JP2021181581A - Polymer, electrode, electric-storage device, and process for producing polymer - Google Patents

Polymer, electrode, electric-storage device, and process for producing polymer Download PDF

Info

Publication number
JP2021181581A
JP2021181581A JP2021129005A JP2021129005A JP2021181581A JP 2021181581 A JP2021181581 A JP 2021181581A JP 2021129005 A JP2021129005 A JP 2021129005A JP 2021129005 A JP2021129005 A JP 2021129005A JP 2021181581 A JP2021181581 A JP 2021181581A
Authority
JP
Japan
Prior art keywords
polymer
group
electrode
formula
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021129005A
Other languages
Japanese (ja)
Other versions
JP7173241B2 (en
Inventor
圭一 山本
Keiichi Yamamoto
一成 相田
Kazunari Aida
香奈 増田
Kana Masuda
大地 末政
Daichi Suemasa
剛 遠藤
Takeshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JP2021181581A publication Critical patent/JP2021181581A/en
Application granted granted Critical
Publication of JP7173241B2 publication Critical patent/JP7173241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a polymer having excellent organic solvent solubility, an electrode including the polymer, an electric-storage device, and a process for producing the polymer.SOLUTION: The present invention discloses a polyamine polymer having a specific structure, for example. obtained by the reaction between an aromatic diamine (diphenyl amine) and an aromatic compound having two halogen atoms, (bis(4-bromophenyl)amine). There are also provided an electrode including the polymer, an electric-storage device, and a process for producing the polymer.SELECTED DRAWING: None

Description

本発明は、重合体、電極、蓄電デバイス及び重合体の製造方法に関する。 The present invention relates to a polymer, an electrode, a power storage device, and a method for producing the polymer.

ポリアニリン等の芳香族アミン系重合体は導電性高分子として知られており、有機EL、有機トランジスタ、太陽電池等に用いられる正孔輸送材料やリチウムイオン二次電池等の電極材料としての展開が期待されている。このような芳香族アミン系重合体としては、ポリアニリンの他、例えば、特許文献1で提案されている直鎖型のポリアリーレンアミンが知られている。 Aromatic amine-based polymers such as polyaniline are known as conductive polymers, and are being developed as hole transport materials used in organic ELs, organic transistors, solar cells, etc., and electrode materials such as lithium ion secondary batteries. It is expected. As such an aromatic amine-based polymer, in addition to polyaniline, for example, the linear polyarylene amine proposed in Patent Document 1 is known.

また、N,N,N’,N’−テトラメチル−ベンジジン等の芳香族ジアミン化合物が蓄電デバイスの電極活物質として有用であることが知られている(特許文献2参照)。 Further, it is known that aromatic diamine compounds such as N, N, N', N'-tetramethyl-benzidine are useful as an electrode active material for a power storage device (see Patent Document 2).

特開2008−45142号公報Japanese Unexamined Patent Publication No. 2008-45142 特開2014−222590号公報Japanese Unexamined Patent Publication No. 2014-222590

しかしながら、従来提案されているポリアリーレンアミンは、有機溶剤に対する溶解性に乏しいため、液相プロセスに適用し難く、正孔輸送材料として使用することができない等の問題があった。また、従来提案されている芳香族ジアミン化合物を蓄電デバイスの電極活物質として用いた場合、満足な特性が得られない場合があった。 However, the conventionally proposed polyarylene amine has a problem that it is difficult to apply to a liquid phase process because it has poor solubility in an organic solvent and cannot be used as a hole transport material. Further, when the conventionally proposed aromatic diamine compound is used as an electrode active material of a power storage device, satisfactory characteristics may not be obtained in some cases.

したがって、本発明の一実施形態は、有機溶剤に対する溶解性に優れる新規な芳香族アミン系重合体及びその製造方法を提供する。また、本発明の別の実施形態は、蓄電デバイスの電極活物質として用いた場合、満足な特性を与える新規な芳香族アミン系重合体及びその製造方法を提供する。 Therefore, one embodiment of the present invention provides a novel aromatic amine-based polymer having excellent solubility in an organic solvent and a method for producing the same. Further, another embodiment of the present invention provides a novel aromatic amine-based polymer and a method for producing the same, which give satisfactory properties when used as an electrode active material of a power storage device.

かかる実情に鑑み、本発明者が鋭意研究を行ったところ、分岐鎖構造又はネットワーク構造を有する特定の芳香族アミン系重合体を用いることで前記課題を解決することができることを見出し、本発明を完成するに至った。
本発明の構成例は以下のとおりである。
In view of such circumstances, the present inventor has conducted diligent research and found that the above-mentioned problems can be solved by using a specific aromatic amine-based polymer having a branched chain structure or a network structure. It was completed.
The configuration example of the present invention is as follows.

本発明の一実施形態は、
下記式(1)及び(2)で表される構造の少なくとも1つを有する重合体(以下「本重合体1」ともいう。)、
下記式(3)及び(R')で表される構造を有し、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が2,000以上である重合体(以下「本重合体2」ともいう。)、又は、
下記式(1)及び(6)で表される構造を有する重合体(以下「本重合体3」ともいう。)を提供する。
なお、これら本重合体1〜3をまとめて、本重合体Aともいう。
One embodiment of the present invention
A polymer having at least one of the structures represented by the following formulas (1) and (2) (hereinafter, also referred to as “the present polymer 1”).
A polymer having a structure represented by the following formulas (3) and (R') and having a polystyrene-equivalent weight average molecular weight of 2,000 or more measured by gel permeation chromatography (hereinafter referred to as "the present polymer 2"). Also called) or
Provided is a polymer having a structure represented by the following formulas (1) and (6) (hereinafter, also referred to as “the present polymer 3”).
In addition, these polymers 1 to 3 are collectively referred to as the present polymer A.

また、本発明の一実施形態は、前記本重合体Aを含有する電極を提供し、更に、該電極を正極として備える蓄電デバイスを提供する。 Further, one embodiment of the present invention provides an electrode containing the present polymer A, and further provides a power storage device including the electrode as a positive electrode.

さらに本発明の一実施形態は、
塩基の存在下、下記式(7)で表される化合物と下記式(8)で表される化合物とを反応させる工程を含む、重合体の製造方法(以下「本方法I」ともいう。)、又は
塩基の存在下、下記式(9)で表される化合物と下記式(10)で表される化合物とを反応させる工程を含む、重合体の製造方法(以下「本方法II」ともいう。)を提供する。
Further, one embodiment of the present invention is
A method for producing a polymer (hereinafter, also referred to as "method I"), which comprises a step of reacting a compound represented by the following formula (7) with a compound represented by the following formula (8) in the presence of a base. Or, a method for producing a polymer (hereinafter, also referred to as "method II"), which comprises a step of reacting a compound represented by the following formula (9) with a compound represented by the following formula (10) in the presence of a base. .)I will provide a.

本発明の一実施形態によれば、有機溶剤に対する溶解性に優れる芳香族アミン系重合体が得られる。したがって、該重合体は、液相プロセスに適用される正極輸送材料等として極めて有用である。また、該重合体を用いることで、満足な特性、具体的には、高放電容量、高サイクル特性、高レート特性を満たす蓄電デバイスを容易に得ることができる。したがって、該重合体は、蓄電デバイスの電極材料として極めて有用である。 According to one embodiment of the present invention, an aromatic amine-based polymer having excellent solubility in an organic solvent can be obtained. Therefore, the polymer is extremely useful as a positive electrode transport material or the like applied to a liquid phase process. Further, by using the polymer, it is possible to easily obtain a power storage device satisfying satisfactory characteristics, specifically, high discharge capacity, high cycle characteristics, and high rate characteristics. Therefore, the polymer is extremely useful as an electrode material for a power storage device.

本重合体A
本重合体Aは、以下の本重合体1〜3のいずれかである。
本重合体1は、下記式(1)で表される構造(以下「構造(1)」ともいう。他の構造についても同様に表現する場合がある。)及び下記式(2)で表される構造の少なくとも1つを有する重合体である。
This polymer A
The present polymer A is one of the following main polymers 1 to 3.
The present polymer 1 is represented by the following formula (1) (hereinafter, also referred to as “structure (1)”; other structures may be similarly expressed) and the following formula (2). A polymer having at least one of these structures.

構造(1)を有する本重合体1(以下「本重合体1a」ともいう。)は、有機溶剤に対する溶解性に特に優れ、液相プロセスに適用される正極輸送材料等として極めて有用である。また、該本重合体1aを、電極材料、特に、活物質として用いた場合、サイクル特性に優れる蓄電デバイスを容易に得ることができる。 The present polymer 1 having the structure (1) (hereinafter, also referred to as “the present polymer 1a”) has particularly excellent solubility in an organic solvent and is extremely useful as a positive electrode transport material or the like applied to a liquid phase process. Further, when the present polymer 1a is used as an electrode material, particularly an active material, a power storage device having excellent cycle characteristics can be easily obtained.

Figure 2021181581
Figure 2021181581

式(1)において、Ar1は相互に独立に置換又は非置換の芳香族炭化水素基であり、Ar1に結合する結合手はNと結合する。
芳香族炭化水素基を構成する芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ビフェニル環等が挙げられ、ベンゼン環が好ましい。
置換基としては、炭素数1〜12、好ましくは炭素数1〜6の炭化水素基、炭素数1〜6、好ましくは炭素数1〜4のアルコキシ基、フルオロ基、カルボキシ基等が挙げられる。
Ar1としては、非置換の芳香族炭化水素基が好ましく、より好ましくはp−フェニレン基である。
In formula (1), Ar 1 is a mutually independently substituted or unsubstituted aromatic hydrocarbon group, and the binding agent that binds to Ar 1 binds to N.
Examples of the aromatic ring constituting the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenyl ring and the like, and a benzene ring is preferable.
Examples of the substituent include a hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, a fluoro group, a carboxy group and the like.
As Ar 1 , an unsubstituted aromatic hydrocarbon group is preferable, and a p-phenylene group is more preferable.

Yは独立に単結合、2価の連結基又は2個あるAr1各々に結合する2個の水素原子若しくは置換基を示す。
該連結基としては、−O−、−NR−(Rは水素原子又は炭素数1〜12の炭化水素基である)、−S−、−CO−、炭素数1〜4のアルキレン基等が挙げられ、該置換基としては、Ar1における置換基と同様の基等が挙げられる。
Yは、単結合、−S−又はAr1各々に結合する2個の水素原子であることが好ましい。
式(1)中の複数のYは、それぞれ同一であってもよく、異なっていてもよい。本明細書における同様の記載は、同様の意味を示す。
Y is a single bond independently represents a divalent linking group or two is two hydrogen atoms or a substituent bonded to Ar 1 each.
Examples of the linking group include -O-, -NR- (R is a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms), -S-, -CO-, an alkylene group having 1 to 4 carbon atoms, and the like. Examples of the substituent include a group similar to the substituent in Ar 1.
Y is preferably two hydrogen atoms bonded to each of a single bond, —S— or Ar 1.
The plurality of Ys in the formula (1) may be the same or different. Similar statements herein have similar meanings.

nは4以上の整数を示し、得られる重合体の重量平均分子量が下記範囲となるような整数であることが好ましく、より好ましくは10〜100である。 n represents an integer of 4 or more, and is preferably an integer such that the weight average molecular weight of the obtained polymer is in the following range, and more preferably 10 to 100.

本重合体1aの具体例としては、例えば、下記重合体が挙げられる。下記重合体中のnは、式(1)中のnと同義である。 Specific examples of the present polymer 1a include the following polymers. N in the following polymer is synonymous with n in the formula (1).

Figure 2021181581
Figure 2021181581

本重合体1aとしては、有機溶剤に対する溶解性により優れる重合体が得られる等の点から、前記式(1)及び下記式(6)で表される構造を有する本重合体3であることが好ましい。なお、下記式(6)における「*」は、前記式(1)におけるAr1と結合する結合手を示す。 The present polymer 1a may be the present polymer 3 having a structure represented by the above formula (1) and the following formula (6) from the viewpoint that a polymer having excellent solubility in an organic solvent can be obtained. preferable. In addition, "*" in the following formula (6) indicates a bond that binds to Ar 1 in the formula (1).

Figure 2021181581
Figure 2021181581

式(6)において、Ar4は相互に独立に置換又は非置換の芳香族炭化水素基を示す。Ar4における芳香族炭化水素基を構成する芳香環及び置換基の例示、並びに好ましい基は、Ar1と同様である。 In formula (6), Ar 4 represents mutually independently substituted or unsubstituted aromatic hydrocarbon groups. Examples of aromatic rings and substituents constituting the aromatic hydrocarbon group in Ar 4 and preferable groups are the same as those in Ar 1.

2は相互に独立に水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示す。
該有機基としては、炭素数1〜6、好ましくは炭素数1〜4の炭化水素基、炭素数1〜6、好ましくは炭素数1〜4のアルコキシ基等が挙げられる。
該ハロ基としては、フルオロ基又はブロモ基が好ましく、フルオロ基がより好ましい。
R 2 independently represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group.
Examples of the organic group include a hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and preferably an alkoxy group having 1 to 4 carbon atoms.
As the halo group, a fluoro group or a bromo group is preferable, and a fluoro group is more preferable.

2が、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又はアルコキシ基等の極性基であると、一般的な電解液に膨潤可能な重合体が得られるため、該重合体を電極材料、特に、活物質として用いた場合、高レート特性や優れたサイクル特性を示す蓄電デバイスを容易に得ることができる。
2が水素原子又は炭素数1〜4のアルコキシ基、特に水素原子又はメトキシ基である本重合体3を、電極材料、特に、活物質として用いた場合、サイクル特性に優れる蓄電デバイスを容易に得ることができる。
2が水素原子、フルオロ基又は炭化水素基、特にフルオロ基又はメチル基である本重合体3を、電極材料、特に、活物質として用いた場合、高い放電容量を有する蓄電デバイスを容易に得ることができる。
2としては、水素原子、フルオロ基、ブロモ基、メチル基、メトキシ基であることが好ましい。
When R 2 is a polar group such as a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an alkoxy group, a polymer capable of swelling in a general electrolytic solution can be obtained. Therefore, the polymer is used as an electrode material. In particular, when used as an active material, a storage device exhibiting high rate characteristics and excellent cycle characteristics can be easily obtained.
When the present polymer 3 in which R 2 is a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, particularly a hydrogen atom or a methoxy group, is used as an electrode material, particularly an active material, a power storage device having excellent cycle characteristics can be easily obtained. Obtainable.
When the present polymer 3 in which R 2 is a hydrogen atom, a fluoro group or a hydrocarbon group, particularly a fluoro group or a methyl group is used as an electrode material, particularly an active material, a power storage device having a high discharge capacity can be easily obtained. be able to.
R 2 is preferably a hydrogen atom, a fluoro group, a bromo group, a methyl group, or a methoxy group.

Zは単結合、2価の連結基又は2個あるAr4各々に結合する2個の水素原子若しくは置換基を示す。Zにおける連結基及び置換基の例示、並びに好ましい基は、Yと同様である。 Z is a single bond, a divalent linking group or two is two hydrogen atoms or a substituent bonded to Ar 4 each. Examples of linking groups and substituents in Z, as well as preferred groups, are the same as in Y.

構造(6)の具体例としては、例えば、下記構造が挙げられる。下記構造中のRは、式(6)中のR2と同義であり、好ましくは水素原子、メチル基、メトキシ基、フルオロ基又はブロモ基である。 Specific examples of the structure (6) include the following structures. R in the following structure is synonymous with R 2 in the formula (6), and is preferably a hydrogen atom, a methyl group, a methoxy group, a fluoro group or a bromo group.

Figure 2021181581
Figure 2021181581

また、前記構造(1)は、下記式(R)で表される構造(R1−N=)を有することが、本重合体1aや3の製造し易さ等の点から好ましい。
なお、式(6)は、前記式(1)のNにR1が結合することを示す。
Further, it is preferable that the structure (1) has a structure (R 1 −N =) represented by the following formula (R) from the viewpoint of ease of production of the present polymers 1a and 3.
The formula (6) shows that R 1 is bonded to N in the formula (1).

Figure 2021181581
[式(R)において、R1は水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基を示す。]
Figure 2021181581
[In the formula (R), R 1 represents a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group. ]

1における有機基としては、R2における有機基と同様の基の他、置換若しくは非置換の芳香族炭化水素基等が挙げられ、該有機基としては、「=N−Ar−**」[Arは置換又は非置換の芳香族炭化水素基を示し、**は前記構造(1)におけるNと結合する結合手を示す。]で表される構造を含む基以外の基であることが好ましい。
1としては、好ましくは水素原子又は置換若しくは非置換の芳香族炭化水素基であり、特に好ましくは水素原子である。
Examples of the organic group in R 1 include a group similar to the organic group in R 2 , as well as a substituted or unsubstituted aromatic hydrocarbon group, and the organic group includes "= N-Ar-**". [Ar indicates a substituted or unsubstituted aromatic hydrocarbon group, and ** indicates a bond that binds to N in the structure (1). ] It is preferable that the group is a group other than the group containing the structure represented by.
R 1 is preferably a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group, and particularly preferably a hydrogen atom.

本重合体1a及び/又は本重合体3の具体例としては、例えば、下記群(a1)〜(a4)の重合体が挙げられる。下記重合体中のnは、式(1)中のnと同義である。 Specific examples of the present polymer 1a and / or the present polymer 3 include the polymers of the following groups (a1) to (a4). N in the following polymer is synonymous with n in the formula (1).

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

本重合体1は、下記式(2)で表される構造を有する重合体(以下「本重合体1b」ともいう。)であってもよい。
本重合体1bを、電極材料、特に、活物質として用いた場合、放電容量及びレート特性にバランスよく優れる蓄電デバイスを容易に得ることができる。
The present polymer 1 may be a polymer having a structure represented by the following formula (2) (hereinafter, also referred to as “the present polymer 1b”).
When the present polymer 1b is used as an electrode material, particularly an active material, a power storage device having an excellent balance of discharge capacity and rate characteristics can be easily obtained.

Figure 2021181581
Figure 2021181581

前記式(2)において、Ar2は相互に独立に芳香環を含む基を示し(但し、複数のAr2の全てがビフェニル−4,4'−ジイルである場合を除く)、Ar3は相互に独立に芳香環を含む基を示す。
Ar2及びAr3における芳香環を含む基としては、Ar1で例示した芳香族炭化水素基の他、複数の当該芳香族炭化水素基が2価の連結基により連結された基等が挙げられる。該2価の連結基としては、−O−、−S−、−SO2−、−NH−、−NHCO−、−COO−、置換又は非置換の2価の炭化水素基、−N(C65)−等が挙げられる。該置換基としては、Ar1における置換基と同様の基等が挙げられる。
Ar2及びAr3としては、非置換のベンゼン環を含む基が好ましく、特に非置換のベンゼン環を1〜5個含む基であることが好ましい。
なお、−Ar3−(N)b=のNに結合する基がAr2に結合して環を形成していてもよい。
In the above formula (2), Ar 2 indicates a group containing an aromatic ring independently of each other (except when all of a plurality of Ar 2 are biphenyl-4,4'-diyl), and Ar 3 are mutual. Independently indicates a group containing an aromatic ring.
Examples of the group containing an aromatic ring in Ar 2 and Ar 3 include an aromatic hydrocarbon group exemplified in Ar 1 and a group in which a plurality of the aromatic hydrocarbon groups are linked by a divalent linking group. .. The divalent linking group includes -O-, -S-, -SO 2- , -NH-, -NHCO-, -COO-, substituted or unsubstituted divalent hydrocarbon group, -N (C). 6 H 5 )-etc. Examples of the substituent include a group similar to the substituent in Ar 1.
As Ar 2 and Ar 3 , a group containing an unsubstituted benzene ring is preferable, and a group containing 1 to 5 unsubstituted benzene rings is particularly preferable.
The group bonded to N of −Ar 3 − (N) b = may be bonded to Ar 2 to form a ring.

aは1〜10の整数を示す。
bは相互に独立に1又は2を示す。
a represents an integer of 1 to 10.
b indicates 1 or 2 independently of each other.

本重合体1bとしては、放電容量及びレート特性にバランスよく優れ、特に放電容量の大きい蓄電デバイス等を容易に得ることができる等の点から、下記式(2')で表される構造を有する重合体が好ましい。 The polymer 1b has a structure represented by the following formula (2') in that it has an excellent balance of discharge capacity and rate characteristics, and in particular, a power storage device having a large discharge capacity can be easily obtained. Polymers are preferred.

Figure 2021181581
〔式(2')におけるAr2及びAr3は相互に独立に、前記式(2)中のAr2及びAr3と同義である。〕
Figure 2021181581
[Ar 2 and Ar 3 in the formula (2') are independently synonymous with Ar 2 and Ar 3 in the formula (2). ]

本重合体1bの具体例としては、例えば、以下の重合体が挙げられる。 Specific examples of the present polymer 1b include the following polymers.

Figure 2021181581
Figure 2021181581

本重合体2は、下記式(3)及び(R')で表される構造を有し、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)が2,000以上である。
このような本重合体2は、有機溶剤に対する溶解性に特に優れ、液相プロセスに適用される正極輸送材料等として極めて有用であり、また、該本重合体2を、電極材料、特に、活物質として用いた場合、サイクル特性に優れる蓄電デバイスを容易に得ることができる。
The present polymer 2 has a structure represented by the following formulas (3) and (R'), and has a polystyrene-equivalent weight average molecular weight (Mw) of 2,000 or more measured by gel permeation chromatography (GPC). Is.
Such a present polymer 2 is particularly excellent in solubility in an organic solvent and is extremely useful as a positive electrode transport material or the like applied to a liquid phase process, and the present polymer 2 can be used as an electrode material, particularly active. When used as a substance, a power storage device having excellent cycle characteristics can be easily obtained.

Figure 2021181581
Figure 2021181581

式(3)において、Ar1及びYは相互に独立に、前記Ar1及びYと同義である。
mは2以上の整数を示す。
In the formula (3), Ar 1 and Y are independently synonymous with the above Ar 1 and Y.
m represents an integer of 2 or more.

Figure 2021181581
Figure 2021181581

式(R')において、R1は水素原子、ハロ基、ニトロ基、水酸基、スルホ基、アミノ基又は有機基(但し、該有機基から、「=N−Ar−**」[Arは置換又は非置換の芳香族炭化水素基を示し、**は下記式(3)におけるNと結合する結合手を示す。]で表される構造を含む基を除く)を示し、式(R')は、前記式(3)のNにR1が結合することを示す。
1における有機基としては、R2における有機基と同様の基の他、置換若しくは非置換の芳香族炭化水素基等が挙げられ、R1としては、好ましくは水素原子又は置換若しくは非置換の芳香族炭化水素基であり、特に好ましくは水素原子である。
In the formula (R'), R 1 is a hydrogen atom, a halo group, a nitro group, a hydroxyl group, a sulfo group, an amino group or an organic group (however, from the organic group, "= N-Ar-**" [Ar is substituted. Alternatively, it indicates an unsubstituted aromatic hydrocarbon group, ** indicates a bond that binds to N in the following formula (3), excluding the group containing the structure represented by], and formula (R'). Indicates that R 1 is bound to N in the above formula (3).
Examples of the organic group in R 1 include a group similar to the organic group in R 2 and a substituted or unsubstituted aromatic hydrocarbon group, and R 1 is preferably a hydrogen atom or a substituted or unsubstituted group. It is an aromatic hydrocarbon group, particularly preferably a hydrogen atom.

本重合体2は、有機溶剤に対する溶解性により優れる重合体が得られる等の点から、下記式(3−1)で表される繰り返し単位及び前記式(6)で表される構造を有することが好ましい。なお、式(6)における「*」は、下記式(3−1)におけるAr1と結合する結合手を示す。
下記式(3−1)で表される繰り返し単位とは、R1−で表される本重合体2のコアと、前記式(6)で表される本重合体2の末端との間に位置する、単量体由来の繰り返し単位を意味する。
本重合体2は、下記式(3−1)で表される繰り返し単位間に、下記式(3−2)で表される構造単位を1個又は複数個有することが好ましい。
The present polymer 2 has a repeating unit represented by the following formula (3-1) and a structure represented by the above formula (6) from the viewpoint that a polymer having excellent solubility in an organic solvent can be obtained. Is preferable. In addition, "*" in the formula (6) indicates a bond that binds to Ar 1 in the following formula (3-1).
The repeating unit represented by the following formula (3-1) is between the core of the present polymer 2 represented by R 1 − and the end of the main polymer 2 represented by the above formula (6). It means a repeating unit derived from a monomer, which is located.
The present polymer 2 preferably has one or more structural units represented by the following formula (3-2) between the repeating units represented by the following formula (3-1).

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

式(3−1)〜(3−2)において、Ar1、Ar4、R2、Y及びZは相互に独立に、前記Ar1、Ar4、R2、Y及びZと同義である。また、式(3−2)において、*1は式(3−1)で表される繰り返し単位におけるN又は構造(3−2)におけるNと結合する結合手を示す。また、式(3−2)において、*2は式(3−1)で表される繰り返し単位におけるAr1の少なくとも一方又は構造(3−2)におけるAr1と結合する結合手を示す。 In the formulas (3-1) to (3-2), Ar 1 , Ar 4 , R 2 , Y and Z are independently synonymous with the above Ar 1 , Ar 4 , R 2 , Y and Z. Further, in the formula (3-2), * 1 indicates a bond that binds to N in the repeating unit represented by the formula (3-1) or N in the structure (3-2). Further, in the formula (3-2), * 2 indicates at least one of Ar 1 in the repeating unit represented by the formula (3-1) or a bond that binds to Ar 1 in the structure (3-2).

本重合体2は、前記式(3−1)で表される繰り返し単位を10〜100個含んでいることが好ましい。
本重合体2の具体例としては、例えば、前記群(a1)〜(a3)で表される重合体において、nが2以上の重合体の他、前記群(a1)〜(a3)で表される構造式において、繰り返し単位(括弧で括られている構造単位)と繰り返し単位との間に、前記式(3−2)で表される構造単位を1個又は複数個有する重合体が挙げられる。
The present polymer 2 preferably contains 10 to 100 repeating units represented by the above formula (3-1).
Specific examples of the present polymer 2 include, for example, in the polymers represented by the groups (a1) to (a3), in addition to the polymers having n or more, the polymers represented by the groups (a1) to (a3). In the structural formula to be used, a polymer having one or more structural units represented by the above formula (3-2) between the repeating unit (structural unit enclosed in parentheses) and the repeating unit can be mentioned. Be done.

本重合体AのMwは、該重合体Aを電極材料、特に、活物質として用いた場合、レート特性及びサイクル特性に優れる蓄電デバイスを容易に得ることができる等の点から、好ましくは2,000〜100,000、より好ましくは3,000〜100,000、特に好ましくは5,000〜60,000である。
Mwは、具体的には、下記実施例に記載の方法で測定される。
The Mw of the present polymer A is preferably 2. It is 000 to 100,000, more preferably 3,000 to 100,000, and particularly preferably 5,000 to 60,000.
Specifically, Mw is measured by the method described in the following Examples.

重合体の製造方法
本重合体Aの製造方法は特に制限されないが、所望の構造の重合体を容易に製造することができる等の点から、本重合体Aは、下記本方法I又は本方法IIにより製造することが好ましい。
Method for Producing Polymer The method for producing the present polymer A is not particularly limited, but the present polymer A is described in the following method I or the present method from the viewpoint that a polymer having a desired structure can be easily produced. It is preferably manufactured by II.

本方法Iは、塩基の存在下、下記式(7)で表される化合物(以下「化合物(7)」ともいう。他の化合物についても同様に表現する場合がある。)と下記式(8)で表される化合物とを反応させる工程を含む方法である。
この方法によれば、本重合体1a、本重合体2及び本重合体3のような分岐鎖構造を有する重合体、特にハイパーブランチポリマーを容易に製造することができる。
In the present method I, in the presence of a base, a compound represented by the following formula (7) (hereinafter, also referred to as “compound (7)”; other compounds may be similarly expressed) and the following formula (8). ) Is a method including a step of reacting with the compound represented by.
According to this method, a polymer having a branched chain structure such as the present polymer 1a, the present polymer 2 and the present polymer 3, and particularly a hyperbranched polymer can be easily produced.

Figure 2021181581
Figure 2021181581

式(7)において、Ar1及びYは相互に独立に前記式(1)中のAr1及びYと同義である。
Xは相互に独立にクロロ基、ブロモ基又はヨード基を示し、より容易に反応が進行する等の点から、ブロモ基が好ましい。
本方法Iで用いる化合物(7)は、1種でもよく、2種以上でもよい。
In the formula (7), Ar 1 and Y are independently synonymous with Ar 1 and Y in the formula (1).
X represents a chloro group, a bromo group or an iodine group independently of each other, and the bromo group is preferable from the viewpoint that the reaction proceeds more easily.
The compound (7) used in the method I may be one kind or two or more kinds.

化合物(7)は、市販品を用いてもよく、従来公知の方法で合成して得てもよい。
化合物(7)としては、下記化合物が好ましい。
The compound (7) may be obtained by using a commercially available product or by synthesizing it by a conventionally known method.
As the compound (7), the following compounds are preferable.

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

式(8)において、Ar4、R2及びZは相互に独立に前記式(6)中のAr4、R2及びZと同義である。
本方法Iで用いる化合物(8)は、1種でもよく、2種以上でもよい。
In the formula (8), Ar 4 , R 2 and Z are independently synonymous with Ar 4 , R 2 and Z in the formula (6).
The compound (8) used in the method I may be one kind or two or more kinds.

化合物(8)としては、下記化合物が好ましい。 As the compound (8), the following compounds are preferable.

Figure 2021181581
Figure 2021181581

化合物(8)は市販品を用いてもよく、従来公知の方法で合成して得てもよい。
該従来公知の方法としては、例えば、R2−Ar4−NH2(R2及びAr4は式(8)中のR2及びAr4と同義である。)で表される化合物と、R2−Ar4−X(R2及びAr4は式(8)中のR2及びAr4と同義であり、Xはハロ基である。)で表される化合物とを下記Pd(P(t−Bu)32等の触媒の存在下で反応させる方法等が挙げられる。
なお、本方法Iでは、化合物(8)の代わりに、その前駆体である前記R2−Ar4−NH2で表される化合物と、前記R2−Ar4−Xで表される化合物とを用いてもよい。
The compound (8) may be a commercially available product or may be synthesized by a conventionally known method.
Examples of the conventionally known method, for example, a compound represented by R 2 -Ar 4 -NH 2 (wherein R 2 and Ar 4 has the same meaning as R 2 and Ar 4 in the formula (8).), R 2 -Ar 4 -X (wherein R 2 and Ar 4 has the same meaning as R 2 and Ar 4 in the formula (8), X is a halo group.) and a compound represented by the following Pd (P (t -Bu) 3 ) A method of reacting in the presence of a catalyst such as 2) can be mentioned.
In the present method I, instead of the compound (8), the compound represented by the precursor R 2- Ar 4- NH 2 and the compound represented by the compound R 2- Ar 4- X are used. May be used.

前記塩基としては、特に制限されず、従来公知の塩基を用いることができるが、強塩基であることが好ましく、求核性の低い塩基であることがより好ましく、具体的には、金属アルコキシド、金属アミドが挙げられ、好ましくはナトリウムt−ブトキシド、カリウムt−ブトキシド等が挙げられる。
本方法Iで用いる塩基は、1種でもよく、2種以上でもよい。
The base is not particularly limited, and conventionally known bases can be used, but it is preferably a strong base, more preferably a base having low nucleophilicity, and specifically, a metal alkoxide. Examples thereof include metal amides, preferably sodium t-butoxide, potassium t-butoxide and the like.
The base used in the method I may be one type or two or more types.

本方法Iにおける反応の際には、触媒を用いることが好ましい。該触媒としては、従来公知の触媒を用いることができ、具体的には、下記化合物等が挙げられる。中でも、トリアルキルホスフィン類とパラジウム化合物からなる触媒が好ましい。
本方法Iで触媒を用いる場合、該触媒は、1種でもよく、2種以上でもよい。
It is preferable to use a catalyst for the reaction in the method I. As the catalyst, a conventionally known catalyst can be used, and specific examples thereof include the following compounds. Of these, a catalyst composed of trialkylphosphines and a palladium compound is preferable.
When a catalyst is used in the method I, the catalyst may be one kind or two or more kinds.

Figure 2021181581
[前記化合物における、「Ms」はメシラート基を示し、「Cy」はシクロへキシル基を示し、「L」は配位子を示し、「iprO」はイソプロポキシ基を示す。]
Figure 2021181581
[In the compound, "Ms" indicates a mesylate group, "Cy" indicates a cyclohexyl group, "L" indicates a ligand, and "iprO" indicates an isopropoxy group. ]

本方法Iにおける反応は、通常、溶媒の存在下で行われる。該溶媒としては、従来公知の溶媒を用いることができ、特に制限されないが、化合物(7)及び(8)を溶解可能な溶媒が好ましく、具体的には、THF(テトラヒドロフラン)などのエーテル系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒等が挙げられる。
本方法Iで溶媒を用いる場合、該溶媒は、1種でもよく、2種以上でもよい。
The reaction in Method I is usually carried out in the presence of a solvent. As the solvent, a conventionally known solvent can be used, and the solvent is not particularly limited, but a solvent capable of dissolving the compounds (7) and (8) is preferable, and specifically, an ether solvent such as THF (tetrahydrofuran) is used. , Aromatic hydrocarbon solvents such as benzene, toluene, xylene and the like.
When a solvent is used in the method I, the solvent may be one kind or two or more kinds.

本方法Iにおける反応条件も特に制限されないが、反応温度は、好ましくは25〜150℃であり、反応時間は、好ましくは0.5〜10時間である。また、本方法Iにおいて、化合物(7)と化合物(8)の使用割合(化合物(7):化合物(8))は、モル比で100:100〜90:100の範囲内にあることが好ましい。 The reaction conditions in the method I are not particularly limited, but the reaction temperature is preferably 25 to 150 ° C., and the reaction time is preferably 0.5 to 10 hours. Further, in the present method I, the ratio of compound (7) to compound (8) used (compound (7): compound (8)) is preferably in the range of 100: 100 to 90: 100 in terms of molar ratio. ..

本方法Iでは、以上の方法で得られた重合体中の「NH」と、R1X(Xはハロ基である。)などの前記R1を含む化合物とを反応させることで、前記構造(1)、(3)のNにR1が結合した重合体を得ることができる。前記R1Xで表される化合物としては、例えば、クロロベンゼン、ブロモナフタレン、ブロモアントラセン、ブロモ安息香酸等が挙げられる。 In the present method I, the structure is obtained by reacting "NH" in the polymer obtained by the above method with a compound containing the above R 1 such as R 1 X (X is a halo group). A polymer in which R 1 is bonded to N in (1) and (3) can be obtained. Examples of the compound represented by R 1 X include chlorobenzene, bromonaphthalene, bromoanthracene, bromobenzoic acid and the like.

本方法IIは、塩基の存在下、下記式(9)で表される化合物と下記式(10)で表される化合物とを反応させる工程を含む方法である。
この方法によれば、本重合体1bのようなネットワークポリマーを容易に製造することができる。
The method II is a method including a step of reacting a compound represented by the following formula (9) with a compound represented by the following formula (10) in the presence of a base.
According to this method, a network polymer such as the present polymer 1b can be easily produced.

Figure 2021181581
Figure 2021181581

式(9)において、Ar5は芳香環を含む基を示す。Ar5における芳香環を含む基の例示、並びに好ましい基は、Ar2及びAr3と同様である。
化合物(9)としては、得られる重合体を電極に用いた場合、放電容量及びレート特性にバランスよく優れ、特に放電容量の大きい蓄電デバイス等を容易に得ることができる等の点から、芳香環のパラ位にアミノ基が結合した化合物が好ましい。
In formula (9), Ar 5 represents a group containing an aromatic ring. Examples of groups containing an aromatic ring in Ar 5 , as well as preferred groups are the same as in Ar 2 and Ar 3 .
As the compound (9), when the obtained polymer is used for the electrode, the aromatic ring is excellent in a good balance between the discharge capacity and the rate characteristics, and in particular, a power storage device having a large discharge capacity can be easily obtained. A compound in which an amino group is bonded to the para position of is preferable.

本方法IIで用いる化合物(9)は、1種でもよく、2種以上でもよい。
化合物(9)は、市販品を用いてもよく、従来公知の方法で合成して得てもよい。
化合物(9)としては、下記化合物が好ましい。
The compound (9) used in the method II may be one kind or two or more kinds.
The compound (9) may be obtained by using a commercially available product or by synthesizing it by a conventionally known method.
As the compound (9), the following compounds are preferable.

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

式(10)において、Ar6は式(9)のAr5と同義であり、Xは相互に独立にハロ基を示す。
化合物(10)としては、得られる重合体を電極に用いた場合、放電容量及びレート特性にバランスよく優れ、特に放電容量の大きい蓄電デバイス等を容易に得ることができる等の点から、芳香環のパラ位にハロ基が結合した化合物が好ましい。
In formula (10), Ar 6 is synonymous with Ar 5 in formula (9), and X represents a halo group independently of each other.
As the compound (10), when the obtained polymer is used for the electrode, the aromatic ring is excellent in a good balance between the discharge capacity and the rate characteristics, and in particular, a power storage device having a large discharge capacity can be easily obtained. A compound in which a halo group is bonded to the para position of is preferable.

本方法IIで用いる化合物(10)は、1種でもよく、2種以上でもよい。
化合物(10)は、市販品を用いてもよく、従来公知の方法で合成して得てもよい。
化合物(10)としては、下記化合物が好ましい。
The compound (10) used in the method II may be one kind or two or more kinds.
The compound (10) may be obtained by using a commercially available product or by synthesizing it by a conventionally known method.
As the compound (10), the following compounds are preferable.

Figure 2021181581
Figure 2021181581

本方法IIで用いる塩基としては、特に制限されず、従来公知の塩基を用いることができるが、本方法Iで用いる塩基と同様の塩基が挙げられる。
本方法IIで用いる塩基は、1種でもよく、2種以上でもよい。
The base used in the method II is not particularly limited, and conventionally known bases can be used, and examples thereof include the same bases as the base used in the method I.
The base used in this method II may be one kind or two or more kinds.

本方法IIにおける反応の際には、本方法Iと同様の触媒及び溶媒を用いることが好ましい。なお、これらの触媒及び溶媒は、それぞれ、1種でもよく、2種以上でもよい。
本方法IIにおける反応条件も、本方法Iと同様の条件が挙げられる。また、本方法IIにおいて、化合物(9)と化合物(10)の使用割合(化合物(9):化合物(10))は、モル比で50:90〜50:110の範囲内にあることが好ましい。
In the reaction in the method II, it is preferable to use the same catalyst and solvent as in the method I. The catalyst and the solvent may be one kind or two or more kinds, respectively.
As the reaction conditions in the method II, the same conditions as those in the method I can be mentioned. Further, in the present method II, the ratio of compound (9) to compound (10) used (compound (9): compound (10)) is preferably in the range of 50:90 to 50:110 in terms of molar ratio. ..

本重合体Aは、蓄電デバイス、有機EL、有機トランジスタ、太陽電池等の正孔輸送材料として、好適に使用することができるが、本重合体の効果がより発揮される等の点から、蓄電デバイスにより好適に使用され、さらには、電極材料として好適に使用され、特に、正極材料、具体的には正極活物質として好適に使用される。 The present polymer A can be suitably used as a hole transport material for a power storage device, an organic EL, an organic transistor, a solar cell, etc. It is preferably used by a device, further preferably as an electrode material, and particularly preferably as a positive electrode material, specifically, a positive electrode active material.

電極
本発明の一実施形態に係る電極(以下「本電極」ともいう。)は、1種又は2種以上の本重合体Aを含有すれば特に制限されないが、集電体上に本重合体A及びバインダー等を含有する活物質層を有する電極が好ましい。
本電極に用いられる本重合体Aは、そのまま電極材料として使用することもできるが、活性炭や無機物質等と複合化した後、電極材料として使用することもできる。また、本重合体Aを、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リン酸鉄リチウム等の公知の正極活物質と共に電極材料として使用することもできる。
なお、以下では、本重合体A、本重合体Aと活性炭等と複合化したもの、又は本重合体Aと公知の正極活物質を混合したものを、本活物質ともいう。
Electrode The electrode according to the embodiment of the present invention (hereinafter, also referred to as “the present electrode”) is not particularly limited as long as it contains one or more kinds of the present polymer A, but the present polymer is placed on the current collector. An electrode having an active material layer containing A and a binder and the like is preferable.
The present polymer A used for the present electrode can be used as it is as an electrode material, but it can also be used as an electrode material after being composited with activated carbon, an inorganic substance, or the like. Further, the present polymer A can also be used as an electrode material together with a known positive electrode active material such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium iron phosphate.
In the following, the present polymer A, a composite of the present polymer A and activated carbon, or a mixture of the present polymer A and a known positive electrode active material is also referred to as a main active material.

前記活物質層は、例えば、本活物質及びバインダー等を含有するスラリーを調製し、これを集電体上に塗布し、乾燥させることにより製造してもよいし、本活物質及びバインダー等を含む混合物から、予めフィルムを形成し、該フィルムを(熱)プレスや接着剤により、集電体上に配置することにより製造してもよい。 The active material layer may be produced, for example, by preparing a slurry containing the main active material and a binder, applying the slurry onto a current collector, and drying the slurry, or using the main active material and the binder and the like. It may be produced by forming a film from the containing mixture in advance and arranging the film on the current collector by a (heat) press or an adhesive.

本電極は、本活物質を正極活物質として含む、非水電解質二次電池の正極であることが好ましく、本重合体Aを活性炭と複合化させた正極活物質を含む、リチウムイオンキャパシタ又は電気二重層キャパシタの正極であることも好ましい。 This electrode is preferably the positive electrode of a non-aqueous electrolyte secondary battery containing the main active material as the positive electrode active material, and contains a positive electrode active material in which the present polymer A is composited with activated carbon, a lithium ion capacitor or electricity. It is also preferable that it is the positive electrode of the double layer capacitor.

本電極における本活物質の含有量は、特に制限されないが、得られる活物質層100質量%に対し、好ましくは10〜90質量%である。
なお、本発明の一実施形態の電極に含まれる本活物質は、1種でもよく、2種以上でもよい。
The content of the main active material in the present electrode is not particularly limited, but is preferably 10 to 90% by mass with respect to 100% by mass of the obtained active material layer.
The active material contained in the electrode of one embodiment of the present invention may be one kind or two or more kinds.

前記集電体の材質としては、アルミニウム、ステンレス、銅、ニッケルなどが挙げられるが、本発明の一実施形態に係る電極が正極である場合、アルミニウム、ステンレス等が好ましい。集電体の厚みは、通常10〜50μmである。 Examples of the material of the current collector include aluminum, stainless steel, copper, nickel and the like, but when the electrode according to the embodiment of the present invention is a positive electrode, aluminum, stainless steel and the like are preferable. The thickness of the current collector is usually 10 to 50 μm.

前記バインダーとしては、例えば、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)等のゴム系バインダー;ポリ四フッ化エチレン(PTFE)、ポリフッ化ビニリデンなどのフッ素系樹脂;ポリプロピレン、ポリエチレンの他、特開2009−246137号公報等に開示されているフッ素変性(メタ)アクリル系バインダーを挙げることができる。
前記バインダーは、1種でもよく、2種以上でもよい。
Examples of the binder include rubber-based binders such as styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR); fluororesins such as polyvinylidene fluoride (PTFE) and polyvinylidene fluoride; polypropylene and polyethylene. In addition, a fluorine-modified (meth) acrylic binder disclosed in Japanese Patent Application Laid-Open No. 2009-246137 can be mentioned.
The binder may be one kind or two or more kinds.

前記バインダーの含有量は、特に制限されないが、得られる活物質層100質量%に対し、好ましくは1〜50質量%、より好ましくは5〜30質量%である。 The content of the binder is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, based on 100% by mass of the obtained active material layer.

前記活物質層には、本発明の効果を損なわない範囲で、更に、カーボンブラック(アセチレンブラック、ケッチェンブラック等)、黒鉛、気相成長炭素繊維(VGCF)、高表面積活性炭(MAXSORB)、カーボンナノチューブ(SWNT、MWNT等)、金属粉末等の導電剤;カルボキシルメチルセルロース、そのNa塩若しくはアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ又はカゼイン等の増粘剤などの任意成分を含有してもよい。
前記任意成分はそれぞれ、1種でもよく、2種以上でもよい。
In the active material layer, carbon black (acetylene black, ketjen black, etc.), graphite, vapor-grown carbon fiber (VGCF), high-wall surface activated carbon (MAXSORB), carbon, as long as the effect of the present invention is not impaired. Conductive agents such as nanotubes (SWNT, MWNT, etc.), metal powder, etc .; increase in carboxylmethylcellulose, its Na salt or ammonium salt, methylcellulose, hydroxymethylcellulose, ethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch or casein, etc. It may contain arbitrary components such as a slime.
Each of the optional components may be one kind or two or more kinds.

前記活物質層の厚さは、特に限定されないが、通常5〜500μm、好ましくは10〜200μm、特に好ましくは10〜100μmである。 The thickness of the active material layer is not particularly limited, but is usually 5 to 500 μm, preferably 10 to 200 μm, and particularly preferably 10 to 100 μm.

蓄電デバイス
本発明の一実施形態に係る蓄電デバイス(以下「本蓄電デバイス」ともいう。)は、本電極を正極として備えてなる。蓄電デバイスとしては、例えば、非水電解質二次電池、電気二重層キャパシタ、リチウムイオンキャパシタを挙げることができる。本蓄電デバイスは、通常、正極として用いられる本電極の他、少なくとも負極及び電解質を備える。
正極として用いられる本発明の一実施形態に係る電極の構成及び製造方法は、前記「電極」において説明した通りである。
Power storage device The power storage device according to an embodiment of the present invention (hereinafter, also referred to as “the power storage device”) includes the present electrode as a positive electrode. Examples of the power storage device include a non-aqueous electrolyte secondary battery, an electric double layer capacitor, and a lithium ion capacitor. The storage device includes at least a negative electrode and an electrolyte in addition to the main electrode normally used as a positive electrode.
The configuration and manufacturing method of the electrode according to the embodiment of the present invention used as the positive electrode are as described in the above-mentioned "electrode".

前記負極の基本的な構成及び製造方法は、従来公知の構成及び製造方法であればよく、活物質の種類を除いて、前記「電極」において説明したものと同様であってもよい。
用いられる負極活物質としては、金属リチウム、リチウムをドープした炭素系材料(黒鉛、活性炭等)、リチウム合金などが挙げられる。これらの負極活物質は、1種又は2種以上を使用することができる。
The basic configuration and manufacturing method of the negative electrode may be any conventionally known configuration and manufacturing method, and may be the same as that described in the above-mentioned "electrode" except for the type of the active material.
Examples of the negative electrode active material used include metallic lithium, lithium-doped carbon-based materials (graphite, activated carbon, etc.), lithium alloys, and the like. As these negative electrode active materials, one kind or two or more kinds can be used.

前記電解質は、通常、溶媒中に溶解された電解液の状態で用いられる。前記電解質としては、特に制限されないが、リチウムイオンを生成することのできるものが好ましく、具体的には、LiClO4、LiAsF6、LiBF4、LiPF6、LiN(C25SO22、LiN(CF3SO22、LiN(FSO22などが挙げられる。これらの電解質は、1種又は2種以上を使用することができる。 The electrolyte is usually used in the form of an electrolytic solution dissolved in a solvent. The electrolyte is not particularly limited, but one capable of generating lithium ions is preferable, and specifically, LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 2 F 5 SO 2) 2, Examples thereof include LiN (CF 3 SO 2 ) 2 and LiN (FSO 2 ) 2. One type or two or more types of these electrolytes can be used.

電解質を溶解させるための溶媒としては、非プロトン性の有機溶媒が好ましく、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、1−フルオロエチレンカーボネート、1−(トリフルオロメチル)エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、ジグライム、テトラグライム、ジオキソラン、塩化メチレン、スルホラン等を挙げることができる。これらの溶媒は、1種又は2種以上を使用することができる。 The solvent for dissolving the electrolyte is preferably an aprotic organic solvent, specifically, ethylene carbonate, propylene carbonate, butylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, dimethyl. Examples thereof include carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, diglime, tetraglime, dioxolane, methylene chloride, sulfolane and the like. One kind or two or more kinds of these solvents can be used.

電解質は、前記のように通常は液状に調製されて使用されるが、漏液や活物質の溶出を防止する目的でゲル状又は固体状のものを使用してもよい。 As described above, the electrolyte is usually prepared and used in a liquid state, but a gel-like or solid-like electrolyte may be used for the purpose of preventing leakage or elution of the active material.

電解質が電解液の状態で用いられる場合、正極と負極の間には、通常、正極と負極が物理的に接触しないようにするためにセパレータが設けられる。前記セパレータとしては従来公知のものを使用すればよく、例えば、セルロースレーヨン、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリイミド等を原料とする不織布又は多孔質フィルムの他、紙、ガラスフィルター等が挙げられる。 When the electrolyte is used in the state of an electrolytic solution, a separator is usually provided between the positive electrode and the negative electrode to prevent physical contact between the positive electrode and the negative electrode. As the separator, a conventionally known separator may be used, and examples thereof include non-woven fabrics or porous films made from cellulose rayon, polyethylene, polypropylene, polyamide, polyester, polyimide and the like, as well as paper and glass filters.

以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、下記実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
100mlナスフラスコに、ビス(4−ブロモフェニル)アミン(BPA)を3.27g、ジフェニルアミン(DPA)を1.69g、ナトリウムt−ブトキシド(NaOtBu)を2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を5mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA−1を3.3g得た。1H−NMR(CDCl3)において6.9ppm(芳香族)にのみピークが存在した。GPC(装置名:HCL−8320GPC(東ソー(株)製)、カラム:TSKgelsuperHM−H(東ソー(株)製)、移動相:THF)により測定したポリスチレン換算のMwは10,000であった。また、MALDI−TOFMS(マトリックス支援レーザー脱離イオン化飛行時間型質量分析計)による分析を行った結果、下記式(A)〜(D)においてR2が水素原子である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3−1)〜(3−2)及び(6)で表される構造を有することが確認された。
[Example 1]
In a 100 ml eggplant flask, 3.27 g of bis (4-bromophenyl) amine (BPA), 1.69 g of diphenylamine (DPA), 2.88 g of sodium t-butoxide (NaOtBu), and bis (tri-tBu phosphine) as a catalyst. ) 5 mg of palladium (0) and 10 ml of toluene were added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 3.3 g of polymer A-1. 1 In 1 H-NMR (CDCl 3 ), a peak was present only at 6.9 ppm (aromatic). The polystyrene-equivalent Mw measured by GPC (device name: HCL-8320GPC (manufactured by Tosoh Corporation), column: TSKgelsuperHM-H (manufactured by Tosoh Corporation), mobile phase: THF) was 10,000. Further, as a result of analysis by MALDI-TOFMS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometer), a mass spectrum showing the existence of a structure in which R 2 is a hydrogen atom in the following formulas (A) to (D). Was obtained, and it was confirmed that the structure represented by the above formulas (1), (3), (3-1) to (3-2) and (6) was obtained.

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

Figure 2021181581
Figure 2021181581

[実施例2]
100mlナスフラスコに、BPAを3.27g、p,p'−ジトリルアミン(MPA)を1.97g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA−2を3.6g得た。1H−NMR(CDCl3)において6.9ppm(芳香族)及び2.5ppm(メチル基)にピークが存在した。前記と同様の条件で測定したポリスチレン換算のMwは9,000であった。また、MALDI−TOFMSによる分析を行った結果、前記式(A)〜(D)においてR2がメチル基である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3−1)〜(3−2)及び(6)で表される構造を有することが確認された。
[Example 2]
In a 100 ml eggplant flask, 3.27 g of BPA, 1.97 g of p, p'-ditrilamine (MPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst and 10 ml of toluene. In addition, it was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 3.6 g of polymer A-2. Peaks were present at 6.9 ppm (aromatic) and 2.5 ppm (methyl group) in 1 H-NMR (CDCl 3). The polystyrene-equivalent Mw measured under the same conditions as described above was 9,000. Further, as a result of analysis by MALDI-TOFMS, mass spectra showing the existence of a structure in which R 2 is a methyl group in the above formulas (A) to (D) were obtained, and the above formulas (1) and (3), It was confirmed that it had the structures represented by (3-1) to (3-2) and (6).

[実施例3]
100mlナスフラスコに、BPAを3.27g、ビス(メトキシフェニル)アミン(MOPA)を2.29g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びTHFを10ml加え、70℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA−3を3.7g得た。1H−NMR(CDCl3)において6.7ppm及び6.9ppm(芳香族)及び3.8ppm(メトキシ基)にピークが存在した。前記と同様の条件で測定したポリスチレン換算のMwは11,000であった。また、MALDI−TOFMSによる分析を行った結果、前記式(A)〜(D)においてR2がメトキシ基である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3−1)〜(3−2)及び(6)で表される構造を有することが確認された。
[Example 3]
In a 100 ml eggplant flask, 3.27 g of BPA, 2.29 g of bis (methoxyphenyl) amine (MOPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst and 10 ml of THF. In addition, it was heated at 70 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 3.7 g of polymer A-3. Peaks were present at 1 H-NMR (CDCl 3 ) at 6.7 ppm, 6.9 ppm (aromatic) and 3.8 ppm (methoxy group). The polystyrene-equivalent Mw measured under the same conditions as described above was 11,000. Further, as a result of analysis by MALDI-TOFMS, mass spectra showing the existence of a structure in which R 2 is a methoxy group in the above formulas (A) to (D) were obtained, and the above formulas (1) and (3), It was confirmed that it had the structures represented by (3-1) to (3-2) and (6).

[実施例4]
100mlナスフラスコに、BPAを3.27g、ビス(4−フルオロフェニル)アミン(FPA)を2.05g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びTHFを10ml加え、70℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーA−4を3.7g得た。1H−NMR(CDCl3)において6.7ppm及び6.9ppm(芳香族)にピークが存在した。前記と同様の条件で測定したポリスチレン換算のMwは8,000であった。また、MALDI−TOFMSによる分析を行った結果、前記式(A)〜(D)においてR2がフルオロ基である構造の存在を示すマススペクトルが得られ、前記式(1)、(3)、(3−1)〜(3−2)及び(6)で表される構造を有することが確認された。
[Example 4]
In a 100 ml eggplant flask, 3.27 g of BPA, 2.05 g of bis (4-fluorophenyl) amine (FPA), 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst and THF. Was added, and the mixture was heated at 70 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 3.7 g of polymer A-4. Peaks were present at 6.7 ppm and 6.9 ppm (aromatic) in 1 H-NMR (CDCl 3). The polystyrene-equivalent Mw measured under the same conditions as described above was 8,000. Further, as a result of analysis by MALDI-TOFMS, mass spectra showing the existence of a structure in which R 2 is a fluoro group in the above formulas (A) to (D) were obtained, and the above formulas (1) and (3), It was confirmed that it had the structures represented by (3-1) to (3-2) and (6).

[実施例5]
(構造(2)を有する重合体の製造)
100mlナスフラスコに、パラフェニレンジアミン(PDA)を0.54g、1,4−ジブロモベンゼンを2.35g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB−1を1.3g得た。FT−IRでN−H及びC−Brの結合由来の振動が無いことを確認した。
[Example 5]
(Production of Polymer with Structure (2))
In a 100 ml eggplant flask, 0.54 g of para-phenylenediamine (PDA), 2.35 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst and toluene. Was added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 1.3 g of polymer B-1. It was confirmed by FT-IR that there was no vibration derived from the bond between NH and C-Br.

[実施例6]
(構造(2)を有する重合体の製造)
100mlナスフラスコに、メタフェニレンジアミン(MDA)を0.54g、1,3-ジブロモベンゼンを2.35g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB−2を1.3g得た。FT−IRでN−H及びC−Brの結合由来の振動が無いことを確認した。
[Example 6]
(Production of Polymer with Structure (2))
In a 100 ml eggplant flask, 0.54 g of meta-phenylenediamine (MDA), 2.35 g of 1,3-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst and toluene. Was added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 1.3 g of polymer B-2. It was confirmed by FT-IR that there was no vibration derived from the bond between NH and C-Br.

[実施例7]
(構造(2)を有する重合体の製造)
100mlナスフラスコに、PDAを0.54g、4,4’−ジブロモビフェニルを1.56g、1,4−ジブロモベンゼンを1.2g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB−3を1.8g得た。FT−IRでN−H及びC−Brの結合由来の振動が無いことを確認した。
[Example 7]
(Production of Polymer with Structure (2))
In a 100 ml eggplant flask, 0.54 g of PDA, 1.56 g of 4,4'-dibromobiphenyl, 1.2 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, and bis (tri-tBu phosphine) palladium as a catalyst. 51 mg of (0) and 10 ml of toluene were added, and the mixture was heated at 100 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 1.8 g of polymer B-3. It was confirmed by FT-IR that there was no vibration derived from the bond between NH and C-Br.

[実施例8]
(構造(2)を有する重合体の製造)
100mlナスフラスコに、2,4−ジブロモアニリンを2.48g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーB−4を0.88g得た。FT−IRでN−H及びC−Brの結合由来の振動が無いことを確認した。
[Example 8]
(Production of Polymer with Structure (2))
To a 100 ml eggplant flask, add 2.48 g of 2,4-dibromoaniline, 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst and 10 ml of toluene, and heat at 100 ° C. for 6 hours. bottom. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 0.88 g of polymer B-4. It was confirmed by FT-IR that there was no vibration derived from the bond between NH and C-Br.

[比較例1]
(直鎖型のポリアリーレンアミンの製造)
100mlナスフラスコに、パラメトキシアニリンを1.23g、1,4−ジブロモベンゼンを1.2g、NaOtBuを2.88g、触媒としてビス(トリ−tBuホスフィン)パラジウム(0)を51mg及びトルエンを10ml加え、100℃で6時間加温した。内容物をメタノールに投入し、得られた白色粉末をメタノール及びアセトンで洗浄し、ポリマーCを1.9g得た。FT−IRでN−H及びC−Brの結合由来の振動が無いことを確認した。
[Comparative Example 1]
(Manufacturing of linear polyarylene amine)
To a 100 ml eggplant flask, add 1.23 g of paramethoxyaniline, 1.2 g of 1,4-dibromobenzene, 2.88 g of NaOtBu, 51 mg of bis (tri-tBu phosphine) palladium (0) as a catalyst, and 10 ml of toluene. , 100 ° C. for 6 hours. The contents were put into methanol, and the obtained white powder was washed with methanol and acetone to obtain 1.9 g of polymer C. It was confirmed by FT-IR that there was no vibration derived from the bond between NH and C-Br.

<有機溶剤への溶解性>
ポリマーA−1〜A−4及びポリマーCの収率及び各種溶媒に対する25℃での溶解性を確認した。その結果を表1に示す。表1において、◎は溶媒100gに対してポリマーが99g以上溶解したことを意味し、△は溶媒100gに対してポリマーが20〜80g溶解したことを意味し、×は溶媒100gに対してポリマーが20g未満しか溶解しなかったことを意味する。
<Solubility in organic solvent>
The yields of polymers A-1 to A-4 and polymer C and their solubility in various solvents were confirmed at 25 ° C. The results are shown in Table 1. In Table 1, ⊚ means that 99 g or more of the polymer was dissolved in 100 g of the solvent, Δ means that 20 to 80 g of the polymer was dissolved in 100 g of the solvent, and × means that the polymer was dissolved in 100 g of the solvent. It means that less than 20 g was dissolved.

<サイクル特性>
ポリマーA−1〜A−4及びポリマーCを用いて以下のようにしてサイクル特性を評価した。
ポリエチレン製容器に、活物質として各ポリマーを0.4g、導電剤としてアセチレンブラックを0.5g、ポリフッ化ビニリデン(PVDF)のNMP溶液を固形分換算で0.1g及びNMPを2g投入し、混合撹拌した。得られた黒色スラリーを、アプリケーターを用いてアルミニウム集電体上に塗工した。その際、ドクターブレードのギャップは150μmとした。その後、100℃のホットプレート上で10分乾燥し、真空乾燥機中100℃で3時間乾燥し、電極シートを得た。得られた電極シートを円形にカットし、電池の正極として用いた。CR2032型コインセルに、得られた正極、GA−100(ガラス製セパレータ)及びリチウム箔(負極)をセットし、LiPF6の1Mエチレンカーボネート/ジエチルカーボネート=30/70(体積比)溶液(電解液)を加え、かしめ機を用いて封止しコインセルを作製した。
作製したコインセルについて、充放電試験機として東洋システム(株)製TOSCAT−3100を用い、室温下、0.1Cの電流値で、表1に記載のカットオフ電位で充放電試験を行った。50サイクル充放電した後の容量維持率(1サイクル目の放電容量に対する50サイクル目の放電容量の割合)を表1に示す。
<Cycle characteristics>
Cycle characteristics were evaluated using Polymers A-1 to A-4 and Polymer C as follows.
In a polyethylene container, 0.4 g of each polymer as an active material, 0.5 g of acetylene black as a conductive agent, 0.1 g of an NMP solution of polyvinylidene fluoride (PVDF) in terms of solid content and 2 g of NMP are put and mixed. It was stirred. The obtained black slurry was applied onto an aluminum current collector using an applicator. At that time, the gap of the doctor blade was set to 150 μm. Then, it was dried on a hot plate at 100 ° C. for 10 minutes, and dried in a vacuum dryer at 100 ° C. for 3 hours to obtain an electrode sheet. The obtained electrode sheet was cut into a circle and used as a positive electrode of a battery. The obtained positive electrode, GA-100 (glass separator) and lithium foil (negative electrode) are set in a CR2032 type coin cell, and LiPF 6 1M ethylene carbonate / diethyl carbonate = 30/70 (volume ratio) solution (electrolyte solution). Was added and sealed using a caulking machine to prepare a coin cell.
The produced coin cell was subjected to a charge / discharge test using a TOSCAT-3100 manufactured by Toyo System Co., Ltd. as a charge / discharge tester at a current value of 0.1 C at room temperature and at the cutoff potential shown in Table 1. Table 1 shows the capacity retention rate (ratio of the discharge capacity at the 50th cycle to the discharge capacity at the first cycle) after 50 cycles of charging / discharging.

Figure 2021181581
Figure 2021181581

<放電容量及びレート特性>
ポリマーB−1〜B−4及びポリマーCを用いて以下のようにして放電容量及びレート特性を評価した。
ポリマーA−1〜A−4の代わりに、ポリマーB−1〜B−4を用いた以外は前記<サイクル特性>と同様にして、コインセルを作製した。
作製したコインセルについて、充放電試験機として東洋システム(株)製TOSCAT−3500Uを用い、室温下、0.1C及び10Cの電流値で、表2に記載のカットオフ電位で充放電試験を行った。0.1Cでの放電容量と、レート特性(10Cでの放電容量×100/0.1Cでの放電容量)を表2に示す。
<Discharge capacity and rate characteristics>
Using polymers B-1 to B-4 and polymer C, the discharge capacity and rate characteristics were evaluated as follows.
Coin cells were produced in the same manner as in the above <cycle characteristics> except that polymers B-1 to B-4 were used instead of polymers A-1 to A-4.
The produced coin cell was charged / discharged using a TOSCAT-3500U manufactured by Toyo System Co., Ltd. as a charge / discharge tester at room temperature at current values of 0.1 C and 10 C at the cutoff potential shown in Table 2. .. Table 2 shows the discharge capacity at 0.1 C and the rate characteristics (discharge capacity at 10 C × discharge capacity at 100 / 0.1 C).

Figure 2021181581
Figure 2021181581

[実施例9]
ポリマーA−1〜A−4の代わりに、ポリマーA−3を0.08gとリン酸鉄リチウム(LiFePO4)を0.32g用いたこと以外は前記<サイクル特性>と同様にして、コインセルを作製した。作製したコインセルについて、前記<サイクル特性>並びに<放電容量及びレート特性>と同様にして、サイクル特性及び放電容量を評価した。この際、カットオフ電位は3.8〜2.8Vとした。その結果、50サイクル後容量維持率は99%、5000サイクル後容量維持率は84%であり、放電容量は150mAh/gであった。
[Example 9]
A coin cell was prepared in the same manner as in the above <cycle characteristics> except that 0.08 g of polymer A-3 and 0.32 g of lithium iron phosphate (LiFePO 4 ) were used instead of polymers A-1 to A-4. Made. The cycle characteristics and the discharge capacity of the produced coin cell were evaluated in the same manner as in the above <cycle characteristics> and <discharge capacity and rate characteristics>. At this time, the cutoff potential was set to 3.8 to 2.8 V. As a result, the capacity retention rate after 50 cycles was 99%, the capacity retention rate after 5000 cycles was 84%, and the discharge capacity was 150 mAh / g.

[比較例2]
ポリマーA−1〜A−4の代わりに、リン酸鉄リチウム(LiFePO4)を0.4g用いたこと以外は前記<サイクル特性>と同様にして、コインセルを作製した。作製したコインセルについて、前記<サイクル特性>並びに<放電容量及びレート特性>と同様にして、サイクル特性及び放電容量を評価した。この際、カットオフ電位は3.8〜2.8Vとした。その結果、50サイクル後容量維持率は95%、5000サイクル後容量維持率は34%であり、放電容量は150mAh/gであった。
[Comparative Example 2]
A coin cell was produced in the same manner as in the above <cycle characteristics> except that 0.4 g of lithium iron phosphate (LiFePO 4 ) was used instead of the polymers A-1 to A-4. The cycle characteristics and the discharge capacity of the produced coin cell were evaluated in the same manner as in the above <cycle characteristics> and <discharge capacity and rate characteristics>. At this time, the cutoff potential was set to 3.8 to 2.8 V. As a result, the capacity retention rate after 50 cycles was 95%, the capacity retention rate after 5000 cycles was 34%, and the discharge capacity was 150 mAh / g.

本重合体は、電極活物質、電極バインダー等の蓄電デバイスの電極材料の他、有機EL、有機トランジスタ、太陽電池等に用いられる正孔輸送材料等として極めて有用であると考えられる。
This polymer is considered to be extremely useful as an electrode material for a power storage device such as an electrode active material and an electrode binder, as well as a hole transport material used for an organic EL, an organic transistor, a solar cell, and the like.

Claims (6)

下記式(2)で表される構造の少なくとも1つを有する重合体:
Figure 2021181581
式(2)において、Ar2は相互に独立に芳香環を含む基を示し、但し、複数のAr2の全てがビフェニル−4,4'−ジイルである場合を除き、aは1〜10の整数を示し、Ar3は相互に独立に芳香環を含む基を示し、bは相互に独立に1又は2を示し、−Ar3−(N)b=のNに結合する基がAr2に結合して環を形成していてもよい。
Polymer having at least one of the structures represented by the following formula (2):
Figure 2021181581
In formula (2), Ar 2 represents a group containing an aromatic ring independently of each other, except that all of the plurality of Ar 2 are biphenyl-4,4'-diyl, and a is 1 to 10. Ar 3 indicates an integer, Ar 3 indicates a group containing an aromatic ring independently of each other, b indicates 1 or 2 independently of each other, and the group bonded to N of −Ar 3 − (N) b = becomes Ar 2 . They may be combined to form a ring.
ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が2,000〜100,000である、請求項1に記載の重合体。 The polymer according to claim 1, wherein the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography is 2,000 to 100,000. 電極材料用である、請求項1または2に記載の重合体。 The polymer according to claim 1 or 2, which is for an electrode material. 請求項1または2に記載の重合体を含有する電極。 An electrode containing the polymer according to claim 1 or 2. 請求項4に記載の電極を正極として備える蓄電デバイス。 A power storage device including the electrode according to claim 4 as a positive electrode. 塩基の存在下、下記式(9)で表される化合物と下記式(10)で表される化合物とを反応させる工程を含む、重合体の製造方法:
Figure 2021181581
式(9)において、Ar5は芳香環を含む基を示し;
Figure 2021181581
式(10)において、Ar6は芳香環を含む基を示し、Xは相互に独立にハロ基を示す。
A method for producing a polymer, which comprises a step of reacting a compound represented by the following formula (9) with a compound represented by the following formula (10) in the presence of a base:
Figure 2021181581
In formula (9), Ar 5 represents a group containing an aromatic ring;
Figure 2021181581
In formula (10), Ar 6 represents a group containing an aromatic ring, and X represents a halo group independently of each other.
JP2021129005A 2016-10-24 2021-08-05 Polymer, electrode, electricity storage device, and method for producing polymer Active JP7173241B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016208057 2016-10-24
JP2016208057 2016-10-24
JP2018547538A JP6969570B2 (en) 2016-10-24 2017-10-11 Polymers, electrodes, power storage devices and methods for producing polymers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018547538A Division JP6969570B2 (en) 2016-10-24 2017-10-11 Polymers, electrodes, power storage devices and methods for producing polymers

Publications (2)

Publication Number Publication Date
JP2021181581A true JP2021181581A (en) 2021-11-25
JP7173241B2 JP7173241B2 (en) 2022-11-16

Family

ID=62023379

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018547538A Active JP6969570B2 (en) 2016-10-24 2017-10-11 Polymers, electrodes, power storage devices and methods for producing polymers
JP2021129005A Active JP7173241B2 (en) 2016-10-24 2021-08-05 Polymer, electrode, electricity storage device, and method for producing polymer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018547538A Active JP6969570B2 (en) 2016-10-24 2017-10-11 Polymers, electrodes, power storage devices and methods for producing polymers

Country Status (3)

Country Link
JP (2) JP6969570B2 (en)
CN (1) CN109863192A (en)
WO (1) WO2018079262A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975307A4 (en) * 2019-05-31 2024-01-17 Gs Yuasa Int Ltd Lead storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323635A (en) * 1992-05-21 1993-12-07 Konica Corp Electrophotographic sensitive body
JP2004043528A (en) * 2002-07-09 2004-02-12 Nec Corp Polymer and method for producing the same
JP2005200618A (en) * 2004-01-19 2005-07-28 Sumitomo Seika Chem Co Ltd PREPARATION PROCESS OF POLY(p-ANILINE)
JP2007214364A (en) * 2006-02-09 2007-08-23 Bando Chem Ind Ltd Organic electroluminescence element
JP2011102355A (en) * 2009-11-11 2011-05-26 Tokyo Univ Of Agriculture & Technology Inclusion complex

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212420A (en) * 1984-04-09 1985-10-24 Nissan Motor Co Ltd Polymer having structural unit of triphenylamine
JP3125044B2 (en) * 1997-05-02 2001-01-15 工業技術院長 Novel triphenylamine polymer, method for producing the same, and organic conductive material using the same
JP5490988B2 (en) * 1997-05-09 2014-05-14 東ソー株式会社 Polyaryleneamine and process for producing the same
JP3968833B2 (en) * 1997-09-10 2007-08-29 東ソー株式会社 Process for producing polyarylamine
JP3183280B2 (en) * 1999-03-19 2001-07-09 日本電気株式会社 Electrodes and batteries
JP2006222016A (en) * 2005-02-14 2006-08-24 Nec Tokin Corp Electrochemical cell
CN101088992A (en) * 2007-04-04 2007-12-19 南昌大学 Cyclic arylamine as hole transferring material with high vitrification point and its synthesis process
JP5696662B2 (en) * 2009-06-01 2015-04-08 日立化成株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5234520B2 (en) * 2009-06-18 2013-07-10 株式会社リコー Novel multi-branched copolymerized hole-transporting polymer and process for producing the same
JP5323635B2 (en) 2009-09-29 2013-10-23 日立建機株式会社 Boarding type rolling roller vehicle
WO2012015071A1 (en) * 2010-07-28 2012-02-02 住友化学株式会社 Polymer electrolyte, polymer electrolyte film and polyarylene compound
EP3032621A1 (en) * 2014-12-10 2016-06-15 VARTA Micro Innovation GmbH Electrode for an electrochemical element with an organic electrolyte, electrochemical elements comprising the electrode and polymeric material and its use as electrode active material or as electrode binder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323635A (en) * 1992-05-21 1993-12-07 Konica Corp Electrophotographic sensitive body
JP2004043528A (en) * 2002-07-09 2004-02-12 Nec Corp Polymer and method for producing the same
JP2005200618A (en) * 2004-01-19 2005-07-28 Sumitomo Seika Chem Co Ltd PREPARATION PROCESS OF POLY(p-ANILINE)
JP2007214364A (en) * 2006-02-09 2007-08-23 Bando Chem Ind Ltd Organic electroluminescence element
JP2011102355A (en) * 2009-11-11 2011-05-26 Tokyo Univ Of Agriculture & Technology Inclusion complex

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANBARA, TAKAKI ET AL.: "Preparation of Soluble Poly(iminoarylene)s by Palladium-Catalyzed Polycondensation of Aryl Dibromide", POLYMER JOURNAL, vol. 31, no. 2, JPN6022026227, 1999, pages 206 - 209, ISSN: 0004813224 *
SAKAMAKI, DAISUKE ET AL.: "A Polymacrocyclic Oligoarylamine with a Pseudobeltane Motif: Towards a Cylindrical Multispin System", ANGEW. CHEM. INT. ED., vol. 51, JPN6022026229, 2012, pages 12776 - 12781, XP072078924, ISSN: 0004813225, DOI: 10.1002/anie.201206831 *
SPETSERIS, NIKOLAOS ET AL.: "Linear and Hyperbranched m-Polyaniline: Synthesis of Polymers for the Study of Magnetism in Organic", MACROMOLECULES, vol. 31, JPN6022026230, 1998, pages 3158 - 3161, XP055605316, ISSN: 0004813226 *

Also Published As

Publication number Publication date
JP6969570B2 (en) 2021-11-24
JPWO2018079262A1 (en) 2019-09-12
CN109863192A (en) 2019-06-07
JP7173241B2 (en) 2022-11-16
WO2018079262A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
Peng et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes
JP6667178B2 (en) Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using the same
Xie et al. Synthesis and exploration of ladder‐structured large aromatic dianhydrides as organic cathodes for rechargeable lithium‐ion batteries
JP5948408B2 (en) Compounds having redox groups, their use as electrolyte additives, electrolyte compositions, and electrochemical systems containing them
JPWO2014013948A1 (en) Secondary battery
JP7173241B2 (en) Polymer, electrode, electricity storage device, and method for producing polymer
JP5907373B2 (en) COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL AND POSITIVE FOR NON-AQUEOUS SECONDARY BATTERY, NON-AQUEOUS SECONDARY BATTERY, AND VEHICLE
CN107251278B (en) Electrochemical element comprising a polymeric material and use of the polymeric material
CN110024190B (en) Electrode active material for nonaqueous secondary battery and nonaqueous secondary battery using same
JP5799782B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP6814064B2 (en) Organic compounds, electrode active materials and secondary batteries using them
JP6179233B2 (en) Non-aqueous electrolyte secondary battery
JP2013134947A (en) Electrode active material and secondary battery containing the same
JP5425694B2 (en) Positive electrode active material for lithium ion secondary battery obtained by performing overcharge / discharge treatment, positive electrode for lithium ion secondary battery comprising the positive electrode active material, and lithium ion secondary battery comprising the positive electrode as components
WO2011152476A1 (en) Condensed polycyclic aromatic compound and process for production thereof, and positive electrode active material for lithium ion secondary battery which comprises same
US10497978B2 (en) Power storage device
Li et al. Crosslinked Polyimides as Cathodes for Lithium-Ion Batteries
JP5799781B2 (en) Polyacetylene derivative, positive electrode active material and positive electrode for non-aqueous secondary battery, non-aqueous secondary battery, and vehicle
JP6020132B2 (en) Electrode active material, electrode, battery and polymer
WO2022239746A1 (en) Binder for silicon negative electrode of lithium ion secondary battery
US20110052982A1 (en) Non-aqueous electrolyte secondary battery
JP2014222590A (en) Electrode active material, electrode, and power storage device
WO2023277164A1 (en) Additive for electrolyte solutions, electrolyte solution and electrochemical device
CN110767469B (en) Polymer for organic electrode material, preparation method and application thereof
JP6582454B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7173241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150