JP2010180457A - Method for manufacturing corrosion-resistant electroconductive material - Google Patents

Method for manufacturing corrosion-resistant electroconductive material Download PDF

Info

Publication number
JP2010180457A
JP2010180457A JP2009025698A JP2009025698A JP2010180457A JP 2010180457 A JP2010180457 A JP 2010180457A JP 2009025698 A JP2009025698 A JP 2009025698A JP 2009025698 A JP2009025698 A JP 2009025698A JP 2010180457 A JP2010180457 A JP 2010180457A
Authority
JP
Japan
Prior art keywords
corrosion
resistant conductive
plating
nitriding
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009025698A
Other languages
Japanese (ja)
Inventor
Toshio Horie
俊男 堀江
Fumio Shimizu
富美男 清水
Nobuaki Suzuki
伸明 鈴木
Manabu Kitahara
学 北原
Takao Kobayashi
孝雄 小林
Kenichi Suzuki
憲一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009025698A priority Critical patent/JP2010180457A/en
Publication of JP2010180457A publication Critical patent/JP2010180457A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively manufacturing a corrosion-resistant electroconductive material superior in corrosion resistance and electroconductivity. <P>SOLUTION: The method for manufacturing the corrosion-resistant electroconductive material includes: a plating step of immersing at least one part of a Ti-based substrate made from pure titanium (Ti) or Ti alloy into an Ni-plating solution containing nickel (Ni) as a main component to form a plated Ni layer on a surface of the Ti-based substrate; and a nitriding step of nitriding the Ti-based substrate which has been subjected to the plating step, at 880°C or lower. Thereby obtained corrosion-resistant electroconductive material has a corrosion-resistant electroconductive film which is superior in at least one of corrosion resistance and electroconductivity formed on the surface of at least one part of the Ti-based substrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、チタン(Ti)をベースとした耐食性または導電性に優れる耐食導電性皮膜を表面に有する耐食導電材の製造方法に関する。   The present invention relates to a method for producing a corrosion-resistant conductive material having a corrosion-resistant conductive film based on titanium (Ti) and having excellent corrosion resistance or conductivity on the surface.

固体高分子型燃料電池用の金属セパレータ等に代表されるように、最近では、耐食性と導電性とを高次元で両立できる部材が求められている。もっとも、種々のことが要求される工業レベルで、それらを両立させる耐食導電性のある部材(耐食導電材)を得ることは容易ではない。   As represented by metal separators for polymer electrolyte fuel cells and the like, recently, there has been a demand for a member that can achieve high levels of both corrosion resistance and conductivity. However, it is not easy to obtain a corrosion-resistant conductive member (corrosion-resistant conductive material) that can achieve both of them at an industrial level where various things are required.

例えば、Ti系またはステンレス系の金属材料は、表面に強固で安定な不働態皮膜を形成して優れた耐食性を発揮する。しかし、その不働態皮膜は安定な絶縁性化合物からなるため、通常は非常に抵抗が大きく導電性に乏しい。そこで、実用性のある耐食導電材を得るために、下記特許文献にあるような種々の提案がされている。   For example, a Ti-based or stainless-based metal material forms a strong and stable passive film on the surface and exhibits excellent corrosion resistance. However, since the passive film is made of a stable insulating compound, it usually has very high resistance and poor conductivity. In order to obtain a practical corrosion-resistant conductive material, various proposals as disclosed in the following patent documents have been made.

特開2005−336551号公報JP 2005-336551 A 特開2004−273370号公報JP 2004-273370 A 特開2000−353531号公報JP 2000-353531 A 特開2000−123850号公報JP 2000-123850 A

特許文献1は、Ti材に熱処理を施してFe濃化相を形成し、そのTi材の耐食性を向上させることを提案している。もっとも、特許文献1にはそのTi材の導電性に関する開示がない。また、そのようなFe濃化相を形成するには複雑な加工熱処理が必要となる。   Patent Document 1 proposes that a heat treatment is performed on a Ti material to form an Fe-concentrated phase, thereby improving the corrosion resistance of the Ti material. However, Patent Document 1 does not disclose the conductivity of the Ti material. In addition, complicated thermomechanical processing is required to form such an Fe-concentrated phase.

特許文献2は、Ti系基材中にTiB系ホウ化物粒子を晶出させたセパレータを提案している。このセパレータは、基材上の不働態皮膜によって耐食性が確保されると共に表面に晶出したホウ化物によって導電性が発現される。もっとも、ホウ化物は非常に硬いため、そのセパレータは圧延性および成形性に劣る。勿論、ホウ化物の分散量を減らせば、成形性や圧延性は改善されるものの導電性が低下する。また、ホウ化物が脱離した部分から腐食が進行する恐れもあり得る。   Patent Document 2 proposes a separator in which TiB boride particles are crystallized in a Ti base material. In this separator, the corrosion resistance is secured by the passive film on the substrate, and the conductivity is expressed by the boride crystallized on the surface. However, since the boride is very hard, the separator is inferior in rollability and formability. Of course, if the amount of boride dispersed is reduced, the formability and rollability are improved, but the conductivity is lowered. Moreover, corrosion may progress from the part from which the boride is detached.

特許文献3は、Ti系基材の表面に金属窒化物層を形成したセパレータを提案している。このセパレータを本発明者が試験したところ、確かに電解腐食試験前における接触抵抗は低減されるものの、電解腐食試験後の接触抵抗が大きく増加することがわかった。   Patent Document 3 proposes a separator in which a metal nitride layer is formed on the surface of a Ti-based substrate. When this inventor tested this separator, it turned out that although the contact resistance before an electrolytic corrosion test is certainly reduced, the contact resistance after an electrolytic corrosion test increases greatly.

特許文献4は、ステンレス鋼またはチタン合金等からなる基材に化学的に非常に安定な貴金属めっき層を設けたセパレータを提案している。しかし、このような貴金属の使用は高コストである。また、貴金属の使用量を低減すると、密着性の悪化やめっき層の剥離などのおそれがある。さらに、基材がAl等の場合、めっき層のピンホール部分で局部電池が形成され、基材に孔食などの局部腐食が生じるおそれもある。   Patent Document 4 proposes a separator in which a chemically very stable noble metal plating layer is provided on a base material made of stainless steel, titanium alloy, or the like. However, the use of such precious metals is expensive. Further, when the amount of noble metal used is reduced, there is a risk of deterioration of adhesion and peeling of the plating layer. Furthermore, when the base material is Al or the like, a local battery is formed at the pinhole portion of the plating layer, and local corrosion such as pitting corrosion may occur on the base material.

本発明は、このような事情に鑑みて為されたものであり、耐食性または導電性の少なくとも一方が安定して得られる耐食導電性皮膜を備える耐食導電材を効率的に製造できる製造方法を提供することを目的とする。   This invention is made in view of such a situation, and provides the manufacturing method which can manufacture efficiently the corrosion-resistant electrically conductive material provided with the corrosion-resistant conductive film from which at least one of corrosion resistance or electroconductivity is obtained stably. The purpose is to do.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、Ni−Pメッキを施したTi系基材に窒化処理をすることで、安定した高い耐食性および導電性をもつ耐食導電性皮膜を形成することに成功した。さらに本発明者は、Ni−Bメッキを施した基材に窒化処理をしても、上記の皮膜と同等の耐食導電性を示す新たな耐食導電性皮膜を得ることに成功した。   As a result of extensive research and trial and error, the present inventor conducted nitriding treatment on a Ni-P plated Ti-based substrate, thereby providing stable corrosion resistance and high corrosion resistance. Succeeded in forming a conductive film. Furthermore, the present inventor has succeeded in obtaining a new corrosion-resistant conductive film exhibiting the same corrosion resistance as that of the above-described film even when the substrate subjected to Ni-B plating is subjected to nitriding treatment.

本発明者はこのような経緯を踏まえて、それらの成果を発展させることで、本発明の耐食導電材の製造方法を完成させるに至った。   Based on such circumstances, the present inventor has developed these results to complete the method for producing a corrosion-resistant conductive material of the present invention.

《耐食導電材の製造方法(Niメッキ法)》
(1)すなわち本発明の耐食導電材の製造方法は、純チタン(Ti)またはTi合金からなるTi系基材の少なくとも一部を、ニッケル(Ni)を主成分とするNiメッキ液中に浸漬して該Ti系基材の表面にNiメッキ層を形成するメッキ工程と、
該メッキ工程後のTi系基材に880℃以下で窒化処理を施す窒化工程と、
を備えてなり、前記Ti系基材の少なくとも一部の表面に耐食性または導電性の少なくとも一方に優れる耐食導電性皮膜が形成された耐食導電材が得られることを特徴とする。
<< Corrosion-resistant conductive material manufacturing method (Ni plating method) >>
(1) That is, in the method for producing a corrosion-resistant conductive material of the present invention, at least a part of a Ti-based substrate made of pure titanium (Ti) or a Ti alloy is immersed in a Ni plating solution containing nickel (Ni) as a main component. And a plating step of forming a Ni plating layer on the surface of the Ti-based substrate,
A nitriding step of nitriding the Ti-based substrate after the plating step at 880 ° C. or lower;
And a corrosion-resistant conductive material in which a corrosion-resistant conductive film excellent in at least one of corrosion resistance and conductivity is formed on at least a part of the surface of the Ti-based substrate.

このNiメッキ法によると、後に具体的に説明する優れた耐食導電性を発揮する耐食導電性皮膜をもつ耐食導電材や固体高分子型燃料電池用セパレータなどを、比較的容易に安定して得ることができる。なお、本明細書では上記の耐食導電材の製造方法をNiメッキ法とよぶ。   According to this Ni plating method, a corrosion-resistant conductive material or a polymer electrolyte fuel cell separator having a corrosion-resistant conductive film exhibiting excellent corrosion resistance conductivity, which will be described in detail later, can be obtained relatively easily and stably. be able to. In the present specification, the above-described method for producing a corrosion-resistant conductive material is referred to as a Ni plating method.

(2)上記Niメッキ法により、優れた耐食導電性皮膜が比較的容易に形成される理由やメカニズム等は、現在のところ調査研究中であり、その詳細は必ずしも定かではない。但し、本発明者が調査研究したところでは、Pを含むNi−Pメッキ(Ni−P−Feメッキを含む)、Bを含むNi−Bメッキが、特性や実用性等の点で、上記のNiメッキとして有効であることが解っている。   (2) The reason, mechanism, and the like that an excellent corrosion-resistant conductive film is formed relatively easily by the Ni plating method are currently under investigation and the details are not necessarily clear. However, as a result of investigation and research by the inventor, Ni—P plating containing P (including Ni—P—Fe plating) and Ni—B plating containing B are the above in terms of characteristics and practicality. It is known to be effective as Ni plating.

また、窒化処理工程における処理温度をTi系材料のα−β固相変態温度以下、具体的には880℃以下とすることで、優れた特性を示すとともにTi系基材の表面に良好に形成された耐食導電性皮膜をもつ耐食導電材が得られる。   In addition, by forming the treatment temperature in the nitriding treatment step below the α-β solid phase transformation temperature of the Ti-based material, specifically, 880 ° C. or less, excellent characteristics and good formation on the surface of the Ti-based substrate are achieved. A corrosion-resistant conductive material having a corrosion-resistant conductive film formed can be obtained.

〈耐食導電材〉
(1)本発明は、耐食導電材の製造方法としてのみならず、基材の表面上にその耐食導電性皮膜を設けた耐食導電材としても把握される。
<Corrosion-resistant conductive material>
(1) This invention is grasped | ascertained not only as a manufacturing method of a corrosion-resistant electrically conductive material but as a corrosion-resistant electrically conductive material which provided the corrosion-resistant electrically conductive film on the surface of a base material.

すなわち、本発明は、基材と、該基材の少なくとも一部の表面に形成された上記の耐食導電性皮膜とからなることを特徴とする耐食導電材であってもよい。   That is, the present invention may be a corrosion-resistant conductive material comprising a base material and the above-mentioned corrosion-resistant conductive film formed on at least a part of the surface of the base material.

ここで基材は、材質、形状、大きさ等を問わない。例えば、所定形状をした部材であってもよいし、これから加工、成形等される素材、粉末などでもよい。従って、本発明でいう耐食導電材は、耐食導電性皮膜を有する部材のみならず、素材または原料となるような材料自体をも含み得る。   Here, the base material does not ask | require material, a shape, a magnitude | size, etc. For example, a member having a predetermined shape may be used, or a material, powder, or the like to be processed or molded from now on. Therefore, the corrosion-resistant conductive material referred to in the present invention can include not only a member having a corrosion-resistant conductive film but also a material itself that is a raw material or a raw material.

(2)ところで、本発明の製造方法により得られる耐食導電材は、耐食性と導電性とを同時に高次元で満足させ得るが、その場合には限らず、耐食性または導電性の一方のみに特化している場合であっても良い。例えば、高耐食性のみ要求される部材等にも高導電性のみ要求される部材等にも、上記の耐食導電材は好適である。上記の耐食導電材を利用することで、従来よりも安価な純度の低いTi系原料を用いることができたり、製造コストの削減等を図れたりする。そして部材の要求仕様に応じて、耐食導電性皮膜の組成や形成方法を適宜変更して、その耐食性または導電性のいずれか一方を他方に優先して高めることも可能である。   (2) By the way, the corrosion-resistant conductive material obtained by the production method of the present invention can satisfy both corrosion resistance and conductivity at a high level at the same time. However, the present invention is not limited to this, and is specialized only in one of corrosion resistance or conductivity. It may be the case. For example, the above-mentioned corrosion-resistant conductive material is suitable for a member that requires only high corrosion resistance and a member that requires only high conductivity. By using the above-mentioned corrosion-resistant conductive material, it is possible to use a Ti-based material having a lower purity than that of the prior art, and to reduce the manufacturing cost. Depending on the required specifications of the member, the composition and formation method of the corrosion-resistant conductive film can be changed as appropriate, and either one of the corrosion resistance or the conductivity can be given priority over the other.

なお、本発明でいう基材は、必ずしも全体がTiベースである必要はない。被覆される表層部分にTiが存在して本発明の耐食導電性皮膜が形成される限り、基材のベース(中核部分)は、Fe(ステンレスを含む)などの他の金属でも良いし、さらには樹脂、セラミック等でも良い。   The base material referred to in the present invention does not necessarily need to be entirely Ti-based. As long as Ti is present in the surface layer portion to be coated and the corrosion-resistant conductive film of the present invention is formed, the base (core portion) of the base material may be another metal such as Fe (including stainless steel), May be resin, ceramic or the like.

(3)上記の耐食導電材は、Ni−Pメッキ液あるいはNi−Bメッキ液を用いる後述のNiメッキ法により効率的に得ることが可能である。そこで、耐食導電材は次のようにも把握される。   (3) The above corrosion-resistant conductive material can be efficiently obtained by a Ni plating method described later using a Ni—P plating solution or a Ni—B plating solution. Therefore, the corrosion-resistant conductive material is grasped as follows.

(i)すなわち本発明は、純TiまたはTi合金からなるTi系基材と、該Ti系基材の少なくとも一部の表面に形成されたTi、Ni、NおよびPを含む耐食性または導電性の少なくとも一方に優れる耐食導電性皮膜と、からなることを特徴とする耐食導電材であってもよい。ただしNiは、Ni−Pメッキ層からTi系基材側へ拡散し、耐食導電性皮膜に含まれないこともある。   (I) That is, the present invention is a corrosion-resistant or conductive material comprising Ti-based substrate made of pure Ti or Ti alloy, and Ti, Ni, N and P formed on at least a part of the surface of the Ti-based substrate. It may be a corrosion-resistant conductive material characterized by comprising a corrosion-resistant conductive film excellent in at least one of them. However, Ni diffuses from the Ni-P plating layer to the Ti-based substrate side and may not be included in the corrosion-resistant conductive film.

この耐食導電性皮膜は、皮膜全体を100質量%としたときに3〜20質量%(以下適宜単に「%」という。)のPを含むと好ましい。さらに、上記の耐食導電性皮膜はFeを含むものでもよい。   This corrosion-resistant conductive film preferably contains 3 to 20% by mass (hereinafter simply referred to as “%” as appropriate) of P when the total film is 100% by mass. Further, the corrosion-resistant conductive film may contain Fe.

(ii)また本発明は、純TiまたはTi合金からなるTi系基材と、該Ti系基材の少なくとも一部の表面に形成されたTi、Ni、NおよびBを含む耐食性または導電性の少なくとも一方に優れる耐食導電性皮膜と、からなることを特徴とする耐食導電材であってもよい。ただしNiは、Ni−Bメッキ層からTi系基材側へ拡散し、耐食導電性皮膜に含まれないこともある。   (Ii) The present invention also provides a corrosion-resistant or conductive material comprising Ti-based substrate made of pure Ti or Ti alloy, and Ti, Ni, N and B formed on at least a part of the surface of the Ti-based substrate. It may be a corrosion-resistant conductive material characterized by comprising a corrosion-resistant conductive film excellent in at least one of them. However, Ni diffuses from the Ni—B plating layer to the Ti-based substrate side and may not be included in the corrosion-resistant conductive film.

この耐食導電性皮膜は、皮膜全体を100質量%としたときに0.1〜2質量%のBを含むと好ましい。   The corrosion-resistant conductive film preferably contains 0.1 to 2% by mass of B when the entire film is 100% by mass.

〈固体高分子型燃料電池およびそのセパレータ〉
本発明は、上記の耐食導電材の代表的な一形態である固体高分子型燃料電池用セパレータとしても把握される。
<Solid polymer fuel cell and its separator>
This invention is grasped | ascertained also as a separator for polymer electrolyte fuel cells which is a typical form of said corrosion-resistant electrically-conductive material.

すなわち、本発明は、中央に設けられた固体高分子電解質膜と該固体高分子電解質膜の一方側に接して設けられた燃料電極と該固体高分子電解質膜の他方側に接して設けられた酸化電極と該燃料電極および該酸化電極の外側に設けられたセパレータとからなる単位電池を積層してなり、
該セパレータと該燃料電極との間に燃料ガスを供給すると共に該セパレータと該酸化電極との間に酸化剤ガスを供給して直流電力を発生させる固体高分子型燃料電池において、
前記セパレータは、少なくとも一部の表面に上記の耐食導電性皮膜を有し、少なくとも該耐食導電性皮膜上で耐食性および導電性に優れることを特徴とする固体高分子型燃料電池用セパレータであると、好適である。
That is, the present invention is provided with a solid polymer electrolyte membrane provided in the center, a fuel electrode provided in contact with one side of the solid polymer electrolyte membrane, and in contact with the other side of the solid polymer electrolyte membrane. A unit cell consisting of an oxidation electrode and a fuel electrode and a separator provided outside the oxidation electrode is laminated,
In the polymer electrolyte fuel cell that supplies fuel gas between the separator and the fuel electrode and supplies oxidant gas between the separator and the oxidation electrode to generate DC power,
The separator is a separator for a polymer electrolyte fuel cell characterized by having the above-mentioned corrosion-resistant conductive film on at least a part of the surface, and at least having excellent corrosion resistance and conductivity on the corrosion-resistant conductive film. Is preferable.

さらに本発明は、そのセパレータを用いた固体高分子型燃料電池としても把握される。   Furthermore, this invention is grasped | ascertained also as a polymer electrolyte fuel cell using the separator.

〈付加的構成〉
本発明の耐食導電材の製造方法は、上述した構成に加えて、次に列挙する(i)〜(xi)のから任意に選択した一つまたは二つ以上がさらに付加されるものであってもよい。
<Additional configuration>
In addition to the above-described configuration, the method for producing a corrosion-resistant conductive material of the present invention further includes one or two or more arbitrarily selected from (i) to (xi) listed below. Also good.

なお、下記から選択された構成は、複数の発明に重畳的かつ任意的に付加可能であることを断っておく。また、便宜上、耐食導電材(耐食導電性皮膜等を含む)自体とその製造方法とを区別して記載するが、下記に示したいずれの構成も、カテゴリーを越えて相互に適宜組み合わせ可能である。例えば、耐食導電性皮膜の構成元素であれば、耐食導電材にも、その製造方法にも関連することはいうまでもない。また、一見、「方法」に関する構成のように見えても、プロダクトバイプロセスとして理解すれば、「物」に関する構成ともなり得る。   It should be noted that a configuration selected from the following can be added to a plurality of inventions in a superimposed manner and arbitrarily. For convenience, the corrosion-resistant conductive material (including the corrosion-resistant conductive film) itself and its manufacturing method are described separately, but any of the configurations shown below can be appropriately combined with each other across categories. For example, as long as it is a constituent element of a corrosion-resistant conductive film, it goes without saying that it is related to the corrosion-resistant conductive material and the manufacturing method thereof. Moreover, even if it seems to be a configuration related to “method” at first glance, it can be a configuration related to “thing” if it is understood as a product-by-process.

(i)前記Niメッキ液はPを含むNi−Pメッキ液であり、Niメッキ層はNi−Pメッキ層である。このNi−Pメッキ液中のP濃度は0.5〜20質量%さらには1〜10質量%である。例えば、Ni−Pメッキ液にPを次亜リン酸ナトリウムの形で0.01〜0.2mol/lで加えるとよい。   (I) The Ni plating solution is a Ni-P plating solution containing P, and the Ni plating layer is a Ni-P plating layer. The P concentration in the Ni-P plating solution is 0.5 to 20% by mass, and further 1 to 10% by mass. For example, P may be added to the Ni—P plating solution in the form of sodium hypophosphite at 0.01 to 0.2 mol / l.

(ii)前記Ni−Pメッキ層は、メッキ層全体を100質量%としたときに7〜20質量%のPを含む。   (Ii) The Ni-P plating layer contains 7 to 20% by mass of P when the entire plating layer is 100% by mass.

(iii)前記Ni−Pメッキ液は、さらにFeを含むNi−P−Feメッキ液である。   (Iii) The Ni—P plating solution is a Ni—P—Fe plating solution further containing Fe.

(iv)前記Ni−Pメッキ層は、Ni−P−Feメッキ層である。   (Iv) The Ni-P plating layer is a Ni-P-Fe plating layer.

(v)前記Niメッキ液は、さらにBを含むNi−Bメッキ液であり、前記Niメッキ層は、Ni−Bメッキ層である。このNi−Bメッキ液中のB濃度は0.1〜1質量%である。   (V) The Ni plating solution is a Ni-B plating solution further containing B, and the Ni plating layer is a Ni-B plating layer. The B concentration in the Ni-B plating solution is 0.1 to 1% by mass.

(vi)前記Ni−Bメッキ層は、メッキ層全体を100質量%としたときに0.1〜2質量%のBを含む。   (Vi) The Ni-B plating layer contains 0.1 to 2% by mass of B when the entire plating layer is 100% by mass.

(vii)前記メッキ工程は、無電解メッキにより行われる。   (Vii) The plating step is performed by electroless plating.

(viii)前記窒化工程は、Nを含む窒化ガス中に前記Ti系基材を保持するガス窒化工程である。   (Viii) The nitriding step is a gas nitriding step for holding the Ti-based substrate in a nitriding gas containing N.

(ix)前記窒化ガスは、窒素(N)ガスまたはアンモニア(NH)ガスを含む。 (Ix) The nitriding gas includes nitrogen (N 2 ) gas or ammonia (NH 3 ) gas.

(x)前記窒化ガスは、Nガスおよび水素(H)ガスを含む。 (X) The nitriding gas includes N 2 gas and hydrogen (H 2 ) gas.

(xi)前記窒化工程は、窒素プラズマ中に前記Ti系基材を保持するイオン窒化工程である。   (Xi) The nitriding step is an ion nitriding step for holding the Ti-based substrate in nitrogen plasma.

〈その他〉
(1)本明細書でいう「耐食導電材」は前述したように、その形態を問わない。製品形状またはそれに近い形状の部材のみならず、例えば、インゴット状、棒状、管状、板状等の素材であっても良いし、さらには粉末等の原料的なものであってもよい。
<Others>
(1) The “corrosion resistant conductive material” referred to in the present specification may be in any form as described above. Not only a product shape or a member having a shape close thereto, but may be a material such as an ingot shape, a rod shape, a tubular shape, a plate shape, or a raw material such as a powder.

(2)非常に薄い耐食導電性皮膜の組成を厳密に特定することは困難である。敢えて特定するのであれば、Ti、NiおよびNを含む皮膜であって、少なくとも耐食性または導電性の少なくとも一方を発現するものであれば足りる。ただし、前述のように、Niは、Niメッキ層からTi系基材側へ拡散し、耐食導電性皮膜に含まれないこともある。   (2) It is difficult to specify exactly the composition of a very thin corrosion-resistant conductive film. If it dares to specify, it is sufficient if it is a film containing Ti, Ni and N, and at least one of corrosion resistance and conductivity is developed. However, as described above, Ni diffuses from the Ni plating layer to the Ti-based substrate side and may not be included in the corrosion-resistant conductive film.

もっとも、耐食導電性皮膜は、上記の元素以外にも、その耐食導電性皮膜の特性を改善し、または劣化させない改質元素などの任意元素を多少含んでもよい。例えば、このような元素として、Cr、Mn、Co、B、Al、希土類元素(Sc、Y、ラインタノイド、アクチノイド)などがある。   However, the corrosion-resistant conductive film may contain some elements other than the above-described elements such as a modified element that improves or does not deteriorate the characteristics of the corrosion-resistant conductive film. For example, such elements include Cr, Mn, Co, B, Al, rare earth elements (Sc, Y, rhetanoid, actinoid) and the like.

また、耐食導電性皮膜は、改質元素以外に「不可避不純物」の含有も許容し得る。不可避不純物は、コスト的または技術的な理由等により除去することが困難な元素である。このような不可避不純物は、基材などに元々含まれる場合の他、耐食導電性皮膜の形成時に不可避に混入等し得る。不可避不純物として、例えば、Li、Na、Mg、K、Ca、V、Ni、Cu、O、Cl等がある。   Further, the corrosion-resistant conductive film can also contain “unavoidable impurities” in addition to the modifying element. Inevitable impurities are elements that are difficult to remove for cost or technical reasons. Such inevitable impurities may be inevitably mixed during the formation of the corrosion-resistant conductive film as well as when originally contained in the base material. Examples of unavoidable impurities include Li, Na, Mg, K, Ca, V, Ni, Cu, O, and Cl.

但し、本発明の場合、耐食導電性皮膜が形成される基材から観れば不可避不純物であっても、耐食導電性皮膜自体から観ると不可避不純物でないもの、または耐食導電性皮膜の特性改善に有効なもの、さらには耐食導電性皮膜の必須構成元素となるものも存在する。例えば、Ti系基材の不純物であるFeなどは、本発明の耐食導電性皮膜から観ると必須構成元素となり得る。   However, in the case of the present invention, even if it is inevitable impurities when viewed from the base material on which the corrosion-resistant conductive film is formed, it is not inevitable impurities when viewed from the corrosion-resistant conductive film itself, or is effective for improving the characteristics of the corrosion-resistant conductive film In addition, there are some which are essential constituent elements of the corrosion-resistant conductive film. For example, Fe that is an impurity of a Ti-based substrate can be an essential constituent element when viewed from the corrosion-resistant conductive film of the present invention.

耐食導電性皮膜全体を100質量%としたときに、改質元素は80%以下さらには70%以下であるとよい。また、不可避不純物は15%未満さらには10%未満であるとよい。なお、ここでいう割合は不可避不純物の合計量である。   When the entire corrosion-resistant conductive film is 100% by mass, the modifying element is preferably 80% or less, more preferably 70% or less. Moreover, inevitable impurities are good to be less than 15% and also less than 10%. The ratio here is the total amount of inevitable impurities.

通常、不可避不純物の割合は必須構成元素の割合よりも少ない場合が多い。もっとも、不可避不純物は、耐食導電性皮膜の耐食性または導電性の向上を阻害するものだけには限られず、耐食導電性皮膜の特性を劣化させないが向上もさせない、害の少ない元素も不可避不純物に含まれる。このような元素が不可避不純物である場合、その存在割合が比較的多くなる場合もあり得る。また、不可避不純物が多種、少量である場合、その存在割合は検出機器の精度や特性にも影響され易い。例えば、XPSデータにより算出した場合、不可避不純物量が多くなることもある。   Usually, the proportion of inevitable impurities is often smaller than the proportion of essential constituent elements. However, the inevitable impurities are not limited to those that inhibit the corrosion resistance or conductivity of the corrosion-resistant conductive film, and the elements of the corrosion-resistant conductive film that do not deteriorate but do not improve the characteristics are also included in the inevitable impurities. It is. When such an element is an unavoidable impurity, the abundance ratio may be relatively large. Further, when there are various kinds of inevitable impurities and a small amount, the existence ratio is easily influenced by the accuracy and characteristics of the detection device. For example, when calculated from XPS data, the amount of inevitable impurities may increase.

(3)本明細書でいう「耐食性」は、酸雰囲気下でも腐食しない耐酸性、酸素雰囲気下でも酸化されない耐酸化性など、少なくともいずれか一つの特性で優れていればよい。「導電性」は、皮膜自体の電気抵抗が小さい場合、他の導電材と接触したときに問題となる接触抵抗が小さい場合など、少なくともいずれか一つの特性で優れていればよい。   (3) “Corrosion resistance” as used herein may be excellent in at least one of the characteristics such as acid resistance that does not corrode even in an acid atmosphere and oxidation resistance that does not oxidize in an oxygen atmosphere. “Conductivity” only needs to be excellent in at least one of the characteristics, such as when the electrical resistance of the film itself is small, or when the contact resistance that causes a problem when contacting with another conductive material is small.

また、特に断らない限り、本明細書でいう「x〜y」は、下限xおよび上限yを含む。また、本明細書に記載した下限および上限は任意に組合わせて、「a〜b」のような範囲を構成し得ることを断っておく。   Unless otherwise specified, “x to y” in the present specification includes the lower limit x and the upper limit y. In addition, it should be noted that the lower limit and the upper limit described in the present specification can be arbitrarily combined to constitute a range such as “ab”.

接触抵抗の測定装置を示す模式図である。It is a schematic diagram which shows the measuring apparatus of contact resistance. 各試験片に関する電解腐食試験と接触抵抗との関係を示すグラフである。It is a graph which shows the relationship between the electrolytic corrosion test regarding each test piece, and contact resistance. 各試験片に関する電解腐食試験と接触抵抗との関係を示すグラフである。It is a graph which shows the relationship between the electrolytic corrosion test regarding each test piece, and contact resistance. 試験片31に関する電解腐食試験と接触抵抗との関係を示すグラフである。4 is a graph showing a relationship between an electrolytic corrosion test and a contact resistance with respect to a test piece 31. 本実施例に係る固体高分子型燃料電池の1セルを示す断面図である。It is sectional drawing which shows 1 cell of the polymer electrolyte fuel cell which concerns on a present Example. 本実施例に係る固体高分子型燃料電池の1セルの分解斜視図である。It is a disassembled perspective view of 1 cell of the polymer electrolyte fuel cell which concerns on a present Example.

発明の実施形態を挙げて本発明をより詳しく説明する。   The present invention will be described in more detail with reference to embodiments of the invention.

なお、本明細書ではNiメッキ法について主に述べるが、その基本となる耐食導電性皮膜、耐食導電材、さらには耐食導電材の適用例等についても詳述し、それらを踏まえて本発明のNiメッキ法の内容を明らかにする。また、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   In this specification, the Ni plating method will be mainly described. However, the basic examples of the corrosion-resistant conductive film, the corrosion-resistant conductive material, and the application examples of the corrosion-resistant conductive material are described in detail. Clarify the contents of the Ni plating method. Which embodiment is the best depends on the target, required performance, and the like.

〈耐食導電材の製造方法または耐食導電性皮膜の形成方法〉
(1)メッキ工程
メッキ工程では、Niを主成分とするNiメッキ液中にTi系基材を浸漬し、該基材の表面にNiメッキ層を形成する。メッキは電解メッキでも無電解メッキでもよいが、複雑形状をもつ基材の表面であっても一様の厚さにメッキでき被覆能力に優れた無電解メッキがより望ましい。メッキ層の厚さは耐食導電性皮膜の厚さに応じて適宜調整されるが、0.1〜5μmが好ましい。Niメッキ液として、Ni−Pメッキ液、Ni−P−Feメッキ液さらにはNi−Bメッキ液などを用いるとよい。これらのメッキ液を用いる無電解メッキは、容易に行い得る。ただし、Niメッキ層を構成する元素は、必ずしもメッキ液から供給される必要はない。Ni以外の元素は、基材側などから供給されてもよい。
<Method for producing corrosion-resistant conductive material or method for forming corrosion-resistant conductive film>
(1) Plating step In the plating step, a Ti-based substrate is immersed in a Ni plating solution containing Ni as a main component, and a Ni plating layer is formed on the surface of the substrate. The plating may be electrolytic plating or electroless plating, but it is more preferable that the surface of the substrate having a complex shape can be plated with a uniform thickness and has excellent covering ability. Although the thickness of a plating layer is suitably adjusted according to the thickness of a corrosion-resistant conductive film, 0.1-5 micrometers is preferable. As the Ni plating solution, a Ni—P plating solution, a Ni—P—Fe plating solution, or a Ni—B plating solution may be used. Electroless plating using these plating solutions can be easily performed. However, the elements constituting the Ni plating layer are not necessarily supplied from the plating solution. Elements other than Ni may be supplied from the substrate side or the like.

(2)窒化工程
窒化工程により、耐食導電性皮膜中へNが導入される。その結果、化学的に安定な窒化物が形成され耐食導電性が確保される。また、窒化工程以前で耐食導電性皮膜中に導入されたOが還元等により除去される。
(2) Nitriding process N is introduced into the corrosion-resistant conductive film by the nitriding process. As a result, a chemically stable nitride is formed, and corrosion resistance conductivity is ensured. Further, O introduced into the corrosion-resistant conductive film before the nitriding step is removed by reduction or the like.

この窒化方法には、ガス窒化(ガス軟窒化を含む)、イオン窒化(プラズマ窒化)、塩浴窒化(塩浴軟窒化(タフトライド)を含む)等がある。特に本発明においては、比較的低い処理温度で窒化が可能なガス窒化またはイオン窒化が好ましい。ガス窒化は、比較的容易な装置または工程で、耐食導電性皮膜へNの導入が可能である。また、イオン窒化は、短時間で耐食導電性皮膜へNが導入される。   This nitriding method includes gas nitriding (including gas soft nitriding), ion nitriding (plasma nitriding), salt bath nitriding (including salt bath soft nitriding (tuftride)), and the like. In particular, in the present invention, gas nitriding or ion nitriding capable of nitriding at a relatively low processing temperature is preferable. In gas nitriding, N can be introduced into the corrosion-resistant conductive film with a relatively easy apparatus or process. In ion nitriding, N is introduced into the corrosion-resistant conductive film in a short time.

ガス窒化は、Nガス、NHガスまたはそれらのうちの一種以上を含む混合ガスなどで満たされた高温雰囲気下に、上述した前処理後の基材を保持することで行われる。なお、それら窒化ガス自体は流動していてもよい。特にNHガスを用いるガス窒化は、純Nガスを用いるガス窒化よりも窒化力が強いため、処理温度が880℃以下であっても十分に窒化される。また、NHガスを用いる場合には、基材が収容される炉内に単純にNHガスを流して予め炉内にあったガス(空気)と置換させるだけで窒化雰囲気を形成することができるため、炉内を真空に排気する必要が無く低廉なプロセスである。混合ガスとしては、NガスとHガスとの混合ガスが挙げられ、処理温度が880℃以下であっても十分に窒化される。 Gas nitriding is performed by holding the substrate after the above-described pretreatment in a high-temperature atmosphere filled with N 2 gas, NH 3 gas, or a mixed gas containing one or more of them. These nitriding gases themselves may flow. In particular, gas nitridation using NH 3 gas has a higher nitriding power than gas nitridation using pure N 2 gas, and thus is sufficiently nitrided even at a processing temperature of 880 ° C. or lower. In addition, when NH 3 gas is used, a nitriding atmosphere can be formed by simply flowing NH 3 gas into a furnace in which the substrate is accommodated and replacing it with gas (air) that was previously in the furnace. Therefore, it is an inexpensive process because it is not necessary to evacuate the furnace. Examples of the mixed gas include a mixed gas of N 2 gas and H 2 gas. Even if the processing temperature is 880 ° C. or less, the mixed gas is sufficiently nitrided.

窒化工程は、Ti系基材のα−β固相変態温度以下の処理温度で行われる。具体的には、880℃以下さらには650〜850℃が好ましい。なお、処理温度とは、窒化処理中のTi系基材の温度である。処理温度が880℃以下であれば、Tiのα−β固相変態温度を超えないので、耐食導電性皮膜の内部残留応力が小さく、変形や剥離が少ない。また、処理温度が低温であっても耐食導電性皮膜中に十分にNが導入され、優れた耐食性または導電性が付与される。さらに、処理温度が低温であるため、耐食導電性皮膜の酸化が抑制される。また、ガス窒化であれば、処理時間は、0.05〜3時間さらには0.5〜2時間とするとよい。処理時間は、上記の範囲において、ガス組成や導入するN量により適宜調整される。   The nitriding step is performed at a processing temperature not higher than the α-β solid phase transformation temperature of the Ti-based substrate. Specifically, it is preferably 880 ° C. or lower, more preferably 650 to 850 ° C. The processing temperature is the temperature of the Ti base material during nitriding. If the treatment temperature is 880 ° C. or lower, the internal α-β solid phase transformation temperature of Ti is not exceeded, so that the internal residual stress of the corrosion-resistant conductive film is small, and deformation and peeling are small. Further, even when the treatment temperature is low, N is sufficiently introduced into the corrosion-resistant conductive film, and excellent corrosion resistance or conductivity is imparted. Furthermore, since the processing temperature is low, oxidation of the corrosion-resistant conductive film is suppressed. In the case of gas nitriding, the treatment time is preferably 0.05 to 3 hours, more preferably 0.5 to 2 hours. The treatment time is appropriately adjusted in the above range depending on the gas composition and the amount of N introduced.

なお、望ましくは、窒化工程に限らず全工程においてTi系基材が880℃を超える環境に曝されないようにすることは、言うまでもない。仮に熱処理工程などがあっても、880℃以下で行うのがよい。   Needless to say, it is desirable to prevent the Ti-based substrate from being exposed to an environment exceeding 880 ° C. not only in the nitriding step but in all steps. Even if there is a heat treatment step or the like, it is preferably performed at 880 ° C. or lower.

〈用途〉
本発明の耐食導電材の製造方法は、Tiの耐食被膜の他、固体高分子型燃料電池用セパレータ、通電部材などにも利用され得る。
<Application>
The method for producing a corrosion-resistant conductive material of the present invention can be used for a separator for a polymer electrolyte fuel cell, a current-carrying member, etc. in addition to a Ti corrosion-resistant film.

また、本発明者の研究により、窒化工程を経て得られた上記の耐食導電性皮膜は、pH4程度の腐食環境下では酸化されない(酸素が皮膜に化合しない)ことがわかっている。従って、窒化を施した耐食導電性皮膜は、優れた耐酸化性のみならず、酸化雰囲気下でも安定した導電性を発揮し得る。さらには、その耐食導電性皮膜は、高温窒素雰囲気下で酸素を放出する傾向を持つため、本発明の耐食導電材は、高温耐酸化材としても利用され得る。   Further, according to the research of the present inventor, it is known that the above-described corrosion-resistant conductive film obtained through the nitriding process is not oxidized under a corrosive environment of about pH 4 (oxygen does not combine with the film). Therefore, the corrosion-resistant conductive film subjected to nitriding can exhibit not only excellent oxidation resistance but also stable conductivity even in an oxidizing atmosphere. Furthermore, since the corrosion-resistant conductive film has a tendency to release oxygen in a high-temperature nitrogen atmosphere, the corrosion-resistant conductive material of the present invention can also be used as a high-temperature oxidation-resistant material.

実施例を挙げて本発明をより具体的に説明する。   The present invention will be described more specifically with reference to examples.

〈試験片の製造〉
純チタン(JIS1種)からなるTi基板(Ti系基材)に、次に示す各種のNiメッキ処理を施した。
<Manufacture of test pieces>
Various Ni plating processes shown below were applied to a Ti substrate (Ti base material) made of pure titanium (JIS type 1).

[実施例1]
(1)Ni−Pメッキ処理
Ni−Pメッキ液に前述したTi基板を浸漬して、無電解メッキ法により表面に約2.5μmのNi−13%Pメッキ層を形成した。Ni−Pメッキ液には、トップニコロンP−13(奥野製薬製)を用いた。
[Example 1]
(1) Ni-P plating treatment The aforementioned Ti substrate was immersed in a Ni-P plating solution, and a Ni-13% P plating layer of about 2.5 μm was formed on the surface by an electroless plating method. Top Nicolon P-13 (Okuno Pharmaceutical Co., Ltd.) was used as the Ni-P plating solution.

このNi−PメッキしたTi基板へ、Nガス雰囲気によるガス窒化を施し(ガス窒化工程)、試験片11を得た。ガス窒化は、Ni−Pメッキ層を形成したTi基板を、N:98体積%、H:2体積%の混合ガスの気流中に載置して、処理温度:850℃、処理時間:2時間で行った。 To this Ni-P plated Ti substrate, subjected to gas nitriding by N 2 gas atmosphere (gas nitriding process), to obtain a test piece 11. In gas nitriding, a Ti substrate on which a Ni—P plating layer is formed is placed in a mixed gas stream of N 2 : 98% by volume and H 2 : 2% by volume, processing temperature: 850 ° C., processing time: Performed in 2 hours.

(2)Ni−Bメッキ処理
Ni−Bメッキ液に前述したTi基板を浸漬して、無電解メッキ法により表面に約2.5μmのNi−Bメッキ層を形成した。Ni−Bメッキ液には、トップケミアロイ(奥野製薬製)を用いた。
(2) Ni-B plating treatment The above-mentioned Ti substrate was immersed in a Ni-B plating solution, and a Ni-B plating layer of about 2.5 μm was formed on the surface by an electroless plating method. As the Ni-B plating solution, Top Chemialoy (Okuno Pharmaceutical Co., Ltd.) was used.

このNi−BメッキしたTi基板へ、Nガス雰囲気によるガス窒化を施し(ガス窒化工程)、試験片12を得た。ガス窒化は、Ni−Bメッキ層を形成したTi基板を真空排気した熱処理炉に収容し、N:98体積%、H:2体積%の混合ガス雰囲気中において、処理温度:850℃、処理時間:2時間で行った。 The Ni—B plated Ti substrate was subjected to gas nitriding in an N 2 gas atmosphere (gas nitriding step) to obtain a test piece 12. Gas nitriding is carried in a heat treatment furnace in which a Ti substrate on which a Ni—B plating layer is formed is evacuated, and in a mixed gas atmosphere of N 2 : 98% by volume and H 2 : 2% by volume, a processing temperature: 850 ° C., Treatment time: 2 hours.

[実施例2]
(3)Ni−P−Feメッキ処理
硝酸ニッケルと硫酸鉄と次亜リン酸ソーダを用いて、Ni−P−Feメッキ液を調製した。このメッキ液に前述したTi基板を浸漬して、無電解メッキ法により表面に約2.5μmのNi−P−Feメッキ層を形成した。なお、形成されたメッキ層の組成は、Fe/(Ni+Fe)が0.2であった。
[Example 2]
(3) Ni-P-Fe plating treatment A Ni-P-Fe plating solution was prepared using nickel nitrate, iron sulfate, and sodium hypophosphite. The Ti substrate described above was immersed in this plating solution, and a Ni—P—Fe plating layer of about 2.5 μm was formed on the surface by an electroless plating method. The composition of the formed plating layer was Fe / (Ni + Fe) 0.2.

このNi−P−FeメッキしたTi基板を熱処理炉に収容し、アルゴン(Ar)とアンモニア(NH)の混合ガスを熱処理炉に流して、ガス窒化を施した(ガス窒化工程)。このときのガス組成はAr:98体積%、NH:2体積%、処理温度:850℃で行った。処理時間を30分(試験片21)、1時間(試験片22)、2時間(試験片23)として、三種類の試験片を得た。 This Ni—P—Fe plated Ti substrate was housed in a heat treatment furnace, and a mixed gas of argon (Ar) and ammonia (NH 3 ) was passed through the heat treatment furnace to perform gas nitriding (gas nitriding step). The gas composition at this time was Ar: 98% by volume, NH 3 : 2% by volume, and processing temperature: 850 ° C. Three types of test pieces were obtained with a treatment time of 30 minutes (test piece 21), 1 hour (test piece 22), and 2 hours (test piece 23).

[実施例3]
(3’)Ni−P−Feメッキ処理
硝酸ニッケルと硫酸鉄と次亜リン酸ソーダを用いて、Ni−P−Feメッキ液を調製した。このメッキ液に前述したTi基板を浸漬して、無電解メッキ法により表面に約1μmのNi−P−Feメッキ層を形成した。なお、形成されたメッキ層の組成は、Fe/(Ni+Fe)が0.2であった。
[Example 3]
(3 ′) Ni—P—Fe plating treatment A Ni—P—Fe plating solution was prepared using nickel nitrate, iron sulfate, and sodium hypophosphite. The Ti substrate described above was immersed in this plating solution, and a Ni—P—Fe plating layer of about 1 μm was formed on the surface by electroless plating. The composition of the formed plating layer was Fe / (Ni + Fe) 0.2.

このNi−P−FeメッキしたTi基板へ、NHガス雰囲気によるガス窒化を施し(ガス窒化工程)、試験片31を得た。ガス窒化は、Ni−P−FeメッキしたTi基板を熱処理炉に収容し、アルゴン(Ar)とアンモニア(NH)の混合ガスを熱処理炉に流して行った。このときのガスの流量はAr:200mL/分、NH:100mL/分、処理温度:750℃、処理時間:1時間とした。 The Ni—P—Fe plated Ti substrate was subjected to gas nitriding in an NH 3 gas atmosphere (gas nitriding step), and a test piece 31 was obtained. The gas nitriding was performed by placing a Ni—P—Fe plated Ti substrate in a heat treatment furnace and flowing a mixed gas of argon (Ar) and ammonia (NH 3 ) through the heat treatment furnace. The gas flow rates at this time were Ar: 200 mL / min, NH 3 : 100 mL / min, processing temperature: 750 ° C., processing time: 1 hour.

〈試験片の評価〉
上記のそれぞれの試験片の接触抵抗と、これらの試験片を腐食溶液中に浸漬した後の接触抵抗とを測定した。用いた腐食溶液は希硫酸(pH4)に5ppmFおよび10ppmClを添加して80℃に保持したものである。印加した腐食電圧は0.26V(vs.Pt)、腐食試験時間は100時間とした。
<Evaluation of specimen>
The contact resistance of each of the above test pieces and the contact resistance after these test pieces were immersed in a corrosive solution were measured. The corrosive solution used was prepared by adding 5 ppm F and 10 ppm Cl to dilute sulfuric acid (pH 4) and maintaining at 80 ° C. The applied corrosion voltage was 0.26 V (vs. Pt), and the corrosion test time was 100 hours.

接触抵抗は図1に示すようにして測定した。すなわち、各試験片Sとカーボンペーパー105とを積層状態で2枚の金メッキ銅板161、162間に挟み込み、金メッキ銅板161、162間へ、定電流DC電源107から1Aの定常電流を流した。このとき、金メッキ銅板61、62間に空気圧1.47MPaの荷重Fを印加した。この状態で60秒間保持した後に、金メッキ銅板161、162間の電位差Vを測定した。これに基づき、接触抵抗R(=V/A)を算出した。結果を図2〜図4に示す。   The contact resistance was measured as shown in FIG. That is, each test piece S and carbon paper 105 were sandwiched between two gold-plated copper plates 161 and 162, and a constant current of 1 A was passed from the constant-current DC power source 107 between the gold-plated copper plates 161 and 162. At this time, a load F having an air pressure of 1.47 MPa was applied between the gold-plated copper plates 61 and 62. After holding in this state for 60 seconds, the potential difference V between the gold-plated copper plates 161 and 162 was measured. Based on this, the contact resistance R (= V / A) was calculated. The results are shown in FIGS.

なお、比較例として、Ti基板を同様に1000℃、2時間窒化処理して、TiN被覆した試験片C1についても、電解腐食試験前後の接触抵抗を測定した。結果を図2に併せて示す。   As a comparative example, the Ti substrate was similarly nitrided at 1000 ° C. for 2 hours, and the contact resistance before and after the electrolytic corrosion test was measured for the test piece C1 coated with TiN. The results are also shown in FIG.

各グラフから明らかなように、Niメッキ法により作製された試験片11、12、21〜23および31は、電解腐食試験を100時間程度行っても、接触抵抗は10mΩ・cm程度しか示さず、接触抵抗の増加はほとんど見られなかった。つまり、窒化処理温度が850℃以下であっても、耐食性および導電性に優れた耐食導電性皮膜を形成することができた。一方、TiN被覆された試験片C1では、90時間後の接触抵抗は20mΩ・cm程度にまで上昇した。 As is apparent from each graph, the test pieces 11, 12, 21 to 23 and 31 produced by the Ni plating method show a contact resistance of only about 10 mΩ · cm 2 even when the electrolytic corrosion test is performed for about 100 hours. There was almost no increase in contact resistance. That is, even when the nitriding temperature was 850 ° C. or less, a corrosion-resistant conductive film excellent in corrosion resistance and conductivity could be formed. On the other hand, in the test piece C1 coated with TiN, the contact resistance after 90 hours increased to about 20 mΩ · cm 2 .

試験片21〜23は、それぞれガス窒化工程における処理時間が異なる試料である。処理時間が30分である試験片21であっても、接触抵抗の増加はほとんど無かった。また、試験片31は、Ni−P−Feメッキ層の厚さが1μmで他の試験片のメッキ層よりも薄いが、腐食による接触抵抗の増加は抑制された。   The test pieces 21 to 23 are samples having different processing times in the gas nitriding step. Even with the test piece 21 having a treatment time of 30 minutes, the contact resistance hardly increased. Further, the test piece 31 had a Ni—P—Fe plating layer thickness of 1 μm and was thinner than the plating layers of other test pieces, but the increase in contact resistance due to corrosion was suppressed.

《固体高分子型燃料電池》
本発明に係る耐食導電材の一実施形態として、Ti基板の表面に耐食導電性皮膜を形成した固体高分子型燃料電池用セパレータを備える固体高分子型燃料電池を図5Aおよび図5Bに示す。
《Polymer fuel cell》
As one embodiment of the corrosion-resistant conductive material according to the present invention, FIGS. 5A and 5B show a solid polymer fuel cell comprising a solid polymer fuel cell separator having a corrosion-resistant conductive film formed on the surface of a Ti substrate.

固体高分子型燃料電池は、分子中にプロトン交換基をもつ固体高分子電解質膜がプロトン導電性電解質として機能することを利用したものである。具体的には図5A、図5Bに示すように、固体高分子型燃料電池Fは、固体高分子電解質膜1の両側にそれぞれ酸化電極2と燃料電極3が接合されている。さらに、それら電極の外側に、ガスケット4を介しセパレータ5が配置される。酸化電極2側のセパレータ5には空気供給口6と空気排出口7が設けられ、燃料電極3側のセパレータ5には水素供給口8と水素排出口9が設けられる。   The solid polymer fuel cell utilizes the fact that a solid polymer electrolyte membrane having a proton exchange group in the molecule functions as a proton conductive electrolyte. Specifically, as shown in FIGS. 5A and 5B, in the polymer electrolyte fuel cell F, the oxidation electrode 2 and the fuel electrode 3 are joined to both sides of the polymer electrolyte membrane 1, respectively. Further, a separator 5 is disposed outside the electrodes via a gasket 4. The separator 5 on the oxidation electrode 2 side is provided with an air supply port 6 and an air discharge port 7, and the separator 5 on the fuel electrode 3 side is provided with a hydrogen supply port 8 and a hydrogen discharge port 9.

セパレータ5には、水素g及び空気oの導通及び均一分配のため、水素g及び空気oの流動方向に延びる複数の溝10が形成されている。また、給水口11から送り込んだ冷却水wはセパレータ5の内部を循環した後、排水口12から排出させる。このセパレータ5に内蔵された水冷機構により、発電時の発熱に依る固体高分子電解質膜等の過熱が抑制される。   In the separator 5, a plurality of grooves 10 extending in the flow direction of the hydrogen g and the air o are formed for conduction and uniform distribution of the hydrogen g and the air o. Further, the cooling water w fed from the water supply port 11 circulates inside the separator 5 and is then discharged from the drain port 12. The water cooling mechanism built in the separator 5 suppresses overheating of the solid polymer electrolyte membrane and the like due to heat generated during power generation.

水素供給口8から燃料電極3とセパレータ5との間隙に送り込まれた水素gは、電子を放出したプロトンとなって固体高分子電解質膜1を透過し、酸化電極2とセパレータ5との間隙を通過する空気o中の酸素と反応して燃焼する。そして、酸化電極2と燃料電極3との間の負荷に電力が供給され得る。   Hydrogen g sent from the hydrogen supply port 8 into the gap between the fuel electrode 3 and the separator 5 becomes protons that have released electrons, passes through the solid polymer electrolyte membrane 1, and passes through the gap between the oxidation electrode 2 and the separator 5. It reacts with oxygen in the passing air o and burns. Then, electric power can be supplied to the load between the oxidation electrode 2 and the fuel electrode 3.

一般的に燃料電池は、1セル当りの発電量が極く僅かである。このため、一対のセパレータ5、5間を1単位としたセルを複数積層することで、所望の出力(電力が確保される。もっとも、多数のセルを積層した場合、セパレータ5と各電極2、3との間の接触抵抗が大きくなり、電力損失も大きくなって、固体高分子型燃料電池Fの発電効率が低下し易い。   In general, a fuel cell has a very small amount of power generation per cell. For this reason, by stacking a plurality of cells with one unit between the pair of separators 5 and 5, a desired output (power is ensured. However, when a large number of cells are stacked, the separator 5 and each electrode 2, 3 is increased, the power loss is also increased, and the power generation efficiency of the polymer electrolyte fuel cell F is likely to be lowered.

ここで本実施例のセパレータ5は、その表層に導電性に優れた耐食導電性皮膜を有するため、その耐食性が確保されつつも、酸化電極2および燃料電極3との間の接触抵抗が低減される。従って、本実施例に係る耐食導電材を用いれば、加工性や耐衝撃性等に優れると共に、耐食性と導電性の両立を図った固体高分子型燃料電池用セパレータが容易に得られる。   Here, since the separator 5 of the present example has a corrosion-resistant conductive film having excellent conductivity on the surface layer, the contact resistance between the oxidation electrode 2 and the fuel electrode 3 is reduced while ensuring the corrosion resistance. The Therefore, by using the corrosion-resistant conductive material according to the present embodiment, it is possible to easily obtain a separator for a polymer electrolyte fuel cell that is excellent in workability, impact resistance, and the like and that achieves both corrosion resistance and conductivity.

S:試験片
F:固体高分子型燃料電池
1:固体高分子電解質膜
2:燃料電極
3:酸化電極
5:セパレータ
S: Test piece F: Solid polymer fuel cell 1: Solid polymer electrolyte membrane 2: Fuel electrode 3: Oxidation electrode 5: Separator

Claims (9)

純チタン(Ti)またはTi合金からなるTi系基材の少なくとも一部を、ニッケル(Ni)を主成分とするNiメッキ液中に浸漬して該Ti系基材の表面にNiメッキ層を形成するメッキ工程と、
該メッキ工程後のTi系基材に880℃以下で窒化処理を施す窒化工程と、
を備えてなり、前記Ti系基材の少なくとも一部の表面に耐食性または導電性の少なくとも一方に優れる耐食導電性皮膜が形成された耐食導電材が得られることを特徴とする耐食導電材の製造方法。
At least a part of a Ti base material made of pure titanium (Ti) or a Ti alloy is immersed in a Ni plating solution containing nickel (Ni) as a main component to form a Ni plating layer on the surface of the Ti base material. A plating process,
A nitriding step of nitriding the Ti-based substrate after the plating step at 880 ° C. or lower;
And a corrosion-resistant conductive material having a corrosion-resistant conductive film excellent in at least one of corrosion resistance and conductivity on the surface of at least a part of the Ti-based substrate is obtained. Method.
前記Niメッキ液は、さらにリン(P)を含むNi−Pメッキ液であり、
前記Niメッキ層は、Ni−Pメッキ層である請求項1に記載の耐食導電材の製造方法。
The Ni plating solution is a Ni-P plating solution further containing phosphorus (P),
The method for producing a corrosion-resistant conductive material according to claim 1, wherein the Ni plating layer is a Ni—P plating layer.
前記Ni−Pメッキ液は、さらに鉄(Fe)を含むNi−P−Feメッキ液であり、
前記Ni−Pメッキ層は、Ni−P−Feメッキ層である請求項2に記載の耐食導電材の製造方法。
The Ni-P plating solution is a Ni-P-Fe plating solution further containing iron (Fe),
The method for producing a corrosion-resistant conductive material according to claim 2, wherein the Ni—P plating layer is a Ni—P—Fe plating layer.
前記Niメッキ液は、さらにホウ素(B)を含むNi−Bメッキ液であり、
前記Niメッキ層は、Ni−Bメッキ層である請求項1に記載の耐食導電材の製造方法。
The Ni plating solution is a Ni-B plating solution further containing boron (B),
The method for producing a corrosion-resistant conductive material according to claim 1, wherein the Ni plating layer is a Ni—B plating layer.
前記メッキ工程は、無電解メッキにより行われる請求項1〜4のいずれかに記載の耐食導電材の製造方法。   The said plating process is a manufacturing method of the corrosion-resistant electrically-conductive material in any one of Claims 1-4 performed by electroless plating. 前記窒化工程は、窒素(N)を含む窒化ガス中に前記Ti系基材を保持するガス窒化工程である請求項1記載の耐食導電材の製造方法。   The method for producing a corrosion-resistant conductive material according to claim 1, wherein the nitriding step is a gas nitriding step for holding the Ti-based substrate in a nitriding gas containing nitrogen (N). 前記窒化ガスは、窒素(N)ガスまたはアンモニア(NH)ガスを含む請求項6記載の耐食導電材の製造方法。 The nitriding gas is nitrogen (N 2) gas or ammonia (NH 3) manufacturing method of the corrosion-resistant conductive material of claim 6, further comprising a gas. 前記窒化ガスは、Nガスおよび水素(H)ガスを含む請求項7記載の耐食導電材の製造方法。 The method of manufacturing a corrosion-resistant conductive material according to claim 7, wherein the nitriding gas includes N 2 gas and hydrogen (H 2 ) gas. 前記窒化工程は、Nを含む窒素プラズマ中に前記Ti系基材を保持するイオン窒化工程である請求項1記載の耐食導電材の製造方法。   The method for producing a corrosion-resistant conductive material according to claim 1, wherein the nitriding step is an ion nitriding step of holding the Ti-based substrate in nitrogen plasma containing N.
JP2009025698A 2009-02-06 2009-02-06 Method for manufacturing corrosion-resistant electroconductive material Pending JP2010180457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025698A JP2010180457A (en) 2009-02-06 2009-02-06 Method for manufacturing corrosion-resistant electroconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025698A JP2010180457A (en) 2009-02-06 2009-02-06 Method for manufacturing corrosion-resistant electroconductive material

Publications (1)

Publication Number Publication Date
JP2010180457A true JP2010180457A (en) 2010-08-19

Family

ID=42762192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025698A Pending JP2010180457A (en) 2009-02-06 2009-02-06 Method for manufacturing corrosion-resistant electroconductive material

Country Status (1)

Country Link
JP (1) JP2010180457A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024624A (en) * 2013-07-29 2015-02-05 アイシン精機株式会社 Coated member and method for producing the same
JP2016108608A (en) * 2014-12-05 2016-06-20 株式会社シマノ Titanium member
WO2018079188A1 (en) * 2016-10-25 2018-05-03 石原ケミカル株式会社 Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal
CN111235519A (en) * 2020-03-20 2020-06-05 上海樱侬科技股份有限公司 Surface treatment method for improving surface wear resistance of eccentric shaft part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164228A (en) * 1998-11-25 2000-06-16 Toshiba Corp Separator for solid high molecular electrolyte fuel cell and manufacture thereof
JP2000353531A (en) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd Separator for solid high polymer fuel cell and manufacture thereof
JP2003217609A (en) * 2002-01-21 2003-07-31 Dainatsukusu:Kk Method for manufacturing separator for solid high polymer type fuel cell
JP2004244671A (en) * 2003-02-13 2004-09-02 Nippon Steel Corp Titanium sheet with excellent formability and lubricity, and its manufacturing method
JP2006172720A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Separator for fuel cell and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164228A (en) * 1998-11-25 2000-06-16 Toshiba Corp Separator for solid high molecular electrolyte fuel cell and manufacture thereof
JP2000353531A (en) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd Separator for solid high polymer fuel cell and manufacture thereof
JP2003217609A (en) * 2002-01-21 2003-07-31 Dainatsukusu:Kk Method for manufacturing separator for solid high polymer type fuel cell
JP2004244671A (en) * 2003-02-13 2004-09-02 Nippon Steel Corp Titanium sheet with excellent formability and lubricity, and its manufacturing method
JP2006172720A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Separator for fuel cell and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024624A (en) * 2013-07-29 2015-02-05 アイシン精機株式会社 Coated member and method for producing the same
JP2016108608A (en) * 2014-12-05 2016-06-20 株式会社シマノ Titanium member
WO2018079188A1 (en) * 2016-10-25 2018-05-03 石原ケミカル株式会社 Heat-treatment-type method for forming electroconductive coating on passive-state-forming light metal
JP2018070911A (en) * 2016-10-25 2018-05-10 石原ケミカル株式会社 Heat treatment type method of forming electroconductive film over light metal that can easily be passivated
CN109891004A (en) * 2016-10-25 2019-06-14 石原化学株式会社 Heat-treatment type conductive cell envelope forming method on passive state formative light metal
CN109891004B (en) * 2016-10-25 2021-05-25 石原化学株式会社 Method for forming heat-treated conductive coating film on passive-forming light metal
CN111235519A (en) * 2020-03-20 2020-06-05 上海樱侬科技股份有限公司 Surface treatment method for improving surface wear resistance of eccentric shaft part

Similar Documents

Publication Publication Date Title
TWI353394B (en) Hydrogen evolving cathode
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
EP2168189B1 (en) Stainless steel separator for fuel cell having m/mnx and moynz layer and method for manufacturing the same
US8778562B2 (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
EP2112250B1 (en) Stainless separator for fuel cell and method of manufacturing the same
US8613807B2 (en) Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
JP2008210773A (en) Manufacturing method for separator of fuel cell, separator of fuel cell, and fuel cell
JP2018534416A (en) Stainless steel for fuel cell separator and manufacturing method thereof
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2010129458A (en) Corrosion resistant conductive material, method for manufacturing the same, polymer electrolyte fuel cell, and separator for the polymer electrolyte fuel cell
WO2008075591A1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP4919107B2 (en) Corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
US8334078B2 (en) Fuel cell separator and method for producing the same
JP2010180457A (en) Method for manufacturing corrosion-resistant electroconductive material
JP4134257B2 (en) Alloy film for metal separator of fuel cell, production method thereof, sputtering target material, metal separator and fuel cell
JP4900426B2 (en) Conductive film, conductive material and method for producing the same, polymer electrolyte fuel cell and separator thereof, and conductive powder and method for producing the same
JP2009200038A (en) Anticorrosive conductive coating, anticorrosive conductive material, solid polymer fuel cell, its separator, and manufacturing method of anticorrosive conductive material
JP5560533B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP5180485B2 (en) Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP5779988B2 (en) Corrosion-resistant conductive film, method for producing the same, and corrosion-resistant conductive material
JP5229131B2 (en) Corrosion-resistant conductive film, corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
JP2007157639A (en) Metal separator for fuel cell and its manufacturing method
JP5532873B2 (en) Corrosion-resistant conductive film and manufacturing method thereof, corrosion-resistant conductive material, polymer electrolyte fuel cell, and separator thereof
JP6146545B2 (en) Titanium material, separator, cell and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140114