WO2018079119A1 - Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance - Google Patents

Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance Download PDF

Info

Publication number
WO2018079119A1
WO2018079119A1 PCT/JP2017/033127 JP2017033127W WO2018079119A1 WO 2018079119 A1 WO2018079119 A1 WO 2018079119A1 JP 2017033127 W JP2017033127 W JP 2017033127W WO 2018079119 A1 WO2018079119 A1 WO 2018079119A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
coating phase
adjusting substance
particle size
point adjusting
Prior art date
Application number
PCT/JP2017/033127
Other languages
French (fr)
Japanese (ja)
Inventor
阿川 隆一
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to MYPI2019002224A priority Critical patent/MY191375A/en
Priority to KR1020197008122A priority patent/KR102337474B1/en
Publication of WO2018079119A1 publication Critical patent/WO2018079119A1/en
Priority to PH12019500910A priority patent/PH12019500910A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/10001Use of special materials for the fluidized bed

Definitions

  • the present invention relates to an aggregation suppression method, an aggregation suppression material, a compound adjustment method, a fluidized bed boiler, and a fluid.
  • biomass fuel or the like has been applied to fluidized bed boilers (also referred to as “CFB boilers”) (see Patent Document 1).
  • CFB boilers fluidized bed boilers
  • low-grade biomass fuels such as fir shells and EFB (Empty Fruit Bunches) contain a large amount of alkali components, and these alkali components generate low melting point compounds.
  • Such a low-melting-point compound adheres to the surface of the fluidizing material and causes the fluidizing material to agglomerate, causing a flow failure.
  • the low melting point compound as described above adheres to the surface of the fluidized material and forms a coating phase.
  • an additive may be introduced into the combustion furnace.
  • adhesion of the coating phase to the fluidized material can be reduced, and aggregation of the fluidized material can be suppressed.
  • it has been required to increase the reactivity between the added substance and the coating phase and to improve the effect of suppressing the aggregation of the fluidized material.
  • the present invention has been made in order to solve the above-described problems, and provides an aggregation suppression method, an aggregation suppression material, a compound adjustment method, a fluidized bed boiler, and a fluid that can improve the effect of suppressing the aggregation of the fluidized material. For the purpose.
  • an aggregation suppressing method is an aggregation suppressing method for suppressing aggregation of a fluidized material in a fluidized bed boiler, wherein a melting point adjusting substance having a particle size of 15 ⁇ m or less is added to the fluidized material. And a step of increasing the melting point of the coating phase by reacting with the coating phase formed on the surface of the coating.
  • the melting point of the coating phase is increased by reacting the melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase.
  • the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the melting point adjusting substance may be MgO. Thereby, the melting point of the coating phase can be increased with a small amount of the melting point adjusting substance.
  • An aggregation suppressing material is an aggregation suppressing material that suppresses aggregation of a fluidized material in a fluidized bed boiler, and adjusts the melting point to increase the melting point by reacting with a coating phase adhering to the surface of the fluidized material.
  • the particle size of the melting point adjusting substance is 15 ⁇ m or less.
  • the melting point of the coating phase can be increased by reacting a melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase.
  • a melting point adjusting substance having a particle size of 15 ⁇ m or less can be set to an appropriate value with respect to the thickness of the coating phase.
  • the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the method for preparing a compound according to one aspect of the present invention includes a coating phase before reaction by reacting a coating phase adhering to the surface of a fluidized material in a fluidized bed boiler with a melting point adjusting substance having a particle size of 15 ⁇ m or less. A compound having a higher melting point is prepared.
  • a compound having a melting point higher than that of the coating phase before the reaction can be adjusted by reacting a melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase.
  • the particle size of the melting point adjusting substance can be set to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
  • a fluidized bed boiler includes a combustion furnace for burning fuel, a fluidized material discharged from the combustion furnace, and a melting point adjusting substance that reacts with a coating phase adhering to the surface of the fluidized material to increase the melting point. And a trapping unit that is provided outside the circulation system and captures a melting point adjusting substance having a particle size of 15 ⁇ m or less out of the melting point adjusting substance discharged from the circulation system.
  • the trapping part can capture the melting point adjusting substance having a particle size of 15 ⁇ m or less among the melting point adjusting substances discharged from the circulation system.
  • the melting point adjusting substance set to an appropriate particle size with respect to the thickness of the coating phase can be reacted with the coating phase.
  • the reactivity with a coating phase can be improved and a compound with high melting
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the fluid according to an embodiment of the present invention is a fluid in a fluidized bed boiler, and includes a plurality of fluidized materials, and the coating phase attached to the surface of the fluidized material has a melting point adjusting substance having a particle size of 15 ⁇ m or less. Ingredients contained in are adhered and formed.
  • the components contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less are attached to the coating phase.
  • a compound having a melting point higher than that of the coating phase before the reaction was prepared by the reaction between the melting point adjusting substance having a particle size of 15 ⁇ m or less and the coating phase.
  • the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the ratio of the fluidized material in which the components contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less are attached to the coating phase among the plurality of fluidized materials may be 30% or more.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • FIG. 1 is a schematic configuration diagram of a fluidized bed boiler to which the aggregation suppressing method according to the present embodiment is applied.
  • FIG. 2 is a schematic diagram for explaining a melting induction mechanism and a coating induction mechanism.
  • FIG. 3 is a K 2 O—SiO 2 phase diagram.
  • FIG. 4 is a K 2 O—MgO—SiO 2 phase diagram.
  • FIG. 5 is a K 2 O—CaO—SiO 2 phase diagram.
  • FIG. 6 is a graph showing the relationship of the initial tunagro temperature to the operating time and the relationship of the average thickness of the coating phase to the operating time.
  • FIG. 7 is a table showing experimental results regarding the particle diameter of MgO particles.
  • FIG. 8 is a schematic diagram showing a state in which a melting point adjusting substance is charged into the coating phase.
  • a fluidized bed boiler (CFB boiler) 1 is produced in a combustion furnace (furnace main body) 3 that burns fuel and heats water in a sealed container to generate steam, and a combustion furnace 3.
  • a cyclone separator (circulation system) 5 that separates solids from the combustion gas (hereinafter referred to as “exhaust gas”) G, a heat recovery unit 7 that recovers heat of the exhaust gas G, and a cyclone separator 5 from the exhaust gas G.
  • a circulation line (circulation system) 9 for returning the separated fly ash, that is, the fluidized material Fa (see FIG. 2) separated from the exhaust gas G, to the lower part of the combustion furnace 3 is provided.
  • the heat recovery unit 7 is provided with a heat exchange tube such as a superheater.
  • Combustion furnace 3 is fed with biomass fuel such as fir shells and EFB (Empty Fruit Bunches).
  • biomass fuel such as fir shells and EFB (Empty Fruit Bunches).
  • This type of biomass fuel is a low-grade fuel containing a large amount of alkaline components such as potassium and sodium.
  • an additive is put into the combustion furnace 3.
  • the combustion furnace 3 is supplied with a fluidized material Fa containing quartz particles as a main component. Air is supplied into the fluidized material Fa from below, and the fluidized material Fa flows and is fluidized (hereinafter referred to as “bed”). ) F is formed. Formation of the bed F promotes fuel combustion.
  • the exhaust gas G generated as a result of combustion rises in the combustion furnace 3 with a part of the fluidized material Fa.
  • the cyclone separator 5 is disposed adjacent to the combustion furnace 3, receives the exhaust gas G discharged from the combustion furnace 3 and the fluidized material Fa accompanying the exhaust gas G, and receives the exhaust gas G and the fluidized material Fa by centrifugal separation. And the fluidized material Fa is returned to the combustion furnace 3, and the exhaust gas G is sent to the heat recovery unit 7.
  • the heat recovery unit 7 is provided outside the circulation system.
  • a filter (capturing unit) 12 that captures the fluid Fa in the exhaust gas G and a melting point adjusting material described later is provided at the subsequent stage of the heat recovery unit 7. The configuration of the filter 12 will be described later.
  • a circulation line 9 is connected to the cyclone separator 5.
  • the circulation line 9 is a pipe connected to the lower part of the combustion furnace 3, and a loop seal 9 a is provided on the circulation line 9.
  • the loop seal 9a is a facility for preventing the backflow of the exhaust gas G from the combustion furnace 3.
  • the fluid material Fa sent from the cyclone separator 5 is accumulated in the loop seal 9a, and the fluid material Fa is the loop seal 9a. Is introduced into the combustion furnace 3 from the return chute 9b at the outlet of the combustion chamber.
  • the fluidized bed boiler 1 includes an additive supply unit 11 for supplying the additive into the loop seal 9a.
  • an additive supply unit 11 for supplying the additive into the loop seal 9a.
  • bottom ash FlyAsh
  • fly ash FlyAsh generation in biomass fuel combustion.
  • the bottom ash is formed into particles by using the sand, which is the fluidized material Fa, as a seed, and the components in the biomass fuel are condensed, melted, aggregated, and chemically reacted on the sand surface.
  • fly ash is formed by condensation, melting, and agglomeration of the components in the biomass fuel, excluding those in which part of the bottom ash formed with particles is fine.
  • the agglomerate X (see FIG. 2), which is the main cause of flow inhibition in the fluidized material (also referred to as “fluidized sand”, “bed material”) Fa in the combustion of biomass fuel, is mostly a melt of a low melting point compound,
  • the melt of the substance formed by the components in the biomass fuel adheres to the surface of the fluidized material Fa, or eutectic formation on the surface of the fluidized material Fa, that is, the components in the biomass fuel chemically react on the surface of the fluidized material Fa. It is thought to be two mechanisms known as melt induction and coating induction.
  • the main cause of the production of agglomerates X when burning biomass fuel is the main component of the fluid component Fa, such as alkali components from the biomass fuel, such as potassium (K) and sodium (Na). It is specified that a chemical reaction occurs between the particles and a sticky alkali silicate layer is formed on the surface of the fluid Fa. In addition to alkaline components, phosphorus has also been confirmed to be an important factor in Agrome X.
  • the agglomeration X of the melting induction mechanism is caused by a group of bottom ash particles in which the melt M of the low melting point compound (alkali silicate) adheres to the surface of the fluid Fa.
  • the controlling factors of this mechanism are local temperature and fuel ash composition. In combustion ash containing a high concentration of alkali components and chlorine, agglomerates X tend to be formed through the melting induction mechanism.
  • the agglomeration X of the coating induction mechanism is a group of bottom ash particles in which a eutectic coating (alkali silicate phase, coating phase) C is formed on the surface of the fluidized material Fa.
  • the eutectic coating C repeats bonding and discrete, and as a result, particle aggregation starts and gradually leads to the formation of agglomer X that becomes a bottleneck (flow inhibiting factor).
  • the main controlling factors of this mechanism are eutectic coating thickness (ease of bonding separation), eutectic coating composition (bonding strength) and local temperature.
  • the detailed analysis result of the part actually coated on the surface of the fluidized material Fa confirms that this coating phase is a eutectic coating (K 2 O—SiO 2 : alkali silicate phase) C. Yes.
  • the eutectic coating C begins to melt at 700 ° C. as shown in FIG. It can be confirmed that at the temperature in the fluidized material Fa of the fluidized bed boiler 1, specifically, 800 ° C. to 900 ° C., the particles that are the fluidized material Fa easily adhere and aggregate.
  • FIG. 3 is a K 2 O—SiO 2 phase diagram.
  • an aggregation inhibitor that suppresses aggregation of the fluid Fa is introduced.
  • the aggregation suppressing material refers to the state after the additive is put into the fluidized bed boiler 1.
  • the composition may be different between the compound contained as an additive and the compound contained as an aggregation inhibitor.
  • the aggregation inhibitor contains a melting point adjusting substance that reacts with the coating phase to increase the melting point.
  • FIG. 4 is a K 2 O—MgO—SiO 2 phase diagram
  • FIG. 5 is a K 2 O—CaO—SiO 2 phase diagram.
  • the melting point of the coating phase (K 2 O—CaO—SiO 2 compound) having an increased melting point is in the range of about 1000 (10% CaO) to about 1500 (99% CaO). It is estimated to be.
  • the melting point adjusting substance is MgO
  • the melting point of the coating phase K 2 O—MgO—SiO 2 compound
  • the melting point of the coating phase K 2 O—MgO—SiO 2 compound
  • the present inventors have obtained the following knowledge as a result of earnest research. That is, the present inventors have found that the reactivity to the coating phase can be improved and the melting point of the coating phase can be improved satisfactorily by setting the particle size of the melting point adjusting substance to 15 ⁇ m or less.
  • the table shown in FIG. 6 shows the relationship of initial Amegro temperature (temperature at which fluidized material begins to adhere) to operating time and the average thickness of the coating phase to operating time for two types of boilers. Yes. Square points indicate measurement results with a 90 MW type boiler, and circles indicate measurement results with a 122 MW type boiler.
  • the graph for the open measurement point shows the initial Amegro temperature with respect to the operation time, and the graph for the filled measurement point shows the relationship of the average thickness with respect to the operation time.
  • the initial Amegro temperature means the initial aggregation temperature of the fluid material Fa (substantially the same as the “temperature at which aggregation starts”).
  • the initial tunagro temperature decreases rapidly, and after a predetermined operation time has elapsed (for example, after 10 days), the initial tunagro temperature is substantially constant at a constant temperature. It will be flat. Thus, after a certain operating time has elapsed, the initial Amegro temperature is stabilized according to the boiler type.
  • the initial Amegro temperature suddenly decreased and became unstable as the average thickness of the coating phase increased, but after a certain amount of operating time, the boiler type and operating conditions It is understood that it converges to a specific initial Amegro temperature depending on
  • the average thickness of the coating phase in the period in which the initial Amegro temperature begins to level off falls within the range of about 10 to 15 ⁇ m.
  • the average thickness of the coating phase does not become as flat as the initial Amegro temperature, and there is a tendency for the average thickness to increase further as the operating time elapses. Since the temperature does not tend to decrease, the melting point adjusting substance 52 may be set in consideration of the average thickness of the coating phase in the period in which the initial Amegro temperature starts to be substantially flat.
  • the reactivity can be improved by including the melting point adjusting substance 52 in the coating phase 51. That is, the upper limit value of the particle diameter R of the melting point adjusting substance 52 is preferably close to the thickness t of the coating phase 51 attached to the fluidizing material 50. In this regard, the thickness t of the coating phase 51 falls within the range of 10 to 15 ⁇ m from the result shown in FIG. 6 described above, and therefore the particle size R of the melting point adjusting substance 52 is set to 15 ⁇ m or less, more preferably 10 ⁇ m or less. The present inventors have found that the reactivity can be improved.
  • the particle size of MgO particles as a melting point adjusting substance was set to a plurality of values, and an experiment was conducted to check whether or not flow defects occurred.
  • the in-furnace bed temperature was set to 780 ° C.
  • Mg / K was set to 0.3 as the input amount of the melting point adjusting substance.
  • MgO particles having a particle size set to 53 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, and 10 ⁇ m or less were added.
  • the temperature in the furnace bed was set to 830 ° C.
  • Mg / K was set to 0.8 as the input amount of the melting point adjusting substance.
  • MgO particles having a particle size set to 53 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, and 10 ⁇ m or less were added.
  • the particle size was 53 ⁇ m or less
  • flow failure occurred under any condition.
  • the particle size was 20 ⁇ m
  • no flow failure occurred when the furnace bed temperature was 830 ° C.
  • flow failure occurred when the furnace bed temperature was 780 ° C.
  • the particle size was 15 ⁇ m or less and 10 ⁇ m or less, no flow failure occurred under any of the conditions. From this experiment, it is understood that by setting the particle size of the melting point adjusting substance to 15 ⁇ m or less, the reactivity with the coating phase can be improved and the effect of suppressing the aggregation of the fluidized material can be improved.
  • the particle size of the melting point adjusting substance contained in the aggregation suppressing material according to the present embodiment is set to 15 ⁇ m or less. That is, as a method for suppressing aggregation of the fluidized material, a step of increasing the melting point of the coating phase is performed by reacting a melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase. Moreover, as a compound adjustment method, melting
  • the value at the moment when it is introduced into the coating phase affects the reactivity.
  • the particle size of the melting point adjusting substance at the moment when it is introduced into the coating phase is 15 ⁇ m or less, and how the melting point adjusting substance is introduced into the fluidized material.
  • the charging method is not particularly limited. That is, no matter what form, timing, and method the melting point adjusting substance is added, the melting point adjusting substance particles at the moment of introduction into the coating phase may be 15 ⁇ m or less.
  • the amount of additive added to the fluidized bed boiler 1 is preferably in the range of 0.2 to 2 Mg / K. Further, by operating the bed temperature in the range of 750 to 900 ° C., the fluid material aggregation suppressing effect may be suitably obtained.
  • the filter 12 shown in FIG. 1 captures a melting point adjusting substance having a particle size of 15 ⁇ m or less among melting point adjusting substances discharged from the circulation system.
  • the melting point adjusting substance of 15 ⁇ m or less captured by the filter 12 may be supplied again into the combustion furnace 3.
  • the melting point adjusting substance captured by the filter 12 may be supplied to the combustion furnace 3 by an operator, or the melting point adjusting substance may be supplied to the combustion furnace 3 by providing a supply device. .
  • the “fluid” is a substance that is flowing in the fluidized bed boiler 1 or a substance that exists in the fluidized bed boiler 1 after the fluidized bed boiler 1 is stopped.
  • the fluid includes a plurality of fluids having a coating phase attached to the surface.
  • the components contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less are attached to the coating phase attached to the surface of the fluidized material.
  • the melting point adjusting material is MgO
  • the component is Mg.
  • the melting point adjusting substance is CaO
  • the component is Ca.
  • the melting point adjusting substance is kept in the state of particles having a particle size of 15 ⁇ m or less. Thereafter, after the melting point adjusting substance reacts with the coating phase to raise the melting point, the melting point adjusting substance is not in the same state of particles as at the time of charging. However, the component contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less is attached to the coating phase after the reaction. By measuring the components of the coating phase after the reaction using the method described later, it can be confirmed afterwards that a melting point adjusting substance having a particle size of 15 ⁇ m or less has been introduced into the coating phase.
  • the proportion of fluidized materials in which the components contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less are adhered and formed in the coating phase may be 30% or more. This is because, for example, when 1000 particles of fluidized material are taken out of the fluid and the coating phase is analyzed, 300 particles having a component contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less are attached to the coating phase. This shows that it exists.
  • the ratio is more preferably 50% or more, and may be 100%.
  • EDX is an apparatus that analyzes characteristic composition by detecting characteristic X-rays generated by electron beam irradiation and performing spectral analysis with energy.
  • OXFORD INSTRUMENTS was employed.
  • SEM is a scanning electron microscope, and S-3400N manufactured by Hitachi High-Technologies is adopted.
  • a combination of SEM and EDX is collectively referred to as a “measuring device”.
  • a fluid is taken out from the fluidized bed boiler 1, and a predetermined quantity (or weight) of fluidized material is collected from the fluid.
  • the collected sample is embedded in resin and then finished with # 1000 emery paper (dry type) to form a particle cross section of the fluidized material.
  • the particle cross section is measured with a measuring instrument. Specifically, a predetermined measurement region (for example, a region indicated by AP in FIG. 8) in a portion corresponding to the coating phase is selected from the image of the cross section of the fluidized material displayed. And the composition component contained in the said measurement area
  • a component (for example, Mg or Ca) contained in the melting point adjusting substance is contained in the coating phase having a predetermined thickness
  • a melting point adjusting substance having a particle diameter equal to or smaller than the thickness of the coating phase is obtained. It can be confirmed later that the reaction has occurred. Therefore, if it can be confirmed that the component contained in the melting point adjusting substance is contained in the coating phase having a thickness of at least 15 ⁇ m or less, the particle size of the coating phase adhered to the surface of the fluidized material to be measured is 15 ⁇ m or less. It can be confirmed that the components contained in the melting point adjusting substance are attached, and further from this, it can be confirmed that the coating phase and the melting point adjusting substance having a particle size of 15 ⁇ m or less reacted during the reaction.
  • a component for example, Mg or Ca
  • the aggregation suppression method according to the present embodiment is an aggregation suppression method for suppressing aggregation of the fluidized material in the fluidized bed boiler 1, and a coating phase that adheres a melting point adjusting substance having a particle size of 15 ⁇ m or less to the surface of the fluidized material; The step of raising the melting point of the coating phase by reacting is included.
  • the melting point of the coating phase is raised by reacting the melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase.
  • the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the melting point adjusting substance is MgO.
  • the aggregation suppressing material according to the present embodiment is an aggregation suppressing material that suppresses aggregation of the fluidized material in the fluidized bed boiler 1 and reacts with the coating phase adhering to the surface of the fluidized material to increase the melting point.
  • the melting point adjusting substance has a particle size of 15 ⁇ m or less.
  • the melting point of the coating phase can be increased by reacting a melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase.
  • a melting point adjusting substance having a particle size of 15 ⁇ m or less
  • the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the compound adjusting method according to the present embodiment reacts with a coating phase adhering to the surface of the fluidized material in the fluidized bed boiler with a melting point adjusting substance having a particle size of 15 ⁇ m or less, so that the melting point is higher than the coating phase before the reaction. To adjust the high compound.
  • a compound having a melting point higher than that of the coating phase before the reaction can be adjusted by reacting a melting point adjusting substance having a particle size of 15 ⁇ m or less with the coating phase.
  • the particle size of the melting point adjusting substance can be set to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
  • the fluidized bed boiler 1 adjusts the melting point to increase the melting point by reacting with a combustion furnace 3 for burning fuel, a fluidized material discharged from the combustion furnace 3, and a coating phase adhering to the surface of the fluidized material.
  • a circulatory system (cyclone separator 5 and circulation line 9) that circulates the substance and a melting point adjusting substance that is provided outside the circulatory system and discharged from the circulatory system has a particle diameter of 15 ⁇ m or less.
  • a filter 12 cyclone separator 5 and circulation line 9
  • the filter 12 can capture the melting point adjusting substance having a particle size of 15 ⁇ m or less among the melting point adjusting substances discharged from the circulation system.
  • the melting point adjusting substance set to an appropriate particle size with respect to the thickness of the coating phase can be reacted with the coating phase.
  • the reactivity with a coating phase can be improved and a compound with high melting
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the fluid according to the present embodiment is a fluid in a fluidized bed boiler, and includes a plurality of fluidized materials, and the coating phase attached to the surface of the fluidized material includes a melting point adjusting substance having a particle size of 15 ⁇ m or less. Ingredients are attached.
  • the melting point adjusting substance having a particle size of 15 ⁇ m or less are attached to the coating phase.
  • a compound having a melting point higher than that of the coating phase before the reaction was prepared by the reaction between the melting point adjusting substance having a particle size of 15 ⁇ m or less and the coating phase.
  • the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well.
  • the effect of suppressing the aggregation of the fluidized material can be improved.
  • the proportion of the fluidized material in which the components contained in the melting point adjusting substance having a particle size of 15 ⁇ m or less are adhered to the coating phase among the plurality of fluidized materials is 30% or more.
  • the present invention is not limited to the embodiment described above.
  • the aggregation suppressing method according to the present invention may be applied to an apparatus other than a fluidized bed boiler as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Treating Waste Gases (AREA)

Abstract

An agglomeration inhibition method for inhibiting the agglomeration of fluid material in a fluidized bed boiler, the agglomeration inhibition method including a step for causing a melting point adjusting substance having a particle size of 15 µm or less to react with the coating phase adhered and formed on the surface of the fluid material, thereby increasing the melting point of the coating phase.

Description

凝集抑制方法、凝集抑制材、化合物調整方法、流動床ボイラ、及び流動物Aggregation suppression method, aggregation suppression material, compound adjustment method, fluidized bed boiler, and fluid
 本発明は、凝集抑制方法、凝集抑制材、化合物調整方法、流動床ボイラ、及び流動物に関する。 The present invention relates to an aggregation suppression method, an aggregation suppression material, a compound adjustment method, a fluidized bed boiler, and a fluid.
 従来、流動床ボイラ(「CFBボイラ」ともいう)へのバイオマス燃料等の適用がなされている(特許文献1参照)。バイオマス燃料のうち、モミ殻やEFB(Empty Fruit Bunches)などの低品位のバイオマス燃料はアルカリ成分を多く含み、このアルカリ成分は低融点の化合物を生じさせる。このような低融点の化合物は流動材の表面に付着して、流動材を凝集させて流動不良を引き起こす原因となる。 Conventionally, biomass fuel or the like has been applied to fluidized bed boilers (also referred to as “CFB boilers”) (see Patent Document 1). Among biomass fuels, low-grade biomass fuels such as fir shells and EFB (Empty Fruit Bunches) contain a large amount of alkali components, and these alkali components generate low melting point compounds. Such a low-melting-point compound adheres to the surface of the fluidizing material and causes the fluidizing material to agglomerate, causing a flow failure.
特開2005-226930号公報JP 2005-226930 A
 上述のような低融点の化合物は、流動材の表面に付着してコーティング相を形成する。このようなコーティング相の融点を上げるために、燃焼炉に添加剤を投入する場合があった。コーティング相の融点を上げることで、コーティング相の流動材に対する付着性を低減し、流動材の凝集を抑制できる。このように、コーティング相の融点を下げる場合に、添加した物質とコーティング相との反応性を高め、流動材の凝集の抑制効果を向上することが求められていた。 The low melting point compound as described above adheres to the surface of the fluidized material and forms a coating phase. In order to increase the melting point of such a coating phase, an additive may be introduced into the combustion furnace. By increasing the melting point of the coating phase, adhesion of the coating phase to the fluidized material can be reduced, and aggregation of the fluidized material can be suppressed. Thus, when lowering the melting point of the coating phase, it has been required to increase the reactivity between the added substance and the coating phase and to improve the effect of suppressing the aggregation of the fluidized material.
 本発明は、上述の課題を解決するためになされたものであり、流動材の凝集の抑制効果を向上できる凝集抑制方法、凝集抑制材、化合物調整方法、流動床ボイラ、及び流動物を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and provides an aggregation suppression method, an aggregation suppression material, a compound adjustment method, a fluidized bed boiler, and a fluid that can improve the effect of suppressing the aggregation of the fluidized material. For the purpose.
 上記課題を解決するため、本発明の一形態に係る凝集抑制方法は、流動床ボイラ内の流動材の凝集を抑制する凝集抑制方法であって、粒径が15μm以下の融点調整物質を流動材の表面に付着形成するコーティング相と反応させることで、コーティング相の融点を上昇させる工程を含む。 In order to solve the above-mentioned problem, an aggregation suppressing method according to an aspect of the present invention is an aggregation suppressing method for suppressing aggregation of a fluidized material in a fluidized bed boiler, wherein a melting point adjusting substance having a particle size of 15 μm or less is added to the fluidized material. And a step of increasing the melting point of the coating phase by reacting with the coating phase formed on the surface of the coating.
 凝集抑制方法によれは、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、コーティング相の融点を上昇させている。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、コーティング相の融点を良好に上昇させることができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to the aggregation suppression method, the melting point of the coating phase is increased by reacting the melting point adjusting substance having a particle size of 15 μm or less with the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 凝集抑制方法において、融点調整物質は、MgOであってよい。これにより、少ない融点調整物質の投入量にて、コーティング相の融点を上昇させることができる。 In the aggregation suppression method, the melting point adjusting substance may be MgO. Thereby, the melting point of the coating phase can be increased with a small amount of the melting point adjusting substance.
 本発明の一形態に係る凝集抑制材は、流動床ボイラ内の流動材の凝集を抑制する凝集抑制材であって、流動材の表面に付着するコーティング相と反応して融点を上昇させる融点調整物質を含み、融点調整物質の粒径が15μm以下である。 An aggregation suppressing material according to an aspect of the present invention is an aggregation suppressing material that suppresses aggregation of a fluidized material in a fluidized bed boiler, and adjusts the melting point to increase the melting point by reacting with a coating phase adhering to the surface of the fluidized material. Including the substance, the particle size of the melting point adjusting substance is 15 μm or less.
 凝集抑制材によれは、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、コーティング相の融点を上昇させることができる。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、コーティング相の融点を良好に上昇させることができる。以上により、流動材の凝集の抑制効果を向上することができる。 Depending on the agglomeration inhibitor, the melting point of the coating phase can be increased by reacting a melting point adjusting substance having a particle size of 15 μm or less with the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本発明の一形態に係る化合物調整方法は、流動床ボイラ内の流動材の表面に付着するコーティング相に対して、粒径が15μm以下の融点調整物質を反応させることで、反応前のコーティング相より融点が高い化合物を調整する。 The method for preparing a compound according to one aspect of the present invention includes a coating phase before reaction by reacting a coating phase adhering to the surface of a fluidized material in a fluidized bed boiler with a melting point adjusting substance having a particle size of 15 μm or less. A compound having a higher melting point is prepared.
 化合物調整方法によれは、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、反応前のコーティング相よりも融点が高い化合物を調整できる。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、融点の高い化合物を良好に調整することができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to the compound adjustment method, a compound having a melting point higher than that of the coating phase before the reaction can be adjusted by reacting a melting point adjusting substance having a particle size of 15 μm or less with the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本発明の一形態に係る流動床ボイラは、燃料を燃焼させる燃焼炉と、燃焼炉から排出される流動材、及び流動材の表面に付着するコーティング相と反応して融点を上昇させる融点調整物質を循環させる循環系と、循環系の系外に設けられ、循環系から排出される融点調整物質のうち、粒径が15μm以下の融点調整物質を捕捉する捕捉部と、を備える。 A fluidized bed boiler according to an embodiment of the present invention includes a combustion furnace for burning fuel, a fluidized material discharged from the combustion furnace, and a melting point adjusting substance that reacts with a coating phase adhering to the surface of the fluidized material to increase the melting point. And a trapping unit that is provided outside the circulation system and captures a melting point adjusting substance having a particle size of 15 μm or less out of the melting point adjusting substance discharged from the circulation system.
 流動床ボイラによれは、捕捉部が、循環系から排出される融点調整物質のうち、粒径が15μm以下の融点調整物質を捕捉できる。このように捕捉された融点調整物質を再び燃焼炉へ供給することで、コーティング相の厚みに対して適切な粒径に設定された融点調整物質をコーティング相と反応させることができる。これにより、コーティング相との反応性を高めることができ、融点の高い化合物を良好に調整することができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to the fluidized bed boiler, the trapping part can capture the melting point adjusting substance having a particle size of 15 μm or less among the melting point adjusting substances discharged from the circulation system. By supplying the melting point adjusting substance thus captured to the combustion furnace again, the melting point adjusting substance set to an appropriate particle size with respect to the thickness of the coating phase can be reacted with the coating phase. Thereby, the reactivity with a coating phase can be improved and a compound with high melting | fusing point can be adjusted favorably. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本発明の一形態に係る流動物は、流動床ボイラ内の流動物であって、複数の流動材を含み、流動材の表面に付着したコーティング相には、粒径が15μm以下の融点調整物質に含まれる成分が付着形成している。 The fluid according to an embodiment of the present invention is a fluid in a fluidized bed boiler, and includes a plurality of fluidized materials, and the coating phase attached to the surface of the fluidized material has a melting point adjusting substance having a particle size of 15 μm or less. Ingredients contained in are adhered and formed.
 流動物によれば、粒径が15μm以下の融点調整物質に含まれる成分がコーティング相に付着している。これは、粒径が15μm以下の融点調整物質とコーティング相とが反応して、反応前のコーティング相よりも融点が高い化合物が調整されたことを示している。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、融点の高い化合物を良好に調整することができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to the fluid, the components contained in the melting point adjusting substance having a particle size of 15 μm or less are attached to the coating phase. This indicates that a compound having a melting point higher than that of the coating phase before the reaction was prepared by the reaction between the melting point adjusting substance having a particle size of 15 μm or less and the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 また、流動物において、複数の流動材のうち、コーティング相に粒径が15μm以下の融点調整物質に含まれる成分が付着形成している流動材の割合は30%以上であってよい。これにより、十分な量の流動材の凝集を抑制できるため、流動床ボイラ内を流動物が良好に流動することができる。 In the fluid, the ratio of the fluidized material in which the components contained in the melting point adjusting substance having a particle size of 15 μm or less are attached to the coating phase among the plurality of fluidized materials may be 30% or more. Thereby, since aggregation of a sufficient amount of fluidized material can be suppressed, the fluid can flow well in the fluidized bed boiler.
 本発明によれば、流動材の凝集の抑制効果を向上できる。 According to the present invention, the effect of suppressing the aggregation of the fluidized material can be improved.
図1は、本実施形態に係る凝集抑制方法が適用される流動床ボイラの概略構成図である。FIG. 1 is a schematic configuration diagram of a fluidized bed boiler to which the aggregation suppressing method according to the present embodiment is applied. 図2は、溶融誘発メカニズム及びコーティング誘発メカニズムについて説明するための模式図である。FIG. 2 is a schematic diagram for explaining a melting induction mechanism and a coating induction mechanism. 図3は、KO-SiO状態図である。FIG. 3 is a K 2 O—SiO 2 phase diagram. 図4は、KO-MgO-SiO状態図である。FIG. 4 is a K 2 O—MgO—SiO 2 phase diagram. 図5は、KO-CaO-SiO状態図である。FIG. 5 is a K 2 O—CaO—SiO 2 phase diagram. 図6は、運転時間に対する初期アメグロ温度の関係、及び運転時間に対するコーティング相の平均厚さの関係を示すグラフである。FIG. 6 is a graph showing the relationship of the initial tunagro temperature to the operating time and the relationship of the average thickness of the coating phase to the operating time. 図7は、MgO粒子の粒径に関する実験結果を示す表である。FIG. 7 is a table showing experimental results regarding the particle diameter of MgO particles. 図8は、融点調整物質をコーティング相へ投入する際の様子を示す模式図である。FIG. 8 is a schematic diagram showing a state in which a melting point adjusting substance is charged into the coating phase.
 以下、添付図面を参照しながら本発明の実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示されるように、流動床ボイラ(CFBボイラ)1は、燃料を燃焼し、密閉容器内の水を加熱して蒸気を生成する燃焼炉(炉本体)3と、燃焼炉3で生じた燃焼ガス(以下、「排ガス」という)Gから固形物を分離するサイクロン分離器(循環系)5と、排ガスGの熱を熱回収する熱回収部7と、サイクロン分離器5で排ガスGから分離された飛灰、すなわち排ガスGから分離された流動材Fa(図2参照)を燃焼炉3の下部に戻す循環ライン(循環系)9等を備えている。なお、熱回収部7には、過熱器などの熱交換チューブ等が配置されている。 As shown in FIG. 1, a fluidized bed boiler (CFB boiler) 1 is produced in a combustion furnace (furnace main body) 3 that burns fuel and heats water in a sealed container to generate steam, and a combustion furnace 3. A cyclone separator (circulation system) 5 that separates solids from the combustion gas (hereinafter referred to as “exhaust gas”) G, a heat recovery unit 7 that recovers heat of the exhaust gas G, and a cyclone separator 5 from the exhaust gas G. A circulation line (circulation system) 9 for returning the separated fly ash, that is, the fluidized material Fa (see FIG. 2) separated from the exhaust gas G, to the lower part of the combustion furnace 3 is provided. The heat recovery unit 7 is provided with a heat exchange tube such as a superheater.
 燃焼炉3には、モミ殻やEFB(Empty Fruit Bunches)などのバイオマス燃料が投入される。この種のバイオマス燃料は、カリウムやナトリウムなどのアルカリ成分を多く含む低品位燃料である。さらに、燃焼炉3には、添加剤が投入される。燃焼炉3には、石英粒子を主成分とする流動材Faが投入されており、この流動材Fa中に下部から空気が供給され、流動材Faが流動して流動床(以下「ベット」という)Fが形成される。ベットFの形成により、燃料の燃焼が促進される。燃焼の結果として生じる排ガスGは、流動材Faの一部を随伴しながら燃焼炉3内を上昇する。 Combustion furnace 3 is fed with biomass fuel such as fir shells and EFB (Empty Fruit Bunches). This type of biomass fuel is a low-grade fuel containing a large amount of alkaline components such as potassium and sodium. Furthermore, an additive is put into the combustion furnace 3. The combustion furnace 3 is supplied with a fluidized material Fa containing quartz particles as a main component. Air is supplied into the fluidized material Fa from below, and the fluidized material Fa flows and is fluidized (hereinafter referred to as “bed”). ) F is formed. Formation of the bed F promotes fuel combustion. The exhaust gas G generated as a result of combustion rises in the combustion furnace 3 with a part of the fluidized material Fa.
 サイクロン分離器5は、燃焼炉3に隣接して配置されており、燃焼炉3から排出された排ガスG及び排ガスGに随伴された流動材Faを受け入れ、遠心分離作用によって排ガスGと流動材Faとを分離し、流動材Faを燃焼炉3に戻し、排ガスGを熱回収部7に送り込む。熱回収部7は、循環系の系外に設けられている。熱回収部7の後段には、排ガスG中の流動材Fa及び後述の融点調整材を捕捉する捕捉するフィルタ(捕捉部)12が設けられている。フィルタ12の構成については後述する。 The cyclone separator 5 is disposed adjacent to the combustion furnace 3, receives the exhaust gas G discharged from the combustion furnace 3 and the fluidized material Fa accompanying the exhaust gas G, and receives the exhaust gas G and the fluidized material Fa by centrifugal separation. And the fluidized material Fa is returned to the combustion furnace 3, and the exhaust gas G is sent to the heat recovery unit 7. The heat recovery unit 7 is provided outside the circulation system. A filter (capturing unit) 12 that captures the fluid Fa in the exhaust gas G and a melting point adjusting material described later is provided at the subsequent stage of the heat recovery unit 7. The configuration of the filter 12 will be described later.
 サイクロン分離器5には、循環ライン9が接続されている。循環ライン9は、燃焼炉3の下部に接続された管路からなり、循環ライン9上にはループシール9aが設けられている。ループシール9aは、燃焼炉3からの排ガスGの逆流を防止する設備であり、ループシール9a内には、サイクロン分離器5から送り込まれた流動材Faが蓄積され、流動材Faはループシール9aの出口のリターンシュート部9bから燃焼炉3内に投入される。 A circulation line 9 is connected to the cyclone separator 5. The circulation line 9 is a pipe connected to the lower part of the combustion furnace 3, and a loop seal 9 a is provided on the circulation line 9. The loop seal 9a is a facility for preventing the backflow of the exhaust gas G from the combustion furnace 3. The fluid material Fa sent from the cyclone separator 5 is accumulated in the loop seal 9a, and the fluid material Fa is the loop seal 9a. Is introduced into the combustion furnace 3 from the return chute 9b at the outlet of the combustion chamber.
 また、流動床ボイラ1は、ループシール9a内に添加剤を供給するための添加剤供給部11を備えている。ループシール9a内に添加剤を供給することで、ループシール9a内での流動不良を効果的に抑えることができる。 Further, the fluidized bed boiler 1 includes an additive supply unit 11 for supplying the additive into the loop seal 9a. By supplying the additive into the loop seal 9a, the flow failure in the loop seal 9a can be effectively suppressed.
 次に、バイオマス燃料を流動床ボイラ1に投入して燃焼させた際に生じる現象を説明する。 Next, the phenomenon that occurs when biomass fuel is charged into the fluidized bed boiler 1 and burned will be described.
 バイオマス燃料の燃焼におけるボトムアッシュ(BottomAsh)とフライアッシュ(FlyAsh)の生成概念について説明する。ボトムアッシュは、流動材Faである砂を種としてバイオマス燃料中の成分が凝縮、融体、凝集して付着したり、砂表面で化学反応したりして粒子形成される。また、フライアッシュは、粒子形成されたボトムアッシュの一部が細かくなったものを除くと、バイオマス燃料中の成分そのものの凝縮、融体、凝集により形成される。 The following explains the concept of bottom ash (FlyAsh) and fly ash (FlyAsh) generation in biomass fuel combustion. The bottom ash is formed into particles by using the sand, which is the fluidized material Fa, as a seed, and the components in the biomass fuel are condensed, melted, aggregated, and chemically reacted on the sand surface. Further, fly ash is formed by condensation, melting, and agglomeration of the components in the biomass fuel, excluding those in which part of the bottom ash formed with particles is fine.
 バイオマス燃料の燃焼における流動材(「流動砂」、「ベット材」ともいう)Fa中での流動阻害の主たる原因であるアグロメX(図2参照)は、ほとんどが低融点化合物の融体、すなわちバイオマス燃料中の成分により形成される物質の融体が流動材Fa表面へ付着したり、流動材Faの表面での共晶形成、すなわちバイオマス燃料中の成分が流動材Faの表面で化学反応したりして引き起こされ、溶融誘発およびコーティング誘発として知られている二つのメカニズムであると考えられている。 The agglomerate X (see FIG. 2), which is the main cause of flow inhibition in the fluidized material (also referred to as “fluidized sand”, “bed material”) Fa in the combustion of biomass fuel, is mostly a melt of a low melting point compound, The melt of the substance formed by the components in the biomass fuel adheres to the surface of the fluidized material Fa, or eutectic formation on the surface of the fluidized material Fa, that is, the components in the biomass fuel chemically react on the surface of the fluidized material Fa. It is thought to be two mechanisms known as melt induction and coating induction.
 具体的には、バイオマス燃料を燃焼した際のアグロメXの生成の主要な原因は、バイオマス燃料からのアルカリ成分、たとえばカリウム(K)やナトリウム(Na)等と流動材Faの主成分である石英粒子との間で化学反応が生じ、流動材Faの表面での粘着性のあるアルカリ珪酸塩層が形成されることに起因すると特定されている。なお、アルカリ成分に加えてリンもアグロメXにおける重要因子であることが確認されている。 Specifically, the main cause of the production of agglomerates X when burning biomass fuel is the main component of the fluid component Fa, such as alkali components from the biomass fuel, such as potassium (K) and sodium (Na). It is specified that a chemical reaction occurs between the particles and a sticky alkali silicate layer is formed on the surface of the fluid Fa. In addition to alkaline components, phosphorus has also been confirmed to be an important factor in Agrome X.
(溶融誘発メカニズム)
 図2(b)に示されるように、溶融誘発メカニズムのアグロメXは、低融点化合物(アルカリ珪酸塩)の融体Mが流動材Faの表面に付着したボトムアッシュ粒子群が互いに集まって起こる。このメカニズムの制御因子は、局部温度と燃料灰組成とであり、高濃度のアルカリ成分と塩素とが含まれた燃焼灰では、溶融誘発メカニズムを通してアグロメXが形成される傾向にある。
(Mechanism of melting induction)
As shown in FIG. 2B, the agglomeration X of the melting induction mechanism is caused by a group of bottom ash particles in which the melt M of the low melting point compound (alkali silicate) adheres to the surface of the fluid Fa. The controlling factors of this mechanism are local temperature and fuel ash composition. In combustion ash containing a high concentration of alkali components and chlorine, agglomerates X tend to be formed through the melting induction mechanism.
(コーティング誘発メカニズム)
 図2(a)に示されるように、コーティング誘発メカニズムのアグロメXは、流動材Faの表面での共晶コーティング(アルカリ珪酸塩相、コーティング相)Cが形成されたボトムアッシュ粒子群が、それらの共晶コーティングCにより接合と離散と繰り返し、その結果、粒子凝集が開始され、徐々にネック(流動阻害要因)になるアグロメXの形成に到る。このメカニズムの主要な制御因子は、共晶コーティング厚さ(接合離間のし易さ)、共晶コーティング組成(接合強度)および局所温度である。
(Coating induction mechanism)
As shown in FIG. 2 (a), the agglomeration X of the coating induction mechanism is a group of bottom ash particles in which a eutectic coating (alkali silicate phase, coating phase) C is formed on the surface of the fluidized material Fa. The eutectic coating C repeats bonding and discrete, and as a result, particle aggregation starts and gradually leads to the formation of agglomer X that becomes a bottleneck (flow inhibiting factor). The main controlling factors of this mechanism are eutectic coating thickness (ease of bonding separation), eutectic coating composition (bonding strength) and local temperature.
 なお、流動材Faの表面に実際にコーティングされた部分の詳細な分析結果から、このコーティング相は、共晶コーティング(KO-SiO:アルカリ珪酸塩相)Cであることが確認されている。この共晶コーティングCは、図3に示されるように、700℃にて溶融しはじめる。流動床ボイラ1の流動材Fa中の温度、具体的には、800℃~900℃においては、流動材Faである粒子同士を容易に付着、凝集させるものであることが確認できる。なお、図3は、KO-SiO状態図である。 The detailed analysis result of the part actually coated on the surface of the fluidized material Fa confirms that this coating phase is a eutectic coating (K 2 O—SiO 2 : alkali silicate phase) C. Yes. The eutectic coating C begins to melt at 700 ° C. as shown in FIG. It can be confirmed that at the temperature in the fluidized material Fa of the fluidized bed boiler 1, specifically, 800 ° C. to 900 ° C., the particles that are the fluidized material Fa easily adhere and aggregate. FIG. 3 is a K 2 O—SiO 2 phase diagram.
 このようなコーティング相に対して、流動材Faの凝集を抑制する凝集抑制材が投入される。なお、凝集抑制材は、添加剤を流動床ボイラ1内に入れた後の状態のことを指すものとする。また、添加剤として含まれる化合物と、凝集抑制材として含まれる化合物とでは、組成が異なる場合もある。凝集抑制材は、コーティング相と反応して融点を上昇させる融点調整物質を含んでいる。コーティング相の融点を上昇させることで、高い温度で流動床ボイラ1を運転しても、流動材Fa同士が付着、凝集することを抑制できる。添加剤として、石灰石(CaCO)、消石灰(Ca(OH))、ドロマイト((CaCO(MgCO、CaMg(CO)2)、水酸化マグネシウム(Mg(OH))、水酸化アルミニウム(Al(OH))等が採用される。このような添加剤の組成が変化することで、MgOの粒子、CaOの粒子、Alの粒子等が、凝集抑制材に含まれる融点調整物質として機能する。 For such a coating phase, an aggregation inhibitor that suppresses aggregation of the fluid Fa is introduced. The aggregation suppressing material refers to the state after the additive is put into the fluidized bed boiler 1. In addition, the composition may be different between the compound contained as an additive and the compound contained as an aggregation inhibitor. The aggregation inhibitor contains a melting point adjusting substance that reacts with the coating phase to increase the melting point. By increasing the melting point of the coating phase, even when the fluidized bed boiler 1 is operated at a high temperature, it is possible to suppress adhesion and aggregation of the fluidized materials Fa. As additives, limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), dolomite ((CaCO 3 ) m (MgCO 3 ) n , CaMg (CO 3 ) 2 ), magnesium hydroxide (Mg (OH) 2 ) Aluminum hydroxide (Al (OH) 2 ) or the like is employed. By changing the composition of such an additive, MgO particles, CaO particles, Al 2 O 3 particles, and the like function as melting point adjusting substances contained in the aggregation inhibitor.
 次に、コーティング相の形成と融点調整物質との関係について図4及び図5を参照して説明する。図4は、KO-MgO-SiO状態図であり、図5は、KO-CaO-SiO状態図である。 Next, the relationship between the formation of the coating phase and the melting point adjusting substance will be described with reference to FIGS. FIG. 4 is a K 2 O—MgO—SiO 2 phase diagram, and FIG. 5 is a K 2 O—CaO—SiO 2 phase diagram.
 例えば、コーティング相の融点を高めるためKOに対して「Ca/K=2~10」に相当するCaO(融点調整物質)を入れるとする。この場合、図5に示すように、融点が上昇したコーティング相(KO-CaO-SiO化合物)の融点は、約1000(10%CaO)~約1500(99%CaO)の範囲にあると推定される。 For example, it is assumed that CaO (melting point adjusting substance) corresponding to “Ca / K = 2 to 10” is added to K 2 O in order to increase the melting point of the coating phase. In this case, as shown in FIG. 5, the melting point of the coating phase (K 2 O—CaO—SiO 2 compound) having an increased melting point is in the range of about 1000 (10% CaO) to about 1500 (99% CaO). It is estimated to be.
 図4に示すように、融点調整物質がMgOである場合に、コーティング相(KO-MgO-SiO化合物)の融点を上述の温度範囲にする場合、約1000(5%MgO)~約1500(25%MgO)という添加量となる。このように、融点調整物質としてCaOよりもMgOを使用した方が、少量の添加量で融点を高めることができることが理解される。 As shown in FIG. 4, when the melting point adjusting substance is MgO, when the melting point of the coating phase (K 2 O—MgO—SiO 2 compound) is within the above temperature range, about 1000 (5% MgO) to about The amount added is 1500 (25% MgO). Thus, it is understood that the melting point can be increased with a small addition amount when MgO is used as the melting point adjusting substance rather than CaO.
 ここで、本発明者らは、鋭意研究の結果、次の知見を得るに至った。すなわち、本発明者らは、融点調整物質の粒径を15μm以下とすることにより、コーティング相に対する反応性を向上することができ、コーティング相の融点を良好に高めることができることを見いだした。 Here, the present inventors have obtained the following knowledge as a result of earnest research. That is, the present inventors have found that the reactivity to the coating phase can be improved and the melting point of the coating phase can be improved satisfactorily by setting the particle size of the melting point adjusting substance to 15 μm or less.
 例えば、図6に示す表は、2つのタイプのボイラについて、運転時間に対する初期アメグロ温度(流動材同士が付着し始める温度)の関係、及び運転時間に対するコーティング相の平均厚さの関係を示している。四角の点が90MWタイプのボイラでの測定結果を示し、丸の点が122MWタイプのボイラの測定結果を示す。白抜きの測定点に対するグラフが、運転時間に対する初期アメグロ温度を示し、塗りつぶされた測定点に対するグラフが、運転時間に対する平均厚みの関係を示している。なお、初期アメグロ温度とは、流動材Faの凝集初期温度(「凝集が始まる温度」と略同じである)の事を意味している。初期アメグロ温度の推移を参照すると、運転初期においては、初期アメグロ温度は急激に低下してゆき、所定の運転時間が経過した後(例えば10日以降)は、初期アメグロ温度は一定の温度で略横ばいとなる。このように、一定の運転時間が経過した後は、ボイラのタイプに応じて、初期アメグロ温度が安定する。すなわち、運転初期の段階では、コーティング相の平均厚みの増加に伴い、初期アメグロ温度が急激に減少し、安定しない状態であったが、ある程度の運転時間の経過後は、ボイラのタイプや運転条件に応じた固有の初期アメグロ温度に収束することが理解される。一方、初期アメグロ温度が略横ばいとなり始める期間(おおむね、運転時間が10~20日付近)におけるコーティング相の平均厚みは、約10~15μmの範囲に収まる。コーティング相の平均厚みは、初期アメグロ温度ほどに横ばいとはなっておらず、運転時間の経過と共に更に平均厚みが増す傾向が見られるが、これ以上コーティング相の平均厚みが増しても、初期アメグロ温度が低下する傾向は見られないため、初期アメグロ温度が略横ばいとなり始める期間におけるコーティング相の平均厚みを考慮して、融点調整物質52の設定を行えばよい。 For example, the table shown in FIG. 6 shows the relationship of initial Amegro temperature (temperature at which fluidized material begins to adhere) to operating time and the average thickness of the coating phase to operating time for two types of boilers. Yes. Square points indicate measurement results with a 90 MW type boiler, and circles indicate measurement results with a 122 MW type boiler. The graph for the open measurement point shows the initial Amegro temperature with respect to the operation time, and the graph for the filled measurement point shows the relationship of the average thickness with respect to the operation time. In addition, the initial Amegro temperature means the initial aggregation temperature of the fluid material Fa (substantially the same as the “temperature at which aggregation starts”). Referring to the transition of the initial tunagro temperature, in the initial stage of operation, the initial tunagro temperature decreases rapidly, and after a predetermined operation time has elapsed (for example, after 10 days), the initial tunagro temperature is substantially constant at a constant temperature. It will be flat. Thus, after a certain operating time has elapsed, the initial Amegro temperature is stabilized according to the boiler type. In other words, at the initial stage of operation, the initial Amegro temperature suddenly decreased and became unstable as the average thickness of the coating phase increased, but after a certain amount of operating time, the boiler type and operating conditions It is understood that it converges to a specific initial Amegro temperature depending on On the other hand, the average thickness of the coating phase in the period in which the initial Amegro temperature begins to level off (generally, the operation time is around 10 to 20 days) falls within the range of about 10 to 15 μm. The average thickness of the coating phase does not become as flat as the initial Amegro temperature, and there is a tendency for the average thickness to increase further as the operating time elapses. Since the temperature does not tend to decrease, the melting point adjusting substance 52 may be set in consideration of the average thickness of the coating phase in the period in which the initial Amegro temperature starts to be substantially flat.
 図8に示すように、融点を上昇させるために融点調整物質52を投入して反応させる際は、融点調整物質52が当該コーティング相51内に含まれることで、反応性を向上できる。すなわち、融点調整物質52の粒径Rの上限値は、流動材50に付着したコーティング相51の厚みtに近いことが好ましい。この点、上述の図6に示す結果より、コーティング相51の厚みtは10~15μmの範囲に収まるため、融点調整物質52の粒径Rを15μm以下、より好ましくは10μm以下に設定することで、反応性を向上できることを、本願発明者らは見いだした。 As shown in FIG. 8, when the melting point adjusting substance 52 is introduced and reacted to increase the melting point, the reactivity can be improved by including the melting point adjusting substance 52 in the coating phase 51. That is, the upper limit value of the particle diameter R of the melting point adjusting substance 52 is preferably close to the thickness t of the coating phase 51 attached to the fluidizing material 50. In this regard, the thickness t of the coating phase 51 falls within the range of 10 to 15 μm from the result shown in FIG. 6 described above, and therefore the particle size R of the melting point adjusting substance 52 is set to 15 μm or less, more preferably 10 μm or less. The present inventors have found that the reactivity can be improved.
 例えば、図7に示すように、融点調整物質としてMgO粒子の粒径を複数の値に設定して、流動不良の発生の有無について実験した。ここでは、炉内ベッド温度を780℃に設定し、融点調整物質の投入量としてMg/Kを0.3に設定した。当該条件に対して、粒径が53μm以下、20μm以下、15μm以下、10μm以下に設定されたMgO粒子を投入した。また、炉内ベッド温度を830℃に設定し、融点調整物質の投入量としてMg/Kを0.8に設定した。当該条件に対して、粒径が53μm以下、20μm以下、15μm以下、10μm以下に設定されたMgO粒子を投入した。このとき、図7に示すように、粒径が53μm以下の場合は、いずれの条件下においても流動不良が生じた。粒径が20μmの場合は、炉内ベッド温度が830℃の場合は流動不良が生じなかったが、炉内ベッド温度が780℃の場合は流動不良が生じた。一方、粒径が15μm以下の場合、及び10μm以下の場合は、いずれの条件下においても流動不良が生じなかった。当該実験より、融点調整物質の粒径を15μm以下とすることで、コーティング相との反応性を向上し、流動材の凝集の抑制効果を向上できることが理解される。 For example, as shown in FIG. 7, the particle size of MgO particles as a melting point adjusting substance was set to a plurality of values, and an experiment was conducted to check whether or not flow defects occurred. Here, the in-furnace bed temperature was set to 780 ° C., and Mg / K was set to 0.3 as the input amount of the melting point adjusting substance. With respect to the conditions, MgO particles having a particle size set to 53 μm or less, 20 μm or less, 15 μm or less, and 10 μm or less were added. Further, the temperature in the furnace bed was set to 830 ° C., and Mg / K was set to 0.8 as the input amount of the melting point adjusting substance. With respect to the conditions, MgO particles having a particle size set to 53 μm or less, 20 μm or less, 15 μm or less, and 10 μm or less were added. At this time, as shown in FIG. 7, when the particle size was 53 μm or less, flow failure occurred under any condition. When the particle size was 20 μm, no flow failure occurred when the furnace bed temperature was 830 ° C., but flow failure occurred when the furnace bed temperature was 780 ° C. On the other hand, when the particle size was 15 μm or less and 10 μm or less, no flow failure occurred under any of the conditions. From this experiment, it is understood that by setting the particle size of the melting point adjusting substance to 15 μm or less, the reactivity with the coating phase can be improved and the effect of suppressing the aggregation of the fluidized material can be improved.
 以上のような知見より、本実施形態に係る凝集抑制材に含まれる融点調整物質の粒径は15μm以下に設定される。すなわち、流動材の凝集を抑制する凝集抑制方法としては、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、コーティング相の融点を上昇させる工程が実行される。また、化合物調整方法としては、流動床ボイラ1内の流動材の表面に付着するコーティング相に対して、粒径が15μm以下の融点調整物質を反応させることで、反応前のコーティング相より融点が高い化合物を調整する。 From the above knowledge, the particle size of the melting point adjusting substance contained in the aggregation suppressing material according to the present embodiment is set to 15 μm or less. That is, as a method for suppressing aggregation of the fluidized material, a step of increasing the melting point of the coating phase is performed by reacting a melting point adjusting substance having a particle size of 15 μm or less with the coating phase. Moreover, as a compound adjustment method, melting | fusing point has a melting | fusing point rather than the coating phase before reaction by making a melting-point adjustment substance with a particle size of 15 micrometers or less react with the coating phase adhering to the surface of the fluidized material in the fluid bed boiler 1. Adjust the high compound.
 このとき、図8に示すように、融点調整物質の粒径は、コーティング相の内部へ投入される瞬間の値が反応性に影響を及ぼす。なお、本発明においては、コーティング相の内部へ投入される瞬間の融点調整物質の粒径が15μm以下であればよいものであり、融点調整物質を流動材に対してどのように投入するかについての投入方法は特に限定されるものではない。すなわち、どのような形態、タイミング、方法で融点調整物質を投入したとしても、コーティング相に投入される瞬間の融点調整物質の粒子が15μm以下であればよい。 At this time, as shown in FIG. 8, as for the particle size of the melting point adjusting substance, the value at the moment when it is introduced into the coating phase affects the reactivity. In the present invention, it is sufficient that the particle size of the melting point adjusting substance at the moment when it is introduced into the coating phase is 15 μm or less, and how the melting point adjusting substance is introduced into the fluidized material. The charging method is not particularly limited. That is, no matter what form, timing, and method the melting point adjusting substance is added, the melting point adjusting substance particles at the moment of introduction into the coating phase may be 15 μm or less.
 なお、流動床ボイラ1に対する添加剤の投入量としては、Mg/Kを0.2~2の範囲とすることが好ましい。また、ベッド温度を750~900℃の範囲で運転することで、好適に流動材の凝集抑制効果を得てもよい。 It should be noted that the amount of additive added to the fluidized bed boiler 1 is preferably in the range of 0.2 to 2 Mg / K. Further, by operating the bed temperature in the range of 750 to 900 ° C., the fluid material aggregation suppressing effect may be suitably obtained.
 また、図1に示すフィルタ12は、循環系から排出される融点調整物質のうち、粒径が15μm以下の融点調整物質を捕捉する。このようにフィルタ12で捕捉した15μm以下の融点調整物質は、再び燃焼炉3内へ供給されてよい。このとき、フィルタ12で捕捉した融点調整物質を作業者が搬送することによって、燃焼炉3へ供給してもよく、供給装置を設けることで、融点調整物質を燃焼炉3へ供給してもよい。 The filter 12 shown in FIG. 1 captures a melting point adjusting substance having a particle size of 15 μm or less among melting point adjusting substances discharged from the circulation system. Thus, the melting point adjusting substance of 15 μm or less captured by the filter 12 may be supplied again into the combustion furnace 3. At this time, the melting point adjusting substance captured by the filter 12 may be supplied to the combustion furnace 3 by an operator, or the melting point adjusting substance may be supplied to the combustion furnace 3 by providing a supply device. .
 次に、流動床ボイラ1内の流動物について説明する。ここで、「流動物」とは、流動床ボイラ1内を流動している途中の物質、または流動床ボイラ1が停止した後に当該流動床ボイラ1内に存在する物質である。流動物は、表面にコーティング相が付着した複数の流動材を含んでいる。本実施形態に係る流動物において、流動材の表面に付着したコーティング相には、粒径が15μm以下の融点調整物質に含まれる成分が付着している。融点調整物質がMgOであった場合、当該成分とはMgのことである。融点調整物質がCaOであった場合、当該成分とはCaのことである。融点調整物質がコーティング相に投入される瞬間は、融点調整物質は粒径15μm以下の粒子の状態が保たれている。その後、当該融点調整物質がコーティング相と反応して融点を上昇させた後は、融点調整物質は投入時と同じような粒子の状態にはない。しかしながら、反応後のコーティング相には、粒径が15μm以下の融点調整物質に含まれる成分が付着した状態である。後述の方法を用いて反応後のコーティング相の成分を測定することにより、コーティング相に粒径15μm以下の融点調整物質が投入されたことを事後的に確認することができる。 Next, the fluid in the fluidized bed boiler 1 will be described. Here, the “fluid” is a substance that is flowing in the fluidized bed boiler 1 or a substance that exists in the fluidized bed boiler 1 after the fluidized bed boiler 1 is stopped. The fluid includes a plurality of fluids having a coating phase attached to the surface. In the fluid according to the present embodiment, the components contained in the melting point adjusting substance having a particle size of 15 μm or less are attached to the coating phase attached to the surface of the fluidized material. When the melting point adjusting material is MgO, the component is Mg. When the melting point adjusting substance is CaO, the component is Ca. At the moment when the melting point adjusting substance is introduced into the coating phase, the melting point adjusting substance is kept in the state of particles having a particle size of 15 μm or less. Thereafter, after the melting point adjusting substance reacts with the coating phase to raise the melting point, the melting point adjusting substance is not in the same state of particles as at the time of charging. However, the component contained in the melting point adjusting substance having a particle size of 15 μm or less is attached to the coating phase after the reaction. By measuring the components of the coating phase after the reaction using the method described later, it can be confirmed afterwards that a melting point adjusting substance having a particle size of 15 μm or less has been introduced into the coating phase.
 複数の流動材のうち、コーティング相に粒径が15μm以下の融点調整物質に含まれる成分が付着形成している流動材の割合は30%以上であってよい。これは、例えば流動物の中から流動材の粒子を1000個取り出してコーティング相を解析した時に、コーティング相に粒径が15μm以下の融点調整物質に含まれる成分が付着している粒子が300個以上存在することを示している。なお、上記割合は、より好ましくは50%以上であってよく、100%であってもよい。 Among the plurality of fluidized materials, the proportion of fluidized materials in which the components contained in the melting point adjusting substance having a particle size of 15 μm or less are adhered and formed in the coating phase may be 30% or more. This is because, for example, when 1000 particles of fluidized material are taken out of the fluid and the coating phase is analyzed, 300 particles having a component contained in the melting point adjusting substance having a particle size of 15 μm or less are attached to the coating phase. This shows that it exists. The ratio is more preferably 50% or more, and may be 100%.
 ここで、流動物100のコーティング相51に付着する、粒径が15μm以下の融点調整物質に含まれる成分の測定方法の一例について説明する。当該測定方法では、EDXを備えるSEMを用いて測定を行った。EDXは、電子線照射により発生する特性X線を検出し、エネルギーで分光することで組成解析を行う装置であり、例えばOXFORD INSTRUMENTS社製のINCAを採用した。SEMは走査電子顕微鏡であり、日立ハイテクノロジーズ製のS-3400Nを採用した。以降、SEM及びEDXを組み合わせた物をまとめて「測定器」と称する。 Here, an example of a method for measuring a component included in the melting point adjusting substance having a particle size of 15 μm or less attached to the coating phase 51 of the fluid 100 will be described. In the measurement method, measurement was performed using an SEM equipped with EDX. EDX is an apparatus that analyzes characteristic composition by detecting characteristic X-rays generated by electron beam irradiation and performing spectral analysis with energy. For example, EDX manufactured by OXFORD INSTRUMENTS was employed. SEM is a scanning electron microscope, and S-3400N manufactured by Hitachi High-Technologies is adopted. Hereinafter, a combination of SEM and EDX is collectively referred to as a “measuring device”.
 まず、流動床ボイラ1から流動物を取りだし、その中から所定の数量(又は重量)の流動材を採取する。採取したサンプルは、樹脂に埋込後、#1000エメリー紙仕上げ(乾式)を行うことで、流動材の粒子断面を形成する。この粒子断面を測定器で測定する。具体的には、映し出された流動材の断面の画像の中から、コーティング相に相当する部分の所定の測定領域(例えば、図8においてAPで示す領域)を選定する。そして、当該測定領域に含まれる組成成分、及び各成分の濃度を測定する。このとき、所定の厚さのコーティング相内に融点調整物質に含まれる成分(例えばMgやCa)が含まれていることが確認できれば、当該コーティング相の厚さ以下の粒子径の融点調整物質が反応したことを事後的に確認することができる。よって、少なくとも15μm以下の厚みのコーティング相の中に、融点調整物質に含まれる成分が含まれることが確認できれば、測定対象に係る流動材の表面に付着したコーティング相には、粒径が15μm以下の融点調整物質に含まれる成分が付着していることが確認でき、さらにそこから、反応時においてコーティング相と粒径が15μm以下の融点調整物質が反応したことを確認できる。 First, a fluid is taken out from the fluidized bed boiler 1, and a predetermined quantity (or weight) of fluidized material is collected from the fluid. The collected sample is embedded in resin and then finished with # 1000 emery paper (dry type) to form a particle cross section of the fluidized material. The particle cross section is measured with a measuring instrument. Specifically, a predetermined measurement region (for example, a region indicated by AP in FIG. 8) in a portion corresponding to the coating phase is selected from the image of the cross section of the fluidized material displayed. And the composition component contained in the said measurement area | region and the density | concentration of each component are measured. At this time, if it can be confirmed that a component (for example, Mg or Ca) contained in the melting point adjusting substance is contained in the coating phase having a predetermined thickness, a melting point adjusting substance having a particle diameter equal to or smaller than the thickness of the coating phase is obtained. It can be confirmed later that the reaction has occurred. Therefore, if it can be confirmed that the component contained in the melting point adjusting substance is contained in the coating phase having a thickness of at least 15 μm or less, the particle size of the coating phase adhered to the surface of the fluidized material to be measured is 15 μm or less. It can be confirmed that the components contained in the melting point adjusting substance are attached, and further from this, it can be confirmed that the coating phase and the melting point adjusting substance having a particle size of 15 μm or less reacted during the reaction.
 次に、本実施形態に係る凝集抑制方法、凝集抑制材、化合物調整方法、及び流動床ボイラ1の作用・効果について説明する。 Next, the operation and effect of the aggregation suppression method, the aggregation suppression material, the compound adjustment method, and the fluidized bed boiler 1 according to the present embodiment will be described.
 本実施形態に係る凝集抑制方法は、流動床ボイラ1内の流動材の凝集を抑制する凝集抑制方法であって、粒径が15μm以下の融点調整物質を流動材の表面に付着するコーティング相と反応させることで、コーティング相の融点を上昇させる工程を含む。 The aggregation suppression method according to the present embodiment is an aggregation suppression method for suppressing aggregation of the fluidized material in the fluidized bed boiler 1, and a coating phase that adheres a melting point adjusting substance having a particle size of 15 μm or less to the surface of the fluidized material; The step of raising the melting point of the coating phase by reacting is included.
 この凝集抑制方法によれは、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、コーティング相の融点を上昇させている。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、コーティング相の融点を良好に上昇させることができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to this aggregation suppression method, the melting point of the coating phase is raised by reacting the melting point adjusting substance having a particle size of 15 μm or less with the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本実施形態に係る凝集抑制方法において、融点調整物質は、MgOである。これにより、少ない融点調整物質の投入量にて、コーティング相の融点を上昇させることができる。 In the aggregation suppressing method according to the present embodiment, the melting point adjusting substance is MgO. Thereby, the melting point of the coating phase can be increased with a small amount of the melting point adjusting substance.
 本実施形態に係る凝集抑制材は、流動床ボイラ1内の流動材の凝集を抑制する凝集抑制材であって、流動材の表面に付着するコーティング相と反応して融点を上昇させる融点調整物質を含み、融点調整物質の粒径が15μm以下である。 The aggregation suppressing material according to the present embodiment is an aggregation suppressing material that suppresses aggregation of the fluidized material in the fluidized bed boiler 1 and reacts with the coating phase adhering to the surface of the fluidized material to increase the melting point. The melting point adjusting substance has a particle size of 15 μm or less.
 この凝集抑制材によれは、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、コーティング相の融点を上昇させることができる。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、コーティング相の融点を良好に上昇させることができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to this agglomeration inhibitor, the melting point of the coating phase can be increased by reacting a melting point adjusting substance having a particle size of 15 μm or less with the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and the melting point of the coating phase can be increased satisfactorily. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本実施形態に係る化合物調整方法は、流動床ボイラ内の流動材の表面に付着するコーティング相に対して、粒径が15μm以下の融点調整物質を反応させることで、反応前のコーティング相より融点が高い化合物を調整する。 The compound adjusting method according to the present embodiment reacts with a coating phase adhering to the surface of the fluidized material in the fluidized bed boiler with a melting point adjusting substance having a particle size of 15 μm or less, so that the melting point is higher than the coating phase before the reaction. To adjust the high compound.
 この化合物調整方法によれは、粒径が15μm以下の融点調整物質をコーティング相と反応させることで、反応前のコーティング相よりも融点が高い化合物を調整できる。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、融点の高い化合物を良好に調整することができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to this compound adjustment method, a compound having a melting point higher than that of the coating phase before the reaction can be adjusted by reacting a melting point adjusting substance having a particle size of 15 μm or less with the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本実施形態に係る流動床ボイラ1は、燃料を燃焼させる燃焼炉3と、燃焼炉3から排出される流動材、及び流動材の表面に付着するコーティング相と反応して融点を上昇させる融点調整物質を循環させる循環系(サイクロン分離器5及び循環ライン9)と、循環系の系外に設けられ、循環系から排出される融点調整物質のうち、粒径が15μm以下の融点調整物質を捕捉するフィルタ12と、を備える。 The fluidized bed boiler 1 according to the present embodiment adjusts the melting point to increase the melting point by reacting with a combustion furnace 3 for burning fuel, a fluidized material discharged from the combustion furnace 3, and a coating phase adhering to the surface of the fluidized material. A circulatory system (cyclone separator 5 and circulation line 9) that circulates the substance and a melting point adjusting substance that is provided outside the circulatory system and discharged from the circulatory system has a particle diameter of 15 μm or less. And a filter 12.
 この流動床ボイラ1によれは、フィルタ12が、循環系から排出される融点調整物質のうち、粒径が15μm以下の融点調整物質を捕捉できる。このように捕捉された融点調整物質を再び燃焼炉3へ供給することで、コーティング相の厚みに対して適切な粒径に設定された融点調整物質をコーティング相と反応させることができる。これにより、コーティング相との反応性を高めることができ、融点の高い化合物を良好に調整することができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to this fluidized bed boiler 1, the filter 12 can capture the melting point adjusting substance having a particle size of 15 μm or less among the melting point adjusting substances discharged from the circulation system. By supplying the melting point adjusting substance thus captured to the combustion furnace 3 again, the melting point adjusting substance set to an appropriate particle size with respect to the thickness of the coating phase can be reacted with the coating phase. Thereby, the reactivity with a coating phase can be improved and a compound with high melting | fusing point can be adjusted favorably. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 本実施形態に係る流動物は、流動床ボイラ内の流動物であって、複数の流動材を含み、流動材の表面に付着したコーティング相には、粒径が15μm以下の融点調整物質に含まれる成分が付着している。 The fluid according to the present embodiment is a fluid in a fluidized bed boiler, and includes a plurality of fluidized materials, and the coating phase attached to the surface of the fluidized material includes a melting point adjusting substance having a particle size of 15 μm or less. Ingredients are attached.
 この流動物によれば、粒径が15μm以下の融点調整物質に含まれる成分がコーティング相に付着している。これは、粒径が15μm以下の融点調整物質とコーティング相とが反応して、反応前のコーティング相よりも融点が高い化合物が調整されたことを示している。このように、コーティング相の厚みに対して、融点調整物質の粒径を適切な値に設定することで、コーティング相との反応性を高めることができ、融点の高い化合物を良好に調整することができる。以上により、流動材の凝集の抑制効果を向上することができる。 According to this fluid, components contained in the melting point adjusting substance having a particle size of 15 μm or less are attached to the coating phase. This indicates that a compound having a melting point higher than that of the coating phase before the reaction was prepared by the reaction between the melting point adjusting substance having a particle size of 15 μm or less and the coating phase. In this way, by setting the particle size of the melting point adjusting substance to an appropriate value with respect to the thickness of the coating phase, the reactivity with the coating phase can be increased, and a compound having a high melting point can be adjusted well. Can do. As described above, the effect of suppressing the aggregation of the fluidized material can be improved.
 また、流動物において、複数の流動材のうち、コーティング相に粒径が15μm以下の融点調整物質に含まれる成分が付着している流動材の割合は30%以上である。これにより、十分な量の流動材の凝集を抑制できるため、流動床ボイラ内を流動物が良好に流動することができる。 Further, in the fluid, the proportion of the fluidized material in which the components contained in the melting point adjusting substance having a particle size of 15 μm or less are adhered to the coating phase among the plurality of fluidized materials is 30% or more. Thereby, since aggregation of a sufficient amount of fluidized material can be suppressed, the fluid can flow well in the fluidized bed boiler.
 本発明は、上述の実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、本発明に係る凝集抑制方法は、図1に示すような流動床ボイラ以外の装置に対して適用されてもよい。 For example, the aggregation suppressing method according to the present invention may be applied to an apparatus other than a fluidized bed boiler as shown in FIG.
 1…流動床ボイラ、3…燃焼炉、5…サイクロン分離器、9…循環ライン、12…フィルタ(捕捉部)、51…コーティング相、52…融点調整物質、F,50…流動材、100…流動物。 DESCRIPTION OF SYMBOLS 1 ... Fluidized bed boiler, 3 ... Combustion furnace, 5 ... Cyclone separator, 9 ... Circulation line, 12 ... Filter (capturing part), 51 ... Coating phase, 52 ... Melting | fusing point adjustment substance, F, 50 ... Fluidizing material, 100 ... Fluid.

Claims (7)

  1.  流動床ボイラ内の流動材の凝集を抑制する凝集抑制方法であって、
     粒径が15μm以下の融点調整物質を前記流動材の表面に付着するコーティング相と反応させることで、前記コーティング相の融点を上昇させる工程を含む、凝集抑制方法。
    An aggregation suppressing method for suppressing aggregation of a fluidized material in a fluidized bed boiler,
    An aggregation suppressing method comprising a step of increasing a melting point of the coating phase by reacting a melting point adjusting substance having a particle size of 15 μm or less with a coating phase adhering to the surface of the fluidizing material.
  2.  前記融点調整物質は、MgOである、請求項1に記載の凝集抑制方法。 The aggregation suppressing method according to claim 1, wherein the melting point adjusting substance is MgO.
  3.  流動床ボイラ内の流動材の凝集を抑制する凝集抑制材であって、
     前記流動材の表面に付着するコーティング相と反応して融点を上昇させる融点調整物質を含み、
     前記融点調整物質の粒径が15μm以下である、凝集抑制材。
    An agglomeration inhibitor that inhibits agglomeration of the fluid in the fluidized bed boiler,
    A melting point adjusting substance that reacts with the coating phase adhering to the surface of the fluidizing material to raise the melting point;
    An agglomeration suppressant, wherein the melting point adjusting substance has a particle size of 15 μm or less.
  4.  流動床ボイラ内の流動材の表面に付着するコーティング相に対して、粒径が15μm以下の融点調整物質を反応させることで、反応前の前記コーティング相より融点が高い化合物を調整する、化合物調整方法。 Compound adjustment, which adjusts a compound having a melting point higher than that of the coating phase before the reaction by reacting a coating phase adhering to the surface of the fluidized material in the fluidized bed boiler with a melting point adjusting substance having a particle size of 15 μm or less. Method.
  5.  燃料を燃焼させる燃焼炉と、
     前記燃焼炉から排出される流動材、及び前記流動材の表面に付着するコーティング相と反応して融点を上昇させる融点調整物質を循環させる循環系と、
     前記循環系の系外に設けられ、前記循環系から排出される前記融点調整物質のうち、粒径が15μm以下の前記融点調整物質を捕捉する捕捉部と、を備える流動床ボイラ。
    A combustion furnace for burning fuel;
    A circulating system that circulates a melting material that reacts with a fluid phase discharged from the combustion furnace and a coating phase adhering to the surface of the fluidized material to raise a melting point;
    A fluidized bed boiler comprising: a trapping unit that is provided outside the circulation system and captures the melting point adjustment substance having a particle size of 15 μm or less among the melting point adjustment substances discharged from the circulation system.
  6.  流動床ボイラ内の流動物であって、
     複数の流動材を含み、
     前記流動材の表面に付着したコーティング相には、粒径が15μm以下の融点調整物質に含まれる成分が付着している、流動物。
    Fluid in a fluidized bed boiler,
    Including multiple fluids,
    A fluid in which a component contained in a melting point adjusting substance having a particle size of 15 μm or less is attached to the coating phase attached to the surface of the fluidized material.
  7.  前記複数の流動材のうち、前記コーティング相に粒径が15μm以下の前記融点調整物質に含まれる成分が付着している流動材の割合は30%以上である、請求項6に記載の流動物。 7. The fluid according to claim 6, wherein a ratio of a fluid that has a component contained in the melting point adjusting substance having a particle size of 15 μm or less attached to the coating phase is 30% or more among the plurality of fluids. .
PCT/JP2017/033127 2016-10-24 2017-09-13 Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance WO2018079119A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2019002224A MY191375A (en) 2016-10-24 2017-09-13 Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance
KR1020197008122A KR102337474B1 (en) 2016-10-24 2017-09-13 Aggregation inhibitory method, agglomeration inhibitor, compound adjustment method, fluidized bed boiler and fluid
PH12019500910A PH12019500910A1 (en) 2016-10-24 2019-04-24 Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016207815A JP6654127B2 (en) 2016-10-24 2016-10-24 Coagulation control method, coagulation control material, compound preparation method, fluidized bed boiler, and fluid
JP2016-207815 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018079119A1 true WO2018079119A1 (en) 2018-05-03

Family

ID=62024695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033127 WO2018079119A1 (en) 2016-10-24 2017-09-13 Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance

Country Status (5)

Country Link
JP (1) JP6654127B2 (en)
KR (1) KR102337474B1 (en)
MY (1) MY191375A (en)
PH (1) PH12019500910A1 (en)
WO (1) WO2018079119A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956286B1 (en) * 2021-03-05 2021-11-02 宇部マテリアルズ株式会社 Manufacturing method of agglutination inhibitor for circulating fluidized bed boiler, agglutination inhibitor for circulating fluidized bed boiler, and fluidized material for circulating fluidized bed boiler
WO2024142711A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program
WO2024142710A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program
WO2024142712A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7530316B2 (en) 2021-03-05 2024-08-07 宇部マテリアルズ株式会社 How to operate a circulating fluidized bed boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503925A (en) * 1987-06-24 1990-11-15 エイ.アフルストロム コーポレーション Combustion of alkali-containing fuels
JPH1163420A (en) * 1997-08-07 1999-03-05 Hitachi Ltd Pressurized fluidized bed boiler and its operation method
JP2004528399A (en) * 2000-12-21 2004-09-16 ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー Biomass gasification system and method
JP2005068297A (en) * 2003-08-25 2005-03-17 Ebara Corp Apparatus for generating gas and method for generating gas
WO2011007618A1 (en) * 2009-07-13 2011-01-20 住友重機械工業株式会社 Combustion method for fluidized bed boiler, and fluidized bed boiler
JP2011106701A (en) * 2009-11-13 2011-06-02 Sumitomo Heavy Ind Ltd Bed material regeneration device for fluid bed and method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428763B2 (en) * 1999-07-22 2010-03-10 サントリーホールディングス株式会社 Homeobox gene encoding a protein involved in differentiation
JP2005226930A (en) 2004-02-13 2005-08-25 Kawasaki Heavy Ind Ltd Biomass fuel burning fluidized bed combustion method and apparatus
JP5219256B2 (en) * 2008-03-31 2013-06-26 株式会社タイホーコーザイ Granular additive and method for producing the same
JP5761568B2 (en) * 2011-07-28 2015-08-12 Jfeエンジニアリング株式会社 Method for burning herbaceous biomass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503925A (en) * 1987-06-24 1990-11-15 エイ.アフルストロム コーポレーション Combustion of alkali-containing fuels
JPH1163420A (en) * 1997-08-07 1999-03-05 Hitachi Ltd Pressurized fluidized bed boiler and its operation method
JP2004528399A (en) * 2000-12-21 2004-09-16 ジョー・エンタープライジズ・リミテッド・ライアビリティ・カンパニー Biomass gasification system and method
JP2005068297A (en) * 2003-08-25 2005-03-17 Ebara Corp Apparatus for generating gas and method for generating gas
WO2011007618A1 (en) * 2009-07-13 2011-01-20 住友重機械工業株式会社 Combustion method for fluidized bed boiler, and fluidized bed boiler
JP2011106701A (en) * 2009-11-13 2011-06-02 Sumitomo Heavy Ind Ltd Bed material regeneration device for fluid bed and method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956286B1 (en) * 2021-03-05 2021-11-02 宇部マテリアルズ株式会社 Manufacturing method of agglutination inhibitor for circulating fluidized bed boiler, agglutination inhibitor for circulating fluidized bed boiler, and fluidized material for circulating fluidized bed boiler
JP2022135631A (en) * 2021-03-05 2022-09-15 宇部マテリアルズ株式会社 Aggregation inhibitor for circulating fluidized-bed boilers, method for producing aggregation inhibitor for circulating fluidized-bed boilers, and fluidized-bed material for circulating fluidized-bed boilers
WO2024142711A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program
WO2024142710A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program
WO2024142712A1 (en) * 2022-12-28 2024-07-04 住友重機械工業株式会社 Combustion device, combustion method, and combustion program

Also Published As

Publication number Publication date
PH12019500910A1 (en) 2020-01-20
KR20190072516A (en) 2019-06-25
KR102337474B1 (en) 2021-12-08
JP6654127B2 (en) 2020-02-26
MY191375A (en) 2022-06-21
JP2018071802A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2018079119A1 (en) Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance
JP5536063B2 (en) Fluidized bed boiler combustion method and fluidized bed boiler
JP5761568B2 (en) Method for burning herbaceous biomass
JPH02503925A (en) Combustion of alkali-containing fuels
CN87106792A (en) Control produces the method for clinker ash from the exhaust gas dust of coal
JP2019190686A (en) Biomass combustion method and combustion apparatus
BR112020010357A2 (en) fluidized medium for fluidized bed
JP3746010B2 (en) Fuel additive for preventing slagging and fuel combustion method
AU2014246861A1 (en) Biomass combustion
JP3746020B2 (en) Fuel additive for preventing slagging and fuel combustion method
JP3746009B2 (en) Coal additive for preventing slagging and coal combustion method
JP2019190687A (en) Biomass combustion method and combustion apparatus
JP5372713B2 (en) Fluidized bed regenerator and method for fluidized bed
JP6956286B1 (en) Manufacturing method of agglutination inhibitor for circulating fluidized bed boiler, agglutination inhibitor for circulating fluidized bed boiler, and fluidized material for circulating fluidized bed boiler
JP2017165929A (en) Additive for suppressing clinker adhesion and method for suppressing clinker adhesion
US4664042A (en) Method of decreasing ash fouling
JPWO2007145310A1 (en) Coaching inhibitor for lime baking apparatus and method for preventing coating
TW202426820A (en) Combustion device, combustion method, combustion program
TW202426822A (en) Combustion device, combustion method, combustion program
TW202426821A (en) Combustion device, combustion method, combustion program
TW202006293A (en) Systems and methods for controlling bed agglomeration in fluidized-bed boilers
TWI826981B (en) Fluid medium regeneration device, combustion system and combustion method of flowing bed combustion furnace
WO2024142710A1 (en) Combustion device, combustion method, and combustion program
WO2024142711A1 (en) Combustion device, combustion method, and combustion program
JP7530316B2 (en) How to operate a circulating fluidized bed boiler

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008122

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866210

Country of ref document: EP

Kind code of ref document: A1