JP2011106701A - Bed material regeneration device for fluid bed and method therefor - Google Patents

Bed material regeneration device for fluid bed and method therefor Download PDF

Info

Publication number
JP2011106701A
JP2011106701A JP2009259932A JP2009259932A JP2011106701A JP 2011106701 A JP2011106701 A JP 2011106701A JP 2009259932 A JP2009259932 A JP 2009259932A JP 2009259932 A JP2009259932 A JP 2009259932A JP 2011106701 A JP2011106701 A JP 2011106701A
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
medium
fluid medium
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009259932A
Other languages
Japanese (ja)
Other versions
JP5372713B2 (en
Inventor
Ryuichi Agawa
隆一 阿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009259932A priority Critical patent/JP5372713B2/en
Publication of JP2011106701A publication Critical patent/JP2011106701A/en
Application granted granted Critical
Publication of JP5372713B2 publication Critical patent/JP5372713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bed material regeneration device for a fluid bed and a method therefor capable of efficiently separating a deposit from a bed material. <P>SOLUTION: The bed material regeneration device 3 for the fluid bed which regenerates the bed material Fa by separating the deposit from the bed material Fa extracted from the fluid bed F of a fluid bed-type combustion furnace 2 includes a cooling water tank 11 for separating the deposit from the bed material Fa by utilizing a difference of the shrinkage of the bed material Fa and the deposit by charging the bed material Fa extracted from the fluid bed F of the combustion furnace 2 into water and cooling it. According to the bed material regeneration device 3, the bed material Fa of a high temperature extracted from the fluid bed F of the combustion furnace 2 is charged into water and cooled so that the deposit is separated due to the difference of the shrinkage between the bed material Fa and the deposit, the deposit dissolves in the water, and thus the bed material Fa and the deposit can be efficiently separated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流動層式燃焼炉の流動層を形成する流動媒体を再生する流動層の流動媒体再生装置及びその方法に関する。   The present invention relates to a fluidized bed regenerating apparatus and method for regenerating a fluidized medium that forms a fluidized bed of a fluidized bed combustion furnace.

近年、バイオマス燃料を用いた流動層式ボイラの運用が求められている。バイオマス燃料のうち、モミ殻やEFB(Empty Fruit Bunches)などの低品位のバイオマス燃料はアルカリ成分を多く含み、このアルカリ成分は低融点の化合物を生じさせる。このような低融点の化合物は流動媒体に付着して流動不良を引き起こす可能性があるため、化合物の付着した流動媒体を流動層から抜き出す必要がある。流動層から抜き出した流動媒体は、付着物と分離させることで再生され、再び流動層内に戻すことが可能となる。   In recent years, operation of a fluidized bed boiler using biomass fuel has been demanded. Among biomass fuels, low-grade biomass fuels such as fir shells and EFB (Empty Fruit Bunches) contain a large amount of alkali components, and these alkali components generate low melting point compounds. Such a low-melting-point compound may adhere to the fluidized medium and cause flow failure, so that the fluidized medium to which the compound adheres needs to be extracted from the fluidized bed. The fluid medium extracted from the fluidized bed is regenerated by separating it from the deposits, and can be returned to the fluidized bed again.

特許文献1には、流動層式燃焼炉の流動層から砂などの流動媒体を抜き出して気体輸送を行う気体輸送管及び気体輸送装置を備えた流動媒体選別装置が記載されている。この流動媒体選別装置によれば、流動媒体を気体輸送する過程で流動媒体を管路壁面や他の流動媒体と衝突させることにより、流動媒体と付着物とを分離することができるとされている。   Patent Document 1 describes a fluid medium sorting apparatus including a gas transport pipe and a gas transport device that perform gas transport by extracting a fluid medium such as sand from a fluidized bed of a fluidized bed combustion furnace. According to this fluid medium sorting device, it is said that the fluid medium can be separated from the deposits by colliding the fluid medium with the pipe wall surface or other fluid medium in the process of gas transport of the fluid medium. .

特開2001−193912号公報JP 2001-193912 A

しかしながら、上述した流動媒体選別装置においては、砂などの流動媒体の気体輸送時に、衝突で付着物を分離できるほどの十分な勢いを流動媒体に与えるため莫大なエネルギーが消費される上、付着物の部位が適切な角度で衝突して分離する可能性は高いとは言えず、非効率的であるという問題があった。   However, in the above-described fluid medium sorting apparatus, enormous energy is consumed to give the fluid medium sufficient momentum to be able to separate the deposits by collision during gas transport of the fluid medium such as sand, and the deposits There is a high possibility that these parts collide at an appropriate angle and are separated, and there is a problem that they are inefficient.

そこで、本発明は、このような事情に鑑みてなされたものであり、効率良く流動媒体から付着物を分離することができる流動層の流動媒体再生装置及びその方法を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a fluidized-bed fluid medium regenerating apparatus and a method thereof that can efficiently separate deposits from the fluidized medium. .

本発明は、流動層式燃焼炉の流動層より抜き出した流動媒体から付着物を分離することで流動媒体を再生する流動層の流動媒体再生装置であって、燃焼炉の流動層より抜き出した流動媒体を水中に投入して冷却することにより、流動媒体と付着物との収縮差を利用して流動媒体から付着物を分離する冷却水槽を備えていることを特徴とする。   The present invention relates to a fluidized bed fluid medium regeneration device for regenerating a fluidized medium by separating deposits from the fluidized medium extracted from the fluidized bed of the fluidized bed combustion furnace, wherein the fluidized fluid is extracted from the fluidized bed of the combustion furnace. A cooling water tank is provided that separates the deposit from the fluidized medium by using a difference in shrinkage between the fluidized medium and the deposit by cooling the medium by putting it in water.

本発明に係る流動層の流動媒体再生装置によれば、燃焼炉の流動層より抜き出した流動媒体を水中に投入して冷却させることにより、流動媒体と付着物との収縮差に起因する付着物の剥離及び付着物の水への溶解を生じさせ、これによって流動媒体と付着物との分離を実現することができる。このように、流動媒体及び付着物の冷却時における収縮差や付着物の水への溶解性を利用することで、物理的衝突を利用する従来と比べて非常に効率良く流動媒体から付着物を分離することができる。   According to the fluidized bed regenerating apparatus of the fluidized bed according to the present invention, the deposit caused by the difference in shrinkage between the fluidized medium and the deposit is obtained by cooling the fluidized medium extracted from the fluidized bed of the combustion furnace into water. Separation of the deposits and dissolution of the deposits in water can be achieved, thereby achieving separation of the fluid medium and deposits. In this way, by using the difference in shrinkage during cooling of the fluid medium and the deposit and the solubility of the deposit in water, the deposit can be removed from the fluid medium very efficiently compared to the conventional method using physical collision. Can be separated.

本発明に係る流動層の流動媒体再生装置においては、冷却水槽に投入する前に流動媒体を所定の適正温度まで冷却する中間冷却手段を更に備えることが好ましい。
このように、中間冷却手段によって流動媒体の温度を所定の適正温度まで冷却してから冷却水槽内に投入することで、流動媒体の投入による水の蒸発や水温の大幅な変化を抑えることが可能になる。その結果、水温の変化を抑えるために大量の水を貯留したり、頻繁に水温調節を行ったりする事態を避けることが可能になり、これによって冷却水槽の小型化や運用コストの低下を図ることができる。なお、所定の適正温度は、水中で流動媒体と付着物との収縮差に起因する付着物の剥離を適切に発生させることができる温度であり、冷却水槽の水量や水温、その他流動媒体の投入量などに応じて適切に定められる。
In the fluidized bed regenerating apparatus of the fluidized bed according to the present invention, it is preferable to further include an intermediate cooling means for cooling the fluidized medium to a predetermined appropriate temperature before being charged into the cooling water tank.
In this way, the temperature of the fluidized medium is cooled to a predetermined appropriate temperature by the intermediate cooling means and then introduced into the cooling water tank, so that it is possible to suppress water evaporation and a significant change in the water temperature due to the fluidized medium being introduced. become. As a result, it is possible to avoid a situation in which a large amount of water is stored or the water temperature is frequently adjusted to suppress changes in the water temperature, thereby reducing the size of the cooling water tank and lowering the operation cost. Can do. The predetermined appropriate temperature is a temperature at which the peeling of the deposit caused by the difference in shrinkage between the fluid medium and the deposit in water can be appropriately generated. The amount of water in the cooling water tank, the water temperature, and other fluid medium input It is determined appropriately according to the amount.

また、本発明に係る流動層の流動媒体再生装置においては、付着物を分離した流動媒体を回収して流動層に戻す返送手段を更に備えることが好ましい。
これにより、流動層から抜き出した分の流動媒体を流動層に戻して自動的に補充することが可能となり、流動媒体の補充に係る労力の低減を図ることができる。
In the fluidized bed regenerating apparatus of the fluidized bed according to the present invention, it is preferable to further include a return means for collecting the fluidized medium from which the deposits have been separated and returning it to the fluidized bed.
As a result, the fluid medium extracted from the fluidized bed can be returned to the fluidized bed and automatically replenished, and the labor involved in supplementing the fluidized medium can be reduced.

本発明は、流動層式燃焼炉の流動層より抜き出した流動媒体から付着物を分離することで流動媒体を再生する流動層の流動媒体再生方法であって、燃焼炉の流動層より抜き出した流動媒体を水中に投入して冷却することにより、流動媒体と付着物との収縮差を利用して流動媒体から付着物を分離することを特徴とする。   The present invention relates to a fluidized bed regeneration method for regenerating a fluidized medium by separating deposits from a fluidized medium extracted from a fluidized bed of a fluidized bed combustion furnace, wherein the fluid extracted from the fluidized bed of the combustion furnace By putting the medium into water and cooling it, the deposit is separated from the fluid medium using the difference in shrinkage between the fluid medium and the deposit.

本発明に係る流動層の流動媒体再生方法によれば、燃焼炉の流動層より抜き出した流動媒体を水中に投入して冷却させることにより、流動媒体と付着物との収縮差に起因する付着物の剥離及び付着物の水への溶解を生じさせ、これによって流動媒体と付着物との分離を実現することができる。このように、流動媒体及び付着物の冷却時における収縮差や付着物の水への溶解性を利用することで、物理的衝突を利用する従来と比べて非常に効率良く流動媒体から付着物を分離することができる。   According to the fluidized bed regeneration method of the fluidized bed according to the present invention, the fluidized medium extracted from the fluidized bed of the combustion furnace is cooled by introducing it into water, thereby causing the deposits due to the shrinkage difference between the fluidized medium and the deposits. Separation of the deposits and dissolution of the deposits in water can be achieved, thereby achieving separation of the fluid medium and deposits. In this way, by using the difference in shrinkage during cooling of the fluid medium and the deposit and the solubility of the deposit in water, the deposit can be removed from the fluid medium very efficiently compared to the conventional method using physical collision. Can be separated.

本発明によれば、効率良く流動媒体から付着物を分離することができる。   According to the present invention, deposits can be efficiently separated from a fluid medium.

第1の実施形態に係る流動層の流動媒体再生装置を備えた燃焼設備を示す断面図である。It is sectional drawing which shows the combustion equipment provided with the fluidized-medium regeneration apparatus of the fluidized bed which concerns on 1st Embodiment. アグロメの形成メカニズムを示す説明図であり、(a)はコーティング誘発メカニズムを示す図であり、(b)は、溶融誘発メカニズムを示す図である。It is explanatory drawing which shows the formation mechanism of an agglomerate, (a) is a figure which shows a coating induction mechanism, (b) is a figure which shows a melting induction mechanism. K2O−SiO2状態図である。It is a K2O-SiO2 phase diagram. 第2の実施形態に係る流動層の流動媒体再生装置を備えた燃焼設備を示す断面図である。It is sectional drawing which shows the combustion equipment provided with the fluidized-medium regeneration apparatus of the fluidized bed which concerns on 2nd Embodiment.

以下、本発明に係る流動層の流動媒体再生装置及びその方法について、図面を参照して詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
Hereinafter, a fluidized bed regenerating apparatus and method for fluidized bed according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[First Embodiment]

図1に示すように、第1の実施形態に係る流動媒体再生装置3は、流動層式の燃焼炉2を備えた燃焼設備1に組み込まれ、燃焼炉2の流動層Fより抜き出した砂などの流動媒体Faから付着物を分離することで流動媒体Faの再生を行うためのものである。   As shown in FIG. 1, a fluid medium regenerator 3 according to a first embodiment is incorporated in a combustion facility 1 including a fluidized bed type combustion furnace 2, and sand extracted from a fluidized bed F of the combustion furnace 2. The fluid medium Fa is regenerated by separating the deposits from the fluid medium Fa.

燃焼設備1は、モミ殻やEFB(Empty Fruit Bunches)などのバイオマス燃料を燃焼し、密閉容器内の水を加熱して蒸気を生成する燃焼炉2を備えている。燃焼炉2は、外部循環型の流動層式燃焼炉であり、いわゆるCFB(Circulating Fluidized Bed)ボイラである。燃焼炉2の中間部には燃料を投入する燃料投入口が設けられ、この燃料投入口からバイオマス燃料が投入される。   The combustion facility 1 includes a combustion furnace 2 that burns biomass fuel such as fir shells and EFB (Empty Fruit Bunches) and heats water in a sealed container to generate steam. The combustion furnace 2 is an external circulation type fluidized bed combustion furnace, and is a so-called CFB (Circulating Fluidized Bed) boiler. A fuel input port for supplying fuel is provided in an intermediate portion of the combustion furnace 2, and biomass fuel is input from this fuel input port.

また、燃焼炉2には、石英粒子を主成分とする砂などの流動媒体Faが投入されており、この流動媒体Fa中に下部から空気が供給され、流動媒体Faが流動して流動層Fが形成される。この流動層Fの形成によりバイオマス燃料の燃焼が促進される。燃焼の結果として生じる燃焼ガスは、流動媒体Faの一部を随伴しながら燃焼炉2内を上昇する。   The combustion furnace 2 is supplied with a fluid medium Fa such as sand mainly composed of quartz particles, and air is supplied into the fluid medium Fa from the lower part so that the fluid medium Fa flows and the fluidized bed F flows. Is formed. The formation of the fluidized bed F promotes the combustion of biomass fuel. Combustion gas generated as a result of combustion rises in the combustion furnace 2 with a part of the fluid medium Fa.

燃焼炉2の上部には、燃焼ガスを排出するガス出口2aが設けられている。ガス出口2aには、固気分離装置として機能するサイクロン分離機4が接続されている。サイクロン分離機4には、燃焼炉2で発生した燃焼ガスが固体粒子を同伴しながら導入される。サイクロン分離機4は、遠心分離作用により捕集固体粒子と燃焼ガスとを分離する。分離された捕集固体粒子は、リターンライン5を通じて燃焼炉2に戻される。一方、捕集固体粒子が除かれた燃焼ガスは、排出口4aを通じて熱回収装置6へと送り込まれる。   A gas outlet 2 a for discharging combustion gas is provided at the upper part of the combustion furnace 2. A cyclone separator 4 that functions as a solid-gas separator is connected to the gas outlet 2a. A combustion gas generated in the combustion furnace 2 is introduced into the cyclone separator 4 while accompanying solid particles. The cyclone separator 4 separates the collected solid particles and the combustion gas by a centrifugal separation action. The separated collected solid particles are returned to the combustion furnace 2 through the return line 5. On the other hand, the combustion gas from which the collected solid particles are removed is sent to the heat recovery device 6 through the discharge port 4a.

リターンライン5は、燃焼炉2の下部に接続された管路からなり、その途中にはループシール5aが設けられている。ループシール5aは、燃焼ガスが燃焼炉2に逆流することを防止する設備である。ループシール5a内には、サイクロン分離器4から送り込まれた流動媒体Faが蓄積され、流動媒体Faはループシール5aの出口となるリターンシュート部5bから燃焼炉2内に投入される。   The return line 5 consists of a pipe line connected to the lower part of the combustion furnace 2, and a loop seal 5a is provided in the middle thereof. The loop seal 5 a is a facility that prevents the combustion gas from flowing back into the combustion furnace 2. In the loop seal 5a, the fluid medium Fa sent from the cyclone separator 4 is accumulated, and the fluid medium Fa is introduced into the combustion furnace 2 from a return chute portion 5b serving as an outlet of the loop seal 5a.

熱回収装置6は、燃焼ガスの流路を形成すると共に、熱媒体としての水を流動させるボイラチューブを有している。ボイラチューブは、熱回収装置6内で燃焼ガスの流路を横切るように設けられ、サイクロン分離機4から送られた燃焼ガスの熱をチューブ内の水によって回収する。ボイラチューブ内では、回収した熱によって高温の水蒸気が発生し、発生した水蒸気はボイラチューブを通じて発電用のタービンなどに送られる。熱回収装置6は、排出口6aを通じて熱回収後の燃焼ガスをバグフィルタ7に送り込む。   The heat recovery device 6 has a boiler tube that forms a flow path for combustion gas and flows water as a heat medium. The boiler tube is provided so as to cross the flow path of the combustion gas in the heat recovery device 6, and the heat of the combustion gas sent from the cyclone separator 4 is recovered by the water in the tube. In the boiler tube, high-temperature steam is generated by the recovered heat, and the generated steam is sent to the turbine for power generation through the boiler tube. The heat recovery device 6 sends the combustion gas after heat recovery to the bag filter 7 through the discharge port 6a.

バグフィルタ7は、燃焼ガスに未だ同伴しているフライアッシュなどの微粒子を除去する。バグフィルタ7により濾過された燃焼ガスは、吸引ポンプ8に吸引されて煙突9から外部に排出される。   The bag filter 7 removes fine particles such as fly ash still accompanying the combustion gas. The combustion gas filtered by the bag filter 7 is sucked into the suction pump 8 and discharged from the chimney 9 to the outside.

燃焼炉2では、バイオマス燃料の燃焼の過程で、燃焼によって生じた燃焼灰や燃料の一部が周辺の流動媒体Faと溶融して塊が形成される。この塊はアグロメと呼ばれ、燃焼炉2の底部に蓄積して流動層Fの流動不良を引き起こすため、流動媒体Faと共に定期的に抜き出す必要がある。燃焼炉2の排出口2bから抜き出された流動媒体Faは、流動媒体再生装置3へと送られる。   In the combustion furnace 2, in the process of burning biomass fuel, combustion ash and a part of the fuel generated by the combustion melt with the surrounding fluid medium Fa to form a lump. This lump is called agglomerate and accumulates at the bottom of the combustion furnace 2 and causes fluidity failure of the fluidized bed F. Therefore, it is necessary to periodically extract it together with the fluidized medium Fa. The fluid medium Fa extracted from the discharge port 2 b of the combustion furnace 2 is sent to the fluid medium regenerator 3.

次に、燃焼炉2内におけるアグロメの形成メカニズムについて説明する。   Next, the formation mechanism of agglomerates in the combustion furnace 2 will be described.

流動層Fの流動不良の主たる原因であるアグロメは、ほとんどが低融点化合物の融体、すなわちバイオマス燃料中の成分により形成される物質の融体が流動媒体Fa表面へ付着したり、流動媒体Faの表面での共晶形成、すなわちバイオマス燃料中の成分が流動媒体Faの表面で化学反応したりして引き起こされる。アグロメの形成には、コーティング誘発及び溶融誘発の二つのメカニズムがあることが知られている。   The agglomerates that are the main cause of the flow failure of the fluidized bed F are mostly low melting point compound melts, that is, melts of substances formed by components in the biomass fuel adhere to the surface of the fluidized medium Fa, or the fluidized medium Fa. Eutectic formation on the surface of the fuel, that is, components in the biomass fuel are caused to chemically react on the surface of the fluid medium Fa. It is known that there are two mechanisms for agglomeration: coating induction and melting induction.

(コーティング誘発メカニズム)
図2(a)に、コーティング誘発によるアグロメXの形成を示す。コーティング誘発によるアグロメXの形成は、バイオマス燃料中のアルカリ成分(カリウムやナトリウムなど)の蒸気Nと流動媒体Faの主成分である石英粒子との化学反応により引き起こされる。この化学反応により、流動媒体Faの表面には粘着性のある共晶コーティング(K2O−SiO2:アルカリ珪酸塩相)Cが形成される。その後、共晶コーティングCが形成された流動媒体Fa同士は、流動層F内で接合と離散とを繰り返す。その結果、粒子凝集が開始され、徐々にネック(流動阻害要因)になるアグロメXの形成に到る。
(Coating induction mechanism)
FIG. 2 (a) shows the formation of agglomerates X induced by coating. The formation of agglomerates X induced by coating is caused by a chemical reaction between vapor N of an alkaline component (potassium, sodium, etc.) in the biomass fuel and quartz particles which are the main components of the fluid medium Fa. By this chemical reaction, a sticky eutectic coating (K 2 O—SiO 2: alkali silicate phase) C is formed on the surface of the fluid medium Fa. Thereafter, the fluid media Fa on which the eutectic coating C is formed are repeatedly joined and discrete in the fluidized bed F. As a result, particle aggregation starts and gradually leads to formation of agglomer X that becomes a bottleneck (flow inhibiting factor).

このメカニズムの主要な制御因子は、共晶コーティング厚さ(接合離間のし易さ)、共晶コーティング組成(接合強度)および局所温度である。また、バイオマス燃料中に含まれる成分としては、アルカリ成分の他にリンもアグロメXの形成における重要因子であることが確認されている。   The main controlling factors of this mechanism are eutectic coating thickness (ease of bonding separation), eutectic coating composition (bonding strength) and local temperature. Moreover, as a component contained in biomass fuel, it has been confirmed that phosphorus is also an important factor in the formation of agglomer X in addition to the alkali component.

なお、共晶コーティングCは、図3のK2O−SiO2状態図に示されるように約700℃で溶融し始める。このため、燃焼炉2内の温度(約800℃〜900℃)では、共晶コーティングCは溶融状態となり、流動媒体Fa同士が容易に凝集する。これに対して、酸化マグネシウム(MgO)を流動媒体Fa中に添加することによって共晶コーティングCの融点を高め、共晶コーティングCの溶融に起因するアグロメの形成を抑制できることが確認されている。   Incidentally, the eutectic coating C starts to melt at about 700 ° C. as shown in the K 2 O—SiO 2 phase diagram of FIG. For this reason, at the temperature in the combustion furnace 2 (about 800 ° C. to 900 ° C.), the eutectic coating C is in a molten state, and the fluid media Fa easily aggregate. On the other hand, it has been confirmed that by adding magnesium oxide (MgO) into the fluid medium Fa, the melting point of the eutectic coating C can be increased and the formation of agglomerates due to the melting of the eutectic coating C can be suppressed.

(溶融誘発メカニズム)
図2(b)に、溶融誘発によるアグロメXの形成を示す。溶融誘発によるアグロメXは、バイオマス燃料中のアルカリ成分により形成された低融点化合物(アルカリ珪酸塩)の融体Mの流動媒体Faの表面への付着により引き起こされる。融体Mが付着した流動媒体Fa同士は、流動層F内で次第に凝集し、アグロメXの形成に到る。このメカニズムの制御因子は、局部温度と燃料灰組成とであり、高濃度のアルカリ成分と塩素とが含まれた燃焼灰では、溶融誘発メカニズムを通してアグロメXが形成される傾向にある。
(Mechanism of melting induction)
FIG. 2 (b) shows the formation of agglomerates X by melting induction. The agglomeration X due to melting induction is caused by adhesion of a low melting point compound (alkali silicate) formed by an alkali component in the biomass fuel to the surface of the fluid medium Fa of the melt M. The fluid media Fa to which the melt M adheres gradually aggregate in the fluidized bed F to reach the formation of the agglomerate X. The controlling factors of this mechanism are local temperature and fuel ash composition. In combustion ash containing a high concentration of alkali components and chlorine, agglomerates X tend to be formed through the melting induction mechanism.

次に、流動媒体Faからアルカリ珪酸塩相などの付着物を分離して再生する流動媒体再生装置3について説明する。   Next, the fluid medium regeneration device 3 that separates and reproduces the deposits such as the alkali silicate phase from the fluid medium Fa will be described.

図1に示すように、流動媒体再生装置3は、燃焼炉2の流動層Fから抜き出した流動媒体Faを搬送するスクリュー搬送機10と流動媒体Faを冷却するための冷却水槽11とを備えている。スクリュー搬送機10は、燃焼炉2の排出口2bに接続されており、排出口2bから抜き出された高温(例えば700℃)の流動媒体Faを冷却水槽11へと搬送する。スクリュー搬送機10は、搬送した高温の流動媒体Faを冷却水槽11内に投入する。   As shown in FIG. 1, the fluid medium regeneration device 3 includes a screw carrier 10 that conveys the fluid medium Fa extracted from the fluidized bed F of the combustion furnace 2 and a cooling water tank 11 that cools the fluid medium Fa. Yes. The screw conveyor 10 is connected to the discharge port 2 b of the combustion furnace 2, and conveys the high-temperature (for example, 700 ° C.) fluid medium Fa extracted from the discharge port 2 b to the cooling water tank 11. The screw conveyor 10 puts the conveyed high-temperature fluid medium Fa into the cooling water tank 11.

冷却水槽11の内部には、投入された高温の流動媒体Faを急速に冷却するための大量の水が貯留されている。冷却水槽11には、冷却水槽11内の水を循環させることにより攪拌を行う排水ライン12a、循環ポンプ13、及び投入ライン12bが接続されている。また、冷却水槽11内の水温は、所定の温度範囲内となるように調節されている。この水温は、低温であるほど水の蒸発防止に有利であり、図られ、高温であるほど流動媒体Faの割れ防止に有利である。水温は、40〜80℃の範囲内となるように調節されることが好ましい。また、冷却水槽11の下部には、水を補充する給水ライン11a及び水を排出する排水ライン11bが設けられている。   A large amount of water for rapidly cooling the high-temperature fluid medium Fa that has been charged is stored in the cooling water tank 11. The cooling water tank 11 is connected to a drain line 12a, a circulation pump 13, and a charging line 12b for stirring by circulating the water in the cooling water tank 11. Moreover, the water temperature in the cooling water tank 11 is adjusted to be within a predetermined temperature range. The lower the temperature of the water, the more advantageous is the prevention of water evaporation, and the higher the temperature, the more advantageous is the prevention of cracking of the fluid medium Fa. The water temperature is preferably adjusted to be within a range of 40 to 80 ° C. In addition, a water supply line 11 a for replenishing water and a drain line 11 b for discharging water are provided at the lower part of the cooling water tank 11.

冷却水槽11において水中に投入された流動媒体Fa及び付着物は、高温の状態から急速に冷却される。このとき、水中では流動媒体Faと付着物との熱膨脹差に起因する付着物の剥離や付着物の水への溶解が生じ、これによって流動媒体Faと付着物との分離が実現する。   The fluid medium Fa and the deposits put into the water in the cooling water tank 11 are rapidly cooled from a high temperature state. At this time, in the water, the deposits are peeled off due to the difference in thermal expansion between the fluid medium Fa and the deposits, and the deposits are dissolved in the water, whereby the fluid medium Fa and the deposits are separated.

また、冷却水槽11には、付着物と分離した流動媒体Faを回収して燃焼炉2の流動層Fに戻す返送ライン(返送手段)14が接続されている。図1中、返送ライン14の矢印示す”a”印は、燃焼炉2の側方の”a”印の箇所と繋がっており、返送ライン14で回収された流動媒体Faが燃焼炉2の燃料投入口から流動層Fに戻されることを意味している。この返送ライン14の途中には、流動媒体Faと付着物などの燃焼不適物とを選別する選別装置(図示せず)が設けられている。   The cooling water tank 11 is connected to a return line (return means) 14 that recovers the fluid medium Fa separated from the deposit and returns it to the fluidized bed F of the combustion furnace 2. In FIG. 1, the “a” mark indicated by the arrow of the return line 14 is connected to the “a” mark side of the combustion furnace 2, and the fluid medium Fa recovered in the return line 14 is the fuel of the combustion furnace 2. It means returning to the fluidized bed F from the inlet. In the middle of the return line 14, a sorting device (not shown) for sorting the fluid medium Fa and non-combustible substances such as deposits is provided.

以上説明した第1の実施形態に係る流動媒体再生装置3によれば、燃焼炉2の流動層Fの底部より抜き出した高温の流動媒体Faを水中に投入して急速に冷却させることにより、流動媒体Faと付着物との収縮差に起因する付着物の剥離や付着物の水への溶解を生じさせる。これは、K2O−SiO2などのアルカリ珪酸塩相と砂などの流動媒体Faとの物理的性状が異なるため急速な冷却により収縮差が生じること、及び、K2O−SiO2などが水に融解することに起因し、結果として流動媒体Faと付着物との分離が実現される。このように、流動媒体再生装置3では、流動媒体Faと付着物との物理的性状の差異に基づき収縮差及び水への溶解性を利用することで、物理的衝突を利用する従来装置と比べて、非常に効率良く流動媒体Faから付着物を分離して流動媒体Faを再生することができる。   According to the fluid medium regenerator 3 according to the first embodiment described above, the high-temperature fluid medium Fa extracted from the bottom of the fluidized bed F of the combustion furnace 2 is poured into water and rapidly cooled. The deposits are peeled off due to the difference in shrinkage between the medium Fa and the deposits, and the deposits are dissolved in water. This is due to the fact that the physical properties of the alkali silicate phase such as K2O-SiO2 and the fluid medium Fa such as sand differ, so that a difference in shrinkage occurs due to rapid cooling, and that K2O-SiO2 and the like melt into water. As a result, the separation of the fluid medium Fa and the deposit is realized. As described above, the fluid medium regenerator 3 uses the difference in shrinkage and the solubility in water based on the difference in physical properties between the fluid medium Fa and the deposits, so that it can be compared with a conventional device that utilizes physical collision. Thus, it is possible to regenerate the fluid medium Fa by separating the deposits from the fluid medium Fa very efficiently.

また、この流動媒体再生装置3によれば、返送ライン14によって付着物と分離した流動媒体Faを回収して流動層Fに戻すことができるので、流動層Fから抜き出した分の流動媒体Faを流動層Fに戻して自動的に補充することが可能となり、流動媒体Faの補充に係る労力の低減を図ることができる。
[第2の実施形態]
Further, according to the fluid medium regenerator 3, the fluid medium Fa separated from the deposits by the return line 14 can be recovered and returned to the fluidized bed F, so that the fluid medium Fa extracted from the fluidized bed F is removed. It is possible to return to the fluidized bed F and automatically replenish it, and to reduce the labor involved in replenishing the fluidized medium Fa.
[Second Embodiment]

図4に示すように、第2の実施形態に係る燃焼設備21の流動媒体再生装置22は、スクリュー搬送機10による流動媒体Faの搬送時に流動媒体Faを冷却する点のみが第1の実施形態と異なる。以下、第1の実施形態と同じ構成の部材には同じ符号を付し、その説明を省略する。   As shown in FIG. 4, the fluid medium regenerator 22 of the combustion facility 21 according to the second embodiment is the first embodiment only in that the fluid medium Fa is cooled when the fluid medium Fa is conveyed by the screw conveyor 10. And different. Hereinafter, members having the same configurations as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

第2の実施形態に係る流動媒体再生装置22では、スクリュー搬送機10の周囲にオイルなどの冷却媒体を流動させる冷却媒体流動路(中間冷却手段)23が形成されている。冷却媒体流動路23の両端は、冷却媒体を循環させるための循環用管路と接続されており、この管路の途中には冷却媒体を貯留する冷却媒体タンク24と冷却媒体を円滑に流動させるためのポンプ26とが設けられている。また、タンク24の下方には、タンク24内の冷却媒体を冷却する冷却機25が設けられている。   In the fluid medium regenerator 22 according to the second embodiment, a coolant flow path (intermediate cooling means) 23 for allowing a coolant such as oil to flow around the screw carrier 10 is formed. Both ends of the cooling medium flow path 23 are connected to a circulation pipe for circulating the cooling medium, and the cooling medium tank 24 for storing the cooling medium and the cooling medium smoothly flow in the middle of the pipe. A pump 26 is provided. A cooler 25 that cools the cooling medium in the tank 24 is provided below the tank 24.

燃焼炉2の排出口2bから排出された高温(約850℃)の流動媒体Faは、スクリュー搬送機10により搬送されつつ、冷却媒体流動路23中の冷却媒体に熱を移動させることで冷却される。流動媒体Faは、冷却水槽11に投入される直前の温度が所定の適正温度となるまで冷却される。この適正温度は、水中で流動媒体Faと付着物との収縮差に起因する付着物の剥離を適切に発生させることができると共に、急速な冷却により流動媒体Fa自体にクラックが生じない温度である。適正温度は、冷却水槽11の水量や水温、流動媒体Faの投入量などに応じて、例えば200〜450℃の中から適切に選択される。   The high-temperature (about 850 ° C.) fluid medium Fa discharged from the discharge port 2 b of the combustion furnace 2 is cooled by moving heat to the coolant in the coolant flow path 23 while being transported by the screw transporter 10. The The fluid medium Fa is cooled until the temperature immediately before being introduced into the cooling water tank 11 reaches a predetermined appropriate temperature. This appropriate temperature is a temperature at which the separation of the deposit due to the shrinkage difference between the fluid medium Fa and the deposit can be appropriately generated in water, and the fluid medium Fa itself does not crack due to rapid cooling. . The appropriate temperature is appropriately selected from 200 to 450 ° C., for example, according to the amount of water in the cooling water tank 11, the water temperature, the amount of fluid medium Fa input, and the like.

以上説明した第2の実施形態に係る流動媒体再生装置22によれば、冷却媒体流動路23によって高温の流動媒体Faを適正温度まで冷却してから冷却水槽11内に投入することで、流動媒体Faの投入による水の蒸発や水温の大幅な変化を抑えることが可能になる。その結果、水温の変化を抑えるために大量の水を貯留したり、頻繁に水温調節を行ったりする事態を避けることが可能になり、これによって冷却水槽11の小型化や運用コストの低下を図ることができる。   According to the fluid medium regenerator 22 according to the second embodiment described above, the fluid medium is cooled by cooling the hot fluid medium Fa to an appropriate temperature through the coolant flow path 23 and then put into the cooling water tank 11. It becomes possible to suppress the evaporation of water and the drastic change in water temperature due to the introduction of Fa. As a result, it is possible to avoid a situation in which a large amount of water is stored in order to suppress changes in the water temperature or the water temperature is frequently adjusted, thereby reducing the size of the cooling water tank 11 and reducing the operation cost. be able to.

本発明は、上述した実施形態に限定されるものではない。   The present invention is not limited to the embodiment described above.

例えば、本発明は、CFBボイラ以外の流動層式燃焼炉に対しても適用可能である。また、燃焼炉で使用される燃料は、バイオマス燃料に限られない。流動媒体Faに付着する付着物が水に溶解する成分となる燃料や付着物と流動媒体Faとの間で十分な収縮差が生じる燃料であれば良い。特に高アルカリ成分を含む燃料を使用する場合に、本発明を好適に適用することができる。   For example, the present invention can be applied to a fluidized bed combustion furnace other than a CFB boiler. Further, the fuel used in the combustion furnace is not limited to biomass fuel. Any fuel may be used as long as the deposit that adheres to the fluid medium Fa becomes a component that dissolves in water or a fuel that causes a sufficient shrinkage difference between the deposit and the fluid medium Fa. The present invention can be suitably applied particularly when a fuel containing a high alkali component is used.

また、特許請求の範囲に記載の中間冷却手段は、第2の実施形態に記載の冷却媒体流動路23に限られず、例えば空冷によって流動媒体Faを冷却する態様であっても良い。なお、冷却媒体流動路23で回収された熱を他の設備で利用する構成とすることもできる。   Further, the intermediate cooling means described in the claims is not limited to the cooling medium flow path 23 described in the second embodiment, and may be an aspect in which the fluid medium Fa is cooled by, for example, air cooling. In addition, it can also be set as the structure which utilizes the heat | fever collect | recovered by the cooling-medium flow path 23 with another installation.

また、返送ライン14を必ずしも備える必要はない。   Further, the return line 14 is not necessarily provided.

1,21…燃焼設備、2…燃焼炉、3,22…流動媒体再生装置、10…スクリュー搬送機、11…冷却水槽、14…返送ライン(返送手段)、23…冷却媒体流動路(中間冷却手段)、F…流動層。   DESCRIPTION OF SYMBOLS 1,21 ... Combustion equipment, 2 ... Combustion furnace, 3,22 ... Fluid medium regeneration device, 10 ... Screw carrier, 11 ... Cooling water tank, 14 ... Return line (return means), 23 ... Coolant flow path (intermediate cooling) Means), F ... fluidized bed.

Claims (4)

流動層式燃焼炉の流動層より抜き出した流動媒体から付着物を分離することで前記流動媒体を再生する流動層の流動媒体再生装置であって、
前記燃焼炉の前記流動層より抜き出した前記流動媒体を水中に投入して冷却することにより、前記流動媒体と前記付着物との収縮差を利用して前記流動媒体から前記付着物を分離する冷却水槽を備えていることを特徴とする流動層の流動媒体再生装置。
A fluidized bed regenerating apparatus for a fluidized bed that regenerates the fluidized medium by separating deposits from the fluidized medium extracted from the fluidized bed of a fluidized bed combustion furnace,
Cooling that separates the deposit from the fluidized medium by using the difference in shrinkage between the fluidized medium and the deposit by cooling the fluidized medium extracted from the fluidized bed of the combustion furnace into water. A fluidized bed regenerating apparatus for a fluidized bed comprising a water tank.
前記冷却水槽に投入する前に前記流動媒体を所定の適正温度まで冷却する中間冷却手段を更に備えることを特徴とする請求項1に記載の流動層の流動媒体再生装置。   2. The fluidized bed regeneration device for fluidized beds according to claim 1, further comprising intermediate cooling means for cooling the fluidized medium to a predetermined appropriate temperature before being introduced into the cooling water tank. 前記付着物を分離した前記流動媒体を回収して前記流動層に戻す返送手段を更に備えることを特徴とする請求項1又は請求項2に記載の流動層の流動媒体再生装置。   The fluidized bed regeneration device for a fluidized bed according to claim 1 or 2, further comprising a return means for collecting the fluidized medium from which the deposit has been separated and returning it to the fluidized bed. 流動層式燃焼炉の流動層より抜き出した流動媒体から付着物を分離することで前記流動媒体を再生する流動層の流動媒体再生方法であって、
前記燃焼炉の前記流動層より抜き出した前記流動媒体を水中に投入して冷却することにより、前記流動媒体と前記付着物との収縮差を利用して前記流動媒体から前記付着物を分離することを特徴とする流動層の流動媒体再生方法。






A fluidized bed regeneration method for a fluidized bed that regenerates the fluidized medium by separating deposits from the fluidized medium extracted from the fluidized bed of a fluidized bed combustion furnace,
Separating the deposit from the fluidized medium by using the difference in shrinkage between the fluidized medium and the deposit by cooling the fluid medium extracted from the fluidized bed of the combustion furnace into water. A fluidized bed regeneration method for fluidized beds.






JP2009259932A 2009-11-13 2009-11-13 Fluidized bed regenerator and method for fluidized bed Active JP5372713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259932A JP5372713B2 (en) 2009-11-13 2009-11-13 Fluidized bed regenerator and method for fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259932A JP5372713B2 (en) 2009-11-13 2009-11-13 Fluidized bed regenerator and method for fluidized bed

Publications (2)

Publication Number Publication Date
JP2011106701A true JP2011106701A (en) 2011-06-02
JP5372713B2 JP5372713B2 (en) 2013-12-18

Family

ID=44230370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259932A Active JP5372713B2 (en) 2009-11-13 2009-11-13 Fluidized bed regenerator and method for fluidized bed

Country Status (1)

Country Link
JP (1) JP5372713B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629662A (en) * 2013-11-08 2014-03-12 长兴新城环保有限公司 Boiler return feeder
WO2018079119A1 (en) * 2016-10-24 2018-05-03 住友重機械工業株式会社 Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance
WO2022210519A1 (en) * 2021-03-29 2022-10-06 住友重機械工業株式会社 Fluid medium regeneration device, combustion system and combustion method of fluidized bed combustion furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646906A (en) * 1979-09-27 1981-04-28 Babcock Hitachi Kk Fluidized layer type boiler
JPS56132425U (en) * 1980-03-06 1981-10-07
JP2001193912A (en) * 2000-01-11 2001-07-17 Ebara Corp Selector for fluidizing medium in fluidizing zone and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646906A (en) * 1979-09-27 1981-04-28 Babcock Hitachi Kk Fluidized layer type boiler
JPS56132425U (en) * 1980-03-06 1981-10-07
JP2001193912A (en) * 2000-01-11 2001-07-17 Ebara Corp Selector for fluidizing medium in fluidizing zone and method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629662A (en) * 2013-11-08 2014-03-12 长兴新城环保有限公司 Boiler return feeder
WO2018079119A1 (en) * 2016-10-24 2018-05-03 住友重機械工業株式会社 Agglomeration inhibition method, agglomeration inhibition material, compound adjustment method, fluidized bed boiler, and fluid substance
JP2018071802A (en) * 2016-10-24 2018-05-10 住友重機械工業株式会社 Agglomeration prevention method, agglomeration prevention material, compound adjustment method, fluidized-bed boiler, and fluid
KR20190072516A (en) * 2016-10-24 2019-06-25 스미도모쥬기가이고교 가부시키가이샤 Flocculation inhibiting method, flocculant inhibitor, compound adjusting method, fluidized bed boiler and milk animal
KR102337474B1 (en) * 2016-10-24 2021-12-08 스미도모쥬기가이고교 가부시키가이샤 Aggregation inhibitory method, agglomeration inhibitor, compound adjustment method, fluidized bed boiler and fluid
WO2022210519A1 (en) * 2021-03-29 2022-10-06 住友重機械工業株式会社 Fluid medium regeneration device, combustion system and combustion method of fluidized bed combustion furnace
KR20230164666A (en) 2021-03-29 2023-12-04 스미도모쥬기가이고교 가부시키가이샤 Fluidized media regeneration device, combustion system, and combustion method of fluidized bed combustion furnace
TWI826981B (en) * 2021-03-29 2023-12-21 日商住友重機械工業股份有限公司 Fluid medium regeneration device, combustion system and combustion method of flowing bed combustion furnace

Also Published As

Publication number Publication date
JP5372713B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
KR102088217B1 (en) Multi-stage circulating fluidized bed syngas cooling
ES2751383T3 (en) Combustion process in chemical circuit with elimination of ash and fines that leave the oxidation zone and installation using said process
JP5536063B2 (en) Fluidized bed boiler combustion method and fluidized bed boiler
JP5372713B2 (en) Fluidized bed regenerator and method for fluidized bed
JP2010019525A (en) Exhaust gas treatment facility and dust recovery method by exhaust gas treatment facility
TWI826981B (en) Fluid medium regeneration device, combustion system and combustion method of flowing bed combustion furnace
JP2007040696A (en) Method of storing heat into heat storage device
JP2006308179A (en) Corrosion prevention device and corrosion prevention method for boiler
JP4861872B2 (en) Fluidized bed boiler
JP2018080247A (en) Gasified gas generation system
JP6654127B2 (en) Coagulation control method, coagulation control material, compound preparation method, fluidized bed boiler, and fluid
JP2018204915A (en) Slag separation device
JP3809080B2 (en) Method and apparatus for burning waste containing agglomerated components
JP2019190687A (en) Biomass combustion method and combustion apparatus
JP2020153585A (en) Combustion apparatus and combustion method for alkali component-containing fuel
JP4939268B2 (en) Fluidized bed boiler
JP2010043857A (en) Method of storing heat into heat storage device
JP7016292B2 (en) Secondary combustion furnace and its operation method
JP2001137635A (en) Dust collecting device provided with heat recovering part as annex
KR20240042607A (en) Combustion device, combustion method
JP3841639B2 (en) Flue structure of ash melting furnace
TW202316060A (en) Boiler and co2 recovery method
JP4288186B2 (en) Fluid separation method and apparatus for pyrolysis residue
JP2021188829A (en) Aggregate production determining method and combustion system
KR20240087779A (en) Boiler and CO2 recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150