WO2018079188A1 - Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal - Google Patents

Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal Download PDF

Info

Publication number
WO2018079188A1
WO2018079188A1 PCT/JP2017/035477 JP2017035477W WO2018079188A1 WO 2018079188 A1 WO2018079188 A1 WO 2018079188A1 JP 2017035477 W JP2017035477 W JP 2017035477W WO 2018079188 A1 WO2018079188 A1 WO 2018079188A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
nickel
acid
forming
conductive
Prior art date
Application number
PCT/JP2017/035477
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 雅宏
山本 和志
Original Assignee
石原ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原ケミカル株式会社 filed Critical 石原ケミカル株式会社
Priority to KR1020197011955A priority Critical patent/KR20190057105A/en
Priority to CN201780066043.1A priority patent/CN109891004B/en
Priority to KR1020217011088A priority patent/KR102409545B1/en
Publication of WO2018079188A1 publication Critical patent/WO2018079188A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting

Definitions

  • the present invention relates to a method for forming a conductive film on a specific light metal such as aluminum or magnesium that easily forms a nonconductive state.
  • the present invention provides a method by which a conductive film such as copper, silver, tin or the like can be formed with strong adhesion on the light metal, which is difficult to form a plating film, by applying heat treatment.
  • a conductive film such as copper, silver, or tin is applied to the surface of these light metals. Even if it is to be formed, surface treatment by plating or the like is difficult. Moreover, even if a plating film can be formed, it is difficult to ensure good adhesion with the light metal. Therefore, conventionally, a conductive film is formed by electroplating after the light metal is surface-treated by a double zincate method, an anodic oxidation method, an inversion electrolytic activation method, or the like.
  • a conductive film on a light metal that easily forms a non-conductive state such as aluminum or magnesium conventionally, the surface is subjected to alkali degreasing and the like to form a nickel-based film, or a predetermined amount of After the surface treatment using the treatment liquid, a conductive film such as copper, silver or tin was formed.
  • the conventional technology is as follows.
  • Patent Document 6 below focuses on forming a nickel-based film on the light metal itself.
  • Patent Document 1 Aluminum or aluminum alloy is subjected to AC electrolytic treatment in a treatment bath containing phosphoric acid and a prescribed nickel salt (nickel carbonate, nickel citrate, etc.) to form an oxide film with a fine concavo-convex structure and electroanalysis of particulate nickel
  • a method for plating an aluminum material comprising a first step of simultaneously performing extraction and a second step of performing electroless or electrolytic plating of copper, nickel or the like thereafter (claim 1, [0014] to [0015] [0044]).
  • nickel metal enters the inside of the oxide film to form an anodic oxide film having a certain thickness, and then the surface is uniformly coated with the particulate nickel film ([0014]).
  • Example 5 [0031] of the treatment liquid in the first step, a nickel salt, phosphoric acid, and malonic acid (dicarboxylic acid) are included.
  • Example 8 nickel citrate and , And phosphoric acid.
  • Patent Document 2 For the purpose of preventing cracks on the plating film ([0008]), after the oxide film on the aluminum or aluminum alloy is removed acidic or alkaline ([0009] to [0026]), the first electroless nickel-phosphorous plating A method for surface treatment of an aluminum material comprising a step of forming an electroless plating film with a liquid and a step of forming an electroless plating film with a second electroless nickel-phosphorous plating liquid (Claim 1, [0009]). . Through this treatment method, a conductive film is formed.
  • the first electroless nickel-phosphorous plating solution includes a nickel salt, hypophosphorous acid or a salt thereof, and a carboxylic acid other than aminocarboxylic acid (citric acid, acetic acid, succinic acid, malic acid, salts thereof ([0036
  • the second electroless nickel-phosphorous plating solution comprises a nickel salt, hypophosphorous acid or a salt thereof, and aminocarboxylic acid (glycine, alanine, leucine, aspartic acid, glutamic acid) or a salt thereof. Contains no carboxylic acids other than aminocarboxylic acids.
  • Example 1 a silicon plate coated with an aluminum layer was subjected to two-stage electroless nickel-phosphorus plating, and then a gold film was coated by electroless plating (Table 1).
  • Patent Document 3 Pretreatment by cathode activation in a pretreatment liquid containing sulfuric acid and a nickel salt (or iron salt, cobalt salt) on at least one surface of an aluminum or aluminum alloy molded article; A surface treatment method comprising a step of applying a metal layer (nickel, iron, cobalt and alloys thereof) to the material by electroplating (claims 1 and 2).
  • a nickel nucleus is formed through a thin aluminum oxide film on the surface of the aluminum material.
  • the nickel nucleus serves as an anchor point. It plays the role of a thin bonding layer that connects ([0012]).
  • boric acid is mentioned as a preferable example of the buffering agent contained in the pretreatment liquid used for the cathode activation treatment (claims 3 to 4, [0013]).
  • Patent Document 4 Before forming a copper plating layer on the magnesium alloy by using electrolytic plating, the surface of the magnesium alloy is treated with a pretreatment solution containing zinc sulfate, sodium pyrophosphate, potassium fluoride, and sodium carbonate to obtain a uniform current distribution.
  • This is a method of forming a film for electroplating with a surface of a magnesium alloy (claims 1 and 2).
  • the electroplating film 1 formed on the surface of the magnesium alloy is easily bonded to the copper plating layer, and the electrocopper plating layer 1 having good adhesion is formed ([0017], [0020] to [0021]). ).
  • Patent Document 5 A surface treatment of Al or Al alloy (Al alloy, etc.) by cathodic electrolysis in a phosphoric acid solution, and electroplating the surface-treated Al alloy, etc. to form a nickel film, nickel- Forming a plating film selected from a phosphorous film or a nickel-phosphorous-silicon carbide alloy film (claims 1 to 3).
  • Cathodic electrolytic treatment of Al alloy or the like in a phosphoric acid solution reduces or removes metal components such as magnesium, iron, and nickel other than Al and silicon, and etches the surface of Al alloy and the like to form fine irregularities. Due to the anchor effect, the plating film can be coated on the surface of an Al alloy or the like with good adhesion ([0016] to [0017], [0029] to [0032]).
  • Patent Document 6 In a developing roller such as a copying machine, an electro nickel plating layer is formed on an aluminum alloy sleeve constituting the developing roller, or an electro nickel plating layer is formed through an electroless nickel plating layer, and thereafter This is a method for improving the adhesion strength of the plating layer to the aluminum alloy layer by performing heat treatment (claims 1 to 4, [0010], [0018] to [0019]). The heat treatment is performed at 100 ° C. to 150 ° C. for 30 minutes to 2 hours ([0015]).
  • Patent Documents 1 to 5 or a process based on the process is performed on a light metal such as aluminum or magnesium, which is easy to form a nonconductive state, via a nickel-based undercoat or before.
  • a nickel-phosphorous film may be formed by electroless plating. The adhesion of the electroless nickel-phosphorus film to the light metal surface is weak (see comparative example described later).
  • a conductive film is formed on the light metal by electroplating through a nickel-based undercoat
  • a special process such as an alternating current electrolytic process described in Patent Document 1 or a cathode activation process described in Patent Document 3 is used. If these operations are performed in parallel, improvement in adhesion can be expected.
  • a known nickel-based plating bath including a known nickel-phosphorous plating bath
  • the nickel-based plating bath described in Patent Documents 1 to 3 was used without undergoing such special operations. Even when electroplating is performed, the resulting nickel-based undercoat has poor adhesion (see Comparative Examples described below).
  • the present invention aims to strengthen the adhesion of conductive films such as silver, copper, and tin against a specific light metal selected from aluminum, magnesium, and titanium that easily form a non-conductive state. To do.
  • the inventors of the present invention When forming a conductive film on a specific light metal selected from aluminum, magnesium, and titanium that easily forms a non-conductive state, the inventors of the present invention have a nickel base between the light metal and the conductive film.
  • a nickel-phosphorus film is selected as the nickel-based undercoat, and the base coat is formed with a specific electric nickel-phosphorous plating bath to which a predetermined complexing agent, surfactant, etc. are added in combination. Then, it was found that the base film can be satisfactorily adhered onto a specific light metal selected from aluminum, magnesium, and titanium, and was previously proposed in Japanese Patent Application No. 2015-247207 (hereinafter referred to as the prior invention).
  • the present inventors formed a nickel-phosphorous undercoat on a specific light metal and then heat-treated the undercoat or formed a conductive film in the next step. If the base film and the conductive film are heat-treated later, the adhesion of the base film to the light metal can be further strengthened, so that the conductive film can be formed more firmly on the light metal, and the adhesion of the base film It was found that the temperature condition including a low temperature range of 30 ° C. or higher is sufficient for strengthening, and the present invention was completed.
  • the present invention 1 (S1) forming a base film made of a nickel-phosphorus film on a non-conductive formable light metal selected from aluminum, magnesium and titanium using an electric nickel-phosphorous plating bath; (S2) In a conductive film forming method comprising a step of forming a conductive film on a base film, Between the step (S1) and the step (S2), a step (S12) of heat-treating the base film at 30 ° C. or higher is interposed, or After the step (S2), a step (S3) of heat-treating the base film and the conductive film at 30 ° C.
  • the electric nickel-phosphorous plating bath is (a) a soluble nickel salt; (b) a compound containing phosphorus; (c) a complexing agent selected from aminocarboxylic acids, oxycarboxylic acids, carbohydrates, amino alcohols, polycarboxylic acids, and polyamines; (d) a surfactant selected from nonionic surfactants and amphoteric surfactants; (e) a buffering agent; (f) A method of forming a heat-treatable conductive film on a non-conductive-formable light metal, characterized by containing a brightener.
  • Present invention 2 is the present invention 1, wherein
  • the compound (b) containing phosphorus in the electric nickel-phosphorous plating bath is phosphorous acid, hypophosphorous acid, pyrophosphoric acid, orthophosphoric acid, hydroxyethylenediamine diphosphonic acid, nitrilotris (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid) ) And at least one selected from the group consisting of these salts.
  • Present invention 3 is the present invention 1 or 2, wherein
  • the complexing agent (c) of the electric nickel-phosphorous plating bath is at least one selected from the group consisting of oxycarboxylic acids, polycarboxylic acids, and aminocarboxylic acids, and the oxycarboxylic acids are citric acid, tartaric acid, apple An acid, glycolic acid, and gluconic acid, the polycarboxylic acid is succinic acid, and the aminocarboxylic acid is selected from nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid.
  • This is a heat treatment type conductive film forming method on a conductive formable light metal.
  • Invention 4 provides the method according to any one of Inventions 1 to 3, wherein The non-conductive formation, wherein the buffer (e) of the electro nickel-phosphorous plating bath is at least one selected from the group consisting of boric acid, sodium carbonate, sodium hydrogen carbonate, ascorbic acid, and salts thereof This is a heat treatment type conductive film forming method on a porous light metal.
  • the present invention 5 provides the method according to any one of the present inventions 1 to 4,
  • the brightener (f) for the electro-nickel-phosphorous plating bath is saccharin and its salt, benzenesulfonic acid and its salt, toluenesulfonic acid and its salt, naphthalenesulfonic acid and its salt, allylsulfonic acid and its salt, butynediol, ethylene
  • Non-passive formability characterized by being at least one compound selected from the group consisting of cyanohydrin, coumarin, propargyl alcohol, bis (3-sulfopropyl) disulfide, mercaptopropanesulfonic acid, and thiomalic acid
  • This is a heat treatment type conductive film forming method on a light metal.
  • the present invention 6 provides the method according to any one of the present inventions 1 to 5, A method for forming a heat-treatable conductive film on a non-conductive light-forming metal, characterized in that the pH of the electric nickel-phosphorous plating bath is 3.0 to 8.0.
  • Present invention 7 is any one of the present invention 1 to 6, wherein A method for forming a heat-treatable conductive film on a non-conductive-formable light metal, wherein the film thickness of the base film is 0.01 ⁇ m to 10.0 ⁇ m.
  • the present invention 8 provides the method according to any one of the present inventions 1 to 7,
  • the conductive film is formed by electroplating, electroless plating, sputtering, or vapor deposition,
  • the conductive film is a film made of a metal selected from copper, tin, silver, gold, nickel, bismuth, palladium, platinum, aluminum, magnesium, cobalt, zinc, and chromium, or an alloy of these metals. This is a heat treatment type conductive film forming method on a non-conductive-formable light metal.
  • a conductive film such as copper, tin, silver or the like is formed on a non-conductive film-type light metal selected from aluminum, magnesium, and titanium, a predetermined complexing agent, a surfactant, Using an electric nickel-phosphorous plating bath containing a buffering agent or the like to form a nickel-phosphorus coating on the light metal, and then forming a conductive coating, the base coating can be satisfactorily adhered onto the light metal.
  • a conductive film can be formed on the light metal with good adhesion.
  • the present invention is an improvement of this prior invention, and based on the processing steps of the prior application, a base film formed on a light metal, or a base film and a conductive film, is formed at a low temperature of 30 ° C. or higher.
  • a step of heat treatment under a temperature condition including the region, the adhesion of the base film on the light metal can be further strengthened, and the conductive film can be formed on the light metal with better adhesion.
  • the heat treatment for example, the adhesion of the base film on the light metal can be sufficiently strengthened by a simple heat treatment in a low temperature range such as hot water roasting at 30 ° C. to 100 ° C.
  • heat treatment is performed in a low temperature range, the energy to be dropped can be reduced and the productivity can be improved.
  • Patent Document 6 discloses that the adhesion of the plating layer to the aluminum alloy material is enhanced by covering the base material made of an aluminum alloy with an electric nickel plating layer and then performing heat treatment.
  • Patent Document 6 relates to a developing roller for a copying machine or the like, and a nickel plating layer with a low phosphorus content is used for the plating layer covering the aluminum alloy material because it is necessary to reduce the electrical resistance ([0019]. ]reference).
  • the plating layer covering the aluminum alloy material of Patent Document 6 is a nickel plating layer, which is different from the present invention in which a nickel-phosphorus film is used as a base film, and in Claim 4 of Patent Document 6,
  • the adhesion of the nickel layer to the aluminum alloy material can be improved by heat treatment, this requires improvement by heat treatment to ensure the adhesion sufficient to ensure reliability. It is unclear whether this means that the practical adhesion can be ensured without heat treatment, but the reliability of adhesion can be further enhanced by heating.
  • the specific composition of the electric nickel plating bath for forming the nickel layer is unknown.
  • the present invention provides a conductive film such as silver, copper, or tin on a specific light metal that easily forms a non-conductive state selected from aluminum, magnesium, and titanium via a base film made of a nickel-phosphorus film.
  • the base film and the conductive film are heat-treated at 30 ° C. or higher.
  • the above aluminum includes pure aluminum and an aluminum alloy
  • the above magnesium includes pure magnesium and a magnesium alloy
  • the above titanium includes pure titanium and a titanium alloy.
  • the present invention comprises the following undercoat film forming step (S1), conductive film forming step (S2), and a step of heat treatment between step (S1) and step (S2) or after step (S2).
  • S1 A step of forming a base film composed of a nickel-phosphorous film on a non-conductive formable light metal selected from aluminum, magnesium and titanium using an electric nickel-phosphorous plating bath (S2) on the base film
  • the electric nickel-phosphorous plating bath used in the step (S1) is: (A) a soluble nickel salt; (B) a compound containing phosphorus; (C) a complexing agent selected from aminocarboxylic acids, oxycarboxylic acids, carbohydrates, aminoalcohols, polycarboxylic acids, and polyamines; (D) a surfactant selected from nonionic surfactants and amphoteric surfactants; (E) a buffer; (F) A brightener is an essential component.
  • the soluble nickel salt (a) contained in the electro-nickel-phosphorous plating bath only needs to be able to supply nickel ions into the plating bath.
  • Nickel sulfate, nickel chloride, nickel ammonium sulfate, nickel oxide, nickel acetate, nickel carbonate Nickel oxalate, nickel sulfamate, nickel salt of organic sulfonic acid and the like, and nickel sulfate, nickel sulfamate, nickel oxide and the like are preferable.
  • the phosphorus-containing compound (b) contained in the electric nickel-phosphorous plating bath includes phosphorous acid, hypophosphorous acid, pyrophosphoric acid, orthophosphoric acid, hydroxyethylenediamine diphosphonic acid, nitrilotris (methylenephosphonic acid), ethylenediamine Examples include tetra (methylene phosphonic acid) and salts thereof.
  • the soluble nickel salt (a) can be used alone or in combination, and its content in the plating bath is 0.01 mol / L to 3.0 mol / L, preferably 0.05 mol / L to 2.0 mol / L. L, more preferably 0.1 mol / L to 1.5 mol / L.
  • the phosphorus-containing compound (b) can be used singly or in combination, and its content in the plating bath is 0.05 mol / L to 2.0 mol / L, preferably 0.1 mol / L to 1.0 mol. / L, more preferably 0.1 mol / L to 0.8 mol / L.
  • the complexing agent (c) contained in the electro-nickel-phosphorous plating bath is a compound that mainly forms a nickel complex in the plating bath, and makes the change in the cathode current density with respect to the change in the electrode potential gentle. It fulfills the function of facilitating film deposition.
  • the complexing agent (c) is selected from the group consisting of aminocarboxylic acids, oxycarboxylic acids, saccharides, aminoalcohols, polycarboxylic acids, and polyamines.
  • aminocarboxylic acids examples include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA).
  • EDTA ethylenediaminetetraacetic acid
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • TTHA triethylenetetraminehexaacetic acid
  • NTA nitrilotriacetic acid
  • Iminodiacetic acid IDA
  • iminodipropionic acid IDP
  • metaphenylenediaminetetraacetic acid 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, and salts thereof
  • NTA, EDTA, and DTPA are preferable.
  • the oxycarboxylic acids include citric acid, tartaric acid, malic acid, glycolic acid, gluconic acid, lactic acid, glucoheptonic acid, and salts thereof, citric acid, tartaric acid, malic acid, glycolic acid, gluconic acid, and These salts are preferred.
  • sugars examples include glucose (glucose), fructose (fructose), lactose (lactose), maltose (maltose), isomaltulose (palatinose), xylose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced starch syrup, lactitol , Reduced isomaltulose, gluconolactone and the like, and sugar alcohols such as sorbitol, xylitol, mannitol, maltitol are preferred.
  • Examples of the amino alcohols include monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, and tripropanolamine, with triethanolamine and tripropanolamine being preferred.
  • Examples of the polycarboxylic acids include succinic acid, oxalic acid, glutaric acid, adipic acid, malonic acid, and salts thereof, and succinic acid is preferable.
  • Examples of the polyamines include methylene diamine, ethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, diethylene triamine, tetraethylene pentamine, pentaethylene hexamine, and hexaethylene heptamine, and ethylene diamine is preferred.
  • the complexing agent (c) examples include oxycarboxylic acids such as citric acid, tartaric acid, malic acid, glycolic acid, and gluconic acid, polycarboxylic acids such as succinic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and Amino carboxylic acids such as these salts, and saccharides such as sorbitol, mannitol, maltitol are preferred.
  • the complexing agent (c) can be used alone or in combination, and its content in the plating bath is 0.001 mol / L to 2 mol / L, preferably 0.05 mol / L to 0.8 mol / L. L, more preferably 0.1 mol / L to 0.5 mol / L.
  • the surfactant (d) contained in the electric nickel-phosphorus plating bath is selected from nonionic surfactants and amphoteric surfactants, and a non-conductive formable light metal selected from aluminum, magnesium, and titanium and a base Improves adhesion to the film.
  • the nonionic surfactants are generally C1-C20 alkanols, phenols, naphthols, bisphenols, (poly) C1-C25 alkylphenols, (poly) arylalkylphenols, C1-C25 alkylnaphthols, C1-C25 alkoxylations.
  • ethylene oxide (EO) and / or propylene oxide (PO) is added to phosphoric acid (salt), sorbitan ester, polyalkylene glycol, polyoxyalkylene phenyl ether, C1-C22 aliphatic amine, C1-C22 aliphatic amide, etc. Examples include those subjected to molar addition condensation.
  • polyoxyethylene cumyl phenyl ether polyoxyethylene dodecyl phenyl ether, dibutyl- ⁇ -naphthol polyethoxylate, polyoxyethylene styrenated phenyl ether, ethylenediamine / tetrapolyoxyethylene / polyoxypropylene, polyethylene glycol, lauryl alcohol Polyethoxylates are preferred.
  • amphoteric surfactant include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid betaine.
  • lauryldimethylaminoacetic acid betaine for example, lauryldimethylaminoacetic acid betaine, stearic acid amidopropyl betaine, lauric acid amidopropyldimethylamine oxide, and the like are suitable.
  • sulfated adducts or sulfonated adducts of condensation products of ethylene oxide (EO) and / or propylene oxide (PO) with alkylamines or diamines can also be used.
  • the surfactant (d) can be used alone or in combination, and its content in the plating bath is 0.1 g / L to 50 g / L, preferably 1 g / L to 40 g / L, more preferably 5 g / L. ⁇ 35 g / L.
  • the addition of a nonionic surfactant and / or an amphoteric surfactant is an essential requirement from the viewpoint of improving adhesion.
  • a surfactant other than the specific species that is, a cationic surfactant and / or an anionic surfactant in combination.
  • a cationic surfactant and / or an anionic surfactant is added alone without adding the predetermined surfactant of the present invention to the plating bath, the stability of the plating bath and the adhesion of the base film The point that does not contribute to is as shown in a test example (see Comparative Example 7) described later.
  • the buffering agent (e) contained in the electric nickel-phosphorus plating bath improves the adhesion of the base film composed of a nickel-phosphorus film to a non-conductive forming light metal selected from aluminum, magnesium, and titanium, and Also acts as a stabilizer for the plating bath.
  • the buffer (e) include boric acid, sodium carbonate, sodium bicarbonate, ascorbic acid, and salts thereof, and boric acid and sodium carbonate are preferable.
  • the buffer (e) can be used alone or in combination, and its content in the plating bath is 0.05 mol / L to 1.5 mol / L, preferably 0.05 mol / L to 1.0 mol. / L, more preferably 0.1 mol / L to 0.6 mol / L.
  • the brightener (f) contained in the electric nickel-phosphorous plating bath improves the adhesion of the base film made of a nickel-phosphorous film to a non-conductive forming light metal selected from aluminum, magnesium and titanium.
  • the brightener (f) include saccharin and salts thereof, benzenesulfonic acid and salts thereof, toluenesulfonic acid (specifically, p-toluenesulfonic acid and the like) and salts thereof, naphthalenesulfonic acid and salts thereof, and allylsulfone.
  • Acids and salts thereof include butynediol (specifically, 2-butyne-1,4-diol, etc.), ethylene cyanohydrin, coumarin, propargyl alcohol, bis (3-sulfopropyl) disulfide, mercaptopropanesulfonic acid, And compounds such as thiomalic acid.
  • the brightener (f) it is effective to use each compound alone, but in particular, benzenesulfonic acid or a salt thereof and saccharin, naphthalenesulfonic acid or a salt thereof and saccharin, butynediol and benzenesulfonic acid or a salt thereof.
  • Salt butynediol and naphthalenesulfonic acid or salt thereof, allylsulfonic acid or salt and saccharin, thiomalic acid and saccharin, bis (3-sulfopropyl) disulfide and saccharin, allylsulfonic acid or salt thereof and propargyl alcohol, benzenesulfone It is preferable to use two or more compounds in combination, such as acid or a salt thereof and propargyl alcohol, naphthalenesulfonic acid or a salt thereof and propargyl alcohol.
  • the brightener (f) can be used alone or in combination, and its content in the plating bath is 0.001 mol / L to 0.15 mol / L, preferably 0.005 mol / L to 0. 0.07 mol / L, more preferably 0.01 mol / L to 0.05 mol / L.
  • an electric nickel-phosphorous plating bath is intended to form a base film comprising a nickel-phosphorous film on a non-conductive non-forming light metal selected from aluminum, magnesium and titanium.
  • the pH of the bath is suitably from 3.0 to 8.0, preferably from 4.0 to 6.0.
  • the primer film forming step (S1), the cathode current density during the electroplating 0.01A / dm 2 ⁇ 5.0A / dm 2, preferably at 0.05A / dm 2 ⁇ 2.0A / dm 2 is there.
  • the nickel-phosphorus film as the undercoat film is not required to be formed thick because it only needs to provide conductivity and adhesion sufficient to form a conductive film on the upper layer. Accordingly, the film thickness is 0.01 ⁇ m to 10.0 ⁇ m, preferably 0.01 ⁇ m to 8.0 ⁇ m, more preferably 0.01 ⁇ m to 5.0 ⁇ m.
  • the step (S1) of forming a base coating composed of a nickel-phosphorus coating on a non-conductive formable light metal selected from aluminum, magnesium and titanium has been described in detail.
  • the step (S1) The step (S2) of forming a conductive film as an upper film on the nickel-phosphorus film formed in (1) will be described.
  • the conductive film is not particularly limited as long as it is a known film having conductivity, for example, copper, tin, silver, gold, nickel, bismuth, palladium, platinum, aluminum, magnesium, cobalt, zinc, and Examples thereof include a film made of a metal selected from chromium or an alloy of these metals.
  • Silver, copper, nickel, tin, palladium, gold, and bismuth are suitable as the metal constituting the conductive film.
  • the metal alloys include nickel-tungsten alloys, nickel-molybdenum alloys, nickel-tin alloys, tin-silver alloys, tin-bismuth alloys, tin-copper alloys, tin-zinc alloys, and gold-tin alloys. Is preferred.
  • the conductive film can be formed by electroplating, electroless plating, sputtering or vapor deposition. Among these, the plating method is preferable from the viewpoint of productivity, but does not exclude sputtering or vapor deposition.
  • the method of the present invention is characterized in that a conductive film is formed on a non-conductive light-forming metal via a base film, and the conductive film may be formed as a single layer, or may be formed into two layers or three layers. It is also possible to form a multi-layer.
  • a multi-layered conductive film is made of a metal selected from nickel, copper, cobalt, bismuth, zinc, chromium, iron, or an alloy of these metals as the lower layer (that is, the side facing the base film).
  • the uppermost layer of the multi-layered conductive film is formed of tin, nickel, cobalt, chromium, silver, palladium, or an alloy thereof, a beautiful silver appearance can be imparted to the surface of the uppermost layer.
  • the present invention is characterized in that a heat treatment process is added as an essential constituent element to the base film forming process (S1) and the conductive film forming process (S2). Therefore, this heat treatment step will be described in detail.
  • the first method of heat treatment is to interpose the heat treatment step (S12) between the base film formation step (S1) and the conductive film formation step (S2). It consists of a process.
  • S1 A step of forming a base film made of a nickel-phosphorous film on a non-conductive formable light metal such as aluminum using an electric nickel-phosphorous plating bath (S12) a step of heat-treating the base film at 30 ° C.
  • the base film is heat-treated at 30 ° C. or higher to further improve the adhesion of the base film to the non-conductive formable light metal. Therefore, the conductive film can be formed more firmly on the non-conductive light metal.
  • the heat treatment temperature is suitably 30 ° C to 300 ° C, preferably 30 ° C to 250 ° C, more preferably 30 ° C to 200 ° C, still more preferably 30 ° C to 150 ° C, and particularly preferably 30 ° C to 100 ° C. It is. Even if the heat treatment temperature is higher than 300 ° C., the effect of strengthening the adhesion is not changed so much.
  • the upper limit of the heat treatment temperature is preferably about 200 ° C.
  • the practical adhesion of the base film to the non-conductive formable light metal is The lower limit of the heat treatment temperature was set to 30 ° C., since it can be guaranteed and further improvement in adhesion can be expected even with heating at about 30 ° C. with respect to this practical level.
  • the second method of heat treatment is a method in which a heat treatment step (S3) is added after the conductive film formation step (S2), and this subsequent heat treatment method includes the following three steps.
  • S1 A step of forming a base film composed of a nickel-phosphorus film on a non-conductive light-forming metal such as aluminum using an electric nickel-phosphorous plating bath (S2)
  • S3 A conductive film is formed on the base film Step (S3) Step of heat-treating the base film and the conductive film at 30 ° C. or higher
  • the temperature condition of the heat treatment in the second method may be the same as in the first method.
  • an intermediate heat processing system and a post-stage heat processing system are common, various aspects, such as oven heating, hot air heating with a dryer, immersion in warm water or an oil bath, can be selected.
  • various aspects such as oven heating, hot air heating with a dryer, immersion in warm water or an oil bath, can be selected.
  • hot water treatment at 30 ° C to 100 ° C boiling water bath immersed in hot water
  • the heat treatment is performed in a low temperature range with hot water bath, so heat energy can be reduced and the processing can be simplified. Can be improved.
  • an electro-nickel-phosphorus plating bath for forming a base film (nickel-phosphorus film) on a non-conductive-forming light metal such as aluminum a plating bath for forming a conductive film, and a heat treatment method on the light metal.
  • An example of a method for forming a conductive film through the base film will be described, and an evaluation test example of the adhesion of the nickel-phosphorus film to the light metal will be sequentially described.
  • the present invention is not limited to the following examples and test examples, and it is needless to say that arbitrary modifications can be made within the scope of the technical idea of the present invention.
  • Example of a method for forming a conductive film on a non-conductive formable light metal by a heat treatment method In Examples 1 to 13 below, the base film and the conductive film are as follows. Examples 1 to 7: Nickel-phosphorus film (undercoat film) / tin film (conductive film) Example 8: Nickel-phosphorus film (undercoat film) / copper film (conductive film) Example 9: Nickel-phosphorus film (undercoat film) / nickel film (conductive film) Examples 10 and 13: Nickel-phosphorus film (undercoat film) / silver film (conductive film) Example 11: Nickel-phosphorus film (undercoat film) / palladium film (conductive film) Example 12: Nickel-phosphorus coating (undercoat) / tin-bismuth alloy coating (conductive coating) In Example 13, the conductive film (silver film) was formed by electroless plating, and in other examples, it was formed by electroplating.
  • Examples 1 to 7 are examples in which the composition of the nickel-phosphorus plating bath in step (S1) was changed.
  • Examples 1 to 13 are examples of an intermediate heat treatment method in which a heat treatment step (S12) is interposed between the base film formation step (S1) and the conductive film formation step (S2).
  • 17 is an example of a post-stage heat treatment method in which a heat treatment step (S3) is added after the above step (S2).
  • Examples 18 to 23 described below are the undercoat film formation step (S1) and the conductive film formation step (S2). ) Is an example of an intermediate heat treatment method in which a heat treatment step (S12) is interposed.
  • Example 14 is based on Example 1
  • Example 15 is based on Example 3
  • Example 16 is based on Example 8
  • Example 17 is This is based on Example 9.
  • Examples 1 to 17 are examples of hot water roasting at 70 ° C. for 5 minutes
  • Examples 18 to 20 are examples of hot water roasting by changing the conditions
  • Examples 21 is an example of heating with hot air
  • Examples 22 to 23 are examples of heating with oven.
  • the reference example is an example of the invention of the prior application described above, and is an example in which, based on Example 1, the process (S1) is directly transferred to the process (S2) after the process (S1).
  • Comparative Examples 1 to 9 below are based on Example 1 with the following modifications.
  • Comparative Example 1 Blank example in which a conductive film was directly formed by electroplating without forming a base film on a light metal (example without heat treatment)
  • Comparative Examples 2 to 3 An example in which a conductive film is formed on a light metal via a base film that is a nickel film instead of a nickel-phosphorus film
  • Comparative Example 2 an example in which heat treatment was performed
  • Comparative Example 3 an example in which heat treatment was not performed
  • Comparative Examples 4 to 9 The nickel-phosphorous plating bath used in the base film forming step (S1) in the method of the present invention does not contain some essential components, or some essential components become other components.
  • Comparative Example 4 Examples in which the complexing agent (c) is not contained in the nickel-phosphorous plating bath Comparative Examples 5 to 6: Examples in which the surfactant (d) is not contained in the nickel-phosphorous plating bath Comparative Example 5: Example of heat treatment Comparative Example 6: Example without heat treatment Comparative Example 7: Example of heat treatment using a cationic surfactant instead of the surfactant (d) used in the present invention in a nickel-phosphorus plating bath Comparative Example 8 ⁇ 9: Glossy nickel-phosphorus plating bath Example in which agent (f) is not included Comparative Example 8: Example in which heat treatment was performed Comparative Example 9: Example in which heat treatment was not performed
  • Example 1 (S1) Undercoat forming step As shown in the following (i) to (iv), three types of 5 cm ⁇ 5 cm square aluminum alloy plates and one type of 5 cm ⁇ 5 cm square magnesium alloy plates were prepared. Each sample of conductive state-forming light metal was used (the same applies to Examples 2 to 22 and Comparative Examples 1 to 9 below). In particular, the three types of aluminum alloys were selected because of the variety of types of the alloys. Therefore, even if the type of aluminum alloy changes, the versatility of whether or not the undercoat of the present invention can be applied with good adhesion is provided. This is for verification.
  • Sample 1 Aluminum alloy / Al-Cu system (A2024P; JIS standard)
  • Sample 2 Aluminum alloy / Al-Mg system (A5052P; JIS standard)
  • Sample 3 Aluminum alloy / Al-Mg-Si system (A6061P; JIS standard)
  • Sample 4 Magnesium alloy / Mg—Al—Zn system (AZ31; JIS standard)
  • Example 2 Undercoat Forming Step Based on Example 1, the soluble nickel salt (a) in the electric nickel-phosphorous plating bath was changed. The compound (b) containing phosphorus and the complexing agent (c) were also changed slightly.
  • Example 3 Undercoat Formation Step Based on Example 1, the compound (b) containing phosphorus in the electric nickel-phosphorous plating bath was changed.
  • A Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Sodium hypophosphite 0.4 mol / L Citric acid 0.3 mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 28% ammonia water) 5.0 [Electroplating conditions] Bath temperature: 40 ° C Current density: 0.1 A / dm 2 Plating time: 2 minutes [plating film] Film thickness: 0.01 ⁇ m Phosphorus content: 4.5% (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
  • Example 4 Undercoat Forming Step Based on Example 1, the complexing agent (c) for the electric nickel-phosphorous plating bath was changed.
  • A Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Phosphorous acid 0.4 mol / L Sodium gluconate 0.3mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 24% aqueous sodium hydroxide) 5.0 [Electroplating conditions] Bath temperature: 40 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 0.2 ⁇ m Phosphorus content: 5.0% (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
  • Example 5 Undercoat Formation Step Based on Example 1, the nonionic surfactant (d) in the electric nickel-phosphorus plating bath was changed.
  • A Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Sodium hydrogen phosphite 2.5 hydrate 0.4 mol / L Citric acid 0.3 mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Polyoxyethylene octyl phenyl ether (EO 10 mol) 10g / L pH (adjusted with 24% aqueous sodium hydroxide) 4.5 [Electroplating conditions] Bath temperature: 40 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 0.2 ⁇ m Phosphorus content: 3.0% (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
  • Example 6 Undercoat Forming Step Based on Example 1, the buffer (e) for the electric nickel-phosphorous plating bath was changed.
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Sodium carbonate 0.2mol / L Phosphorous acid 0.4 mol / L Trisodium citrate dihydrate 0.3 mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 28% ammonia water) 4.5 [Electroplating conditions] Bath temperature: 35 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 0.2 ⁇ m Phosphorus content: 5.0% (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
  • Example 7 Base film forming step Based on Example 1, the brightening agent (f) of the electric nickel-phosphorus plating bath was changed.
  • A Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Sodium carbonate 0.2mol / L Phosphorous acid 0.4 mol / L Trisodium citrate dihydrate 0.3 mol / L 2-butyne-1,4-diol 0.02 mol / L Benzenesulfonic acid 0.01 mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 28% ammonia water) 4.5 [Electroplating conditions] Bath temperature: 35 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 0.2 ⁇ m Phosphorus content: 5.0% (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions:
  • Example 8 (S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a copper film. (B) Composition of copper plating bath and electroplating conditions An electrolytic copper plating bath was constructed with the following composition.
  • composition Copper sulfate pentahydrate (as Cu 2+ ) 0.8 mol / L Sulfuric acid 1.0 mol / L Hydrochloric acid 0.1mmol / L Bis (3-sulfopropyl) disulfide 1.0mg / L Polyethylene glycol (molecular weight 4000) 1.0g / L Polyethyleneimine 3.0mg / L [Electroplating conditions] Bath temperature: 25 ° C Current density: 1 A / dm 2 Plating time: 5 minutes [plating film] Film thickness: 10 ⁇ m
  • Example 9 (S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a nickel film. (B) Composition of nickel plating bath and electroplating conditions An electronicking bath was constructed with the following composition.
  • Nickel sulfate hexahydrate (as Ni 2+ ) 0.15 mol / L
  • Nickel chloride (as Ni 2+ ) 0.5 mol / L Boric acid 0.7mol / L pH (adjusted with 28% ammonia water)
  • Bath temperature 60 ° C
  • Current density 1 A / dm 2
  • Plating time 5 minutes
  • Film thickness 10 ⁇ m
  • Example 10 (S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a silver film. (B) Composition of silver plating bath and electroplating conditions An electrosilver plating bath was constructed with the following composition.
  • Example 11 Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a palladium film.
  • B Composition of palladium plating bath and electroplating conditions An electropalladium plating bath was constructed with the following composition.
  • Example 12 (S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a tin-bismuth alloy film.
  • B Composition of tin-bismuth alloy plating bath and electroplating conditions An electrotin-bismuth alloy plating bath was constructed with the following composition.
  • Example 13 (S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a silver film.
  • B Composition of silver plating bath and electroless plating conditions An electroless silver plating bath was constructed with the following composition. [composition] Silver nitrate (as Ag + ) 0.01 mol / L Succinimide 0.05 mol / L Imidazole 0.05 mol / L [Electroless plating conditions] Bath temperature: 50 ° C Plating time: 60 minutes [plating film] Film thickness: 1.0 ⁇ m
  • Example 14 Based on Example 1, instead of performing heat treatment between Step (S1) and Step (S2), heat treatment was performed after Step (S2) (an example of post-stage heat treatment.
  • Step (S2) an example of post-stage heat treatment.
  • Examples 15 to 17 are the same) ).
  • S1 Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Example 1 Conductive film: Tin film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 1
  • Example 15 Based on Example 3, it heat-processed after the said process (S2) instead of heat-processing between a process (S1) and a process (S2).
  • S1 Undercoat film formation process
  • Electroplating conditions Same as in Example 3
  • Undercoat film Nickel-phosphorus film
  • Conductive film formation process Electroplating conditions: Same as in Example 3
  • Conductive film Tin film
  • Example 16 Based on Example 8, instead of performing heat treatment between step (S1) and step (S2), heat treatment was performed after the step (S2). (S1) Undercoat film formation process Electroplating conditions: Same as in Example 8 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Example 8 Conductive film: Copper film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 8
  • Example 17 Based on Example 9, heat treatment was performed after the step (S2) instead of heat treatment between the step (S1) and the step (S2).
  • S1 Undercoat film formation process Electroplating conditions: Same as in Example 9 Undercoat film: Nickel-phosphorous film (S2) Conductive film formation process Electroplating conditions: Same as in Example 9 Conductive film: Nickel film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 9
  • Example 18 Based on Example 1, the heat treatment conditions in the step (S12) were changed (hereinafter, Examples 19 to 23 are the same).
  • S1 Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was bathed under the following conditions. [Heat treatment conditions] Bath temperature: 35 ° C Bath time: 80 minutes (S2) Conductive film formation process Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Example 19 Based on Example 1, the heat treatment conditions in the step (S12) were changed.
  • S1 Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was bathed under the following conditions. [Heat treatment conditions] Bath temperature: 50 ° C Bathing time: 30 minutes (S2) Conductive film forming process Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Example 20 Based on Example 1, the heat treatment conditions in the step (S12) were changed.
  • S1 Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was bathed under the following conditions. [Heat treatment conditions] Hot water temperature: 90 ° C Bath time: 10 minutes (S2) Conductive film formation process Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Example 21 Based on Example 1, the heat treatment conditions in the step (S12) were changed.
  • S1 Undercoat film forming step Electroplating conditions: Undercoat film as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was heated with a dryer under the following conditions. [Heat treatment conditions] Hot air heating temperature: 150 ° C Heating time: 5 minutes (S2) Conductive film forming process Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Example 22 Based on Example 1, the heat treatment conditions in the step (S12) were changed.
  • S1 Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorous film was formed was oven-heated under the following conditions. [Heat treatment conditions] Oven heating temperature: 150 ° C Heating time: 10 minutes (S2) Conductive film formation process Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Example 23 Based on Example 1, the heat treatment conditions in the step (S12) were changed.
  • S1 Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorous film was formed was oven-heated under the following conditions. [Heat treatment conditions] Oven heating temperature: 200 ° C Heating time: 5 minutes (S2) Conductive film forming process Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Trisodium citrate dihydrate 0.3 mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 28% ammonia water) 4.5 [Electroplating conditions] Bath temperature: 35 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 1.0 ⁇ m (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Phosphorous acid 0.4 mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 28% ammonia water) 4.5 [Electroplating conditions] Bath temperature: 35 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes Since the plating bath was decomposed, the formation of the undercoat could not be carried out, and the next heat treatment step (S12) was not achieved.
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Phosphorous acid 0.4 mol / L Trisodium citrate dihydrate 0.3 mol / L Saccharin 0.02 mol / L Thiomalic acid 0.01mol / L Lauryltrimethylammonium chloride 20g / L pH (adjusted with 28% ammonia water) 4.5 [Electroplating conditions] Bath temperature: 35 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 0.2 ⁇ m Phosphorus content: 5.0% (S2) Conductive film formation step Electroplating conditions: Same as Example 1 Conductive film: Tin film
  • Nickel sulfamate (as Ni 2+ ) 0.45 mol / L Nickel chloride (as Ni 2+ ) 0.03 mol / L Boric acid 0.2mol / L Phosphorous acid 0.4 mol / L Trisodium citrate dihydrate 0.3 mol / L Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L pH (adjusted with 28% ammonia water) 4.5 [Electroplating conditions] Bath temperature: 35 ° C Current density: 0.5 A / dm 2 Plating time: 10 minutes [plating film] Film thickness: 0.2 ⁇ m Phosphorus content: 5.0% (S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
  • Example of evaluation test of adhesion of base film to non-forming light metal When the adhesion of the undercoat to the non-conductive light metal increases, the adhesion of the upper conductive film to the light metal is improved. Therefore, the evaluation test of the adhesive strength was evaluated based on the superiority or inferiority of the adhesive strength of the base film (formed in close contact with the conductive film) against the light metal. In addition, although the test is evaluated by the adhesion strength of the ground film, except for some comparative examples, in each example, reference example, and comparative example, the point that both the conductive film formation process is performed As described above.
  • Table 3 below shows the results of an evaluation test of the adhesion of the base film to the non-conductive-forming light metal.
  • magnesium alloys are not as diverse as aluminum alloys, only the examples 1 and 2 were evaluated for the magnesium alloy plate of Sample 4. Based on the test results of Examples 1 and 2, evaluations of Examples 3 to 23 other than these were estimated (indicated as “-” in Table 3 below). Further, in Comparative Examples 1 and 4, since the undercoat could not be formed on the light metal, the undercoat peel test itself was not performed (indicated as “-” in Table 3 below).
  • the said base film shows favorable adhesiveness also to the sample 4, it turns out that a conductive film can be formed with sufficient adhesiveness also through a base film also with respect to a magnesium alloy.
  • the adhesion of the undercoat to the light metal was further improved as compared to the above reference example.
  • the undercoat was formed from the light metal plates (samples 1 to 3) It can be seen that the three types of aluminum alloy plates are more firmly attached.
  • the adhesion strength in Examples 1 to 23 was the same as that of the reference example, and the adhesion strength was good.
  • Comparative Example 3 the base film formed by electroplating on the light metal was changed from the nickel-phosphorus film to the nickel film, and the base film was not heat-treated.
  • the light metal plate (aluminum alloy plate)
  • the adhesion strength of the nickel film to the nickel-phosphorus film is greatly inferior to that of the nickel-phosphorus film ( ⁇ evaluation). Therefore, it was not possible to form a conductive film (tin film) with good adhesion on the non-conductive light-forming metal.
  • Comparative Example 2 in which the base film, which is a nickel film, was heat-treated, the adhesion was improved as compared with Comparative Example 3 without heat treatment ( ⁇ evaluation), but was not as good as the reference example ( ⁇ evaluation).
  • Comparative Example 4 an undercoat was formed on a light metal with a nickel-phosphorous plating bath not containing the predetermined complexing agent (c) used in the present invention, but precipitation occurred because the plating bath was unstable. It occurred and an electrodeposition film could not be formed. Therefore, when this Comparative Example 4 is compared with Examples 1 to 23, in order to form a strong nickel-phosphorus undercoat on a light metal, a predetermined complexing agent (c) is used instead of a conventionally known nickel-phosphorous plating bath. The importance of selecting a nickel-phosphorous plating bath for use in the present invention containing) was revealed.
  • Comparative Example 6 a base film was formed on a light metal with a nickel-phosphorous plating bath not containing the predetermined surfactant (d) used in the present invention, and the base film was not heat-treated.
  • the adhesion of the base film to the alloy plate is greatly inferior (x evaluation). Therefore, in Comparative Example 6, a conductive film (tin film) could not be formed with good adhesion on the non-conductive formable light metal.
  • Comparative Example 5 in which the same undercoat as that in Comparative Example 6 was heat-treated, the adhesion was improved as compared with Comparative Example 6 without heat treatment ( ⁇ evaluation), but did not reach the reference example ( ⁇ evaluation).
  • Comparative Example 7 an undercoat was formed on a light metal with a nickel-phosphorus plating bath containing a cationic surfactant instead of the surfactant (d) used in the present invention (no heat treatment).
  • the adhesion of the base film to the aluminum alloy plate is greatly inferior (x evaluation). Therefore, in Comparative Example 7, a conductive film (tin film) could not be formed with good adhesion on the nonconductive state-forming light metal. Therefore, when this Comparative Example 7 is compared with Examples 1 to 23, in order to realize more practical and strong adhesion, the nickel-phosphorous plating bath was specialized in the present invention, not a cationic surfactant. It can be judged that it is important to contain the surfactant (d) and to heat-treat the undercoat.
  • Comparative Example 9 a base film was formed on a light metal in a nickel-phosphorous plating bath not containing the predetermined brightener (f) used in the present invention, and the base film was not heat-treated.
  • the adhesion of the base film to the alloy plate is greatly inferior (x evaluation). Therefore, in Comparative Example 9, a conductive film (tin film) could not be formed with good adhesion on the nonconductive state-forming light metal.
  • Comparative Example 8 in which the same undercoat as in Comparative Example 9 was heat-treated, the adhesion was improved as compared with Comparative Example 9 without heat treatment ( ⁇ evaluation), but did not reach the reference example ( ⁇ evaluation).
  • Examples 1 to 23 will be described in detail focusing on heat treatment.
  • Examples 1 to 7 are examples in which the conductive film is a tin film
  • Example 8 is an example in which the conductive film is a copper film
  • Example 9 is an example in which the conductive film is a nickel film
  • Examples 10 and 13 are conductive.
  • Example 11 is an example in which the conductive film is a silver film
  • Example 11 is an example in which the conductive film is a palladium film
  • Example 12 is an example in which the conductive film is a tin-bismuth film.
  • the composition of the nickel-phosphorus plating bath used in the step (S1) that is, the complexing agent (c), the surfactant (d), the soluble nickel salt (a), the phosphorus-containing compound (b ), The type of the brightener (f) and the like are changed.
  • the adhesion of the base film is different from that of the reference example even if the composition of the plating bath is different. It can be seen that it can be greatly improved.
  • Examples 1 to 13 are intermediate heat treatment methods in which the heat treatment step (S12) is performed between the base film formation step (S1) and the conductive film formation step (S2).
  • Examples 14 to 17 are post-stage heat treatment methods in which the heat treatment step (S3) is performed after the conductive film formation step (S2). Either method can greatly enhance the adhesion of the underlying film, and the conductive film can be formed more firmly on the light metal compared to the standard example, so that the adhesion can be strengthened regardless of the timing conditions of the heat treatment. Can be judged. Focusing on the additional conditions of the heat treatment, Examples 1 to 17 were examples of water bathing at 70 ° C. for 20 minutes, Example 18 was water bathing at 35 ° C.
  • Example 19 was 50 ° C. for 30 minutes.
  • An example of hot water roasting Example 20 is an example of hot water roasting at 90 ° C. for 10 minutes.
  • the hot water bath which is a relatively simple heating means, and by heating in a low temperature range of 100 ° C. or lower, the adhesion of the base film can be greatly improved as compared with the reference example.
  • the adhesion could be enhanced by continuing the heat treatment over time even in a very low temperature range (35 ° C.). If a heat treatment in a relatively high temperature range such as dryer heating as in Example 21 or oven heating as in Examples 22 to 23 is selected instead of hot water bath, the heating time can naturally be shortened.
  • hot water bathing is selected as a heat treatment condition, the input of heat energy can be reduced and productivity can be improved.
  • the adhesion of the base film on the light metal can be further strengthened, and the conductive film can be formed on the light metal with better adhesion, thereby improving the productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A method for forming an electroconductive coating of silver, copper, tin, or the like via a base coating on a passive-state-forming light metal selected from aluminum, magnesium, and titanium, wherein the base coating is a nickel-phosphorus coating, the base coating is formed using a nickel-phosphorus electroplating bath including a predetermined soluble nickel salt, a compound including phosphorus, a complexing agent, a surfactant, a buffer, and a brightening agent, and the base coating or the base coating and the electroconductive coating are heat-treated under conditions including a temperature range of at least 30°C, whereby the adhesion of the base coating to the passive-state-forming light metal is increased relative to a method not including heat treatment, and the electroconductive coating can be formed with stronger adhesion on the passive-state-forming light metal.

Description

不導態形成性軽金属上への熱処理式の導電性皮膜形成方法Method of forming heat-treatable conductive film on non-conductive light-forming metal
 本発明は、不導態を形成し易いアルミニウム、マグネシウムなどの特定の軽金属上に導電性皮膜を形成する方法に関する。本発明により、メッキ皮膜の形成が困難な上記軽金属上に、熱処理の適用により、銅、銀、スズなどの導電性皮膜を強固な密着力で形成できる方法が提供される。 The present invention relates to a method for forming a conductive film on a specific light metal such as aluminum or magnesium that easily forms a nonconductive state. The present invention provides a method by which a conductive film such as copper, silver, tin or the like can be formed with strong adhesion on the light metal, which is difficult to form a plating film, by applying heat treatment.
 アルミニウム、マグネシウム、チタンのような特定の軽金属は、大気中で強固な酸化皮膜を容易に形成して不導態となるため、これらの軽金属の表面に銅、銀、スズなどの導電性皮膜を形成しようとしても、メッキなどによる表面処理は困難である。また、たとえメッキ皮膜を形成できたとしても、上記軽金属との間で良好な密着性を確保することは難しい。
 そこで、従来では、ダブルジンケート法、陽極酸化法、反転電解活性化法などにより、上記軽金属を表面処理した後に電気メッキなどで導電性皮膜を形成していた。しかしながら、特に、亜鉛とアルミニウムとの置換反応を利用する上記ダブルジンケート法では、最初に形成した亜鉛皮膜の粒子が大きいために、これを一度剥離して再度亜鉛粒子により皮膜を形成する必要があり、処理が煩雑で生産性が良くないうえ、処理表面が相対的に粗く、続く電気メッキで平滑な皮膜を形成することが難しいという問題があった。
Certain light metals such as aluminum, magnesium, and titanium easily form a strong oxide film in the atmosphere and become non-conductive. Therefore, a conductive film such as copper, silver, or tin is applied to the surface of these light metals. Even if it is to be formed, surface treatment by plating or the like is difficult. Moreover, even if a plating film can be formed, it is difficult to ensure good adhesion with the light metal.
Therefore, conventionally, a conductive film is formed by electroplating after the light metal is surface-treated by a double zincate method, an anodic oxidation method, an inversion electrolytic activation method, or the like. However, in particular, in the double zincate method using the substitution reaction between zinc and aluminum, since the particles of the zinc film formed first are large, it is necessary to peel this once and form a film with zinc particles again. In addition, the treatment is complicated and the productivity is not good, and the treatment surface is relatively rough, and it is difficult to form a smooth film by subsequent electroplating.
 そこで、アルミニウム、マグネシウムなどの不導態を形成し易い軽金属に導電性皮膜を形成する場合、従来では、予め表面にアルカリ脱脂などを施し、ニッケル系皮膜を形成するか、或は、所定の前処理液を用いた表面処理をした後に、銅、銀、スズなどの導電性皮膜を形成していた。
 その従来技術を挙げると次の通りである。但し、下記の特許文献6は、上記軽金属上にニッケル系皮膜を形成すること自体に焦点を当てたものである。
(1)特許文献1
 アルミニウム又はアルミニウム合金に、リン酸と所定のニッケル塩(炭酸ニッケル、クエン酸ニッケルなど)を含む処理浴中で交流電解処理を施して、微細凹凸構造の酸化皮膜の形成と粒子状ニッケルの電解析出とを同時に行う第一工程と、その後に銅、ニッケルなどの無電解又は電解メッキを施す第二工程とからなるアルミニウム材へのメッキ方法である(請求項1、[0014]~[0015]、[0044])。
 上記第一工程では、酸化皮膜内部までニッケル金属が入り込んで一定膜厚の陽極酸化皮膜が形成された後、その表面に粒子状ニッケル皮膜を均一に被覆させる([0014])。
 第一工程の処理液の実施例5([0031])では、ニッケル塩と、リン酸と、マロン酸(ジカルボン酸)とが含まれ、実施例8([0042])では、クエン酸ニッケルと、リン酸とが含まれる。
Therefore, when forming a conductive film on a light metal that easily forms a non-conductive state such as aluminum or magnesium, conventionally, the surface is subjected to alkali degreasing and the like to form a nickel-based film, or a predetermined amount of After the surface treatment using the treatment liquid, a conductive film such as copper, silver or tin was formed.
The conventional technology is as follows. However, Patent Document 6 below focuses on forming a nickel-based film on the light metal itself.
(1) Patent Document 1
Aluminum or aluminum alloy is subjected to AC electrolytic treatment in a treatment bath containing phosphoric acid and a prescribed nickel salt (nickel carbonate, nickel citrate, etc.) to form an oxide film with a fine concavo-convex structure and electroanalysis of particulate nickel A method for plating an aluminum material comprising a first step of simultaneously performing extraction and a second step of performing electroless or electrolytic plating of copper, nickel or the like thereafter (claim 1, [0014] to [0015] [0044]).
In the first step, nickel metal enters the inside of the oxide film to form an anodic oxide film having a certain thickness, and then the surface is uniformly coated with the particulate nickel film ([0014]).
In Example 5 ([0031]) of the treatment liquid in the first step, a nickel salt, phosphoric acid, and malonic acid (dicarboxylic acid) are included. In Example 8 ([0042]), nickel citrate and , And phosphoric acid.
(2)特許文献2
 メッキ皮膜に対するクラック発生の防止などを目的として([0008])、アルミニウム又はアルミニウム合金上の酸化皮膜を酸性又はアルカリ性除去した後([0009]~[0026])、第1の無電解ニッケル-リンメッキ液で無電解メッキ皮膜を形成する工程と、第2の無電解ニッケル-リンメッキ液で無電解メッキ皮膜を形成する工程とからなるアルミニウム材の表面処理方法(請求項1、[0009])である。当該処理方法を経て、導電性皮膜が形成される。
 上記第1の無電解ニッケル-リンメッキ液は、ニッケル塩と、次亜リン酸又はその塩と、アミノカルボン酸以外のカルボン酸(クエン酸、酢酸、コハク酸、リンゴ酸、これらの塩([0036]))を含み、上記第2の無電解ニッケル-リンメッキ液は、ニッケル塩と、次亜リン酸又はその塩と、アミノカルボン酸(グリシン、アラニン、ロイシン、アスパラギン酸、グルタミン酸)又はその塩を含み、アミノカルボン酸以外のカルボン酸を含まない。
 実施例1では、アルミニウム層を被覆したシリコン板に、2段階の無電解ニッケル-リンメッキを施した後、無電解メッキにより金皮膜を被覆させている(表1)。
(2) Patent Document 2
For the purpose of preventing cracks on the plating film ([0008]), after the oxide film on the aluminum or aluminum alloy is removed acidic or alkaline ([0009] to [0026]), the first electroless nickel-phosphorous plating A method for surface treatment of an aluminum material comprising a step of forming an electroless plating film with a liquid and a step of forming an electroless plating film with a second electroless nickel-phosphorous plating liquid (Claim 1, [0009]). . Through this treatment method, a conductive film is formed.
The first electroless nickel-phosphorous plating solution includes a nickel salt, hypophosphorous acid or a salt thereof, and a carboxylic acid other than aminocarboxylic acid (citric acid, acetic acid, succinic acid, malic acid, salts thereof ([0036 The second electroless nickel-phosphorous plating solution comprises a nickel salt, hypophosphorous acid or a salt thereof, and aminocarboxylic acid (glycine, alanine, leucine, aspartic acid, glutamic acid) or a salt thereof. Contains no carboxylic acids other than aminocarboxylic acids.
In Example 1, a silicon plate coated with an aluminum layer was subjected to two-stage electroless nickel-phosphorus plating, and then a gold film was coated by electroless plating (Table 1).
(3)特許文献3
 アルミニウム又はアルミニウム合金成形品の少なくとも一方の表面上に、硫酸と、ニッケル塩(又は鉄塩、コバルト塩)とを含む前処理液中でカソード活性化により前処理する工程と、前処理された基材に電気めっきにより金属層(ニッケル、鉄、コバルト及びこれらの合金)を施す工程とからなる表面処理方法である(請求項1~2)。
 上記カソード活性処理では、アルミニウム材表面の薄い酸化アルミニウム皮膜を通してニッケル核が形成され、例えば、その後の電気メッキでニッケル皮膜を形成する場合、このニッケル核がアンカー点となり、アルミニウム材表面とニッケル皮膜とを結ぶ薄い結合層の役割を果たす([0012])。
 また、上記カソード活性処理に用いる前処理液について、含有する緩衝剤の好ましい例としてホウ酸を挙げている(請求項3~4、[0013])。
(3) Patent Document 3
Pretreatment by cathode activation in a pretreatment liquid containing sulfuric acid and a nickel salt (or iron salt, cobalt salt) on at least one surface of an aluminum or aluminum alloy molded article; A surface treatment method comprising a step of applying a metal layer (nickel, iron, cobalt and alloys thereof) to the material by electroplating (claims 1 and 2).
In the cathode activation treatment, a nickel nucleus is formed through a thin aluminum oxide film on the surface of the aluminum material. For example, when a nickel film is formed by subsequent electroplating, the nickel nucleus serves as an anchor point. It plays the role of a thin bonding layer that connects ([0012]).
In addition, boric acid is mentioned as a preferable example of the buffering agent contained in the pretreatment liquid used for the cathode activation treatment (claims 3 to 4, [0013]).
(4)特許文献4
 マグネシウム合金に電解めっきを利用して銅めっき層を形成する前に、マグネシウム合金の表面を硫酸亜鉛、ピロリン酸ナトリウム、フッ化カリウム、及び炭酸ナトリウムを含む前処理液で処理し、均一な電流分布を持たせる電解めっき用皮膜をマグネシウム合金の表面に形成させる方法である(請求項1~2)。当該方法により、マグネシウム合金の表面に形成された電気めっき皮膜と銅めっき層との結合を容易にし、密着性のよい電気銅めっき層1を形成する([0017]、[0020]~[0021])。
(4) Patent Document 4
Before forming a copper plating layer on the magnesium alloy by using electrolytic plating, the surface of the magnesium alloy is treated with a pretreatment solution containing zinc sulfate, sodium pyrophosphate, potassium fluoride, and sodium carbonate to obtain a uniform current distribution. This is a method of forming a film for electroplating with a surface of a magnesium alloy (claims 1 and 2). By this method, the electroplating film 1 formed on the surface of the magnesium alloy is easily bonded to the copper plating layer, and the electrocopper plating layer 1 having good adhesion is formed ([0017], [0020] to [0021]). ).
(5)特許文献5
 Al又はAl合金(Al合金など)にリン酸溶液中で陰極電解処理により表面処理する工程と、前記表面処理したAl合金などに電気メッキを行って、Al合金などの表面にニッケル皮膜、ニッケル-リン皮膜、或はニッケル-リン-炭化ケイ素合金皮膜から選ばれたメッキ皮膜を形成する工程とを含む、電気メッキ方法である(請求項1~3)。
 Al合金などにリン酸溶液中で陰極電解処理することで、Al及びシリコン以外のマグネシウム、鉄、ニッケルなどの金属成分を低減又は除去するとともに、Al合金などの表面がエッチングされて微細な凹凸が形成され、そのアンカー効果により、Al合金などの表面に上記メッキ皮膜を密着性良く被覆させることができる([0016]~[0017]、[0029]~[0032])。
(5) Patent Document 5
A surface treatment of Al or Al alloy (Al alloy, etc.) by cathodic electrolysis in a phosphoric acid solution, and electroplating the surface-treated Al alloy, etc. to form a nickel film, nickel- Forming a plating film selected from a phosphorous film or a nickel-phosphorous-silicon carbide alloy film (claims 1 to 3).
Cathodic electrolytic treatment of Al alloy or the like in a phosphoric acid solution reduces or removes metal components such as magnesium, iron, and nickel other than Al and silicon, and etches the surface of Al alloy and the like to form fine irregularities. Due to the anchor effect, the plating film can be coated on the surface of an Al alloy or the like with good adhesion ([0016] to [0017], [0029] to [0032]).
(6)特許文献6
 複写機などの現像ローラにおいて、当該現像ローラを構成するアルミニウム合金製のスリーブに電気ニッケルメッキ層を形成するか、或は、無電解ニッケルメッキ層を介して電気ニッケルメッキ層を形成し、その後に加熱処理を行うことで、上記アルミニウム合金層に対するメッキ層の密着強度を改善する方法である(請求項1~4、[0010]、[0018]~[0019])。
 上記加熱処理の条件は、100℃~150℃、30分間~2時間である([0015])。
(6) Patent Document 6
In a developing roller such as a copying machine, an electro nickel plating layer is formed on an aluminum alloy sleeve constituting the developing roller, or an electro nickel plating layer is formed through an electroless nickel plating layer, and thereafter This is a method for improving the adhesion strength of the plating layer to the aluminum alloy layer by performing heat treatment (claims 1 to 4, [0010], [0018] to [0019]).
The heat treatment is performed at 100 ° C. to 150 ° C. for 30 minutes to 2 hours ([0015]).
特開平11-302854号公報Japanese Patent Laid-Open No. 11-302854 特開2008-190034号公報JP 2008-190034 A 特表2008-527178号公報Special table 2008-527178 特開2009-019217号公報JP 2009-019217 A 特開2015-108169号公報JP2015-108169A 特開2001-125370号公報JP 2001-125370 A
 しかしながら、上記特許文献1~5に記載された処理、或はこれに準じた処理により、不導態を形成し易いアルミニウム、マグネシウムなどの軽金属上に、ニッケル系の下地皮膜を介して、又は前処理を介する方式で、銀、銅、スズなどの導電性皮膜を形成する場合、例えば、上記特許文献2に記載の方法に準拠して、ニッケル-リン皮膜を無電解メッキにより形成しても、上記軽金属表面に対する無電解ニッケル-リン皮膜の密着力は弱い(後述の比較例参照)。
 また、上記軽金属に、電気メッキによりニッケル系の下地皮膜を介して導電性皮膜を形成する場合、例えば、特許文献1に記載の交流電解処理や特許文献3に記載のカソード活性処理のような特殊な操作を並行して行なえば、密着性の改善はそれなりに期待できる。しかしながら、このような特殊な操作を経ずに、公知のニッケル系メッキ浴(公知のニッケル-リンメッキ浴を含む)、或は、上記特許文献1~3に記載されたニッケル系メッキ浴を用いた電気メッキを行っても、得られるニッケル系の下地皮膜は密着力に乏しい(後述の比較例参照)。
However, the process described in Patent Documents 1 to 5 or a process based on the process is performed on a light metal such as aluminum or magnesium, which is easy to form a nonconductive state, via a nickel-based undercoat or before. In the case of forming a conductive film such as silver, copper, and tin by a method through treatment, for example, in accordance with the method described in Patent Document 2, a nickel-phosphorous film may be formed by electroless plating. The adhesion of the electroless nickel-phosphorus film to the light metal surface is weak (see comparative example described later).
In addition, when a conductive film is formed on the light metal by electroplating through a nickel-based undercoat, for example, a special process such as an alternating current electrolytic process described in Patent Document 1 or a cathode activation process described in Patent Document 3 is used. If these operations are performed in parallel, improvement in adhesion can be expected. However, a known nickel-based plating bath (including a known nickel-phosphorous plating bath) or the nickel-based plating bath described in Patent Documents 1 to 3 was used without undergoing such special operations. Even when electroplating is performed, the resulting nickel-based undercoat has poor adhesion (see Comparative Examples described below).
 本発明は、不導態を形成し易いアルミニウム、マグネシウム、及びチタンより選ばれた特定の軽金属に対しる、銀、銅、スズなどの導電性皮膜の密着力を強化することを技術的課題とする。 The present invention aims to strengthen the adhesion of conductive films such as silver, copper, and tin against a specific light metal selected from aluminum, magnesium, and titanium that easily form a non-conductive state. To do.
 本発明者らは、不導態を形成し易いアルミニウム、マグネシウム、及びチタンより選ばれた特定の軽金属上に導電性皮膜を形成する場合、上記軽金属と導電性皮膜との間にニッケル系の下地皮膜を介在させるとともに、このニッケル系の下地皮膜としてニッケル-リン皮膜を選択し、且つ、当該下地皮膜を所定の錯化剤、界面活性剤などを併用添加した特定の電気ニッケル-リンメッキ浴で形成すると、下地皮膜を、アルミニウム、マグネシウム、及びチタンより選ばれた特定の軽金属上に良好に密着できることを見出し、先に、特願2015-247207(以下、先願発明という)にて提案した。
 そして本発明者らは、上記先願発明を基本として、特定の軽金属上にニッケル-リンの下地皮膜を形成した後に当該下地皮膜を熱処理するか、或は、次工程の導電性皮膜を形成した後に下地皮膜と導電性皮膜とを熱処理すると、軽金属に対する下地皮膜の密着力をさらに強化することができ、もって、軽金属上に導電性皮膜をより強固に密着形成できること、また、下地皮膜の密着力を強化するには、30℃以上の低温度域を含む温度条件で足りることを見出し、本発明を完成した。
When forming a conductive film on a specific light metal selected from aluminum, magnesium, and titanium that easily forms a non-conductive state, the inventors of the present invention have a nickel base between the light metal and the conductive film. A nickel-phosphorus film is selected as the nickel-based undercoat, and the base coat is formed with a specific electric nickel-phosphorous plating bath to which a predetermined complexing agent, surfactant, etc. are added in combination. Then, it was found that the base film can be satisfactorily adhered onto a specific light metal selected from aluminum, magnesium, and titanium, and was previously proposed in Japanese Patent Application No. 2015-247207 (hereinafter referred to as the prior invention).
Based on the invention of the prior application, the present inventors formed a nickel-phosphorous undercoat on a specific light metal and then heat-treated the undercoat or formed a conductive film in the next step. If the base film and the conductive film are heat-treated later, the adhesion of the base film to the light metal can be further strengthened, so that the conductive film can be formed more firmly on the light metal, and the adhesion of the base film It was found that the temperature condition including a low temperature range of 30 ° C. or higher is sufficient for strengthening, and the present invention was completed.
 即ち、本発明1は、
 (S1)アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属上に、電気ニッケル-リンメッキ浴を用いてニッケル-リン皮膜からなる下地皮膜を形成する工程と、
 (S2)下地皮膜上に、導電性皮膜を形成する工程と
からなる導電性皮膜形成方法において、
 上記工程(S1)と工程(S2)との間に、下地皮膜を30℃以上で熱処理する工程(S12)を介在させるか、又は、
 上記工程(S2)の後に、下地皮膜及び導電性皮膜を30℃以上で熱処理する工程(S3)を付加させており、
 上記電気ニッケル-リンメッキ浴は、
(a)可溶性ニッケル塩と、
(b)リンを含む化合物と、
(c)アミノカルボン酸類、オキシカルボン酸類、糖質、アミノアルコール類、ポリカルボン酸類、及びポリアミン類より選ばれた錯化剤と、
(d)ノニオン性界面活性剤及び両性界面活性剤より選ばれた界面活性剤と、
(e)緩衝剤と、
(f)光沢剤と
を含有することを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
That is, the present invention 1
(S1) forming a base film made of a nickel-phosphorus film on a non-conductive formable light metal selected from aluminum, magnesium and titanium using an electric nickel-phosphorous plating bath;
(S2) In a conductive film forming method comprising a step of forming a conductive film on a base film,
Between the step (S1) and the step (S2), a step (S12) of heat-treating the base film at 30 ° C. or higher is interposed, or
After the step (S2), a step (S3) of heat-treating the base film and the conductive film at 30 ° C. or higher is added,
The electric nickel-phosphorous plating bath is
(a) a soluble nickel salt;
(b) a compound containing phosphorus;
(c) a complexing agent selected from aminocarboxylic acids, oxycarboxylic acids, carbohydrates, amino alcohols, polycarboxylic acids, and polyamines;
(d) a surfactant selected from nonionic surfactants and amphoteric surfactants;
(e) a buffering agent;
(f) A method of forming a heat-treatable conductive film on a non-conductive-formable light metal, characterized by containing a brightener.
 本発明2は、上記本発明1において、
 電気ニッケル-リンメッキ浴のリンを含む化合物(b)が、亜リン酸、次亜リン酸、ピロリン酸、オルトリン酸、ヒドロキシエチレンジアミンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
Present invention 2 is the present invention 1, wherein
The compound (b) containing phosphorus in the electric nickel-phosphorous plating bath is phosphorous acid, hypophosphorous acid, pyrophosphoric acid, orthophosphoric acid, hydroxyethylenediamine diphosphonic acid, nitrilotris (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid) ) And at least one selected from the group consisting of these salts. A heat treatment type conductive film forming method on a non-conductive light-forming metal.
 本発明3は、上記本発明1又は2において、
 電気ニッケル-リンメッキ浴の錯化剤(c)が、オキシカルボン酸類、ポリカルボン酸類、及びアミノカルボン酸類よりなる群から選ばれた少なくとも一種であり、該オキシカルボン酸類が、クエン酸、酒石酸、リンゴ酸、グリコール酸、及びグルコン酸より選ばれ、該ポリカルボン酸類が、コハク酸であり、該アミノカルボン酸類が、ニトリロ三酢酸、エチレンジアミン四酢酸、及びジエチレントリアミン五酢酸より選ばれることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
Present invention 3 is the present invention 1 or 2, wherein
The complexing agent (c) of the electric nickel-phosphorous plating bath is at least one selected from the group consisting of oxycarboxylic acids, polycarboxylic acids, and aminocarboxylic acids, and the oxycarboxylic acids are citric acid, tartaric acid, apple An acid, glycolic acid, and gluconic acid, the polycarboxylic acid is succinic acid, and the aminocarboxylic acid is selected from nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid. This is a heat treatment type conductive film forming method on a conductive formable light metal.
 本発明4は、上記本発明1~3のいずれかにおいて、
 電気ニッケル-リンメッキ浴の緩衝剤(e)が、ホウ酸、炭酸ナトリウム、炭酸水素ナトリウム、アスコルビン酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
Invention 4 provides the method according to any one of Inventions 1 to 3, wherein
The non-conductive formation, wherein the buffer (e) of the electro nickel-phosphorous plating bath is at least one selected from the group consisting of boric acid, sodium carbonate, sodium hydrogen carbonate, ascorbic acid, and salts thereof This is a heat treatment type conductive film forming method on a porous light metal.
 本発明5は、上記本発明1~4のいずれかにおいて、
 電気ニッケル-リンメッキ浴の光沢剤(f)が、サッカリン及びその塩、ベンゼンスルホン酸及びその塩、トルエンスルホン酸及びその塩、ナフタレンスルホン酸及びその塩、アリルスルホン酸及びその塩、ブチンジオール、エチレンシアンヒドリン、クマリン、プロパギルアルコール、ビス(3-スルホプロピル)ジスルフィド、メルカプトプロパンスルホン酸、並びにチオリンゴ酸よりなる群から選ばれた少なくとも一種の化合物であることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
The present invention 5 provides the method according to any one of the present inventions 1 to 4,
The brightener (f) for the electro-nickel-phosphorous plating bath is saccharin and its salt, benzenesulfonic acid and its salt, toluenesulfonic acid and its salt, naphthalenesulfonic acid and its salt, allylsulfonic acid and its salt, butynediol, ethylene Non-passive formability characterized by being at least one compound selected from the group consisting of cyanohydrin, coumarin, propargyl alcohol, bis (3-sulfopropyl) disulfide, mercaptopropanesulfonic acid, and thiomalic acid This is a heat treatment type conductive film forming method on a light metal.
 本発明6は、上記本発明1~5のいずれかにおいて、
 電気ニッケル-リンメッキ浴のpHが、3.0~8.0であることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
The present invention 6 provides the method according to any one of the present inventions 1 to 5,
A method for forming a heat-treatable conductive film on a non-conductive light-forming metal, characterized in that the pH of the electric nickel-phosphorous plating bath is 3.0 to 8.0.
 本発明7は、上記本発明1~6のいずれかにおいて、
 上記下地皮膜の膜厚が、0.01μm~10.0μmであることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
Present invention 7 is any one of the present invention 1 to 6, wherein
A method for forming a heat-treatable conductive film on a non-conductive-formable light metal, wherein the film thickness of the base film is 0.01 μm to 10.0 μm.
 本発明8は、上記本発明1~7のいずれかにおいて、
 上記導電性皮膜を、電気メッキ、無電解メッキ、スパッタリング、又は蒸着で形成し、
 当該導電性皮膜が、銅、スズ、銀、金、ニッケル、ビスマス、パラジウム、白金、アルミニウム、マグネシウム、コバルト、亜鉛、及びクロムより選ばれた金属又はこれらの金属の合金からなる皮膜であることを特徴とする不導態形成性軽金属上への熱処理式の導電性皮膜形成方法である。
The present invention 8 provides the method according to any one of the present inventions 1 to 7,
The conductive film is formed by electroplating, electroless plating, sputtering, or vapor deposition,
The conductive film is a film made of a metal selected from copper, tin, silver, gold, nickel, bismuth, palladium, platinum, aluminum, magnesium, cobalt, zinc, and chromium, or an alloy of these metals. This is a heat treatment type conductive film forming method on a non-conductive-formable light metal.
 上記先願発明では、アルミニウム、マグネシウム、及びチタンより選ばれた不導態皮膜性軽金属上に、銅、スズ、銀などの導電性皮膜を形成する場合、所定の錯化剤、界面活性剤、緩衝剤などを含有する電気ニッケル-リンメッキ浴を用い、ニッケル-リン皮膜からなる下地皮膜を上記軽金属上に形成した後、導電性皮膜を形成すると、下地皮膜を軽金属上に良好に密着させることができ、もって、軽金属上に導電性皮膜を密着性良く形成できる。
 本発明は、この先願発明を改良したもので、先願発明の処理工程を基礎として、軽金属上に形成した下地皮膜を、或は、下地皮膜と導電性皮膜とを、30℃以上の低温度域を含む温度条件で熱処理する工程を加入することで、軽金属上への下地皮膜の密着力を一層強化して、軽金属上に導電性皮膜をさらに密着性良く形成できる。
 上記熱処理については、例えば、30℃~100℃で湯煎するなどの低温度域での簡便な熱処理によっても、軽金属上への下地皮膜の密着力を充分に強化できる。しかも、低温度域で熱処理すれば、投下するエネルギーを軽減して生産性を向上できる。
In the above-mentioned prior application invention, when a conductive film such as copper, tin, silver or the like is formed on a non-conductive film-type light metal selected from aluminum, magnesium, and titanium, a predetermined complexing agent, a surfactant, Using an electric nickel-phosphorous plating bath containing a buffering agent or the like to form a nickel-phosphorus coating on the light metal, and then forming a conductive coating, the base coating can be satisfactorily adhered onto the light metal. Thus, a conductive film can be formed on the light metal with good adhesion.
The present invention is an improvement of this prior invention, and based on the processing steps of the prior application, a base film formed on a light metal, or a base film and a conductive film, is formed at a low temperature of 30 ° C. or higher. By adding a step of heat treatment under a temperature condition including the region, the adhesion of the base film on the light metal can be further strengthened, and the conductive film can be formed on the light metal with better adhesion.
As for the heat treatment, for example, the adhesion of the base film on the light metal can be sufficiently strengthened by a simple heat treatment in a low temperature range such as hot water roasting at 30 ° C. to 100 ° C. Moreover, if heat treatment is performed in a low temperature range, the energy to be dropped can be reduced and the productivity can be improved.
 ちなみに、上記特許文献6には、アルミニウム合金製の母材に電気ニッケルメッキ層を被覆し、その後に熱処理することで、アルミニウム合金材に対するメッキ層の密着力を高めることが開示されている。当該特許文献6は、複写機などの現像ローラに関し、アルミニウム合金材を被覆するメッキ層には、電気抵抗を低下させる必要から、リン含有率を抑えたニッケルメッキ層が用いられている([0019]参照)。
 従って、特許文献6のアルミニウム合金材を被覆するメッキ層はニッケルメッキ層である点で、ニッケル-リン皮膜を下地皮膜とする本発明とは異なり、しかも、当該特許文献6の請求項4では、加熱処理によりアルミニウム合金材に対するニッケル層の密着力を改善することが可能であると開示されるが、これは、信頼性を担保するに足る密着力の確保には、熱処理による改善が必要であるという意味なのか、或は、熱処理なしでも実用上の密着力は確保できるが、加熱によって密着の信頼性がさらに高められるという意味なのか、不明である。
 また、ニッケル層を形成するための電気ニッケルメッキ浴の具体的な組成も不明である。
Incidentally, Patent Document 6 discloses that the adhesion of the plating layer to the aluminum alloy material is enhanced by covering the base material made of an aluminum alloy with an electric nickel plating layer and then performing heat treatment. Patent Document 6 relates to a developing roller for a copying machine or the like, and a nickel plating layer with a low phosphorus content is used for the plating layer covering the aluminum alloy material because it is necessary to reduce the electrical resistance ([0019]. ]reference).
Therefore, the plating layer covering the aluminum alloy material of Patent Document 6 is a nickel plating layer, which is different from the present invention in which a nickel-phosphorus film is used as a base film, and in Claim 4 of Patent Document 6, Although it is disclosed that the adhesion of the nickel layer to the aluminum alloy material can be improved by heat treatment, this requires improvement by heat treatment to ensure the adhesion sufficient to ensure reliability. It is unclear whether this means that the practical adhesion can be ensured without heat treatment, but the reliability of adhesion can be further enhanced by heating.
In addition, the specific composition of the electric nickel plating bath for forming the nickel layer is unknown.
 本発明は、アルミニウム、マグネシウム、及びチタンより選ばれた不導態を形成し易い特定の軽金属上に、ニッケル-リン皮膜よりなる下地皮膜を介して、銀、銅、スズなどの導電性皮膜を形成する方法であって、下地皮膜を特定の錯化剤、界面活性剤、光沢剤などを含む所定組成の電気ニッケル-リンメッキ浴を用いて形成するとともに、下地皮膜の形成後に30℃以上の条件で熱処理をするか、又は、次工程の導電性皮膜の形成後に下地皮膜と導電性皮膜とを30℃以上の条件で熱処理する方法である。
 上記アルミニウムは純アルミニウム及びアルミニウム合金を包含し、上記マグネシウムは純マグネシウム及びマグネシウム合金を包含し、上記チタンは純チタン及びチタン合金を包含する概念である。
The present invention provides a conductive film such as silver, copper, or tin on a specific light metal that easily forms a non-conductive state selected from aluminum, magnesium, and titanium via a base film made of a nickel-phosphorus film. A method of forming a base film using an electric nickel-phosphorous plating bath having a predetermined composition including a specific complexing agent, a surfactant, a brightener and the like, and a condition of 30 ° C. or higher after the base film is formed Or after the formation of the conductive film in the next step, the base film and the conductive film are heat-treated at 30 ° C. or higher.
The above aluminum includes pure aluminum and an aluminum alloy, the above magnesium includes pure magnesium and a magnesium alloy, and the above titanium includes pure titanium and a titanium alloy.
 本発明は、次の下地皮膜形成工程(S1)と、導電性皮膜形成工程(S2)と、工程(S1)と工程(S2)との間又は工程(S2)の後に熱処理する工程とからなる(本発明1参照)。
(S1)アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属上に、電気ニッケル-リンメッキ浴を用いてニッケル-リン皮膜からなる下地皮膜を形成する工程
(S2)当該下地皮膜上に、導電性皮膜を形成する工程
 また、上記工程(S1)で用いる電気ニッケル-リンメッキ浴は、
(a)可溶性ニッケル塩と、
(b)リンを含む化合物と、
(c)アミノカルボン酸類、オキシカルボン酸類、糖質、アミノアルコール類、ポリカルボン酸類、及びポリアミン類より選ばれた錯化剤と、
(d)ノニオン性界面活性剤及び両性界面活性剤より選ばれた界面活性剤と、
(e)緩衝剤と、
(f)光沢剤と
を必須成分とする。
The present invention comprises the following undercoat film forming step (S1), conductive film forming step (S2), and a step of heat treatment between step (S1) and step (S2) or after step (S2). (See Invention 1).
(S1) A step of forming a base film composed of a nickel-phosphorous film on a non-conductive formable light metal selected from aluminum, magnesium and titanium using an electric nickel-phosphorous plating bath (S2) on the base film The step of forming a conductive film The electric nickel-phosphorous plating bath used in the step (S1) is:
(A) a soluble nickel salt;
(B) a compound containing phosphorus;
(C) a complexing agent selected from aminocarboxylic acids, oxycarboxylic acids, carbohydrates, aminoalcohols, polycarboxylic acids, and polyamines;
(D) a surfactant selected from nonionic surfactants and amphoteric surfactants;
(E) a buffer;
(F) A brightener is an essential component.
 上記電気ニッケル-リンメッキ浴に含有される可溶性ニッケル塩(a)は、メッキ浴中にニッケルイオンを供給可能であれば良く、硫酸ニッケル、塩化ニッケル、硫酸ニッケルアンモニウム、酸化ニッケル、酢酸ニッケル、炭酸ニッケル、シュウ酸ニッケル、スルファミン酸ニッケル、有機スルホン酸のニッケル塩などが挙げられ、硫酸ニッケル、スルファミン酸ニッケル、酸化ニッケルなどが好ましい。
 上記電気ニッケル-リンメッキ浴に含有されるリンを含む化合物(b)としては、亜リン酸、次亜リン酸、ピロリン酸、オルトリン酸、ヒドロキシエチレンジアミンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、及びこれらの塩が挙げられる。
 上記可溶性ニッケル塩(a)は単用又は併用でき、そのメッキ浴における含有量は、0.01モル/L~3.0モル/L、好ましくは0.05モル/L~2.0モル/L、より好ましくは0.1モル/L~1.5モル/Lである。
 上記リンを含む化合物(b)は単用又は併用でき、そのメッキ浴における含有量は、0.05モル/L~2.0モル/L、好ましくは0.1モル/L~1.0モル/L、より好ましくは0.1モル/L~0.8モル/Lである。
The soluble nickel salt (a) contained in the electro-nickel-phosphorous plating bath only needs to be able to supply nickel ions into the plating bath. Nickel sulfate, nickel chloride, nickel ammonium sulfate, nickel oxide, nickel acetate, nickel carbonate Nickel oxalate, nickel sulfamate, nickel salt of organic sulfonic acid and the like, and nickel sulfate, nickel sulfamate, nickel oxide and the like are preferable.
The phosphorus-containing compound (b) contained in the electric nickel-phosphorous plating bath includes phosphorous acid, hypophosphorous acid, pyrophosphoric acid, orthophosphoric acid, hydroxyethylenediamine diphosphonic acid, nitrilotris (methylenephosphonic acid), ethylenediamine Examples include tetra (methylene phosphonic acid) and salts thereof.
The soluble nickel salt (a) can be used alone or in combination, and its content in the plating bath is 0.01 mol / L to 3.0 mol / L, preferably 0.05 mol / L to 2.0 mol / L. L, more preferably 0.1 mol / L to 1.5 mol / L.
The phosphorus-containing compound (b) can be used singly or in combination, and its content in the plating bath is 0.05 mol / L to 2.0 mol / L, preferably 0.1 mol / L to 1.0 mol. / L, more preferably 0.1 mol / L to 0.8 mol / L.
 上記電気ニッケル-リンメッキ浴に含有される錯化剤(c)は、メッキ浴中で主にニッケル錯体を形成する化合物であり、電極電位の変化に対する陰極電流密度の変化を緩やかにして、ニッケル系皮膜の析出を容易にする機能を果たすものである。錯化剤(c)は、アミノカルボン酸類、オキシカルボン酸類、糖質、アミノアルコール類、ポリカルボン酸類、及びポリアミン類よりなる群から選ばれる。
 上記アミノカルボン酸類としては、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、エチレンジアミンテトラプロピオン酸、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、イミノジプロピオン酸(IDP)、メタフェニレンジアミン四酢酸、1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸、ジアミノプロピオン酸、及びこれらの塩などが挙げられ、NTA、EDTA、及びDTPAが好ましい。
 上記オキシカルボン酸類としては、クエン酸、酒石酸、リンゴ酸、グリコール酸、グルコン酸、乳酸、グルコヘプトン酸、及びこれらの塩などが挙げられ、クエン酸、酒石酸、リンゴ酸、グリコール酸、グルコン酸、及びこれらの塩が好ましい。
 上記糖質としては、グルコース(ブドウ糖)、フルクトース(果糖)、ラクトース(乳糖)、マルトース(麦芽糖)、イソマルツロース(パラチノース)、キシロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元イソマルツロース、グルコノラクトンなどが挙げられ、ソルビトール、キシリトール、マンニトール、マルチトールなどの糖アルコールが好ましい。
 上記アミノアルコール類としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどが挙げられ、トリエタノールアミン及びトリプロパノールアミンが好ましい。
 上記ポリカルボン酸類としては、コハク酸、シュウ酸、グルタル酸、アジピン酸、マロン酸、及びこれらの塩などが挙げられ、コハク酸が好ましい。
 上記ポリアミン類としては、メチレンジアミン、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミンなどが挙げられ、エチレンジアミンが好ましい。
 上記錯化剤(c)としては、クエン酸、酒石酸、リンゴ酸、グリコール酸、グルコン酸などのオキシカルボン酸類、コハク酸などのポリカルボン酸類、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、及びこれらの塩などのアミノカルボン酸類、ソルビトール、マンニトール、マルチトールなどの糖質が好適である。
 上記錯化剤(c)は単用又は併用でき、そのメッキ浴における含有量は、0.001モル/L~2モル/Lであり、好ましくは0.05モル/L~0.8モル/L、より好ましくは0.1モル/L~0.5モル/Lである。
The complexing agent (c) contained in the electro-nickel-phosphorous plating bath is a compound that mainly forms a nickel complex in the plating bath, and makes the change in the cathode current density with respect to the change in the electrode potential gentle. It fulfills the function of facilitating film deposition. The complexing agent (c) is selected from the group consisting of aminocarboxylic acids, oxycarboxylic acids, saccharides, aminoalcohols, polycarboxylic acids, and polyamines.
Examples of the aminocarboxylic acids include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA). , Iminodiacetic acid (IDA), iminodipropionic acid (IDP), metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, and salts thereof NTA, EDTA, and DTPA are preferable.
Examples of the oxycarboxylic acids include citric acid, tartaric acid, malic acid, glycolic acid, gluconic acid, lactic acid, glucoheptonic acid, and salts thereof, citric acid, tartaric acid, malic acid, glycolic acid, gluconic acid, and These salts are preferred.
Examples of the sugars include glucose (glucose), fructose (fructose), lactose (lactose), maltose (maltose), isomaltulose (palatinose), xylose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced starch syrup, lactitol , Reduced isomaltulose, gluconolactone and the like, and sugar alcohols such as sorbitol, xylitol, mannitol, maltitol are preferred.
Examples of the amino alcohols include monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, and tripropanolamine, with triethanolamine and tripropanolamine being preferred.
Examples of the polycarboxylic acids include succinic acid, oxalic acid, glutaric acid, adipic acid, malonic acid, and salts thereof, and succinic acid is preferable.
Examples of the polyamines include methylene diamine, ethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, diethylene triamine, tetraethylene pentamine, pentaethylene hexamine, and hexaethylene heptamine, and ethylene diamine is preferred.
Examples of the complexing agent (c) include oxycarboxylic acids such as citric acid, tartaric acid, malic acid, glycolic acid, and gluconic acid, polycarboxylic acids such as succinic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and Amino carboxylic acids such as these salts, and saccharides such as sorbitol, mannitol, maltitol are preferred.
The complexing agent (c) can be used alone or in combination, and its content in the plating bath is 0.001 mol / L to 2 mol / L, preferably 0.05 mol / L to 0.8 mol / L. L, more preferably 0.1 mol / L to 0.5 mol / L.
 上記電気ニッケル-リンメッキ浴に含有される界面活性剤(d)は、ノニオン性界面活性剤及び両性界面活性剤より選ばれ、アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属と下地皮膜との密着性を増進する。
 上記ノニオン性界面活性剤としては、一般的に、C1~C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1~C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1~C25アルキルナフトール、C1~C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、ポリオキシアルキレンフェニルエーテル、C1~C22脂肪族アミン、C1~C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2~300モル付加縮合させたものなどが挙げられる。例えば、ポリオキシエチレンクミルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ジブチル-β-ナフトールポリエトキシレート、ポリオキシエチレンスチレン化フェニルエーテル、エチレンジアミン・テトラポリオキシエチレン・ポリオキシプロピレン、ポリエチレングリコール、ラウリルアルコールポリエトキシレートなどが好適である。
 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸ベタインなどが挙げられる。例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリン酸アミドプロピルベタイン、ラウリル酸アミドプロピルジメチルアミンオキシドなどが好適である。また、エチレンオキシド(EO)及び/又はプロピレンオキシド(PO)とアルキルアミン又はジアミンとの縮合生成物の、硫酸化付加物或はスルホン酸化付加物も使用できる。
 上記界面活性剤(d)は単用又は併用でき、そのメッキ浴における含有量は、0.1g/L~50g/Lであり、好ましくは1g/L~40g/L、より好ましくは5g/L~35g/Lである。
 上述のように、本発明に用いる電気ニッケル-リンメッキ浴では、密着性を増進する見地から、ノニオン性界面活性剤及び/又は両性界面活性剤の添加を必須要件とするが、これらの界面活性剤に加えて、当該特定種以外の界面活性剤、即ち、カチオン性界面活性剤及び/又はアニオン性界面活性剤を併用的に添加することを排除するものではない。
 但し、メッキ浴に本発明の所定の界面活性剤を添加することなく、カチオン性界面活性剤及び/又はアニオン性界面活性剤を単独添加しても、メッキ浴の安定性や下地皮膜の密着性に寄与しない点は、後述の試験例(比較例7参照)に示す通りである。
The surfactant (d) contained in the electric nickel-phosphorus plating bath is selected from nonionic surfactants and amphoteric surfactants, and a non-conductive formable light metal selected from aluminum, magnesium, and titanium and a base Improves adhesion to the film.
The nonionic surfactants are generally C1-C20 alkanols, phenols, naphthols, bisphenols, (poly) C1-C25 alkylphenols, (poly) arylalkylphenols, C1-C25 alkylnaphthols, C1-C25 alkoxylations. 2 to 300 ethylene oxide (EO) and / or propylene oxide (PO) is added to phosphoric acid (salt), sorbitan ester, polyalkylene glycol, polyoxyalkylene phenyl ether, C1-C22 aliphatic amine, C1-C22 aliphatic amide, etc. Examples include those subjected to molar addition condensation. For example, polyoxyethylene cumyl phenyl ether, polyoxyethylene dodecyl phenyl ether, dibutyl-β-naphthol polyethoxylate, polyoxyethylene styrenated phenyl ether, ethylenediamine / tetrapolyoxyethylene / polyoxypropylene, polyethylene glycol, lauryl alcohol Polyethoxylates are preferred.
Examples of the amphoteric surfactant include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid betaine. For example, lauryldimethylaminoacetic acid betaine, stearic acid amidopropyl betaine, lauric acid amidopropyldimethylamine oxide, and the like are suitable. In addition, sulfated adducts or sulfonated adducts of condensation products of ethylene oxide (EO) and / or propylene oxide (PO) with alkylamines or diamines can also be used.
The surfactant (d) can be used alone or in combination, and its content in the plating bath is 0.1 g / L to 50 g / L, preferably 1 g / L to 40 g / L, more preferably 5 g / L. ~ 35 g / L.
As described above, in the electro nickel-phosphorous plating bath used in the present invention, the addition of a nonionic surfactant and / or an amphoteric surfactant is an essential requirement from the viewpoint of improving adhesion. In addition, it is not excluded to add a surfactant other than the specific species, that is, a cationic surfactant and / or an anionic surfactant in combination.
However, even if a cationic surfactant and / or an anionic surfactant is added alone without adding the predetermined surfactant of the present invention to the plating bath, the stability of the plating bath and the adhesion of the base film The point that does not contribute to is as shown in a test example (see Comparative Example 7) described later.
 上記電気ニッケル-リンメッキ浴に含有される緩衝剤(e)は、アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属に対するニッケル-リン皮膜からなる下地皮膜の密着性を向上させるとともに、メッキ浴の安定剤としても作用する。
 上記緩衝剤(e)としては、ホウ酸、炭酸ナトリウム、炭酸水素ナトリウム、アスコルビン酸、これらの塩などが挙げられ、ホウ酸及び炭酸ナトリウムが好ましい。
 上記緩衝剤(e)は単用又は併用でき、そのメッキ浴における含有量は、0.05モル/L~1.5モル/Lであり、好ましくは0.05モル/L~1.0モル/L、より好ましくは0.1モル/L~0.6モル/Lである。
The buffering agent (e) contained in the electric nickel-phosphorus plating bath improves the adhesion of the base film composed of a nickel-phosphorus film to a non-conductive forming light metal selected from aluminum, magnesium, and titanium, and Also acts as a stabilizer for the plating bath.
Examples of the buffer (e) include boric acid, sodium carbonate, sodium bicarbonate, ascorbic acid, and salts thereof, and boric acid and sodium carbonate are preferable.
The buffer (e) can be used alone or in combination, and its content in the plating bath is 0.05 mol / L to 1.5 mol / L, preferably 0.05 mol / L to 1.0 mol. / L, more preferably 0.1 mol / L to 0.6 mol / L.
 上記電気ニッケル-リンメッキ浴に含有される光沢剤(f)は、アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属に対するニッケル-リン皮膜からなる下地皮膜の密着性を向上させる。
 上記光沢剤(f)としては、サッカリン及びその塩、ベンゼンスルホン酸及びその塩、トルエンスルホン酸(具体的には、p-トルエンスルホン酸など)及びその塩、ナフタレンスルホン酸及びその塩、アリルスルホン酸及びその塩、ブチンジオール(具体的には、2-ブチン-1,4-ジオールなど)、エチレンシアンヒドリン、クマリン、プロパギルアルコール、ビス(3-スルホプロピル)ジスルフィド、メルカプトプロパンスルホン酸、チオリンゴ酸などの化合物が挙げられる。
 当該光沢剤(f)としては、各化合物を単用しても有効であるが、特に、ベンゼンスルホン酸又はその塩とサッカリン、ナフタレンスルホン酸又はその塩とサッカリン、ブチンジオールとベンゼンスルホン酸又はその塩、ブチンジオールとナフタレンスルホン酸又はその塩、アリルスルホン酸又はその塩とサッカリン、チオリンゴ酸とサッカリン、ビス(3-スルホプロピル)ジスルフィドとサッカリン、アリルスルホン酸又はその塩とプロパギルアルコール、ベンゼンスルホン酸又はその塩とプロパギルアルコール、ナフタレンスルホン酸又はその塩とプロパギルアルコールなどのように、2種、或はそれ以上の化合物を併用することが好ましい。
 上述の通り、光沢剤(f)は単用又は併用でき、そのメッキ浴における含有量は、0.001モル/L~0.15モル/Lであり、好ましくは0.005モル/L~0.07モル/L、より好ましくは0.01モル/L~0.05モル/Lである。
The brightener (f) contained in the electric nickel-phosphorous plating bath improves the adhesion of the base film made of a nickel-phosphorous film to a non-conductive forming light metal selected from aluminum, magnesium and titanium.
Examples of the brightener (f) include saccharin and salts thereof, benzenesulfonic acid and salts thereof, toluenesulfonic acid (specifically, p-toluenesulfonic acid and the like) and salts thereof, naphthalenesulfonic acid and salts thereof, and allylsulfone. Acids and salts thereof, butynediol (specifically, 2-butyne-1,4-diol, etc.), ethylene cyanohydrin, coumarin, propargyl alcohol, bis (3-sulfopropyl) disulfide, mercaptopropanesulfonic acid, And compounds such as thiomalic acid.
As the brightener (f), it is effective to use each compound alone, but in particular, benzenesulfonic acid or a salt thereof and saccharin, naphthalenesulfonic acid or a salt thereof and saccharin, butynediol and benzenesulfonic acid or a salt thereof. Salt, butynediol and naphthalenesulfonic acid or salt thereof, allylsulfonic acid or salt and saccharin, thiomalic acid and saccharin, bis (3-sulfopropyl) disulfide and saccharin, allylsulfonic acid or salt thereof and propargyl alcohol, benzenesulfone It is preferable to use two or more compounds in combination, such as acid or a salt thereof and propargyl alcohol, naphthalenesulfonic acid or a salt thereof and propargyl alcohol.
As described above, the brightener (f) can be used alone or in combination, and its content in the plating bath is 0.001 mol / L to 0.15 mol / L, preferably 0.005 mol / L to 0. 0.07 mol / L, more preferably 0.01 mol / L to 0.05 mol / L.
 本発明において、電気ニッケル-リンメッキ浴の使用は、アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属上にニッケル-リン皮膜からなる下地皮膜を形成することを目的とするが、メッキ浴のpHは3.0~8.0が適当であり、好ましくは4.0~6.0である。
 また、下地皮膜形成工程(S1)において、電気メッキの際の陰極電流密度は0.01A/dm~5.0A/dm、好ましくは0.05A/dm~2.0A/dmである。
 上記下地皮膜形成工程(S1)において、下地皮膜となるニッケル-リン皮膜は、上層に導電性皮膜を形成するに足る導電性と密着力とを付与できれば良いので、厚く形成する必要はない。従って、その膜厚は0.01μm~10.0μm、好ましくは0.01μm~8.0μm、より好ましくは0.01μm~5.0μmである。
In the present invention, the use of an electric nickel-phosphorous plating bath is intended to form a base film comprising a nickel-phosphorous film on a non-conductive non-forming light metal selected from aluminum, magnesium and titanium. The pH of the bath is suitably from 3.0 to 8.0, preferably from 4.0 to 6.0.
Further, the primer film forming step (S1), the cathode current density during the electroplating 0.01A / dm 2 ~ 5.0A / dm 2, preferably at 0.05A / dm 2 ~ 2.0A / dm 2 is there.
In the undercoat film forming step (S1), the nickel-phosphorus film as the undercoat film is not required to be formed thick because it only needs to provide conductivity and adhesion sufficient to form a conductive film on the upper layer. Accordingly, the film thickness is 0.01 μm to 10.0 μm, preferably 0.01 μm to 8.0 μm, more preferably 0.01 μm to 5.0 μm.
 以上において、アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属上にニッケル-リン皮膜からなる下地皮膜を形成する工程(S1)を詳述したが、次に、当該工程(S1)で形成したニッケル-リン皮膜の上に、上層皮膜として導電性皮膜を形成する工程(S2)を説明する。
 上記導電性皮膜は、導電性を有する公知の皮膜であれば特段の制約はないが、例えば、銅、スズ、銀、金、ニッケル、ビスマス、パラジウム、白金、アルミニウム、マグネシウム、コバルト、亜鉛、及びクロムより選ばれた金属又はこれらの金属の合金からなる皮膜が挙げられる。
 導電性皮膜を構成する金属としては、銀、銅、ニッケル、スズ、パラジウム、金、及びビスマスが好適である。また、上記金属の合金としては、ニッケル-タングステン合金、ニッケル-モリブデン合金、ニッケル-スズ合金、スズ-銀合金、スズ-ビスマス合金、スズ-銅合金、スズ-亜鉛合金、金-スズ合金などが好適である。
 上記導電性皮膜は、電気メッキ、無電解メッキ、スパッタリング又は蒸着などにより形成することができる。この中では、生産性の見地からメッキ方式が好ましいが、スパッタリング又は蒸着を排除するものではない。
In the above, the step (S1) of forming a base coating composed of a nickel-phosphorus coating on a non-conductive formable light metal selected from aluminum, magnesium and titanium has been described in detail. Next, the step (S1) The step (S2) of forming a conductive film as an upper film on the nickel-phosphorus film formed in (1) will be described.
The conductive film is not particularly limited as long as it is a known film having conductivity, for example, copper, tin, silver, gold, nickel, bismuth, palladium, platinum, aluminum, magnesium, cobalt, zinc, and Examples thereof include a film made of a metal selected from chromium or an alloy of these metals.
Silver, copper, nickel, tin, palladium, gold, and bismuth are suitable as the metal constituting the conductive film. Examples of the metal alloys include nickel-tungsten alloys, nickel-molybdenum alloys, nickel-tin alloys, tin-silver alloys, tin-bismuth alloys, tin-copper alloys, tin-zinc alloys, and gold-tin alloys. Is preferred.
The conductive film can be formed by electroplating, electroless plating, sputtering or vapor deposition. Among these, the plating method is preferable from the viewpoint of productivity, but does not exclude sputtering or vapor deposition.
 本発明の方法は、不導態形成性軽金属上に下地皮膜を介して導電性皮膜を形成することを特徴とするが、導電性皮膜は単層で形成しても良く、2層、3層などの複層で形成することもできる。
 複層の導電性皮膜を例示すれば、ニッケル、銅、コバルト、ビスマス、亜鉛、クロム、鉄などから選ばれた金属、又はこれらの金属の合金を下層(つまり、下地皮膜に面する側)とし、スズ、銅、金、銀などから選ばれた金属を上層とした2層の導電性皮膜を挙げることができる。
 また、複層の導電性皮膜の最上層を、スズ、ニッケル、コバルト、クロム、銀、パラジウム、又はこれらの合金などで形成すると、最上層の表面に銀色の美麗な外観を付与できる。
The method of the present invention is characterized in that a conductive film is formed on a non-conductive light-forming metal via a base film, and the conductive film may be formed as a single layer, or may be formed into two layers or three layers. It is also possible to form a multi-layer.
For example, a multi-layered conductive film is made of a metal selected from nickel, copper, cobalt, bismuth, zinc, chromium, iron, or an alloy of these metals as the lower layer (that is, the side facing the base film). , A two-layer conductive film having a metal selected from tin, copper, gold, silver and the like as an upper layer.
In addition, when the uppermost layer of the multi-layered conductive film is formed of tin, nickel, cobalt, chromium, silver, palladium, or an alloy thereof, a beautiful silver appearance can be imparted to the surface of the uppermost layer.
 本発明は、前述したように、下地皮膜形成工程(S1)と導電性皮膜形成工程(S2)とに、熱処理工程を必須構成要件として付加することに特徴がある。
 そこで、この熱処理工程について詳述する。
 先ず、熱処理の第一の方法は、下地皮膜形成工程(S1)と導電性皮膜形成工程(S2)との間に熱処理工程(S12)を介在させたもので、この中間熱処理方式は次の3工程からなる。
(S1)アルミニウムなどの不導態形成性軽金属上に、電気ニッケル-リンメッキ浴を用いてニッケル-リン皮膜からなる下地皮膜を形成する工程
(S12)当該下地皮膜を、30℃以上で熱処理する工程
(S2)当該下地皮膜上に、導電性皮膜を形成する工程
 下地皮膜を形成した後、30℃以上で下地皮膜を熱処理すると、不導態形成性軽金属に対する下地皮膜の密着力をより向上させることができ、もって、導電性皮膜を不導態形成性軽金属上にさらに強固に密着形成できる。
 熱処理温度としては30℃~300℃が適しており、30℃~250℃が好ましく、より好ましくは30℃~200℃、さらに好ましくは30℃~150℃であり、特に30℃~100℃が好適である。
 熱処理温度を300℃より高くしても、密着力を強化する効果はあまり変わらず、却って下地皮膜に熱歪みが生じて密着力に悪影響を及ぼすか、或は、下地皮膜を酸化する恐れがあるうえ、無駄なエネルギーの投入により生産性も低下する恐れがある。この点に鑑みると、熱処理温度の上限は200℃程度が好ましい。また、冒述の先願発明の説明にて示すように、下地皮膜形成工程(S1)の後、熱処理を行わなかったとしても不導態形成性軽金属への下地皮膜の実用的な密着性は担保できるとともに、30℃程度の加熱であってもこの実用水準に対して更なる密着性の改善が見込めることから、熱処理温度の下限を30℃とした。
 次いで、熱処理の第二の方法は、導電性皮膜形成工程(S2)の後に熱処理工程(S3)を付加したもので、この後段階熱処理方式は次の3工程からなる。
(S1)アルミニウムなどの不導態形成性軽金属上に、電気ニッケル-リンメッキ浴を用いてニッケル-リン皮膜からなる下地皮膜を形成する工程
(S2)当該下地皮膜上に、導電性皮膜を形成する工程
(S3)当該下地皮膜及び導電性皮膜を、30℃以上で熱処理する工程
 第二の方法における熱処理の温度条件は、第一の方法と同様で良い。
 上記熱処理については、中間熱処理方式及び後段階熱処理方式ともに共通であるが、オーブン加熱、ドライヤーによる熱風加熱、温水或いはオイルバスへの浸漬などの様々な態様を選択できる。また、例えば、30℃~100℃の温水処理(温水に浸漬する湯煎)を選択すると、湯煎による低温度域での加熱処理なので、熱エネルギーの軽減化と処理の簡便化とが図られ、生産性を向上できる。
As described above, the present invention is characterized in that a heat treatment process is added as an essential constituent element to the base film forming process (S1) and the conductive film forming process (S2).
Therefore, this heat treatment step will be described in detail.
First, the first method of heat treatment is to interpose the heat treatment step (S12) between the base film formation step (S1) and the conductive film formation step (S2). It consists of a process.
(S1) A step of forming a base film made of a nickel-phosphorous film on a non-conductive formable light metal such as aluminum using an electric nickel-phosphorous plating bath (S12) a step of heat-treating the base film at 30 ° C. or higher (S2) Step of forming a conductive film on the base film After forming the base film, the base film is heat-treated at 30 ° C. or higher to further improve the adhesion of the base film to the non-conductive formable light metal. Therefore, the conductive film can be formed more firmly on the non-conductive light metal.
The heat treatment temperature is suitably 30 ° C to 300 ° C, preferably 30 ° C to 250 ° C, more preferably 30 ° C to 200 ° C, still more preferably 30 ° C to 150 ° C, and particularly preferably 30 ° C to 100 ° C. It is.
Even if the heat treatment temperature is higher than 300 ° C., the effect of strengthening the adhesion is not changed so much. On the contrary, thermal distortion occurs in the undercoat, which may adversely affect the adhesion or may oxidize the undercoat. In addition, there is a risk that productivity may be reduced due to useless energy input. In view of this point, the upper limit of the heat treatment temperature is preferably about 200 ° C. In addition, as shown in the description of the invention of the prior application described above, even if the heat treatment is not performed after the base film formation step (S1), the practical adhesion of the base film to the non-conductive formable light metal is The lower limit of the heat treatment temperature was set to 30 ° C., since it can be guaranteed and further improvement in adhesion can be expected even with heating at about 30 ° C. with respect to this practical level.
Next, the second method of heat treatment is a method in which a heat treatment step (S3) is added after the conductive film formation step (S2), and this subsequent heat treatment method includes the following three steps.
(S1) A step of forming a base film composed of a nickel-phosphorus film on a non-conductive light-forming metal such as aluminum using an electric nickel-phosphorous plating bath (S2) A conductive film is formed on the base film Step (S3) Step of heat-treating the base film and the conductive film at 30 ° C. or higher The temperature condition of the heat treatment in the second method may be the same as in the first method.
About the said heat processing, although an intermediate heat processing system and a post-stage heat processing system are common, various aspects, such as oven heating, hot air heating with a dryer, immersion in warm water or an oil bath, can be selected. In addition, for example, when hot water treatment at 30 ° C to 100 ° C (boiled water bath immersed in hot water) is selected, the heat treatment is performed in a low temperature range with hot water bath, so heat energy can be reduced and the processing can be simplified. Can be improved.
 以下、アルミニウムなどの不導態形成性軽金属上に下地皮膜(ニッケル-リン皮膜)を形成するための電気ニッケル-リンメッキ浴、導電性皮膜を形成するためのメッキ浴、並びに熱処理方式で上記軽金属上に当該下地皮膜を介して導電性皮膜を形成する方法の実施例を述べるとともに、上記軽金属に対するニッケル-リン皮膜の密着性の評価試験例を順次説明する。
 尚、本発明は下記の実施例、試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, an electro-nickel-phosphorus plating bath for forming a base film (nickel-phosphorus film) on a non-conductive-forming light metal such as aluminum, a plating bath for forming a conductive film, and a heat treatment method on the light metal. An example of a method for forming a conductive film through the base film will be described, and an evaluation test example of the adhesion of the nickel-phosphorus film to the light metal will be sequentially described.
The present invention is not limited to the following examples and test examples, and it is needless to say that arbitrary modifications can be made within the scope of the technical idea of the present invention.
≪熱処理方式で不導態形成性軽金属上に導電性皮膜を形成する方法の実施例≫
 下記の実施例1~13において、下地皮膜及び導電性皮膜は以下のとおりである。
実施例1~7:ニッケル-リン皮膜(下地皮膜)/スズ皮膜(導電性皮膜)
実施例8:ニッケル-リン皮膜(下地皮膜)/銅皮膜(導電性皮膜)
実施例9:ニッケル-リン皮膜(下地皮膜)/ニッケル皮膜(導電性皮膜)
実施例10及び13:ニッケル-リン皮膜(下地皮膜)/銀皮膜(導電性皮膜)
実施例11:ニッケル-リン皮膜(下地皮膜)/パラジウム皮膜(導電性皮膜)
実施例12:ニッケル-リン皮膜(下地皮膜)/スズ-ビスマス合金皮膜(導電性皮膜)
実施例13では、導電性皮膜(銀皮膜)を無電解メッキで形成し、他の実施例では、電気メッキで形成した。
 上記実施例1~7は、工程(S1)のニッケル-リンメッキ浴の組成を変更した例である。
 上記実施例1~13は、下地皮膜形成工程(S1)と導電性皮膜形成工程(S2)との間に、熱処理工程(S12)を介在させる中間熱処理方式の例であり、下記実施例14~17は、上記工程(S2)の後に熱処理工程(S3)を付加する後段階熱処理方式の例であり、下記実施例18~23は、下地皮膜形成工程(S1)と導電性皮膜形成工程(S2)との間に、熱処理工程(S12)を介在させる中間熱処理方式の例である。
 後段階熱処理方式において、時期的条件を除いて、実施例14は実施例1を基本とし、実施例15は実施例3を基本とし、実施例16は実施例8を基本とし、実施例17は実施例9を基本としたものである。
 中間熱処理方式及び後段階熱処理方式における熱処理の付加条件として、実施例1~17は70℃、5分間の条件で湯煎した例、実施例18~20は条件を変更して湯煎した例、実施例21は熱風加熱した例、実施例22~23はオーブン加熱した例である。
 また、基準例は冒述の先願発明の例で、実施例1を基本として、工程(S1)の後に熱処理なしで直接的に工程(S2)に移行した例である。
≪Example of a method for forming a conductive film on a non-conductive formable light metal by a heat treatment method≫
In Examples 1 to 13 below, the base film and the conductive film are as follows.
Examples 1 to 7: Nickel-phosphorus film (undercoat film) / tin film (conductive film)
Example 8: Nickel-phosphorus film (undercoat film) / copper film (conductive film)
Example 9: Nickel-phosphorus film (undercoat film) / nickel film (conductive film)
Examples 10 and 13: Nickel-phosphorus film (undercoat film) / silver film (conductive film)
Example 11: Nickel-phosphorus film (undercoat film) / palladium film (conductive film)
Example 12: Nickel-phosphorus coating (undercoat) / tin-bismuth alloy coating (conductive coating)
In Example 13, the conductive film (silver film) was formed by electroless plating, and in other examples, it was formed by electroplating.
Examples 1 to 7 are examples in which the composition of the nickel-phosphorus plating bath in step (S1) was changed.
Examples 1 to 13 are examples of an intermediate heat treatment method in which a heat treatment step (S12) is interposed between the base film formation step (S1) and the conductive film formation step (S2). 17 is an example of a post-stage heat treatment method in which a heat treatment step (S3) is added after the above step (S2). Examples 18 to 23 described below are the undercoat film formation step (S1) and the conductive film formation step (S2). ) Is an example of an intermediate heat treatment method in which a heat treatment step (S12) is interposed.
In the post-stage heat treatment method, except for the time condition, Example 14 is based on Example 1, Example 15 is based on Example 3, Example 16 is based on Example 8, and Example 17 is This is based on Example 9.
As additional conditions for the heat treatment in the intermediate heat treatment method and the post-stage heat treatment method, Examples 1 to 17 are examples of hot water roasting at 70 ° C. for 5 minutes, Examples 18 to 20 are examples of hot water roasting by changing the conditions, Examples 21 is an example of heating with hot air, and Examples 22 to 23 are examples of heating with oven.
Further, the reference example is an example of the invention of the prior application described above, and is an example in which, based on Example 1, the process (S1) is directly transferred to the process (S2) after the process (S1).
 一方、下記の比較例1~9は、実施例1を基本として、下記変更を加えたものである。
比較例1:軽金属上に下地皮膜を形成せずに、電気メッキにより導電性皮膜を直接形成したブランク例(熱処理なしの例)
比較例2~3:軽金属上に、ニッケル-リン皮膜ではなく、ニッケル皮膜である下地皮膜を介して導電性皮膜を形成した例
 比較例2:熱処理を行った例
 比較例3:熱処理なしの例
比較例4~9:本発明の方法における下地皮膜形成工程(S1)にて用いるニッケル-リンメッキ浴に、必須成分の一部が含まれないか、或は必須成分の一部が他の成分に変更された例
 比較例4:ニッケル-リンメッキ浴に錯化剤(c)が含まれない例
 比較例5~6:ニッケル-リンメッキ浴に界面活性剤(d)が含まれない例
  比較例5:熱処理を行った例
  比較例6:熱処理なしの例
 比較例7:ニッケル-リンメッキ浴に、本発明に用いる界面活性剤(d)に代えてカチオン性界面活性剤を用い、熱処理した例
 比較例8~9:ニッケル-リンメッキ浴に光沢剤(f)が含まれない例
  比較例8:熱処理を行った例
  比較例9:熱処理なしの例
On the other hand, Comparative Examples 1 to 9 below are based on Example 1 with the following modifications.
Comparative Example 1: Blank example in which a conductive film was directly formed by electroplating without forming a base film on a light metal (example without heat treatment)
Comparative Examples 2 to 3: An example in which a conductive film is formed on a light metal via a base film that is a nickel film instead of a nickel-phosphorus film Comparative Example 2: an example in which heat treatment was performed Comparative Example 3: an example in which heat treatment was not performed Comparative Examples 4 to 9: The nickel-phosphorous plating bath used in the base film forming step (S1) in the method of the present invention does not contain some essential components, or some essential components become other components. Modified Examples Comparative Example 4: Examples in which the complexing agent (c) is not contained in the nickel-phosphorous plating bath Comparative Examples 5 to 6: Examples in which the surfactant (d) is not contained in the nickel-phosphorous plating bath Comparative Example 5: Example of heat treatment Comparative Example 6: Example without heat treatment Comparative Example 7: Example of heat treatment using a cationic surfactant instead of the surfactant (d) used in the present invention in a nickel-phosphorus plating bath Comparative Example 8 ~ 9: Glossy nickel-phosphorus plating bath Example in which agent (f) is not included Comparative Example 8: Example in which heat treatment was performed Comparative Example 9: Example in which heat treatment was not performed
(1)実施例1
(S1)下地皮膜形成工程
 次の(i)~(iv)に示すように、3種類の5cm×5cm角のアルミニウム合金板、並びに1種類の5cm×5cm角のマグネシウム合金板を用意し、不導態形成性軽金属の各試料とした(下記の実施例2~22、比較例1~9も同じ)。
 特に、3種類のアルミニウム合金を選択したのは、当該合金の種類が多種に及ぶため、アルミニウム合金の種類が変わっても、本発明の下地皮膜を密着性良く下張りできるか否かの汎用性を検証するためである。
(i)試料1:アルミニウム合金/Al-Cu系(A2024P;JIS規格)
(ii)試料2:アルミニウム合金/Al-Mg系(A5052P;JIS規格)
(iii)試料3:アルミニウム合金/Al-Mg-Si系(A6061P;JIS規格)
(iv)試料4:マグネシウム合金/Mg-Al-Zn系(AZ31;JIS規格)
 先ず、上記各試料を水酸化ナトリウム(3重量%)で25℃、3分間の条件でアルカリ脱脂し、下記(A)のニッケル-リンメッキ浴と電気メッキ条件により、試料上に下地皮膜を形成し、25℃、約30秒間の条件で水洗した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸                 0.4モル/L
クエン酸                 0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         4.5
 亜リン酸:リンを含む化合物(b)
 クエン酸:錯化剤(c)
 エチレンジアミンのアルキレンオキシド付加物:ノニオン性界面活性剤(d)
 ホウ酸:緩衝剤(e)
 サッカリン及びチオリンゴ酸:光沢剤(f)
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件で湯煎した。
[熱処理条件]
湯煎温度:70℃
湯煎時間:5分間
(S2)導電性皮膜形成工程
 熱処理を施した各試料に、下記(B)のスズメッキ浴と電気メッキ条件により、導電性皮膜を形成し、水洗した後、乾燥処理した。
(B)スズメッキ浴の組成と電気メッキ条件
 次の組成で電気スズメッキ浴を建浴した。
[組成]
メタンスルホン酸第一スズ(Sn2+として) 0.5モル/L
メタンスルホン酸             1.0モル/L
ポリオキシエチレンクミルフェニルエーテル(EO10モル)
                      10g/L
[電気メッキ条件]
浴温:40℃
電流密度:2A/dm
メッキ時間:5分間
[メッキ皮膜]
膜厚:5μm
(1) Example 1
(S1) Undercoat forming step As shown in the following (i) to (iv), three types of 5 cm × 5 cm square aluminum alloy plates and one type of 5 cm × 5 cm square magnesium alloy plates were prepared. Each sample of conductive state-forming light metal was used (the same applies to Examples 2 to 22 and Comparative Examples 1 to 9 below).
In particular, the three types of aluminum alloys were selected because of the variety of types of the alloys. Therefore, even if the type of aluminum alloy changes, the versatility of whether or not the undercoat of the present invention can be applied with good adhesion is provided. This is for verification.
(i) Sample 1: Aluminum alloy / Al-Cu system (A2024P; JIS standard)
(ii) Sample 2: Aluminum alloy / Al-Mg system (A5052P; JIS standard)
(iii) Sample 3: Aluminum alloy / Al-Mg-Si system (A6061P; JIS standard)
(iv) Sample 4: Magnesium alloy / Mg—Al—Zn system (AZ31; JIS standard)
First, each sample was alkali degreased with sodium hydroxide (3% by weight) at 25 ° C. for 3 minutes, and a base film was formed on the sample by the nickel-phosphorous plating bath and electroplating conditions described in (A) below. And washed at 25 ° C. for about 30 seconds.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Phosphorous acid 0.4 mol / L
Citric acid 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
Phosphorous acid: Compound (b) containing phosphorus
Citric acid: complexing agent (c)
Alkylene oxide adduct of ethylenediamine: nonionic surfactant (d)
Boric acid: buffer (e)
Saccharin and thiomalic acid: brightener (f)
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S12) Heat treatment step Each sample on which the nickel-phosphorus film was formed was then bathed under the following conditions.
[Heat treatment conditions]
Hot water temperature: 70 ° C
Bathing time: 5 minutes (S2) Conductive film forming step A conductive film was formed on each heat-treated sample by the tin plating bath and electroplating conditions of (B) below, washed with water, and then dried.
(B) Composition of tin plating bath and electroplating conditions An electrotin plating bath was constructed with the following composition.
[composition]
Stannous methanesulfonate (as Sn 2+ ) 0.5 mol / L
Methanesulfonic acid 1.0 mol / L
Polyoxyethylene cumyl phenyl ether (EO 10 mol)
10g / L
[Electroplating conditions]
Bath temperature: 40 ° C
Current density: 2 A / dm 2
Plating time: 5 minutes [plating film]
Film thickness: 5μm
(2)実施例2
(S1)下地皮膜形成工程
 実施例1を基本として、電気ニッケル-リンメッキ浴の可溶性ニッケル塩(a)を変更した。リンを含む化合物(b)及び錯化剤(c)も若干変更した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
硫酸ニッケル6水和物(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)     0.03モル/L
ホウ酸                 0.2モル/L
亜リン酸水素ナトリウム2.5水和物   0.4モル/L
クエン酸                0.3モル/L
サッカリン              0.02モル/L
チオリンゴ酸             0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                 10g/L
pH(28%アンモニア水で調整)        4.5
[電気メッキ条件]
浴温:40℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.3μm
リンの含有率:6.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(2) Example 2
(S1) Undercoat Forming Step Based on Example 1, the soluble nickel salt (a) in the electric nickel-phosphorous plating bath was changed. The compound (b) containing phosphorus and the complexing agent (c) were also changed slightly.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfate hexahydrate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Sodium hydrogen phosphite 2.5 hydrate 0.4 mol / L
Citric acid 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 40 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.3 μm
Phosphorus content: 6.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(3)実施例3
(S1)下地皮膜形成工程
 実施例1を基本として、電気ニッケル-リンメッキ浴のリンを含む化合物(b)を変更した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
次亜リン酸ナトリウム           0.4モル/L
クエン酸                 0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         5.0
[電気メッキ条件]
浴温:40℃
電流密度:0.1A/dm
メッキ時間:2分間
[メッキ皮膜]
膜厚:0.01μm
リンの含有率:4.5%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(3) Example 3
(S1) Undercoat Formation Step Based on Example 1, the compound (b) containing phosphorus in the electric nickel-phosphorous plating bath was changed.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Sodium hypophosphite 0.4 mol / L
Citric acid 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 5.0
[Electroplating conditions]
Bath temperature: 40 ° C
Current density: 0.1 A / dm 2
Plating time: 2 minutes [plating film]
Film thickness: 0.01μm
Phosphorus content: 4.5%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(4)実施例4
(S1)下地皮膜形成工程
 実施例1を基本として、電気ニッケル-リンメッキ浴の錯化剤(c)を変更した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸                 0.4モル/L
グルコン酸ナトリウム           0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(24%水酸化ナトリウム水溶液で調整)    5.0
[電気メッキ条件]
浴温:40℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(4) Example 4
(S1) Undercoat Forming Step Based on Example 1, the complexing agent (c) for the electric nickel-phosphorous plating bath was changed.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Phosphorous acid 0.4 mol / L
Sodium gluconate 0.3mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 24% aqueous sodium hydroxide) 5.0
[Electroplating conditions]
Bath temperature: 40 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(5)実施例5
(S1)下地皮膜形成工程
 実施例1を基本として、電気ニッケル-リンメッキ浴のノニオン性界面活性剤(d)を変更した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸水素ナトリウム2.5水和物    0.4モル/L
クエン酸                 0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
ポリオキシエチレンオクチルフェニルエーテル(EO10モル)
                      10g/L
pH(24%水酸化ナトリウム水溶液で調整)    4.5
[電気メッキ条件]
浴温:40℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:3.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(5) Example 5
(S1) Undercoat Formation Step Based on Example 1, the nonionic surfactant (d) in the electric nickel-phosphorus plating bath was changed.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Sodium hydrogen phosphite 2.5 hydrate 0.4 mol / L
Citric acid 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Polyoxyethylene octyl phenyl ether (EO 10 mol)
10g / L
pH (adjusted with 24% aqueous sodium hydroxide) 4.5
[Electroplating conditions]
Bath temperature: 40 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 3.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(6)実施例6
(S1)下地皮膜形成工程
 実施例1を基本として、電気ニッケル-リンメッキ浴の緩衝剤(e)を変更した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
炭酸ナトリウム              0.2モル/L
亜リン酸                 0.4モル/L
クエン酸3ナトリウム2水和物       0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(6) Example 6
(S1) Undercoat Forming Step Based on Example 1, the buffer (e) for the electric nickel-phosphorous plating bath was changed.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Sodium carbonate 0.2mol / L
Phosphorous acid 0.4 mol / L
Trisodium citrate dihydrate 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(7)実施例7
(S1)下地皮膜形成工程
 実施例1を基本として、電気ニッケル-リンメッキ浴の光沢剤(f)を変更した。
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
炭酸ナトリウム              0.2モル/L
亜リン酸                 0.4モル/L
クエン酸3ナトリウム2水和物       0.3モル/L
2-ブチン-1,4-ジオール      0.02モル/L
ベンセンスルホン酸           0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(7) Example 7
(S1) Base film forming step Based on Example 1, the brightening agent (f) of the electric nickel-phosphorus plating bath was changed.
(A) Composition of nickel-phosphorous plating bath and electroplating conditions An electric nickel-phosphorous plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Sodium carbonate 0.2mol / L
Phosphorous acid 0.4 mol / L
Trisodium citrate dihydrate 0.3 mol / L
2-butyne-1,4-diol 0.02 mol / L
Benzenesulfonic acid 0.01 mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(8)実施例8
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
 実施例1を基本として、導電性皮膜を銅皮膜に変更した。
(B)銅メッキ浴の組成と電気メッキ条件
 次の組成で電気銅メッキ浴を建浴した。
[組成]
硫酸銅5水和物(Cu2+として)     0.8モル/L
硫酸                  1.0モル/L
塩酸                0.1ミリモル/L
ビス(3-スルホプロピル)ジスルフィド 1.0mg/L
ポリエチレングリコール(分子量4000) 1.0g/L
ポリエチレンイミン           3.0mg/L
[電気メッキ条件]
浴温:25℃
電流密度:1A/dm
メッキ時間:5分間
[メッキ皮膜]
膜厚:10μm
(8) Example 8
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a copper film.
(B) Composition of copper plating bath and electroplating conditions An electrolytic copper plating bath was constructed with the following composition.
[composition]
Copper sulfate pentahydrate (as Cu 2+ ) 0.8 mol / L
Sulfuric acid 1.0 mol / L
Hydrochloric acid 0.1mmol / L
Bis (3-sulfopropyl) disulfide 1.0mg / L
Polyethylene glycol (molecular weight 4000) 1.0g / L
Polyethyleneimine 3.0mg / L
[Electroplating conditions]
Bath temperature: 25 ° C
Current density: 1 A / dm 2
Plating time: 5 minutes [plating film]
Film thickness: 10μm
(9)実施例9
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
 実施例1を基本として、導電性皮膜をニッケル皮膜に変更した。
(B)ニッケルメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケルメッキ浴を建浴した。
[組成]
硫酸ニッケル6水和物(Ni2+として) 0.15モル/L
塩化ニッケル(Ni2+として)      0.5モル/L
ホウ酸                 0.7モル/L
pH(28%アンモニア水で調整)        4.0
[電気メッキ条件]
浴温:60℃
電流密度:1A/dm
メッキ時間:5分間
[メッキ皮膜]
膜厚:10μm
(9) Example 9
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a nickel film.
(B) Composition of nickel plating bath and electroplating conditions An electronicking bath was constructed with the following composition.
[composition]
Nickel sulfate hexahydrate (as Ni 2+ ) 0.15 mol / L
Nickel chloride (as Ni 2+ ) 0.5 mol / L
Boric acid 0.7mol / L
pH (adjusted with 28% ammonia water) 4.0
[Electroplating conditions]
Bath temperature: 60 ° C
Current density: 1 A / dm 2
Plating time: 5 minutes [plating film]
Film thickness: 10μm
(10)実施例10
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
 実施例1を基本として、導電性皮膜を銀皮膜に変更した。
(B)銀メッキ浴の組成と電気メッキ条件
 次の組成で電気銀メッキ浴を建浴した。
[組成]
メタンスルホン酸銀(Agとして) 0.45モル/L
コハク酸イミド           1.5モル/L
四ホウ酸ナトリウム       0.025モル/L
[電気メッキ条件]
浴温:25℃
電流密度:1A/dm
メッキ時間:3分間
[メッキ皮膜]
膜厚:2.0μm
(10) Example 10
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a silver film.
(B) Composition of silver plating bath and electroplating conditions An electrosilver plating bath was constructed with the following composition.
[composition]
Silver methanesulfonate (as Ag + ) 0.45 mol / L
Succinimide 1.5 mol / L
Sodium tetraborate 0.025 mol / L
[Electroplating conditions]
Bath temperature: 25 ° C
Current density: 1 A / dm 2
Plating time: 3 minutes [plating film]
Film thickness: 2.0μm
(11)実施例11
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
 実施例1を基本として、導電性皮膜をパラジウム皮膜に変更した。
(B)パラジウムメッキ浴の組成と電気メッキ条件
 次の組成で電気パラジウムメッキ浴を建浴した。
[組成]
硫酸パラジウム(Pd2+として) 0.02モル/L
硫酸               0.4モル/L
リン酸              0.6モル/L
亜硫酸            0.006モル/L
[電気メッキ条件]
浴温:25℃
電流密度:0.6A/dm
メッキ時間:20分間
[メッキ皮膜]
膜厚:1.5μm
(11) Example 11
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a palladium film.
(B) Composition of palladium plating bath and electroplating conditions An electropalladium plating bath was constructed with the following composition.
[composition]
Palladium sulfate (as Pd 2+ ) 0.02 mol / L
Sulfuric acid 0.4 mol / L
Phosphoric acid 0.6 mol / L
Sulfurous acid 0.006mol / L
[Electroplating conditions]
Bath temperature: 25 ° C
Current density: 0.6 A / dm 2
Plating time: 20 minutes [plating film]
Film thickness: 1.5 μm
(12)実施例12
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
 実施例1を基本として、導電性皮膜をスズ-ビスマス合金皮膜に変更した。
(B)スズ-ビスマス合金メッキ浴の組成と電気メッキ条件
 次の組成で電気スズ-ビスマス合金メッキ浴を建浴した。
[組成]
メタンスルホン酸第一スズ(Sn2+として)  0.6モル/L
メタンスルホン酸ビスマス(Bi3+として) 0.02モル/L
メタンスルホン酸              1.0モル/L
ポリオキシエチレンクミルフェニルエーテル(EO10モル)
                       10g/L
[電気メッキ条件]
浴温:40℃
電流密度:2A/dm
メッキ時間:5分間
[メッキ皮膜]
膜厚:5.0μm
ビスマスの析出率:2%
(12) Example 12
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a tin-bismuth alloy film.
(B) Composition of tin-bismuth alloy plating bath and electroplating conditions An electrotin-bismuth alloy plating bath was constructed with the following composition.
[composition]
Stannous methanesulfonate (as Sn 2+ ) 0.6 mol / L
Bismuth methanesulfonate (as Bi 3+ ) 0.02 mol / L
Methanesulfonic acid 1.0 mol / L
Polyoxyethylene cumyl phenyl ether (EO 10 mol)
10g / L
[Electroplating conditions]
Bath temperature: 40 ° C
Current density: 2 A / dm 2
Plating time: 5 minutes [plating film]
Film thickness: 5.0 μm
Bismuth precipitation rate: 2%
(13)実施例13
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
 実施例1を基本として、導電性皮膜を銀皮膜に変更した。
(B)銀メッキ浴の組成と無電解メッキ条件
 次の組成で無電解銀メッキ浴を建浴した。
[組成]
硝酸銀(Agとして) 0.01モル/L
コハク酸イミド    0.05モル/L
イミダゾール     0.05モル/L
[無電解メッキ条件]
浴温:50℃
メッキ時間:60分間
[メッキ皮膜]
膜厚:1.0μm
(13) Example 13
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S12) Heat treatment process Heat treatment conditions: Same as in Example 1 (S2) Conductive film formation process Based on Example 1 The conductive film was changed to a silver film.
(B) Composition of silver plating bath and electroless plating conditions An electroless silver plating bath was constructed with the following composition.
[composition]
Silver nitrate (as Ag + ) 0.01 mol / L
Succinimide 0.05 mol / L
Imidazole 0.05 mol / L
[Electroless plating conditions]
Bath temperature: 50 ° C
Plating time: 60 minutes [plating film]
Film thickness: 1.0 μm
(14)実施例14
 実施例1を基本として、工程(S1)と工程(S2)との間で熱処理する代わりに、当該工程(S2)の後に熱処理した(後段階熱処理の例。以下、実施例15~17も同じ)。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(S3)熱処理工程
熱処理条件:実施例1の工程(S12)と同じ
(14) Example 14
Based on Example 1, instead of performing heat treatment between Step (S1) and Step (S2), heat treatment was performed after Step (S2) (an example of post-stage heat treatment. Hereinafter, Examples 15 to 17 are the same) ).
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Example 1 Conductive film: Tin film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 1
(15)実施例15
 実施例3を基本として、工程(S1)と工程(S2)との間で熱処理する代わりに、当該工程(S2)の後に熱処理した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例3と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:実施例3と同じ
導電性皮膜:スズ皮膜
(S3)熱処理工程
熱処理条件:実施例3の工程(S12)と同じ
(15) Example 15
Based on Example 3, it heat-processed after the said process (S2) instead of heat-processing between a process (S1) and a process (S2).
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 3 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Example 3 Conductive film: Tin film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 3
(16)実施例16
 実施例8を基本として、工程(S1)と工程(S2)との間で熱処理する代わりに、当該工程(S2)の後に熱処理した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例8と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:実施例8と同じ
導電性皮膜:銅皮膜
(S3)熱処理工程
熱処理条件:実施例8の工程(S12)と同じ
(16) Example 16
Based on Example 8, instead of performing heat treatment between step (S1) and step (S2), heat treatment was performed after the step (S2).
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 8 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Example 8 Conductive film: Copper film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 8
(17)実施例17
 実施例9を基本として、工程(S1)と工程(S2)との間で熱処理する代わりに、当該工程(S2)の後に熱処理した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例9と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:実施例9と同じ
導電性皮膜:ニッケル皮膜
(S3)熱処理工程
熱処理条件:実施例9の工程(S12)と同じ
(17) Example 17
Based on Example 9, heat treatment was performed after the step (S2) instead of heat treatment between the step (S1) and the step (S2).
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 9 Undercoat film: Nickel-phosphorous film (S2) Conductive film formation process Electroplating conditions: Same as in Example 9 Conductive film: Nickel film (S3) Heat treatment Process heat treatment conditions: same as step (S12) of Example 9
(18)実施例18
 実施例1を基本として、工程(S12)の熱処理条件を変更した(以下、実施例19~23も同じ)。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件で湯煎した。
[熱処理条件]
湯煎温度:35℃
湯煎時間:80分間
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(18) Example 18
Based on Example 1, the heat treatment conditions in the step (S12) were changed (hereinafter, Examples 19 to 23 are the same).
(S1) Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was bathed under the following conditions.
[Heat treatment conditions]
Bath temperature: 35 ° C
Bath time: 80 minutes (S2) Conductive film formation process Electroplating conditions: Same as Example 1 Conductive film: Tin film
(19)実施例19
 実施例1を基本として、工程(S12)の熱処理条件を変更した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件で湯煎した。
[熱処理条件]
湯煎温度:50℃
湯煎時間:30分間
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(19) Example 19
Based on Example 1, the heat treatment conditions in the step (S12) were changed.
(S1) Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was bathed under the following conditions.
[Heat treatment conditions]
Bath temperature: 50 ° C
Bathing time: 30 minutes (S2) Conductive film forming process Electroplating conditions: Same as Example 1 Conductive film: Tin film
(20)実施例20
 実施例1を基本として、工程(S12)の熱処理条件を変更した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件で湯煎した。
[熱処理条件]
湯煎温度:90℃
湯煎時間:10分間
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(20) Example 20
Based on Example 1, the heat treatment conditions in the step (S12) were changed.
(S1) Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was bathed under the following conditions.
[Heat treatment conditions]
Hot water temperature: 90 ° C
Bath time: 10 minutes (S2) Conductive film formation process Electroplating conditions: Same as Example 1 Conductive film: Tin film
(21)実施例21
 実施例1を基本として、工程(S12)の熱処理条件を変更した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件でドライヤーにて熱風加熱した。
[熱処理条件]
熱風加熱温度:150℃
加熱時間:5分間
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(21) Example 21
Based on Example 1, the heat treatment conditions in the step (S12) were changed.
(S1) Undercoat film forming step Electroplating conditions: Undercoat film as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorus film was formed was heated with a dryer under the following conditions.
[Heat treatment conditions]
Hot air heating temperature: 150 ° C
Heating time: 5 minutes (S2) Conductive film forming process Electroplating conditions: Same as Example 1 Conductive film: Tin film
(22)実施例22
 実施例1を基本として、工程(S12)の熱処理条件を変更した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件でオーブン加熱した。
[熱処理条件]
オーブン加熱温度:150℃
加熱時間:10分間
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(22) Example 22
Based on Example 1, the heat treatment conditions in the step (S12) were changed.
(S1) Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorous film was formed was oven-heated under the following conditions.
[Heat treatment conditions]
Oven heating temperature: 150 ° C
Heating time: 10 minutes (S2) Conductive film formation process Electroplating conditions: Same as Example 1 Conductive film: Tin film
(23)実施例23
 実施例1を基本として、工程(S12)の熱処理条件を変更した。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S12)熱処理工程
 次いで、ニッケル-リン皮膜を形成した各試料を下記条件でオーブン加熱した。
[熱処理条件]
オーブン加熱温度:200℃
加熱時間:5分間
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(23) Example 23
Based on Example 1, the heat treatment conditions in the step (S12) were changed.
(S1) Undercoat film forming step Electroplating conditions: Same undercoat as in Example 1: Nickel-phosphorus film (S12) heat treatment step Next, each sample on which the nickel-phosphorous film was formed was oven-heated under the following conditions.
[Heat treatment conditions]
Oven heating temperature: 200 ° C
Heating time: 5 minutes (S2) Conductive film forming process Electroplating conditions: Same as Example 1 Conductive film: Tin film
(24)基準例
 冒述の先願発明に基づき、上記実施例1を基本として、工程(S1)の後に熱処理しないで工程(S2)を行った。
(S1)下地皮膜形成工程
電気メッキ条件:実施例1と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(24) Criteria Example Based on the above-mentioned prior application invention, the step (S2) was performed without heat treatment after the step (S1) on the basis of Example 1 described above.
(S1) Undercoat film formation process Electroplating conditions: Same as in Example 1 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Example 1 Conductive film: Tin film
(25)比較例1
 実施例1を基本として、各試料の上に下地皮膜を形成せずに、導電性皮膜を直接形成した。従って、下地皮膜形成工程(S1)と熱処理工程(S12)とは行わなかった。
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
 試料上への導電性皮膜(スズ皮膜)の形成を試みたが、粉状の析出物が生成しただけで、スズメッキ皮膜は形成されなかった。
(25) Comparative Example 1
Based on Example 1, a conductive film was formed directly on each sample without forming a base film. Therefore, the base film forming step (S1) and the heat treatment step (S12) were not performed.
(S2) Conductive film formation process Electroplating conditions: same as Example 1 An attempt was made to form a conductive film (tin film) on the sample, but a tin-plated film was formed only by forming a powdery precipitate. Was not.
(26)比較例2
 実施例1を基本として、軽金属上に、ニッケル-リン皮膜ではなく、ニッケル皮膜である下地皮膜を介して、電気メッキにより導電性皮膜を形成した(熱処理あり)。
(S1)下地皮膜形成工程
(A)ニッケルメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケルメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
クエン酸3ナトリウム2水和物       0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:1.0μm
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(26) Comparative Example 2
On the basis of Example 1, a conductive film was formed on a light metal by electroplating via a base film that is a nickel film instead of a nickel-phosphorus film (with heat treatment).
(S1) Base film forming step (A) Composition of nickel plating bath and electroplating conditions An electronicking bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Trisodium citrate dihydrate 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 1.0 μm
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(27)比較例3
 比較例2を基本として、熱処理を行わなかった。
(S1)下地皮膜形成工程
電気メッキ条件:比較例2と同じ
下地皮膜:ニッケル皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:比較例2と同じ
導電性皮膜:スズ皮膜
(27) Comparative Example 3
On the basis of Comparative Example 2, no heat treatment was performed.
(S1) Undercoat film forming step Electroplating conditions: Same as undercoat film in Comparative Example 2: Nickel film (S2) Conductive film forming process Electroplating conditions: In the same manner as in Comparative Example 2 Conductive film: Tin film
(28)比較例4
 実施例1を基本として、下地皮膜形成工程(S1)において、錯化剤(c)を含まない電気ニッケル-リンメッキ浴を用いた。
(S1)下地皮膜形成工程
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸                 0.4モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
 上記メッキ浴が分解したため、下地皮膜の形成自体を実施できず、次の熱処理工程(S12)に至らなかった。
(28) Comparative Example 4
Based on Example 1, an electric nickel-phosphorous plating bath not containing the complexing agent (c) was used in the base film forming step (S1).
(S1) Base film forming step (A) Composition of nickel-phosphorus plating bath and electroplating conditions An electric nickel-phosphorus plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Phosphorous acid 0.4 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes Since the plating bath was decomposed, the formation of the undercoat could not be carried out, and the next heat treatment step (S12) was not achieved.
(29)比較例5
 実施例1を基本として、下地皮膜形成工程(S1)において、界面活性剤(d)を含まない電気ニッケル-リンメッキ浴を用いた(熱処理あり)。
(S1)下地皮膜形成工程
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸                 0.4モル/L
クエン酸3ナトリウム2水和物       0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(29) Comparative Example 5
Based on Example 1, in the base film forming step (S1), an electric nickel-phosphorous plating bath not containing the surfactant (d) was used (with heat treatment).
(S1) Base film forming step (A) Composition of nickel-phosphorus plating bath and electroplating conditions An electric nickel-phosphorus plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Phosphorous acid 0.4 mol / L
Trisodium citrate dihydrate 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(30)比較例6
 比較例5を基本として、熱処理を行わなかった。
(S1)下地皮膜形成工程
電気メッキ条件:比較例5と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:比較例5と同じ
導電性皮膜:スズ皮膜
(30) Comparative Example 6
On the basis of Comparative Example 5, no heat treatment was performed.
(S1) Undercoat film forming process Electroplating conditions: Same as undercoat film: Nickel-phosphorus film (S2) Conductive film forming process Electroplating conditions: Same as in Comparative Example 5 Conductive film: tin film
(31)比較例7
 実施例1を基本として、下地皮膜形成工程(S1)において、本発明に用いる界面活性剤(d)に代えてカチオン性界面活性剤を含む電気ニッケル-リンメッキ浴を用いた(熱処理なし)。
(S1)下地皮膜形成工程
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸                 0.4モル/L
クエン酸3ナトリウム2水和物       0.3モル/L
サッカリン               0.02モル/L
チオリンゴ酸              0.01モル/L
ラウリルトリメチルアンモニウムクロライド   20g/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(31) Comparative Example 7
Based on Example 1, in the undercoat formation step (S1), an electric nickel-phosphorus plating bath containing a cationic surfactant was used instead of the surfactant (d) used in the present invention (no heat treatment).
(S1) Base film forming step (A) Composition of nickel-phosphorus plating bath and electroplating conditions An electric nickel-phosphorus plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Phosphorous acid 0.4 mol / L
Trisodium citrate dihydrate 0.3 mol / L
Saccharin 0.02 mol / L
Thiomalic acid 0.01mol / L
Lauryltrimethylammonium chloride 20g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S2) Conductive film formation step Electroplating conditions: Same as Example 1 Conductive film: Tin film
(32)比較例8
 実施例1を基本として、下地皮膜形成工程(S1)において、光沢剤(f)を含まない電気ニッケル-リンメッキ浴を用いた(熱処理あり)。
(S1)下地皮膜形成工程
(A)ニッケル-リンメッキ浴の組成と電気メッキ条件
 次の組成で電気ニッケル-リンメッキ浴を建浴した。
[組成]
スルファミン酸ニッケル(Ni2+として) 0.45モル/L
塩化ニッケル(Ni2+として)      0.03モル/L
ホウ酸                  0.2モル/L
亜リン酸                 0.4モル/L
クエン酸3ナトリウム2水和物       0.3モル/L
エチレンジアミンテトラポリオキシエチレン(EO40モル)ポリオキシプロピレン(PO50モル)                  10g/L
pH(28%アンモニア水で調整)         4.5
[電気メッキ条件]
浴温:35℃
電流密度:0.5A/dm
メッキ時間:10分間
[メッキ皮膜]
膜厚:0.2μm
リンの含有率:5.0%
(S12)熱処理工程
熱処理条件:実施例1と同じ
(S2)導電性皮膜形成工程
電気メッキ条件:実施例1と同じ
導電性皮膜:スズ皮膜
(32) Comparative Example 8
Based on Example 1, an electric nickel-phosphorus plating bath not containing the brightener (f) was used in the base film forming step (S1) (with heat treatment).
(S1) Base film forming step (A) Composition of nickel-phosphorus plating bath and electroplating conditions An electric nickel-phosphorus plating bath was constructed with the following composition.
[composition]
Nickel sulfamate (as Ni 2+ ) 0.45 mol / L
Nickel chloride (as Ni 2+ ) 0.03 mol / L
Boric acid 0.2mol / L
Phosphorous acid 0.4 mol / L
Trisodium citrate dihydrate 0.3 mol / L
Ethylenediaminetetrapolyoxyethylene (EO 40 mol) polyoxypropylene (PO 50 mol) 10 g / L
pH (adjusted with 28% ammonia water) 4.5
[Electroplating conditions]
Bath temperature: 35 ° C
Current density: 0.5 A / dm 2
Plating time: 10 minutes [plating film]
Film thickness: 0.2 μm
Phosphorus content: 5.0%
(S12) Heat treatment process heat treatment conditions: the same as in Example 1 (S2) Conductive film formation process Electroplating conditions: the same as in Example 1 Conductive film: Tin film
(33)比較例9
 比較例8を基本として、熱処理を行わなかった。
(S1)下地皮膜形成工程
電気メッキ条件:比較例8と同じ
下地皮膜:ニッケル-リン皮膜
(S2)導電性皮膜形成工程
電気メッキ条件:比較例8と同じ
導電性皮膜:スズ皮膜
(33) Comparative Example 9
On the basis of Comparative Example 8, no heat treatment was performed.
(S1) Undercoat film formation process Electroplating conditions: Same as in Comparative Example 8 Undercoat film: Nickel-phosphorus film (S2) Conductive film formation process Electroplating conditions: Same as in Comparative Example 8 Conductive film: Tin film
 上記実施例1~23、基準例、及び比較例1~9について、各工程の有無、下地皮膜用メッキ浴の種類及びその組成、導電性皮膜の種類及びメッキの種類、並びに、熱処理方法及びその温度を、下記表1及び表2に纏める。 With respect to Examples 1 to 23, Reference Example, and Comparative Examples 1 to 9, the presence or absence of each step, the type and composition of the plating bath for the undercoat, the type and type of the conductive coating, and the heat treatment method and its The temperatures are summarized in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪不導態形成性軽金属に対する下地皮膜の密着力の評価試験例≫
 不導態形成性軽金属に対する下地皮膜の密着力が増すと、当該軽金属に対する上層の導電性皮膜の密着力は改善される。よって、密着力の評価試験は、軽金属に対する(導電性皮膜と一体に密着形成された)下地皮膜の密着力の優劣により評価した。
 尚、試験は下地皮膜の密着力によって評価しているが、一部の比較例を除き、各実施例、基準例、及び比較例では、共に導電性皮膜の形成工程まで実施している点は上述の通りである。
≪Example of evaluation test of adhesion of base film to non-forming light metal≫
When the adhesion of the undercoat to the non-conductive light metal increases, the adhesion of the upper conductive film to the light metal is improved. Therefore, the evaluation test of the adhesive strength was evaluated based on the superiority or inferiority of the adhesive strength of the base film (formed in close contact with the conductive film) against the light metal.
In addition, although the test is evaluated by the adhesion strength of the ground film, except for some comparative examples, in each example, reference example, and comparative example, the point that both the conductive film formation process is performed As described above.
 そこで、軽金属板(アルミニウム合金板、マグネシウム合金板)からなる各試料に適用・形成した上記実施例1~23、基準例、及び比較例1~9について、JIS K 5600に記載のクロスカット法(25マス)に準拠して、上述のように、導電性皮膜と一体に密着形成された下地皮膜と軽金属板との境界に着目した。当該境界を起点として下地皮膜が軽金属板から剥離するか否かを観察し、不導態形成性の軽金属板に対する下地皮膜の密着力の優劣を下記の基準に基づいて評価した。
 即ち、下地皮膜に切れ込みを入れた25マスのうち、剥離外力を付与した際に実際に剥離したマス目の数が少ないほど密着力に優れ、剥離したマス目の数が多いほど密着力に劣ると判断した。
◎:25マス全てが試料から剥離しなかった。
○:25マスのうち、1~3マスが試料から剥離した。
△:25マスのうち、4~24マスが試料から剥離した。
×:25マス全てが試料から剥離した。
Accordingly, the cross-cut method described in JIS K 5600 (Examples 1 to 23, Reference Example, and Comparative Examples 1 to 9) applied to and formed on each sample made of a light metal plate (aluminum alloy plate, magnesium alloy plate) ( 25), as described above, attention was paid to the boundary between the base film formed in close contact with the conductive film and the light metal plate. Whether or not the base film peels off the light metal plate from the boundary as a starting point was observed, and the superiority or inferiority of the adhesion of the base film to the nonmetal-forming light metal plate was evaluated based on the following criteria.
That is, out of 25 squares in which a cut is made in the base film, the smaller the number of squares actually peeled when a peeling external force is applied, the better the adhesion, and the larger the number of peeled squares, the poorer the adhesion. It was judged.
(Double-circle): All 25 squares did not peel from a sample.
○: 1 to 3 cells out of 25 cells were peeled off from the sample.
Δ: 4 to 24 cells out of 25 cells were peeled from the sample.
X: All 25 squares peeled from the sample.
≪試験結果≫
 下記表3は、上記不導態形成性軽金属に対する下地皮膜の密着力の評価試験の結果である。
 但し、マグネシウム合金はアルミニウム合金のように多種多様ではないため、試料4のマグネシウム合金板については、実施例1~2のみについて評価試験を行った。これら実施例1~2の試験結果をもって、これら以外の実施例3~23の評価を推定した(下記表3中、「-」と表記)。
 また、比較例1及び4では、軽金属上に下地皮膜を形成できなかったので、下地皮膜の剥離試験自体を行わなかった(下記表3中、「--」と表記)。
≪Test results≫
Table 3 below shows the results of an evaluation test of the adhesion of the base film to the non-conductive-forming light metal.
However, since magnesium alloys are not as diverse as aluminum alloys, only the examples 1 and 2 were evaluated for the magnesium alloy plate of Sample 4. Based on the test results of Examples 1 and 2, evaluations of Examples 3 to 23 other than these were estimated (indicated as “-” in Table 3 below).
Further, in Comparative Examples 1 and 4, since the undercoat could not be formed on the light metal, the undercoat peel test itself was not performed (indicated as “-” in Table 3 below).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
≪試験結果の評価≫
 比較例1では下地皮膜を形成せずに、軽金属板上に導電性皮膜(スズ皮膜)を直接形成しようとしたが、スズ皮膜は得られず、粉状の析出物が得られたのみであった。
 これに対して、下地皮膜を介して導電性皮膜を形成した基準例(熱処理なし)では、下地皮膜は軽金属板に良好に密着している。特に、前述したように、アルミニウム合金は多種多様であるが、基準例では、3種類のアルミニウム合金の試料1~3いずれに対しても良好な密着性を示し、アルミニウム合金に対して、本発明に用いられる電気メッキ浴で形成されたニッケル-リン皮膜は、汎用性があることが判断できる。また、当該下地皮膜は試料4に対しても良好な密着性を示すことから、マグネシウム合金に対しても、下地皮膜を介することで導電性皮膜を密着性良く形成できることが分かる。
 一方、下地皮膜に熱処理を加えた実施例1~23では、軽金属に対する下地皮膜の密着力が上記基準例よりも一層改善され、いずれの実施例でも、下地皮膜は試料1~3の軽金属板(3種類のアルミニウム合金板)にさらに強固に密着していることが分かる。
 但し、マグネシウム合金板に対しては、実施例1~23における密着力は基準例と変わらず、良好な密着力であった。
≪Evaluation of test results≫
In Comparative Example 1, an attempt was made to directly form a conductive film (tin film) on a light metal plate without forming a base film, but a tin film was not obtained and only a powdery precipitate was obtained. It was.
On the other hand, in the reference example (without heat treatment) in which the conductive film is formed via the base film, the base film is well adhered to the light metal plate. In particular, as described above, there are a wide variety of aluminum alloys, but the reference example shows good adhesion to any of the three types of aluminum alloy samples 1 to 3, and the present invention is applied to the aluminum alloy. It can be judged that the nickel-phosphorus film formed by the electroplating bath used in the above has versatility. Moreover, since the said base film shows favorable adhesiveness also to the sample 4, it turns out that a conductive film can be formed with sufficient adhesiveness also through a base film also with respect to a magnesium alloy.
On the other hand, in Examples 1 to 23 in which heat treatment was applied to the undercoat, the adhesion of the undercoat to the light metal was further improved as compared to the above reference example. In any of the Examples, the undercoat was formed from the light metal plates (samples 1 to 3) It can be seen that the three types of aluminum alloy plates are more firmly attached.
However, for the magnesium alloy plate, the adhesion strength in Examples 1 to 23 was the same as that of the reference example, and the adhesion strength was good.
 次いで、比較例3は、軽金属上に電気メッキで形成する下地皮膜を、ニッケル-リン皮膜からニッケル皮膜へと変更し、下地皮膜を熱処理しなかったものであるが、軽金属板(アルミニウム合金板)に対するニッケル皮膜の密着力は、ニッケル-リン皮膜の密着力に大きく劣っている(×評価)。従って、不導態形成性軽金属上に導電性皮膜(スズ皮膜)を密着性良く形成することはできなかった。
 ニッケル皮膜である下地皮膜を熱処理した比較例2では、熱処理なしの比較例3に比して密着力は改善されたが(△評価)、基準例(○評価)には及ばなかった。そして、この基準例に熱処理を加えた実施例1~23では、アルミニウム合金板に対する下地皮膜の密着力はいずれも大幅に改善された(◎評価)。
 従って、これら比較例2~3を実施例1~23と対比すると、アルミニウム合金のような不導態形成性軽金属上にニッケル系の下地皮膜を形成する場合、ニッケルの電着皮膜では軽金属との密着性に劣る。より実用的で強固な密着性を実現するには、ニッケルではなくニッケル-リンの下地皮膜を選択するとともに、当該下地皮膜を熱処理することが重要であると判断できる。
Next, in Comparative Example 3, the base film formed by electroplating on the light metal was changed from the nickel-phosphorus film to the nickel film, and the base film was not heat-treated. However, the light metal plate (aluminum alloy plate) The adhesion strength of the nickel film to the nickel-phosphorus film is greatly inferior to that of the nickel-phosphorus film (× evaluation). Therefore, it was not possible to form a conductive film (tin film) with good adhesion on the non-conductive light-forming metal.
In Comparative Example 2 in which the base film, which is a nickel film, was heat-treated, the adhesion was improved as compared with Comparative Example 3 without heat treatment (Δ evaluation), but was not as good as the reference example (◯ evaluation). In Examples 1 to 23 in which heat treatment was applied to this reference example, the adhesion of the base film to the aluminum alloy plate was significantly improved ((evaluation).
Therefore, when these Comparative Examples 2 to 3 are compared with Examples 1 to 23, when a nickel-based undercoating is formed on a nonconductive non-formable light metal such as an aluminum alloy, the nickel electrodeposition film is less than the light metal. Poor adhesion. In order to realize more practical and strong adhesion, it can be judged that it is important to select a nickel-phosphorus base coating instead of nickel and to heat-treat the base coating.
 比較例4は、本発明に用いる所定の錯化剤(c)を含まないニッケル-リンメッキ浴で軽金属上に下地皮膜を形成しようとしたものであるが、メッキ浴が不安定なために沈殿が発生して、電着皮膜を形成できなかった。
 従って、この比較例4を実施例1~23と対比すると、軽金属上に強固なニッケル-リンの下地皮膜を形成するには、従来公知のニッケル-リンメッキ浴ではなく、所定の錯化剤(c)を含有する本発明に用いるニッケル-リンメッキ浴を選択することの重要性が明らかになった。
In Comparative Example 4, an undercoat was formed on a light metal with a nickel-phosphorous plating bath not containing the predetermined complexing agent (c) used in the present invention, but precipitation occurred because the plating bath was unstable. It occurred and an electrodeposition film could not be formed.
Therefore, when this Comparative Example 4 is compared with Examples 1 to 23, in order to form a strong nickel-phosphorus undercoat on a light metal, a predetermined complexing agent (c) is used instead of a conventionally known nickel-phosphorous plating bath. The importance of selecting a nickel-phosphorous plating bath for use in the present invention containing) was revealed.
 比較例6は、本発明に用いる所定の界面活性剤(d)を含まないニッケル-リンメッキ浴で軽金属上に下地皮膜を形成し、下地皮膜を熱処理しなかったものであるが、軽金属板(アルミニウム合金板)に対する下地皮膜の密着性は大きく劣る(×評価)。従って、比較例6では、不導態形成性軽金属上に導電性皮膜(スズ皮膜)を密着性良く形成できなかった。
 比較例6と同じ下地皮膜を熱処理した比較例5では、熱処理なしの比較例6よりも密着力は改善されたが(△評価)、基準例(○評価)には及ばなかった。そして、この基準例に熱処理を加えた実施例1~23では、アルミニウム合金板に対する下地皮膜の密着力はいずれも大幅に改善された(◎評価)。
 従って、これら比較例5~6を実施例1~23と対比すると、下地皮膜形成用のニッケル-リンメッキ浴に所定の界面活性剤(d)が含まれない場合、下地皮膜の密着性に劣ることから、アルミニウム合金板に対して、より実用的で強固な密着性を実現するには、メッキ浴に、本発明において特化した界面活性剤(d)を含有させるとともに、下地皮膜を熱処理することが重要であると判断できる。
In Comparative Example 6, a base film was formed on a light metal with a nickel-phosphorous plating bath not containing the predetermined surfactant (d) used in the present invention, and the base film was not heat-treated. The adhesion of the base film to the alloy plate is greatly inferior (x evaluation). Therefore, in Comparative Example 6, a conductive film (tin film) could not be formed with good adhesion on the non-conductive formable light metal.
In Comparative Example 5 in which the same undercoat as that in Comparative Example 6 was heat-treated, the adhesion was improved as compared with Comparative Example 6 without heat treatment (Δ evaluation), but did not reach the reference example (◯ evaluation). In Examples 1 to 23 in which heat treatment was applied to this reference example, the adhesion of the base film to the aluminum alloy plate was significantly improved ((evaluation).
Therefore, when these Comparative Examples 5 to 6 are compared with Examples 1 to 23, when the predetermined surfactant (d) is not included in the nickel-phosphorus plating bath for forming the base film, the adhesion of the base film is inferior. Therefore, in order to achieve more practical and strong adhesion to the aluminum alloy plate, the plating bath should contain the surfactant (d) specialized in the present invention and the base film should be heat-treated. Can be determined to be important.
 比較例7は、本発明に用いる界面活性剤(d)に代えてカチオン性界面活性剤を含むニッケル-リンメッキ浴で軽金属上に下地皮膜を形成したものであるが(熱処理なし)、軽金属板(アルミニウム合金板)に対する下地皮膜の密着性は大きく劣る(×評価)。従って、比較例7では、不導態形成性軽金属上に導電性皮膜(スズ皮膜)を密着性良く形成できなかった。
 従って、この比較例7を実施例1~23と対比すると、より実用的で強固な密着性を実現するには、ニッケル-リンメッキ浴に、カチオン性界面活性剤ではなく、本発明において特化した界面活性剤(d)を含有させるとともに、下地皮膜を熱処理することが重要であると判断できる。
In Comparative Example 7, an undercoat was formed on a light metal with a nickel-phosphorus plating bath containing a cationic surfactant instead of the surfactant (d) used in the present invention (no heat treatment). The adhesion of the base film to the aluminum alloy plate is greatly inferior (x evaluation). Therefore, in Comparative Example 7, a conductive film (tin film) could not be formed with good adhesion on the nonconductive state-forming light metal.
Therefore, when this Comparative Example 7 is compared with Examples 1 to 23, in order to realize more practical and strong adhesion, the nickel-phosphorous plating bath was specialized in the present invention, not a cationic surfactant. It can be judged that it is important to contain the surfactant (d) and to heat-treat the undercoat.
 比較例9は、本発明に用いる所定の光沢剤(f)が含まれないニッケル-リンメッキ浴で軽金属上に下地皮膜を形成し、下地皮膜を熱処理しなかったものであるが、軽金属板(アルミニウム合金板)に対する下地皮膜の密着性は大きく劣る(×評価)。従って、比較例9では、不導態形成性軽金属上に導電性皮膜(スズ皮膜)を密着性良く形成できなかった。
 比較例9と同じ下地皮膜を熱処理した比較例8では、熱処理なしの比較例9よりも密着力は改善されたが(△評価)基準例(○評価)には及ばなかった。基準例に熱処理を加えた実施例1~23では、アルミニウム合金板に対する下地皮膜の密着力はいずれも大幅に改善された(◎評価)。
 従って、これら比較例8~9を実施例1~23と対比すると、下地皮膜形成用のニッケル-リンメッキ浴に所定の光沢剤(f)が含まれない場合、下地皮膜の密着性に劣ることから、アルミニウム合金板に対して、より実用的で強固な密着性を実現するには、メッキ浴に、本発明において特化した光沢剤(f)を含有させるとともに、下地皮膜を熱処理することが重要であると判断できる。
In Comparative Example 9, a base film was formed on a light metal in a nickel-phosphorous plating bath not containing the predetermined brightener (f) used in the present invention, and the base film was not heat-treated. The adhesion of the base film to the alloy plate is greatly inferior (x evaluation). Therefore, in Comparative Example 9, a conductive film (tin film) could not be formed with good adhesion on the nonconductive state-forming light metal.
In Comparative Example 8, in which the same undercoat as in Comparative Example 9 was heat-treated, the adhesion was improved as compared with Comparative Example 9 without heat treatment (Δ evaluation), but did not reach the reference example (◯ evaluation). In Examples 1 to 23 in which heat treatment was applied to the reference example, the adhesion of the base film to the aluminum alloy plate was significantly improved ((evaluation).
Accordingly, when these Comparative Examples 8 to 9 are compared with Examples 1 to 23, when the predetermined brightener (f) is not contained in the nickel-phosphorus plating bath for forming the undercoat, the adhesion of the undercoat is inferior. In order to achieve more practical and strong adhesion to the aluminum alloy plate, it is important to add the brightener (f) specialized in the present invention to the plating bath and to heat treat the undercoat. It can be judged that.
 そこで、熱処理に焦点を当てて実施例1~23を詳細に説明する。
 先ず、実施例1~7は導電性皮膜がスズ皮膜の例、実施例8は導電性皮膜が銅皮膜の例、実施例9は導電性皮膜がニッケル皮膜の例、実施例10及び13は導電性皮膜が銀皮膜の例、実施例11は導電性皮膜がパラジウム皮膜の例、実施例12は導電性皮膜がスズ-ビスマス皮膜の例である。基準例に熱処理を加えることで、軽金属上へのニッケル-リン皮膜である下地皮膜の密着力を大幅に強化できるため、上述のように、導電性皮膜を様々に変化させても、基準例と比較して、各種の導電性皮膜を軽金属上に一層強固に密着形成できる。
 この場合、実施例1~7での下地皮膜の膜厚の上限は0.3μmであることから、熱処理により不導態形成性軽金属上に下地皮膜を強固に形成するには、0.3μm以下のごく薄い下地皮膜を形成すればよく、特に実施例3を見ると、0.01μmといった極めて薄い皮膜でも充分であることが分かる。これら実施例1~7は、工程(S1)で用いるニッケル-リンメッキ浴の組成、即ち、錯化剤(c)、界面活性剤(d)、可溶性ニッケル塩(a)、リンを含む化合物(b)、光沢剤(f)などの種類を変化させた例である。本発明に適合する条件のニッケル-リンメッキ浴を用いて下地皮膜を形成し、且つ、これを熱処理すれば、下地皮膜の密着力は、当該メッキ浴の組成が異なっても、基準例と比較して大幅に改善できることが分かる。
Therefore, Examples 1 to 23 will be described in detail focusing on heat treatment.
First, Examples 1 to 7 are examples in which the conductive film is a tin film, Example 8 is an example in which the conductive film is a copper film, Example 9 is an example in which the conductive film is a nickel film, and Examples 10 and 13 are conductive. Example 11 is an example in which the conductive film is a silver film, Example 11 is an example in which the conductive film is a palladium film, and Example 12 is an example in which the conductive film is a tin-bismuth film. By applying heat treatment to the reference example, the adhesion of the base film, which is a nickel-phosphorus film, on the light metal can be significantly strengthened. As described above, even if the conductive film is changed in various ways, In comparison, various conductive films can be formed more firmly on a light metal.
In this case, since the upper limit of the film thickness of the undercoat in Examples 1 to 7 is 0.3 μm, 0.3 μm or less is required to firmly form the undercoat on the non-conductive light metal by heat treatment. It is sufficient to form a very thin undercoat, and particularly when Example 3 is seen, it can be seen that an extremely thin coat of 0.01 μm is sufficient. In these Examples 1 to 7, the composition of the nickel-phosphorus plating bath used in the step (S1), that is, the complexing agent (c), the surfactant (d), the soluble nickel salt (a), the phosphorus-containing compound (b ), The type of the brightener (f) and the like are changed. When a base film is formed using a nickel-phosphorous plating bath with conditions suitable for the present invention, and this is heat-treated, the adhesion of the base film is different from that of the reference example even if the composition of the plating bath is different. It can be seen that it can be greatly improved.
 次いで、この熱処理の時期的条件に着目すると、実施例1~13は下地皮膜形成工程(S1)と導電性皮膜形成工程(S2)との間に熱処理工程(S12)を行う中間熱処理方式であり、実施例14~17は導電性皮膜形成工程(S2)後に熱処理工程(S3)を行う後段階熱処理方式である。いずれの方式でも下地皮膜の密着力を大幅に強化でき、基準例と比較して、導電性皮膜を軽金属上に一層強固に密着形成できるため、密着力強化は熱処理の時期的条件を問わないことが判断できる。
 また、熱処理の付加条件に着目すると、実施例1~17は70℃、20分で湯煎した例、実施例18は35℃、80分で湯煎した例、実施例19は50℃、30分で湯煎した例、実施例20は90℃、10分で湯煎した例である。比較的簡便な加熱手段である湯煎により、且つ、100℃以下の低温度域での加熱により、下地皮膜の密着力を基準例と比較して大幅に改善できる。しかも、実施例18のように、ごく低温度域(35℃)であっても、時間をかけて熱処理を継続することで、当該密着力を強化できることが認められた。
 湯煎に代えて、実施例21のようなドライヤー加熱、或は、実施例22~23のようなオーブン加熱等の比較的高温度域の熱処理を選択すると、当然ながら加熱時間を短縮できる。
 以上を総合すれば、熱処理条件として低温度域での湯煎を選択すると、熱エネルギーの投入を軽減して生産性を向上できる。
Next, paying attention to the timing conditions of this heat treatment, Examples 1 to 13 are intermediate heat treatment methods in which the heat treatment step (S12) is performed between the base film formation step (S1) and the conductive film formation step (S2). Examples 14 to 17 are post-stage heat treatment methods in which the heat treatment step (S3) is performed after the conductive film formation step (S2). Either method can greatly enhance the adhesion of the underlying film, and the conductive film can be formed more firmly on the light metal compared to the standard example, so that the adhesion can be strengthened regardless of the timing conditions of the heat treatment. Can be judged.
Focusing on the additional conditions of the heat treatment, Examples 1 to 17 were examples of water bathing at 70 ° C. for 20 minutes, Example 18 was water bathing at 35 ° C. for 80 minutes, Example 19 was 50 ° C. for 30 minutes. An example of hot water roasting, Example 20 is an example of hot water roasting at 90 ° C. for 10 minutes. By the hot water bath, which is a relatively simple heating means, and by heating in a low temperature range of 100 ° C. or lower, the adhesion of the base film can be greatly improved as compared with the reference example. Moreover, as in Example 18, it was recognized that the adhesion could be enhanced by continuing the heat treatment over time even in a very low temperature range (35 ° C.).
If a heat treatment in a relatively high temperature range such as dryer heating as in Example 21 or oven heating as in Examples 22 to 23 is selected instead of hot water bath, the heating time can naturally be shortened.
In summary, if hot water bathing is selected as a heat treatment condition, the input of heat energy can be reduced and productivity can be improved.
 本発明の導電性皮膜形成方法により、軽金属上への下地皮膜の密着力を一層強化して、軽金属上に導電性皮膜をより密着性良く形成でき、生産性の向上を図ることもできる。

 
According to the method for forming a conductive film of the present invention, the adhesion of the base film on the light metal can be further strengthened, and the conductive film can be formed on the light metal with better adhesion, thereby improving the productivity.

Claims (8)

  1.  (S1)アルミニウム、マグネシウム、及びチタンより選ばれた不導態形成性軽金属上に、電気ニッケル-リンメッキ浴を用いてニッケル-リン皮膜からなる下地皮膜を形成する工程と、
     (S2)下地皮膜上に、導電性皮膜を形成する工程と
    からなる導電性皮膜形成方法において、
     上記工程(S1)と工程(S2)との間に、下地皮膜を30℃以上で熱処理する工程(S12)を介在させるか、又は、
     上記工程(S2)の後に、下地皮膜及び導電性皮膜を30℃以上で熱処理する工程(S3)を付加させており、
     上記電気ニッケル-リンメッキ浴は、
    (a)可溶性ニッケル塩と、
    (b)リンを含む化合物と、
    (c)アミノカルボン酸類、オキシカルボン酸類、糖質、アミノアルコール類、ポリカルボン酸類、及びポリアミン類より選ばれた錯化剤と、
    (d)ノニオン性界面活性剤及び両性界面活性剤より選ばれた界面活性剤と、
    (e)緩衝剤と、
    (f)光沢剤と
    を含有することを特徴とする、不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。
    (S1) forming a base film made of a nickel-phosphorus film on a non-conductive formable light metal selected from aluminum, magnesium and titanium using an electric nickel-phosphorous plating bath;
    (S2) In a conductive film forming method comprising a step of forming a conductive film on a base film,
    Between the step (S1) and the step (S2), a step (S12) of heat-treating the base film at 30 ° C. or higher is interposed, or
    After the step (S2), a step (S3) of heat-treating the base film and the conductive film at 30 ° C. or higher is added,
    The electric nickel-phosphorous plating bath is
    (A) a soluble nickel salt;
    (B) a compound containing phosphorus;
    (C) a complexing agent selected from aminocarboxylic acids, oxycarboxylic acids, carbohydrates, aminoalcohols, polycarboxylic acids, and polyamines;
    (D) a surfactant selected from nonionic surfactants and amphoteric surfactants;
    (E) a buffer;
    (F) A method for forming a heat-treatable conductive film on a non-conductive-formable light metal, comprising a brightener.
  2.  電気ニッケル-リンメッキ浴のリンを含む化合物(b)が、亜リン酸、次亜リン酸、ピロリン酸、オルトリン酸、ヒドロキシエチレンジアミンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする、請求項1に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。 The compound (b) containing phosphorus in the electric nickel-phosphorous plating bath is phosphorous acid, hypophosphorous acid, pyrophosphoric acid, orthophosphoric acid, hydroxyethylenediamine diphosphonic acid, nitrilotris (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid) ) And at least one selected from the group consisting of these salts. The method for forming a heat-treatable conductive film on a non-conductive formable light metal according to claim 1.
  3.  電気ニッケル-リンメッキ浴の錯化剤(c)が、オキシカルボン酸類、ポリカルボン酸類、及びアミノカルボン酸類よりなる群から選ばれた少なくとも一種であり、該オキシカルボン酸類が、クエン酸、酒石酸、リンゴ酸、グリコール酸、及びグルコン酸より選ばれ、該ポリカルボン酸類が、コハク酸であり、該アミノカルボン酸類が、ニトリロ三酢酸、エチレンジアミン四酢酸、及びジエチレントリアミン五酢酸より選ばれることを特徴とする、請求項1又は2に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。 The complexing agent (c) of the electric nickel-phosphorous plating bath is at least one selected from the group consisting of oxycarboxylic acids, polycarboxylic acids, and aminocarboxylic acids, and the oxycarboxylic acids are citric acid, tartaric acid, apple Selected from acids, glycolic acids, and gluconic acids, wherein the polycarboxylic acids are succinic acid, and the aminocarboxylic acids are selected from nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid, A method for forming a heat-treatable conductive film on a non-conductive-formable light metal according to claim 1 or 2.
  4.  電気ニッケル-リンメッキ浴の緩衝剤(e)が、ホウ酸、炭酸ナトリウム、炭酸水素ナトリウム、アスコルビン酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であることを特徴とする、請求項1~3のいずれか1項に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。 The buffer (e) for the electro nickel-phosphorous plating bath is at least one selected from the group consisting of boric acid, sodium carbonate, sodium hydrogen carbonate, ascorbic acid, and salts thereof. 4. A method for forming a heat-treatable conductive film on a non-conductive-forming light metal according to any one of items 1 to 3.
  5.  電気ニッケル-リンメッキ浴の光沢剤(f)が、サッカリン及びその塩、ベンゼンスルホン酸及びその塩、トルエンスルホン酸及びその塩、ナフタレンスルホン酸及びその塩、アリルスルホン酸及びその塩、ブチンジオール、エチレンシアンヒドリン、クマリン、プロパギルアルコール、ビス(3-スルホプロピル)ジスルフィド、メルカプトプロパンスルホン酸、並びにチオリンゴ酸よりなる群から選ばれた少なくとも一種の化合物であることを特徴とする、請求項1~4のいずれか1項に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。 The brightener (f) for the electro-nickel-phosphorous plating bath is saccharin and its salt, benzenesulfonic acid and its salt, toluenesulfonic acid and its salt, naphthalenesulfonic acid and its salt, allylsulfonic acid and its salt, butynediol, ethylene A compound comprising at least one compound selected from the group consisting of cyanohydrin, coumarin, propargyl alcohol, bis (3-sulfopropyl) disulfide, mercaptopropanesulfonic acid, and thiomalic acid. 5. A heat treatment type conductive film forming method on a non-conductive-forming light metal according to any one of 4 above.
  6.  電気ニッケル-リンメッキ浴のpHが、3.0~8.0であることを特徴とする、請求項1~5のいずれか1項に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。 The heat treatment-type conductivity on the nonconductive non-formable light metal according to any one of claims 1 to 5, wherein the pH of the electric nickel-phosphorous plating bath is 3.0 to 8.0. -Forming film forming method.
  7.  上記下地皮膜の膜厚が、0.01μm~10.0μmであることを特徴とする、請求項1~6のいずれか1項に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。 The heat treatment-type conductivity on a non-conductive non-formable light metal according to any one of claims 1 to 6, wherein the film thickness of the undercoat is 0.01 μm to 10.0 μm. Film formation method.
  8.  上記導電性皮膜を、電気メッキ、無電解メッキ、スパッタリング、又は蒸着で形成し、
     当該導電性皮膜が、銅、スズ、銀、金、ニッケル、ビスマス、パラジウム、白金、アルミニウム、マグネシウム、コバルト、亜鉛、及びクロムより選ばれた金属又はこれらの金属の合金からなる皮膜であることを特徴とする、請求項1~7のいずれか1項に記載の不導態形成性軽金属上への熱処理式の導電性皮膜形成方法。

     
    The conductive film is formed by electroplating, electroless plating, sputtering, or vapor deposition,
    The conductive film is a film made of a metal selected from copper, tin, silver, gold, nickel, bismuth, palladium, platinum, aluminum, magnesium, cobalt, zinc, and chromium, or an alloy of these metals. The method of forming a heat-treatable conductive film on a non-conductive formable light metal according to any one of claims 1 to 7, wherein

PCT/JP2017/035477 2016-10-25 2017-09-29 Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal WO2018079188A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197011955A KR20190057105A (en) 2016-10-25 2017-09-29 Process for forming a heat-treated conductive film on passivation-type light metal phase
CN201780066043.1A CN109891004B (en) 2016-10-25 2017-09-29 Method for forming heat-treated conductive coating film on passive-forming light metal
KR1020217011088A KR102409545B1 (en) 2016-10-25 2017-09-29 Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016208639A JP6326591B2 (en) 2016-10-25 2016-10-25 Method for forming heat-treatable conductive film on non-conductive metal
JP2016-208639 2016-10-25

Publications (1)

Publication Number Publication Date
WO2018079188A1 true WO2018079188A1 (en) 2018-05-03

Family

ID=62023416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035477 WO2018079188A1 (en) 2016-10-25 2017-09-29 Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal

Country Status (5)

Country Link
JP (1) JP6326591B2 (en)
KR (2) KR102409545B1 (en)
CN (1) CN109891004B (en)
TW (1) TWI739920B (en)
WO (1) WO2018079188A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210151953A (en) * 2019-07-31 2021-12-14 쇼와 덴코 가부시키가이샤 Laminate and its manufacturing method
CN110484943A (en) * 2019-08-12 2019-11-22 天津市凯鑫金属制品有限公司 A kind of electroplating technology of high-order drop-down training aids handle
CN113737233A (en) * 2021-06-23 2021-12-03 中国科学院深圳先进技术研究院 Fe-Ni-P alloy electroplating solution, Fe-Ni-P alloy coating electrodeposition method and alloy coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100273A (en) * 1995-07-12 1996-04-16 Marui Kogyo Kk Production of chromium-plated product
JP2003239057A (en) * 2002-02-19 2003-08-27 Osaka Gas Co Ltd Member for melting aluminum and/or zinc
JP2010180457A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Method for manufacturing corrosion-resistant electroconductive material
JP2013237895A (en) * 2012-05-15 2013-11-28 Ricoh Co Ltd Film, method for producing the same and mold
JP2014129560A (en) * 2012-12-28 2014-07-10 Fukuda Metal Foil & Powder Co Ltd Surface-treated copper foil and printed wiring board using the surface-treated copper foil
JP2015206104A (en) * 2014-04-23 2015-11-19 スズキ株式会社 Surface coating method of aluminum member, surface coated aluminum member and piston for internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302854A (en) 1998-04-20 1999-11-02 Shimizuchou Kinzoku Kogyo Kk Plating method for aluminum or aluminum alloy
JP2000087291A (en) * 1998-09-17 2000-03-28 Furukawa Electric Co Ltd:The Base sheet for electronic apparatus made of aluminum base composite material and its production
JP3502921B2 (en) 1999-10-29 2004-03-02 Tdk株式会社 Developing roller and manufacturing method thereof
WO2006077041A1 (en) 2005-01-19 2006-07-27 Aleris Aluminum Koblenz Gmbh Method of electroplating and pre-treating aluminium workpieces
TWI431150B (en) 2007-01-12 2014-03-21 Uyemura C & Co Ltd Method for surface treatment of aluminum or aluminum alloy
JP2009019217A (en) 2007-07-10 2009-01-29 Heitetsu Park Method for forming plated copper layer having adequate adhesiveness to magnesium alloy by using electrolytic plating
CN101407930A (en) * 2007-10-12 2009-04-15 中国船舶重工集团公司第七二五研究所 Titanium alloy high bond strength gold plating process
US7998594B2 (en) * 2008-02-11 2011-08-16 Honeywell International Inc. Methods of bonding pure rhenium to a substrate
KR101365661B1 (en) * 2011-10-24 2014-02-24 (주)지오데코 ELECTROLESS Ni-P PLATING SOLUTION AND PLATING METHOD USING THE SAME
JP6274556B2 (en) 2013-12-03 2018-02-07 スズキ株式会社 Electrolytic plating method
CN104947162A (en) * 2015-07-22 2015-09-30 四川华丰企业集团有限公司 Titanium alloy surface electroplating method
CN105112960A (en) * 2015-09-21 2015-12-02 无锡清杨机械制造有限公司 Hypophosphite system plating Ni-P alloy electroplating solution and electroplating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100273A (en) * 1995-07-12 1996-04-16 Marui Kogyo Kk Production of chromium-plated product
JP2003239057A (en) * 2002-02-19 2003-08-27 Osaka Gas Co Ltd Member for melting aluminum and/or zinc
JP2010180457A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Method for manufacturing corrosion-resistant electroconductive material
JP2013237895A (en) * 2012-05-15 2013-11-28 Ricoh Co Ltd Film, method for producing the same and mold
JP2014129560A (en) * 2012-12-28 2014-07-10 Fukuda Metal Foil & Powder Co Ltd Surface-treated copper foil and printed wiring board using the surface-treated copper foil
JP2015206104A (en) * 2014-04-23 2015-11-19 スズキ株式会社 Surface coating method of aluminum member, surface coated aluminum member and piston for internal combustion engine

Also Published As

Publication number Publication date
TWI739920B (en) 2021-09-21
JP2018070911A (en) 2018-05-10
TW201819690A (en) 2018-06-01
KR20190057105A (en) 2019-05-27
CN109891004A (en) 2019-06-14
JP6326591B2 (en) 2018-05-23
CN109891004B (en) 2021-05-25
KR20210045505A (en) 2021-04-26
KR102409545B1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
EP2752505B1 (en) Copper foil with carrier
JP6466837B2 (en) Plating material manufacturing method and plating material
WO2018079188A1 (en) Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal
JP3715743B2 (en) Manufacturing method of Mg alloy member
JP4159897B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JP6781878B2 (en) Method of forming a conductive film on a silicon substrate
JP6405553B2 (en) Method for forming conductive film on non-forming light metal
US20160108254A1 (en) Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device
JP5758557B1 (en) Manufacturing method of plated products
JP6616637B2 (en) Method for forming conductive film on transparent conductive film
KR101365661B1 (en) ELECTROLESS Ni-P PLATING SOLUTION AND PLATING METHOD USING THE SAME
CN104911653A (en) Alloy electroplating liquid
CN111304654B (en) Method for plating platinum on surface of steel strip
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
JP2023030496A (en) Method of heat-treatment-type conductive film formation on aluminum material
KR101365662B1 (en) ELECTROLESS Ni-P PLATING METHOD
JP2009099549A5 (en)
US20130216721A1 (en) Process for Electroless Deposition on Magnesium Using a Nickel Hydrate Plating Bath
JPS6116430B2 (en)
CN115175466A (en) Welding method for improving electroplating tin-nickel alloy on surface of ceramic copper-clad substrate
JP2013144835A (en) ELECTROLESS Ni-P-Sn PLATING SOLUTION
JPH0951054A (en) Board for electronic component and its manufacture
PL152644B1 (en) Bath for zinc coating of aluminium and aluminium alloys,especially before galvanizing with metals
JP2011132585A (en) Method of manufacturing member with plating layer containing zinc and nickel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011955

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865728

Country of ref document: EP

Kind code of ref document: A1