JP2010189700A - Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal - Google Patents

Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal Download PDF

Info

Publication number
JP2010189700A
JP2010189700A JP2009034733A JP2009034733A JP2010189700A JP 2010189700 A JP2010189700 A JP 2010189700A JP 2009034733 A JP2009034733 A JP 2009034733A JP 2009034733 A JP2009034733 A JP 2009034733A JP 2010189700 A JP2010189700 A JP 2010189700A
Authority
JP
Japan
Prior art keywords
metal
water
glass melt
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009034733A
Other languages
Japanese (ja)
Inventor
Yasuo Matsuura
康夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009034733A priority Critical patent/JP2010189700A/en
Publication of JP2010189700A publication Critical patent/JP2010189700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pyrolyzing metal-mixed plastic waste as it is in a glass-fused liquid and recovering metals precipitated in the glass-fused liquid, metals dissolved in the glass-fused liquid, metals volatilized/dispersed in a pyrolysis gas and metals dissolved in cooling water. <P>SOLUTION: The metal-mixed plastic waste is pyrolyzed in a pyrolysis apparatus 21 at stable temperature so that the calorie to be absorbed when the metal-mixed plastic waste is pyrolyzed is complemented with the calorie to be generated when plastics are burned and the calorie to be generated when the combustion gas is reacted with constituent substances of the glass-fused liquid and the calorie retained in the pyrolysis apparatus is adjusted by the volume of the glass-fused liquid. Metals precipitated in the glass-fused liquid are recovered in a precipitated metal recovery apparatus 10 together with the glass-fused liquid. Metals dissolved in the glass-fused liquid are precipitated on a DC electrode and the precipitated metals are recovered in a water-cooled dissolved metal recovery apparatus 18 together with the glass-fused liquid. Metals volatilized/dispersed in the pyrolysis gas are solidified/recovered by cooling the metal-containing pyrolysis gas with water in cooling tanks 23-27. Active substances contained in the pyrolysis gas are oxidized/burned to obtain stable gas and the stable gas is discharged. Metals dissolved in cooling water are neutralized in a neutralization tank 32 and recovered as precipitates and the water is recovered and reused. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、集積回路や端末配線よりなる電子部品、もしくはこれらを装着した電気製品や自動車を裁断した金属とプラスチックの混合するシュレッダーダストなどの金属混合プラスチック廃棄物を、有姿のまま高温のガラス融解液で熱分解し、金属を回収する金属混合プラスチック廃棄物を熱分解し金属を回収する方法とその装置を提供する。   The present invention relates to an electronic component comprising an integrated circuit and terminal wiring, or an electric product equipped with these, or a metal mixed plastic waste such as shredder dust mixed with metal and plastic cut from an automobile, in a high-temperature glass as it is. A method and apparatus for recovering metal by thermally decomposing a metal-mixed plastic waste that is thermally decomposed with a melt and recovering the metal are provided.

金属混合プラスチック廃棄物からの金属分離は、粉体化し比重選別、風力選別、磁気選別、静電選別が試みられるが、硬質プラスチックと金属からなる電子部品やシュレッダーダストの粉体化は難しく、また、粉体化しても形状、密度、磁性が様々であり有効な方法とはなっていない。一方、乾留熱分解ではこれらに使用されるプラスチックが耐熱性に富むものが多く、高温熱分解でも未分解部分が残りハロゲン系プラスチックを含む場合はPCB、ダイオキシンなどの有害ハロゲン化合物の二次合成を起こしやすい。なお、集積回路の一部は金属製錬炉で精錬回収されるが、工業用の目的であり高い金属含有率が要求され、金属含有率の低いシュレッダーダストの精錬回収はおこなわれない。   Metal separation from metal-mixed plastic waste is pulverized, and specific gravity sorting, wind sorting, magnetic sorting, and electrostatic sorting are tried, but it is difficult to pulverize electronic parts and shredder dust made of hard plastic and metal. Even if powdered, the shape, density, and magnetism are various, and it is not an effective method. On the other hand, many of the plastics used for dry distillation pyrolysis have high heat resistance. If undecomposed parts remain even after high-temperature pyrolysis and contain halogen-based plastics, secondary synthesis of harmful halogen compounds such as PCB and dioxin is performed. Easy to wake up. A part of the integrated circuit is smelted and recovered in a metal smelting furnace, but for industrial purposes, a high metal content is required, and smelter dust having a low metal content is not smelted and recovered.

一方、工業で使用されるガラスの融解温度は1400℃前後、この温度域で温度分布の安定したガラス融解液中での熱分解であれば金属混合プラスチック廃棄物の硬質で耐熱性に富むプラスチックも完全に分解され、熱分解で金属はその融点と沸点によりガラス融解液に沈澱し、溶解し、もしくは熱分解ガスに揮散することにより、その性状に応じて回収することができる。また、この方法によればプラスチックは完全に分解され有害ハロゲン化合物が合成されることもない。   On the other hand, the melting temperature of glass used in industry is around 1400 ° C, and if it is pyrolysis in a glass melt with a stable temperature distribution in this temperature range, metal mixed plastic waste hard and plastic with high heat resistance can also be used. By being completely decomposed and pyrolyzed, the metal can be recovered according to its properties by precipitating in the glass melt with its melting point and boiling point, dissolving, or volatilizing into the pyrolysis gas. Further, according to this method, the plastic is completely decomposed and no harmful halogen compound is synthesized.

しかしながら、酸化珪素の純度の高い原料を外部加熱もしくは交流電極で融解する工業上のガラス製造方法と異なり、圧入酸素でプラスチックをガラス融解液の中で酸化燃焼させながら熱分解をおこなう内部加熱による方法は、ガラス融解液の組成物質である酸化ナトリウムや酸化カリウムが高温下で起す、2NaO→Na+Na→2NaOおよび2KO→K+K→2KOの可逆反応に、プラスチックの燃焼による水と一酸化炭素が反応し、Na+HO→NaOH+H、2Na+CO→NaO+C、NaOH+CO+O→NaCO+H、2NaCO→NaO+2CO+3O、K+HO→KOH+H、2K+CO→KO+C、KOH+CO+O→KCO+H、2KCO→KO+2CO+3Oの反応を発生させる。また、ガラス融解液の組成物質である酸化カルシュウムも高温下、酸化燃焼による水と一酸化炭素により、CaO+CO→CaC+O、2CaC+HO+O→C+2CaO+O→2CaO+HO+2Cの反応を起す。これらの反応はガラス融解液の随所で発生し、発泡をともない活性物質を発生させる。 However, unlike industrial glass manufacturing methods in which raw materials with high purity of silicon oxide are externally heated or melted with an AC electrode, a method by internal heating that performs thermal decomposition while oxidizing and burning plastics in a glass melt with pressurized oxygen 2Na 2 O → Na 2 O 2 + Na 2 → 2Na 2 O and 2K 2 O → K 2 O 2 + K 2 → 2K 2 O, which are caused by sodium oxide and potassium oxide, which are constituents of the glass melt, at high temperatures. a reversible reaction, and the reaction water and carbon monoxide by burning plastics, Na + H 2 O → NaOH + H, 2Na + CO → Na 2 O + C, NaOH + CO + O → NaCO 3 + H, 2NaCO 3 → Na 2 O + 2CO + 3O, K + H 2 O → KOH + H, 2K + CO → K 2 O + C, KOH + CO + O → KCO 3 + H, 2KCO 3 K 2 O + 2CO + 3O reaction to generate the. In addition, calcium oxide, which is a composition material of the glass melt, causes a reaction of CaO + CO → CaC + O 2 , 2CaC + H 2 O + O → C 2 H 2 + 2CaO + O → 2CaO + H 2 O + 2C by water and carbon monoxide by oxidative combustion at a high temperature. These reactions occur throughout the glass melt and generate an active substance with foaming.

一方、ガラス融解液から発生する熱分解ガスは、プラスチックの燃焼で発生する一酸化炭素が、800℃前後で2CO→C+CO、700℃〜400℃の温度域でCO+HO→CO+Hと反応し活性物質の炭素と水素を遊離する。また、ガスに含まれる金属は金属混合プラスチック廃棄物に含まれる物質で各々酸化物、硝化物、塩化物、硫化物、水酸化物の金属塩となり、一部が熱分解ガスの水冷により冷却水に溶解する。したがって、内部加熱により熱分解をおこなう場合は、発生するこれらの反応に対応することが必要となる。この状況下、金属混合プラスチック廃棄物に関する処理技術が公開されている。 On the other hand, the pyrolysis gas generated from the glass melt is such that carbon monoxide generated by plastic combustion is 2CO → C + CO 2 at around 800 ° C., and CO + H 2 O → CO 2 + H 2 in the temperature range of 700 ° C. to 400 ° C. Reacts with carbon to release active carbon and hydrogen. In addition, the metal contained in the gas is a substance contained in the metal-mixed plastic waste and becomes a metal salt of oxide, nitride, chloride, sulfide, hydroxide, respectively, and some of the cooling water is cooled by water cooling of the pyrolysis gas. Dissolve in Therefore, when thermal decomposition is performed by internal heating, it is necessary to cope with these generated reactions. Under this circumstance, a processing technique relating to metal mixed plastic waste is disclosed.

例えば、特許文献1には、廃家電シュレッダーダストから含有量の多いオレフィン樹脂とスチレン樹脂を分別回収し、オレフィン樹脂は再生樹脂化し、スチレン樹脂は熱分解で油を生成しスチレンモノマーとして再利用しようとするものである。   For example, in Patent Document 1, an olefin resin and a styrene resin having a high content are separated and recovered from waste home appliance shredder dust, the olefin resin is converted into a recycled resin, and the styrene resin is pyrolyzed to produce oil and reused as a styrene monomer. It is what.

また、特許文献2には、廃棄物炭化炉の排ガスもしくは粉体廃棄物をガラス融解液に空気で圧入し、無害化しようとするものである。   In Patent Document 2, exhaust gas or powder waste from a waste carbonization furnace is pressed into a glass melt with air to make it harmless.

特開2001―224652号公報Japanese Patent Laid-Open No. 2001-224652 特開2003―20360号公報Japanese Patent Laid-Open No. 2003-20360

上述の特許文献1に開示された発明は、比重選別、風力選別、磁気選別、静電選別を組合わせ、シュレッダーダストからオレフィン樹脂とスチレン樹脂を分別回収、回収した樹脂を混練し、混練機に装着したメルトフィルターにより金属片を除去し再利用しようとするものである。特許文献1においてはシュレッダーダストの粒径を2cmとするが、この粒径では金属とプラスチックあるいは異種類のプラスチックが複合したシュレッダーダストから特定の樹脂を回収できる量は限られ、回収効率を上げるには手選別にするか、もしくは凍結粉砕または研摩削出でより細かな粒径とし、比重選別、風力選別、磁気選別、静電選別を組合せておこなわざるを得ない。   The invention disclosed in Patent Document 1 described above is a combination of specific gravity sorting, wind sorting, magnetic sorting, and electrostatic sorting, separating and collecting olefin resin and styrene resin from shredder dust, and kneading the collected resin into a kneader. The metal piece is removed and reused by the attached melt filter. In Patent Document 1, the particle size of the shredder dust is 2 cm. However, with this particle size, the amount of specific resin that can be recovered from the shredder dust in which metal and plastic or different types of plastics are combined is limited, which increases the recovery efficiency. Must be hand-sorted, or made finer by freeze pulverization or polishing and combined with specific gravity sorting, wind sorting, magnetic sorting, and electrostatic sorting.

また、上述の特許文献2に開示された発明においては、廃棄物炭化炉の排ガスを空気でガラス融解液に圧入し、排ガスに含まれる有害ハロゲン化合物を高温熱分解で無害化しようとするものであるが、空気で排ガスを圧入することにより排ガス中の不飽和炭化水素が爆燃するおそれがあり、また、この燃焼熱量と生成された一酸化炭素と水および排ガス中の水がガラス融解液の組成物質と起す反応で、ガラス融解液が耐熱材の対応し得ない高温になるおそれがある。さらに、圧入空気の酸素と窒素で高温下、窒素酸化物が生成され、排ガス中の金属が硝酸金属となり溶出性の有害金属となる。同じく特許文献2では、粉体廃棄物を空気でガラス融解液に圧入し含まれる有害ハロゲン化合物を無害化しようとするが、粉体廃棄物を組成する非ガス化物質の量でガラス融解液の量が増え、酸化珪素含有量の少ない廃棄物では冷却排出してもガラスにはならず、排出物から硝酸金属が溶出する有害廃棄物を再生する。   In the invention disclosed in Patent Document 2 described above, the waste carbonization furnace exhaust gas is pressed into the glass melt with air, and harmful halogen compounds contained in the exhaust gas are made harmless by high-temperature thermal decomposition. However, there is a possibility that unsaturated hydrocarbons in the exhaust gas may detonate by injecting the exhaust gas with air, and the amount of combustion heat, the generated carbon monoxide and water, and the water in the exhaust gas are the composition of the glass melt. Due to the reaction with the substance, the glass melt may become a high temperature that the heat-resistant material cannot handle. Furthermore, nitrogen oxides are produced at high temperatures with oxygen and nitrogen in the compressed air, and the metal in the exhaust gas becomes nitrate metal and becomes an eluting harmful metal. Similarly, Patent Document 2 attempts to detoxify harmful halogen compounds contained in powder waste by press-fitting the powder waste into the glass melt with air. The amount of waste increases, and waste with low silicon oxide content does not turn into glass even if it is cooled and discharged, but it regenerates hazardous waste from which metal nitrate is eluted.

本発明は、集積回路や端末配線よりなる電子部品、もしくはこれらを装着した電気製品や自動車を裁断した金属とプラスチックの混合するシュレッダーダストなどの金属混合プラスチック廃棄物を、有姿のまま高温のガラス融解液に圧入し、熱分解で金属を分離しその性状に応じて回収するものであり、熱分解で発生する反応に安定的に対応すること、および金属含有率の高いガラス融解液、固化物、沈殿物で金属を回収することを課題とする。   The present invention relates to an electronic component comprising an integrated circuit and terminal wiring, or an electric product equipped with these, or a metal mixed plastic waste such as shredder dust mixed with metal and plastic cut from an automobile, in a high-temperature glass as it is. It is injected into the melt, and the metal is separated by pyrolysis and recovered according to its properties. It can respond stably to the reaction generated by the pyrolysis, and the glass melt and solidified product with a high metal content. The problem is to recover the metal from the precipitate.

本発明の請求項1に記載の金属混合プラスチック廃棄物から金属を回収する方法は、熱分解の工程で、金属混合プラスチック廃棄物を液温1400℃前後のガラス融解液に圧入し熱分解、プラスチックはガスとなり、金属はその融点と沸点に応じてガラス溶融液に沈澱し、溶解し、ガスに揮散する。ガラス融解液に沈澱、溶解した金属はこれを回収する工程でガラス融解液とともに回収し、ガスに揮散した金属はこれを回収する工程でガスを水冷し金属を固化させ回収する。水冷により冷却水に溶解した金属は、水処理の工程で冷却水を中和処理し金属を沈澱させ回収、中和処理した冷却水を回収し再利用することにより金属混合プラスチック廃棄物を熱分解して回収する金属をその性状に応じて安定的に回収する作用を有している。   The method for recovering metal from the metal mixed plastic waste according to claim 1 of the present invention is a method of thermal decomposition in which the metal mixed plastic waste is pressed into a glass melt at a liquid temperature of about 1400 ° C. in the pyrolysis step. Becomes a gas, and the metal precipitates in the glass melt according to its melting point and boiling point, dissolves, and volatilizes into the gas. The metal precipitated and dissolved in the glass melt is collected together with the glass melt in the step of collecting it, and the metal volatilized in the gas is recovered by cooling the gas with water to solidify the metal in the step of collecting it. The metal dissolved in cooling water by water cooling is recovered by neutralizing the cooling water and precipitating the metal in the water treatment process, and recovering and reusing the neutralized cooling water for thermal decomposition. Thus, the metal to be recovered is stably recovered according to its properties.

請求項2に記載の金属混合プラスチック廃棄物を高温のガラス融解液に圧入し熱分解する工程では、圧入した酸素によるプラスチックの燃焼熱量とこの燃焼ガスでガラス融解液の組成物質が起こす反応熱量で熱分解で吸収された熱量を補給し、補給熱量の変動をガラス融解液の量による保有熱量で調整する。熱分解に際しガラス融解液の液温が下降する時は、金属混合プラスチック廃棄物に代え廃プラスチックを投入し、プラスチックの燃焼熱量と燃焼ガスに反応するガラス融解液の組成物質の反応熱量により液温を上昇させ、ガラス融解液の液温が上昇する時は、金属混合プラスチック廃棄物に代えガラス粉末を投入し、ガラス粉末の昇温吸収熱量で液温を下降させることにより、安定した液温のガラス融解液で熱分解をおこなう作用を有している。   In the step of injecting the metal-mixed plastic waste according to claim 2 into a high-temperature glass melt and thermally decomposing it, the amount of combustion heat of the plastic by the injected oxygen and the amount of reaction heat generated by the composition material of the glass melt by this combustion gas The amount of heat absorbed by pyrolysis is replenished, and the fluctuation of the amount of replenishment heat is adjusted by the amount of heat retained by the amount of glass melt. When the temperature of the glass melt decreases during pyrolysis, waste plastic is inserted instead of metal mixed plastic waste, and the liquid temperature depends on the heat of combustion of the plastic and the reaction heat of the composition of the glass melt that reacts with the combustion gas. When the liquid temperature of the glass melt rises, glass powder is used instead of the metal mixed plastic waste, and the liquid temperature is lowered by the temperature absorption heat quantity of the glass powder. It has the effect of thermal decomposition with glass melt.

請求項3に記載のガラス融解液に沈澱もしくは溶解した金属を回収する工程では、ガラス融解液の底部に沈澱した金属をガラス融解液とともに排出し水冷回収し、ガラス融解液に溶解する金属はガラス融解液中に配備した直流電極に析出させ、陽極と陰極を切替え剥離しガラス融解液とともに排出し水冷回収することにより、金属含有量の多いガラス融解液で金属を回収する作用を有している。   In the step of recovering the metal precipitated or dissolved in the glass melt according to claim 3, the metal precipitated at the bottom of the glass melt is discharged together with the glass melt and recovered by cooling with water, and the metal dissolved in the glass melt is glass. It has the effect of recovering metal with a glass melt with a high metal content by depositing it on the DC electrode deployed in the melt, switching the anode and cathode apart, discharging it with the glass melt and recovering it with water. .

請求項4に記載の熱分解で発生したガスを水冷しガスに含まれる金属を回収する工程では、熱分解ガスを水冷し固化する金属を回収しながら、酸素を圧入し熱分解ガスに含まれる活性物質を酸化燃焼させ安定した性状のガスで排気する。水冷により冷却水に溶解した金属は冷却水を中和処理し沈澱させ回収、処理後の水を回収再利用することにより金属を固化物もしくは金属含有量の多い沈殿物で回収する作用を有している。   In the step of cooling the gas generated by pyrolysis according to claim 4 and recovering the metal contained in the gas, oxygen is injected and contained in the pyrolysis gas while recovering the metal that is solidified by cooling the pyrolysis gas with water. The active substance is oxidized and combusted and exhausted with a stable gas. Metal dissolved in cooling water by water cooling is recovered by neutralizing the cooling water and recovering it, and recovering and reusing the water after processing has the effect of recovering the metal as a solidified product or a precipitate with a high metal content. ing.

請求項5に記載の金属混合プラスチック廃棄物の処理装置の熱分解装置は、金属混合プラスチック廃棄物の熱分解による吸収熱量を、プラスチックの燃焼熱量および燃焼ガスとガラス融解液組成物質の反応熱量で補給し、補給熱量の変動を保有熱量で調整できる量のガラス融解液を貯留し、液面上部に熱分解ガスの滞留空間を設けたガラス融解液貯留槽とする。ガラス融解液貯留槽は液面下部に隔壁を設け、投入側をプラスチックの酸化燃焼および燃焼ガスとガラス融解液の組成物質による反応区画とし、他方を反応の少ない区画とする。反応区画ではガラス融解液に沈澱した金属を側壁に設けた沈澱金属回収装置からガラス融解液とともに水冷回収し、反応の少ない区画では側壁に直流電極を配備した溶解金属回収装置を設け、直流電極にガラス融解液に溶解した金属を析出させ、直流電極の陽極と陰極を切換えることにより剥離した溶解金属をガラス融解液とともに水冷回収する。   The thermal decomposition apparatus of the metal-mixed plastic waste processing apparatus according to claim 5 is configured such that the amount of heat absorbed by the thermal decomposition of the metal-mixed plastic waste is determined by the combustion heat quantity of the plastic and the reaction heat quantity of the combustion gas and the glass melt composition material. An amount of glass melt that can be replenished and the amount of replenishment heat can be adjusted by the amount of retained heat is stored, and a glass melt storage tank is provided with a residence space for pyrolysis gas at the top of the liquid surface. The glass melt storage tank is provided with a partition wall at the lower part of the liquid surface, and the charging side is a plastic oxidative combustion and reaction zone by the composition of combustion gas and glass melt, and the other side is a zone with little reaction. In the reaction zone, the metal precipitated in the glass melt is recovered with water from the precipitated metal recovery device provided on the side wall together with the glass melt, and in the low reaction zone, a dissolved metal recovery unit is provided with a DC electrode on the side wall. The metal melt | dissolved in the glass melt is deposited, and the melt | dissolved metal which peeled by switching the anode and cathode of a DC electrode is water-cooled and recovered with a glass melt.

熱分解ガスは、ガラス融解液貯留槽の熱分解ガス滞留空間からガス処理装置へ吐出させる。ガス処理装置は、連結した温度域ごとに複数の冷却槽を設け、低い温度域ほどガスが低圧になるよう冷却槽の容積を大きくし、設定した温度にガスを水冷しながらガスに含まれる金属を固化し回収する。水冷で熱分解ガスの一酸化炭素から遊離する炭素もしくは水素、および燃焼ガスとガラス融解液組成物質との反応で発生した活性物質は、圧入した酸素で酸化燃焼し安定した性状とする。最終の冷却槽は連結した複数の冷却槽のガスを吸引し、且つ沈澱金属回収装置と溶解金属回収装置からの発生ガスの送気を受けることのできる圧力とするため、水で駆動するジェットポンプでガスを吸引し、駆動水で100℃以下に水冷、蒸気を水としガスを分離し排出する。水処理装置はガスと分離した水を中和処理し金属塩で水に溶解した金属を沈澱させ回収する。処理後の水は回収し再使用することにより、熱分解と熱分解ガスの水冷による反応に対応し、金属含有量の多いガラス融解液、固化物、沈殿物で金属を回収する作用を有している。   The pyrolysis gas is discharged from the pyrolysis gas retention space of the glass melt storage tank to the gas processing apparatus. The gas processing device is provided with a plurality of cooling tanks for each connected temperature range, and the volume of the cooling tank is increased so that the lower the temperature range, the lower the gas pressure, and the metal contained in the gas while water cooling the gas to the set temperature. Solidify and recover. Carbon or hydrogen liberated from the pyrolysis gas carbon monoxide by water cooling and the active substance generated by the reaction between the combustion gas and the glass melt composition material are oxidized and burned with the injected oxygen to have stable properties. The final cooling tank is a water-driven jet pump that draws gas from a plurality of cooling tanks connected to each other and has a pressure at which gas generated from the precipitated metal recovery device and the dissolved metal recovery device can be received. Then, the gas is sucked in, water-cooled to 100 ° C. or lower with driving water, steam is used as water, and the gas is separated and discharged. The water treatment device neutralizes the water separated from the gas and precipitates and recovers the metal dissolved in the water with a metal salt. By recovering and reusing the treated water, it has the function of recovering metals in glass melts, solidified products, and precipitates with high metal content in response to thermal decomposition and water cooling of the pyrolysis gas. ing.

請求項6に記載の熱分解装置では、投入側の反応区画に高温による酸化損耗を避けるため外管と内管の二重管の内管に通気した酸素を外管の水で冷却しながら圧入し、プラスチックを燃焼させた燃焼熱量と燃焼ガスに反応するガラス融解液組成物質の反応熱量で熱分解による吸収熱量を補い、補給熱量の変動をガラス融解液の量による保有熱量で調整し金属混合プラスチック廃棄物を安定した温度で熱分解する。熱分解に際しガラス融解液の液温が下降する時は、投入口から廃プラスチックを投入し、プラスチックの燃焼熱量と燃焼ガスに反応するガラス融解液組成物質の反応熱により液温を上昇させ、ガラス融解液の液温が上昇する時は、投入口からガラス粉末を投入し、ガラス粉末の昇温吸収熱量で液温を下降させることにより、安定した液温のガラス融解液で熱分解をおこなう作用を有している。   In the pyrolysis apparatus according to claim 6, in order to avoid oxidative wear due to high temperature in the input side reaction section, oxygen which has been passed through the inner pipe of the outer pipe and the inner pipe is cooled and cooled with water of the outer pipe. The amount of heat absorbed by the thermal decomposition is compensated by the heat of combustion of the plastic and the reaction heat of the glass melt composition reacting with the combustion gas, and the metal mixing is performed by adjusting the amount of replenishment heat by the amount of heat retained by the amount of glass melt. Thermally decompose plastic waste at a stable temperature. When the temperature of the glass melt decreases during pyrolysis, waste plastic is introduced from the inlet, and the glass is heated by the reaction heat of the glass melt composition material that reacts with the amount of combustion heat of the plastic and the combustion gas. When the liquid temperature of the melt rises, glass powder is introduced from the inlet, and the liquid temperature is lowered by the temperature rise absorption heat quantity of the glass powder, so that the thermal decomposition is performed with the glass melt at a stable liquid temperature. have.

請求項7に記載の沈澱金属回収装置および溶解金属回収装置のうち、沈澱金属回収装置は投入側の反応区画の側壁に設け、金属混合プラスチック廃棄物に含まれる非ガス化物質の量に応じて変動するガラス融解液面位置により、沈澱金属回収装置底部の排出口からガラス融解液とともに沈澱金属を排出、水冷し回収する。溶解金属回収装置は一方の反応の少ない区画の側壁に電極区画を設け、区画内に陽極と陰極の直流電極の交互に配置し通電しながら直流電極に金属を析出させる。直流電極の通電状態とガラス融解液面位置により区画を閉鎖し、陽極と陰極を切換え電極から金属を剥離し、区画底部の排出口からガラス融解液とともに溶解金属を排出し、水冷し回収することにより金属の含有率の高いガラス融解液を回収する作用を有している。   Of the precipitated metal recovery device and the dissolved metal recovery device according to claim 7, the precipitated metal recovery device is provided on the side wall of the reaction section on the input side, according to the amount of the non-gasification substance contained in the metal mixed plastic waste. Depending on the fluctuating surface position of the molten glass, the precipitated metal is discharged together with the molten glass from the discharge port at the bottom of the precipitated metal recovery device, and recovered by cooling with water. In the molten metal recovery apparatus, an electrode section is provided on the side wall of one reaction-reducing section, and the anode and cathode DC electrodes are alternately arranged in the section to deposit metal on the DC electrode while energizing. The compartment is closed according to the energized state of the DC electrode and the glass melt surface position, the anode and the cathode are switched, the metal is peeled off from the electrode, the molten metal is discharged together with the glass melt from the discharge port at the bottom of the compartment, and it is cooled with water and collected. It has the effect | action which collect | recovers glass melts with a high metal content rate.

請求項8に記載のガス処理装置と水処理装置のうち、ガス処理装置では1400℃〜800℃、800℃〜400℃、400℃〜150℃の温度域ごとに冷却槽を設け、各冷却槽はガス量と水冷による蒸気発生量を槽容積で調整し低い温度域の冷却槽を低い圧力とし、設定した温度にガスを水冷する。800℃〜400℃の冷却槽では、熱分解ガスの一酸化炭素から炭素もしくは水素が遊離するため、酸素を圧入し酸化燃焼させ二酸化炭素もしくは蒸気にするとともに、燃焼ガスとガラス融解液組成物質との反応で発生した活性物質を圧入した酸素で酸化燃焼し安定した性状とする。150℃以下の冷却槽は最終冷却槽として、400℃〜150℃の冷却槽のガスを吸引し、且つ沈澱金属回収装置と溶解金属回収装置の発生ガスの送気を受けるため、水封した内水槽と底部で通水する上部を開放した外水槽の二重の水槽とし、水で駆動するジェットポンプで内水槽からガスを吸引し、内水槽の水位と連動する外水槽の溢水水位で内水槽のガスを設定した低い圧力に安定させる。ガスは水で駆動するジェットポンプによる水冷吸引で100℃以下とし、蒸気を水とし分離したガスを排出する。水処理装置にはガスを分離した水を導入し、水冷により水に溶解した金属を中和処理し沈澱させ回収、処理後の水は回収し再使用することにより、熱分解と熱分解ガスの水冷による反応に対応し、金属含有量の多い固化物もしくは沈殿物で金属を回収する作用を有している。   Of the gas treatment device and the water treatment device according to claim 8, in the gas treatment device, a cooling bath is provided for each temperature range of 1400 ° C to 800 ° C, 800 ° C to 400 ° C, and 400 ° C to 150 ° C, and each cooling bath is provided. Adjusts the amount of gas and the amount of steam generated by water cooling with the tank volume, lowers the cooling tank in the low temperature range, and cools the gas to the set temperature. In a cooling bath of 800 ° C. to 400 ° C., carbon or hydrogen is liberated from carbon monoxide of the pyrolysis gas, so that oxygen is injected to oxidize and burn to carbon dioxide or steam, and the combustion gas and glass melt composition material The active substance generated by this reaction is oxidized and burned with the injected oxygen to obtain stable properties. The cooling tank below 150 ° C. is the final cooling tank, which sucks the gas from the cooling tank at 400 ° C. to 150 ° C. and receives the gas generated by the precipitated metal recovery device and the dissolved metal recovery device. The water tank and the water tank at the bottom of the water tank are open and the water tank is a double water tank. Stabilize the gas at the set low pressure. The gas is set to 100 ° C. or less by water-cooled suction by a jet pump driven by water, and the separated gas is discharged by using steam as water. Water separated from the gas is introduced into the water treatment equipment, and the metal dissolved in the water is neutralized and recovered by water cooling and recovered. The water after the treatment is recovered and reused, so that pyrolysis and pyrolysis gas can be recovered. Corresponds to the reaction by water cooling, and has the effect of recovering the metal with a solidified product or precipitate having a high metal content.

本発明は、金属混合プラスチック廃棄物を有姿のまま高温のガラス融解液に圧入し、熱分解で金属を分離、ガラス融解液に沈澱、溶解、熱分解ガスに揮散する個々の金属の性状に応じて回収する方法とその装置である。熱分解は、熱分解による吸収熱量をプラスチックの燃焼熱量および燃焼ガスとガラス融解液組成物質の反応熱量で補給し、補給熱量の変動をガラス融解液の量による保有熱量で調整することにより、装着部位を集約しておこなう少量の稀少金属回収から、量の多い電気製品や自動車のシュレッダーダストの回収まで、金属混合プラスチック廃棄物のプラスチックと金属の組成量でガラス融解液量を定め、処理する量に応じた規模の装置で金属を効率良く回収する方法と装置になる。   In the present invention, metal-mixed plastic waste is injected into a high-temperature glass melt as it is, the metal is separated by pyrolysis, precipitated into a glass melt, dissolved, and vaporized into pyrolysis gas. And a method and apparatus for collecting them accordingly. Thermal decomposition is performed by replenishing the amount of heat absorbed by thermal decomposition with the amount of combustion heat of the plastic and the amount of reaction heat between the combustion gas and the glass melt composition, and adjusting the variation in the amount of heat supply with the amount of heat retained by the amount of glass melt. Amount of glass melt determined by the amount of plastic and metal composition of metal-mixed plastic waste, from collecting a small amount of rare metal by collecting parts to collecting large amounts of electrical products and automobile shredder dust It becomes a method and an apparatus which collect | recovers metals efficiently with the apparatus of the scale according to.

本発明の実施例を図により説明する   Embodiments of the present invention will be described with reference to the drawings.

以下に本発明の実施の形態にかかる金属混合プラスチック廃棄物を熱分解し金属を回収する方法について図1を参照しながら説明する。   Hereinafter, a method for thermally decomposing metal-mixed plastic waste according to an embodiment of the present invention and recovering metal will be described with reference to FIG.

図1は本発明の実施の形態にかかる金属混合プラスチック廃棄物から金属を回収する方法のフロー図である。図1においてステップS―1は金属混合プラスチック廃棄物を熱分解する工程である。熱分解は、金属混合プラスチック廃棄物と酸素をガラス融解液に圧入し、プラスチックの燃焼熱量および燃焼ガスとガラス融解液組成物質の反応熱で、熱分解による吸収熱量を補充し、補充熱量の変動をガラス融解液の量による保有熱量で調整しおこなう。熱分解に際しプラスチックの量が不足しガラス融解液の液温が低下するときは廃プラスチックを投入し液温を上昇させ、プラスチックの量が過剰で液温が上昇するときはガラス粉末を投入し液温を下降させることにより、安定した液温のガラス融解液で熱分解をおこなう。   FIG. 1 is a flowchart of a method for recovering metal from a metal-mixed plastic waste according to an embodiment of the present invention. In FIG. 1, step S-1 is a process of thermally decomposing metal mixed plastic waste. Pyrolysis involves injecting metal-mixed plastic waste and oxygen into the glass melt, supplementing the heat of combustion of the plastic and the heat of reaction between the combustion gas and the glass melt composition material, and replenishing the amount of heat absorbed by the pyrolysis. Is adjusted by the amount of heat retained by the amount of glass melt. When the amount of plastic during thermal decomposition is insufficient and the liquid temperature of the glass melt is lowered, waste plastic is added to increase the liquid temperature, and when the amount of plastic is excessive and the liquid temperature is increased, glass powder is added to the liquid. By lowering the temperature, thermal decomposition is performed with a stable glass melt.

S―2は金属回収およびガスと水処理の工程である。熱分解により金属混合プラスチック廃棄物のプラスチックはガスとなり、金属はその融点と沸点によりガラス融解液に沈澱し、溶解し、熱分解ガスに飛散する揮散金属となる。ガラス融解液に沈澱した金属はガラス融解液の底部からガラス融解液とともに水冷し回収、溶解した金属は直流電極に析出させ剥離しガラス融解液とともに水冷し回収、揮散金属は熱分解ガスの水冷で固化し回収する。熱分解ガスは設定温度域で段階的に水冷し、800〜400℃の温度域で酸素を圧入し熱分解ガスに含まれる活性物質を酸化燃焼させ安定した性状のガスとし、さらに水冷し、水で駆動するジェットポンプで100℃以下とし水とガスを分離する。分離したガスは排気し、水冷により金属が金属塩で溶解している水は、中和処理により沈澱させ金属を回収、処理後の水を回収し再利用する。   S-2 is a process of metal recovery and gas and water treatment. Due to the thermal decomposition, the plastic of the metal mixed plastic waste becomes a gas, and the metal becomes a volatilized metal that precipitates and dissolves in the glass melt due to its melting point and boiling point, and is scattered in the pyrolysis gas. The metal precipitated in the glass melt is recovered by cooling with the glass melt from the bottom of the glass melt, and the dissolved metal is deposited on the DC electrode, peeled off, recovered by water cooling with the glass melt, and the volatilized metal is recovered by water cooling of the pyrolysis gas. Solidify and collect. The pyrolysis gas is water-cooled step by step in the set temperature range, oxygen is injected in the temperature range of 800 to 400 ° C., and the active substance contained in the pyrolysis gas is oxidized and burned to form a stable property gas. The water and gas are separated by a jet pump driven at 100 ° C. or lower. The separated gas is exhausted, and the water in which the metal is dissolved in the metal salt by water cooling is precipitated by neutralization to recover the metal, and the treated water is recovered and reused.

以上の説明において、本実施形態にかかる金属混合プラスチック廃棄物を熱分解し金属を回収する方法においては、金属混合プラスチック廃棄物をガラス融解液中で熱分解することにより、金属をその性状に応じて金属含有量の多いガラス融解液、固化物、沈殿物とし効率良く回収する方法となる。   In the above description, in the method of thermally decomposing a metal mixed plastic waste according to the present embodiment and recovering the metal, the metal is made according to its property by pyrolyzing the metal mixed plastic waste in a glass melt. Thus, it is a method for efficiently recovering glass melts, solidified products and precipitates with a high metal content.

以下に本発明の実施の形態にかかる金属混合プラスチック廃棄物を熱分解し金属を回収する装置について図2を参照しながら説明する。図2は本発明の実施形態にかかる金属混合プラスチック廃棄物を熱分解し金属を回収する装置のうちの熱分解装置の構成図である。図2において金属混合プラスチック廃棄物を熱分解し金属を回収する装置のうちの熱分解装置は、スライドゲート1、圧入装置2、投入口3、送り装置4、圧入筒5、酸素水冷供給用二重管6、反応区画7、隔壁8、反応の少ない区画9、沈澱金属回収装置10、溶解金属回収装置11、沈澱金属回収口12、直流電極13、スライドゲート14、隔壁15、電極区画16、溶解金属回収口17、溶解金属水冷回収装置18、密閉区画19、水封隔壁20で構成する。   An apparatus for thermally decomposing metal-mixed plastic waste according to an embodiment of the present invention and recovering metal will be described below with reference to FIG. FIG. 2 is a configuration diagram of a thermal decomposition apparatus among apparatuses for thermally decomposing metal mixed plastic waste according to an embodiment of the present invention and recovering metal. In FIG. 2, the thermal decomposition apparatus among the apparatuses for thermally decomposing metal mixed plastic waste and recovering metal includes a slide gate 1, a press-fitting device 2, an input port 3, a feeding device 4, a press-fitting cylinder 5, and an oxygen water-cooled supply unit 2. Heavy pipe 6, reaction section 7, partition 8, section 9 with little reaction, precipitated metal recovery device 10, dissolved metal recovery device 11, precipitated metal recovery port 12, DC electrode 13, slide gate 14, partition 15, electrode section 16, It consists of a molten metal recovery port 17, a molten metal water-cooled recovery device 18, a sealed compartment 19, and a water-sealed partition wall 20.

金属混合プラスチック廃棄物は、熱分解ガスを遮断するスライドゲート1を閉めて圧入装置2を上げた状態で、投入口3から投入し、送り装置4でスライドゲート1まで送り、スライドゲート1を開け送り装置4で熱分解ガスの漏洩を防止しながら圧入筒5に送り、送り装置4を引きスライドゲート1を閉じ熱分解ガスを遮断し、圧入装置2を下げガラス融解液に圧入する。圧入した金属混合プラスチック廃棄物は酸素水冷供給用二重管6で圧入した酸素で酸化燃焼させ、燃焼ガスでガラス融解液組成物質を反応させながら発生するガスの圧力で反応区画7へ送り込む。反応区画7では燃焼とガラス融解液組成物質の反応を継続させながら隔壁8からガラス融解液の上層部分を反応の少ない区画9に越流させる。なお、酸素水冷供給用二重管6は維持補修のため複数個を配備する。   Metal mixed plastic waste is inserted from the inlet 3 with the slide gate 1 shutting off the pyrolysis gas closed and the press-fitting device 2 raised, and sent to the slide gate 1 by the feeding device 4, and the slide gate 1 is opened. The feed device 4 is sent to the press-fitting cylinder 5 while preventing leakage of pyrolysis gas, the feed device 4 is pulled, the slide gate 1 is closed, the pyrolysis gas is shut off, the press-fitting device 2 is lowered and press-fitted into the glass melt. The pressed metal mixed plastic waste is oxidized and burned with oxygen pressed in the double pipe 6 for oxygen water cooling supply, and sent to the reaction section 7 with the pressure of the gas generated while reacting the glass melt composition with the combustion gas. In the reaction section 7, the upper layer portion of the glass melt is allowed to flow from the partition wall 8 to the section 9 with less reaction while continuing the combustion and the reaction of the glass melt composition material. A plurality of oxygen water cooling supply double pipes 6 are provided for maintenance and repair.

沈澱金属回収装置10は反応区画7の両側壁に設け、溶解金属回収装置11は反応の少ない区画9の両側壁に設ける。沈澱金属回収装置10はガラス融解液の液面が設定液面位置より上昇し、且つ溶解金属回収装置11から溶解金属を含有するガラス融解液を排出する必要のない時点で、沈澱金属回収口12から沈澱金属を含有したガラス溶解液を排出し水冷回収する。溶解金属回収装置11の直流電極13は、反応の少ない区画9の側壁部にスライドゲート14を配備した隔壁15で区画した電極区画16を設け、通常はスライドゲート14を開け直流電極に通電し反応の少ない区画9のガラス融解液に溶解した金属を直流電極13に析出させる。直流電極13の通電状況により溶解金属回収が必要な時にはスライドゲート14を閉め、直流電極13の陽極と陰極を切換えることにより電極から剥離した析出金属をガラス融解液とともに溶解金属回収口17から溶解金属水冷回収装置18に排出し水冷し回収する。溶解金属回収装置11はスライドゲート開閉時、もしくは電極取替時に熱分解ガスが漏出するため、密閉区画19を設けガスの漏出を防止し、密閉区画19のガスは温度調整後、ガス処理装置に圧送し換気する。なお、沈澱金属回収装置10と溶解金属水冷回収装置18は水封隔壁20を設け、金属含有ガラス溶解液の冷却にともなう発生水蒸気圧が所定の圧力を越える時点でガス処理装置に圧送する。なお、熱分解槽を起動する時は、反応区画7に敷設したガラス粉末に炭素電極を配備し通電、抵抗熱でガラス粉末を融解し、酸素を圧入が可能になってからガラスと廃プラスチックと酸素を圧入し、所定の液面までガラス融解液を満たし起動する。   The precipitated metal recovery device 10 is provided on both side walls of the reaction zone 7, and the dissolved metal recovery device 11 is provided on both side walls of the zone 9 with less reaction. In the precipitated metal recovery device 10, when the liquid level of the glass melt rises from the set liquid level position and it is not necessary to discharge the glass melt containing the dissolved metal from the molten metal recovery device 11, the precipitated metal recovery port 12 is used. The glass solution containing the precipitated metal is discharged from the water and recovered by cooling with water. The DC electrode 13 of the molten metal recovery apparatus 11 is provided with an electrode section 16 partitioned by a partition wall 15 provided with a slide gate 14 on the side wall portion of the section 9 with little reaction. Usually, the slide gate 14 is opened and the DC electrode is energized to react. The metal dissolved in the glass melt in the compartment 9 with a small amount is deposited on the DC electrode 13. When it is necessary to recover the molten metal depending on the state of energization of the DC electrode 13, the slide gate 14 is closed, and the deposited metal separated from the electrode by switching the anode and the cathode of the DC electrode 13 together with the glass melt is dissolved from the molten metal recovery port 17. It is discharged to a water cooling recovery device 18 and recovered by cooling with water. Since the molten metal recovery device 11 leaks pyrolysis gas when the slide gate is opened / closed or when the electrode is replaced, a sealed compartment 19 is provided to prevent the gas from leaking. Pump and ventilate. The precipitated metal recovery device 10 and the molten metal water-cooled recovery device 18 are provided with a water-sealed partition wall 20 and are pumped to the gas processing device when the generated water vapor pressure accompanying the cooling of the metal-containing glass solution exceeds a predetermined pressure. When starting the pyrolysis tank, a carbon electrode is placed on the glass powder laid in the reaction section 7, energized, the glass powder is melted by resistance heat, and oxygen can be injected. Oxygen is injected, the glass melt is filled up to a predetermined liquid level, and the system is started.

以下に本発明の実施の形態にかかる金属混合プラスチック廃棄物から金属を回収する装置について図3を参照しながら説明する。図3は本発明の実施形態にかかる金属混合プラスチック廃棄物から金属を回収する装置のうちのガス処理装置と水処理装置の構成図である。図3において金属混合プラスチック廃棄物から金属を回収する装置のうちのガス処理装置と水処理装置は、熱分解装置21、熱分解ガス滞留空間22、冷却槽23、冷却槽24、酸素水冷供給用二重管25、酸素供給装置26、冷却槽27、冷却槽28、内水槽29、外水槽30、ジェットポンプ31、排気槽32、中和槽33、集水槽34、用水冷却槽35で構成する。   An apparatus for recovering metal from metal mixed plastic waste according to an embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a configuration diagram of a gas treatment device and a water treatment device among the devices for recovering metal from the metal mixed plastic waste according to the embodiment of the present invention. In FIG. 3, the gas treatment device and the water treatment device among the devices for recovering the metal from the metal mixed plastic waste are the pyrolysis device 21, the pyrolysis gas retention space 22, the cooling bath 23, the cooling bath 24, and oxygen water cooling supply. The double pipe 25, the oxygen supply device 26, the cooling tank 27, the cooling tank 28, the inner water tank 29, the outer water tank 30, the jet pump 31, the exhaust tank 32, the neutralization tank 33, the water collection tank 34, and the water cooling tank 35 are configured. .

熱分解槽21の熱分解ガス滞留空間22よりガスの圧力が低くなる空間容積とした冷却槽23へ吐出させる。冷却槽23では800℃前後まで水冷し、この1400〜800℃の温度域で固化する金属を冷却槽下部の集塵槽に集塵する。冷却槽23で水冷されたガスは冷却槽23よりもガスの圧力が低くなる空間容積とした冷却槽24へ吐出させる。冷却槽24では酸素水冷供給用二重管25からの水で400℃前後まで水冷し、この800〜400℃の温度域で固化する金属を冷却槽下部の集塵槽に集塵するとともに、酸素供給装置26から酸素水冷供給用二重管25で水冷した酸素を圧入し、熱分解ガスに含まれる活性物質を酸化燃焼し安定した性状のガスとする。冷却槽24で水冷されたガスは冷却槽24よりもガスの圧力が低くなる空間容積を持つ冷却槽27へ吐出させる。冷却槽27では150℃前後まで水冷し、この400〜150℃の温度域で固化する金属を冷却槽下部の集塵槽に集塵する。冷却槽27で水冷されたガスは冷却槽27よりもガスの圧力が低くなる空間容積とした冷却槽28へ吐出させる。   The gas is discharged into the cooling tank 23 having a space volume in which the gas pressure is lower than the pyrolysis gas retention space 22 of the pyrolysis tank 21. In the cooling bath 23, the water is cooled to about 800 ° C., and the metal solidified in the temperature range of 1400 to 800 ° C. is collected in a dust collection bath at the lower portion of the cooling bath. The water cooled in the cooling tank 23 is discharged to the cooling tank 24 having a space volume in which the gas pressure is lower than that of the cooling tank 23. In the cooling tank 24, the water from the double pipe 25 for supplying oxygen water is supplied to cool to around 400 ° C., and the metal solidified in the temperature range of 800 to 400 ° C. is collected in a dust collecting tank at the lower part of the cooling tank. Oxygen that has been water-cooled by a double pipe 25 for supplying oxygen water is supplied from a supply device 26, and the active substance contained in the pyrolysis gas is oxidized and burned to form a stable gas. The water-cooled gas in the cooling tank 24 is discharged to a cooling tank 27 having a space volume in which the gas pressure is lower than that of the cooling tank 24. In the cooling tank 27, the water is cooled to around 150 ° C., and the metal that solidifies in the temperature range of 400 to 150 ° C. is collected in a dust collection tank below the cooling tank. The water cooled in the cooling tank 27 is discharged to the cooling tank 28 having a space volume in which the gas pressure is lower than that of the cooling tank 27.

冷却槽28は、最終の冷却槽として、冷却槽27のガスを安定的に吸引し、且つ密閉区画19と沈澱金属回収装置10と溶解金属水冷回収装置18の発生ガスの送気を受けるため、水封した内水槽29と底部で通水する上部を開放した外水槽30の二重の水槽とし、水で駆動するジェットポンプ31で内水槽29のガスを吸引し、内水槽29の水位と連動する外水槽30の溢水水位で内水槽のガスを低い圧力に安定させる。水で駆動するジェットポンプ31で吸引されたガスは駆動水で100℃以下とし、冷却槽28と同じ機能をもつ二重水槽の排気槽32で水蒸気を水に戻し、分離したガスを安定した圧力で排気する。排気槽32の溢水は外水槽30に受け外水槽30からの溢水として中和槽33に送水し、水冷により水に溶解した金属を中和処理し沈殿物で回収する。処理後の水は集水槽34に回収貯留し、ジェットポンプ31の駆動水は用水冷却槽35で所定の温度とし、これ以外の水は用水必要箇所へ給水する。なお、冷却槽23から用水冷却槽35までの装置は維持補修のため複数個を配備する。   Since the cooling tank 28 stably sucks the gas of the cooling tank 27 as the final cooling tank and receives the gas generated by the sealed compartment 19, the precipitated metal recovery device 10, and the molten metal water-cooled recovery device 18, A double water tank of a water-sealed inner water tank 29 and an outer water tank 30 that opens at the bottom is opened, and the gas in the inner water tank 29 is sucked by a water-driven jet pump 31 and linked to the water level of the inner water tank 29. The gas in the inner water tank is stabilized at a low pressure at the overflow water level of the outer water tank 30. The gas sucked by the jet pump 31 driven by water is 100 ° C. or less by driving water, the water vapor is returned to the water in the exhaust tank 32 of the double water tank having the same function as the cooling tank 28, and the separated gas has a stable pressure. Exhaust with. The overflow water in the exhaust tank 32 is received by the outer water tank 30 and sent to the neutralization tank 33 as overflow water from the outer water tank 30, and the metal dissolved in the water is neutralized by water cooling and recovered as a precipitate. The treated water is collected and stored in the water collection tank 34, the driving water for the jet pump 31 is set at a predetermined temperature in the water cooling tank 35, and the other water is supplied to the places where water is required. A plurality of apparatuses from the cooling tank 23 to the water cooling tank 35 are provided for maintenance and repair.

以上に説明において、本実施形態にかかる金属混合プラスチック廃棄物から金属を回収する装置においては、金属混合プラスチック投入装置と熱分解ガス処理装置を複数個配備することにより、一時停止のできないガラス融解液を貯留した熱分解装置を、その装備する耐熱材損耗時点まで連続して稼動する装置とすることができる。   In the above description, in the apparatus for recovering metal from the metal-mixed plastic waste according to the present embodiment, a plurality of metal-mixed plastic charging devices and pyrolysis gas treatment devices are provided, so that a glass melt that cannot be temporarily stopped is provided. Can be used as a device that operates continuously until the heat-resistant material wears out.

本発明の実施の形態にかかる金属混合プラスチック廃棄物を熱分解し金属を 回収する方法のフロー図である。It is a flowchart of the method of thermally decomposing the metal mixed plastic waste concerning embodiment of this invention, and collect | recovering metals. 本発明の実施形態にかかる金属混合プラスチック廃棄物を熱分解し金属を回 収する装置のうちの熱分解装置の構成図である。It is a block diagram of the thermal decomposition apparatus among the apparatuses which thermally decompose the metal mixed plastic waste concerning embodiment of this invention, and collect | recover metals. 本発明の実施形態にかかる金属混合プラスチック廃棄物を熱分解し金属を回 収する装置のうちのガス処理装置と水処理装置の構成図である。FIG. 2 is a configuration diagram of a gas treatment device and a water treatment device among devices for thermally decomposing metal mixed plastic waste according to an embodiment of the present invention and collecting metal.

1:スライドゲート
2:圧入装置
3:投入口
4:送り装置
5:圧入筒
6:酸素水冷供給用二重管
7:反応区画
8:隔壁
9:反応の少ない区画
10:沈澱金属回収装置
11:溶解金属回収装置
12:沈澱金属回収口
13:直流電極
14:スライドゲート
15:隔壁
16:電極区画
17:溶解金属回収口
18:溶解金属水冷回収装置
19:密閉区画
20:水封隔壁
21:熱分解装置
22:熱分解ガス滞留空間
23:冷却槽
24:冷却槽
25:酸素水冷供給用二重管
26:酸素供給装置
27:冷却槽
28:冷却槽
29:内水槽
30:外水槽
31:ジェットポンプ
32:排気槽
33:中和槽
34:集水槽
35:用水冷却槽
1: Slide gate 2: Press-in device 3: Input port 4: Feeder 5: Press-in tube 6: Double tube for oxygen water cooling supply
7: Reaction compartment
8: Bulkhead
9: Section with little reaction
10: Precipitated metal recovery device
11: Molten metal recovery device
12: Precipitated metal recovery port
13: DC electrode
14: Slide gate
15: Bulkhead
16: Electrode compartment
17: Molten metal recovery port
18: Molten metal water cooling recovery device
19: Sealed compartment
20: Water-sealed partition wall
21: Pyrolysis device
22: Thermal decomposition gas retention space
23: Cooling tank
24: Cooling tank
25: Double pipe for oxygen water cooling supply
26: Oxygen supply device
27: Cooling tank
28: Cooling tank
29: Inner water tank
30: Outside water tank
31: Jet pump
32: exhaust tank
33: Neutralization tank
34: Catchment tank
35: Water cooling tank

Claims (8)

金属混合プラスチック廃棄物を高温のガラス融解液に圧入し熱分解する工程と、ガラス融解液に沈澱もしくは溶解した金属を回収する工程と、熱分解で発生したガスを水冷しガスに含まれる金属を固化し回収する工程と、水冷により冷却水に溶解した金属を中和処理により沈澱させ回収し、金属回収後の冷却水を回収再利用する水処理の工程とにより、金属混合プラスチック廃棄物から金属を回収し、使用した水を回収再利用することを特徴とする金属混合プラスチック廃棄物を熱分解し金属を回収する方法。   Pressing metal mixed plastic waste into a high-temperature glass melt and pyrolyzing, recovering the metal precipitated or dissolved in the glass melt, cooling the gas generated by the pyrolysis with water, and removing the metal contained in the gas Metal from metal-mixed plastic waste is recovered by solidifying and recovering, and water treatment by recovering and recovering the cooling water after metal recovery by precipitating and recovering metal dissolved in cooling water by water cooling. A method of recovering metal by thermally decomposing metal-mixed plastic waste characterized by recovering and recycling used water. 前記金属混合プラスチック廃棄物を高温のガラス融解液で熱分解する工程では、熱分解による吸収熱量を金属混合プラスチック廃棄物の中のプラスチックを圧入した酸素で酸化燃焼させた熱量と、ガラス融解液の組成物質が燃焼ガスに反応し発生する熱量で補給し、補給熱量の変動をガラス融解液の量による保有熱量で調整し熱分解をおこなう。熱分解に際しガラス融解液の液温が下降する時は廃プラスチックを投入し、プラスチックの燃焼熱量と燃焼ガスに反応するガラス融解液の組成物質の反応熱量により液温を上昇させ、ガラス融解液の液温が上昇する時はガラス粉末を投入し、ガラス粉末の昇温吸収熱量で液温を下降させることにより、安定した液温のガラス融解液で熱分解することを特徴とする請求項1記載の金属混合プラスチック廃棄物を熱分解し金属を回収する方法。   In the step of thermally decomposing the metal mixed plastic waste with a high-temperature glass melt, the amount of heat absorbed by the thermal decomposition of the heat absorbed by the oxygen in which the plastic in the metal mixed plastic waste is oxidized and the glass melt The composition material is replenished with the amount of heat generated by reacting with the combustion gas, and the fluctuation of the replenishment heat amount is adjusted with the amount of heat retained by the amount of the glass melt to perform thermal decomposition. When the liquid temperature of the glass melt decreases during pyrolysis, waste plastic is added, and the liquid temperature is increased by the heat of reaction of the composition of the glass melt that reacts with the combustion heat of the plastic and the combustion gas. The glass powder is added when the liquid temperature rises, and the liquid temperature is lowered by the temperature rising absorption calorie of the glass powder, thereby thermally decomposing with a glass melt having a stable liquid temperature. To recover metal by pyrolyzing metal mixed plastic waste. 前記ガラス融解液に沈澱もしくは溶解した金属を回収する工程では、ガラス融解液に沈澱した金属をガラス融解液とともに、また、ガラス融解液に溶解した金属をガラス融解液に配備した直流電極に析出させ、ガラス融解液とともに回収することを特徴とする請求項1記載の金属混合プラスチック廃棄物を熱分解し金属を回収する方法。   In the step of collecting the metal precipitated or dissolved in the glass melt, the metal precipitated in the glass melt is deposited together with the glass melt, and the metal dissolved in the glass melt is deposited on a DC electrode arranged in the glass melt. The method for recovering a metal by thermally decomposing the metal-mixed plastic waste according to claim 1, wherein the metal-mixed plastic waste is recovered together with a glass melt. 前記熱分解で発生したガスを水冷しガスに含まれる金属を固化し回収する工程では、ガスの水冷により固化した金属を回収しながら、酸素を圧入しガスに含まれる活性物質を酸化燃焼させ安定した性状のガスとして排気する。水冷により冷却水に溶解した金属は、冷却水の中和処理により沈澱させ回収、処理後の水を回収し再利用することを特徴とする請求項1記載の金属混合プラスチック廃棄物を熱分解し金属を回収する方法。   In the process of cooling the gas generated by the pyrolysis with water and solidifying and recovering the metal contained in the gas, oxygen is injected to stabilize the active substance contained in the gas by oxidizing and burning while recovering the metal solidified by water cooling of the gas. It is exhausted as a gas with the properties. The metal mixed plastic waste according to claim 1, wherein the metal dissolved in the cooling water by water cooling is recovered by precipitation by neutralizing the cooling water, and the treated water is recovered and reused. A method for recovering metals. 貯留したガラス融解液に圧入した金属混合プラスチック廃棄物を熱分解し、発生する熱分解ガスの滞留空間を設けた熱分解装置と、ガラス融解液の底部に沈澱する金属を回収する沈澱金属回収装置と、ガラス融解液に溶解する金属を回収する溶解金属回収装置と、熱分解ガスを水冷し固化した金属を回収しながら、熱分解ガスに含まれる活性物質を圧入した酸素で酸化燃焼し安定した性状のガスで排気するガス処理装置と、水冷により冷却水に溶解した金属を冷却水の中和処理で沈澱させ回収、中和処理後の水を回収し再利用する水処理装置とにより、金属を回収し使用した水を回収再利用する手段を設けたことを特徴とする金属混合プラスチック廃棄物を熱分解し金属を回収する装置。   Pyrolysis device that provided a residence space for the generated pyrolysis gas by thermally decomposing metal-mixed plastic waste injected into the stored glass melt, and a precipitated metal recovery device that collects the metal that settles at the bottom of the glass melt And a molten metal recovery device that recovers the metal that dissolves in the glass melt, and the pyrolysis gas was cooled with water and recovered, and the solidified metal was recovered and oxidized and burned with oxygen injected into the active substance contained in the pyrolysis gas. Metal processing is performed by a gas treatment device that exhausts with a property gas, and a water treatment device that collects and dissolves the metal dissolved in cooling water by water cooling and precipitates it by neutralizing the cooling water, and collects and reuses the water after neutralization. A device for recovering metal by thermally decomposing metal-mixed plastic waste, characterized by providing means for recovering and reusing the used water. 前記熱分解装置では、熱分解による吸収熱量を金属混合プラスチック廃棄物の中のプラスチックを圧入した酸素で酸化燃焼させた熱量とガラス融解液の組成物質が燃焼ガスに反応し発生する熱量で補給し、この補給熱量の変動をガラス融解液の量による保有熱量で調整しながら熱分解をおこない、熱分解に際しガラス融解液の液温が下降する時は廃プラスチックを投入し、プラスチックの燃焼熱量と燃焼ガスに反応するガラス融解液の組成物質の反応熱により液温を上昇させ、ガラス融解液の液温が上昇する時はガラス粉末を投入し、ガラス粉末の昇温吸収熱量で液温を下降させることにより、安定した液温のガラス融解液で熱分解することを特徴とする請求項5記載の金属混合プラスチック廃棄物を熱分解し金属を回収する装置。   In the thermal decomposition apparatus, the amount of heat absorbed by thermal decomposition is replenished with the amount of heat generated by oxidizing and burning the oxygen in the plastic mixed metal waste and the amount of heat generated by the reaction of the composition material of the glass melt with the combustion gas. , The thermal decomposition is performed while adjusting the fluctuation of the replenishment heat amount with the amount of heat retained by the amount of the glass melt, and when the liquid temperature of the glass melt falls during the thermal decomposition, waste plastic is introduced, and the combustion heat amount and combustion of the plastic The liquid temperature is increased by the heat of reaction of the composition material of the glass melt that reacts with the gas. When the liquid temperature of the glass melt increases, the glass powder is added, and the liquid temperature is decreased by the temperature rise absorption heat quantity of the glass powder. 6. The apparatus for thermally decomposing metal mixed plastic waste according to claim 5, wherein the metal is recovered by pyrolysis with a glass melt having a stable liquid temperature. 前記沈澱金属回収装置および溶解金属回収装置のうち、沈澱金属回収装置では熱分解装置のガラス融解液底部に沈澱する金属をガラス融解液とともに熱分解装置の底部から排出し回収、溶解金属回収装置ではガラス融解液に溶解する金属を直流電極に析出させ電極の陽極と陰極を切換え電極から剥離し、熱分解装置底部からガラス融解液ととも排出し回収する手段を設けたことを特徴とする請求項5記載の金属混合プラスチック廃棄物を熱分解し金属を回収する装置。   Among the precipitated metal recovery device and the dissolved metal recovery device, the precipitated metal recovery device discharges and recovers the metal precipitated at the bottom of the glass melt of the thermal decomposition device from the bottom of the thermal decomposition device together with the glass melt. The metal dissolved in the glass melt is deposited on the DC electrode, the anode and cathode of the electrode are peeled off from the switching electrode, and a means for discharging and collecting the glass melt from the bottom of the thermal decomposition apparatus is provided. The apparatus which collects metal by thermally decomposing the metal mixed plastic waste of 5. 前記ガス処理装置と水処理装置のうち、ガス処理装置では熱分解ガスを連結した複数の冷却槽で水冷し固化した金属を回収しながら、熱分解ガスに含まれる活性物質を圧入した酸素で酸化燃焼させ安定した性状のガスで排気する。水処理装置では水冷により冷却水に溶解した金属を冷却水の中和処理で沈澱させ回収、中和処理後の水を回収し再利用することを特徴とする請求項5記載の金属混合プラスチック廃棄物を熱分解し金属を回収する装置。   Among the gas treatment device and the water treatment device, the gas treatment device oxidizes with active oxygen contained in the pyrolysis gas while recovering the solidified metal by cooling with water in a plurality of cooling tanks connected to the pyrolysis gas. Combust and exhaust with stable gas. 6. The metal-mixed plastic waste according to claim 5, wherein the water treatment device precipitates and recovers the metal dissolved in the cooling water by water cooling and neutralizes the cooling water, and collects and reuses the water after the neutralization treatment. A device that thermally decomposes materials and recovers metals.
JP2009034733A 2009-02-18 2009-02-18 Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal Pending JP2010189700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034733A JP2010189700A (en) 2009-02-18 2009-02-18 Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034733A JP2010189700A (en) 2009-02-18 2009-02-18 Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal

Publications (1)

Publication Number Publication Date
JP2010189700A true JP2010189700A (en) 2010-09-02

Family

ID=42816045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034733A Pending JP2010189700A (en) 2009-02-18 2009-02-18 Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal

Country Status (1)

Country Link
JP (1) JP2010189700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343355A (en) * 2011-07-26 2012-02-08 广东联塑科技实业有限公司 Production technology for plastic-coated and lining plastic defective products
CN109482619A (en) * 2018-12-06 2019-03-19 王少明 A kind of industrial residue recovery and processing system
JP2020106176A (en) * 2018-12-26 2020-07-09 Dowaメタルマイン株式会社 Method for processing exhaust gas containing heavy metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343355A (en) * 2011-07-26 2012-02-08 广东联塑科技实业有限公司 Production technology for plastic-coated and lining plastic defective products
CN109482619A (en) * 2018-12-06 2019-03-19 王少明 A kind of industrial residue recovery and processing system
CN109482619B (en) * 2018-12-06 2021-12-21 徐佩登 Industrial waste residue recovery processing system
JP2020106176A (en) * 2018-12-26 2020-07-09 Dowaメタルマイン株式会社 Method for processing exhaust gas containing heavy metal
JP7130550B2 (en) 2018-12-26 2022-09-05 Dowaメタルマイン株式会社 Method for treating exhaust gas containing heavy metals

Similar Documents

Publication Publication Date Title
KR101170086B1 (en) Method and apparatus for treating waste
JP4219889B2 (en) Hazardous waste treatment method and apparatus
CN101983087B (en) Method and apparatus of treating waste
CN106086416B (en) A kind of technology that wiring board waste disposal utilizes
CN102216476A (en) Method for recovering metals contained in electronic waste
CN1105607C (en) Smelting of carbon-containing material
CN104479756A (en) Water-vapor gasification separation apparatus and method for waste printed circuit boards
JP4199637B2 (en) Waste plastic recycling and molding methods
CN110470139A (en) A kind of flying dust plasma fusion device and method heated below bath surface
KR101685033B1 (en) Waste processing system for a printed circuit board
KR102176989B1 (en) Plasma induced fuming
JP2010189700A (en) Method and apparatus for pyrolyzing metal-mixed plastic waste and recovering metal
KR20020075785A (en) 2-stage cooling process for synthesis gas
JP2011206696A (en) Deposit drying device using waste heat
CN109355506A (en) A kind of method for innocent treatment and system of lithium metal waste residue
JP2007244958A (en) Equipment for treating matter contaminated with polychlorinated biphenyl
JPH07286062A (en) Method for treating chlorine-containing plastic waste
JP6852053B2 (en) How to Recycle Plastics, Electronics, Munitions, or Explosives Using Metal Reactor Alloy Compositions
KR20220105660A (en) Improved Plasma Induced Smoke Furnace
JP2009036469A (en) Melting facility of incineration ash and its melting method
JP2009226237A (en) Treatment method of treating waste
JP2012055545A (en) Method for treating polychlorinated biphenyl-contaminated waste oil, method for treating polychlorinated biphenyl-contaminated solid, equipment for treating polychlorinated biphenyl waste oil and equipment for treating polychlorinated biphenyl-contaminated solid
JP4972462B2 (en) Ash melting furnace combustion chamber
JPH07150150A (en) Method and apparatus for thermally decomposing dust containing polyvinyl chloride
JP2001031793A (en) Method for removing chlorine from cover waste material of polyvinyl chloride covered wire