is not particularly limited, but a solvent capable of dissolving the compounds (7) and (8) is preferable, and specifically, an ether solvent such as THF (tetrahydrofuran). And aromatic hydrocarbon solvents such as benzene, toluene and xylene.
  • the solvent may be one type or two or more types.
  • reaction conditions in Method I are not particularly limited, but the reaction temperature is preferably 25 to 150 ° C., and the reaction time is preferably 0.5 to 10 hours.
  • the ratio of compound (7) to compound (8) used is preferably in the range of 100: 100 to 90: 100 in terms of molar ratio. .
  • NH in the polymer obtained by the above method is reacted with the compound containing R 1 such as R 1 X (X is a halo group) to thereby form the structure.
  • R 1 X is a halo group
  • a polymer in which R 1 is bonded to N in (1) and (3) can be obtained.
  • the compound represented by R 1 X include chlorobenzene, bromonaphthalene, bromoanthracene, bromobenzoic acid, and the like.
  • This method II is a method including a step of reacting a compound represented by the following formula (9) and a compound represented by the following formula (10) in the presence of a base. According to this method, a network polymer such as the present polymer 1b can be easily produced.
  • Ar 5 represents a group containing an aromatic ring.
  • groups containing an aromatic ring in Ar 5 and preferred groups are the same as those for Ar 2 and Ar 3 .
  • the aromatic ring is excellent in that the discharge capacity and rate characteristics are excellent in balance and an electric storage device having a particularly large discharge capacity can be easily obtained.
  • a compound in which an amino group is bonded to the para-position is preferred.
  • Compound (9) used in Method II may be one type or two or more types.
  • Compound (9) may be a commercially available product or may be synthesized by a conventionally known method.
  • Ar 6 has the same meaning as Ar 5 in the formula (9), and X represents a halo group independently of each other.
  • the aromatic ring is excellent in that the discharge capacity and rate characteristics are excellent in balance and in particular, an electricity storage device having a large discharge capacity can be easily obtained.
  • a compound in which a halo group is bonded to the para-position is preferred.
  • the compound (10) used in Method II may be one kind or two or more kinds.
  • Compound (10) may be a commercially available product, or may be obtained by synthesis by a conventionally known method.
  • the compound (10) the following compounds are preferable.
  • the base used in Method II is not particularly limited, and a conventionally known base can be used, but the same bases as those used in Method I can be mentioned.
  • the base used in Method II may be one kind or two or more kinds.
  • reaction in Method II it is preferable to use the same catalyst and solvent as in Method I.
  • Each of these catalysts and solvents may be one kind or two or more kinds.
  • the reaction conditions in this method II also include the same conditions as in this method I.
  • the ratio of compound (9) to compound (10) used is preferably in the range of 50:90 to 50: 110 in terms of molar ratio. .
  • the present polymer A can be suitably used as a hole transport material for an electricity storage device, an organic EL, an organic transistor, a solar cell, etc. It is preferably used as a device, more preferably used as an electrode material, and particularly preferably used as a positive electrode material, specifically as a positive electrode active material.
  • Electrode The electrode according to one embodiment of the present invention (hereinafter, also referred to as “main electrode”) is not particularly limited as long as it contains one or two or more main polymers A, but the main polymer on the current collector is not limited.
  • An electrode having an active material layer containing A and a binder is preferred.
  • the present polymer A used for the present electrode can be used as an electrode material as it is, but can also be used as an electrode material after being combined with activated carbon or an inorganic substance.
  • this polymer A can also be used as an electrode material with well-known positive electrode active materials, such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphate.
  • the present polymer A, a composite of the present polymer A and activated carbon, or a mixture of the present polymer A and a known positive electrode active material is also referred to as a present active material.
  • the active material layer may be manufactured, for example, by preparing a slurry containing the active material and a binder, applying the slurry onto a current collector, and drying the active material layer. You may manufacture by forming a film from the mixture which contains beforehand, and arrange
  • the present electrode is preferably a positive electrode of a non-aqueous electrolyte secondary battery that includes the active material as a positive electrode active material, and includes a positive electrode active material in which the present polymer A is combined with activated carbon. It is also preferable that it is a positive electrode of a double layer capacitor.
  • the content of the active material in the electrode is not particularly limited, but is preferably 10 to 90% by mass with respect to 100% by mass of the obtained active material layer.
  • the active material contained in the electrode of one embodiment of the present invention may be one kind or two or more kinds.
  • Examples of the material for the current collector include aluminum, stainless steel, copper, and nickel.
  • the electrode according to an embodiment of the present invention is a positive electrode, aluminum, stainless steel, and the like are preferable.
  • the thickness of the current collector is usually 10 to 50 ⁇ m.
  • binder examples include rubber binders such as styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR); fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride; polypropylene, polyethylene
  • SBR styrene-butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride
  • polypropylene polyethylene
  • Other examples include fluorine-modified (meth) acrylic binders disclosed in JP-A-2009-246137.
  • the binder may be one type or two or more types.
  • the content of the binder is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass with respect to 100% by mass of the active material layer obtained.
  • carbon black acetylene black, ketjen black, etc.
  • graphite graphite
  • vapor-grown carbon fiber VGCF
  • MAXSORB high surface area activated carbon
  • Conductive agent such as nanotube (SWNT, MWNT, etc.), metal powder, etc .; increase of carboxyl methyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch or casein
  • You may contain arbitrary components, such as a sticking agent. Each of the optional components may be one kind or two or more kinds.
  • the thickness of the active material layer is not particularly limited, but is usually 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • An electricity storage device includes the electrode as a positive electrode.
  • Examples of the electricity storage device include a nonaqueous electrolyte secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • the power storage device usually includes at least a negative electrode and an electrolyte in addition to the main electrode used as a positive electrode.
  • the configuration and manufacturing method of the electrode according to an embodiment of the present invention used as the positive electrode are as described in the above “electrode”.
  • the basic configuration and manufacturing method of the negative electrode may be any conventionally known configuration and manufacturing method, and may be the same as described in the “electrode” except for the type of active material.
  • the negative electrode active material used include metallic lithium, a carbon-based material doped with lithium (such as graphite and activated carbon), and a lithium alloy. These negative electrode active materials can use 1 type (s) or 2 or more types.
  • the electrolyte is usually used in the state of an electrolytic solution dissolved in a solvent.
  • the electrolyte is not particularly limited, but is preferably one that can generate lithium ions.
  • LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 examples thereof include LiN (CF 3 SO 2 ) 2 and LiN (FSO 2 ) 2 .
  • These electrolytes can use 1 type (s) or 2 or more types.
  • the solvent for dissolving the electrolyte is preferably an aprotic organic solvent, and specifically, ethylene carbonate, propylene carbonate, butylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, dimethyl Examples thereof include carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, diglyme, tetraglyme, dioxolane, methylene chloride, sulfolane and the like. These solvents can be used alone or in combination of two or more.
  • the electrolyte is usually prepared and used in a liquid state as described above, but a gel or a solid may be used for the purpose of preventing leakage or elution of the active material.
  • a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact.
  • a conventionally known separator may be used as the separator, and examples thereof include a nonwoven fabric or a porous film made of cellulose rayon, polyethylene, polypropylene, polyamide, polyester, polyimide and the like, paper, glass filter, and the like.
  • Example 1 In a 100 ml eggplant flask, 3.27 g of bis (4-bromophenyl) amine (BPA), 1.69 g of diphenylamine (DPA), 2.88 g of sodium t-butoxide (NaOtBu), and bis (tri-tBuphosphine as a catalyst) ) 5 mg of palladium (0) and 10 ml of toluene were added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.3 g of polymer A-1.
  • BPA bis (4-bromophenyl) amine
  • DPA diphenylamine
  • NaOtBu sodium t-butoxide
  • tri-tBuphosphine as a catalyst bis (tri-tBuphosphine as a catalyst)
  • Example 2 In a 100 ml eggplant flask, 3.27 g of BPA, 1.97 g of p, p'-ditolylamine (MPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and 10 ml of toluene In addition, the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.6 g of polymer A-2. In 1 H-NMR (CDCl 3 ), peaks were present at 6.9 ppm (aromatic) and 2.5 ppm (methyl group).
  • the Mw in terms of polystyrene measured under the same conditions as described above was 9,000. Further, as a result of analysis by MALDI-TOFMS, a mass spectrum indicating the presence of a structure in which R 2 is a methyl group in the formulas (A) to (D) was obtained, and the formulas (1), (3), It was confirmed to have a structure represented by (3-1) to (3-2) and (6).
  • Example 3 In a 100 ml eggplant flask, 3.27 g of BPA, 2.29 g of bis (methoxyphenyl) amine (MOPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and 10 ml of THF In addition, the mixture was heated at 70 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.7 g of polymer A-3. In 1 H-NMR (CDCl 3 ), peaks were present at 6.7 ppm, 6.9 ppm (aromatic) and 3.8 ppm (methoxy group).
  • the Mw in terms of polystyrene measured under the same conditions as described above was 11,000. Further, as a result of analysis by MALDI-TOFMS, a mass spectrum indicating the presence of a structure in which R 2 is a methoxy group in the formulas (A) to (D) was obtained, and the formulas (1), (3), It was confirmed to have a structure represented by (3-1) to (3-2) and (6).
  • Example 4 In a 100 ml eggplant flask, 3.27 g of BPA, 2.05 g of bis (4-fluorophenyl) amine (FPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and THF was added and heated at 70 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.7 g of polymer A-4. In 1 H-NMR (CDCl 3 ), peaks were present at 6.7 ppm and 6.9 ppm (aromatic).
  • the polystyrene-equivalent Mw measured under the same conditions as described above was 8,000. Further, as a result of analysis by MALDI-TOFMS, a mass spectrum showing the presence of a structure in which R 2 is a fluoro group in the formulas (A) to (D) was obtained, and the formulas (1), (3), It was confirmed to have a structure represented by (3-1) to (3-2) and (6).
  • Example 5 (Production of polymer having structure (2)) In a 100 ml eggplant flask, 0.54 g of paraphenylenediamine (PDA), 2.35 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and toluene was added and heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.3 g of polymer B-1. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
  • Example 6 (Production of polymer having structure (2)) In a 100 ml eggplant flask, 0.54 g of metaphenylenediamine (MDA), 2.35 g of 1,3-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and toluene was added and heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.3 g of polymer B-2. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
  • Example 7 (Production of polymer having structure (2)) In a 100 ml eggplant flask, 0.54 g of PDA, 1.56 g of 4,4′-dibromobiphenyl, 1.2 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, bis (tri-tBuphosphine) palladium as a catalyst 51 mg of (0) and 10 ml of toluene were added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.8 g of polymer B-3. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
  • Example 8 (Production of polymer having structure (2)) To a 100 ml eggplant flask, 2.48 g of 2,4-dibromoaniline, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) and 10 ml of toluene were added and heated at 100 ° C. for 6 hours. did. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 0.88 g of polymer B-4. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
  • the obtained electrode sheet was cut into a circle and used as the positive electrode of the battery.
  • the produced coin cell was subjected to a charge / discharge test using a Toyo System Co., Ltd. TOSCAT-3100 as a charge / discharge tester at a current value of 0.1 C at room temperature and a cut-off potential shown in Table 1.
  • Table 1 shows the capacity retention ratio (the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle) after 50 cycles of charge and discharge.
  • Example 9 A coin cell was prepared in the same manner as in the above ⁇ cycle characteristics> except that 0.08 g of polymer A-3 and 0.32 g of lithium iron phosphate (LiFePO 4 ) were used instead of polymers A-1 to A-4. Produced. About the produced coin cell, the cycle characteristics and the discharge capacity were evaluated in the same manner as in the above ⁇ cycle characteristics> and ⁇ discharge capacity and rate characteristics>. At this time, the cut-off potential was set to 3.8 to 2.8V. As a result, the capacity retention rate after 50 cycles was 99%, the capacity retention rate after 5000 cycles was 84%, and the discharge capacity was 150 mAh / g.
  • LiFePO 4 lithium iron phosphate
  • the present polymer is considered to be extremely useful as a hole transport material used in organic EL, organic transistors, solar cells, etc., in addition to electrode materials for power storage devices such as electrode active materials and electrode binders.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to a polymer, an electrode, an electric-storage device, and a process for producing the polymer. An embodiment of the polymer has at least one of structures represented by formulae (1) and (2). [In formula (1), the Ar1 moieties each independently represent an (un)substituted aromatic hydrocarbon group; the Y moieties independently represent a single bond or a divalent linking group or represent two hydrogen atoms or substituents which are respectively bonded to the two Ar1 moieties; and n indicates an integer of 4 or larger.] [In formula (2), the Ar2 moieties each independently represent a group comprising an aromatic ring (provided that not all of the Ar2 moieties are biphenyl-4,4'-diyl); a indicates an integer of 1-10; the Ar3 moieties each independently represent a group comprising an aromatic ring; each b independently indicates 1 or 2; and a group bonded to the N of each –Ar3-(N)b= may be bonded to one of the Ar2 moieties to form a ring.]

Description

重合体、電極、蓄電デバイス及び重合体の製造方法POLYMER, ELECTRODE, ELECTRIC STORAGE DEVICE, AND METHOD FOR PRODUCING POLYMER
 本発明は、重合体、電極、蓄電デバイス及び重合体の製造方法に関する。 The present invention relates to a polymer, an electrode, an electricity storage device, and a method for producing the polymer.
 ポリアニリン等の芳香族アミン系重合体は導電性高分子として知られており、有機EL、有機トランジスタ、太陽電池等に用いられる正孔輸送材料やリチウムイオン二次電池等の電極材料としての展開が期待されている。このような芳香族アミン系重合体としては、ポリアニリンの他、例えば、特許文献1で提案されている直鎖型のポリアリーレンアミンが知られている。 Aromatic amine polymers such as polyaniline are known as conductive polymers, and they can be used as hole transport materials used in organic EL, organic transistors, solar cells, and electrode materials such as lithium ion secondary batteries. Expected. As such an aromatic amine polymer, for example, a linear polyarylene amine proposed in Patent Document 1 is known in addition to polyaniline.
 また、N,N,N’,N’-テトラメチル-ベンジジン等の芳香族ジアミン化合物が蓄電デバイスの電極活物質として有用であることが知られている(特許文献2参照)。 In addition, it is known that aromatic diamine compounds such as N, N, N ′, N′-tetramethyl-benzidine are useful as electrode active materials for power storage devices (see Patent Document 2).
特開2008-45142号公報JP 2008-45142 A 特開2014-222590号公報JP 2014-222590 A
 しかしながら、従来提案されているポリアリーレンアミンは、有機溶剤に対する溶解性に乏しいため、液相プロセスに適用し難く、正孔輸送材料として使用することができない等の問題があった。また、従来提案されている芳香族ジアミン化合物を蓄電デバイスの電極活物質として用いた場合、満足な特性が得られない場合があった。 However, conventionally proposed polyaryleneamines have poor solubility in organic solvents, so that they are difficult to apply to liquid phase processes and cannot be used as hole transport materials. Moreover, when the conventionally proposed aromatic diamine compound is used as an electrode active material for an electricity storage device, satisfactory characteristics may not be obtained.
 したがって、本発明の一実施形態は、有機溶剤に対する溶解性に優れる新規な芳香族アミン系重合体及びその製造方法を提供する。また、本発明の別の実施形態は、蓄電デバイスの電極活物質として用いた場合、満足な特性を与える新規な芳香族アミン系重合体及びその製造方法を提供する。 Therefore, one embodiment of the present invention provides a novel aromatic amine polymer excellent in solubility in an organic solvent and a method for producing the same. In addition, another embodiment of the present invention provides a novel aromatic amine polymer that provides satisfactory characteristics when used as an electrode active material of an electricity storage device, and a method for producing the same.
 かかる実情に鑑み、本発明者が鋭意研究を行ったところ、分岐鎖構造又はネットワーク構造を有する特定の芳香族アミン系重合体を用いることで前記課題を解決することができることを見出し、本発明を完成するに至った。
 本発明の構成例は以下のとおりである。
In view of such circumstances, the present inventors have conducted intensive research and found that the above-mentioned problems can be solved by using a specific aromatic amine-based polymer having a branched chain structure or a network structure. It came to be completed.
A configuration example of the present invention is as follows.
 本発明の一実施形態は、
 下記式(1)及び(2)で表される構造の少なくとも1つを有する重合体(以下「本重合体1」ともいう。)、
 下記式(3)及び(R')で表される構造を有し、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が2,000以上である重合体(以下「本重合体2」ともいう。)、又は、
 下記式(1)及び(6)で表される構造を有する重合体(以下「本重合体3」ともいう。)を提供する。
 なお、これら本重合体1~3をまとめて、本重合体Aともいう。
One embodiment of the present invention
A polymer having at least one of the structures represented by the following formulas (1) and (2) (hereinafter also referred to as “the present polymer 1”);
A polymer having a structure represented by the following formulas (3) and (R ′) and having a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography of 2,000 or more (hereinafter “present polymer 2”) Or)
A polymer having a structure represented by the following formulas (1) and (6) (hereinafter also referred to as “present polymer 3”) is provided.
These polymers 1 to 3 are also collectively referred to as this polymer A.
 また、本発明の一実施形態は、前記本重合体Aを含有する電極を提供し、更に、該電極を正極として備える蓄電デバイスを提供する。 Also, one embodiment of the present invention provides an electrode containing the present polymer A, and further provides an electricity storage device comprising the electrode as a positive electrode.
 さらに本発明の一実施形態は、
 塩基の存在下、下記式(7)で表される化合物と下記式(8)で表される化合物とを反応させる工程を含む、重合体の製造方法(以下「本方法I」ともいう。)、又は
 塩基の存在下、下記式(9)で表される化合物と下記式(10)で表される化合物とを反応させる工程を含む、重合体の製造方法(以下「本方法II」ともいう。)を提供する。
Furthermore, an embodiment of the present invention
In the presence of a base, a method for producing a polymer comprising a step of reacting a compound represented by the following formula (7) with a compound represented by the following formula (8) (hereinafter also referred to as “the present method I”). Or a method for producing a polymer comprising a step of reacting a compound represented by the following formula (9) with a compound represented by the following formula (10) in the presence of a base (hereinafter also referred to as “the present method II”) .)I will provide a.
 本発明の一実施形態によれば、有機溶剤に対する溶解性に優れる芳香族アミン系重合体が得られる。したがって、該重合体は、液相プロセスに適用される正極輸送材料等として極めて有用である。また、該重合体を用いることで、満足な特性、具体的には、高放電容量、高サイクル特性、高レート特性を満たす蓄電デバイスを容易に得ることができる。したがって、該重合体は、蓄電デバイスの電極材料として極めて有用である。 According to one embodiment of the present invention, an aromatic amine polymer having excellent solubility in an organic solvent can be obtained. Therefore, the polymer is extremely useful as a positive electrode transport material applied to a liquid phase process. Further, by using the polymer, an electricity storage device satisfying satisfactory characteristics, specifically, high discharge capacity, high cycle characteristics, and high rate characteristics can be easily obtained. Therefore, the polymer is extremely useful as an electrode material for an electricity storage device.
本重合体A
 本重合体Aは、以下の本重合体1~3のいずれかである。
 本重合体1は、下記式(1)で表される構造(以下「構造(1)」ともいう。他の構造についても同様に表現する場合がある。)及び下記式(2)で表される構造の少なくとも1つを有する重合体である。
This polymer A
The present polymer A is any one of the following present polymers 1 to 3.
The present polymer 1 is represented by the structure represented by the following formula (1) (hereinafter also referred to as “structure (1)”. Other structures may be expressed in the same manner) and the following formula (2). A polymer having at least one of the following structures:
 構造(1)を有する本重合体1(以下「本重合体1a」ともいう。)は、有機溶剤に対する溶解性に特に優れ、液相プロセスに適用される正極輸送材料等として極めて有用である。また、該本重合体1aを、電極材料、特に、活物質として用いた場合、サイクル特性に優れる蓄電デバイスを容易に得ることができる。 The present polymer 1 having the structure (1) (hereinafter also referred to as “the present polymer 1a”) is particularly excellent in solubility in an organic solvent, and is extremely useful as a positive electrode transport material or the like applied to a liquid phase process. Moreover, when this polymer 1a is used as an electrode material, particularly as an active material, an electricity storage device having excellent cycle characteristics can be easily obtained.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(1)において、Ar1は相互に独立に置換又は非置換の芳香族炭化水素基であり、Ar1に結合する結合手はNと結合する。
 芳香族炭化水素基を構成する芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ビフェニル環等が挙げられ、ベンゼン環が好ましい。
 置換基としては、炭素数1~12、好ましくは炭素数1~6の炭化水素基、炭素数1~6、好ましくは炭素数1~4のアルコキシ基、フルオロ基、カルボキシ基等が挙げられる。
 Ar1としては、非置換の芳香族炭化水素基が好ましく、より好ましくはp-フェニレン基である。
In Formula (1), Ar 1 is an independently substituted or unsubstituted aromatic hydrocarbon group, and a bond bonded to Ar 1 is bonded to N.
Examples of the aromatic ring constituting the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenyl ring, and the like, and a benzene ring is preferable.
Examples of the substituent include a hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, a fluoro group, and a carboxy group.
Ar 1 is preferably an unsubstituted aromatic hydrocarbon group, more preferably a p-phenylene group.
 Yは独立に単結合、2価の連結基又は2個あるAr1各々に結合する2個の水素原子若しくは置換基を示す。
 該連結基としては、-O-、-NR-(Rは水素原子又は炭素数1~12の炭化水素基である)、-S-、-CO-、炭素数1~4のアルキレン基等が挙げられ、該置換基としては、Ar1における置換基と同様の基等が挙げられる。
 Yは、単結合、-S-又はAr1各々に結合する2個の水素原子であることが好ましい。
 式(1)中の複数のYは、それぞれ同一であってもよく、異なっていてもよい。本明細書における同様の記載は、同様の意味を示す。
Y independently represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to each of two Ar 1 groups.
Examples of the linking group include —O—, —NR— (R is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms), —S—, —CO—, an alkylene group having 1 to 4 carbon atoms, and the like. Examples of the substituent include the same groups as the substituent for Ar 1 .
Y is preferably a single bond, two hydrogen atoms bonded to each of —S— or Ar 1 .
Several Y in Formula (1) may be the same respectively, and may differ. The same description in this specification shows the same meaning.
 nは4以上の整数を示し、得られる重合体の重量平均分子量が下記範囲となるような整数であることが好ましく、より好ましくは10~100である。 N represents an integer of 4 or more, and is preferably an integer such that the weight average molecular weight of the obtained polymer falls within the following range, and more preferably 10 to 100.
 本重合体1aの具体例としては、例えば、下記重合体が挙げられる。下記重合体中のnは、式(1)中のnと同義である。 Specific examples of the polymer 1a include the following polymers. N in the following polymer has the same meaning as n in the formula (1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本重合体1aとしては、有機溶剤に対する溶解性により優れる重合体が得られる等の点から、前記式(1)及び下記式(6)で表される構造を有する本重合体3であることが好ましい。なお、下記式(6)における「*」は、前記式(1)におけるAr1と結合する結合手を示す。 The present polymer 1a is the present polymer 3 having a structure represented by the above formula (1) and the following formula (6) from the viewpoint that a polymer excellent in solubility in an organic solvent is obtained. preferable. In addition, “*” in the following formula (6) represents a bond that bonds to Ar 1 in the formula (1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(6)において、Ar4は相互に独立に置換又は非置換の芳香族炭化水素基を示す。Ar4における芳香族炭化水素基を構成する芳香環及び置換基の例示、並びに好ましい基は、Ar1と同様である。 In Formula (6), Ar 4 represents a substituted or unsubstituted aromatic hydrocarbon group independently of each other. Examples of aromatic rings and substituents constituting the aromatic hydrocarbon group in Ar 4 , and preferred groups are the same as those for Ar 1 .
 R2は相互に独立に水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示す。
 該有機基としては、炭素数1~6、好ましくは炭素数1~4の炭化水素基、炭素数1~6、好ましくは炭素数1~4のアルコキシ基等が挙げられる。
 該ハロ基としては、フルオロ基又はブロモ基が好ましく、フルオロ基がより好ましい。
R 2 independently represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group, or an organic group.
Examples of the organic group include a hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
The halo group is preferably a fluoro group or a bromo group, and more preferably a fluoro group.
 R2が、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又はアルコキシ基等の極性基であると、一般的な電解液に膨潤可能な重合体が得られるため、該重合体を電極材料、特に、活物質として用いた場合、高レート特性や優れたサイクル特性を示す蓄電デバイスを容易に得ることができる。
 R2が水素原子又は炭素数1~4のアルコキシ基、特に水素原子又はメトキシ基である本重合体3を、電極材料、特に、活物質として用いた場合、サイクル特性に優れる蓄電デバイスを容易に得ることができる。
 R2が水素原子、フルオロ基又は炭化水素基、特にフルオロ基又はメチル基である本重合体3を、電極材料、特に、活物質として用いた場合、高い放電容量を有する蓄電デバイスを容易に得ることができる。
 R2としては、水素原子、フルオロ基、ブロモ基、メチル基、メトキシ基であることが好ましい。
When R 2 is a polar group such as a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group, or an alkoxy group, a polymer that can swell in a general electrolyte solution can be obtained. In particular, when used as an active material, an electricity storage device exhibiting high rate characteristics and excellent cycle characteristics can be easily obtained.
When this polymer 3 in which R 2 is a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, particularly a hydrogen atom or a methoxy group, is used as an electrode material, particularly an active material, an electricity storage device having excellent cycle characteristics can be easily obtained. Obtainable.
When the polymer 3 in which R 2 is a hydrogen atom, a fluoro group or a hydrocarbon group, particularly a fluoro group or a methyl group, is used as an electrode material, particularly an active material, an electricity storage device having a high discharge capacity can be easily obtained. be able to.
R 2 is preferably a hydrogen atom, a fluoro group, a bromo group, a methyl group, or a methoxy group.
 Zは単結合、2価の連結基又は2個あるAr4各々に結合する2個の水素原子若しくは置換基を示す。Zにおける連結基及び置換基の例示、並びに好ましい基は、Yと同様である。 Z represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to each of two Ar 4 groups. Examples of the linking group and substituent in Z, and preferred groups are the same as those for Y.
 構造(6)の具体例としては、例えば、下記構造が挙げられる。下記構造中のRは、式(6)中のR2と同義であり、好ましくは水素原子、メチル基、メトキシ基、フルオロ基又はブロモ基である。 Specific examples of the structure (6) include the following structures. R in the following structure has the same meaning as R 2 in formula (6), and is preferably a hydrogen atom, a methyl group, a methoxy group, a fluoro group, or a bromo group.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 また、前記構造(1)は、下記式(R)で表される構造(R1-N=)を有することが、本重合体1aや3の製造し易さ等の点から好ましい。
 なお、式(6)は、前記式(1)のNにR1が結合することを示す。
The structure (1) preferably has a structure (R 1 -N =) represented by the following formula (R) from the viewpoint of ease of production of the present polymers 1a and 3.
In addition, Formula (6) shows that R < 1 > couple | bonds with N of said Formula (1).
Figure JPOXMLDOC01-appb-C000018
[式(R)において、R1は水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示す。]
Figure JPOXMLDOC01-appb-C000018
[In the formula (R), R 1 represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group. ]
 R1における有機基としては、R2における有機基と同様の基の他、置換若しくは非置換の芳香族炭化水素基等が挙げられ、該有機基としては、「=N-Ar-**」[Arは置換又は非置換の芳香族炭化水素基を示し、**は前記構造(1)におけるNと結合する結合手を示す。]で表される構造を含む基以外の基であることが好ましい。
 R1としては、好ましくは水素原子又は置換若しくは非置換の芳香族炭化水素基であり、特に好ましくは水素原子である。
Examples of the organic group for R 1 include the same groups as the organic group for R 2 , and substituted or unsubstituted aromatic hydrocarbon groups. The organic group includes “═N—Ar — **”. [Ar represents a substituted or unsubstituted aromatic hydrocarbon group, and ** represents a bond bonded to N in the structure (1). It is preferably a group other than a group including a structure represented by
R 1 is preferably a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group, and particularly preferably a hydrogen atom.
 本重合体1a及び/又は本重合体3の具体例としては、例えば、下記群(a1)~(a4)の重合体が挙げられる。下記重合体中のnは、式(1)中のnと同義である。 Specific examples of the present polymer 1a and / or the present polymer 3 include polymers of the following groups (a1) to (a4). N in the following polymer has the same meaning as n in the formula (1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 本重合体1は、下記式(2)で表される構造を有する重合体(以下「本重合体1b」ともいう。)であってもよい。
 本重合体1bを、電極材料、特に、活物質として用いた場合、放電容量及びレート特性にバランスよく優れる蓄電デバイスを容易に得ることができる。
The present polymer 1 may be a polymer having a structure represented by the following formula (2) (hereinafter also referred to as “present polymer 1b”).
When the polymer 1b is used as an electrode material, particularly as an active material, an electricity storage device that is excellent in balance between discharge capacity and rate characteristics can be easily obtained.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記式(2)において、Ar2は相互に独立に芳香環を含む基を示し(但し、複数のAr2の全てがビフェニル-4,4'-ジイルである場合を除く)、Ar3は相互に独立に芳香環を含む基を示す。
 Ar2及びAr3における芳香環を含む基としては、Ar1で例示した芳香族炭化水素基の他、複数の当該芳香族炭化水素基が2価の連結基により連結された基等が挙げられる。該2価の連結基としては、-O-、-S-、-SO2-、-NH-、-NHCO-、-COO-、置換又は非置換の2価の炭化水素基、-N(C65)-等が挙げられる。該置換基としては、Ar1における置換基と同様の基等が挙げられる。
 Ar2及びAr3としては、非置換のベンゼン環を含む基が好ましく、特に非置換のベンゼン環を1~5個含む基であることが好ましい。
 なお、-Ar3-(N)b=のNに結合する基がAr2に結合して環を形成していてもよい。
In the formula (2), Ar 2 represents a group containing an aromatic ring independently of each other (provided that all of Ar 2 are all biphenyl-4,4′-diyl), and Ar 3 represents a mutual group. Independently represents a group containing an aromatic ring.
Examples of the group containing an aromatic ring in Ar 2 and Ar 3 include a group in which a plurality of the aromatic hydrocarbon groups are linked by a divalent linking group in addition to the aromatic hydrocarbon group exemplified for Ar 1. . Examples of the divalent linking group include —O—, —S—, —SO 2 —, —NH—, —NHCO—, —COO—, a substituted or unsubstituted divalent hydrocarbon group, —N (C 6 H 5 ) — and the like. Examples of the substituent include the same groups as the substituent for Ar 1 .
As Ar 2 and Ar 3 , a group containing an unsubstituted benzene ring is preferable, and a group containing 1 to 5 unsubstituted benzene rings is particularly preferable.
Note that a group bonded to N in —Ar 3 — (N) b ═ may be bonded to Ar 2 to form a ring.
 aは1~10の整数を示す。
 bは相互に独立に1又は2を示す。
a represents an integer of 1 to 10.
b shows 1 or 2 mutually independently.
 本重合体1bとしては、放電容量及びレート特性にバランスよく優れ、特に放電容量の大きい蓄電デバイス等を容易に得ることができる等の点から、下記式(2')で表される構造を有する重合体が好ましい。 The present polymer 1b has a structure represented by the following formula (2 ′) from the viewpoint that a discharge capacity and rate characteristics are excellent in balance and an electric storage device having a particularly large discharge capacity can be easily obtained. Polymers are preferred.
Figure JPOXMLDOC01-appb-C000024
〔式(2')におけるAr2及びAr3は相互に独立に、前記式(2)中のAr2及びAr3と同義である。〕
Figure JPOXMLDOC01-appb-C000024
[Ar 2 and Ar 3 in Formula (2 ′) are independently the same as Ar 2 and Ar 3 in Formula (2). ]
 本重合体1bの具体例としては、例えば、以下の重合体が挙げられる。 Specific examples of the polymer 1b include the following polymers.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 本重合体2は、下記式(3)及び(R')で表される構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)が2,000以上である。
 このような本重合体2は、有機溶剤に対する溶解性に特に優れ、液相プロセスに適用される正極輸送材料等として極めて有用であり、また、該本重合体2を、電極材料、特に、活物質として用いた場合、サイクル特性に優れる蓄電デバイスを容易に得ることができる。
This polymer 2 has a structure represented by the following formulas (3) and (R ′), and has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 2,000 or more. It is.
Such a polymer 2 is particularly excellent in solubility in an organic solvent, and is extremely useful as a positive electrode transport material or the like applied to a liquid phase process. Further, the polymer 2 is used as an electrode material, particularly an active material. When used as a substance, an electricity storage device having excellent cycle characteristics can be easily obtained.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(3)において、Ar1及びYは相互に独立に、前記Ar1及びYと同義である。
 mは2以上の整数を示す。
In the formula (3), Ar 1 and Y are independently of one another have the same meanings as defined above Ar 1 and Y.
m represents an integer of 2 or more.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(R')において、R1は水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基(但し、該有機基から、「=N-Ar-**」[Arは置換又は非置換の芳香族炭化水素基を示し、**は下記式(3)におけるNと結合する結合手を示す。]で表される構造を含む基を除く)を示し、式(R')は、前記式(3)のNにR1が結合することを示す。
 R1における有機基としては、R2における有機基と同様の基の他、置換若しくは非置換の芳香族炭化水素基等が挙げられ、R1としては、好ましくは水素原子又は置換若しくは非置換の芳香族炭化水素基であり、特に好ましくは水素原子である。
In the formula (R ′), R 1 represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group (provided that “= N—Ar — **” [Ar represents a substituent Or an unsubstituted aromatic hydrocarbon group, and ** represents a bond bonded to N in the following formula (3).] Is excluded), and the formula (R ′) Indicates that R 1 is bonded to N in the formula (3).
Examples of the organic group in R 1 include the same groups as the organic group in R 2 , and substituted or unsubstituted aromatic hydrocarbon groups. R 1 is preferably a hydrogen atom or a substituted or unsubstituted group. An aromatic hydrocarbon group, particularly preferably a hydrogen atom.
 本重合体2は、有機溶剤に対する溶解性により優れる重合体が得られる等の点から、下記式(3-1)で表される繰り返し単位及び前記式(6)で表される構造を有することが好ましい。なお、式(6)における「*」は、下記式(3-1)におけるAr1と結合する結合手を示す。
 下記式(3-1)で表される繰り返し単位とは、R1-で表される本重合体2のコアと、前記式(6)で表される本重合体2の末端との間に位置する、単量体由来の繰り返し単位を意味する。
 本重合体2は、下記式(3-1)で表される繰り返し単位間に、下記式(3-2)で表される構造単位を1個又は複数個有することが好ましい。
This polymer 2 has a repeating unit represented by the following formula (3-1) and a structure represented by the above formula (6) from the viewpoint of obtaining a polymer excellent in solubility in an organic solvent. Is preferred. In the formula (6), “*” represents a bond that bonds to Ar 1 in the following formula (3-1).
The repeating unit represented by the following formula (3-1) is between the core of the polymer 2 represented by R 1 — and the terminal of the polymer 2 represented by the formula (6). It means a repeating unit derived from a monomer.
The present polymer 2 preferably has one or more structural units represented by the following formula (3-2) between repeating units represented by the following formula (3-1).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(3-1)~(3-2)において、Ar1、Ar4、R2、Y及びZは相互に独立に、前記Ar1、Ar4、R2、Y及びZと同義である。また、式(3-2)において、*1は式(3-1)で表される繰り返し単位におけるN又は構造(3-2)におけるNと結合する結合手を示す。また、式(3-2)において、*2は式(3-1)で表される繰り返し単位におけるAr1の少なくとも一方又は構造(3-2)におけるAr1と結合する結合手を示す。 In the formula (3-1) ~ (3-2), Ar 1, Ar 4, R 2, Y and Z are independently of one another have the same meanings as defined above Ar 1, Ar 4, R 2 , Y and Z. In Formula (3-2), * 1 represents a bond that is bonded to N in the repeating unit represented by Formula (3-1) or N in Structure (3-2). Further, in the equation (3-2), * 2 indicates a bond that binds to an Ar 1 in the formula at least one or the structure of Ar 1 in the repeating unit represented by (3-1) (3-2).
 本重合体2は、前記式(3-1)で表される繰り返し単位を10~100個含んでいることが好ましい。
 本重合体2の具体例としては、例えば、前記群(a1)~(a3)で表される重合体において、nが2以上の重合体の他、前記群(a1)~(a3)で表される構造式において、繰り返し単位(括弧で括られている構造単位)と繰り返し単位との間に、前記式(3-2)で表される構造単位を1個又は複数個有する重合体が挙げられる。
The present polymer 2 preferably contains 10 to 100 repeating units represented by the formula (3-1).
Specific examples of the present polymer 2 include, for example, the polymers represented by the groups (a1) to (a3), and those represented by the groups (a1) to (a3) in addition to the polymers having n of 2 or more. In the structural formula, a polymer having one or a plurality of structural units represented by the above formula (3-2) between a repeating unit (structural unit enclosed in parentheses) and the repeating unit is given. It is done.
 本重合体AのMwは、該重合体Aを電極材料、特に、活物質として用いた場合、レート特性及びサイクル特性に優れる蓄電デバイスを容易に得ることができる等の点から、好ましくは2,000~100,000、より好ましくは3,000~100,000、特に好ましくは5,000~60,000である。
 Mwは、具体的には、下記実施例に記載の方法で測定される。
The Mw of the present polymer A is preferably 2, from the viewpoint that, when the polymer A is used as an electrode material, particularly an active material, an electricity storage device having excellent rate characteristics and cycle characteristics can be easily obtained. 000 to 100,000, more preferably 3,000 to 100,000, and particularly preferably 5,000 to 60,000.
Specifically, Mw is measured by the method described in the following examples.
重合体の製造方法
 本重合体Aの製造方法は特に制限されないが、所望の構造の重合体を容易に製造することができる等の点から、本重合体Aは、下記本方法I又は本方法IIにより製造することが好ましい。
Production Method of Polymer The production method of the present polymer A is not particularly limited, but from the viewpoint that a polymer having a desired structure can be easily produced, the present polymer A is produced by the following method I or this method. It is preferable to manufacture by II.
 本方法Iは、塩基の存在下、下記式(7)で表される化合物(以下「化合物(7)」ともいう。他の化合物についても同様に表現する場合がある。)と下記式(8)で表される化合物とを反応させる工程を含む方法である。
 この方法によれば、本重合体1a、本重合体2及び本重合体3のような分岐鎖構造を有する重合体、特にハイパーブランチポリマーを容易に製造することができる。
In the present method I, in the presence of a base, a compound represented by the following formula (7) (hereinafter also referred to as “compound (7)”. Other compounds may be expressed in the same manner) and the following formula (8). The method of reacting with the compound represented by this.
According to this method, a polymer having a branched chain structure such as the present polymer 1a, the present polymer 2 and the present polymer 3, particularly a hyperbranched polymer can be easily produced.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(7)において、Ar1及びYは相互に独立に前記式(1)中のAr1及びYと同義である。
 Xは相互に独立にクロロ基、ブロモ基又はヨード基を示し、より容易に反応が進行する等の点から、ブロモ基が好ましい。
 本方法Iで用いる化合物(7)は、1種でもよく、2種以上でもよい。
In the formula (7), Ar 1 and Y have the same meanings as Ar 1 and Y in the formulas independently of one another (1).
X represents a chloro group, a bromo group, or an iodo group independently of each other, and a bromo group is preferable from the viewpoint that the reaction proceeds more easily.
Compound (7) used in Method I may be one type or two or more types.
 化合物(7)は、市販品を用いてもよく、従来公知の方法で合成して得てもよい。
 化合物(7)としては、下記化合物が好ましい。
Compound (7) may be a commercially available product or may be synthesized by a conventionally known method.
As the compound (7), the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(8)において、Ar4、R2及びZは相互に独立に前記式(6)中のAr4、R2及びZと同義である。
 本方法Iで用いる化合物(8)は、1種でもよく、2種以上でもよい。
In the formula (8), Ar 4, R 2 and Z are as defined Ar 4, R 2 and Z in formula independently of one another (6).
Compound (8) used in Method I may be one type or two or more types.
 化合物(8)としては、下記化合物が好ましい。 As the compound (8), the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 化合物(8)は市販品を用いてもよく、従来公知の方法で合成して得てもよい。
 該従来公知の方法としては、例えば、R2-Ar4-NH2(R2及びAr4は式(8)中のR2及びAr4と同義である。)で表される化合物と、R2-Ar4-X(R2及びAr4は式(8)中のR2及びAr4と同義であり、Xはハロ基である。)で表される化合物とを下記Pd(P(t-Bu)32等の触媒の存在下で反応させる方法等が挙げられる。
 なお、本方法Iでは、化合物(8)の代わりに、その前駆体である前記R2-Ar4-NH2で表される化合物と、前記R2-Ar4-Xで表される化合物とを用いてもよい。
Compound (8) may be a commercially available product, or may be synthesized by a conventionally known method.
Examples of the conventionally known method, for example, a compound represented by R 2 -Ar 4 -NH 2 (wherein R 2 and Ar 4 has the same meaning as R 2 and Ar 4 in the formula (8).), R 2 -Ar 4 -X (wherein R 2 and Ar 4 has the same meaning as R 2 and Ar 4 in the formula (8), X is a halo group.) and a compound represented by the following Pd (P (t -Bu) 3 ) A method of reacting in the presence of a catalyst such as 2, and the like.
In this method I, instead of the compound (8), a precursor thereof is a compound represented by the R 2 —Ar 4 —NH 2 , a compound represented by the R 2 —Ar 4 —X, May be used.
 前記塩基としては、特に制限されず、従来公知の塩基を用いることができるが、強塩基であることが好ましく、求核性の低い塩基であることがより好ましく、具体的には、金属アルコキシド、金属アミドが挙げられ、好ましくはナトリウムt-ブトキシド、カリウムt-ブトキシド等が挙げられる。
 本方法Iで用いる塩基は、1種でもよく、2種以上でもよい。
The base is not particularly limited, and a conventionally known base can be used, but is preferably a strong base, more preferably a base with low nucleophilicity, specifically, a metal alkoxide, Examples thereof include metal amides, preferably sodium t-butoxide, potassium t-butoxide and the like.
The base used in Method I may be one type or two or more types.
 本方法Iにおける反応の際には、触媒を用いることが好ましい。該触媒としては、従来公知の触媒を用いることができ、具体的には、下記化合物等が挙げられる。中でも、トリアルキルホスフィン類とパラジウム化合物からなる触媒が好ましい。
 本方法Iで触媒を用いる場合、該触媒は、1種でもよく、2種以上でもよい。
In the reaction in the present method I, it is preferable to use a catalyst. As the catalyst, conventionally known catalysts can be used, and specific examples include the following compounds. Of these, a catalyst comprising a trialkylphosphine and a palladium compound is preferable.
When a catalyst is used in Method I, the catalyst may be one type or two or more types.
Figure JPOXMLDOC01-appb-C000034
[前記化合物における、「Ms」はメシラート基を示し、「Cy」はシクロへキシル基を示し、「L」は配位子を示し、「iprO」はイソプロポキシ基を示す。]
Figure JPOXMLDOC01-appb-C000034
[In the compound, “Ms” represents a mesylate group, “Cy” represents a cyclohexyl group, “L” represents a ligand, and “iprO” represents an isopropoxy group. ]
 本方法Iにおける反応は、通常、溶媒の存在下で行われる。該溶媒としては、従来公知の溶媒を用いることができ、特に制限されないが、化合物(7)及び(8)を溶解可能な溶媒が好ましく、具体的には、THF(テトラヒドロフラン)などのエーテル系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒等が挙げられる。
 本方法Iで溶媒を用いる場合、該溶媒は、1種でもよく、2種以上でもよい。
The reaction in Method I is usually performed in the presence of a solvent. As the solvent, a conventionally known solvent can be used, and is not particularly limited, but a solvent capable of dissolving the compounds (7) and (8) is preferable, and specifically, an ether solvent such as THF (tetrahydrofuran). And aromatic hydrocarbon solvents such as benzene, toluene and xylene.
When a solvent is used in Method I, the solvent may be one type or two or more types.
 本方法Iにおける反応条件も特に制限されないが、反応温度は、好ましくは25~150℃であり、反応時間は、好ましくは0.5~10時間である。また、本方法Iにおいて、化合物(7)と化合物(8)の使用割合(化合物(7):化合物(8))は、モル比で100:100~90:100の範囲内にあることが好ましい。 The reaction conditions in Method I are not particularly limited, but the reaction temperature is preferably 25 to 150 ° C., and the reaction time is preferably 0.5 to 10 hours. In Method I, the ratio of compound (7) to compound (8) used (compound (7): compound (8)) is preferably in the range of 100: 100 to 90: 100 in terms of molar ratio. .
 本方法Iでは、以上の方法で得られた重合体中の「NH」と、R1X(Xはハロ基である。)などの前記R1を含む化合物とを反応させることで、前記構造(1)、(3)のNにR1が結合した重合体を得ることができる。前記R1Xで表される化合物としては、例えば、クロロベンゼン、ブロモナフタレン、ブロモアントラセン、ブロモ安息香酸等が挙げられる。 In the present method I, “NH” in the polymer obtained by the above method is reacted with the compound containing R 1 such as R 1 X (X is a halo group) to thereby form the structure. A polymer in which R 1 is bonded to N in (1) and (3) can be obtained. Examples of the compound represented by R 1 X include chlorobenzene, bromonaphthalene, bromoanthracene, bromobenzoic acid, and the like.
 本方法IIは、塩基の存在下、下記式(9)で表される化合物と下記式(10)で表される化合物とを反応させる工程を含む方法である。
 この方法によれば、本重合体1bのようなネットワークポリマーを容易に製造することができる。
This method II is a method including a step of reacting a compound represented by the following formula (9) and a compound represented by the following formula (10) in the presence of a base.
According to this method, a network polymer such as the present polymer 1b can be easily produced.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(9)において、Ar5は芳香環を含む基を示す。Ar5における芳香環を含む基の例示、並びに好ましい基は、Ar2及びAr3と同様である。
 化合物(9)としては、得られる重合体を電極に用いた場合、放電容量及びレート特性にバランスよく優れ、特に放電容量の大きい蓄電デバイス等を容易に得ることができる等の点から、芳香環のパラ位にアミノ基が結合した化合物が好ましい。
In Formula (9), Ar 5 represents a group containing an aromatic ring. Examples of groups containing an aromatic ring in Ar 5 and preferred groups are the same as those for Ar 2 and Ar 3 .
As the compound (9), when the obtained polymer is used for an electrode, the aromatic ring is excellent in that the discharge capacity and rate characteristics are excellent in balance and an electric storage device having a particularly large discharge capacity can be easily obtained. A compound in which an amino group is bonded to the para-position is preferred.
 本方法IIで用いる化合物(9)は、1種でもよく、2種以上でもよい。
 化合物(9)は、市販品を用いてもよく、従来公知の方法で合成して得てもよい。
 化合物(9)としては、下記化合物が好ましい。
Compound (9) used in Method II may be one type or two or more types.
Compound (9) may be a commercially available product or may be synthesized by a conventionally known method.
As the compound (9), the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式(10)において、Ar6は式(9)のAr5と同義であり、Xは相互に独立にハロ基を示す。
 化合物(10)としては、得られる重合体を電極に用いた場合、放電容量及びレート特性にバランスよく優れ、特に放電容量の大きい蓄電デバイス等を容易に得ることができる等の点から、芳香環のパラ位にハロ基が結合した化合物が好ましい。
In the formula (10), Ar 6 has the same meaning as Ar 5 in the formula (9), and X represents a halo group independently of each other.
As the compound (10), when the polymer obtained is used for an electrode, the aromatic ring is excellent in that the discharge capacity and rate characteristics are excellent in balance and in particular, an electricity storage device having a large discharge capacity can be easily obtained. A compound in which a halo group is bonded to the para-position is preferred.
 本方法IIで用いる化合物(10)は、1種でもよく、2種以上でもよい。
 化合物(10)は、市販品を用いてもよく、従来公知の方法で合成して得てもよい。
 化合物(10)としては、下記化合物が好ましい。
The compound (10) used in Method II may be one kind or two or more kinds.
Compound (10) may be a commercially available product, or may be obtained by synthesis by a conventionally known method.
As the compound (10), the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 本方法IIで用いる塩基としては、特に制限されず、従来公知の塩基を用いることができるが、本方法Iで用いる塩基と同様の塩基が挙げられる。
 本方法IIで用いる塩基は、1種でもよく、2種以上でもよい。
The base used in Method II is not particularly limited, and a conventionally known base can be used, but the same bases as those used in Method I can be mentioned.
The base used in Method II may be one kind or two or more kinds.
 本方法IIにおける反応の際には、本方法Iと同様の触媒及び溶媒を用いることが好ましい。なお、これらの触媒及び溶媒は、それぞれ、1種でもよく、2種以上でもよい。
 本方法IIにおける反応条件も、本方法Iと同様の条件が挙げられる。また、本方法IIにおいて、化合物(9)と化合物(10)の使用割合(化合物(9):化合物(10))は、モル比で50:90~50:110の範囲内にあることが好ましい。
In the case of the reaction in Method II, it is preferable to use the same catalyst and solvent as in Method I. Each of these catalysts and solvents may be one kind or two or more kinds.
The reaction conditions in this method II also include the same conditions as in this method I. In Method II, the ratio of compound (9) to compound (10) used (compound (9): compound (10)) is preferably in the range of 50:90 to 50: 110 in terms of molar ratio. .
 本重合体Aは、蓄電デバイス、有機EL、有機トランジスタ、太陽電池等の正孔輸送材料として、好適に使用することができるが、本重合体の効果がより発揮される等の点から、蓄電デバイスにより好適に使用され、さらには、電極材料として好適に使用され、特に、正極材料、具体的には正極活物質として好適に使用される。 The present polymer A can be suitably used as a hole transport material for an electricity storage device, an organic EL, an organic transistor, a solar cell, etc. It is preferably used as a device, more preferably used as an electrode material, and particularly preferably used as a positive electrode material, specifically as a positive electrode active material.
電極
 本発明の一実施形態に係る電極(以下「本電極」ともいう。)は、1種又は2種以上の本重合体Aを含有すれば特に制限されないが、集電体上に本重合体A及びバインダー等を含有する活物質層を有する電極が好ましい。
 本電極に用いられる本重合体Aは、そのまま電極材料として使用することもできるが、活性炭や無機物質等と複合化した後、電極材料として使用することもできる。また、本重合体Aを、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リン酸鉄リチウム等の公知の正極活物質と共に電極材料として使用することもできる。
 なお、以下では、本重合体A、本重合体Aと活性炭等と複合化したもの、又は本重合体Aと公知の正極活物質を混合したものを、本活物質ともいう。
Electrode The electrode according to one embodiment of the present invention (hereinafter, also referred to as “main electrode”) is not particularly limited as long as it contains one or two or more main polymers A, but the main polymer on the current collector is not limited. An electrode having an active material layer containing A and a binder is preferred.
The present polymer A used for the present electrode can be used as an electrode material as it is, but can also be used as an electrode material after being combined with activated carbon or an inorganic substance. Moreover, this polymer A can also be used as an electrode material with well-known positive electrode active materials, such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphate.
In the following, the present polymer A, a composite of the present polymer A and activated carbon, or a mixture of the present polymer A and a known positive electrode active material is also referred to as a present active material.
 前記活物質層は、例えば、本活物質及びバインダー等を含有するスラリーを調製し、これを集電体上に塗布し、乾燥させることにより製造してもよいし、本活物質及びバインダー等を含む混合物から、予めフィルムを形成し、該フィルムを(熱)プレスや接着剤により、集電体上に配置することにより製造してもよい。 The active material layer may be manufactured, for example, by preparing a slurry containing the active material and a binder, applying the slurry onto a current collector, and drying the active material layer. You may manufacture by forming a film from the mixture which contains beforehand, and arrange | positioning this film on a collector with a (hot) press or an adhesive agent.
 本電極は、本活物質を正極活物質として含む、非水電解質二次電池の正極であることが好ましく、本重合体Aを活性炭と複合化させた正極活物質を含む、リチウムイオンキャパシタ又は電気二重層キャパシタの正極であることも好ましい。 The present electrode is preferably a positive electrode of a non-aqueous electrolyte secondary battery that includes the active material as a positive electrode active material, and includes a positive electrode active material in which the present polymer A is combined with activated carbon. It is also preferable that it is a positive electrode of a double layer capacitor.
 本電極における本活物質の含有量は、特に制限されないが、得られる活物質層100質量%に対し、好ましくは10~90質量%である。
 なお、本発明の一実施形態の電極に含まれる本活物質は、1種でもよく、2種以上でもよい。
The content of the active material in the electrode is not particularly limited, but is preferably 10 to 90% by mass with respect to 100% by mass of the obtained active material layer.
In addition, the active material contained in the electrode of one embodiment of the present invention may be one kind or two or more kinds.
 前記集電体の材質としては、アルミニウム、ステンレス、銅、ニッケルなどが挙げられるが、本発明の一実施形態に係る電極が正極である場合、アルミニウム、ステンレス等が好ましい。集電体の厚みは、通常10~50μmである。 Examples of the material for the current collector include aluminum, stainless steel, copper, and nickel. When the electrode according to an embodiment of the present invention is a positive electrode, aluminum, stainless steel, and the like are preferable. The thickness of the current collector is usually 10 to 50 μm.
 前記バインダーとしては、例えば、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)等のゴム系バインダー;ポリ四フッ化エチレン(PTFE)、ポリフッ化ビニリデンなどのフッ素系樹脂;ポリプロピレン、ポリエチレンの他、特開2009-246137号公報等に開示されているフッ素変性(メタ)アクリル系バインダーを挙げることができる。
 前記バインダーは、1種でもよく、2種以上でもよい。
Examples of the binder include rubber binders such as styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR); fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride; polypropylene, polyethylene Other examples include fluorine-modified (meth) acrylic binders disclosed in JP-A-2009-246137.
The binder may be one type or two or more types.
 前記バインダーの含有量は、特に制限されないが、得られる活物質層100質量%に対し、好ましくは1~50質量%、より好ましくは5~30質量%である。 The content of the binder is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass with respect to 100% by mass of the active material layer obtained.
 前記活物質層には、本発明の効果を損なわない範囲で、更に、カーボンブラック(アセチレンブラック、ケッチェンブラック等)、黒鉛、気相成長炭素繊維(VGCF)、高表面積活性炭(MAXSORB)、カーボンナノチューブ(SWNT、MWNT等)、金属粉末等の導電剤;カルボキシルメチルセルロース、そのNa塩若しくはアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ又はカゼイン等の増粘剤などの任意成分を含有してもよい。
 前記任意成分はそれぞれ、1種でもよく、2種以上でもよい。
In the active material layer, carbon black (acetylene black, ketjen black, etc.), graphite, vapor-grown carbon fiber (VGCF), high surface area activated carbon (MAXSORB), carbon are further added within the range not impairing the effects of the present invention. Conductive agent such as nanotube (SWNT, MWNT, etc.), metal powder, etc .; increase of carboxyl methyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch or casein You may contain arbitrary components, such as a sticking agent.
Each of the optional components may be one kind or two or more kinds.
 前記活物質層の厚さは、特に限定されないが、通常5~500μm、好ましくは10~200μm、特に好ましくは10~100μmである。 The thickness of the active material layer is not particularly limited, but is usually 5 to 500 μm, preferably 10 to 200 μm, particularly preferably 10 to 100 μm.
蓄電デバイス
 本発明の一実施形態に係る蓄電デバイス(以下「本蓄電デバイス」ともいう。)は、本電極を正極として備えてなる。蓄電デバイスとしては、例えば、非水電解質二次電池、電気二重層キャパシタ、リチウムイオンキャパシタを挙げることができる。本蓄電デバイスは、通常、正極として用いられる本電極の他、少なくとも負極及び電解質を備える。
 正極として用いられる本発明の一実施形態に係る電極の構成及び製造方法は、前記「電極」において説明した通りである。
An electricity storage device according to an embodiment of the present invention (hereinafter also referred to as “the electricity storage device”) includes the electrode as a positive electrode. Examples of the electricity storage device include a nonaqueous electrolyte secondary battery, an electric double layer capacitor, and a lithium ion capacitor. The power storage device usually includes at least a negative electrode and an electrolyte in addition to the main electrode used as a positive electrode.
The configuration and manufacturing method of the electrode according to an embodiment of the present invention used as the positive electrode are as described in the above “electrode”.
 前記負極の基本的な構成及び製造方法は、従来公知の構成及び製造方法であればよく、活物質の種類を除いて、前記「電極」において説明したものと同様であってもよい。
 用いられる負極活物質としては、金属リチウム、リチウムをドープした炭素系材料(黒鉛、活性炭等)、リチウム合金などが挙げられる。これらの負極活物質は、1種又は2種以上を使用することができる。
The basic configuration and manufacturing method of the negative electrode may be any conventionally known configuration and manufacturing method, and may be the same as described in the “electrode” except for the type of active material.
Examples of the negative electrode active material used include metallic lithium, a carbon-based material doped with lithium (such as graphite and activated carbon), and a lithium alloy. These negative electrode active materials can use 1 type (s) or 2 or more types.
 前記電解質は、通常、溶媒中に溶解された電解液の状態で用いられる。前記電解質としては、特に制限されないが、リチウムイオンを生成することのできるものが好ましく、具体的には、LiClO4、LiAsF6、LiBF4、LiPF6、LiN(C25SO22、LiN(CF3SO22、LiN(FSO22などが挙げられる。これらの電解質は、1種又は2種以上を使用することができる。 The electrolyte is usually used in the state of an electrolytic solution dissolved in a solvent. The electrolyte is not particularly limited, but is preferably one that can generate lithium ions. Specifically, LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , Examples thereof include LiN (CF 3 SO 2 ) 2 and LiN (FSO 2 ) 2 . These electrolytes can use 1 type (s) or 2 or more types.
 電解質を溶解させるための溶媒としては、非プロトン性の有機溶媒が好ましく、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、1-フルオロエチレンカーボネート、1-(トリフルオロメチル)エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、ジグライム、テトラグライム、ジオキソラン、塩化メチレン、スルホラン等を挙げることができる。これらの溶媒は、1種又は2種以上を使用することができる。 The solvent for dissolving the electrolyte is preferably an aprotic organic solvent, and specifically, ethylene carbonate, propylene carbonate, butylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, dimethyl Examples thereof include carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, diglyme, tetraglyme, dioxolane, methylene chloride, sulfolane and the like. These solvents can be used alone or in combination of two or more.
 電解質は、前記のように通常は液状に調製されて使用されるが、漏液や活物質の溶出を防止する目的でゲル状又は固体状のものを使用してもよい。 The electrolyte is usually prepared and used in a liquid state as described above, but a gel or a solid may be used for the purpose of preventing leakage or elution of the active material.
 電解質が電解液の状態で用いられる場合、正極と負極の間には、通常、正極と負極が物理的に接触しないようにするためにセパレータが設けられる。前記セパレータとしては従来公知のものを使用すればよく、例えば、セルロースレーヨン、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリイミド等を原料とする不織布又は多孔質フィルムの他、紙、ガラスフィルター等が挙げられる。 When the electrolyte is used in the state of an electrolyte, a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact. A conventionally known separator may be used as the separator, and examples thereof include a nonwoven fabric or a porous film made of cellulose rayon, polyethylene, polypropylene, polyamide, polyester, polyimide and the like, paper, glass filter, and the like.
 以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、下記実施例に限定されるものではない。 Hereinafter, the embodiments of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
 100mlナスフラスコに、ビス(4-ブロモフェニル)アミン(BPA)を3.27g、ジフェニルアミン(DPA)を1.69g、ナトリウムt-ブトキシド(NaOtBu)を2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を5mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA-1を3.3g得た。1H-NMR(CDCl3)において6.9ppm(芳香族)にのみピークが存在した。GPC(装置名:HCL-8320GPC(東ソー(株)製)、カラム:TSKgelsuperHM-H(東ソー(株)製)、移動相:THF)により測定したポリスチレン換算のMwは10,000であった。また、MALDI-TOFMS(マトリックス支援レーザー脱離イオン化飛行時間型質量分析計)による分析を行った結果、下記式(A)~(D)においてR2が水素原子である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3-1)~(3-2)及び(6)で表される構造を有することが確認された。
[Example 1]
In a 100 ml eggplant flask, 3.27 g of bis (4-bromophenyl) amine (BPA), 1.69 g of diphenylamine (DPA), 2.88 g of sodium t-butoxide (NaOtBu), and bis (tri-tBuphosphine as a catalyst) ) 5 mg of palladium (0) and 10 ml of toluene were added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.3 g of polymer A-1. In 1 H-NMR (CDCl 3 ), a peak was present only at 6.9 ppm (aromatic). The polystyrene-equivalent Mw measured by GPC (device name: HCL-8320GPC (manufactured by Tosoh Corporation), column: TSKgelsuperHM-H (manufactured by Tosoh Corporation), mobile phase: THF) was 10,000. Further, as a result of analysis by MALDI-TOFMS (Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometer), a mass spectrum indicating the presence of a structure in which R 2 is a hydrogen atom in the following formulas (A) to (D) And was confirmed to have a structure represented by the formulas (1), (3), (3-1) to (3-2) and (6).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[実施例2]
 100mlナスフラスコに、BPAを3.27g、p,p'-ジトリルアミン(MPA)を1.97g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA-2を3.6g得た。1H-NMR(CDCl3)において6.9ppm(芳香族)及び2.5ppm(メチル基)にピークが存在した。前記と同様の条件で測定したポリスチレン換算のMwは9,000であった。また、MALDI-TOFMSによる分析を行った結果、前記式(A)~(D)においてR2がメチル基である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3-1)~(3-2)及び(6)で表される構造を有することが確認された。
[Example 2]
In a 100 ml eggplant flask, 3.27 g of BPA, 1.97 g of p, p'-ditolylamine (MPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and 10 ml of toluene In addition, the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.6 g of polymer A-2. In 1 H-NMR (CDCl 3 ), peaks were present at 6.9 ppm (aromatic) and 2.5 ppm (methyl group). The Mw in terms of polystyrene measured under the same conditions as described above was 9,000. Further, as a result of analysis by MALDI-TOFMS, a mass spectrum indicating the presence of a structure in which R 2 is a methyl group in the formulas (A) to (D) was obtained, and the formulas (1), (3), It was confirmed to have a structure represented by (3-1) to (3-2) and (6).
[実施例3]
 100mlナスフラスコに、BPAを3.27g、ビス(メトキシフェニル)アミン(MOPA)を2.29g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びTHFを10ml加え、70℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA-3を3.7g得た。1H-NMR(CDCl3)において6.7ppm及び6.9ppm(芳香族)及び3.8ppm(メトキシ基)にピークが存在した。前記と同様の条件で測定したポリスチレン換算のMwは11,000であった。また、MALDI-TOFMSによる分析を行った結果、前記式(A)~(D)においてR2がメトキシ基である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3-1)~(3-2)及び(6)で表される構造を有することが確認された。
[Example 3]
In a 100 ml eggplant flask, 3.27 g of BPA, 2.29 g of bis (methoxyphenyl) amine (MOPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and 10 ml of THF In addition, the mixture was heated at 70 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.7 g of polymer A-3. In 1 H-NMR (CDCl 3 ), peaks were present at 6.7 ppm, 6.9 ppm (aromatic) and 3.8 ppm (methoxy group). The Mw in terms of polystyrene measured under the same conditions as described above was 11,000. Further, as a result of analysis by MALDI-TOFMS, a mass spectrum indicating the presence of a structure in which R 2 is a methoxy group in the formulas (A) to (D) was obtained, and the formulas (1), (3), It was confirmed to have a structure represented by (3-1) to (3-2) and (6).
[実施例4]
 100mlナスフラスコに、BPAを3.27g、ビス(4-フルオロフェニル)アミン(FPA)を2.05g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びTHFを10ml加え、70℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA-4を3.7g得た。1H-NMR(CDCl3)において6.7ppm及び6.9ppm(芳香族)にピークが存在した。前記と同様の条件で測定したポリスチレン換算のMwは8,000であった。また、MALDI-TOFMSによる分析を行った結果、前記式(A)~(D)においてR2がフルオロ基である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3-1)~(3-2)及び(6)で表される構造を有することが確認された。
[Example 4]
In a 100 ml eggplant flask, 3.27 g of BPA, 2.05 g of bis (4-fluorophenyl) amine (FPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and THF Was added and heated at 70 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 3.7 g of polymer A-4. In 1 H-NMR (CDCl 3 ), peaks were present at 6.7 ppm and 6.9 ppm (aromatic). The polystyrene-equivalent Mw measured under the same conditions as described above was 8,000. Further, as a result of analysis by MALDI-TOFMS, a mass spectrum showing the presence of a structure in which R 2 is a fluoro group in the formulas (A) to (D) was obtained, and the formulas (1), (3), It was confirmed to have a structure represented by (3-1) to (3-2) and (6).
[実施例5]
(構造(2)を有する重合体の製造)
 100mlナスフラスコに、パラフェニレンジアミン(PDA)を0.54g、1,4-ジブロモベンゼンを2.35g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB-1を1.3g得た。FT-IRでN-H及びC-Brの結合由来の振動が無いことを確認した。
[Example 5]
(Production of polymer having structure (2))
In a 100 ml eggplant flask, 0.54 g of paraphenylenediamine (PDA), 2.35 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and toluene Was added and heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.3 g of polymer B-1. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
[実施例6]
(構造(2)を有する重合体の製造)
 100mlナスフラスコに、メタフェニレンジアミン(MDA)を0.54g、1,3-ジブロモベンゼンを2.35g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB-2を1.3g得た。FT-IRでN-H及びC-Brの結合由来の振動が無いことを確認した。
[Example 6]
(Production of polymer having structure (2))
In a 100 ml eggplant flask, 0.54 g of metaphenylenediamine (MDA), 2.35 g of 1,3-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and toluene Was added and heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.3 g of polymer B-2. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
[実施例7]
(構造(2)を有する重合体の製造)
 100mlナスフラスコに、PDAを0.54g、4,4’-ジブロモビフェニルを1.56g、1,4-ジブロモベンゼンを1.2g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB-3を1.8g得た。FT-IRでN-H及びC-Brの結合由来の振動が無いことを確認した。
[Example 7]
(Production of polymer having structure (2))
In a 100 ml eggplant flask, 0.54 g of PDA, 1.56 g of 4,4′-dibromobiphenyl, 1.2 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, bis (tri-tBuphosphine) palladium as a catalyst 51 mg of (0) and 10 ml of toluene were added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.8 g of polymer B-3. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
[実施例8]
(構造(2)を有する重合体の製造)
 100mlナスフラスコに、2,4-ジブロモアニリンを2.48g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB-4を0.88g得た。FT-IRでN-H及びC-Brの結合由来の振動が無いことを確認した。
[Example 8]
(Production of polymer having structure (2))
To a 100 ml eggplant flask, 2.48 g of 2,4-dibromoaniline, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) and 10 ml of toluene were added and heated at 100 ° C. for 6 hours. did. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 0.88 g of polymer B-4. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
[比較例1]
(直鎖型のポリアリーレンアミンの製造)
 100mlナスフラスコに、パラメトキシアニリンを1.23g、1,4-ジブロモベンゼンを1.2g、NaOtBuを2.88g、触媒としてビス(トリ-tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーCを1.9g得た。FT-IRでN-H及びC-Brの結合由来の振動が無いことを確認した。
[Comparative Example 1]
(Production of linear polyaryleneamine)
To a 100 ml eggplant flask, 1.23 g of paramethoxyaniline, 1.2 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBuphosphine) palladium (0) as a catalyst and 10 ml of toluene were added. And heated at 100 ° C. for 6 hours. The contents were put into methanol, and the resulting white powder was washed with methanol and acetone to obtain 1.9 g of polymer C. It was confirmed by FT-IR that there was no vibration derived from the bond of NH and C—Br.
<有機溶剤への溶解性>
 ポリマーA-1~A-4及びポリマーCの収率及び各種溶媒に対する25℃での溶解性を確認した。その結果を表1に示す。表1において、◎は溶媒100gに対してポリマーが99g以上溶解したことを意味し、△は溶媒100gに対してポリマーが20~80g溶解したことを意味し、×は溶媒100gに対してポリマーが20g未満しか溶解しなかったことを意味する。
<Solubility in organic solvents>
The yields of the polymers A-1 to A-4 and the polymer C and the solubility at 25 ° C. in various solvents were confirmed. The results are shown in Table 1. In Table 1, “◎” means that 99 g or more of the polymer was dissolved in 100 g of the solvent, “Δ” means that 20 to 80 g of the polymer was dissolved in 100 g of the solvent, and “x” means that the polymer was dissolved in 100 g of the solvent. It means that less than 20 g was dissolved.
<サイクル特性>
 ポリマーA-1~A-4及びポリマーCを用いて以下のようにしてサイクル特性を評価した。
 ポリエチレン製容器に、活物質として各ポリマーを0.4g、導電剤としてアセチレンブラックを0.5g、ポリフッ化ビニリデン(PVDF)のNMP溶液を固形分換算で0.1g及びNMPを2g投入し、混合撹拌した。得られた黒色スラリーを、アプリケーターを用いてアルミニウム集電体上に塗工した。その際、ドクターブレードのギャップは150μmとした。その後、100℃のホットプレート上で10分乾燥し、真空乾燥機中100℃、真空下で3時間乾燥し、電極シートを得た。得られた電極シートを円形にカットし、電池の正極として用いた。CR2032型コインセルに、得られた正極、GA-100(ガラス製セパレータ)及びリチウム箔(負極)をセットし、LiPF6の1Mエチレンカーボネート/ジエチルカーボネート=30/70(体積比)溶液(電解液)を加え、かしめ機を用いて封止しコインセルを作製した。
 作製したコインセルについて、充放電試験機として東洋システム(株)製TOSCAT-3100を用い、室温下、0.1Cの電流値で、表1に記載のカットオフ電位で充放電試験を行った。50サイクル充放電した後の容量維持率(1サイクル目の放電容量に対する50サイクル目の放電容量の割合)を表1に示す。
<Cycle characteristics>
Using the polymers A-1 to A-4 and the polymer C, the cycle characteristics were evaluated as follows.
In a polyethylene container, 0.4 g of each polymer as an active material, 0.5 g of acetylene black as a conductive agent, 0.1 g of NMP solution of polyvinylidene fluoride (PVDF) in solid conversion and 2 g of NMP are mixed and mixed. Stir. The obtained black slurry was coated on an aluminum current collector using an applicator. At that time, the gap of the doctor blade was 150 μm. Then, it dried for 10 minutes on a 100 degreeC hotplate, and it dried for 3 hours under vacuum at 100 degreeC in the vacuum dryer, and obtained the electrode sheet. The obtained electrode sheet was cut into a circle and used as the positive electrode of the battery. The obtained positive electrode, GA-100 (glass separator) and lithium foil (negative electrode) were set in a CR2032-type coin cell, and a 1M ethylene carbonate / diethyl carbonate = 30/70 (volume ratio) solution of LiPF 6 (electrolytic solution) And sealed using a caulking machine to produce a coin cell.
The produced coin cell was subjected to a charge / discharge test using a Toyo System Co., Ltd. TOSCAT-3100 as a charge / discharge tester at a current value of 0.1 C at room temperature and a cut-off potential shown in Table 1. Table 1 shows the capacity retention ratio (the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle) after 50 cycles of charge and discharge.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
<放電容量及びレート特性>
 ポリマーB-1~B-4及びポリマーCを用いて以下のようにして放電容量及びレート特性を評価した。
 ポリマーA-1~A-4の代わりに、ポリマーB-1~B-4を用いた以外は前記<サイクル特性>と同様にして、コインセルを作製した。
 作製したコインセルについて、充放電試験機として東洋システム(株)製TOSCAT-3500Uを用い、室温下、0.1C及び10Cの電流値で、表2に記載のカットオフ電位で充放電試験を行った。0.1Cでの放電容量と、レート特性(10Cでの放電容量×100/0.1Cでの放電容量)を表2に示す。
<Discharge capacity and rate characteristics>
Using the polymers B-1 to B-4 and the polymer C, discharge capacity and rate characteristics were evaluated as follows.
Coin cells were produced in the same manner as in the above <cycle characteristics> except that the polymers B-1 to B-4 were used instead of the polymers A-1 to A-4.
Using the TOSCAT-3500U manufactured by Toyo System Co., Ltd. as a charge / discharge tester, the produced coin cell was subjected to a charge / discharge test at room temperature, with a current value of 0.1 C and 10 C, at the cutoff potential shown in Table 2. . Table 2 shows the discharge capacity at 0.1 C and the rate characteristics (discharge capacity at 10 C × discharge capacity at 100 / 0.1 C).
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
[実施例9]
 ポリマーA-1~A-4の代わりに、ポリマーA-3を0.08gとリン酸鉄リチウム(LiFePO4)を0.32g用いたこと以外は前記<サイクル特性>と同様にして、コインセルを作製した。作製したコインセルについて、前記<サイクル特性>並びに<放電容量及びレート特性>と同様にして、サイクル特性及び放電容量を評価した。この際、カットオフ電位は3.8~2.8Vとした。その結果、50サイクル後容量維持率は99%、5000サイクル後容量維持率は84%であり、放電容量は150mAh/gであった。
[Example 9]
A coin cell was prepared in the same manner as in the above <cycle characteristics> except that 0.08 g of polymer A-3 and 0.32 g of lithium iron phosphate (LiFePO 4 ) were used instead of polymers A-1 to A-4. Produced. About the produced coin cell, the cycle characteristics and the discharge capacity were evaluated in the same manner as in the above <cycle characteristics> and <discharge capacity and rate characteristics>. At this time, the cut-off potential was set to 3.8 to 2.8V. As a result, the capacity retention rate after 50 cycles was 99%, the capacity retention rate after 5000 cycles was 84%, and the discharge capacity was 150 mAh / g.
[比較例2]
 ポリマーA-1~A-4の代わりに、リン酸鉄リチウム(LiFePO4)を0.4g用いたこと以外は前記<サイクル特性>と同様にして、コインセルを作製した。作製したコインセルについて、前記<サイクル特性>並びに<放電容量及びレート特性>と同様にして、サイクル特性及び放電容量を評価した。この際、カットオフ電位は3.8~2.8Vとした。その結果、50サイクル後容量維持率は95%、5000サイクル後容量維持率は34%であり、放電容量は150mAh/gであった。
[Comparative Example 2]
Coin cells were produced in the same manner as in the above <Cycle characteristics> except that 0.4 g of lithium iron phosphate (LiFePO 4 ) was used instead of the polymers A-1 to A-4. About the produced coin cell, the cycle characteristics and the discharge capacity were evaluated in the same manner as in the above <cycle characteristics> and <discharge capacity and rate characteristics>. At this time, the cut-off potential was set to 3.8 to 2.8V. As a result, the capacity retention rate after 50 cycles was 95%, the capacity retention rate after 5000 cycles was 34%, and the discharge capacity was 150 mAh / g.
 本重合体は、電極活物質、電極バインダー等の蓄電デバイスの電極材料の他、有機EL、有機トランジスタ、太陽電池等に用いられる正孔輸送材料等として極めて有用であると考えられる。 The present polymer is considered to be extremely useful as a hole transport material used in organic EL, organic transistors, solar cells, etc., in addition to electrode materials for power storage devices such as electrode active materials and electrode binders.

Claims (11)

  1.  下記式(1)及び(2)で表される構造の少なくとも1つを有する重合体:
    Figure JPOXMLDOC01-appb-C000001
     式(1)において、Ar1は相互に独立に置換又は非置換の芳香族炭化水素基を示し、Yは独立に単結合、2価の連結基又は2個あるAr1各々に結合する2個の水素原子若しくは置換基を示し、nは4以上の整数を示し;
    Figure JPOXMLDOC01-appb-C000002
     式(2)において、Ar2は相互に独立に芳香環を含む基を示し、但し、複数のAr2の全てがビフェニル-4,4'-ジイルである場合を除き、aは1~10の整数を示し、Ar3は相互に独立に芳香環を含む基を示し、bは相互に独立に1又は2を示し、-Ar3-(N)b=のNに結合する基がAr2に結合して環を形成していてもよい。
    A polymer having at least one of the structures represented by the following formulas (1) and (2):
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), Ar 1 independently represents a substituted or unsubstituted aromatic hydrocarbon group, and Y independently represents a single bond, a divalent linking group, or two bonded to each of two Ar 1 groups. And n represents an integer of 4 or more;
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), Ar 2 represents a group containing an aromatic ring independently of each other, provided that a is 1 to 10 except that all of Ar 2 are biphenyl-4,4′-diyl. Represents an integer, Ar 3 represents a group containing an aromatic ring independently of each other, b represents 1 or 2 independently of each other, and a group bonded to N of —Ar 3 — (N) b ═ is bonded to Ar 2 It may combine to form a ring.
  2.  下記式(1)及び(6)で表される構造を有する重合体:
    Figure JPOXMLDOC01-appb-C000003
     式(1)において、Ar1は相互に独立に置換又は非置換の芳香族炭化水素基を示し、Yは独立に単結合、2価の連結基又は2個あるAr1各々に結合する2個の水素原子若しくは置換基を示し、nは4以上の整数を示し;
    Figure JPOXMLDOC01-appb-C000004
     式(6)において、Ar4は相互に独立に置換又は非置換の芳香族炭化水素基を示し、R2は相互に独立に水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示し、Zは単結合、2価の連結基又は2個あるAr4各々に結合する2個の水素原子若しくは置換基を示し、「*」は前記式(1)におけるAr1と結合する結合手を示す。
    A polymer having a structure represented by the following formulas (1) and (6):
    Figure JPOXMLDOC01-appb-C000003
    In the formula (1), Ar 1 independently represents a substituted or unsubstituted aromatic hydrocarbon group, and Y independently represents a single bond, a divalent linking group, or two bonded to each of two Ar 1 groups. And n represents an integer of 4 or more;
    Figure JPOXMLDOC01-appb-C000004
    In the formula (6), Ar 4 represents an independently substituted or unsubstituted aromatic hydrocarbon group, and R 2 represents each independently a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or Represents an organic group, Z represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to two Ar 4 groups, and “*” represents a bond to Ar 1 in the formula (1). Indicates the hand to join.
  3.  前記式(1)で表される構造が、下記式(R)で表される構造を有する、請求項1又は2に記載の重合体:
    Figure JPOXMLDOC01-appb-C000005
     式(R)において、R1は水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示す。
    The polymer according to claim 1 or 2, wherein the structure represented by the formula (1) has a structure represented by the following formula (R):
    Figure JPOXMLDOC01-appb-C000005
    In the formula (R), R 1 represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group, or an organic group.
  4.  下記式(3)及び(R')で表される構造を有し、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が2,000以上である重合体:
    Figure JPOXMLDOC01-appb-C000006
     式(3)において、Ar1は相互に独立に置換又は非置換の芳香族炭化水素基を示し、Yは独立に単結合、2価の連結基又は2個あるAr1各々に結合する2個の水素原子若しくは置換基を示し、mは2以上の整数を示し;
    Figure JPOXMLDOC01-appb-C000007
     式(R')において、R1は水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示し、但し、該有機基から「=N-Ar-**」で表される構造を含む基を除き、該Arは置換又は非置換の芳香族炭化水素基を示し、該**は下記式(3)におけるNと結合する結合手を示し、式(R')は、前記式(3)のNにR1が結合することを示す。
    A polymer having a structure represented by the following formulas (3) and (R ′) and having a polystyrene-equivalent weight average molecular weight of 2,000 or more measured by gel permeation chromatography:
    Figure JPOXMLDOC01-appb-C000006
    In the formula (3), Ar 1 independently represents a substituted or unsubstituted aromatic hydrocarbon group, and Y independently represents a single bond, a divalent linking group, or two bonded to each of two Ar 1 groups. And m represents an integer of 2 or more;
    Figure JPOXMLDOC01-appb-C000007
    In the formula (R ′), R 1 represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group, provided that the organic group is represented by “= N—Ar — **”. In the formula (3), Ar represents a substituted or unsubstituted aromatic hydrocarbon group, ** represents a bond bonded to N in the following formula (3), and the formula (R ′) is It shows that R 1 is bonded to N in the formula (3).
  5.  下記式(3-1)で表される繰り返し単位及び下記式(6)で表される構造を有する、請求項4に記載の重合体:
    Figure JPOXMLDOC01-appb-C000008
     式(3-1)において、Ar1及びYは相互に独立に、前記式(3)のAr1及びYと同義であり;
    Figure JPOXMLDOC01-appb-C000009
     式(6)において、Ar4は相互に独立に置換又は非置換の芳香族炭化水素基を示し、R2は相互に独立に水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示し、Zは単結合、2価の連結基又は2個あるAr4各々に結合する2個の水素原子若しくは置換基を示し、「*」は前記式(3-1)におけるAr1と結合する結合手を示す。
    The polymer according to claim 4, having a repeating unit represented by the following formula (3-1) and a structure represented by the following formula (6):
    Figure JPOXMLDOC01-appb-C000008
    In the formula (3-1), Ar 1 and Y are independently the same as Ar 1 and Y in the formula (3);
    Figure JPOXMLDOC01-appb-C000009
    In the formula (6), Ar 4 represents an independently substituted or unsubstituted aromatic hydrocarbon group, and R 2 represents each independently a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or Represents an organic group, Z represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to each of two Ar 4 groups, and “*” represents Ar 1 in the formula (3-1). Indicates a bond to be combined with.
  6.  ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が2,000~100,000である、請求項1~5のいずれか1項に記載の重合体。 The polymer according to any one of claims 1 to 5, wherein the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography is 2,000 to 100,000.
  7.  電極材料用である、請求項1~6のいずれか1項に記載の重合体。 The polymer according to any one of claims 1 to 6, which is used for an electrode material.
  8.  請求項1~6のいずれか1項に記載の重合体を含有する電極。 An electrode containing the polymer according to any one of claims 1 to 6.
  9.  請求項8に記載の電極を正極として備える蓄電デバイス。 An electricity storage device comprising the electrode according to claim 8 as a positive electrode.
  10.  塩基の存在下、下記式(7)で表される化合物と下記式(8)で表される化合物とを反応させる工程を含む、重合体の製造方法:
    Figure JPOXMLDOC01-appb-C000010
     式(7)において、Ar1は相互に独立に置換又は非置換の芳香族炭化水素基を示し、Xは相互に独立にクロロ基、ブロモ基又はヨード基を示し、Yは単結合、2価の連結基又は2個あるAr1各々に結合する2個の水素原子若しくは置換基を示し、
    Figure JPOXMLDOC01-appb-C000011
     式(8)において、Ar4は相互に独立に置換又は非置換の芳香族炭化水素基を示し、R2は相互に独立に水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示し、Zは単結合、2価の連結基又は2個あるAr4各々に結合する2個の水素原子若しくは置換基を示す。
    A method for producing a polymer, comprising a step of reacting a compound represented by the following formula (7) and a compound represented by the following formula (8) in the presence of a base:
    Figure JPOXMLDOC01-appb-C000010
    In the formula (7), Ar 1 independently represents a substituted or unsubstituted aromatic hydrocarbon group, X independently represents a chloro group, a bromo group or an iodo group, Y represents a single bond, divalent group Or two hydrogen atoms or substituents bonded to each of the two Ar 1 groups,
    Figure JPOXMLDOC01-appb-C000011
    In the formula (8), Ar 4 represents an independently substituted or unsubstituted aromatic hydrocarbon group, and R 2 represents each independently a hydrogen atom, halo group, nitro group, hydroxyl group, sulfo group, amino group or Z represents an organic group, and Z represents a single bond, a divalent linking group, or two hydrogen atoms or substituents bonded to each of two Ar 4 groups.
  11.  塩基の存在下、下記式(9)で表される化合物と下記式(10)で表される化合物とを反応させる工程を含む、重合体の製造方法:
    Figure JPOXMLDOC01-appb-C000012
     式(9)において、Ar5は芳香環を含む基を示し;
    Figure JPOXMLDOC01-appb-C000013
     式(10)において、Ar6は芳香環を含む基を示し、Xは相互に独立にハロ基を示す。
    A method for producing a polymer, comprising a step of reacting a compound represented by the following formula (9) with a compound represented by the following formula (10) in the presence of a base:
    Figure JPOXMLDOC01-appb-C000012
    In formula (9), Ar 5 represents a group containing an aromatic ring;
    Figure JPOXMLDOC01-appb-C000013
    In Formula (10), Ar 6 represents a group containing an aromatic ring, and X represents a halo group independently of each other.
PCT/JP2017/036857 2016-10-24 2017-10-11 Polymer, electrode, electric-storage device, and process for producing polymer WO2018079262A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018547538A JP6969570B2 (en) 2016-10-24 2017-10-11 Polymers, electrodes, power storage devices and methods for producing polymers
CN201780065226.1A CN109863192A (en) 2016-10-24 2017-10-11 The manufacturing method of polymer, electrode, electric energy storage device and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016208057 2016-10-24
JP2016-208057 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018079262A1 true WO2018079262A1 (en) 2018-05-03

Family

ID=62023379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036857 WO2018079262A1 (en) 2016-10-24 2017-10-11 Polymer, electrode, electric-storage device, and process for producing polymer

Country Status (3)

Country Link
JP (2) JP6969570B2 (en)
CN (1) CN109863192A (en)
WO (1) WO2018079262A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241882A1 (en) * 2019-05-31 2020-12-03

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212420A (en) * 1984-04-09 1985-10-24 Nissan Motor Co Ltd Polymer having structural unit of triphenylamine
JPH10306143A (en) * 1997-05-02 1998-11-17 Agency Of Ind Science & Technol Novel triphenylamine polymer, its production and organic conductive material using the same
JPH1180346A (en) * 1997-09-10 1999-03-26 Tosoh Corp Production of polyarylamine
JP2000277118A (en) * 1999-03-19 2000-10-06 Nec Corp Electrode and battery
JP2004043528A (en) * 2002-07-09 2004-02-12 Nec Corp Polymer and method for producing the same
JP2005200618A (en) * 2004-01-19 2005-07-28 Sumitomo Seika Chem Co Ltd PREPARATION PROCESS OF POLY(p-ANILINE)
JP2006222016A (en) * 2005-02-14 2006-08-24 Nec Tokin Corp Electrochemical cell
WO2010140553A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
JP2011001462A (en) * 2009-06-18 2011-01-06 Ricoh Co Ltd Novel hole transporting multibranched copolymer, and method for producing the same
JP2012049118A (en) * 2010-07-28 2012-03-08 Sumitomo Chemical Co Ltd Polymer electrolyte, polymer electrolyte film and polyarylene compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323635A (en) * 1992-05-21 1993-12-07 Konica Corp Electrophotographic sensitive body
JP5490988B2 (en) * 1997-05-09 2014-05-14 東ソー株式会社 Polyaryleneamine and process for producing the same
JP2007214364A (en) * 2006-02-09 2007-08-23 Bando Chem Ind Ltd Organic electroluminescence element
CN101088992A (en) * 2007-04-04 2007-12-19 南昌大学 Cyclic arylamine as hole transferring material with high vitrification point and its synthesis process
JP5323635B2 (en) 2009-09-29 2013-10-23 日立建機株式会社 Boarding type rolling roller vehicle
JP5300147B2 (en) * 2009-11-11 2013-09-25 国立大学法人東京農工大学 Inclusion complex
EP3032621A1 (en) * 2014-12-10 2016-06-15 VARTA Micro Innovation GmbH Electrode for an electrochemical element with an organic electrolyte, electrochemical elements comprising the electrode and polymeric material and its use as electrode active material or as electrode binder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212420A (en) * 1984-04-09 1985-10-24 Nissan Motor Co Ltd Polymer having structural unit of triphenylamine
JPH10306143A (en) * 1997-05-02 1998-11-17 Agency Of Ind Science & Technol Novel triphenylamine polymer, its production and organic conductive material using the same
JPH1180346A (en) * 1997-09-10 1999-03-26 Tosoh Corp Production of polyarylamine
JP2000277118A (en) * 1999-03-19 2000-10-06 Nec Corp Electrode and battery
JP2004043528A (en) * 2002-07-09 2004-02-12 Nec Corp Polymer and method for producing the same
JP2005200618A (en) * 2004-01-19 2005-07-28 Sumitomo Seika Chem Co Ltd PREPARATION PROCESS OF POLY(p-ANILINE)
JP2006222016A (en) * 2005-02-14 2006-08-24 Nec Tokin Corp Electrochemical cell
WO2010140553A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
JP2011001462A (en) * 2009-06-18 2011-01-06 Ricoh Co Ltd Novel hole transporting multibranched copolymer, and method for producing the same
JP2012049118A (en) * 2010-07-28 2012-03-08 Sumitomo Chemical Co Ltd Polymer electrolyte, polymer electrolyte film and polyarylene compound

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALBRECHT,K. ET AL.: "Dendritic Structure Having a Potential Gradient: New Synthesis and Properties of Carbazole Dendrimers", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 2244 - 2251, XP055605310 *
KIM, S ET AL.: "Preparation of Poly (diphenylamine-4, 4' -diyl) and Related Random Copolymers by Organometallic Polycondensation", ELECTRICAL, ELECTROCHEMICAL, AND OPTICAL PROPERTIES, MACROMOLECULES, vol. 31, 1998, pages 988 - 993, XP000732898, DOI: doi:10.1021/ma971244f *
LI,Z. ET AL.: "New Carbazole-Based Hyperbranched Conjugated Polymer with Good Hole-Transporting Properties", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 211, 2010, pages 1820 - 1825, XP055605312 *
SPETSERIS,N ET AL.: "Linear and Hyperbranched m-Polyaniline: Synthesis of Polymers for the Study of Magnetism in Organic Systems", MACROMOLECULES, vol. 31, 1998, pages 3158 - 3161, XP055605316 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241882A1 (en) * 2019-05-31 2020-12-03
JP7173322B2 (en) 2019-05-31 2022-11-16 株式会社Gsユアサ lead acid battery

Also Published As

Publication number Publication date
JP2021181581A (en) 2021-11-25
JP6969570B2 (en) 2021-11-24
JPWO2018079262A1 (en) 2019-09-12
CN109863192A (en) 2019-06-07
JP7173241B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
Ruby Raj et al. Perylenedianhydride-based polyimides as organic cathodes for rechargeable lithium and sodium batteries
JP6667178B2 (en) Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP5948408B2 (en) Compounds having redox groups, their use as electrolyte additives, electrolyte compositions, and electrochemical systems containing them
Jung et al. Polyimide containing tricarbonyl moiety as an active cathode for rechargeable Li-ion batteries
WO2020084828A1 (en) Polymer, electrode active substance and secondary battery
JP2014070008A (en) Method for producing composite material, and composite material
JP7173241B2 (en) Polymer, electrode, electricity storage device, and method for producing polymer
JP5907373B2 (en) COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL AND POSITIVE FOR NON-AQUEOUS SECONDARY BATTERY, NON-AQUEOUS SECONDARY BATTERY, AND VEHICLE
WO2018097250A1 (en) Electrode active material for nonaqueous secondary batteries, and nonaqueous secondary battery using same
KR102119311B1 (en) Binder composition for lithium secondary battery
JP5818689B2 (en) Lithium ion secondary battery
JP5799782B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP6814064B2 (en) Organic compounds, electrode active materials and secondary batteries using them
TWI409839B (en) An electrochemical capacitor electrode, a composition for the electrode, and a method for manufacturing the same, and an electrochemical capacitor using the same
JP6179233B2 (en) Non-aqueous electrolyte secondary battery
WO2011152476A1 (en) Condensed polycyclic aromatic compound and process for production thereof, and positive electrode active material for lithium ion secondary battery which comprises same
JP5425694B2 (en) Positive electrode active material for lithium ion secondary battery obtained by performing overcharge / discharge treatment, positive electrode for lithium ion secondary battery comprising the positive electrode active material, and lithium ion secondary battery comprising the positive electrode as components
WO2017010334A1 (en) Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5799781B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP6743799B2 (en) Electrolyte, power storage device, and method for manufacturing power storage device
Xu et al. Synthesis and characterization of viologen functionalized fluorene-containing poly (arylene ether ketone) s for polymer batteries
WO2022239746A1 (en) Binder for silicon negative electrode of lithium ion secondary battery
JP6020132B2 (en) Electrode active material, electrode, battery and polymer
WO2023277164A1 (en) Additive for electrolyte solutions, electrolyte solution and electrochemical device
JP2014222590A (en) Electrode active material, electrode, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865735

Country of ref document: EP

Kind code of ref document: A1