JP3746010B2 - Fuel additive for preventing slagging and fuel combustion method - Google Patents

Fuel additive for preventing slagging and fuel combustion method Download PDF

Info

Publication number
JP3746010B2
JP3746010B2 JP2002066513A JP2002066513A JP3746010B2 JP 3746010 B2 JP3746010 B2 JP 3746010B2 JP 2002066513 A JP2002066513 A JP 2002066513A JP 2002066513 A JP2002066513 A JP 2002066513A JP 3746010 B2 JP3746010 B2 JP 3746010B2
Authority
JP
Japan
Prior art keywords
compound
fuel
weight
fuel additive
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002066513A
Other languages
Japanese (ja)
Other versions
JP2003261890A (en
Inventor
光雄 小野沢
滋 中井
良美 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2002066513A priority Critical patent/JP3746010B2/en
Publication of JP2003261890A publication Critical patent/JP2003261890A/en
Application granted granted Critical
Publication of JP3746010B2 publication Critical patent/JP3746010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種燃料、特に石炭、オイルコークス等に代表される灰分含有量の多い燃料の燃焼の際に燃料中の灰分に起因するスラッギングを防止することができるスラッギング防止用燃料添加剤及び燃料の燃焼方法に関する。
【0002】
【従来の技術】
石炭やオイルコース、副生油等を燃料とするボイラ、回収ボイラ、各種加熱炉及び各種廃棄物、廃タイヤ等を焼却処理する種々の焼却炉等は、燃料及び廃棄物中の灰分に起因するクリンカーが生じ易く、またこれらの成長により、スラッギング(閉塞現象)を起こすことが知られている。
これらの障害を防止する対処法として、ボイラ等において水管の間隔を広げたり、スートブローを多数設置する方策が採られているが、それでも燃料の粗悪化や燃焼変動、負荷の変動等により、燃料等の灰分の含有量や生成した灰分の融点等によっては1ヶ月程度しか連続操業できない場合もあった。即ちスラッギングが生じてしまうため、操業を停止して炉内を冷却してクリンカーを剥離脱落する作業が必要であった。
また、これらの障害に対して、特開昭61−250416号公報、特開昭62−77508号公報等に記載されているように、従来より水酸化マグネシウム、酢酸マグネシウム、水酸化カルシウム、炭酸カルシウム、ドロマイト等のアルカリ土類金属化合物やmFeO・nFe23(m,nは0以上の数)で示されるFe化合物を水又は油に分散させた燃料添加剤を燃料中に添加するか、燃焼ガス中に注入することによりスラッギングを抑制しようとする試みも検討されている。
【0003】
【発明が解決しようとする課題】
前記従来の燃料添加剤は、比較的灰分含有量の少ない燃料に対しては効果的に作用する。即ち灰の融点上昇、灰の軟質化、灰の黒色化等により、水管付着灰の性質を変えることにより、スラッギングを防止することができる。
しかしながら、石炭に代表される灰分含有量の多い燃料や、特に燃焼灰の融点の低い例えばプリマ炭等では、これら燃焼させた場合に生ずる水管付着灰が多量であり、時には粘着性のクリンカーとして水管及び水管壁に強固に付着し、さらに飛散灰を吸収して巨大なクリンカーを成長し易くなり、前記従来の燃料添加剤ではたとえ多量に添加してもスラッギングを抑制することが困難であった。
そして、現段階では、このような多量の灰分含有量の燃料を燃焼する際に生ずるスラッギングを有効に防止する手段は見出されていない。
【0004】
【課題を解決するための手段】
本発明は、上記に鑑み鋭意研究の末得られたものであり、(A)粒径0.1〜10μmの粉末状のMg化合物、Si化合物、Fe化合物の一種又は二種以上10〜60重量%と、(B)粒径3〜200nmの超微粒子状のシリカ化合物5〜40重量%と、(C)アルカリ金属(R=Na,K)化合物をR2O濃度として0.02〜2.5重量%と、を水及び/又は油に分散させた組成物よりなることを特徴とするスラッギング防止用燃料添加剤に関するものである。ここでいう粒径とは平均一次粒径を意味し、以後単に粒径と記す。
【0005】
また、本発明は、上記燃料添加剤を液体燃料油又は固体燃料中に添加して燃焼させるか、直接燃焼雰囲気中に添加して燃焼させることを特徴とする燃料の燃焼方法、及び固体燃料が石炭の場合、石炭粉砕工程の前で上記燃料添加剤を石炭に添加し、粉砕後燃焼させることを特徴とする燃料(石炭)の燃焼方法をも提供する。
【0006】
さらに、上記燃焼方法において、燃料添加剤投入時間における燃料中に含まれている灰分に起因する燃焼時の飛散スケール量100重量部に対して、燃料添加剤中の灰分として1〜50重量部を1日1〜5回、各々30分〜2時間の短時間に間欠多量投入することにより、より効果的に燃料中の灰分に起因する障害を防止できることを見出した。
【0007】
即ち本発明者らは、粒径0.1〜10μmの粉末と非常に粒径の細かいシリカ化合物を組み合わせた特定の組成の燃料添加剤を用いて液体燃料油又は固体燃料を燃焼させることにより、生成灰の強度を低下させてスートブロー等で容易に掻き落とせるようにできることを見いだした。
さらに、従来では行われたことのない短時間に集中的に多量添加する燃焼方法との組み合わせにより、石炭等の灰分含有量が多く、時には生成灰の融点の低い灰分を含有するような燃料を燃焼させる際に生ずるスラッギング等の障害を防止することに成功したのである。
その結果として、強固な水管付着灰や巨大なクリンカーをスートブロー等にて容易に剥離、脱落させ、伝熱面に対する熱吸収率を向上させ、さらに高温腐食、低温腐食を低減させ、未燃カーボン、SO3、NOXの生成を抑制させ、ボイラ等の運転を長期的に安定操業させることができるのである。
【0008】
【発明の実施の形態】
本発明に用いられる(A)成分である粒径0.1〜10μmの粉末状のMg化合物、Si化合物、Fe化合物としては、以下のものを使用することができる。
Mg化合物:水酸化マグネシウム、炭酸マグネシウム、酸化マグネシウム
Si化合物:珪石(石英)粉、天然けい砂粉、人工けい砂粉、カオリン、タルク、ケイソウ土粉、焼成ケイソウ土粉、クレー(組成SiO246%,Al2O339%)、ケイ酸ジルコニウム
Fe化合物:弁柄、四三酸化鉄、黄色酸化鉄(ゲーサイト)
【0009】
また、本発明に用いられる(B)成分である粒径3〜200nmの超微粒子状のシリカ化合物は、特に水に分散(ほぼ溶解に近い)させたものは、シリカゾル(コロイダルシリカ)として市販もされている。また、粒径がこの範囲より大きいものでは十分なスラッギング防止効果が得られず、より好ましくは粒径10〜100nmである。
【0010】
さらに、本発明の燃料添加剤には、(C)成分としてアルカリ金属(R=Na,K)化合物を、R2O濃度として0.02〜2.5重量%を含有させることにより、前述の(A)成分や(B)成分の水管及び水管炉壁への付着性を向上すると共に燃料灰に起因するスケールを多孔質化させることができる。また、燃料添加剤が水又は水−油のエマルジョン(W/O型、O/W型)の場合、前述の(B)成分として市販のシリカゾル(コロイダルシリカ)を用いることができるが、この市販シリカゾル中には(C)成分が既に不純物として含有されており、例えば合成コロイダルシリカの場合には、SiO220〜50重量%に対し、通常Na2Oが0.01〜0.7重量%、K2Oが0.1重量%以下の微量含まれている。そこで、(C)成分としては、珪酸塩(珪酸ナトリウム、珪酸カリウム)等の水ガラス類や水酸化物(水酸化ナトリウム、水酸化カリウム)、炭酸塩化合物(例えば炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム)、キレートのアルカリ金属塩(例えばエチレンジアミン四酢酸(EDTA)の(2〜0)H・(2〜4)Na、(2〜0)H・(2〜4)K及びニトリロ三酢酸(NTA)の(2〜0)H・(1〜3)Na、(2〜0)H・(1〜3)K)、キレート金属・アルカリ金属塩(例えば2価金属をM(II)、3価金属をM(III)とすると、EDTA・M(II)・2Na、EDTA・M(III)・Na、NTA・M(II)・Na、EDTA・M(II)・2K、EDTA・M(III)・K、NTA・M(II)・K)等の水溶性物質を市販シリカゾル中に新たに添加して不純物との合計量でR2O濃度として0.02〜2.5重量%とするが、過剰量の添加は添加剤成分の粘着性が強くなり過ぎ、付着灰の融点も低下させてしまうため、好ましくはR2O濃度として0.1〜1.5重量%である。この(C)成分であるアルカリ金属(R=Na,K)化合物が珪酸塩、水酸化物、炭酸塩化合物、キレートのアルカリ金属塩、キレート金属・アルカリ金属塩の一種又は二種以上である場合は、特に水又は水−油のエマルジョン(W/O型、O/W型)系において、前記(A)成分である粉末と(B)成分であるシリカゾル(コロイダルシリカ)との混合における流動性や分散安定性を改善する作用を有し、例えば水酸化マグネシウム60%の水スラリー100重量部に対し、40%の合成コロイダルシリカ50重量部を単に混合すると、ペースト状からゲル状の高粘度水スラリーになってしまうが、そこへ1号水ガラス2重量部を添加すると、流動性と安定性に優れたスラリー状水分散液に改善できる。
【0011】
また、燃料添加剤が油又は水−油のエマルジョン(W/O型、O/W型)系の場合、この(C)成分として石油スルホン酸ナトリウム、ナフテン酸ナトリウム、オクチル酸カリウム等の油溶性アルカリ金属塩、或いは後述する(D)成分の一部のアルカリ金属塩等の油溶性アルカリ金属塩などを微量添加しても良い。油タイプ、即ち油又は水−油のエマルジョン(W/O型、O/W型)系に使用できる油としては灯油、軽油、A重油、メチルナフタレン等脂肪族系及び芳香族炭化水素が例示できる。
【0012】
本発明の燃料添加剤は、その組成割合としては前記(A)〜(C)成分の所定量を、水及び/又は油に分散させたものであるが、必要に応じて(D)界面活性剤を10重量%以下添加して分散安定性をより向上させるようにしても良い。また、燃料油との乳化混合性、固体燃料へのぬれ性向上を目的として(D)界面活性剤を使用しても良い。
用いられる(D)界面活性剤としては、アルキルベンゼンスルホン酸Na等のアルキルアリルスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル酢酸塩、ジアルキルスルフォコハク酸塩、ポリオキシエチレンアルキル硫酸エステル塩、ポリオキシエチレンアルキルリン酸エステル塩などのアニオン界面活性剤やポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、高級脂肪酸グリセリンエステル、ポリオキシエチレンアルキルアミン、アルキロールアミド等の非イオン界面活性剤が例示される。
【0013】
また、本発明の燃料添加剤には、必要に応じて粒径3〜200nmの超微粒子状のSi化合物単体及び/又はその表面の全体又は一部をAl化合物又はFe化合物でコーティング又は置換したアルミニウム変性又は鉄変性させたSi化合物、特にシリカを用いても良い。
【0014】
さらに本発明の燃料添加剤には、必要に応じて(E)粒径0.1〜10μmの粉末状のCa化合物、Al化合物、Zr化合物などを25重量%以下添加することにより、種々の燃焼障害を防止又は抑制することができる。これらの(E)成分は前記(A)成分を補足する成分であり、燃料灰の組成や燃焼条件、スラッギングを起こしている部位等の諸条件に応じて添加されるもので、以下の粉末を用いることができる。
Ca化合物:水酸化カルシウム、炭酸カルシウム、酸化カルシウム
Al化合物:水酸化アルミニウム、酸化アルミニウム
Zr化合物:酸化ジルコニウム、ケイ酸ジルコニウム、ジルコン砂(組成ZrO266%,SiO233%)
さらに、メチルセルロース、カルボキシメチルセルロース、ベントナイト、セピオライト等の有機性、無機性増粘剤を添加しても良く、特に粒径が大きい粉末状の(A)成分や(E)成分を使用する場合に粉末(粗粒子)の沈降防止に有効である。
【0015】
以下に本発明の燃料添加剤の作用を水性シリカゾルを例に説明する。
前記(B)成分として用いられるシリカゾルは高分子量の無水ケイ酸の超微粒子を水に分散させたコロイダルシリカ液であり、コロイダルシリカ粒子は図1のようになっている。
このコロイダルシリカ粒子は非晶質で、ほぼ真球状であり、非常に安定した状態で半永久的に水に分散している。このようなシリカゾルを集中的に燃焼炉内に添加すると、水分の蒸発に伴い、非常に微細な球状シリカ粒子や球状シリカ粒子の集合体となり、この集合体も球状で、それらの一部は水管炉壁に付着し、球状の緻密な滑り性のあるしかも離型性を有する薄い皮膜を形成し、他の一部は燃焼灰の粘着粒子の表面に付着し、灰の粘着性を低下させる。
また、この球状の超微粒子からなるシリカ(=(B)成分)及び粉末状(粗粒子)のMg系、Si系、Fe系の化合物(=(A)成分)に微量のアルカリ金属化合物(=(C)成分)を付加させることで元来高融点で付着性の低い球状シリカ粒子やその集合体、及びMg系、Si系、Fe系の粗粒子を効率的に水管や水管炉壁に付着させることができ、他の一部は燃焼灰の粘着粒子表面に効率的に付着被覆させて飛散灰の粘着性を低下させることができる。このようにアルカリ金属化合物は球状シリカ粒子表面やその集合体表面、及びMg系、Si系、Fe系の粗粒子表面に微量点在することで灰に付着し易くなるばかりでなく、球状シリカ粒子とMg系、Si系、Fe系の粗粒子との付着性を高めさせることができる。
また、(B)成分であるシリカゾル中の球状シリカの平均粒径を20nm、(A)成分であるMg系、Si系、Fe系の粗粒子の平均粒径を2μmとすると、粒子径が100倍異なることから、球状シリカがMg系、Si系、Fe系の粗粒子表面に付着し、一部は球状シリカの粒子集合体とMg系、Si系、Fe系の粗粒子が付着する。この燃料添加剤成分同士の付着は、球状シリカの集合体への成長や球状シリカ集合体の更なる成長による粗大化を抑制できるため、球状シリカの超微粒子状の形態を少なくとも付着灰に到達するまでの期間だけ維持するのに有効である。
そして、一時的に燃料添加剤を多量に添加すると、燃料添加剤中の球状シリカが付着灰の細孔中に侵入し、付着灰全体を脆弱化させることができる。脆弱化が進行すると球状シリカ粒子のマイクロベアリング効果と称される滑り向上作用とMg系、Si系、Fe系の粗粒子による付着灰の改質により、クリンカーの粉体化が可能になる。
さらに、これらの球状シリカ粒子は、1200℃程度の温度で非晶質から結晶質への結晶化が起こり、この際に球状シリカ粒子内部やその集合体内部に取り込まれている微量の水分子や粒子外側に存在する水酸基及び(C)成分由来のNaやKが急激にガス化することなどにより、球状シリカ粒子やその集合体が膨張、多孔質となり、全体として破壊され易くなる。
上記これらの作用の単独乃至複合された効果によりスートブロー等により簡単にクリンカーが水管表面及び水管炉壁表面より簡単に剥離脱落するのである。
【0016】
本発明の燃料添加剤は、前記(A)〜(C)成分を含有しているが、従来の燃料添加剤のように(A)成分のみ、例えば数μmの石英粒子だけでは結晶質を粉砕して製造するため、粒径分布が大きく且つ形状も不規則である。これを集中的に燃焼炉内に添加すると、粒径が大きく分布も広く且つ形状も不規則であるが故に容易にすばやく水分の蒸発が終了し、シリカ粒子の形状は球状に変化することなく単なるシリカ粒子の集合体になる。集合体の強度は弱いものの膨張を起こさないため多孔質にならず、スケールの希釈効果程度しか効果が発揮できず、スラッギングの防止までには至らないと推察される。
【0017】
また、前記(A)〜(E)の各成分を含む本発明の燃料添加剤の組成割合は、(A)成分が10〜55重量%、(B)成分が5〜40重量%、(C)成分が0.02〜2重量%、(D)成分が10重量%以下、(E)成分が25重量%以下であり、残部が水及び/又は油であることが望ましい。
【0018】
本発明の燃料添加剤を用いるに際しては、燃料と共に連続的に添加しても良く、液体燃料の場合は燃料配管に強制注入させたり、サービスタンクに比例注入させたりすることができる。
固形燃料、特に石炭に添加する場合、給炭機に直接、又は給炭機ベルト上の石炭に添加し、石炭粉砕機(ミル)で粉砕、混練することにより、石炭微粒子表面に添加剤を接着させて燃焼させることができ、それによってクリンカー表面に効率的に添加剤成分を蒸着させることができる。
【0019】
そして、特にその添加方法を工夫することにより、より少ない使用量でより大きな効果を発揮させることができる。その添加方法とは、燃料添加剤投入時間における燃料中に含まれている灰分に起因する燃焼時の飛散スケール(灰分)量100重量部に対して燃料添加剤中の灰分として1〜50重量部を1日1〜5回、各々30分〜2時間の短時間に間欠多量添加することであり、この添加方法により、スラッギングの防止効果を飛躍的に向上させることができるのである。
即ち本発明の燃料添加剤を燃料と共に連続的に添加する方法の場合にも、前述の作用によりクリンカーを多孔質にしてその強度を低下させることができるが、多量の燃料添加剤を添加しなければ、付着灰が容易に脱落できる程の強度低下を見込めないため、その使用量が多くなる。
これに対し、前述のように燃料添加剤を間欠多量添加した場合には、燃料添加剤を添加している間には強度の十分に低い灰が層状に付着し、燃料添加剤を添加していない間には強度の高い灰がその上に層状に付着する。そのため、仮にある程度厚い付着灰が形成されたとしても、灰自体の自重やスートブロー等で強度の低い層部分から剥離させてその上に付着した強度の高い層部分と共に脱落させることができる。この方法では短時間にのみ集中的に多量添加するので、合計使用量は連続的に添加した場合よりも少なくなる。したがって、この方法は、より少ない使用量でより大きな効果を発揮させることができる。
【0020】
【実施例】
実施例1(基礎試験)
▲1▼供試灰分(クリンカー)
プリマ炭を微粉炭ボイラーにて燃焼させた際に生成したクリンカーを微粉砕し、200メッシュをパスしたものを用いた。
▲1▼−1プリマ炭の性状
固有水分 6.0%
灰分 4.4%
揮発分 40.5%
固定炭素 49.1%
▲1▼−2クリンカー(灰分)組成
SiO2 55.1%
Fe23 11.2%
Al23 20.3%
CaO 2.8%
MgO 3.5%
Na2O 0.8%
2O 1.3%
SO3 3.6%
その他 1.4%
【0021】
▲2▼試験方法
200メッシュ以下に粉砕されたサンプル灰に後述する▲3▼の供試添加剤を固形分として5%、10%添加し、十分に混合撹拌して均一組成とし、成型器にて直径10mm高さ15mmの円柱状に成型し、100℃で24時間乾燥させた。
得られた試料を高温加熱顕微鏡で20℃/minの割合で昇温させ、軟化点、融点、膨張率を観察測定し、テスト終了後に圧潰強度を測定した。
【0022】
▲3▼供試添加剤
〔配合例1〕
粒径10〜20nmのシリカゾル、粒径0.3〜3μmのMg(OH)2、1号水ガラス1%を含有する水スラリー
((B)成分;球状SiO2=35%,
(A)成分;Mg(OH)2=15%,
(C)成分;Na2O=0.7%)
〔配合例2〕
粒径15〜30nmのシリカゾル、粒径0.5〜5μmのSiO2、KOH0.1%を含有する水スラリー
((B)成分;球状SiO2=20%,
(A)成分;SiO2=55%,
(C)成分;Na2O=0.03%,K2O=0.08%)
〔配合例3〕
粒径20〜80nmの球状シリカ超微粒子、粒径3〜8μmのMg(OH)2、粒径2〜6μmのFe23、石油スルホン酸Na及びアルキルベンゼンスルホン酸Naを含有する灯油スラリー
((B)成分;球状SiO2=7%,
(A)成分;Mg(OH)2=10%,Fe23=5%,
(C)成分;Na2O=0.3%,
(D)成分;界面活性剤2%)
〔配合例4〕
粒径10〜40nmのシリカゾル、粒径0.3〜3μmのSiO2、粒径1〜5μmのAl(OH)3、NaOH0.5%を含有する水スラリー
((B)成分;球状SiO2=30%,
(A)成分;SiO2=10%,
(E)成分;Al(OH)3=15%,
(C)成分;Na2O=1.1%)
〔配合例5〕
粒径10〜35nmのシリカゾル、粒径2〜6μmのZrSiO4、粒径1〜5μmのFeOOH、3号水ガラス1.5%、ポリオキシエチレン脂肪酸エステル、A重油を含むエマルジョン型スラリー
((B)成分;球状SiO2=15%,
(E)成分;ZrSiO4=30%[ZrO2=20.2%,SiO2=9.8%], (A)成分;FeOOH=10%,
(C)成分;Na2O=0.5%,
(D)成分;界面活性剤5%)
〔比較例1〕
粒径1〜5μmのシリカの水スラリー
(SiO2濃度として30%)
〔比較例2〕
粒径1〜5μmの水酸化マグネシウムの水スラリー
(Mg(OH)2濃度として40%)
〔比較例3〕
粒径1〜5μmの水酸化カルシウムの水スラリー
(Ca(OH)2濃度として35%)
〔ブランク〕
無添加
【0023】
▲4▼試験結果
【表1】

Figure 0003746010
【0024】
▲5▼考察
1.本発明に係る配合例1〜5は、比較例1〜3及びブランクに比べて軟化点、融点の上昇が著しく、特に高添加量の場合に顕著に表れた。
2.同様に膨張率が大きく、比較例1〜3及びブランクに比べて優れていた。特に配合例1〜5の高添加量のものは膨張率が1.5〜1.9倍となり、非常に大きな値を示していた。
3.配合例1〜5は、比較例1〜3及びブランクに比べて圧潰強度が非常に小さな値を示していた。
4.灰分の膨張率が大きく、圧潰強度が小さいということは、配合例1〜5の灰は多孔質であり、しかも壊れやすいことを表している。
【0025】
実施例2(実装置による試験)
▲1▼ボイラ仕様
・型式;三菱重工(株)製単胴型微粉炭ボイラ
・蒸発量;350T/H
・使用圧力;13.7MPa
・石炭使用量;800t/日
・通風方式;平衡通風
・ミル(石炭粉砕機);3台(ローラーミル)
【0026】
▲2▼実装置の概略図
実験に用いた燃焼装置を図2に示した。
尚、図中、1はコールバンカー、2は給炭器、3はミル(粉砕機)、4は搬送用ブロア、5は薬品注入ポンプ、6は添加剤タンク、7は2次過熱器、8は3次過熱器、9は1次過熱器、10はエコノマイザー、11はバーナー、12はエアヒーター、13はEP(電気集塵機)、14は水封口、15は灰取り用水タンクである。また、白矢印は排気の流れを示し、黒矢印はスートブロー等にて落下する灰を示す。
【0027】
▲3▼試験方法
▲3▼−1概略
本実装置はプリマ炭専焼ボイラであり、ブランク試験において約1ヶ月で巨大なクリンカーが炉壁バーナー下部ゾーンに形成されることが覗き穴からの観察で確認されたので、試験期間を1ヶ月に設定した。
▲3▼−2供試添加剤
実施例1における配合例1及び比較例1の添加剤を用いた。
▲3▼−3添加剤の注入場所
ミル手前の給炭機ベルト上の石炭に添加した。
▲3▼−4添加剤の添加方法
配合例1の添加剤については、1日2回、各2時間、各2時間分の石炭中の灰分量の10%に相当する添加剤灰分量(SiO2+Na2O+MgO)として間欠注入した。
比較例1の添加剤については、前半(半月)石炭試料量の1/1000を連続注入した。
【0028】
▲4▼試験項目
▲4▼−1供試料;水封口下部灰取りタンクよりかき上げられるボトムクリンカー
▲4▼−2試験項目;重量、圧潰強度、見掛け比重
▲4▼−3測定間隙;3日に1回
【0029】
▲5▼試験結果
▲5▼−1ボトムクリンカーの重量変化(t/3日)
【表2】
Figure 0003746010
一般に石炭灰の約10%がクリンカーとして回収されているが、配合例1の添加剤を添加した場合に1ヶ月間殆ど一定の値であるのに対して、比較例1の添加剤を添加した場合は、9日目(第3回目測定時)位から徐々に低下し、後半は急激に低下していた。
配合例1と比較例1とでは1ヶ月間に14.2t((10.12-8.70)×10=)の差が出たが、目視観察においても比較例1の場合では火炉水封口上部に巨大なクリンカーが堆積しており、ボイラ停止後クリンカーを剥離脱落させ、その重量を測定したところ、約15tであり、ボトムクリンカーの重量差と符合していた。
【0030】
▲5▼−2ボトムクリンカーの圧潰強度を見掛け比重の測定
【表3】
Figure 0003746010
平均値より計算すると、配合例1は比較例1に比べて見掛け比重で48%低下しており、燃焼石炭灰が空隙率の増大、即ち多孔質化して壊れ易くなって、スートブロー等により簡単に剥離脱落されることが知れた。
【0031】
以上本発明を実施例に基づいて説明したが、本発明は前記した実施例に限定されるものではなく、特許請求の範囲に記載した構成を変更しない限りどのようにでも実施することができる。
【0032】
【発明の効果】
以上説明したように本発明の燃料添加剤は、各種燃料、特に石炭焚きボイラを代表とする無機成分(灰分)含有量の多い燃料の燃焼において、燃料中の灰分に起因するスラッギング障害を、生成するクリンカーの性状を多孔性にして圧潰強度を低下させることができ、特に本発明の燃料添加剤を間欠多量添加した場合には、より少ない使用量でより大きな効果を発揮させることができ、付着灰を炉壁表面又は水管より容易に剥離脱落させて防止し、さらに高・低温腐食を防止すると共に未燃カーボン、SO3、NOXの生成を抑制することができる。
【図面の簡単な説明】
【図1】コロイダルシリカ粒子を示す概念図である。
【図2】実施例2にて使用した燃焼装置の概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel additive and a fuel additive for preventing slagging, which can prevent slagging caused by ash in the fuel during combustion of various fuels, particularly fuels having a high ash content such as coal and oil coke. Relates to the combustion method.
[0002]
[Prior art]
Boilers using coal, oil courses, by-product oil, etc., recovery boilers, various heating furnaces and various wastes, various incinerators that incinerate waste tires, etc. are caused by ash in the fuel and waste It is known that clinker is likely to occur, and slagging (clogging phenomenon) is caused by their growth.
As countermeasures to prevent these obstacles, measures such as increasing the interval between water pipes in boilers and installing many soot blowers have been adopted, but fuel still remains due to fuel deterioration, combustion fluctuations, load fluctuations, etc. Depending on the ash content of the ash, the melting point of the generated ash, etc., there were cases in which continuous operation was possible only for about one month. That is, since slagging occurs, it is necessary to stop the operation, cool the inside of the furnace, and peel off the clinker.
Further, as described in JP-A-61-250416, JP-A-62-77508 and the like for these obstacles, magnesium hydroxide, magnesium acetate, calcium hydroxide, calcium carbonate have been conventionally used. A fuel additive in which an alkaline earth metal compound such as dolomite or an Fe compound represented by mFeO · nFe 2 O 3 (m and n are 0 or more) is dispersed in water or oil is added to the fuel, Attempts have also been made to suppress slagging by injecting it into the combustion gas.
[0003]
[Problems to be solved by the invention]
The conventional fuel additive is effective for a fuel having a relatively small ash content. That is, slagging can be prevented by changing the properties of the ash attached to the water tube by increasing the melting point of the ash, softening the ash, and blackening the ash.
However, fuels with a high ash content, such as coal, and especially prima coal with a low melting point of combustion ash, for example, have a large amount of ash adhering to the water pipe when they are burned, and sometimes water pipes as sticky clinker In addition, it adheres firmly to the wall of the water pipe and further absorbs the scattered ash, which makes it easy to grow a huge clinker. With the conventional fuel additive, it is difficult to suppress slagging even if added in a large amount. .
At present, no means has been found to effectively prevent slagging that occurs when fuel with such a large amount of ash content is burned.
[0004]
[Means for Solving the Problems]
The present invention has been obtained as a result of intensive studies in view of the above, and (A) a powdery Mg compound having a particle size of 0.1 to 10 μm, a Si compound, a Fe compound, or two or more of 10 to 60 weights. %, (B) 5 to 40% by weight of an ultrafine silica compound having a particle size of 3 to 200 nm, and (C) an alkali metal (R = Na, K) compound as an R 2 O concentration of 0.02 to 2.0%. The present invention relates to a fuel additive for preventing slagging, characterized by comprising a composition in which 5% by weight is dispersed in water and / or oil. The particle size here means an average primary particle size, which will be simply referred to as a particle size hereinafter.
[0005]
Further, the present invention provides a fuel combustion method characterized by adding the above fuel additive to liquid fuel oil or solid fuel and burning it, or directly adding it to a combustion atmosphere and burning the fuel, In the case of coal, the present invention also provides a fuel (coal) combustion method characterized in that the fuel additive is added to coal before the coal pulverization step and burned after pulverization.
[0006]
Furthermore, in the above combustion method, 1 to 50 parts by weight as ash in the fuel additive with respect to 100 parts by weight of the scattering scale during combustion caused by the ash contained in the fuel during the fuel additive charging time. It has been found that the failure caused by the ash content in the fuel can be more effectively prevented by introducing a large amount intermittently in a short period of 30 minutes to 2 hours each 1 to 5 times a day.
[0007]
That is, the present inventors burn liquid fuel oil or solid fuel using a fuel additive having a specific composition in which a powder having a particle size of 0.1 to 10 μm and a silica compound having a very small particle size are combined, It was found that the strength of the generated ash can be reduced so that it can be easily scraped off with a soot blower.
Furthermore, by combining with a combustion method in which a large amount is intensively added in a short time, which has not been done in the past, a fuel containing a large amount of ash such as coal and sometimes containing ash with a low melting point of the produced ash They succeeded in preventing obstacles such as slugging that occur during combustion.
As a result, strong water pipe adhesion ash and huge clinker can be easily peeled off and dropped off with soot blow, etc., improving the heat absorption rate to the heat transfer surface, further reducing high temperature corrosion, low temperature corrosion, unburned carbon, The production of SO 3 and NO x can be suppressed, and the operation of the boiler and the like can be stably performed for a long time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The following can be used as the powdery Mg compound, Si compound, and Fe compound having a particle diameter of 0.1 to 10 μm, which is the component (A) used in the present invention.
Mg compound: Magnesium hydroxide, magnesium carbonate, magnesium oxide Si compound: Silica (quartz) powder, natural silica sand powder, artificial silica sand powder, kaolin, talc, diatomaceous earth powder, calcined diatomaceous earth powder, clay (composition SiO 2 46 %, Al 2 O 3 39%), zirconium silicate Fe compound: petal, iron trioxide, yellow iron oxide (goethite)
[0009]
In addition, the ultrafine particle silica compound having a particle size of 3 to 200 nm, which is the component (B) used in the present invention, is particularly commercially available as silica sol (colloidal silica) dispersed in water (substantially dissolved). Has been. Further, if the particle size is larger than this range, a sufficient anti-slagging effect cannot be obtained, and the particle size is more preferably 10 to 100 nm.
[0010]
Further, the fuel additive of the present invention contains an alkali metal (R = Na, K) compound as the component (C) and 0.02 to 2.5% by weight as the R 2 O concentration. The adhesion of the component (A) and the component (B) to the water pipe and the water tube furnace wall can be improved and the scale resulting from the fuel ash can be made porous. When the fuel additive is a water or water-oil emulsion (W / O type, O / W type), commercially available silica sol (colloidal silica) can be used as the component (B). The component (C) is already contained as an impurity in the silica sol. For example, in the case of synthetic colloidal silica, Na 2 O is usually 0.01 to 0.7% by weight with respect to 20 to 50% by weight of SiO 2. , K 2 O is contained in a trace amount of 0.1% by weight or less. Therefore, as the component (C), water glass such as silicate (sodium silicate, potassium silicate), hydroxide (sodium hydroxide, potassium hydroxide), carbonate compound (for example, sodium carbonate, potassium carbonate, hydrogen carbonate) Sodium, potassium hydrogen carbonate), alkali metal salts of chelates (eg, (2-0) H. (2-4) Na, (2-0) H. (2-4) K) and nitrilo of ethylenediaminetetraacetic acid (EDTA) (2-0) H. (1-3) Na, (2-0) H. (1-3) K) of triacetic acid (NTA), chelate metal / alkali metal salt (eg divalent metal M (II ) If the trivalent metal is M (III), EDTA · M (II) · 2Na, EDTA · M (III) · Na, NTA · M (II) · Na, EDTA · M (II) · 2K, EDTA・ Water-soluble substances such as M (III) ・ K and NTA ・ M (II) ・ K) are newly added to commercially available silica sols and impurities. The total amount of R 2 O is 0.02 to 2.5% by weight. However, excessive addition is preferable because the adhesive component becomes too sticky and the melting point of adhering ash is lowered. Is 0.1 to 1.5% by weight as the R 2 O concentration. When the alkali metal (R = Na, K) compound as the component (C) is one or more of silicate, hydroxide, carbonate compound, chelate alkali metal salt, chelate metal / alkali metal salt In particular, in water or water-oil emulsion (W / O type, O / W type) systems, the fluidity in mixing the powder as the component (A) and the silica sol (colloidal silica) as the component (B) For example, when 50 parts by weight of 40% synthetic colloidal silica is simply mixed with 100 parts by weight of a water slurry of 60% magnesium hydroxide, the paste-like high viscosity water is obtained. Although it will become a slurry, if 2 weight part of No. 1 water glass is added there, it can improve to the slurry-like water dispersion excellent in fluidity | liquidity and stability.
[0011]
When the fuel additive is an oil or water-oil emulsion (W / O type, O / W type) system, oil solubility such as sodium sulfonate, sodium naphthenate and potassium octylate as the component (C) A trace amount of an alkali metal salt or an oil-soluble alkali metal salt such as a part of the alkali metal salt (D) described later may be added. Examples of oils that can be used in oil types, that is, oil or water-oil emulsion (W / O type, O / W type) systems include kerosene, light oil, heavy oil A, and aliphatic hydrocarbons such as methylnaphthalene and aromatic hydrocarbons. .
[0012]
The fuel additive of the present invention has a composition ratio in which a predetermined amount of the above components (A) to (C) is dispersed in water and / or oil. An agent may be added in an amount of 10% by weight or less to further improve the dispersion stability. In addition, a surfactant (D) may be used for the purpose of improving emulsifying and mixing properties with fuel oil and wettability to solid fuel.
Examples of the surfactant (D) used include alkyl allyl sulfonates such as alkylbenzene sulfonic acid Na, alkyl sulfate esters, polyoxyethylene alkyl ether acetates, dialkyl sulfosuccinates, polyoxyethylene alkyl sulfates , Anionic surfactants such as polyoxyethylene alkyl phosphate esters, polyoxyethylene alkylphenol ethers, polyoxyethylene fatty acid esters, polyoxyethylene alcohol ethers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, higher fatty acids Nonionic surfactants such as glycerin ester, polyoxyethylene alkylamine, and alkylolamide are exemplified.
[0013]
In addition, the fuel additive of the present invention includes an ultrafine Si compound having a particle size of 3 to 200 nm and / or an aluminum whose surface is entirely or partially coated or substituted with an Al compound or an Fe compound as necessary. Modified or iron-modified Si compounds, particularly silica may be used.
[0014]
Further, the fuel additive of the present invention may be added with 25% by weight or less of (E) powdery Ca compound, Al compound, Zr compound and the like having a particle size of 0.1 to 10 μm as required. A failure can be prevented or suppressed. These (E) components are components supplementing the above (A) component, and are added according to various conditions such as the composition of the fuel ash, the combustion conditions, and the site where slagging is occurring. Can be used.
Ca compound: calcium hydroxide, calcium carbonate, calcium oxide Al compound: aluminum hydroxide, aluminum oxide Zr compound: zirconium oxide, zirconium silicate, zircon sand (composition ZrO 2 66%, SiO 2 33%)
Furthermore, organic and inorganic thickeners such as methylcellulose, carboxymethylcellulose, bentonite, sepiolite may be added, especially when using powdery (A) and (E) components with large particle sizes. This is effective for preventing sedimentation of (coarse particles).
[0015]
The operation of the fuel additive of the present invention will be described below using an aqueous silica sol as an example.
The silica sol used as the component (B) is a colloidal silica liquid in which ultrafine particles of high molecular weight silicic acid are dispersed in water. The colloidal silica particles are as shown in FIG.
The colloidal silica particles are amorphous, almost spherical, and are semi-permanently dispersed in water in a very stable state. When such a silica sol is intensively added to the combustion furnace, as the water evaporates, it becomes an aggregate of very fine spherical silica particles or spherical silica particles, and this aggregate is also spherical, and some of them are water tubes. It adheres to the furnace wall and forms a thin film having a spherical fine slipperiness and releasability, and the other part adheres to the surface of the sticky particles of the combustion ash, thereby reducing the stickiness of the ash.
In addition, a small amount of alkali metal compound (=) is added to silica (= (B) component) and powder (coarse particle) Mg-based, Si-based, and Fe-based compounds (= (A) component) composed of spherical ultrafine particles. By adding (C) component, spherical silica particles with low melting point and low adherence and their aggregates, and Mg, Si and Fe coarse particles are efficiently attached to water tubes and water tube furnace walls. The other part can be efficiently attached and coated on the surface of the sticky particles of combustion ash to reduce the stickiness of the fly ash. As described above, the alkali metal compound is not only easily adhered to the ash by being scattered in a small amount on the surface of the spherical silica particles, the aggregate surface thereof, and the Mg-based, Si-based, and Fe-based coarse particles, but also the spherical silica particles. And adhesion of Mg-based, Si-based, and Fe-based coarse particles.
When the average particle diameter of spherical silica in the silica sol as the component (B) is 20 nm and the average particle diameter of Mg-based, Si-based, and Fe-based coarse particles as the component (A) is 2 μm, the particle size is 100. Because of the double difference, spherical silica adheres to the surface of Mg-based, Si-based, and Fe-based coarse particles, and a part of the spherical silica particle aggregate and Mg-based, Si-based, and Fe-based coarse particles adhere. The adhesion between the fuel additive components can suppress the growth of the spherical silica aggregates and the coarsening due to the further growth of the spherical silica aggregates, so that the ultrafine particle form of the spherical silica reaches at least the adhering ash. It is effective to maintain only the period until.
When a large amount of the fuel additive is temporarily added, the spherical silica in the fuel additive enters the pores of the attached ash, and the entire attached ash can be weakened. As the embrittlement progresses, the clinker can be pulverized by the slip-improving action called the micro-bearing effect of the spherical silica particles and the modification of the attached ash by Mg-based, Si-based, and Fe-based coarse particles.
Further, these spherical silica particles crystallize from amorphous to crystalline at a temperature of about 1200 ° C., and at this time, a small amount of water molecules incorporated into the spherical silica particles or the aggregates thereof When the hydroxyl groups and Na and K derived from the component (C) are rapidly gasified, the spherical silica particles and their aggregates become expanded and porous, and are easily destroyed as a whole.
The clinker easily peels off from the surface of the water tube and the surface of the water tube furnace wall by soot blow or the like due to the single or combined effects of the above-described actions.
[0016]
The fuel additive of the present invention contains the components (A) to (C), but the crystalline material is pulverized with only the component (A), for example, several μm quartz particles, as in the conventional fuel additive. Therefore, the particle size distribution is large and the shape is irregular. When this is added intensively into the combustion furnace, the evaporation of moisture is easily completed quickly because the particle size is large, the distribution is wide, and the shape is irregular, and the shape of the silica particles is simply changed without changing to a spherical shape. It becomes an aggregate of silica particles. Although the strength of the aggregate is weak, it does not cause expansion, so it does not become porous, can only exert the effect of diluting the scale, and it is presumed that it does not lead to prevention of slagging.
[0017]
The composition ratio of the fuel additive of the present invention containing the components (A) to (E) is 10 to 55% by weight for component (A), 5 to 40% by weight for component (B), (C It is desirable that the component is 0.02 to 2% by weight, the component (D) is 10% by weight or less, the component (E) is 25% by weight or less, and the balance is water and / or oil.
[0018]
When the fuel additive of the present invention is used, it may be continuously added together with the fuel. In the case of liquid fuel, it can be forcibly injected into the fuel pipe or proportionally injected into the service tank.
When adding to solid fuel, especially coal, add it directly to the coal feeder or coal on the coal feeder belt, and pulverize and knead it with a coal pulverizer (mill) to adhere the additive to the surface of the fine coal particles Can be allowed to burn, thereby efficiently depositing the additive component on the clinker surface.
[0019]
And especially by devising the addition method, a larger effect can be exhibited with a smaller amount of use. The addition method is 1 to 50 parts by weight as ash in the fuel additive with respect to 100 parts by weight of the scattering scale (ash) during combustion caused by the ash contained in the fuel during the fuel additive charging time. Is added 1 to 5 times a day in a short time of 30 minutes to 2 hours each, and this addition method can drastically improve the effect of preventing slagging.
That is, in the case of the method of continuously adding the fuel additive of the present invention together with the fuel, the clinker can be made porous by the above-described action to reduce its strength, but a large amount of the fuel additive must be added. In this case, the amount of use is increased because it is not possible to expect a decrease in strength that allows the attached ash to easily fall off.
In contrast, when the fuel additive is intermittently added in a large amount as described above, ash having a sufficiently low strength adheres in layers during the addition of the fuel additive, and the fuel additive is not added. While it is not, strong ash is deposited in layers on it. Therefore, even if a certain amount of attached ash is formed, it can be peeled off from the low strength layer portion by the dead weight of the ash itself or soot blow, and dropped together with the high strength layer portion attached thereon. In this method, since a large amount is added intensively only in a short time, the total amount used is smaller than that in the case of continuous addition. Therefore, this method can exert a greater effect with a smaller amount of use.
[0020]
【Example】
Example 1 (basic test)
(1) Test ash (clinker)
The clinker produced when prima charcoal was burned in a pulverized coal boiler was finely pulverized and used after passing 200 mesh.
(1) -1 Property of Prima Charcoal 6.0%
Ash content 4.4%
Volatile content 40.5%
Fixed carbon 49.1%
(1) -2 Clinker (ash) composition SiO 2 55.1%
Fe 2 O 3 11.2%
Al 2 O 3 20.3%
CaO 2.8%
MgO 3.5%
Na 2 O 0.8%
K 2 O 1.3%
SO 3 3.6%
Other 1.4%
[0021]
(2) Test method Add 5% or 10% of the test additive of (3) described later to the sample ash pulverized to 200 mesh or less as a solid content, mix thoroughly and stir to obtain a uniform composition. Were molded into a cylindrical shape having a diameter of 10 mm and a height of 15 mm, and dried at 100 ° C. for 24 hours.
The obtained sample was heated at a rate of 20 ° C./min with a high-temperature heating microscope, the softening point, the melting point, and the expansion coefficient were observed and measured, and the crushing strength was measured after the test was completed.
[0022]
(3) Test additive [Formulation Example 1]
Silica sol having a particle size of 10 to 20 nm, Mg (OH) 2 having a particle size of 0.3 to 3 μm, water slurry containing 1% No. 1 water glass (component (B); spherical SiO 2 = 35%,
Component (A); Mg (OH) 2 = 15%,
(C) component; Na 2 O = 0.7%)
[Formulation Example 2]
Silica sol having a particle size of 15 to 30 nm, SiO 2 having a particle size of 0.5 to 5 μm, water slurry containing 0.1% KOH (component (B); spherical SiO 2 = 20%,
(A) component; SiO 2 = 55%,
(C) component; Na 2 O = 0.03%, K 2 O = 0.08%)
[Composition Example 3]
Kerosene slurry containing spherical silica ultrafine particles having a particle diameter of 20 to 80 nm, Mg (OH) 2 having a particle diameter of 3 to 8 μm, Fe 2 O 3 having a particle diameter of 2 to 6 μm, petroleum sulfonic acid Na and alkylbenzene sulfonic acid Na (( B) component: spherical SiO 2 = 7%,
Component (A); Mg (OH) 2 = 10%, Fe 2 O 3 = 5%,
Component (C): Na 2 O = 0.3%,
(D) component; surfactant 2%)
[Formulation Example 4]
A water slurry containing silica sol having a particle diameter of 10 to 40 nm, SiO 2 having a particle diameter of 0.3 to 3 μm, Al (OH) 3 having a particle diameter of 1 to 5 μm, and 0.5% NaOH (component (B); spherical SiO 2 = 30%,
(A) component; SiO 2 = 10%,
(E) component; Al (OH) 3 = 15%,
(C) component; Na 2 O = 1.1%)
[Formulation Example 5]
Emulsion slurry containing silica sol having a particle diameter of 10 to 35 nm, ZrSiO 4 having a particle diameter of 2 to 6 μm, FeOOH having a particle diameter of 1 to 5 μm, No. 3 water glass 1.5%, polyoxyethylene fatty acid ester, A heavy oil ((B ) Component: spherical SiO 2 = 15%,
(E) component; ZrSiO 4 = 30% [ZrO 2 = 20.2%, SiO 2 = 9.8%], (A) component; FeOOH = 10%,
Component (C): Na 2 O = 0.5%
(D) component; surfactant 5%)
[Comparative Example 1]
Particle size 1~5μm silica slurry in water (30% as SiO 2 concentration)
[Comparative Example 2]
Magnesium hydroxide water slurry with particle size of 1-5μm (40% as Mg (OH) 2 concentration)
[Comparative Example 3]
Calcium hydroxide water slurry with particle size of 1-5μm (Ca (OH) 2 concentration 35%)
〔blank〕
No addition [0023]
(4) Test results [Table 1]
Figure 0003746010
[0024]
{Circle around (5)} Consideration 1. In Formulation Examples 1 to 5 according to the present invention, the softening point and the melting point are significantly increased as compared with Comparative Examples 1 to 3 and the blank, and particularly when the addition amount is high.
2. Similarly, the expansion coefficient was large, which was superior to those of Comparative Examples 1 to 3 and the blank. In particular, those with high addition amounts of Formulation Examples 1 to 5 had an expansion rate of 1.5 to 1.9 times, indicating a very large value.
3. The blending examples 1-5 showed the value whose crushing strength was very small compared with the comparative examples 1-3 and the blank.
4. The fact that the expansion rate of ash is large and the crushing strength is small indicates that the ash of Formulation Examples 1 to 5 is porous and fragile.
[0025]
Example 2 (Test with actual equipment)
(1) Boiler specifications and model: Mitsubishi Heavy Industries, Ltd. single-cylinder pulverized coal boiler, evaporation amount: 350 T / H
・ Operating pressure: 13.7 MPa
・ Coal consumption: 800t / day ・ Ventilation method; Balanced ventilation ・ Mill (coal pulverizer); 3 units (roller mill)
[0026]
(2) Schematic diagram of actual apparatus The combustion apparatus used in the experiment is shown in FIG.
In the figure, 1 is a coal bunker, 2 is a coal feeder, 3 is a mill (pulverizer), 4 is a blower for conveyance, 5 is a chemical injection pump, 6 is an additive tank, 7 is a secondary superheater, 8 Is a tertiary superheater, 9 is a primary superheater, 10 is an economizer, 11 is a burner, 12 is an air heater, 13 is an EP (electric dust collector), 14 is a water seal, and 15 is a water tank for ash removal. The white arrow indicates the flow of exhaust, and the black arrow indicates ash that falls by soot blow or the like.
[0027]
(3) Test method (3) -1 Outline This is a Prima charcoal fired boiler, and in a blank test, a huge clinker is formed in the furnace wall burner lower zone in about one month. Since it was confirmed, the test period was set to 1 month.
(3) -2 Test additive The additives of Formulation Example 1 and Comparative Example 1 in Example 1 were used.
(3) -3 Addition of additive The additive was added to the coal on the coal feeder belt before the mill.
(3) -4 Addition method of additive For the additive of Formulation Example 1, the amount of additive ash equivalent to 10% of the amount of ash in coal for 2 hours, 2 hours each, 2 hours each 2 + Na 2 O + MgO).
About the additive of the comparative example 1, 1/1000 of the first half (half month) coal sample amount was continuously inject | poured.
[0028]
(4) Test item (4) -1 Sample: Bottom clinker lifted from the bottom ash removal tank of the water seal (4) -2 Test item: Weight, crush strength, apparent specific gravity (4) -3 Measurement gap: 3 days Once in [0029]
(5) Test result (5) -1 Bottom clinker weight change (t / 3 days)
[Table 2]
Figure 0003746010
Generally, about 10% of coal ash is recovered as a clinker, but when the additive of Formulation Example 1 is added, the value is almost constant for one month, whereas the additive of Comparative Example 1 is added. In this case, it gradually decreased from the 9th day (at the time of the third measurement) and rapidly decreased in the second half.
There was a difference of 14.2 t ((10.12-8.70) × 10 =) in one month between Formulation Example 1 and Comparative Example 1, but in the case of Comparative Example 1 also in visual observation, there was a huge difference at the top of the furnace water seal The clinker was accumulated, and after the boiler stopped, the clinker was peeled off and measured for its weight. As a result, it was about 15 t, which was consistent with the difference in weight of the bottom clinker.
[0030]
▲ 5 ▼ -2 Measurement of apparent specific gravity of crushing strength of bottom clinker [Table 3]
Figure 0003746010
When calculated from the average value, the blending example 1 is 48% lower in apparent specific gravity than the comparative example 1, and the combustion coal ash increases in porosity, that is, becomes porous and breaks easily. It was known that it was peeled off.
[0031]
The present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and can be implemented in any manner as long as the configuration described in the claims is not changed.
[0032]
【The invention's effect】
As described above, the fuel additive of the present invention generates slugging obstacles caused by ash in the fuel in the combustion of various fuels, particularly fuels with a high content of inorganic components (ash) such as coal-fired boilers. The crusher properties can be made porous to reduce the crushing strength. Especially when the fuel additive of the present invention is intermittently added in a large amount, a larger effect can be exerted with a smaller amount of use, and adhesion Ashes can be easily peeled off and removed from the furnace wall surface or water pipe, and high / low temperature corrosion can be prevented, and generation of unburned carbon, SO 3 and NO x can be suppressed.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing colloidal silica particles.
2 is a schematic view of a combustion apparatus used in Example 2. FIG.

Claims (8)

粒径0.1〜10μmの粉末状のMg化合物、Si化合物、Fe化合物の一種又は二種以上10〜60重量%と、粒径3〜200nmの超微粒子状のシリカ化合物5〜40重量%と、アルカリ金属(R=Na,K)化合物をR2O濃度として0.02〜2.5重量%と、を水及び/又は油に分散させた組成物よりなることを特徴とするスラッギング防止用燃料添加剤。10 to 60% by weight of one or more of powdery Mg compound, Si compound and Fe compound having a particle size of 0.1 to 10 μm, and 5 to 40% by weight of ultrafine silica compound having a particle size of 3 to 200 nm For preventing slagging, comprising a composition in which 0.02 to 2.5% by weight of an alkali metal (R = Na, K) compound as an R 2 O concentration is dispersed in water and / or oil Fuel additive. アルカリ金属(R=Na,K)化合物が珪酸ナトリウム、珪酸カリウム等の水ガラス類や水酸化ナトリウム、水酸化カリウム、炭酸塩化合物、キレートのアルカリ金属塩、キレート金属・アルカリ金属塩、油溶性アルカリ金属塩の一種又は二種以上である請求項1に記載のスラッギング防止用燃料添加剤。Alkali metal (R = Na, K) compounds are water silicates such as sodium silicate and potassium silicate, sodium hydroxide, potassium hydroxide, carbonate compounds, chelate alkali metal salts, chelate metals / alkali metal salts, oil-soluble alkalis The fuel additive for preventing slagging according to claim 1, wherein the fuel additive is one kind or two or more kinds of metal salts. 粒径0.1〜10μmの粉末状のMg化合物、Si化合物、Fe化合物の一種又は二種以上は10〜55重量%で、粒径3〜200nmの超微粒子状のシリカ化合物は5〜40重量%、アルカリ金属(R=Na,K)化合物はR2O濃度として0.02〜2重量%、界面活性剤は10重量%以下、残部が水及び/又は油であることを特徴とする請求項1又は2に記載のスラッギング防止用燃料添加剤。One or more of powdery Mg compound, Si compound, and Fe compound having a particle size of 0.1 to 10 μm is 10 to 55% by weight, and ultrafine silica compound having a particle size of 3 to 200 nm is 5 to 40% by weight. %, An alkali metal (R = Na, K) compound having an R 2 O concentration of 0.02 to 2% by weight, a surfactant of 10% by weight or less, and the balance being water and / or oil. Item 3. The fuel additive for preventing slagging according to Item 1 or 2. 粒径3〜200nmの超微粒子状のシリカ化合物は、シリカ単体及び/又はその表面の全体又はその一部をAl化合物又はFe化合物でコーティング又は置換したアルミニウム変性又は鉄変性させたシリカであることを特徴とする請求項1〜3の何れか一項に記載のスラッギング防止用燃料添加剤。The ultrafine silica compound having a particle size of 3 to 200 nm is an aluminum-modified or iron-modified silica in which the silica alone and / or the entire surface or a part thereof is coated or substituted with an Al compound or an Fe compound. The fuel additive for preventing slagging according to any one of claims 1 to 3. 粒径0.1〜10μmの粉末状のCa化合物、Al化合物、Zr化合物の一種又は二種以上25重量%以下を含有することを特徴とする請求項1〜4の何れか一項に記載のスラッギング防止用燃料添加剤。The powdery Ca compound, Al compound, or Zr compound having a particle size of 0.1 to 10 μm is contained, or one or more of them and containing 25% by weight or less. 5. Fuel additive for preventing slagging. 請求項1〜5に記載の燃料添加剤を液体燃料油又は固体燃料中に添加して燃焼させるか、直接燃焼雰囲気中に添加して燃焼させることを特徴とする燃料の燃焼方法。A fuel combustion method comprising adding the fuel additive according to claim 1 to liquid fuel oil or solid fuel and burning it, or directly adding it to a combustion atmosphere and burning it. 請求項1〜5に記載の燃料添加剤を石炭粉砕工程の前で石炭に添加し、粉砕後燃焼させることを特徴とする燃料の燃焼方法。A fuel combustion method, wherein the fuel additive according to claim 1 is added to coal before the coal pulverization step and burned after pulverization. 燃料添加剤投入時間における燃料中に含まれている灰分に起因する燃焼時の飛散スケール量100重量部に対して、燃料添加剤中の灰分として1〜50重量部を1日1〜5回、各々30分〜2時間の短時間に間欠多量投入することを特徴とする請求項6又は7に記載の燃料の燃焼方法。1 to 50 parts by weight as ash in the fuel additive 1 to 5 times a day, with respect to 100 parts by weight of the scattering scale at the time of combustion due to the ash contained in the fuel during the fuel additive charging time, The fuel combustion method according to claim 6 or 7, wherein intermittent large quantities are introduced in a short time of 30 minutes to 2 hours each.
JP2002066513A 2002-03-12 2002-03-12 Fuel additive for preventing slagging and fuel combustion method Expired - Fee Related JP3746010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066513A JP3746010B2 (en) 2002-03-12 2002-03-12 Fuel additive for preventing slagging and fuel combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066513A JP3746010B2 (en) 2002-03-12 2002-03-12 Fuel additive for preventing slagging and fuel combustion method

Publications (2)

Publication Number Publication Date
JP2003261890A JP2003261890A (en) 2003-09-19
JP3746010B2 true JP3746010B2 (en) 2006-02-15

Family

ID=29198255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066513A Expired - Fee Related JP3746010B2 (en) 2002-03-12 2002-03-12 Fuel additive for preventing slagging and fuel combustion method

Country Status (1)

Country Link
JP (1) JP3746010B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276094B2 (en) 2003-11-25 2007-10-02 Ethyl Petroleum Additives, Inc. Mixed metal catalyst additive and method for use in hydrocarbonaceous fuel combustion system
JP2005307117A (en) * 2004-04-26 2005-11-04 Taiho Ind Co Ltd Fuel additive for preventing slagging and method for burning fuel
JP2006105578A (en) * 2004-09-07 2006-04-20 Kurita Water Ind Ltd Treatment method of exhaust gas
WO2007145310A1 (en) * 2006-06-16 2007-12-21 Taihokohzai Co., Ltd. Coating inhibitor for lime calcination apparatus and method for the inhibition of coating
JP5605019B2 (en) * 2010-06-29 2014-10-15 株式会社Ihi Prediction method of ash adhesion in fluidized bed type combustion furnace.
JP5713813B2 (en) * 2010-07-14 2015-05-07 株式会社神戸製鋼所 Method and apparatus for suppressing ash adhesion in a heating furnace
KR101246879B1 (en) * 2010-11-08 2013-03-25 오미혜 Liquid Combustion Catalyst Composition Containing Complex Metal Complex Ion Compound
JP5619674B2 (en) * 2011-05-16 2014-11-05 株式会社神戸製鋼所 Method and apparatus for suppressing ash adhesion in a heating furnace
KR101572562B1 (en) 2015-07-24 2015-11-27 (주) 에스엔피테크 process of manufacturing
KR101931785B1 (en) * 2018-03-19 2019-04-05 주식회사 코리아진텍 Manufacturing method of coal additive

Also Published As

Publication number Publication date
JP2003261890A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP3745973B2 (en) Coal additive for preventing slagging and coal combustion method
US20180208865A1 (en) Low sulfur coal additive for improved furnace operation
JP3746010B2 (en) Fuel additive for preventing slagging and fuel combustion method
CN105154168B (en) The method for alleviating sodium coal slagging scorification high after the self-produced flyash removing sodium of boiler as additive
JPH01115996A (en) Method for controlling formation and discharge of sulfur oxide in combustion of combustible fuel produced from sulfur-containing hydrocarbon
US4372227A (en) Method of reducing high temperature slagging in furnaces
KR101572562B1 (en) process of manufacturing
JP3746009B2 (en) Coal additive for preventing slagging and coal combustion method
JP3746020B2 (en) Fuel additive for preventing slagging and fuel combustion method
JP2010235822A (en) Slagging inhibitor for coal and method for burning coal
JP3746026B2 (en) Fuel additive for preventing slagging and fuel combustion method
JP2009243744A (en) Granular additive and method of manufacturing the same
JP2005307117A (en) Fuel additive for preventing slagging and method for burning fuel
JP5786384B2 (en) Clinker inhibitor
JPH06116575A (en) Hydrocarbon fuel and additive therefor
JP2017165929A (en) Additive for suppressing clinker adhesion and method for suppressing clinker adhesion
JP5560815B2 (en) Clinker adhesion inhibitor and clinker adhesion prevention method
US4664042A (en) Method of decreasing ash fouling
JPS5823440B2 (en) Method for preventing corrosion in high-temperature parts of boilers using heavy oil as the combustion source
JPS62106214A (en) Method of preventing scale from adhering on heat transfer pipe in fluidized bed
JP2833876B2 (en) Method for burning solid fuel in a calciner for quicklime production
JP2003106507A (en) Method for controlling clinker in city refuse incineration facility
Jokiniemi et al. ASH PARTICLE FORMATION AND METAL BEHAVIOUR DURING BIOMASS COMBUSTION IN FLUIDIZED BED BOILER
JP2004125181A (en) Combustion method for fuel containing low melting point metal using circulating fluidized bed combustion device
Kauppinen et al. Ash Particle Formation and Metal Behaviour During, Biomass Combustion in Fluidized Bed Boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees