WO2020084828A1 - Polymer, electrode active substance and secondary battery - Google Patents
Polymer, electrode active substance and secondary battery Download PDFInfo
- Publication number
- WO2020084828A1 WO2020084828A1 PCT/JP2019/023675 JP2019023675W WO2020084828A1 WO 2020084828 A1 WO2020084828 A1 WO 2020084828A1 JP 2019023675 W JP2019023675 W JP 2019023675W WO 2020084828 A1 WO2020084828 A1 WO 2020084828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- electrode
- electrode active
- active material
- battery
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1399—Processes of manufacture of electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a polymer, particularly a polymer obtained by condensation-polymerizing 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate, an electrode active material, and a secondary battery.
- An organic secondary battery is a battery that uses an organic charge storage material as an electrode active material in a secondary battery, and has features such as high rate characteristics, high capacity retention rate with charge / discharge cycles, lightweight thin film, and flexibility. , Has received a great deal of attention.
- a compound containing a nitroxy radical group is often used (Non-patent documents 1, 2 and 1), organic sulfur polymers (Non-patent documents 3 and 4), quinone polymers (Patent document). 2), quinoid-based materials (Patent Documents 3, 4, and 5), dione-based materials (Patent Document 6), rubeanic acid-based materials (Patent Document 7), and the like have also been reported.
- a battery using a nitroxy radical-based charge storage material as an electrode active material has a smaller charge storage capacity than that using an inorganic electrode active material, and an organic charge storage material with a high capacity such as an organic sulfur polymer is used.
- an organic charge storage material with a high capacity such as an organic sulfur polymer is used.
- the electrochemical stability was low, sufficient cycle characteristics could not be obtained, and the voltage was low.
- organic charge storage materials when used alone as an electrode active material or when used in combination with an inorganic electrode active material, in addition to the above problems, elution resistance to an electrolytic solution and sufficient ion movement are possible.
- sufficient performance as a secondary battery, particularly a lithium ion battery cannot be obtained due to lack of swelling property, ion conductivity, binding property with an inorganic electrode active material or a current collector.
- the present invention has been made in view of such circumstances, and when used as an electrode active material, can provide a high-performance battery having a high capacity, a high rate characteristic, and a high cycle characteristic. It is intended to provide a material having.
- the present inventors have found that a specific polymer having a polymer having an azaanthraquinone skeleton functions as a charge storage material, and when this is used as an electrode active material, The present invention has been completed by finding that a secondary battery having a high capacity, a high rate characteristic and a high cycle characteristic can be provided by overcoming the above problems.
- the present invention provides the following charge storage material, electrode active material, and secondary battery.
- a polymer having an azaanthraquinone skeleton comprising at least one selected from repeating units represented by the following formulas (1) to (3). 2. Among the repeating units represented by the above formulas (1) to (3), one polymer necessarily contains at least one selected from the repeating units represented by the formulas (2) and (3). 3.
- a charge storage material consisting of one or two polymers. 4.
- a thin film containing the electrode active material of 4. A thin film obtained from the electrode slurry of No. 5. 8.
- An electrode comprising a thin film of 6 or 7. 10.
- a secondary battery including 8 or 9 electrodes.
- a lithium-ion battery comprising 8 or 9 electrodes.
- a lithium ion secondary battery of 11 including an electrolytic solution having an electrolyte concentration of 0.001 to 2 mol / L. 13.
- a method for producing a polymer of 1, which comprises subjecting 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate to condensation polymerization.
- the polymer according to the present invention has an azaanthraquinone skeleton as a main component of charge storage, and since the generated anion radical is stabilized by a continuous pyridine condensed ring structure, it has high electrochemical stability and is useful as a charge storage material. Is.
- the above polymer As an electrode active material, it is possible to manufacture a secondary battery having high capacity, high rate characteristics and high cycle characteristics.
- the above polymer is particularly suitable as an electrode active material for a lithium ion battery.
- an inorganic material or a carbon material is used as an electrode active material, but either the positive electrode or the negative electrode may be replaced with an electrode containing the charge storage material of the present invention. It can also be used in combination with an inorganic material-based or carbon material-based electrode active material.
- FIG. 1 (a) is a diagram showing a part of 1 H-NMR spectrum of 1,2,4,5-tetraamino-p-benzoquinone of Synthesis Example 1, and FIG. 1 (b) is a polymer of Example 1.
- FIG. 3 is a view showing a part of 1 H-NMR spectrum of A. It is a schematic diagram of the beaker cell produced in the Example. 5 is a cyclic voltammogram of the thin-film electrode manufactured in Example 2. 9 is a graph showing the measurement results of the potential difference from the reference electrode when the charge / discharge capacity of the lithium ion battery manufactured in Example 3 was changed. 5 is a diagram showing charge / discharge cycle characteristics of the lithium-ion battery produced in Example 3.
- FIG. 3 is a diagram showing a part of 1 H-NMR spectrum of 1,2,4,5-tetraamino-p-benzoquinone of Synthesis Example 1
- FIG. 1 (b) is a polymer of Example 1.
- FIG. 3 is a view showing
- Example 5 is a graph showing the measurement results of the potential difference from the reference electrode when the charge / discharge capacity of the lithium ion battery manufactured in Example 4 was changed.
- 9 is a graph showing the measurement results of the potential difference from the reference electrode when the charge / discharge capacity of the polymer lithium all-solid-state battery produced in Example 5 was changed.
- polymer The polymer of the present invention contains at least one selected from repeating units represented by the following formulas (1) to (3).
- the structure of the polymer as a whole differs depending on the content ratio of the repeating units represented by the formulas (1) to (3).
- a ladder-type polymer is obtained, and the higher the ratio of the repeating units represented by the formula (1), the higher the linearity.
- the repeating unit represented by the formula (3) is contained, the polymer becomes a branched polymer having a branched structure, and the higher the ratio of the repeating units, the higher the branched polymer.
- the polymer necessarily contains at least one selected from the repeating units represented by the formulas (2) and (3) among the repeating units represented by the formulas (1) to (3). Is more preferable. Further, from the viewpoint of electrochemical stability, a ladder-type polymer having a high content ratio of the repeating unit represented by the formula (1) or a highly branched polymer having a high content ratio of the repeating unit represented by the formula (3). Is preferred.
- the above polymer preferably includes, for example, a partial structure derived from an oligomer as shown in the following formulas (4-1) to (4-11), but is not limited thereto.
- the above polymer can be synthesized, for example, by subjecting 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate to condensation polymerization in polyphosphoric acid.
- 1,2,4,5-tetraamino-p-benzoquinone can be synthesized with reference to, for example, the method described in US Pat. No. 3,051,725.
- the triquinoyl hydrate a commercially available product can be used, and examples thereof include triquinoyl hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.).
- the charging ratio (molar ratio) of 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate is appropriately determined in consideration of the target structure and molecular weight, but cannot be specified unconditionally.
- the number of moles of both components is about the same.
- the amount of 1,2,4,5-tetraamino-p-benzoquinone is 0.80 to 1.20 mol per mol of triquinoyl hydrate, and 0.90 to 1. The amount is more preferably 10 mol, and even more preferably 0.95 to 1.05 mol.
- the amount of 1,2,4,5-tetraamino-p-benzoquinone is preferably more than 1.20 mol, and 1.30 to 2.20 mol per 1 mol of triquinoyl hydrate. More preferably, 1.40 to 2.20 moles is even more preferable, 1.50 to 2.20 moles is still more preferable, and particularly when it is 1.50 or more, a highly branched polymer is more easily obtained.
- 1,2,4,5-tetraamino-p-benzoquinone used when the amount of 1,2,4,5-tetraamino-p-benzoquinone used is less than or equal to the upper limit of the above range, the amino group derived from 1,2,4,5-tetraamino-p-benzoquinone is terminated.
- a low molecular weight compound having a group is not excessively generated, and a polymer having a target molecular weight is easily obtained.
- polyphosphoric acid sulfuric acid, diphosphorus pentoxide, etc.
- polyphosphoric acid can be preferably used.
- the amount of the solvent used is preferably about 15 to 30 equivalents to 1 equivalent of tetraaminobenzoquinone (for example, 2 to 5 mL of solvent to 500 mg of tetraaminobenzoquinone).
- the reaction temperature can be set under ordinary conditions and is not particularly limited, but it is usually about 20 to 100 ° C., preferably 75 to 100 ° C.
- a usual condition can be adopted, and although it is not particularly limited, it is usually about 1 to 1,000 hours, preferably 24 to 72 hours.
- the weight average molecular weight (Mw) of the polymer of the present invention is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of suppressing elution into the electrolytic solution. Further, Mw is preferably 50,000 or less, and more preferably 10,000 or less, from the viewpoint of swelling property in a solvent for electrode slurry described later.
- the dispersity (Mw / Mn) is preferably 1.0 to 2.0.
- Mw is a polystyrene conversion measurement value by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a solvent.
- the structure of the polymer of the present invention can be estimated by quantifying the ratio (molar ratio) of carbon and nitrogen by elemental analysis.
- carbon: nitrogen is approximately 5: 2.
- the above molar ratio varies depending on the content ratio of the repeating units represented by the formulas (1) to (3), and the closer it is to 3: 1, the closer the polymer is to a ladder type polymer, and the molar ratio is 5: 2. The closer to, the closer it is to a highly branched polymer.
- the polymer may contain a repeating unit other than the repeating units represented by the formulas (1) to (3).
- the polymer of the present invention can be suitably used as a charge storage material.
- the charge storage material is a material capable of storing charges, and is useful as an electrode active material of a secondary battery, for example.
- the secondary battery of the present invention is characterized by using the above-described charge storage material made of the polymer as an electrode active material, and the other constituent members of the battery element may be appropriately selected from conventionally known materials and used.
- a secondary battery is generally composed of a positive electrode layer, a negative electrode layer, a separator layer arranged between the positive electrode layer and the negative electrode layer, and an electrolyte solution filled in the battery element including all of these layers.
- the positive electrode layer and the negative electrode layer (hereinafter, these layers may be collectively referred to as an electrode layer) are provided on a substrate which is a current collector for improving the conductivity of the electrode active material and, if necessary, the electrode layer.
- the electrolytic solution is composed of an electrolyte composed of a salt which is a main body of ion conduction, a solvent and the like.
- the charge storage material of the present invention is used as the electrode active material of the positive electrode layer or the negative electrode layer. Whether the electrode active material is used for the positive electrode layer or the negative electrode layer is not particularly limited, and is determined by the noble or base of the potential of the opposing electrode. Moreover, you may use the said electrode active material for both electrodes.
- the form of the secondary battery is not particularly limited, and any form such as a lithium ion battery, a nickel hydrogen battery, a manganese battery, and an air battery may be used.
- the laminating method and production method are not particularly limited.
- the electrode layer is prepared by mixing the charge storage material of the present invention, a solvent, a conductive auxiliary agent if necessary, a binder, other conventionally known electrode active materials and the like to prepare an electrode slurry, and using this, on a substrate. It can be manufactured by forming a thin film.
- the method for forming the thin film is not particularly limited, and various conventionally known methods can be used. For example, various printing methods such as offset printing, screen printing, and gravure printing using a slurry in which a material containing a charge storage material is dissolved or suspended in a solvent, dip coating method, spin coating method, bar coating method, slit (die) Examples thereof include a coating method and an inkjet method.
- Examples of the current collector used as the base of the electrode layer include metal foils or substrates of aluminum, copper, lithium, stainless steel, iron, chromium, platinum, gold, etc., and alloy foils made of any combination of these metals.
- a substrate an oxide substrate such as indium tin oxide (ITO), indium zinc oxide (IZO), or antimony tin oxide (ATO), a carbon substrate such as glassy carbon, pyrolytic graphite, carbon felt, or a carbon material may be used as described above. Examples thereof include carbon-coated foil coated on a metal foil.
- Examples of the conductive aid include carbon materials such as graphite, carbon black, acetylene black, vapor-grown carbon fiber (VGCF), carbon nanotubes, carbon nanohorns, graphene, and polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene, and other highly conductive materials. Examples include molecules.
- the above conductive assistants can be used alone or in combination of two or more.
- binder examples include polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polycarbonate, polystyrene, polyacrylic acid, polyacrylate, Polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid salt, polymethacrylic acid ester, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, Vinyl acetate, ABS resin, SBR resin, polyurethane resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, or any combination thereof. Copolymer or blend polymer or the like made of combined the like.
- solvent for the electrode slurry examples include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), Examples include dioxolane, sulfolane, DMF, N, N-dimethylacetamide and the like.
- NMP N-methyl-2-pyrrolidone
- DMF dimethyl sulfoxide
- ethylene carbonate ethylene carbonate
- propylene carbonate dimethyl carbonate
- diethyl carbonate diethyl carbonate
- methyl ethyl carbonate methyl ethyl carbonate
- THF tetrahydrofuran
- Examples include dioxolane, sulfolane, DMF, N, N-dimethylacetamide and the like.
- examples of the negative electrode active material contained in the negative electrode layer include graphite, carbon black, acetylene black, VGCF, carbon nanotube, carbon nanohorn, and graphene.
- the positive electrode active material contained in the positive electrode layer includes a compound containing a nitroxy radical group, an organic sulfur polymer, and the charge storage material of the present invention.
- LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 0.5 Mn 0.5 O 2 , Li (Ni a Co b M n c ) O 2 (where 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, a + b + c 1), LiFePO 4 , LiMnPO 4 , LiCoPO 4 , Fe 2 (SO 4 ) 3 , LiMnSiO 4 , V
- An inorganic electrode active material such as 2 O 5 may be used.
- the electrode active material containing the charge storage material of the present invention When used in the negative electrode layer, it may be used in combination with the above negative electrode active material. When the electrode active material containing the charge storage material of the present invention is used in the positive electrode layer, it may be used in combination with the positive electrode active material.
- the electrode active material containing the charge storage material of the present invention may be used as an air electrode (positive electrode) and used as an air battery.
- an air electrode positive electrode
- an air battery used as an air battery.
- the negative electrode active material contained in the negative electrode layer sodium, magnesium, aluminum, calcium, zinc or the like can be used in addition to the above negative electrode active material.
- an inorganic material such as manganese oxide, 2, 2, 6, 6-
- a nitroxy radical material such as tetramethylpiperidine-N-oxyl polymer may be used in combination.
- the thickness of the electrode layer is not particularly limited, but is preferably about 0.01 to 1,000 ⁇ m, more preferably about 0.1 to 100 ⁇ m.
- Examples of the material used for the separator layer include porous polyolefin, polyamide, polyester and the like.
- the electrolyte constituting the electrolyte solution for example, LiPF 6, LiBF 4, LiN (C 2 F 5 SO 2) 2, LiAsF 6, LiSbF 6, LiAlF 4, LiGaF 4, LiInF 4, LiClO 4, LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSiF 6 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and other lithium salts, LiI, NaI, KI, CsI, CaI 2 and other metal iodides, Examples thereof include iodide salts of quaternary imidazolium compounds, iodide salts of tetraalkylammonium compounds and perchlorates, and metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr 2 .
- the solvent that composes the electrolyte solution is not particularly limited as long as it does not corrode or decompose a substance that composes the battery and deteriorates the performance, and dissolves the electrolyte.
- cyclic esters such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, GBL; ethers such as THF and dimethoxyethane; dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, etc.
- DEC diethyl carbonate
- ethyl methyl carbonate etc.
- a chain ester or the like is used.
- the concentration of the electrolyte in the electrolytic solution is preferably 0.001 to 2 mol / L, more preferably 0.001 to 1.2 mol / L, from the viewpoint of obtaining a battery exhibiting higher battery performance.
- the concentration of the electrolyte is more preferably 0.1 mol / L or more, further preferably 0.5 mol / L or more.
- a solid electrolyte may be used, and an inorganic solid electrolyte such as a sulfide-based solid electrolyte and an oxide-based solid electrolyte, or an organic solid electrolyte such as a polymer-based electrolyte can be preferably used.
- an inorganic solid electrolyte such as a sulfide-based solid electrolyte and an oxide-based solid electrolyte, or an organic solid electrolyte such as a polymer-based electrolyte can be preferably used.
- Examples of the sulfide-based solid electrolyte include Li 2 S-SiS 2 -lithium compound (wherein the lithium compound is at least one selected from the group consisting of Li 3 PO 4, LiI and Li 4 SiO 4 ) , Li Examples thereof include thiolysicone-based materials such as 2 S-P 2 O 5, Li 2 S-B 2 S 5, and Li 2 S-P 2 S 5 -GeS 2 .
- Examples of the oxide-based solid electrolyte include sodium / alumina.
- polymer-based solid electrolyte examples include polyethylene oxide-based materials, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, vinylidene chloride, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, and methyl methacrylate.
- examples thereof include polymer compounds obtained by polymerizing or copolymerizing monomers such as styrene and vinylidene fluoride.
- the polymer solid electrolyte may contain a supporting salt and a plasticizer.
- the ionic conductivity of the solid electrolyte is preferably 10 ⁇ 7 to 10 ⁇ 3 S / cm, more preferably 10 ⁇ 5 to 10 ⁇ 3 S / cm.
- Examples of the supporting salt contained in the polymer solid electrolyte include lithium (fluorosulfonylimide) and the like, and examples of the plasticizer include succinonitrile and the like.
- Rotation / revolution mixer Awatori Rentaro AR-100 made by Shinky Co., Ltd. Ball mill kneading Mini-Mill pulperette 23 manufactured by FRISCH (3) 1 H-NMR spectrum Nuclear magnetic resonance apparatus ECX-500 (solvent: dimethyl sulfoxide-d 6 (DMSO-d 6 ), manufactured by JEOL Ltd., internal standard: tetramethylsilane) (4) IR spectrum Fourier transform infrared spectrophotometer FT / IR-6100 manufactured by JASCO Corporation (5) Elemental analysis Elemental analyzer PE2400 II manufactured by Perkin Elmer, Inc.
- FIG. 1 (a) shows the 1 H-NMR measurement result of the obtained 1,2,4,5-tetraamino-p-benzoquinone.
- a proton peak derived from an amine was confirmed around 4.5 ppm.
- the number average molecular weight Mn of the polymer A was 1,156, the weight average molecular weight Mw was 1,394, and the dispersity Mw / Mn was 1.20.
- the electrolytic solution As the electrolytic solution, a GBL solution of 1 mol / L LiClO 4 was used.
- the thin film electrode was used as a working electrode 11, a platinum electrode was used as a counter electrode 12, and an Ag / AgCl electrode was used as a reference electrode 13.
- an electrolytic solution 14 similar to the above was added thereto, A beaker cell 1 as shown in 2 was produced.
- CV measurement was performed at a scan rate of 10 mV / sec.
- the results are shown in Fig. 3.
- Example 3 Characteristic evaluation 1 of battery using polymer A as an electrode (coin cell)
- a selected polymer lithium secondary battery was produced.
- the polymer lithium secondary battery was manufactured by the following method.
- a polymer / carbon composite electrode was produced on an aluminum foil and cut into a radius of 6 mm and a separator into a radius of 8.5 mm.
- a polymer lithium secondary battery was produced by stacking a plastic gasket, a carbon composite electrode, a separator, metallic lithium, a spacer and a washer in this order on a positive terminal case, fitting a cap and caulking sufficiently using a caulking machine holder.
- the produced battery was charged with a constant current of 4.04 ⁇ A (0.2 C) until the voltage reached 4.0 V, and then discharged at 4.04 ⁇ A (0.2 C).
- the voltage became almost constant for about 2.0 V for a second, and then rapidly decreased, and the discharge capacity became 145 mAh / g (theoretical capacity ratio: 72%).
- Coulombic efficiency was about 90%. This confirmed that polymer A was acting as an effective charge storage material.
- FIG. 4 shows the measurement results of the potential difference from the reference electrode when the charge / discharge amount was changed
- FIG. 5 shows the cycle characteristics when charging / discharging. The charge / discharge capacity was maintained at 95% or more even after the charge / discharge was repeated 100 times.
- Example 4 Characteristic evaluation 2 of battery using polymer A as an electrode (coin cell)
- a polymer lithium secondary battery was produced in the same procedure as in Example 3 except that the concentration of the electrolytic solution was 0.001 mol / L. With respect to the manufactured battery, charging and discharging were repeated 240 times under the same conditions as in Example 3.
- FIG. 6 shows the measurement results of the potential difference from the reference electrode when the charge / discharge amount was changed. As a result, it was confirmed that good battery performance was obtained even when a low-concentration electrolytic solution was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Provided is a polymer characterized by having an azaanthraquinone skeleton and containing at least one selected from the repeating units represented by formulae (1) to (3).
Description
本発明は、ポリマー、特に1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とを縮合重合させて得られるポリマー、電極活物質及び二次電池に関する。
The present invention relates to a polymer, particularly a polymer obtained by condensation-polymerizing 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate, an electrode active material, and a secondary battery.
有機二次電池は、有機電荷貯蔵材料を二次電池における電極活物質として用いた電池であり、高レート特性、充放電サイクルに伴う高容量維持率、軽量薄膜、フレキシブル化が可能等の特長から、大きな注目を集めている。有機電荷貯蔵材料としては、ニトロキシラジカル基を含有する化合物がよく用いられるが(非特許文献1、2、特許文献1)、有機硫黄ポリマー(非特許文献3、4)、キノンポリマー(特許文献2)、キノイド系材料(特許文献3、4、5)、ジオン系材料(特許文献6)、ルベアン酸系材料(特許文献7)等についても報告がなされている。
An organic secondary battery is a battery that uses an organic charge storage material as an electrode active material in a secondary battery, and has features such as high rate characteristics, high capacity retention rate with charge / discharge cycles, lightweight thin film, and flexibility. , Has received a great deal of attention. As the organic charge storage material, a compound containing a nitroxy radical group is often used (Non-patent documents 1, 2 and 1), organic sulfur polymers (Non-patent documents 3 and 4), quinone polymers (Patent document). 2), quinoid-based materials ( Patent Documents 3, 4, and 5), dione-based materials (Patent Document 6), rubeanic acid-based materials (Patent Document 7), and the like have also been reported.
また、近年、無機電極活物質と共存させて用いることにより、リチウムイオン電池の高速充放電時における容量及び電圧維持率(以下、レート特性という。)向上、充放電サイクルにおける容量維持率(以下、サイクル特性という。)向上が可能であることが示され(非特許文献5)、適用用途及び手法が拡大している。
In addition, in recent years, by coexisting with an inorganic electrode active material, the capacity and voltage retention rate (hereinafter, referred to as rate characteristics) of a lithium ion battery during high-speed charging / discharging are improved, and the capacity retention rate in a charging / discharging cycle (hereinafter, It is shown that the cycle characteristics can be improved (Non-Patent Document 5), and the applications and methods of application are expanding.
しかし、ニトロキシラジカル系電荷貯蔵材料を電極活物質として用いた電池は、無機系電極活物質を用いたそれと比較して電荷貯蔵容量が小さく、有機硫黄ポリマー等の容量の高い有機電荷貯蔵材料を用いた場合は、電気化学的安定性が低く、充分なサイクル特性が得られない、また電圧が低いという課題があった。また、他の有機電荷貯蔵材料においても、電極活物質として単独で用いる場合、あるいは無機電極活物質と併用する場合において、上記課題に加えて、電解液に対する溶出耐性、充分なイオンの出入りを可能にする膨潤性、イオン伝導性、無機電極活物質や集電体との結着性等が不足することにより、二次電池、特にリチウムイオン電池として充分な性能が得られない場合があった。
However, a battery using a nitroxy radical-based charge storage material as an electrode active material has a smaller charge storage capacity than that using an inorganic electrode active material, and an organic charge storage material with a high capacity such as an organic sulfur polymer is used. When used, there were problems that the electrochemical stability was low, sufficient cycle characteristics could not be obtained, and the voltage was low. In addition, in other organic charge storage materials, when used alone as an electrode active material or when used in combination with an inorganic electrode active material, in addition to the above problems, elution resistance to an electrolytic solution and sufficient ion movement are possible. In some cases, sufficient performance as a secondary battery, particularly a lithium ion battery, cannot be obtained due to lack of swelling property, ion conductivity, binding property with an inorganic electrode active material or a current collector.
本発明は、このような事情に鑑みてなされたものであり、電極活物質として用いた場合に、高容量、高レート特性及び高サイクル特性を有する高性能な電池を与え得る、電荷貯蔵性を有する材料を提供することを目的とする。
The present invention has been made in view of such circumstances, and when used as an electrode active material, can provide a high-performance battery having a high capacity, a high rate characteristic, and a high cycle characteristic. It is intended to provide a material having.
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、アザアントラキノン骨格を有するポリマーを有する特定のポリマーが、電荷貯蔵材料として機能し、これを電極活物質として用いた場合に、上記課題を克服して高容量、高レート特性及び高サイクル特性を示す二次電池を与えることを見出し、本発明を完成させた。
As a result of repeated intensive studies to achieve the above-mentioned object, the present inventors have found that a specific polymer having a polymer having an azaanthraquinone skeleton functions as a charge storage material, and when this is used as an electrode active material, The present invention has been completed by finding that a secondary battery having a high capacity, a high rate characteristic and a high cycle characteristic can be provided by overcoming the above problems.
すなわち、本発明は、下記電荷貯蔵材料、電極活物質及び二次電池を提供する。
1. アザアントラキノン骨格を有するポリマーであって、下記式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種を含むことを特徴とするポリマー。
2. 上記式(1)~(3)で表される繰り返し単位のうち、式(2)及び(3)で表される繰り返し単位から選ばれる少なくとも1種を必ず含む1のポリマー。
3. 1又は2のポリマーからなる電荷貯蔵材料。
4. 3の電荷貯蔵材料を含む電極活物質。
5. 4の電極活物質、及び溶媒を含む電極スラリー。
6. 4の電極活物質を含む薄膜。
7. 5の電極スラリーから得られる薄膜。
8. 4の電極活物質を含む電極。
9. 6又は7の薄膜を含む電極。
10. 8又は9の電極を含む二次電池。
11. 8又は9の電極を含むリチウムイオン電池。
12. 電解質の濃度が0.001~2mol/Lである電解液を含む11のリチウムイオン二次電池。
13. イオン伝導度が10-7~10-3S/cmである固体電解質を含む全固体電池である10の二次電池。
14. 1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とを縮合重合させることを含む1のポリマーの製造方法。 That is, the present invention provides the following charge storage material, electrode active material, and secondary battery.
1. A polymer having an azaanthraquinone skeleton, comprising at least one selected from repeating units represented by the following formulas (1) to (3).
2. Among the repeating units represented by the above formulas (1) to (3), one polymer necessarily contains at least one selected from the repeating units represented by the formulas (2) and (3).
3. A charge storage material consisting of one or two polymers.
4. 3. An electrode active material containing the charge storage material of 3.
5. An electrode slurry containing the electrode active material of No. 4, and a solvent.
6. 4. A thin film containing the electrode active material of 4.
7. A thin film obtained from the electrode slurry of No. 5.
8. An electrode containing the electrode active material of 4.
9. An electrode comprising a thin film of 6 or 7.
10. A secondary battery including 8 or 9 electrodes.
11. A lithium-ion battery comprising 8 or 9 electrodes.
12. 11. A lithium ion secondary battery of 11 including an electrolytic solution having an electrolyte concentration of 0.001 to 2 mol / L.
13. 10. A secondary battery of 10, which is an all-solid battery including a solid electrolyte having an ionic conductivity of 10 −7 to 10 −3 S / cm.
14. A method for producing a polymer of 1, which comprises subjecting 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate to condensation polymerization.
1. アザアントラキノン骨格を有するポリマーであって、下記式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種を含むことを特徴とするポリマー。
3. 1又は2のポリマーからなる電荷貯蔵材料。
4. 3の電荷貯蔵材料を含む電極活物質。
5. 4の電極活物質、及び溶媒を含む電極スラリー。
6. 4の電極活物質を含む薄膜。
7. 5の電極スラリーから得られる薄膜。
8. 4の電極活物質を含む電極。
9. 6又は7の薄膜を含む電極。
10. 8又は9の電極を含む二次電池。
11. 8又は9の電極を含むリチウムイオン電池。
12. 電解質の濃度が0.001~2mol/Lである電解液を含む11のリチウムイオン二次電池。
13. イオン伝導度が10-7~10-3S/cmである固体電解質を含む全固体電池である10の二次電池。
14. 1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とを縮合重合させることを含む1のポリマーの製造方法。 That is, the present invention provides the following charge storage material, electrode active material, and secondary battery.
1. A polymer having an azaanthraquinone skeleton, comprising at least one selected from repeating units represented by the following formulas (1) to (3).
3. A charge storage material consisting of one or two polymers.
4. 3. An electrode active material containing the charge storage material of 3.
5. An electrode slurry containing the electrode active material of No. 4, and a solvent.
6. 4. A thin film containing the electrode active material of 4.
7. A thin film obtained from the electrode slurry of No. 5.
8. An electrode containing the electrode active material of 4.
9. An electrode comprising a thin film of 6 or 7.
10. A secondary battery including 8 or 9 electrodes.
11. A lithium-ion battery comprising 8 or 9 electrodes.
12. 11. A lithium ion secondary battery of 11 including an electrolytic solution having an electrolyte concentration of 0.001 to 2 mol / L.
13. 10. A secondary battery of 10, which is an all-solid battery including a solid electrolyte having an ionic conductivity of 10 −7 to 10 −3 S / cm.
14. A method for producing a polymer of 1, which comprises subjecting 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate to condensation polymerization.
本発明に係るポリマーは、電荷貯蔵の主体としてアザアントラキノン骨格を有し、発生するアニオンラジカルが連続するピリジン縮環構造によって安定化されるために電気化学的安定性が高く、電荷貯蔵材料として有用である。
INDUSTRIAL APPLICABILITY The polymer according to the present invention has an azaanthraquinone skeleton as a main component of charge storage, and since the generated anion radical is stabilized by a continuous pyridine condensed ring structure, it has high electrochemical stability and is useful as a charge storage material. Is.
上記ポリマーを電極活物質として用いることで、高容量、高レート特性及び高サイクル特性を有する二次電池を作製することが可能である。上記ポリマーは、特にリチウムイオン電池の電極活物質として好適である。一般的な二次電池においては、無機系材料又は炭素材料が電極活物質として用いられるが、正極又は負極のどちらか一方を本発明の電荷貯蔵材料を含有する電極に置き換えて使用することもでき、無機材料系あるいは炭素材料系電極活物質と併用して用いることもできる。
By using the above polymer as an electrode active material, it is possible to manufacture a secondary battery having high capacity, high rate characteristics and high cycle characteristics. The above polymer is particularly suitable as an electrode active material for a lithium ion battery. In a general secondary battery, an inorganic material or a carbon material is used as an electrode active material, but either the positive electrode or the negative electrode may be replaced with an electrode containing the charge storage material of the present invention. It can also be used in combination with an inorganic material-based or carbon material-based electrode active material.
[ポリマー]
本発明のポリマーは、下記式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種を含む。 [polymer]
The polymer of the present invention contains at least one selected from repeating units represented by the following formulas (1) to (3).
本発明のポリマーは、下記式(1)~(3)で表される繰り返し単位から選ばれる少なくとも1種を含む。 [polymer]
The polymer of the present invention contains at least one selected from repeating units represented by the following formulas (1) to (3).
ポリマー全体としての構造は、式(1)~(3)で表される繰り返し単位の含有比率によって異なるものとなる。例えば、式(1)及び式(2)で表される繰り返し単位を多く含む場合は、ラダー型ポリマーとなり、さらに式(1)で表される繰り返し単位の比率が高いほど直線性が高いラダー型ポリマーとなる。また、式(3)で表される繰り返し単位を含む場合は、分岐構造を含む分岐型ポリマーとなり、当該繰り返し単位の比率が高いほど高分岐型ポリマーとなる。
The structure of the polymer as a whole differs depending on the content ratio of the repeating units represented by the formulas (1) to (3). For example, when a large amount of repeating units represented by the formulas (1) and (2) is included, a ladder-type polymer is obtained, and the higher the ratio of the repeating units represented by the formula (1), the higher the linearity. Become a polymer. In addition, when the repeating unit represented by the formula (3) is contained, the polymer becomes a branched polymer having a branched structure, and the higher the ratio of the repeating units, the higher the branched polymer.
本発明では、上記ポリマーは、上記式(1)~(3)で表される繰り返し単位のうち、式(2)及び(3)で表される繰り返し単位から選ばれる少なくとも1種を必ず含むポリマーがより好ましい。さらに、電気化学的安定性の観点から、特に式(1)で表される繰り返し単位の含有比率が高いラダー型ポリマー又は式(3)で表される繰り返し単位の含有比率が高い高分岐型ポリマーであることが好ましい。
In the present invention, the polymer necessarily contains at least one selected from the repeating units represented by the formulas (2) and (3) among the repeating units represented by the formulas (1) to (3). Is more preferable. Further, from the viewpoint of electrochemical stability, a ladder-type polymer having a high content ratio of the repeating unit represented by the formula (1) or a highly branched polymer having a high content ratio of the repeating unit represented by the formula (3). Is preferred.
上記ポリマーは、例えば、下記式(4-1)~(4-11)に示すようなオリゴマーに由来する部分構造を含むものが好ましいが、これらに限定されない。
The above polymer preferably includes, for example, a partial structure derived from an oligomer as shown in the following formulas (4-1) to (4-11), but is not limited thereto.
上記ポリマーは、例えば、1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とをポリリン酸中で縮合重合させることによって合成することができる。なお、1,2,4,5-テトラアミノ-p-ベンゾキノンは、例えば、米国特許第3051725号明細書に記載された方法を参考に合成することができる。また、トリキノイル水和物は、市販品を使用することができ、例えば、トリキノイル水和物(東京化成工業(株)製)が挙げられる。
The above polymer can be synthesized, for example, by subjecting 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate to condensation polymerization in polyphosphoric acid. In addition, 1,2,4,5-tetraamino-p-benzoquinone can be synthesized with reference to, for example, the method described in US Pat. No. 3,051,725. Further, as the triquinoyl hydrate, a commercially available product can be used, and examples thereof include triquinoyl hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.).
1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物との仕込み比(モル比)は、目的とする構造や分子量等を考慮して適宜決定されるため一概に規定できないが、ラダー型のポリマーを得る場合は、両成分のモル数を同量程度にすることが好ましい。具体的には、トリキノイル水和物1モルに対して、1,2,4,5-テトラアミノ-p-ベンゾキノンを0.80~1.20モルとすることが好ましく、0.90~1.10モルとすることがより好ましく、0.95~1.05モルとすることがより一層好ましい。
The charging ratio (molar ratio) of 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate is appropriately determined in consideration of the target structure and molecular weight, but cannot be specified unconditionally. When obtaining a ladder type polymer, it is preferable that the number of moles of both components is about the same. Specifically, it is preferable that the amount of 1,2,4,5-tetraamino-p-benzoquinone is 0.80 to 1.20 mol per mol of triquinoyl hydrate, and 0.90 to 1. The amount is more preferably 10 mol, and even more preferably 0.95 to 1.05 mol.
また、分岐型のポリマーを得る場合は、トリキノイル水和物に対して、1,2,4,5-テトラアミノ-p-ベンゾキノンを過剰量使用することが好ましい。具体的には、トリキノイル水和物1モルに対して、1,2,4,5-テトラアミノ-p-ベンゾキノンを1.20モル超とすることが好ましく、1.30~2.20モルがより好ましく、1.40~2.20モルがより一層好ましく、1.50~2.20モルがさらに好ましく、特に1.50以上とすることにより高分岐型のポリマーをより得やすくなる。なお、1,2,4,5-テトラアミノ-p-ベンゾキノンの使用量を上記範囲の上限以下とすることで、末端に1,2,4,5-テトラアミノ-p-ベンゾキノンに由来するアミノ基を有する低分子量の化合物が過剰に生成せず、目的とする分子量のポリマーを得やすい。
When obtaining a branched polymer, it is preferable to use an excess amount of 1,2,4,5-tetraamino-p-benzoquinone with respect to triquinoyl hydrate. Specifically, the amount of 1,2,4,5-tetraamino-p-benzoquinone is preferably more than 1.20 mol, and 1.30 to 2.20 mol per 1 mol of triquinoyl hydrate. More preferably, 1.40 to 2.20 moles is even more preferable, 1.50 to 2.20 moles is still more preferable, and particularly when it is 1.50 or more, a highly branched polymer is more easily obtained. In addition, when the amount of 1,2,4,5-tetraamino-p-benzoquinone used is less than or equal to the upper limit of the above range, the amino group derived from 1,2,4,5-tetraamino-p-benzoquinone is terminated. A low molecular weight compound having a group is not excessively generated, and a polymer having a target molecular weight is easily obtained.
上記重合反応においては、溶媒としてポリリン酸、硫酸、五酸化二リン等を使用できる。本発明においては、ポリリン酸を好適に使用できる。溶媒の使用量は、テトラアミノベンゾキノン1当量に対して15~30当量程度が好ましい(例えば、テトラアミノベンゾキノン500mgに対して溶媒2~5mL)。
In the above polymerization reaction, polyphosphoric acid, sulfuric acid, diphosphorus pentoxide, etc. can be used as a solvent. In the present invention, polyphosphoric acid can be preferably used. The amount of the solvent used is preferably about 15 to 30 equivalents to 1 equivalent of tetraaminobenzoquinone (for example, 2 to 5 mL of solvent to 500 mg of tetraaminobenzoquinone).
反応温度は、通常の条件を採用することができ、特に制限されるものではないが、通常、20~100℃程度、好ましくは75~100℃とすることができる。反応時間についても、通常の条件を採用することができ、特に制限されるものではないが、通常、1~1,000時間程度、好ましくは24~72時間とすることができる。
The reaction temperature can be set under ordinary conditions and is not particularly limited, but it is usually about 20 to 100 ° C., preferably 75 to 100 ° C. Regarding the reaction time, a usual condition can be adopted, and although it is not particularly limited, it is usually about 1 to 1,000 hours, preferably 24 to 72 hours.
本発明のポリマーの重量平均分子量(Mw)は、電解液への溶出を抑制する観点から、1,000以上が好ましく、2,000以上がより好ましい。また、Mwは、後述する電極スラリー用溶媒への膨潤性の観点から、50,000以下が好ましく、10,000以下がより好ましい。また、分散度(Mw/Mn)は、1.0~2.0が好ましい。なお、本発明において、Mwは、N,N-ジメチルホルムアミド(DMF)を溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。
The weight average molecular weight (Mw) of the polymer of the present invention is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of suppressing elution into the electrolytic solution. Further, Mw is preferably 50,000 or less, and more preferably 10,000 or less, from the viewpoint of swelling property in a solvent for electrode slurry described later. The dispersity (Mw / Mn) is preferably 1.0 to 2.0. In the present invention, Mw is a polystyrene conversion measurement value by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a solvent.
本発明のポリマーの構造は、元素分析により炭素と窒素の比率(モル比)を定量することにより推定することができる。例えば、得られたポリマーが、式(1)又は(2)で表される繰り返し単位からなるラダー型ポリマーである場合、炭素と窒素のモル比は、おおむね炭素:窒素=3:1となり、式(3)で表される繰り返し単位からなる高分岐型ポリマーである場合は、おおむね炭素:窒素=5:2となる。本発明のポリマーにおいて、上記モル比は、式(1)~(3)で表される繰り返し単位の含有比率に応じて変動し、3:1に近づくほどラダー型ポリマーに近くなり、5:2に近づくほど高分岐型ポリマーに近くなる。
The structure of the polymer of the present invention can be estimated by quantifying the ratio (molar ratio) of carbon and nitrogen by elemental analysis. For example, when the obtained polymer is a ladder-type polymer composed of the repeating unit represented by the formula (1) or (2), the molar ratio of carbon and nitrogen is about carbon: nitrogen = 3: 1. In the case of a hyperbranched polymer composed of the repeating unit represented by (3), carbon: nitrogen is approximately 5: 2. In the polymer of the present invention, the above molar ratio varies depending on the content ratio of the repeating units represented by the formulas (1) to (3), and the closer it is to 3: 1, the closer the polymer is to a ladder type polymer, and the molar ratio is 5: 2. The closer to, the closer it is to a highly branched polymer.
なお、本発明において、上記ポリマーは、式(1)~(3)で表される繰り返し単位以外の繰り返し単位を含んでいてもよい。
In the present invention, the polymer may contain a repeating unit other than the repeating units represented by the formulas (1) to (3).
[電荷貯蔵材料]
本発明のポリマーは、電荷貯蔵材料として好適に使用できる。電荷貯蔵材料とは電荷を貯蔵することができる材料のことであり、これは、例えば、二次電池の電極活物質として有用である。 [Charge storage material]
The polymer of the present invention can be suitably used as a charge storage material. The charge storage material is a material capable of storing charges, and is useful as an electrode active material of a secondary battery, for example.
本発明のポリマーは、電荷貯蔵材料として好適に使用できる。電荷貯蔵材料とは電荷を貯蔵することができる材料のことであり、これは、例えば、二次電池の電極活物質として有用である。 [Charge storage material]
The polymer of the present invention can be suitably used as a charge storage material. The charge storage material is a material capable of storing charges, and is useful as an electrode active material of a secondary battery, for example.
[二次電池]
本発明の二次電池は、上述したポリマーからなる電荷貯蔵材料を電極活物質として用いることに特徴があり、その他の電池素子の構成部材は従来公知のものから適宜選択して用いればよい。 [Secondary battery]
The secondary battery of the present invention is characterized by using the above-described charge storage material made of the polymer as an electrode active material, and the other constituent members of the battery element may be appropriately selected from conventionally known materials and used.
本発明の二次電池は、上述したポリマーからなる電荷貯蔵材料を電極活物質として用いることに特徴があり、その他の電池素子の構成部材は従来公知のものから適宜選択して用いればよい。 [Secondary battery]
The secondary battery of the present invention is characterized by using the above-described charge storage material made of the polymer as an electrode active material, and the other constituent members of the battery element may be appropriately selected from conventionally known materials and used.
一例として、一般的な二次電池について説明する。
二次電池は、一般的に、正極層と、負極層と、正極層及び負極層の間に配されるセパレータ層と、これら全てを含む電池素子内部に充填される電解液とから構成される。正極層及び負極層(以下、これらの層を総称して電極層ということもある)は、集電体である基板上に、電極活物質と、必要に応じて電極層の導電性向上のために炭素等からなる導電助剤と、更に必要に応じて成膜均一性向上、イオン伝導性向上、電解液への溶出抑制等のためにバインダーとを含む薄膜を形成することで構成される。電解液は、イオン伝導の本体である塩からなる電解質と溶媒等とから構成される。 As an example, a general secondary battery will be described.
A secondary battery is generally composed of a positive electrode layer, a negative electrode layer, a separator layer arranged between the positive electrode layer and the negative electrode layer, and an electrolyte solution filled in the battery element including all of these layers. . The positive electrode layer and the negative electrode layer (hereinafter, these layers may be collectively referred to as an electrode layer) are provided on a substrate which is a current collector for improving the conductivity of the electrode active material and, if necessary, the electrode layer. In addition, a thin film containing a conductive auxiliary agent made of carbon or the like and, if necessary, a binder for improving film formation uniformity, ionic conductivity, suppressing elution into an electrolytic solution, and the like is formed. The electrolytic solution is composed of an electrolyte composed of a salt which is a main body of ion conduction, a solvent and the like.
二次電池は、一般的に、正極層と、負極層と、正極層及び負極層の間に配されるセパレータ層と、これら全てを含む電池素子内部に充填される電解液とから構成される。正極層及び負極層(以下、これらの層を総称して電極層ということもある)は、集電体である基板上に、電極活物質と、必要に応じて電極層の導電性向上のために炭素等からなる導電助剤と、更に必要に応じて成膜均一性向上、イオン伝導性向上、電解液への溶出抑制等のためにバインダーとを含む薄膜を形成することで構成される。電解液は、イオン伝導の本体である塩からなる電解質と溶媒等とから構成される。 As an example, a general secondary battery will be described.
A secondary battery is generally composed of a positive electrode layer, a negative electrode layer, a separator layer arranged between the positive electrode layer and the negative electrode layer, and an electrolyte solution filled in the battery element including all of these layers. . The positive electrode layer and the negative electrode layer (hereinafter, these layers may be collectively referred to as an electrode layer) are provided on a substrate which is a current collector for improving the conductivity of the electrode active material and, if necessary, the electrode layer. In addition, a thin film containing a conductive auxiliary agent made of carbon or the like and, if necessary, a binder for improving film formation uniformity, ionic conductivity, suppressing elution into an electrolytic solution, and the like is formed. The electrolytic solution is composed of an electrolyte composed of a salt which is a main body of ion conduction, a solvent and the like.
この正極層又は負極層の電極活物質として、本発明の電荷貯蔵材料が用いられる。上記電極活物質を正極層、負極層のいずれの電極層に使用するかは特に限定されず、相対する電極の電位の貴、卑によって決定される。また、両極ともに上記電極活物質を使用してもよい。
The charge storage material of the present invention is used as the electrode active material of the positive electrode layer or the negative electrode layer. Whether the electrode active material is used for the positive electrode layer or the negative electrode layer is not particularly limited, and is determined by the noble or base of the potential of the opposing electrode. Moreover, you may use the said electrode active material for both electrodes.
二次電池の形態は特に限定されず、リチウムイオン電池、ニッケル水素電池、マンガン電池、空気電池等のいずれの形態を用いてもよい。ラミネート方法や生産方法についても特に限定されない。
The form of the secondary battery is not particularly limited, and any form such as a lithium ion battery, a nickel hydrogen battery, a manganese battery, and an air battery may be used. The laminating method and production method are not particularly limited.
上記電極層は、本発明の電荷貯蔵材料、溶媒、必要に応じて導電助剤、バインダー、従来公知の他の電極活物質等を混合して電極スラリーを調製し、これを用いて基板上に薄膜を形成することで作製することができる。上記薄膜の形成方法としては、特に限定されず、従来公知の各種方法を用いることができる。例えば、電荷貯蔵材料を含む材料を溶媒に溶解又は懸濁したスラリーを用いたオフセット印刷、スクリーン印刷、グラビア印刷等の各種印刷法、ディップコート法、スピンコート法、バーコート法、スリット(ダイ)コート法、インクジェット法等が挙げられる。
The electrode layer is prepared by mixing the charge storage material of the present invention, a solvent, a conductive auxiliary agent if necessary, a binder, other conventionally known electrode active materials and the like to prepare an electrode slurry, and using this, on a substrate. It can be manufactured by forming a thin film. The method for forming the thin film is not particularly limited, and various conventionally known methods can be used. For example, various printing methods such as offset printing, screen printing, and gravure printing using a slurry in which a material containing a charge storage material is dissolved or suspended in a solvent, dip coating method, spin coating method, bar coating method, slit (die) Examples thereof include a coating method and an inkjet method.
上記電極層の下地に用いられる集電体としては、例えば、アルミニウム、銅、リチウム、ステンレス鋼、鉄、クロム、白金、金等の金属箔あるいは基板、これらの金属の任意の組み合わせからなる合金箔あるいは基板、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)等の酸化物基板、グラッシーカーボン、パイロリティックグラファイト、カーボンフェルト等の炭素基板、カーボン材料を上記金属箔にコートしたカーボンコート箔等が挙げられる。
Examples of the current collector used as the base of the electrode layer include metal foils or substrates of aluminum, copper, lithium, stainless steel, iron, chromium, platinum, gold, etc., and alloy foils made of any combination of these metals. Alternatively, a substrate, an oxide substrate such as indium tin oxide (ITO), indium zinc oxide (IZO), or antimony tin oxide (ATO), a carbon substrate such as glassy carbon, pyrolytic graphite, carbon felt, or a carbon material may be used as described above. Examples thereof include carbon-coated foil coated on a metal foil.
上記導電助剤としては、グラファイト、カーボンブラック、アセチレンブラック、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、グラフェン等の炭素材料、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子等が挙げられる。上記導電助剤は、1種単独で又は2種以上組み合わせて用いることができる。
Examples of the conductive aid include carbon materials such as graphite, carbon black, acetylene black, vapor-grown carbon fiber (VGCF), carbon nanotubes, carbon nanohorns, graphene, and polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene, and other highly conductive materials. Examples include molecules. The above conductive assistants can be used alone or in combination of two or more.
上記バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリアクリル酸、ポリアクリル酸塩、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸塩、ポリメタクリル酸エステル、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、SBR樹脂、ポリウレタン樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂、又はこれらの任意の組み合わせからなる共重合体やブレンドポリマー等が挙げられる。
Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyhexafluoropropylene, vinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polycarbonate, polystyrene, polyacrylic acid, polyacrylate, Polyacrylic acid ester, polymethacrylic acid, polymethacrylic acid salt, polymethacrylic acid ester, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, Vinyl acetate, ABS resin, SBR resin, polyurethane resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, or any combination thereof. Copolymer or blend polymer or the like made of combined the like.
上記電極スラリー用溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、ジオキソラン、スルホラン、DMF、N,N-ジメチルアセトアミド等が挙げられる。
Examples of the solvent for the electrode slurry include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone (GBL), tetrahydrofuran (THF), Examples include dioxolane, sulfolane, DMF, N, N-dimethylacetamide and the like.
本発明の電荷貯蔵材料を含む電極活物質を正極層に使用する場合、負極層内に含まれる負極活物質としては、グラファイト、カーボンブラック、アセチレンブラック、VGCF、カーボンナノチューブ、カーボンナノホーン、グラフェン等の炭素材料、Li、Li-Al、Li-Si、Li-Sn等のリチウム合金、Si、SiO、SiO2、Si-SiO2複合体、Sn、SnO、SnO2、PbO、PbO2、GeO、GeO2、WO2、MoO2、Fe2O3、Nb2O5、TiO2、Li4Ti5O12、Li2Ti3O7等が挙げられる。
When the electrode active material containing the charge storage material of the present invention is used in the positive electrode layer, examples of the negative electrode active material contained in the negative electrode layer include graphite, carbon black, acetylene black, VGCF, carbon nanotube, carbon nanohorn, and graphene. Carbon materials, lithium alloys such as Li, Li-Al, Li-Si, and Li-Sn, Si, SiO, SiO 2 , Si-SiO 2 composites, Sn, SnO, SnO 2 , PbO, PbO 2 , GeO, GeO 2 , WO 2 , MoO 2 , Fe 2 O 3 , Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , Li 2 Ti 3 O 7, and the like.
本発明の電荷貯蔵材料を含む電極活物質を負極層に使用する場合、正極層内に含まれる正極活物質としては、ニトロキシラジカル基を含有する化合物、有機硫黄ポリマー、本発明の電荷貯蔵材料以外のキノンポリマー、キノイド系材料、ジオン系材料、ルベアン酸系材料等の有機電極活物質、LiCoO2、LiMn2O4、LiNiO2、LiNi0.5Mn0.5O2、Li(NiaCobMnc)O2(ただし、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiFePO4、LiMnPO4、LiCoPO4、Fe2(SO4)3、LiMnSiO4、V2O5等の無機電極活物質等が挙げられる。
When the electrode active material containing the charge storage material of the present invention is used for the negative electrode layer, the positive electrode active material contained in the positive electrode layer includes a compound containing a nitroxy radical group, an organic sulfur polymer, and the charge storage material of the present invention. Other than quinone polymers, quinoid-based materials, dione-based materials, rubeanic acid-based materials, and other organic electrode active materials, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 0.5 Mn 0.5 O 2 , Li (Ni a Co b M n c ) O 2 (where 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiFePO 4 , LiMnPO 4 , LiCoPO 4 , Fe 2 (SO 4 ) 3 , LiMnSiO 4 , V An inorganic electrode active material such as 2 O 5 may be used.
本発明の電荷貯蔵材料を含む電極活物質を負極層に使用する場合、上記負極活物質と併用してもよい。また、本発明の電荷貯蔵材料を含む電極活物質を正極層に使用する場合、上記正極活物質と併用してもよい。
When the electrode active material containing the charge storage material of the present invention is used in the negative electrode layer, it may be used in combination with the above negative electrode active material. When the electrode active material containing the charge storage material of the present invention is used in the positive electrode layer, it may be used in combination with the positive electrode active material.
本発明の電荷貯蔵材料を含む電極活物質を空気極(正極)とし、空気電池として用いてもよい。この場合、負極層内に含まれる負極活物質としては、上記の負極活物質に加え、ナトリウム、マグネシウム、アルミニウム、カルシウム、亜鉛等を用いることができる。
The electrode active material containing the charge storage material of the present invention may be used as an air electrode (positive electrode) and used as an air battery. In this case, as the negative electrode active material contained in the negative electrode layer, sodium, magnesium, aluminum, calcium, zinc or the like can be used in addition to the above negative electrode active material.
なお、正極を空気極とし、空気電池として用いる場合、正極層内に含まれる酸化還元補助材として、本発明の電荷貯蔵材料に加え、酸化マンガン等の無機材料、2,2,6,6-テトラメチルピペリジン-N-オキシルポリマー等のニトロキシラジカル材料を併用してもよい。
When the positive electrode is used as an air electrode and used as an air battery, as the redox auxiliary material contained in the positive electrode layer, in addition to the charge storage material of the present invention, an inorganic material such as manganese oxide, 2, 2, 6, 6- A nitroxy radical material such as tetramethylpiperidine-N-oxyl polymer may be used in combination.
上記電極層の膜厚は、特に限定されないが、好ましくは0.01~1,000μm程度、より好ましくは0.1~100μm程度である。
The thickness of the electrode layer is not particularly limited, but is preferably about 0.01 to 1,000 μm, more preferably about 0.1 to 100 μm.
上記セパレータ層に使用される材料としては、例えば、多孔質ポリオレフィン、ポリアミド、ポリエステル等が挙げられる。
Examples of the material used for the separator layer include porous polyolefin, polyamide, polyester and the like.
上記電解液を構成する電解質としては、例えば、LiPF6、LiBF4、LiN(C2F5SO2)2、LiAsF6、LiSbF6、LiAlF4、LiGaF4、LiInF4、LiClO4、LiN(CF3SO2)2、LiCF3SO3、LiSiF6、LiN(CF3SO2)(C4F9SO2)等のリチウム塩、LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、4級イミダゾリウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩及び過塩素酸塩、LiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物等が挙げられる。
The electrolyte constituting the electrolyte solution, for example, LiPF 6, LiBF 4, LiN (C 2 F 5 SO 2) 2, LiAsF 6, LiSbF 6, LiAlF 4, LiGaF 4, LiInF 4, LiClO 4, LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSiF 6 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and other lithium salts, LiI, NaI, KI, CsI, CaI 2 and other metal iodides, Examples thereof include iodide salts of quaternary imidazolium compounds, iodide salts of tetraalkylammonium compounds and perchlorates, and metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr 2 .
上記電解液を構成する溶媒は、電池を構成する物質に対して腐食や分解を生じさせて性能を劣化させるものでなく、上記電解質を溶解するものであれば特に限定されない。例えば、非水系の溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、GBL等の環状エステル類;THF、ジメトキシエタン等のエーテル類;ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート等の鎖状エステル類等が用いられる。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。
The solvent that composes the electrolyte solution is not particularly limited as long as it does not corrode or decompose a substance that composes the battery and deteriorates the performance, and dissolves the electrolyte. For example, as the non-aqueous solvent, cyclic esters such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, GBL; ethers such as THF and dimethoxyethane; dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate, etc. A chain ester or the like is used. These solvents may be used alone or in combination of two or more.
上記電解液中の電解質の濃度は0.001~2mol/Lであることが好ましく、0.001~1.2mol/Lであることがより好ましく、より高い電池性能を発揮する電池を得る観点から、上記電解質の濃度は0.1mol/L以上とすることがより一層好ましく、0.5mol/L以上とすることが更に好ましい。このような濃度の電解液を用いることで、良好な電池性能を発揮することができる。本発明では、特に上記ポリマーを電極活物質として用いることで、電解質の濃度が0.1mol/L未満の低濃度領域においてもその電気化学的安定性によって良好な電池性能を発揮し得る電池を得ることができる。
The concentration of the electrolyte in the electrolytic solution is preferably 0.001 to 2 mol / L, more preferably 0.001 to 1.2 mol / L, from the viewpoint of obtaining a battery exhibiting higher battery performance. The concentration of the electrolyte is more preferably 0.1 mol / L or more, further preferably 0.5 mol / L or more. By using the electrolyte solution having such a concentration, good battery performance can be exhibited. In the present invention, by using the above-mentioned polymer as an electrode active material, a battery capable of exhibiting good battery performance due to its electrochemical stability even in a low concentration region where the concentration of the electrolyte is less than 0.1 mol / L is obtained. be able to.
本発明では、固体電解質を用いてもよく、硫化物系固体電解質及び酸化物系固体電解質等の無機固体電解質や、高分子系電解質等の有機固体電解質を好適に用いることができる。これらの固体電解質を用いることで電解液を使用しない全固体電池を得ることができる。
In the present invention, a solid electrolyte may be used, and an inorganic solid electrolyte such as a sulfide-based solid electrolyte and an oxide-based solid electrolyte, or an organic solid electrolyte such as a polymer-based electrolyte can be preferably used. By using these solid electrolytes, it is possible to obtain an all-solid battery that does not use an electrolytic solution.
上記硫化物系固体電解質としては、Li2S-SiS2-リチウム化合物(ここで、リチウム化合物はLi3PO4、LiIおよびLi4SiO4からなる群より選ばれる少なくとも1種である)、Li2S-P2O5、Li2S-B2S5、Li2S-P2S5-GeS2等のチオリシコン系材料等を挙げることができる。
上記酸化物系固体電解質としては、ナトリウム/アルミナ等を挙げることができる。
上記高分子系固体電解質としては、ポリエチレンオキシド系材料や、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニリデン、アクリル酸、メタクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、スチレン及びフッ化ビニリデン等のモノマーを重合又は共重合して得られる高分子化合物等を挙げることができる。なお、上記高分子系固体電解質には、支持塩及び可塑剤を含んでいてもよい。
本発明において、上記固体電解質のイオン伝導度は、10-7~10-3S/cmが好ましく、10-5~10-3S/cmがより好ましい。 Examples of the sulfide-based solid electrolyte include Li 2 S-SiS 2 -lithium compound (wherein the lithium compound is at least one selected from the group consisting of Li 3 PO 4, LiI and Li 4 SiO 4 ) , Li Examples thereof include thiolysicone-based materials such as 2 S-P 2 O 5, Li 2 S-B 2 S 5, and Li 2 S-P 2 S 5 -GeS 2 .
Examples of the oxide-based solid electrolyte include sodium / alumina.
Examples of the polymer-based solid electrolyte include polyethylene oxide-based materials, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, vinylidene chloride, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, and methyl methacrylate. Examples thereof include polymer compounds obtained by polymerizing or copolymerizing monomers such as styrene and vinylidene fluoride. The polymer solid electrolyte may contain a supporting salt and a plasticizer.
In the present invention, the ionic conductivity of the solid electrolyte is preferably 10 −7 to 10 −3 S / cm, more preferably 10 −5 to 10 −3 S / cm.
上記酸化物系固体電解質としては、ナトリウム/アルミナ等を挙げることができる。
上記高分子系固体電解質としては、ポリエチレンオキシド系材料や、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニリデン、アクリル酸、メタクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、スチレン及びフッ化ビニリデン等のモノマーを重合又は共重合して得られる高分子化合物等を挙げることができる。なお、上記高分子系固体電解質には、支持塩及び可塑剤を含んでいてもよい。
本発明において、上記固体電解質のイオン伝導度は、10-7~10-3S/cmが好ましく、10-5~10-3S/cmがより好ましい。 Examples of the sulfide-based solid electrolyte include Li 2 S-SiS 2 -lithium compound (wherein the lithium compound is at least one selected from the group consisting of Li 3 PO 4, LiI and Li 4 SiO 4 ) , Li Examples thereof include thiolysicone-based materials such as 2 S-P 2 O 5, Li 2 S-B 2 S 5, and Li 2 S-P 2 S 5 -GeS 2 .
Examples of the oxide-based solid electrolyte include sodium / alumina.
Examples of the polymer-based solid electrolyte include polyethylene oxide-based materials, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, vinylidene chloride, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, and methyl methacrylate. Examples thereof include polymer compounds obtained by polymerizing or copolymerizing monomers such as styrene and vinylidene fluoride. The polymer solid electrolyte may contain a supporting salt and a plasticizer.
In the present invention, the ionic conductivity of the solid electrolyte is preferably 10 −7 to 10 −3 S / cm, more preferably 10 −5 to 10 −3 S / cm.
上記高分子系固体電解質に含まれる支持塩としては、リチウム(フルオロスルホニルイミド)等を挙げることができ、可塑剤としては、スクシノニトリル等を挙げることができる。
Examples of the supporting salt contained in the polymer solid electrolyte include lithium (fluorosulfonylimide) and the like, and examples of the plasticizer include succinonitrile and the like.
以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、使用した装置及び測定条件は以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The equipment used and the measurement conditions are as follows.
(1)自転・公転ミキサー
(株)シンキー製、あわとり練太郎AR-100
(2)ボールミル混錬
FRISCH社製、Mini-Mill pulverisette23
(3)1H-NMRスペクトル
日本電子(株)製、核磁気共鳴装置ECX-500(溶媒:ジメチルスルホキシド-d6(DMSO-d6)、内部標準:テトラメチルシラン)
(4)IRスペクトル
日本分光(株)製、フーリエ変換赤外分光光度計FT/IR-6100
(5)元素分析
Perkin Elmer社製、元素分析装置PE2400 II
(6)分子量の測定
(株)島津製作所製 RID-10A/CBM-20A/DGU-20A3/LC-20AD/SPD-20A/CTO-20A搭載(カラム:(株)島津製作所製 TSgel SuperAW-H、カラム温度:50℃、溶媒:DMF、検出器:UV(275nm)・RI検出器(内臓)、検量線:標準ポリスチレン)
(7)CV測定
ビー・エー・エス(株)製、ALSCH1760EW
(8)電池の特性評価
ビー・エー・エス(株)製、ALSCH1760EW (1) Rotation / revolution mixer Awatori Rentaro AR-100 made by Shinky Co., Ltd.
(2) Ball mill kneading Mini-Mill pulperette 23 manufactured by FRISCH
(3) 1 H-NMR spectrum Nuclear magnetic resonance apparatus ECX-500 (solvent: dimethyl sulfoxide-d 6 (DMSO-d 6 ), manufactured by JEOL Ltd., internal standard: tetramethylsilane)
(4) IR spectrum Fourier transform infrared spectrophotometer FT / IR-6100 manufactured by JASCO Corporation
(5) Elemental analysis Elemental analyzer PE2400 II manufactured by Perkin Elmer, Inc.
(6) Measurement of molecular weight Shimadzu Corporation RID-10A / CBM-20A / DGU-20A3 / LC-20AD / SPD-20A / CTO-20A (column: Shimadzu Corporation TSgel SuperAW-H, Column temperature: 50 ° C, solvent: DMF, detector: UV (275 nm) / RI detector (internal), calibration curve: standard polystyrene)
(7) CV measurement manufactured by BAS Co., Ltd., ALSCH1760EW
(8) Battery characteristics evaluation ALSCH1760EW, manufactured by BAS Co., Ltd.
(株)シンキー製、あわとり練太郎AR-100
(2)ボールミル混錬
FRISCH社製、Mini-Mill pulverisette23
(3)1H-NMRスペクトル
日本電子(株)製、核磁気共鳴装置ECX-500(溶媒:ジメチルスルホキシド-d6(DMSO-d6)、内部標準:テトラメチルシラン)
(4)IRスペクトル
日本分光(株)製、フーリエ変換赤外分光光度計FT/IR-6100
(5)元素分析
Perkin Elmer社製、元素分析装置PE2400 II
(6)分子量の測定
(株)島津製作所製 RID-10A/CBM-20A/DGU-20A3/LC-20AD/SPD-20A/CTO-20A搭載(カラム:(株)島津製作所製 TSgel SuperAW-H、カラム温度:50℃、溶媒:DMF、検出器:UV(275nm)・RI検出器(内臓)、検量線:標準ポリスチレン)
(7)CV測定
ビー・エー・エス(株)製、ALSCH1760EW
(8)電池の特性評価
ビー・エー・エス(株)製、ALSCH1760EW (1) Rotation / revolution mixer Awatori Rentaro AR-100 made by Shinky Co., Ltd.
(2) Ball mill kneading Mini-Mill pulperette 23 manufactured by FRISCH
(3) 1 H-NMR spectrum Nuclear magnetic resonance apparatus ECX-500 (solvent: dimethyl sulfoxide-d 6 (DMSO-d 6 ), manufactured by JEOL Ltd., internal standard: tetramethylsilane)
(4) IR spectrum Fourier transform infrared spectrophotometer FT / IR-6100 manufactured by JASCO Corporation
(5) Elemental analysis Elemental analyzer PE2400 II manufactured by Perkin Elmer, Inc.
(6) Measurement of molecular weight Shimadzu Corporation RID-10A / CBM-20A / DGU-20A3 / LC-20AD / SPD-20A / CTO-20A (column: Shimadzu Corporation TSgel SuperAW-H, Column temperature: 50 ° C, solvent: DMF, detector: UV (275 nm) / RI detector (internal), calibration curve: standard polystyrene)
(7) CV measurement manufactured by BAS Co., Ltd., ALSCH1760EW
(8) Battery characteristics evaluation ALSCH1760EW, manufactured by BAS Co., Ltd.
[1]ポリマーAの合成
[合成例1]1,2,4,5-テトラアミノ-p-ベンゾキノンの合成
1,2,4,5-テトラアミノ-p-ベンゾキノンは、米国特許第3051725号明細書に記載された方法を参考にして、以下のように合成した。
100mLフラスコに、テトラクロロ-p-ベンゾキノン(別名クロラニル、東京化成工業(株)製)1.0g(4.07mmol)及びフタルイミドカリウム3.77g(20.35mmol)を加え、脱水DMFを20mL加えた後、70℃で6時間反応させた。反応終了後、沈殿物をろ別し、温純水及び温エタノールの順で洗浄し、真空乾燥を経て1,2,4,5-テトラフタルイミドキノンを黄緑色固体として得た。得られた1,2,4,5-テトラフタルイミドキノン2g(2.90mmol)を100mLフラスコに入れ、超純水12mL及びヒドラジン一水和物を8mL加えて、70℃で1時間反応させた。反応終了後、沈殿物をろ別し、純水及びエタノールの順で洗浄し、真空乾燥を経て1,2,4,5-テトラアミノ-p-ベンゾキノンを紫色固体として得た。図1(a)に、得られた1,2,4,5-テトラアミノ-p-ベンゾキノンの1H-NMR測定結果を示す。その結果、4.5ppm付近にアミン由来のプロトンピークが確認された。 [1] Synthesis of Polymer A [Synthesis Example 1] Synthesis of 1,2,4,5-tetraamino-p- benzoquinone 1,2,4,5-tetraamino-p-benzoquinone is described in US Pat. No. 3,051,725. Based on the method described in the book, it was synthesized as follows.
To a 100 mL flask, 1.0 g (4.07 mmol) of tetrachloro-p-benzoquinone (also called chloranil, manufactured by Tokyo Chemical Industry Co., Ltd.) and 3.77 g (20.35 mmol) of potassium phthalimide were added, and 20 mL of dehydrated DMF was added. Then, the mixture was reacted at 70 ° C. for 6 hours. After the reaction was completed, the precipitate was separated by filtration, washed with warm pure water and warm ethanol in this order, and vacuum dried to obtain 1,2,4,5-tetraphthalimidoquinone as a yellow-green solid. 2 g (2.90 mmol) of the obtained 1,2,4,5-tetraphthalimidoquinone was placed in a 100 mL flask, 12 mL of ultrapure water and 8 mL of hydrazine monohydrate were added, and the mixture was reacted at 70 ° C. for 1 hour. After the reaction was completed, the precipitate was filtered off, washed with pure water and ethanol in this order, and dried in vacuum to obtain 1,2,4,5-tetraamino-p-benzoquinone as a purple solid. FIG. 1 (a) shows the 1 H-NMR measurement result of the obtained 1,2,4,5-tetraamino-p-benzoquinone. As a result, a proton peak derived from an amine was confirmed around 4.5 ppm.
[合成例1]1,2,4,5-テトラアミノ-p-ベンゾキノンの合成
1,2,4,5-テトラアミノ-p-ベンゾキノンは、米国特許第3051725号明細書に記載された方法を参考にして、以下のように合成した。
100mLフラスコに、テトラクロロ-p-ベンゾキノン(別名クロラニル、東京化成工業(株)製)1.0g(4.07mmol)及びフタルイミドカリウム3.77g(20.35mmol)を加え、脱水DMFを20mL加えた後、70℃で6時間反応させた。反応終了後、沈殿物をろ別し、温純水及び温エタノールの順で洗浄し、真空乾燥を経て1,2,4,5-テトラフタルイミドキノンを黄緑色固体として得た。得られた1,2,4,5-テトラフタルイミドキノン2g(2.90mmol)を100mLフラスコに入れ、超純水12mL及びヒドラジン一水和物を8mL加えて、70℃で1時間反応させた。反応終了後、沈殿物をろ別し、純水及びエタノールの順で洗浄し、真空乾燥を経て1,2,4,5-テトラアミノ-p-ベンゾキノンを紫色固体として得た。図1(a)に、得られた1,2,4,5-テトラアミノ-p-ベンゾキノンの1H-NMR測定結果を示す。その結果、4.5ppm付近にアミン由来のプロトンピークが確認された。 [1] Synthesis of Polymer A [Synthesis Example 1] Synthesis of 1,2,4,5-tetraamino-p-
To a 100 mL flask, 1.0 g (4.07 mmol) of tetrachloro-p-benzoquinone (also called chloranil, manufactured by Tokyo Chemical Industry Co., Ltd.) and 3.77 g (20.35 mmol) of potassium phthalimide were added, and 20 mL of dehydrated DMF was added. Then, the mixture was reacted at 70 ° C. for 6 hours. After the reaction was completed, the precipitate was separated by filtration, washed with warm pure water and warm ethanol in this order, and vacuum dried to obtain 1,2,4,5-tetraphthalimidoquinone as a yellow-green solid. 2 g (2.90 mmol) of the obtained 1,2,4,5-tetraphthalimidoquinone was placed in a 100 mL flask, 12 mL of ultrapure water and 8 mL of hydrazine monohydrate were added, and the mixture was reacted at 70 ° C. for 1 hour. After the reaction was completed, the precipitate was filtered off, washed with pure water and ethanol in this order, and dried in vacuum to obtain 1,2,4,5-tetraamino-p-benzoquinone as a purple solid. FIG. 1 (a) shows the 1 H-NMR measurement result of the obtained 1,2,4,5-tetraamino-p-benzoquinone. As a result, a proton peak derived from an amine was confirmed around 4.5 ppm.
[実施例1]ポリマーAの合成
100mLフラスコに、合成例1で得た1,2,4,5-テトラアミノ-p-ベンゾキノン(500.0mg、2.97mmol)、トリキノイル水和物(東京化成工業(株)製)(499.7mg、2.97mmol)及びポリリン酸(富士フイルム和光純薬工業(株)製)4gを加えて、強制撹拌機で攪拌しながら80℃で17時間反応させた。反応溶液を100mLの純水に滴下し、沈殿した固体をろ別し、メタノールによるソックスレー精製を経て不溶物を回収し、真空乾燥を経てポリマーAを黒色固体として得た。得られた固体の熱DMSOへの溶解部を1H-NMR測定したところ、4.5ppm付近に現れていたアミン由来のプロトンピークが消失したことから、反応が進行して本発明のポリマーが合成されたことが確認された(図1(b)参照)。また、IR測定より1,622cm-1にC=O由来のピークが観測されたことから、末端官能基がカルボニル基であることが示唆された。元素分析より、炭素及び窒素のモル比は、炭素:窒素=2.55:1であった。ポリマーAの数平均分子量Mnは1,156、重量平均分子量Mwは1,394、分散度Mw/Mnは1.20であった。 Example 1 Synthesis of Polymer A In a 100 mL flask, 1,2,4,5-tetraamino-p-benzoquinone (500.0 mg, 2.97 mmol) obtained in Synthesis Example 1 and triquinoyl hydrate (Tokyo Kasei) were used. Kogyo Co., Ltd. (499.7 mg, 2.97 mmol) and polyphosphoric acid (Fujifilm Wako Pure Chemical Industries, Ltd.) 4 g were added and reacted at 80 ° C. for 17 hours while stirring with a forced stirrer. . The reaction solution was added dropwise to 100 mL of pure water, the precipitated solid was filtered off, the insoluble matter was recovered by Soxhlet purification with methanol, and vacuum dried to obtain a polymer A as a black solid. 1 H-NMR measurement of the dissolved part of the obtained solid in hot DMSO revealed that the amine-derived proton peak, which had appeared near 4.5 ppm, disappeared, and the reaction proceeded to synthesize the polymer of the present invention. It was confirmed that this was done (see FIG. 1 (b)). Further, a peak derived from C═O was observed at 1,622 cm −1 by IR measurement, suggesting that the terminal functional group was a carbonyl group. From the elemental analysis, the molar ratio of carbon and nitrogen was carbon: nitrogen = 2.55: 1. The number average molecular weight Mn of the polymer A was 1,156, the weight average molecular weight Mw was 1,394, and the dispersity Mw / Mn was 1.20.
100mLフラスコに、合成例1で得た1,2,4,5-テトラアミノ-p-ベンゾキノン(500.0mg、2.97mmol)、トリキノイル水和物(東京化成工業(株)製)(499.7mg、2.97mmol)及びポリリン酸(富士フイルム和光純薬工業(株)製)4gを加えて、強制撹拌機で攪拌しながら80℃で17時間反応させた。反応溶液を100mLの純水に滴下し、沈殿した固体をろ別し、メタノールによるソックスレー精製を経て不溶物を回収し、真空乾燥を経てポリマーAを黒色固体として得た。得られた固体の熱DMSOへの溶解部を1H-NMR測定したところ、4.5ppm付近に現れていたアミン由来のプロトンピークが消失したことから、反応が進行して本発明のポリマーが合成されたことが確認された(図1(b)参照)。また、IR測定より1,622cm-1にC=O由来のピークが観測されたことから、末端官能基がカルボニル基であることが示唆された。元素分析より、炭素及び窒素のモル比は、炭素:窒素=2.55:1であった。ポリマーAの数平均分子量Mnは1,156、重量平均分子量Mwは1,394、分散度Mw/Mnは1.20であった。 Example 1 Synthesis of Polymer A In a 100 mL flask, 1,2,4,5-tetraamino-p-benzoquinone (500.0 mg, 2.97 mmol) obtained in Synthesis Example 1 and triquinoyl hydrate (Tokyo Kasei) were used. Kogyo Co., Ltd. (499.7 mg, 2.97 mmol) and polyphosphoric acid (Fujifilm Wako Pure Chemical Industries, Ltd.) 4 g were added and reacted at 80 ° C. for 17 hours while stirring with a forced stirrer. . The reaction solution was added dropwise to 100 mL of pure water, the precipitated solid was filtered off, the insoluble matter was recovered by Soxhlet purification with methanol, and vacuum dried to obtain a polymer A as a black solid. 1 H-NMR measurement of the dissolved part of the obtained solid in hot DMSO revealed that the amine-derived proton peak, which had appeared near 4.5 ppm, disappeared, and the reaction proceeded to synthesize the polymer of the present invention. It was confirmed that this was done (see FIG. 1 (b)). Further, a peak derived from C═O was observed at 1,622 cm −1 by IR measurement, suggesting that the terminal functional group was a carbonyl group. From the elemental analysis, the molar ratio of carbon and nitrogen was carbon: nitrogen = 2.55: 1. The number average molecular weight Mn of the polymer A was 1,156, the weight average molecular weight Mw was 1,394, and the dispersity Mw / Mn was 1.20.
[2]ポリマーを含む電極及び電池の評価
[実施例2]ポリマーAを用いた薄膜電極のCV測定
ボールミルにポリマーA5mg、気相成長炭素繊維40mg及び2質量%PVDFのNMP溶液250mgを加え15分間混錬し、電極スラリーを得た。得られた電極スラリーをGC基板上に塗布し、これを80℃で16時間加熱真空乾燥して薄膜電極(膜厚約20μm)を得た。
次に、得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1mol/LのLiClO4のGBL溶液を用いた。
上記薄膜電極を作用極11に、白金電極を対極12に、Ag/AgCl電極を参照極13に用い、これらをビーカー内に設置し、この中に上記と同様の電解液14を加えて、図2に示すようなビーカーセル1を作製した。
このビーカーセル1を用いて、スキャンレート10mV/secでCV測定を行った。結果を図3に示す。図3に示すようにポリマーAを用いて作製した薄膜電極は、E1/2=0.057V、-0.57に酸化還元波が現れ、繰り返し掃引の後も安定であった。 [2] Evaluation of Electrode Containing Polymer and Battery [Example 2] CV Measurement of Thin Film Electrode Using Polymer A 5 mg of polymer A, 40 mg of vapor grown carbon fiber and 250 mg of 2% by mass PVDF NMP solution were added to a ball mill for 15 minutes. The mixture was kneaded to obtain an electrode slurry. The obtained electrode slurry was applied onto a GC substrate and heated and vacuum dried at 80 ° C. for 16 hours to obtain a thin film electrode (film thickness of about 20 μm).
Next, the obtained electrode was dipped in an electrolytic solution so that the voids in the electrode were impregnated with the electrolytic solution. As the electrolytic solution, a GBL solution of 1 mol / L LiClO 4 was used.
The thin film electrode was used as a workingelectrode 11, a platinum electrode was used as a counter electrode 12, and an Ag / AgCl electrode was used as a reference electrode 13. These were placed in a beaker, and an electrolytic solution 14 similar to the above was added thereto, A beaker cell 1 as shown in 2 was produced.
Using thisbeaker cell 1, CV measurement was performed at a scan rate of 10 mV / sec. The results are shown in Fig. 3. As shown in FIG. 3, the thin film electrode prepared using the polymer A showed a redox wave at E 1/2 = 0.057 V and −0.57, and was stable even after repeated sweeps.
[実施例2]ポリマーAを用いた薄膜電極のCV測定
ボールミルにポリマーA5mg、気相成長炭素繊維40mg及び2質量%PVDFのNMP溶液250mgを加え15分間混錬し、電極スラリーを得た。得られた電極スラリーをGC基板上に塗布し、これを80℃で16時間加熱真空乾燥して薄膜電極(膜厚約20μm)を得た。
次に、得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1mol/LのLiClO4のGBL溶液を用いた。
上記薄膜電極を作用極11に、白金電極を対極12に、Ag/AgCl電極を参照極13に用い、これらをビーカー内に設置し、この中に上記と同様の電解液14を加えて、図2に示すようなビーカーセル1を作製した。
このビーカーセル1を用いて、スキャンレート10mV/secでCV測定を行った。結果を図3に示す。図3に示すようにポリマーAを用いて作製した薄膜電極は、E1/2=0.057V、-0.57に酸化還元波が現れ、繰り返し掃引の後も安定であった。 [2] Evaluation of Electrode Containing Polymer and Battery [Example 2] CV Measurement of Thin Film Electrode Using Polymer A 5 mg of polymer A, 40 mg of vapor grown carbon fiber and 250 mg of 2% by mass PVDF NMP solution were added to a ball mill for 15 minutes. The mixture was kneaded to obtain an electrode slurry. The obtained electrode slurry was applied onto a GC substrate and heated and vacuum dried at 80 ° C. for 16 hours to obtain a thin film electrode (film thickness of about 20 μm).
Next, the obtained electrode was dipped in an electrolytic solution so that the voids in the electrode were impregnated with the electrolytic solution. As the electrolytic solution, a GBL solution of 1 mol / L LiClO 4 was used.
The thin film electrode was used as a working
Using this
[実施例3]ポリマーAを電極に用いた電池の特性評価1(コインセル)
実施例1で合成したポリマーA/炭素複合電極を正極、金属リチウムを負極とし、電解液は1mol/Lのヘキサフルオロリン酸リチウムのEC/DEC(=3/7(v/v))溶液を選択しポリマーリチウム二次電池を作製した。なお、ポリマーリチウム二次電池は以下の手法で作製した。アルミ箔上にポリマー/炭素複合電極を作製し半径6mmに、セパレータは半径8.5mmにそれぞれ切り抜いた。プラス端子ケース上にプラスチック製ガスケット、炭素複合電極、セパレータ、金属リチウム、スペーサー及びワッシャーの順に積層し、キャップをはめカシメ機ホルダーを用いて充分にカシメることでポリマーリチウム二次電池を作製した。
作製した電池を4.04μA(0.2C)の定電流で電圧が4.0Vになるまで充電し、その後、4.04μA(0.2C)で放電を行った。その結果、電圧が2.0V付近で秒間ほぼ一定となった後、急速に低下し、放電容量は145mAh/g(理論容量比72%)となった。クーロン効率は約90%であった。これにより、ポリマーAが効果的な電荷貯蔵材料として動作していることを確認した。電圧が4.0Vまで上昇したところで再び充電を行い、更に2.0~4.0Vの範囲で充放電を240回繰り返した。充放電量を変化させた場合の基準電極との電位差の測定結果を図4に、及び充放電した時のサイクル特性を図5に示す。充放電を100回繰り返した後も充放電容量は95%以上を維持した。 [Example 3]Characteristic evaluation 1 of battery using polymer A as an electrode (coin cell)
The polymer A / carbon composite electrode synthesized in Example 1 was used as a positive electrode, metallic lithium was used as a negative electrode, and the electrolyte solution was an EC / DEC (= 3/7 (v / v)) solution of 1 mol / L lithium hexafluorophosphate. A selected polymer lithium secondary battery was produced. The polymer lithium secondary battery was manufactured by the following method. A polymer / carbon composite electrode was produced on an aluminum foil and cut into a radius of 6 mm and a separator into a radius of 8.5 mm. A polymer lithium secondary battery was produced by stacking a plastic gasket, a carbon composite electrode, a separator, metallic lithium, a spacer and a washer in this order on a positive terminal case, fitting a cap and caulking sufficiently using a caulking machine holder.
The produced battery was charged with a constant current of 4.04 μA (0.2 C) until the voltage reached 4.0 V, and then discharged at 4.04 μA (0.2 C). As a result, the voltage became almost constant for about 2.0 V for a second, and then rapidly decreased, and the discharge capacity became 145 mAh / g (theoretical capacity ratio: 72%). Coulombic efficiency was about 90%. This confirmed that polymer A was acting as an effective charge storage material. When the voltage increased to 4.0 V, the battery was charged again, and charging and discharging were repeated 240 times in the range of 2.0 to 4.0 V. FIG. 4 shows the measurement results of the potential difference from the reference electrode when the charge / discharge amount was changed, and FIG. 5 shows the cycle characteristics when charging / discharging. The charge / discharge capacity was maintained at 95% or more even after the charge / discharge was repeated 100 times.
実施例1で合成したポリマーA/炭素複合電極を正極、金属リチウムを負極とし、電解液は1mol/Lのヘキサフルオロリン酸リチウムのEC/DEC(=3/7(v/v))溶液を選択しポリマーリチウム二次電池を作製した。なお、ポリマーリチウム二次電池は以下の手法で作製した。アルミ箔上にポリマー/炭素複合電極を作製し半径6mmに、セパレータは半径8.5mmにそれぞれ切り抜いた。プラス端子ケース上にプラスチック製ガスケット、炭素複合電極、セパレータ、金属リチウム、スペーサー及びワッシャーの順に積層し、キャップをはめカシメ機ホルダーを用いて充分にカシメることでポリマーリチウム二次電池を作製した。
作製した電池を4.04μA(0.2C)の定電流で電圧が4.0Vになるまで充電し、その後、4.04μA(0.2C)で放電を行った。その結果、電圧が2.0V付近で秒間ほぼ一定となった後、急速に低下し、放電容量は145mAh/g(理論容量比72%)となった。クーロン効率は約90%であった。これにより、ポリマーAが効果的な電荷貯蔵材料として動作していることを確認した。電圧が4.0Vまで上昇したところで再び充電を行い、更に2.0~4.0Vの範囲で充放電を240回繰り返した。充放電量を変化させた場合の基準電極との電位差の測定結果を図4に、及び充放電した時のサイクル特性を図5に示す。充放電を100回繰り返した後も充放電容量は95%以上を維持した。 [Example 3]
The polymer A / carbon composite electrode synthesized in Example 1 was used as a positive electrode, metallic lithium was used as a negative electrode, and the electrolyte solution was an EC / DEC (= 3/7 (v / v)) solution of 1 mol / L lithium hexafluorophosphate. A selected polymer lithium secondary battery was produced. The polymer lithium secondary battery was manufactured by the following method. A polymer / carbon composite electrode was produced on an aluminum foil and cut into a radius of 6 mm and a separator into a radius of 8.5 mm. A polymer lithium secondary battery was produced by stacking a plastic gasket, a carbon composite electrode, a separator, metallic lithium, a spacer and a washer in this order on a positive terminal case, fitting a cap and caulking sufficiently using a caulking machine holder.
The produced battery was charged with a constant current of 4.04 μA (0.2 C) until the voltage reached 4.0 V, and then discharged at 4.04 μA (0.2 C). As a result, the voltage became almost constant for about 2.0 V for a second, and then rapidly decreased, and the discharge capacity became 145 mAh / g (theoretical capacity ratio: 72%). Coulombic efficiency was about 90%. This confirmed that polymer A was acting as an effective charge storage material. When the voltage increased to 4.0 V, the battery was charged again, and charging and discharging were repeated 240 times in the range of 2.0 to 4.0 V. FIG. 4 shows the measurement results of the potential difference from the reference electrode when the charge / discharge amount was changed, and FIG. 5 shows the cycle characteristics when charging / discharging. The charge / discharge capacity was maintained at 95% or more even after the charge / discharge was repeated 100 times.
[実施例4]ポリマーAを電極に用いた電池の特性評価2(コインセル)
電解液の濃度を0.001mol/Lとしたこと以外は実施例3と同様の手順でポリマーリチウム二次電池を作製した。作製した電池について、実施例3と同様の条件で充放電を240回繰り返した。充放電量を変化させた場合の基準電極との電位差の測定結果を図6に示す。その結果、低濃度の電解液を用いた場合でも良好な電池性能が得られることが確認された。 [Example 4]Characteristic evaluation 2 of battery using polymer A as an electrode (coin cell)
A polymer lithium secondary battery was produced in the same procedure as in Example 3 except that the concentration of the electrolytic solution was 0.001 mol / L. With respect to the manufactured battery, charging and discharging were repeated 240 times under the same conditions as in Example 3. FIG. 6 shows the measurement results of the potential difference from the reference electrode when the charge / discharge amount was changed. As a result, it was confirmed that good battery performance was obtained even when a low-concentration electrolytic solution was used.
電解液の濃度を0.001mol/Lとしたこと以外は実施例3と同様の手順でポリマーリチウム二次電池を作製した。作製した電池について、実施例3と同様の条件で充放電を240回繰り返した。充放電量を変化させた場合の基準電極との電位差の測定結果を図6に示す。その結果、低濃度の電解液を用いた場合でも良好な電池性能が得られることが確認された。 [Example 4]
A polymer lithium secondary battery was produced in the same procedure as in Example 3 except that the concentration of the electrolytic solution was 0.001 mol / L. With respect to the manufactured battery, charging and discharging were repeated 240 times under the same conditions as in Example 3. FIG. 6 shows the measurement results of the potential difference from the reference electrode when the charge / discharge amount was changed. As a result, it was confirmed that good battery performance was obtained even when a low-concentration electrolytic solution was used.
[実施例5]ポリマーAを電極に用いた電池の特性評価3(コインセル)
電解質としてポリエチレンオキシド(PEO)、支持塩としてリチウム(フルオロスルホニルイミド)、可塑剤としてスクシノニトリルを用いたPEO系固体電解質(イオン伝導度1.1×10-5S/cm)を電解液兼セパレーターに用いたこと以外は同様のポリマーリチウム全固体電池を作製した。作製した電池について、58℃以上1時間加熱し、室温に戻した後に充放電試験を実施した。結果を図7に示す。その結果、低レートでは100mAh/g以上の容量を確認し、リチウムイオン伝導性の低い全固体電池としても良好な性能が得られることを確認された。 [Example 5]Characteristic evaluation 3 of battery using polymer A as an electrode (coin cell)
PEO solid electrolyte (ion conductivity 1.1 × 10 −5 S / cm) using polyethylene oxide (PEO) as an electrolyte, lithium (fluorosulfonyl imide) as a supporting salt, and succinonitrile as a plasticizer also serves as an electrolyte solution. A similar polymer lithium all-solid-state battery was prepared except that it was used as a separator. The produced battery was heated at 58 ° C. or higher for 1 hour, returned to room temperature, and then subjected to a charge / discharge test. The results are shown in Fig. 7. As a result, a capacity of 100 mAh / g or more was confirmed at a low rate, and it was confirmed that good performance can be obtained as an all-solid-state battery having low lithium ion conductivity.
電解質としてポリエチレンオキシド(PEO)、支持塩としてリチウム(フルオロスルホニルイミド)、可塑剤としてスクシノニトリルを用いたPEO系固体電解質(イオン伝導度1.1×10-5S/cm)を電解液兼セパレーターに用いたこと以外は同様のポリマーリチウム全固体電池を作製した。作製した電池について、58℃以上1時間加熱し、室温に戻した後に充放電試験を実施した。結果を図7に示す。その結果、低レートでは100mAh/g以上の容量を確認し、リチウムイオン伝導性の低い全固体電池としても良好な性能が得られることを確認された。 [Example 5]
PEO solid electrolyte (ion conductivity 1.1 × 10 −5 S / cm) using polyethylene oxide (PEO) as an electrolyte, lithium (fluorosulfonyl imide) as a supporting salt, and succinonitrile as a plasticizer also serves as an electrolyte solution. A similar polymer lithium all-solid-state battery was prepared except that it was used as a separator. The produced battery was heated at 58 ° C. or higher for 1 hour, returned to room temperature, and then subjected to a charge / discharge test. The results are shown in Fig. 7. As a result, a capacity of 100 mAh / g or more was confirmed at a low rate, and it was confirmed that good performance can be obtained as an all-solid-state battery having low lithium ion conductivity.
1 ビーカーセル
11 作用極(薄膜電極)
12 対極
13 参照極
14 電解液 1Beaker cell 11 Working electrode (thin film electrode)
12Counter electrode 13 Reference electrode 14 Electrolyte
11 作用極(薄膜電極)
12 対極
13 参照極
14 電解液 1
12
Claims (14)
- 上記式(1)~(3)で表される繰り返し単位のうち、式(2)及び(3)で表される繰り返し単位から選ばれる少なくとも1種を必ず含む請求項1記載のポリマー。 The polymer according to claim 1, which always contains at least one selected from the repeating units represented by the formulas (2) and (3) among the repeating units represented by the formulas (1) to (3).
- 請求項1又は2記載のポリマーからなる電荷貯蔵材料。 A charge storage material comprising the polymer according to claim 1 or 2.
- 請求項3記載の電荷貯蔵材料を含む電極活物質。 An electrode active material containing the charge storage material according to claim 3.
- 請求項4記載の電極活物質、及び溶媒を含む電極スラリー。 An electrode slurry containing the electrode active material according to claim 4 and a solvent.
- 請求項4記載の電極活物質を含む薄膜。 A thin film containing the electrode active material according to claim 4.
- 請求項5記載の電極スラリーから得られる薄膜。 A thin film obtained from the electrode slurry according to claim 5.
- 請求項4記載の電極活物質を含む電極。 An electrode containing the electrode active material according to claim 4.
- 請求項6又は7記載の薄膜を含む電極。 An electrode including the thin film according to claim 6 or 7.
- 請求項8又は9記載の電極を含む二次電池。 A secondary battery including the electrode according to claim 8 or 9.
- 請求項8又は9記載の電極を含むリチウムイオン電池。 A lithium ion battery including the electrode according to claim 8 or 9.
- 電解質の濃度が0.001~2mol/Lである電解液を含む請求項11記載のリチウムイオン電池。 The lithium ion battery according to claim 11, which contains an electrolytic solution having an electrolyte concentration of 0.001 to 2 mol / L.
- イオン伝導度が10-7~10-3S/cmである固体電解質を含む全固体電池である請求項10記載の二次電池。 The secondary battery according to claim 10, which is an all-solid battery containing a solid electrolyte having an ionic conductivity of 10 -7 to 10 -3 S / cm.
- 1,2,4,5-テトラアミノ-p-ベンゾキノンとトリキノイル水和物とを縮合重合させることを含む請求項1記載のポリマーの製造方法。 The method for producing a polymer according to claim 1, which comprises condensation-polymerizing 1,2,4,5-tetraamino-p-benzoquinone and triquinoyl hydrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-200532 | 2018-10-25 | ||
JP2018200532A JP7084587B2 (en) | 2018-10-25 | 2018-10-25 | Polymers, electrode active materials and secondary batteries |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020084828A1 true WO2020084828A1 (en) | 2020-04-30 |
Family
ID=70330461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023675 WO2020084828A1 (en) | 2018-10-25 | 2019-06-14 | Polymer, electrode active substance and secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7084587B2 (en) |
WO (1) | WO2020084828A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551879A (en) * | 2020-11-19 | 2022-05-27 | 泰星能源解决方案有限公司 | Nonaqueous electrolyte secondary battery |
CN115505122A (en) * | 2022-10-09 | 2022-12-23 | 南京理工大学 | Imine polymer positive electrode material synthesized by solvent-free method and application thereof |
CN116425645A (en) * | 2023-01-10 | 2023-07-14 | 浙江理工大学嵊州创新研究院有限公司 | Preparation method and application of 2,3,5, 6-tetra-aminobenzoquinone |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4157920A4 (en) * | 2021-08-19 | 2024-06-05 | Massachusetts Institute of Technology | Fused aromatic molecules as electrode materials |
CN114204020A (en) * | 2021-11-29 | 2022-03-18 | 华中科技大学 | Organic electrode material universal for alkali metal ion battery and application thereof |
CN115873192A (en) * | 2023-02-10 | 2023-03-31 | 吉林大学 | Covalent organic framework material water-based calcium ion battery cathode material rich in active sites, preparation method and application thereof |
CN116891569A (en) * | 2023-07-17 | 2023-10-17 | 吉林大学 | Reduced graphene oxide/hexaazatriphenylene organic compound positive electrode material, preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516037A (en) * | 1996-07-26 | 2000-11-28 | ジェムプリュス エス.セー.アー. | Ferromagnetic material having magnetic organic molecules and manufacturing method thereof |
JP2001512526A (en) * | 1997-12-02 | 2001-08-21 | アセップ インコーポレイティド | New electrode materials obtained from polyquinone-based ionic compounds and their use in electrochemical generators |
-
2018
- 2018-10-25 JP JP2018200532A patent/JP7084587B2/en active Active
-
2019
- 2019-06-14 WO PCT/JP2019/023675 patent/WO2020084828A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000516037A (en) * | 1996-07-26 | 2000-11-28 | ジェムプリュス エス.セー.アー. | Ferromagnetic material having magnetic organic molecules and manufacturing method thereof |
JP2001512526A (en) * | 1997-12-02 | 2001-08-21 | アセップ インコーポレイティド | New electrode materials obtained from polyquinone-based ionic compounds and their use in electrochemical generators |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551879A (en) * | 2020-11-19 | 2022-05-27 | 泰星能源解决方案有限公司 | Nonaqueous electrolyte secondary battery |
US11973228B2 (en) | 2020-11-19 | 2024-04-30 | Prime Planet Energy & Solutions, Inc. | Non-aqueous electrolyte secondary battery |
CN114551879B (en) * | 2020-11-19 | 2024-08-16 | 泰星能源解决方案有限公司 | Nonaqueous electrolyte secondary battery |
CN115505122A (en) * | 2022-10-09 | 2022-12-23 | 南京理工大学 | Imine polymer positive electrode material synthesized by solvent-free method and application thereof |
CN115505122B (en) * | 2022-10-09 | 2023-12-08 | 南京理工大学 | Imine polymer positive electrode material synthesized by solvent-free method and application thereof |
CN116425645A (en) * | 2023-01-10 | 2023-07-14 | 浙江理工大学嵊州创新研究院有限公司 | Preparation method and application of 2,3,5, 6-tetra-aminobenzoquinone |
Also Published As
Publication number | Publication date |
---|---|
JP7084587B2 (en) | 2022-06-15 |
JP2020066681A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7084587B2 (en) | Polymers, electrode active materials and secondary batteries | |
US9722249B2 (en) | Use of conductive polymers in battery electrodes | |
EP3182501B1 (en) | Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same | |
JPH11144732A (en) | Battery composite electrode and its manufacture | |
JPH09259864A (en) | Electrode containing organic disulfide compound, and manufacture thereof | |
Lewandowski et al. | Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries | |
JP5126570B2 (en) | Method for manufacturing lithium secondary battery | |
US20130252102A1 (en) | Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer | |
EP3110873A1 (en) | New lithium-doped pernigraniline-based materials | |
JP6933260B2 (en) | Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it | |
JP5280806B2 (en) | Secondary battery active material and secondary battery | |
CN114456356A (en) | Poly (perylene) tetracarboxydiimide, preparation method thereof and application thereof in lithium/sodium battery | |
Xu et al. | Synthesis and characterization of viologen functionalized fluorene-containing poly (arylene ether ketone) s for polymer batteries | |
JP7180861B2 (en) | Electrolyte, lithium ion secondary battery, compound | |
JP2002373703A (en) | Electrolyte for electrochemical device, its electrolyte or solid electrolyte, and battery | |
JP5471324B2 (en) | Secondary battery | |
WO2021106834A1 (en) | Electrode material | |
JP2002184465A (en) | Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery | |
WO2022239746A1 (en) | Binder for silicon negative electrode of lithium ion secondary battery | |
JP3444463B2 (en) | Electrode containing organic disulfide compound and method for producing the same | |
WO2024150813A1 (en) | Composition for electrode formation and additive | |
KR100454503B1 (en) | Cathode material including poly(dithiodianiline) derivatives, lithium rechargeable battery obtained therefrom and manufacturing methods thereof | |
CN117480633A (en) | Composition for forming electrode | |
KR100454504B1 (en) | Cathode material including poly(aminothiophenol) derivatives, non-aqueous secondary battery obtained therefrom and manufacturing methods thereof | |
CN117501471A (en) | Composition for forming electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19875721 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19875721 Country of ref document: EP Kind code of ref document: A1 |