JP3841639B2 - Flue structure of ash melting furnace - Google Patents

Flue structure of ash melting furnace Download PDF

Info

Publication number
JP3841639B2
JP3841639B2 JP2000335768A JP2000335768A JP3841639B2 JP 3841639 B2 JP3841639 B2 JP 3841639B2 JP 2000335768 A JP2000335768 A JP 2000335768A JP 2000335768 A JP2000335768 A JP 2000335768A JP 3841639 B2 JP3841639 B2 JP 3841639B2
Authority
JP
Japan
Prior art keywords
melting furnace
ash melting
ash
flue
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000335768A
Other languages
Japanese (ja)
Other versions
JP2002139214A (en
Inventor
義人 福間
清 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2000335768A priority Critical patent/JP3841639B2/en
Publication of JP2002139214A publication Critical patent/JP2002139214A/en
Application granted granted Critical
Publication of JP3841639B2 publication Critical patent/JP3841639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ処理施設に付設される灰溶融炉からの排ガスを下流側へと導出させるための灰溶融炉の煙道構造に関するものである。
【0002】
【従来の技術】
従来、灰溶融炉を用いて焼却炉から排出される焼却灰等を溶融処理する方法が行われてきた。これは最終処分場の確保が困難なため、その焼却灰等を溶融固化することによって減容することを主な目的とするものである。近年、この溶融処理方法は、焼却炉から排出される焼却灰等を高温で溶融し固化することで、その焼却灰等に含まれるダイオキシン類を分解でき、またその焼却灰等に含まれる重金属類の溶出を防止できるなどの無害化の観点から注目されている。
【0003】
一方、ごみ処理施設においては、都市ごみ等の焼却処理に伴い、焼却炉から排出される焼却灰(主灰)と、その焼却炉の下流に配される集塵機等で捕集される飛灰とが発生する。これらの焼却残渣にはダイオキシン類が含まれており、主灰に含まれるダイオキシン類の濃度は比較的低いものの、燃焼過程での発生や冷却過程での再合成などの要因により、飛灰にはダイオキシン類が高濃度で含まれている。さらに、飛灰には、焼却炉内で揮散した塩類や重金属類などがその焼却炉から排出される排ガスとともに冷却され、その冷却の過程で凝縮したものが含まれているため、主灰と比較して多量の塩類や重金属類などが含まれている。
【0004】
そこで、前述した無害化の観点から、焼却処理に伴い発生する主灰や飛灰を混合し、両者を灰溶融炉により溶融固化する処理方法が多く利用されている。この処理方法は、燃料の燃焼熱や電気エネルギーを利用して主灰・飛灰を1250〜1450℃、あるいはそれ以上の温度に加熱して、主灰・飛灰をスラグ化し、このスラグを急冷または徐冷し、固形化する方法である。なお、この処理方法において、灰溶融炉内で発生する排ガスは、その灰溶融炉と連通接続される灰溶融炉煙道を通って下流側に排出される。
【0005】
【発明が解決しようとする課題】
しかしながら、前述した処理方法によれば、塩類や重金属類などを多量に含む飛灰と、主灰とを混合して溶融するため、灰溶融炉内で発生する排ガス中には揮散した塩類や重金属類などが多量に含まれることになる。このため、例えば、灰溶融炉を出た1300℃程度の排ガスがその灰溶融炉と連通接続される灰溶融炉煙道内の下流側に流れるにつれて降温し、NaCl化合物の沸点の950℃付近まで降温した際に、その排ガス中に含まれるNaCl化合物を主成分とする塩類等が液状化する。この液状化した塩類等(以下、単に「液状化物」という。)は、灰溶融炉からの排ガスの流れに沿って下流側に流れ、更にその灰溶融炉煙道の下流側に連通接続されるダスト排出ホッパ内に流れ込み、このダスト排出ホッパ内で更に降温し、その液状化物の凝固点で固体化する。このため、そのダスト排出ホッパの下部に形成されるホッパ部の詰りを引き起こし、そのホッパ部に詰った固体物を除去するために、鑿岩機を用いた非常に過酷な除去作業が必要になるという問題点がある。
【0006】
なお、灰溶融炉煙道内でその排ガス中の塩類等が液状化する現象は、特に、灰溶融炉の運転の立上げ後から通常運転に至るまでの間で引き起こされる。その後は、灰溶融炉の運転に伴う煙道内の耐火物からの輻射熱の影響でその灰溶融炉煙道内の温度が上昇するため、この液状化現象が引き起こされることがない。
【0007】
本発明は、このような問題点に鑑みてなされたもので、灰溶融炉煙道内で発生した液状化物がその灰溶融炉煙道に接続される設備等に流出するのを防止でき、これにより、その液状化物が凝固してその設備等において詰りが生ずるのを回避することのできる灰溶融炉煙道を提供することを目的とするものである。
【0008】
【課題を解決するための手段および作用・効果】
前記目的を達成するために、第1発明による灰溶融炉の煙道構造は、
灰溶融炉と連通して接続され、その灰溶融炉からの排ガスを下流側へと導出させるための灰溶融炉の煙道構造であって、前記排ガス中の液状化物をその灰溶融炉煙道内に滞留させるための滞留手段が設けられていることを特徴とするものである。
【0009】
本発明によれば、前記排ガス中の液状化物は、前記灰溶融炉煙道に設けられる滞留手段によりその灰溶融炉煙道内に滞留され、その灰溶融炉煙道内の耐火物からの輻射熱による温度上昇に伴ってガス化され、前記灰溶融炉から排出される排ガスとともに下流側に送出される。したがって、この液状化物がその灰溶融炉煙道と連通接続される設備等に流出するのを防止することができ、この液状化物が凝固してその設備等の詰りを生ずるといった不具合を回避することができる。
【0010】
第1発明において、前記滞留手段は、前記灰溶融炉煙道の上流端部に設けられる第1の堰と、前記灰溶融炉煙道の下流端部に設けられる第2の堰とを備える構成であるのが好ましい(第2発明)。このようにすれば、前記排ガス中の液状化物を第1の堰と第2の堰とで仕切られた部分に滞留させることができるので、簡易な構造によって第1発明の作用・効果を得ることができる。
【0011】
また、第1発明において、前記滞留手段は、前記灰溶融炉煙道を下流端部側へ向けて上り勾配となるように傾斜配置するとともに、前記灰溶融炉煙道の上流端部に堰を設けた構成とすることもできる(第3発明)。このような構成によっても、前記第2発明と同様の作用・効果を奏し得る。
【0012】
【発明の実施の形態】
次に、本発明による灰溶融炉の煙道構造の具体的な実施の形態につき、図面を参照しつつ説明する。
【0013】
図1には、本発明の一実施形態に係る灰溶融炉の排ガス処理システムの要部構成図が示されている。また、図2(a)には、図1におけるX−X視断面拡大図が、図2(b)には、図1におけるY−Y視断面拡大図がそれぞれ示されている。
【0014】
本実施形態の排ガス処理システムにおいて、灰溶融炉1は、溶融炉本体2と、この溶融炉本体2に付設され、前工程のごみ焼却炉(図示省略)で生成された主灰や飛灰などの被溶融物が投入される焼却灰投入シュート3と、この焼却灰投入シュート3下部に形成される灰貯留部4に貯留される被溶融物を溶融炉本体2内に適量ずつ供給する灰供給プッシャ5とを備えて構成されている。前記溶融炉本体2の天井部にはバーナー6が設けられ、このバーナー6で炉内雰囲気を1350〜1450℃に昇温し、被溶融物が表面から溶融されるように構成されている。こうして、溶融炉本体2内に供給された被溶融物は順次溶融スラグとされる。また、前記溶融炉本体2の下方には筒状構造のスラグタップ7がその溶融炉本体2内と連通して延設され、更にこのスラグタップ7の下部は槽内が冷却水で満たされたスラグ水冷槽8と接続されている。こうして、溶融炉本体2内で溶融処理された被溶融物(溶融スラグ)がそのスラグ水冷槽8内に落下され、水砕される構成とされている。なお、そのスラグ水冷槽8内には冷却・水砕された溶融スラグを搬出するためのスラグ搬出コンベヤ9が内設されている。
【0015】
前記スラグタップ7には、このスラグタップ7と連通し、かつその導通方向が水平になるように灰溶融炉煙道20が接続されている。この灰溶融炉煙道20は、耐火・断熱キャスタブルからなる二重積層構造の筒状煙道である。この灰溶融炉煙道20には、溶融炉本体2内からの排ガス流れ(図1中、矢印F方向)の上流側端部およびその排ガス流れの下流側端部にそれぞれその灰溶融炉煙道20の内側下部の内周壁に沿って第1の堰21および第2の堰22が配設されている。こうして、灰溶融炉煙道20内下部に溶融炉本体2内からの排ガス中の液状化物を滞留させるための滞留部25が形成され、その液状化物がスラグ水冷槽8内および後述するダスト排出ホッパ10内に流れ込むのを防止するようにされている。なお、第1の堰21の灰溶融炉煙道20内側底部からの高さh(図2(a)参照)と、第2の堰22の灰溶融炉煙道20内側底部からの高さh(図2(b)参照)との関係は、h<hである。こうすることで、溶融炉本体2内からの排ガス流れの影響による第2の堰22近傍における液状化物の界面上昇に対応するとともに、滞留部25の滞留容量を越える液状化物が発生した場合にはその液状化物をスラグ水冷槽8内へ溢流させるようにしている。
【0016】
前記灰溶融炉煙道20の排ガス流れの下流側端部には、ダスト排出ホッパ10が連通接続されている。このダスト排出ホッパ10は、筒状構造であって、上方部は図示しない燃焼室と連通接続されるとともに、下方部には排ガス中のダスト等を底部から排出する漏斗状に形成されたホッパ部10aが形成されてなるものである。
【0017】
このように構成される本実施形態の排ガス処理システムにおいて、焼却灰投入シュート3に投入された被溶融物は、灰溶融炉1の溶融炉本体2内でバーナ6により溶融され溶融スラグとされる。この溶融スラグは、スラグ水冷槽8内に落下され冷却・水砕された後、スラグ搬出コンベヤ9により系外に排出される。一方、溶融炉本体2内で発生した塩類や重金属類などを多量に含むガスは、排ガスとしてスラグタップ7から灰溶融炉煙道20を通ってダスト排出ホッパ10内に送入される。そして、その排ガスのガス成分はダスト排出ホッパ10の上方から図示しない燃焼室に送入され、その排ガス中のダスト等はダスト排出ホッパ10のホッパ部10aから排出され、その下方に配される図示しないダスト搬出コンベヤによって搬出される。
【0018】
この本実施形態の排ガス処理システムにおける灰溶融炉1の運転立上げ時においては、灰溶融炉煙道20自体の温度が低く、例えば、溶融炉本体2内から排出された1300℃程度の排ガスが灰溶融炉煙道20内の下流側に流れるにつれて降温し、NaCl化合物の沸点である950℃付近までその温度が低下すると、その排ガス中に含まれるNaCl化合物を主成分とする塩類等が液状化する。この液状化した塩類等(液状化物)は、灰溶融炉煙道20の上流側に設けられた第1の堰21と、灰溶融炉煙道20の下流側に設けられた第2の堰22と、灰溶融炉煙道20内側底部とで形成される滞留部25に滞留される。なお、この際、灰溶融炉煙道20内でその液状化物が過剰に発生して滞留部25の滞留容量を越えるような場合でも、前述したように第1の堰21の高さhが第2の堰22の高さhより低く設定されているので、その液状化物は第1の堰21上を越えて溢流し、スラグ水冷槽8内へ流れ込む。
【0019】
そして、灰溶融炉1が通常運転に移行するに伴い、その灰溶融炉煙道20の耐火物からの輻射熱によって灰溶融炉煙道20内の温度は上昇し、滞留部25に滞留されている液状化物はガス化され、このガスは溶融炉本体2内から排出される排ガスとともに、ダスト排出ホッパ10に送り込まれ、更に図示しない燃焼室に送出される。
【0020】
本実施形態によれば、灰溶融炉煙道20内で発生した液状化物をその灰溶融炉煙道20に形成された滞留部25に滞留させ、その液状化物を灰溶融炉煙道20の耐火物の輻射熱を利用してガス化させ、下流側に排出することができる。また、灰溶融炉煙道20内において、その液状化物が過剰に生成されたとしても、その過剰分の液状化物を灰溶融炉煙道20の上流側に設けられる第1の堰21を越えて溢流させ、スラグ水冷槽8内に排出することができる。したがって、その液状化物がダスト排出ホッパ10内に流出するのを確実に防止することができ、その液状化物が凝固してダスト排出ホッパ10の詰りを生ずるといった不具合を回避することができる。
【0021】
本実施形態においては、灰溶融炉煙道20の導通方向が水平になるように、灰溶融炉煙道20がスラグタップ7およびダスト排出ホッパ10に連通接続されている例を示した。ここで、本実施形態の変形例として、灰溶融炉煙道の下流端がその上流端に対して高位置となるように灰溶融炉煙道を傾斜させ、灰溶融炉煙道の底部と灰溶融炉煙道の上流端部に設けられる堰とで滞留部を形成し、この滞留部において液状化物を滞留させる構造とし、本実施形態における灰溶融炉煙道20の下流側の第2の堰22が不要となる構造としても、本実施形態と同様の作用・効果を得ることが可能である。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態に係る灰溶融炉の排ガス処理システムの要部構成図である。
【図2】図2(a)は、図1におけるX−X視断面拡大図であり、図2(b)は、図1におけるY−Y視断面拡大図である。
【符号の説明】
1 灰溶融炉
2 溶融炉本体
7 スラグタップ
20 灰溶融炉煙道
21 第1の堰
22 第2の堰
25 滞留部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flue structure of an ash melting furnace for leading exhaust gas from an ash melting furnace attached to a waste treatment facility to the downstream side.
[0002]
[Prior art]
Conventionally, a method for melting incinerated ash discharged from an incinerator using an ash melting furnace has been performed. Since it is difficult to secure a final disposal site, the main purpose is to reduce the volume by melting and solidifying the incinerated ash. In recent years, this melting treatment method is capable of decomposing dioxins contained in the incineration ash etc. by melting and solidifying the incineration ash etc. discharged from the incinerator at a high temperature, and heavy metals contained in the incineration ash etc. It is attracting attention from the viewpoint of detoxification such as prevention of elution.
[0003]
On the other hand, in a waste treatment facility, incineration ash (main ash) discharged from an incinerator and incineration of municipal waste, etc., and fly ash collected by a dust collector or the like arranged downstream of the incinerator Will occur. Although these incineration residues contain dioxins, the concentration of dioxins in the main ash is relatively low, but due to factors such as generation during combustion and resynthesis during cooling, fly ash contains Dioxins are contained in high concentration. In addition, fly ash contains salt and heavy metals volatilized in the incinerator, which is cooled together with the exhaust gas discharged from the incinerator and condensed during the cooling process. A large amount of salts and heavy metals are included.
[0004]
Therefore, from the viewpoint of detoxification described above, many processing methods are used in which main ash and fly ash generated in incineration are mixed and both are melted and solidified by an ash melting furnace. In this treatment method, the main ash / fly ash is heated to 1250 to 1450 ° C. or higher by using fuel combustion heat or electric energy to slag the main ash / fly ash, and the slag is rapidly cooled. Or it is the method of cooling slowly and solidifying. In this processing method, the exhaust gas generated in the ash melting furnace is discharged downstream through the ash melting furnace flue connected to the ash melting furnace.
[0005]
[Problems to be solved by the invention]
However, according to the treatment method described above, the fly ash containing a large amount of salts and heavy metals and the main ash are mixed and melted, so that the vaporized salts and heavy metals are contained in the exhaust gas generated in the ash melting furnace. It will contain a lot of food. For this reason, for example, the temperature decreases as the exhaust gas of about 1300 ° C. exiting the ash melting furnace flows downstream in the ash melting furnace flue connected to the ash melting furnace, and the temperature decreases to about 950 ° C., the boiling point of the NaCl compound. When this occurs, salts and the like mainly composed of NaCl compounds contained in the exhaust gas liquefy. This liquefied salt or the like (hereinafter simply referred to as “liquefied product”) flows downstream along the flow of exhaust gas from the ash melting furnace and is further connected to the downstream side of the ash melting furnace flue. It flows into the dust discharge hopper, further cools down in the dust discharge hopper, and solidifies at the freezing point of the liquefied product. For this reason, the hopper part formed in the lower part of the dust discharge hopper is clogged, and in order to remove the solid matter clogged in the hopper part, a very severe removal work using a rock drill is required. There is a point.
[0006]
In addition, the phenomenon in which the salt in the exhaust gas liquefies in the ash melting furnace flue is caused especially after the start-up of the operation of the ash melting furnace until the normal operation. Thereafter, the temperature in the ash melting furnace flue rises due to the influence of radiant heat from the refractory in the flue accompanying the operation of the ash melting furnace, so that this liquefaction phenomenon is not caused.
[0007]
The present invention has been made in view of such problems, and can prevent the liquefied material generated in the ash melting furnace flue from flowing out to equipment connected to the ash melting furnace flue, thereby An object of the present invention is to provide an ash melting furnace flue capable of avoiding the solidification of the liquefied product and clogging in the equipment.
[0008]
[Means for solving the problems and actions / effects]
In order to achieve the above object, the flue structure of the ash melting furnace according to the first invention is:
An ash melting furnace flue structure connected to and connected to an ash melting furnace to lead the exhaust gas from the ash melting furnace to the downstream side, and the liquefied product in the exhaust gas in the ash melting furnace flue It is characterized in that a staying means for staying in is provided.
[0009]
According to the present invention, the liquefied material in the exhaust gas is retained in the ash melting furnace flue by the retaining means provided in the ash melting furnace flue, and the temperature due to radiant heat from the refractory in the ash melting furnace flue It is gasified as it rises and is sent downstream along with the exhaust gas discharged from the ash melting furnace. Therefore, it is possible to prevent the liquefied material from flowing out to facilities connected to the ash melting furnace flue, and avoid problems such as solidification of the liquefied material and clogging of the facilities. Can do.
[0010]
1st invention WHEREIN: The said retention | holding means is provided with the 1st weir provided in the upstream end part of the said ash melting furnace flue, and the 2nd weir provided in the downstream end part of the said ash melting furnace flue (Second invention). In this way, since the liquefied material in the exhaust gas can be retained in the portion partitioned by the first weir and the second weir, the function and effect of the first invention can be obtained with a simple structure. Can do.
[0011]
Further, in the first invention, the staying means is arranged so as to incline the ash melting furnace flue toward the downstream end side so as to rise upward, and a weir is provided at the upstream end of the ash melting furnace flue. It can also be set as the provided structure (3rd invention). Even with such a configuration, the same operation and effect as the second invention can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, specific embodiments of the flue structure of the ash melting furnace according to the present invention will be described with reference to the drawings.
[0013]
FIG. 1 shows a configuration diagram of a main part of an exhaust gas treatment system for an ash melting furnace according to an embodiment of the present invention. 2A shows an enlarged sectional view taken along the line XX in FIG. 1, and FIG. 2B shows an enlarged sectional view taken along the line YY in FIG.
[0014]
In the exhaust gas treatment system of the present embodiment, the ash melting furnace 1 includes a melting furnace main body 2, main ash, fly ash, and the like that are attached to the melting furnace main body 2 and generated in a waste incinerator (not shown) in a previous process. Ash supply for supplying an appropriate amount of the molten material stored in the incinerated ash charging chute 3 into which the molten material is charged and the ash storage part 4 formed in the lower part of the incinerated ash charging chute 3 into the melting furnace body 2 A pusher 5 is provided. A burner 6 is provided on the ceiling portion of the melting furnace main body 2, and the temperature inside the furnace is raised to 1350 to 1450 ° C. by the burner 6 so that the material to be melted is melted from the surface. In this way, the material to be melted supplied into the melting furnace main body 2 is sequentially made into molten slag. Further, a slag tap 7 having a cylindrical structure is extended below the melting furnace body 2 so as to communicate with the interior of the melting furnace body 2, and the tank is filled with cooling water at the lower part of the slag tap 7. The slag water cooling tank 8 is connected. In this way, the material to be melted (molten slag) melted in the melting furnace main body 2 is dropped into the slag water cooling tank 8 and crushed. In the slag water cooling tank 8, a slag carry-out conveyor 9 for carrying out the molten and crushed molten slag is provided.
[0015]
An ash melting furnace flue 20 is connected to the slag tap 7 so as to communicate with the slag tap 7 and to have a horizontal conduction direction. This ash melting furnace flue 20 is a cylindrical flue having a double laminated structure made of fireproof and heat insulating castable. The ash melting furnace flue 20 has an ash melting furnace flue at the upstream end of the exhaust gas flow (in the direction of arrow F in FIG. 1) from the melting furnace main body 2 and the downstream end of the exhaust gas flow. A first weir 21 and a second weir 22 are arranged along the inner peripheral wall of the inner lower portion of the 20. In this way, a retention portion 25 for retaining the liquefied material in the exhaust gas from the melting furnace main body 2 is formed in the lower portion of the ash melting furnace flue 20, and the liquefied material is contained in the slag water cooling tank 8 and a dust discharge hopper described later. 10 is prevented from flowing into the inside. The height h 1 of the first weir 21 from the bottom inside the ash melting furnace flue 20 (see FIG. 2A) and the height of the second weir 22 from the bottom inside the ash melting furnace flue 20 The relationship with h 2 (see FIG. 2B) is h 1 <h 2 . By doing so, when the liquefied material exceeding the retention capacity of the retention portion 25 is generated while corresponding to the rise in the interface of the liquefied material in the vicinity of the second weir 22 due to the influence of the exhaust gas flow from the melting furnace main body 2, The liquefied material is allowed to overflow into the slag water cooling tank 8.
[0016]
A dust discharge hopper 10 is connected to the downstream end portion of the exhaust gas flow of the ash melting furnace flue 20. The dust discharge hopper 10 has a cylindrical structure, and an upper portion thereof is connected to a combustion chamber (not shown), and a hopper portion formed in a lower portion is formed in a funnel shape for discharging dust or the like in exhaust gas from the bottom portion. 10a is formed.
[0017]
In the exhaust gas treatment system of the present embodiment configured as described above, the material to be melted introduced into the incineration ash charging chute 3 is melted by the burner 6 in the melting furnace body 2 of the ash melting furnace 1 to form molten slag. . The molten slag is dropped into the slag water cooling tank 8, cooled and crushed, and then discharged out of the system by the slag carry-out conveyor 9. On the other hand, a gas containing a large amount of salts, heavy metals and the like generated in the melting furnace main body 2 is sent as an exhaust gas from the slag tap 7 through the ash melting furnace flue 20 into the dust discharge hopper 10. Then, the gas component of the exhaust gas is fed into a combustion chamber (not shown) from above the dust discharge hopper 10, and the dust and the like in the exhaust gas are discharged from the hopper portion 10a of the dust discharge hopper 10 and arranged below. Not carried out by the dust carry-out conveyor.
[0018]
At the start-up of the ash melting furnace 1 in the exhaust gas treatment system of this embodiment, the temperature of the ash melting furnace flue 20 itself is low. For example, exhaust gas of about 1300 ° C. discharged from the melting furnace body 2 is exhausted. When the temperature falls as it flows downstream in the ash melting furnace flue 20 and the temperature falls to around 950 ° C., which is the boiling point of the NaCl compound, salts and the like mainly composed of the NaCl compound contained in the exhaust gas are liquefied. To do. The liquefied salts and the like (liquefied material) are a first weir 21 provided on the upstream side of the ash melting furnace flue 20 and a second weir 22 provided on the downstream side of the ash melting furnace flue 20. And retained in the retaining portion 25 formed by the inner bottom of the ash melting furnace flue 20. At this time, even when the liquefied product is excessively generated in the ash melting furnace flue 20 and exceeds the retention capacity of the retention portion 25, the height h1 of the first weir 21 is the same as described above. Since the height is set lower than the height h 2 of the second weir 22, the liquefied material overflows over the first weir 21 and flows into the slag water cooling tank 8.
[0019]
As the ash melting furnace 1 shifts to normal operation, the temperature in the ash melting furnace flue 20 rises due to the radiant heat from the refractory material of the ash melting furnace flue 20 and is retained in the retention part 25. The liquefied material is gasified, and this gas is sent to the dust discharge hopper 10 together with the exhaust gas discharged from the melting furnace body 2 and further sent to a combustion chamber (not shown).
[0020]
According to the present embodiment, the liquefied material generated in the ash melting furnace flue 20 is retained in the retaining portion 25 formed in the ash melting furnace flue 20, and the liquefied material is fire-resistant in the ash melting furnace flue 20. It can be gasified using the radiant heat of an object and discharged downstream. Further, even if the liquefied material is excessively generated in the ash melting furnace flue 20, the excess liquefied material exceeds the first weir 21 provided on the upstream side of the ash melting furnace flue 20. It can be overflowed and discharged into the slag water cooling tank 8. Therefore, it is possible to reliably prevent the liquefied material from flowing into the dust discharge hopper 10, and avoid problems such as solidification of the liquefied material and clogging of the dust discharge hopper 10.
[0021]
In the present embodiment, an example is shown in which the ash melting furnace flue 20 is connected to the slag tap 7 and the dust discharge hopper 10 so that the conduction direction of the ash melting furnace flue 20 is horizontal. Here, as a modification of this embodiment, the ash melting furnace flue is inclined so that the downstream end of the ash melting furnace flue is at a higher position with respect to the upstream end, and the bottom of the ash melting furnace flue and the ash A retention part is formed with the weir provided at the upstream end of the melting furnace flue, and the liquefied material is retained in this retention part. The second weir on the downstream side of the ash melting furnace flue 20 in this embodiment. Even in a structure in which 22 is not required, it is possible to obtain the same operation and effect as in the present embodiment.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a main part of an exhaust gas treatment system for an ash melting furnace according to an embodiment of the present invention.
2A is an enlarged sectional view taken along line XX in FIG. 1, and FIG. 2B is an enlarged sectional view taken along line YY in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ash melting furnace 2 Melting furnace main body 7 Slag tap 20 Ash melting furnace flue 21 1st weir 22 2nd weir 25 A retention part

Claims (3)

灰溶融炉と連通して接続され、その灰溶融炉からの排ガスを下流側へと導出させるための灰溶融炉の煙道構造であって、前記排ガス中の液状化物をその灰溶融炉煙道内に滞留させるための滞留手段が設けられていることを特徴とする灰溶融炉の煙道構造。An ash melting furnace flue structure connected to and connected to an ash melting furnace to lead the exhaust gas from the ash melting furnace downstream, wherein the liquefied material in the exhaust gas is liquefied in the ash melting furnace flue A flue structure for an ash melting furnace, characterized in that a retention means for retaining the ash melting furnace is provided. 前記滞留手段は、前記灰溶融炉煙道の上流端部に設けられる第1の堰と、前記灰溶融炉煙道の下流端部に設けられる第2の堰とを備える構成である請求項1に記載の灰溶融炉の煙道構造。2. The retention means includes a first weir provided at an upstream end portion of the ash melting furnace flue and a second weir provided at a downstream end portion of the ash melting furnace flue. The flue structure of the ash melting furnace described in 1. 前記滞留手段は、前記灰溶融炉煙道を下流端部側へ向けて上り勾配となるように傾斜配置するとともに、前記灰溶融炉煙道の上流端部に堰を設けた構成である請求項1に記載の灰溶融炉の煙道構造。The stagnation means has a configuration in which the ash melting furnace flue is inclined so as to rise upward toward the downstream end side, and a weir is provided at the upstream end of the ash melting furnace flue. The flue structure of the ash melting furnace according to 1.
JP2000335768A 2000-11-02 2000-11-02 Flue structure of ash melting furnace Expired - Lifetime JP3841639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335768A JP3841639B2 (en) 2000-11-02 2000-11-02 Flue structure of ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335768A JP3841639B2 (en) 2000-11-02 2000-11-02 Flue structure of ash melting furnace

Publications (2)

Publication Number Publication Date
JP2002139214A JP2002139214A (en) 2002-05-17
JP3841639B2 true JP3841639B2 (en) 2006-11-01

Family

ID=18811455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335768A Expired - Lifetime JP3841639B2 (en) 2000-11-02 2000-11-02 Flue structure of ash melting furnace

Country Status (1)

Country Link
JP (1) JP3841639B2 (en)

Also Published As

Publication number Publication date
JP2002139214A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
CN102774869A (en) Apparatus and method for treating incineration ash using plasma arc
JPS6143069Y2 (en)
RU2486616C1 (en) Method for processing of solid radioactive wastes
JP2002503328A (en) High-temperature waste treatment method and system
JP3841639B2 (en) Flue structure of ash melting furnace
KR100227003B1 (en) Method of making artificial aggregate for concrete from incinerated ash and device of making the same
KR100729009B1 (en) Method for withdrawing phosphorus from sewage sludge or burned ash thereof
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP3904379B2 (en) Dust discharge device for secondary combustion chamber
JP3549135B2 (en) Waste melting treatment equipment with slag cleaning device and method for producing granulated slag
JP3451957B2 (en) Melting furnace for incineration residues containing salts
JPH11108330A (en) Melting furnace
JP3809039B2 (en) Method of granulating molten metal in melting furnace
JPH11281039A (en) Method and device for treating combustion ash of pulverized coal power boiler
JP3049170B2 (en) Swirling flow melting furnace
EP2587145B1 (en) Method for the pollution-free thermal processing of solid municipal waste and plant for carrying out said method
JP3405951B2 (en) How to treat incinerated ash
JP2021173591A (en) Method and apparatus for treating ash containing radioactive cesium
JPH035615A (en) Melting equipment of incineration ash
JP2004184055A (en) Movable melting furnace for incinerated ash
JPS5830382A (en) Treatment for dust
JPH08200637A (en) Melting furnace
JPH10332130A (en) Structure for discharging molten slag in wastes treatment equipment
JP2000161645A (en) Method for melting city refuse incineration residue, and its melting furnace
JP2008298310A (en) Combustion chamber for ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3841639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term