JP2008298310A - Combustion chamber for ash melting furnace - Google Patents

Combustion chamber for ash melting furnace Download PDF

Info

Publication number
JP2008298310A
JP2008298310A JP2007141687A JP2007141687A JP2008298310A JP 2008298310 A JP2008298310 A JP 2008298310A JP 2007141687 A JP2007141687 A JP 2007141687A JP 2007141687 A JP2007141687 A JP 2007141687A JP 2008298310 A JP2008298310 A JP 2008298310A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion
gas
combustion chamber
lower cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141687A
Other languages
Japanese (ja)
Other versions
JP4972462B2 (en
Inventor
Koutarou Katou
考太郎 加藤
Naoki Higuchi
直樹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2007141687A priority Critical patent/JP4972462B2/en
Publication of JP2008298310A publication Critical patent/JP2008298310A/en
Application granted granted Critical
Publication of JP4972462B2 publication Critical patent/JP4972462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress attachment-growing of dust included in an exhaust gas discharged from an ash melting furnace to a wall surface of a combustion chamber. <P>SOLUTION: In this tower-shaped combustion chamber 1 comprising a lower cooling portion 4 for cooling the exhaust gas C discharged from the ash melting furnace 50 and introduced therein through a gas inlet 2, by a radiation cooling means 3, and an upper combustion portion 6 disposed at an upper part of the lower cooling portion 4, and burning the exhaust gas C cooled at the lower cooling portion 4 by blowing a combustion gas D from a burner 5, an inner diameter E of the lower cooling portion 4 is determined so that the exhaust gas introduced from the gas inlet 2 does not collide with an opposed wall surface 7, and a blowing speed of the combustion gas D from the burner 5 is determined to be 5 m/sec or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、都市ごみ焼却残渣(焼却灰、飛灰等)を溶融処理する際に用いられる灰溶融炉の燃焼室の改良に関する。   The present invention relates to an improvement in a combustion chamber of an ash melting furnace used when a municipal waste incineration residue (incineration ash, fly ash, etc.) is melted.

従来、都市ごみ等の焼却処理に伴い発生する焼却残渣を、灰溶融炉を用いて溶融固化する処理方法が多く利用されている。この溶融処理方法を用いる事に依り焼却残渣の減容化が可能となり、最終処分場の延命化が図れる事に加えて、焼却残渣に含まれるダイオキシン類の分解、重金属類の溶出防止等の無害化が達成されている。   Conventionally, a processing method for melting and solidifying incineration residue generated in incineration processing of municipal waste or the like using an ash melting furnace has been widely used. By using this melting method, it is possible to reduce the volume of incineration residues, extending the life of the final disposal site, as well as harmless such as decomposition of dioxins contained in incineration residues and prevention of elution of heavy metals. Has been achieved.

ところで、灰溶融炉は、灰を溶融させる為に1300〜1600℃の高温状態となって居り、溶融処理に伴い発生する排ガスには、多量の可燃性ガス(未燃ガス)(CO、H2 等)と、塩化物(NaCl、KCl等)やリン酸塩(Na3PO4 、Zn3(PO4)2等)や低沸点重金属類(Zn、Pb等)を主成分とする高濃度の気化したダストが含まれている。この様な可燃性ガスとダストを含んだ排ガスは、灰溶融炉の後段に設けられた燃焼室に導入される。
燃焼室には、バーナが設けられて居り、可燃性ガスを燃焼させる為に850〜1000℃になる様に温度調整されていると共に、可燃ガスの燃焼を効率良く行わせる為に10m/sec以上の高速で吹き込まれている。この為、排ガス中のダストに含まれる塩化物やリン酸塩や低沸点重金属類は、これらの融点である約800℃以上の温度に依って液体状となる為に燃焼室の壁面に付着する。付着した液体状のダストは、燃焼室の壁面を伝って下部へ流れ落ち、バーナの位置から遠ざかるに連れて温度が低下して壁面に付着したまま固体状のダストとなり、灰溶融炉の運転継続に伴って固体状のダストが成長し、遂には燃焼室の下部が閉塞状態となる。更に、ダストが排ガスの導入口やバーナ部まで成長すると、運転を継続できなくなってしまう。
By the way, the ash melting furnace is in a high temperature state of 1300 to 1600 ° C. in order to melt the ash, and a large amount of flammable gas (unburned gas) (CO, H 2 ) Etc.) and high concentrations of chlorides (NaCl, KCl, etc.), phosphates (Na 3 PO 4 , Zn 3 (PO 4 ) 2 etc.) and low boiling point heavy metals (Zn, Pb, etc.) Contains vaporized dust. The exhaust gas containing such combustible gas and dust is introduced into a combustion chamber provided at the rear stage of the ash melting furnace.
The combustion chamber is provided with a burner, the temperature of which is adjusted to 850 to 1000 ° C. in order to burn the combustible gas, and 10 m / sec or more in order to efficiently burn the combustible gas. Being blown at high speed. For this reason, chlorides, phosphates and low-boiling point heavy metals contained in the dust in the exhaust gas become liquid depending on the melting point of about 800 ° C. or higher, and thus adhere to the wall of the combustion chamber. . The adhering liquid dust flows down to the bottom along the wall of the combustion chamber, and as it moves away from the burner position, the temperature decreases and becomes solid dust that remains attached to the wall surface. Along with this, solid dust grows, and finally the lower part of the combustion chamber becomes closed. Furthermore, if the dust grows up to the exhaust gas inlet and the burner section, the operation cannot be continued.

この様な問題を解決するものとして、例えば特許文献1に記載されたものが知られている。
これは、燃焼室の排ガス導入口より下方位置に、導入された排ガスを冷却する為の冷媒噴霧手段を設けると共に、燃焼室の下部壁面を輻射冷却する為の輻射冷却手段を設ける事に依り排ガス中のダストを融点以下とする事で、ダストが壁面に付着・成長するのを防止する様にしたものである。
As what solves such a problem, what was described, for example in patent document 1 is known.
This is because the refrigerant spraying means for cooling the introduced exhaust gas is provided below the exhaust gas inlet of the combustion chamber, and the radiation cooling means for radiatively cooling the lower wall surface of the combustion chamber is provided. By making the dust inside the melting point or less, the dust is prevented from adhering to and growing on the wall surface.

特開2006−23000号公報JP 2006-23000 A

ところが、この様なものは、燃焼室に導入された高温の排ガス中のダストが一瞬にして冷却される訳ではなく、所定温度までに冷却される前のダストが壁面に付着・成長する惧れがあった。又、壁面に付着する前に冷却されて固化したダストは、重力沈降に依って燃焼室の下部から排出されるが、その一部は、排ガスの流れに随伴して燃焼室の上部へ上昇され、ここに設置されたバーナの燃焼ガスに依って再び昇温され、この燃焼ガスの吹き込み部近傍の壁面に付着する事があった。   However, in such a case, the dust in the high-temperature exhaust gas introduced into the combustion chamber is not instantly cooled, but the dust before being cooled to a predetermined temperature may adhere to and grow on the wall surface. was there. Dust that has cooled and solidified before adhering to the wall surface is discharged from the lower part of the combustion chamber due to gravity settling, but a part of it is raised to the upper part of the combustion chamber as the exhaust gas flows. The temperature was raised again by the combustion gas of the burner installed here, and it sometimes adhered to the wall surface in the vicinity of the blowing portion of the combustion gas.

本発明は、叙上の問題点に鑑み、これを解消する為に創案されたもので、その課題とする処は、灰溶融炉から排出される排ガス中に含まれたダストが燃焼室の壁面に付着・成長するのを抑制する事ができる灰溶融炉の燃焼室を提供するにある。   The present invention has been devised in view of the problems described above, and the problem to be solved is that the dust contained in the exhaust gas discharged from the ash melting furnace is the wall surface of the combustion chamber. It is in providing the combustion chamber of the ash melting furnace which can suppress adhering to and growing on.

本発明の灰溶融炉の燃焼室は、灰溶融炉から排出されてガス導入口を通って内部に導入される排ガスを輻射冷却手段に依り冷却する下部冷却部と、下部冷却部の上方に設けられて下部冷却部で冷却された排ガスをバーナからの燃焼ガスの吹き込みに依り燃焼処理を行う上部燃焼部とを備えた塔状の燃焼室であって、前記下部冷却部の内径をガス導入口から導入される排ガスが対向壁面に衝突しない寸法に設定していると共に、バーナからの燃焼ガスの吹き込み速度を5m/sec以下に設定していることに特徴が存する。   The combustion chamber of the ash melting furnace of the present invention is provided above the lower cooling section, and a lower cooling section that cools the exhaust gas discharged from the ash melting furnace and introduced into the inside through the gas inlet by means of radiation cooling means. An upper combustion section that performs combustion treatment on the exhaust gas cooled by the lower cooling section by injecting combustion gas from a burner, and the inner diameter of the lower cooling section is defined as a gas inlet This is characterized in that the exhaust gas introduced from is set to a size that does not collide with the opposing wall surface, and the blowing speed of the combustion gas from the burner is set to 5 m / sec or less.

下部冷却部には、輻射冷却手段が設けられているので、排ガスが冷却されて排ガス中のダストが固体となり、下部冷却部の壁面に付着し難くなる。下部冷却部の壁面にダストが付着しても、壁面温度が低いので、容易に剥離されて成長する事がない。
下部冷却部の内径をガス導入口から導入される排ガスが対向壁面に衝突しない寸法に設定しているので、ガス導入口の対向壁面でのダストの付着が軽減される。
バーナからの燃焼ガスの吹き込み速度を5m/sec以下に設定しているので、吹き込み速度が従来の半分以下となり、バーナの吹き込み口付近でのダストの付着が軽減される。
Since the lower cooling part is provided with a radiation cooling means, the exhaust gas is cooled and the dust in the exhaust gas becomes a solid and is difficult to adhere to the wall surface of the lower cooling part. Even if dust adheres to the wall surface of the lower cooling section, the wall surface temperature is low, so that it does not easily peel off and grow.
Since the inner diameter of the lower cooling section is set to a size that does not allow the exhaust gas introduced from the gas inlet to collide with the opposing wall surface, dust adhesion on the opposing wall surface of the gas inlet is reduced.
Since the blowing speed of the combustion gas from the burner is set to 5 m / sec or less, the blowing speed is less than half that of the prior art, and the adhesion of dust near the burner inlet is reduced.

本発明に依れば、次の様な優れた効果を奏する事ができる。
(1) 下部冷却部の内径をガス導入口から導入される排ガスが対向壁面に衝突しない寸法に設定していると共に、バーナからの燃焼ガスの吹き込み速度を5m/sec以下に設定しているので、排ガス中のダストが燃焼室の壁面に付着・成長する事なく排出される。その結果、灰溶融炉の連続運転が可能となる。
(2) 下部冷却部の内径をガス導入口から導入される排ガスが対向壁面に衝突しない寸法に設定していると共に、バーナからの燃焼ガスの吹き込み速度を5m/sec以下に設定しているので、燃焼室の壁面に付着したダストが固化する事なく排出される。その結果、付着ダストの除去作業をする必要がない。
(3) 従来の如く、冷媒噴霧手段を設ける必要がないので、これが邪魔にならないばかりでなく、それだけ構造の簡素化を図る事ができる。
According to the present invention, the following excellent effects can be achieved.
(1) The inner diameter of the lower cooling section is set to a size so that the exhaust gas introduced from the gas inlet does not collide with the opposite wall surface, and the blowing speed of the combustion gas from the burner is set to 5 m / sec or less. The dust in the exhaust gas is discharged without adhering to and growing on the wall of the combustion chamber. As a result, continuous operation of the ash melting furnace becomes possible.
(2) Since the inner diameter of the lower cooling section is set to a size that does not cause the exhaust gas introduced from the gas inlet to collide with the opposing wall surface, the blowing speed of the combustion gas from the burner is set to 5 m / sec or less. The dust adhering to the wall surface of the combustion chamber is discharged without solidifying. As a result, it is not necessary to remove the adhered dust.
(3) Since it is not necessary to provide the refrigerant spraying means as in the prior art, not only does this get in the way, but the structure can be simplified accordingly.

以下、本発明の実施の形態を、図面に基づいて説明する。
図1は、本発明に係る灰溶融炉の燃焼室を示す概要図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a combustion chamber of an ash melting furnace according to the present invention.

燃焼室1は、焼却残渣Aを溶融処理する電気式溶融炉等の灰溶融炉50に適用され、これの下流側に設置されている。
灰溶融炉50は、炉体51と、これの上部に設けられて電源装置(図示せず)からの電力供給を受けて印加される黒鉛電極52と、炉体51の一側部に設けられた灰供給装置53と、炉体51の他側部に設けられたオーバーフロー部54とを備えて居り、灰供給装置53に依り供給された焼却残渣Aは、黒鉛電極52から供給される電気エネルギーに依り連続的に溶融処理されて順次溶融スラグ化されると共に、溶融されたスラグBは、オーバーフロー部54から溢流され、図略しているが、灰溶融炉50に付設されるスラグ水砕装置の水砕水に依り水砕され、水砕スラグとなって系外に排出される様になっている。
The combustion chamber 1 is applied to an ash melting furnace 50 such as an electric melting furnace for melting the incineration residue A, and is installed on the downstream side thereof.
The ash melting furnace 50 is provided on a furnace body 51, a graphite electrode 52 provided on the top of the furnace body 51 and supplied with power from a power supply device (not shown), and provided on one side of the furnace body 51. The incineration residue A supplied by the ash supply device 53 is supplied from the graphite electrode 52. The incineration residue A is provided with an ash supply device 53 and an overflow portion 54 provided on the other side of the furnace body 51. The molten slag B is overflowed from the overflow portion 54 and is not shown in the figure, but is not shown in the drawing, but the slag granulating device attached to the ash melting furnace 50 The water is crushed by the crushed water, and then crushed slag is discharged out of the system.

燃焼室1は、鉛直向きの塔状を呈し、灰溶融炉50から排出されてガス導入口2を通って内部に導入される排ガスCを輻射冷却手段3に依り冷却する下部冷却部4と、下部冷却部4の上方に設けられて下部冷却部4で冷却された排ガスCをバーナ5からの燃焼ガスDの吹き込みに依り燃焼処理を行う上部燃焼部6とを備えている。   Combustion chamber 1 has a vertically oriented tower shape, lower cooling section 4 that cools exhaust gas C discharged from ash melting furnace 50 and introduced into the inside through gas inlet 2 by radiation cooling means 3, And an upper combustion section 6 that is provided above the lower cooling section 4 and that performs a combustion process on the exhaust gas C cooled by the lower cooling section 4 by injecting combustion gas D from a burner 5.

下部冷却部4は、ガス導入口2と輻射冷却手段3を備えて居り、その内径Eは、ガス導入口2から導入される排ガスCが対向壁面7に衝突しない寸法に設定されている。
ガス導入口2は、下部冷却部4の上方側部に形成されて居り、灰溶融炉50の炉体51の上部とはダクト8に依り接続されて連通されている。
輻射冷却手段3は、ガス導入口2から下部冷却部4内に導入された排ガスCを冷却する冷却ジャケット9と、これの内側に内張りされる高熱伝導性耐火物10とを備えている。
The lower cooling unit 4 includes a gas introduction port 2 and a radiation cooling means 3, and an inner diameter E thereof is set to a size such that the exhaust gas C introduced from the gas introduction port 2 does not collide with the opposing wall surface 7.
The gas inlet 2 is formed on the upper side of the lower cooling part 4 and is connected to and communicated with the upper part of the furnace body 51 of the ash melting furnace 50 by a duct 8.
The radiation cooling means 3 includes a cooling jacket 9 that cools the exhaust gas C introduced into the lower cooling unit 4 from the gas inlet 2 and a high thermal conductivity refractory 10 that is lined inside thereof.

冷却ジャケット9は、図略しているが、その内部に所要ピッチ幅に形成された冷却水用の流路が形成されており、ポンプによって汲み上げられた冷却水を、流路内で下から上に向けて流通させて循環させる様に構成されている。つまり、この様な冷却水の循環に依って下部冷却部4内の排ガスCを輻射冷却する様にされている。
高熱伝導性耐火物10は、この例では、高熱伝導率のSiC系キャスタブルを用いている。
Although the cooling jacket 9 is omitted in the drawing, a cooling water passage formed in a required pitch width is formed in the inside thereof, and the cooling water pumped up by the pump is moved from the bottom to the top in the passage. It is configured to circulate and circulate. That is, the exhaust gas C in the lower cooling section 4 is radiatively cooled by such circulation of the cooling water.
In this example, the high thermal conductivity refractory 10 uses an SiC-based castable having a high thermal conductivity.

上部燃焼部6は、主として断熱性耐火物11に依って塔体に形成されて居り、その内面と下部冷却部4の内面との境界には、段差12が形成されている。   The upper combustion part 6 is formed in the tower body mainly by the heat insulating refractory 11, and a step 12 is formed at the boundary between the inner surface thereof and the inner surface of the lower cooling part 4.

上部燃焼部6の下方側部には、バーナ5が設けられている。そして、バーナ5に依る燃焼ガスDを上部燃焼部6内に吹き込んで排ガスCの燃焼処理を行う様にされている。
バーナ5からの燃焼ガスDの吹き込み速度は、5m/sec以下に設定されて居り、望ましくは3m/secとなる様に吹込み口の寸法が設定されている。
A burner 5 is provided on the lower side of the upper combustion section 6. Then, the combustion gas D due to the burner 5 is blown into the upper combustion section 6 to perform the combustion treatment of the exhaust gas C.
The blowing speed of the combustion gas D from the burner 5 is set to 5 m / sec or less, and the size of the blowing port is preferably set to 3 m / sec.

次に、この様な構成に基づいてその作用を述解する。
灰溶融炉50で発生した排ガスCは、多量の可燃性ガスと、塩化物やリン酸塩や低沸点重金属類を主成分とする高濃度のガス状態のダストとが含有されて居り、ダクト8及びガス導入口2を通って燃焼室1の下部冷却部4内に導入される。
この時、下部冷却部4の内径Eは、ガス導入口2から導入される排ガスCが対向壁面7に衝突しない寸法に設定されているので、ガス導入口2の対向壁面7での排ガスC中のダストの付着が軽減される。
下部冷却部4内に排ガスCが導入されると、輻射冷却手段3の冷却ジャケット9に依り輻射冷却されてダストの融点(350〜1000℃)よりも低温にまで冷却される。この為、排ガスC中のダストFは、固化されて燃焼室1の下方に落下されて除去される。又、壁面温度が低いので、付着したダストは容易に剥離する為に、付着ダストが成長する事がない。
Next, the operation will be described based on such a configuration.
The exhaust gas C generated in the ash melting furnace 50 contains a large amount of combustible gas and high-concentration gaseous dust mainly composed of chlorides, phosphates and low-boiling heavy metals. And is introduced into the lower cooling part 4 of the combustion chamber 1 through the gas inlet 2.
At this time, the inner diameter E of the lower cooling section 4 is set to a size such that the exhaust gas C introduced from the gas introduction port 2 does not collide with the opposing wall surface 7. The dust adhesion is reduced.
When the exhaust gas C is introduced into the lower cooling unit 4, it is radiatively cooled by the cooling jacket 9 of the radiant cooling means 3 and cooled to a temperature lower than the melting point (350 to 1000 ° C.) of the dust. For this reason, the dust F in the exhaust gas C is solidified and dropped and removed below the combustion chamber 1. Further, since the wall surface temperature is low, the adhering dust is easily separated, so that the adhering dust does not grow.

下部冷却部4内での冷却処理が行われた排ガスCは、上昇して上部燃焼部6内に流入し、バーナ5による燃焼ガスDに依って燃焼処理が為される。これに依り排ガスC中の可燃性ガスが燃焼される。
この時、バーナ5からの燃焼ガスDの吹き込み速度を5m/sec以下に設定しているので、燃焼ガスDの吹き込み速度が従来の半分以下になり、これに依って排ガスC中のダストが燃焼室の壁面に押し当てられる事がなく、バーナ5の吹込み口付近でのダストの付着が軽減される。
The exhaust gas C that has undergone the cooling process in the lower cooling unit 4 rises and flows into the upper combustion unit 6, and the combustion process is performed by the combustion gas D from the burner 5. Accordingly, the combustible gas in the exhaust gas C is burned.
At this time, since the blowing speed of the combustion gas D from the burner 5 is set to 5 m / sec or less, the blowing speed of the combustion gas D is less than half of the conventional speed, and the dust in the exhaust gas C is burned accordingly. It is not pressed against the wall surface of the chamber, and the adhesion of dust near the blowing port of the burner 5 is reduced.

冷却処理及び燃焼処理されて、大部分のダスト及び可燃性ガスが除去された排ガスCは、図略しているが、上部燃焼部6の上端部に設けられたガス導出口からダクトを介して導出され、下流側設備である減温塔に依る減温処理が行われて減温された後、更に下流側のバグフィルター装置に依って集塵処理される。こうして残りのダストが集塵・除去されて清浄化された排ガスは、清浄ガスとなって系外に排出される。   The exhaust gas C from which most of the dust and combustible gas have been removed by the cooling process and the combustion process is omitted, but is derived from the gas outlet port provided at the upper end of the upper combustion section 6 through a duct. Then, after the temperature is reduced by a temperature reducing tower that is a downstream facility, the temperature is reduced, and further dust collection is performed by a bag filter device on the downstream side. The exhaust gas that has been cleaned by collecting and removing the remaining dust in this way becomes clean gas and is discharged out of the system.

上部燃焼部6と下部冷却部4との境界には、段差12が形成されているので、仮に排ガスC中のダストが、上部燃焼部6内で溶融状態に移行してその壁面に付着したとしても、その溶融ダストは、自重に依り壁面を伝って下方に滑り落ち、段差12から滴の状態で下方に滴下し、それ以降、溶融ダストが下部冷却部4の壁面に接する事がなくなるので、溶融ダストが下部冷却部4の壁面で成長するのを確実に防止する事ができる。   Since a step 12 is formed at the boundary between the upper combustion section 6 and the lower cooling section 4, it is assumed that dust in the exhaust gas C has shifted to a molten state in the upper combustion section 6 and has adhered to the wall surface. However, the molten dust slides down along the wall surface due to its own weight, drops downward from the step 12 in a drop state, and thereafter, the molten dust does not contact the wall surface of the lower cooling part 4, It is possible to reliably prevent the molten dust from growing on the wall surface of the lower cooling unit 4.

尚、輻射冷却手段3の冷却ジャケット9は、先の例では、冷却水を流通させる様にしたが、これに限らず、例えば冷却水の代わりに冷却空気を流通させる様にしても良い。   In the above example, the cooling jacket 9 of the radiation cooling means 3 is configured to circulate the cooling water. However, the present invention is not limited to this, and for example, cooling air may be circulated instead of the cooling water.

図1は、本発明に係る灰溶融炉の燃焼室を示す概要図。FIG. 1 is a schematic view showing a combustion chamber of an ash melting furnace according to the present invention.

符号の説明Explanation of symbols

1…燃焼室、2…ガス導入口、3…輻射冷却手段、4…下部冷却部、5…バーナ、6…上部燃焼部、7…対向壁面、8…ダクト、9…冷却ジャケット、10…高伝導性耐火物、11…断熱性耐火物、12…段差、50…灰溶融炉、51…炉体、52…黒鉛電極、53…灰供給装置、54…オーバーフロー部、A…焼却残渣、B…スラグ、C…排ガス、D…燃焼ガス、E…内径、F…ダスト。   DESCRIPTION OF SYMBOLS 1 ... Combustion chamber, 2 ... Gas inlet, 3 ... Radiation cooling means, 4 ... Lower cooling part, 5 ... Burner, 6 ... Upper combustion part, 7 ... Opposite wall surface, 8 ... Duct, 9 ... Cooling jacket, 10 ... High Conductive refractory, 11 ... heat insulating refractory, 12 ... step, 50 ... ash melting furnace, 51 ... furnace body, 52 ... graphite electrode, 53 ... ash feeder, 54 ... overflow part, A ... incineration residue, B ... Slag, C ... exhaust gas, D ... combustion gas, E ... inner diameter, F ... dust.

Claims (1)

灰溶融炉から排出されてガス導入口を通って内部に導入される排ガスを輻射冷却手段に依り冷却する下部冷却部と、下部冷却部の上方に設けられて下部冷却部で冷却された排ガスをバーナからの燃焼ガスの吹き込みに依り燃焼処理を行う上部燃焼部とを備えた塔状の燃焼室であって、前記下部冷却部の内径をガス導入口から導入される排ガスが対向壁面に衝突しない寸法に設定していると共に、バーナからの燃焼ガスの吹き込み速度を5m/sec以下に設定していることを特徴とする灰溶融炉の燃焼室。


A lower cooling unit that cools the exhaust gas discharged from the ash melting furnace and introduced into the interior through the gas inlet by the radiation cooling means, and the exhaust gas that is provided above the lower cooling unit and cooled by the lower cooling unit A tower-like combustion chamber having an upper combustion section that performs combustion processing by injecting combustion gas from a burner, and the exhaust gas introduced from the gas inlet through the inner diameter of the lower cooling section does not collide with the opposing wall surface The combustion chamber of the ash melting furnace is characterized by being set to dimensions and the combustion gas blowing speed from the burner being set to 5 m / sec or less.


JP2007141687A 2007-05-29 2007-05-29 Ash melting furnace combustion chamber Active JP4972462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141687A JP4972462B2 (en) 2007-05-29 2007-05-29 Ash melting furnace combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141687A JP4972462B2 (en) 2007-05-29 2007-05-29 Ash melting furnace combustion chamber

Publications (2)

Publication Number Publication Date
JP2008298310A true JP2008298310A (en) 2008-12-11
JP4972462B2 JP4972462B2 (en) 2012-07-11

Family

ID=40171991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141687A Active JP4972462B2 (en) 2007-05-29 2007-05-29 Ash melting furnace combustion chamber

Country Status (1)

Country Link
JP (1) JP4972462B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626629A (en) * 1992-05-19 1994-02-04 Ebara Infilco Co Ltd Sludge melting system
JPH10169966A (en) * 1996-12-06 1998-06-26 Nippon Steel Corp Clinker generation preventing method for combustion furnace of product gas from waste melting furnace
JP2002098321A (en) * 2000-09-22 2002-04-05 Takuma Co Ltd Dust discharging device for secondary combustion chamber
JP2002213724A (en) * 2001-01-16 2002-07-31 Mitsubishi Heavy Ind Ltd Afterburner of ash melting furnace and operating method of the afterburner
JP2006023000A (en) * 2004-07-07 2006-01-26 Takuma Co Ltd Combustion chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626629A (en) * 1992-05-19 1994-02-04 Ebara Infilco Co Ltd Sludge melting system
JPH10169966A (en) * 1996-12-06 1998-06-26 Nippon Steel Corp Clinker generation preventing method for combustion furnace of product gas from waste melting furnace
JP2002098321A (en) * 2000-09-22 2002-04-05 Takuma Co Ltd Dust discharging device for secondary combustion chamber
JP2002213724A (en) * 2001-01-16 2002-07-31 Mitsubishi Heavy Ind Ltd Afterburner of ash melting furnace and operating method of the afterburner
JP2006023000A (en) * 2004-07-07 2006-01-26 Takuma Co Ltd Combustion chamber

Also Published As

Publication number Publication date
JP4972462B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5361971B2 (en) Apparatus and method for incineration ash treatment using plasma arc
JP4969186B2 (en) Industrial waste treatment method and industrial waste treatment facility
JP4972462B2 (en) Ash melting furnace combustion chamber
KR101562856B1 (en) Plasma torch system and method for treatment of all municipal combustible and non-combustible waste or hospital waste
JP2007301422A (en) Method and facility for treating asbestos waste
JP3643255B2 (en) Melting furnace and processing method for waste containing phosphorus
JP2010189700A (en) Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal
JP2009036469A (en) Melting facility of incineration ash and its melting method
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP3849287B2 (en) Exhaust gas treatment method for ash melting furnace
JP2009063286A (en) Waste treatment method, metal manufacturing method and metal
JP2009139027A (en) Radioactive miscellaneous solid waste incinerator
JP4972458B2 (en) Ash melting furnace combustion chamber
JP3350169B2 (en) Waste melting method and apparatus
JP4174716B2 (en) Salt discharge method in ash melting furnace
JP2007307548A (en) Method and equipment for melting asbestos waste
JP2006023000A (en) Combustion chamber
JP2005172276A (en) High temperature treating method and high temperature treating device
JP3841639B2 (en) Flue structure of ash melting furnace
JP2009172523A (en) Ash treating method of roasting furnace, and roasting equipment
JP2008285730A (en) Apparatus and method for sorting and collecting steel material
EP2587145B1 (en) Method for the pollution-free thermal processing of solid municipal waste and plant for carrying out said method
JP3506608B2 (en) Dry distillation pyrolysis melting combustion equipment for waste
JP3921198B2 (en) Melting equipment to make all wastes into pollution-free resources
JP2023050952A (en) Operation method for fusion furnace, and fusion furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4972462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250