WO2018078812A1 - 電圧調整システム及びその制御方法 - Google Patents

電圧調整システム及びその制御方法 Download PDF

Info

Publication number
WO2018078812A1
WO2018078812A1 PCT/JP2016/082127 JP2016082127W WO2018078812A1 WO 2018078812 A1 WO2018078812 A1 WO 2018078812A1 JP 2016082127 W JP2016082127 W JP 2016082127W WO 2018078812 A1 WO2018078812 A1 WO 2018078812A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
hydrogen
distribution line
unit
power
Prior art date
Application number
PCT/JP2016/082127
Other languages
English (en)
French (fr)
Inventor
熊澤 俊光
大悟 橘高
門田 行生
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2016/082127 priority Critical patent/WO2018078812A1/ja
Publication of WO2018078812A1 publication Critical patent/WO2018078812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Embodiments of the present invention relate to a voltage regulation system and a control method thereof.
  • the problem to be solved by the present invention is to provide a voltage regulation system and a control method therefor that can prevent the distribution line voltage from deviating from the specified range and suppress the occurrence of reverse power flow in the distribution line. .
  • the voltage regulator according to the present embodiment is a first hydrogen production unit that produces hydrogen by electrolysis of water using electric power supplied via a distribution line interconnected with a power generation device using renewable energy. And a controller that controls the first hydrogen production unit to control the voltage of the distribution line within a predetermined range based on information on the voltage of the distribution line.
  • the present invention it is possible to suppress the distribution line voltage from deviating from the specified range and to suppress the occurrence of reverse power flow in the distribution line.
  • the block diagram which shows the structure of the voltage regulation system which concerns on 1st Embodiment.
  • the figure which shows the flowchart explaining an example of control operation of a control part.
  • the block diagram which shows the structure of the voltage regulation system which concerns on 2nd Embodiment.
  • control unit controls the hydrogen production unit to control the distribution line voltage within a predetermined range based on the voltage of the distribution line, thereby generating a reverse flow at a predetermined position of the distribution line. I tried to prevent it. More detailed description will be given below.
  • FIG. 1 is a block diagram showing a configuration of a voltage regulation system 1 according to the first embodiment.
  • the voltage regulation system 1 is a system for producing hydrogen using electric power supplied from a distribution line 4 via a line voltage drop compensator (LDC: Line Drop Com-pensator) 2.
  • LDC Line Drop Com-pensator
  • One or a plurality of voltage regulators 100A and 100B are provided.
  • Line voltage drop compensator 2 automatically changes and adjusts the bus voltage according to the load current. That is, the line voltage drop compensator 2 performs voltage drop compensation so as to keep the voltage of the distribution line 4 constant by setting the sending voltage of the upper system, which is a commercial system, high during heavy loads and low during light loads. .
  • the power generation device 6 generates power using renewable energy and is interconnected with the distribution line 4. That is, this power generation device 6 generates power using renewable energy.
  • the power generation device 6 is configured by a solar power generation device (PV: Photovoltaic) using sunlight. Or it is comprised with the power generator using mainly renewable energy, such as a wind power generator using wind power.
  • PV solar power generation device
  • This power generation device 6 does not require fuel such as fossil fuel, but its power generation amount is unstable because it is affected by the environment such as weather and wind power, and it is difficult to adjust the power generation output.
  • the power consumer 8 is, for example, a manufacturing factory and consumes power supplied from the distribution line 4.
  • each of the voltage regulators 100A and 100B is electrically connected to the distribution line 5 at a high voltage, or is electrically connected to the distribution line 4 via the pole transformers 10 and 12.
  • the pole transformers 10 and 12 are, for example, transformers that convert a high voltage of 6725 to 6725V into a low voltage of 182 to 222V.
  • the voltage adjustment device 100A is a device that sets the voltage at a predetermined position of the distribution line 4 to a predetermined range based on information on the voltage of the distribution line 4, and includes a control unit 102A, a hydrogen production unit 104A, a hydrogen storage unit 106A, The fuel cell unit 108A and the voltage measuring unit 110A are provided.
  • the control unit 102A is connected to the hydrogen production unit 104A, the hydrogen storage unit 106A, the fuel cell unit 108A, and the voltage measurement unit 110A, and controls the hydrogen production unit 104A and the fuel cell unit 108A. Further, the control unit 102A can perform cooperative control with the control unit 102B of the voltage regulator 100B. The detailed control operation of the control unit 102A will be described later.
  • the hydrogen production unit 104A produces hydrogen by electrolysis of water using the electric power supplied from the distribution line 4, and stores the produced hydrogen in the hydrogen storage unit 106A.
  • the hydrogen production unit 104A is, for example, an electrohydrolysis apparatus that produces hydrogen and oxygen by passing a current through an alkaline solution. That is, the hydrogen production unit 104A stores the generated hydrogen in the hydrogen storage unit 106A via the hydrogen pipe. Thereby, 104 A of hydrogen production parts can produce
  • the hydrogen storage unit 106A is composed of, for example, a hydrogen tank, and stores the hydrogen phase-shifted from the hydrogen production unit 104A. That is, the hydrogen storage unit 106A communicates with the hydrogen production unit 104A and the fuel cell unit 108A via the hydrogen pipe. Further, the hydrogen storage unit 106A outputs the stored hydrogen storage amount to the control unit 102A.
  • the fuel cell unit 108A supplies the power distribution line 4 with the power generated using the hydrogen stored in the hydrogen storage unit 106A. That is, the fuel cell unit 108A generates electricity using oxygen and hydrogen supplied from a hydrogen pipe in accordance with the control of the control unit 102A. Oxygen in the air may be used as the oxygen, or oxygen stored in the oxygen tank by the hydrogen production unit 104A that is output during hydrogen production may be used. Thereby, the voltage of the distribution line 4 can be raised by the power generation by the fuel cell unit 108A.
  • the voltage measurement unit 110A measures, for example, the voltage at the position where the voltage adjustment device 100A is connected to the distribution line 4, and transmits the voltage measurement value to the control unit 102A.
  • the location where the voltage is measured is not limited to the connection location between the voltage regulator 100A and the power distribution system. That is, a value obtained by directly measuring the voltage of the distribution line may be used, or a value measured at a connection point of a specific consumer may be used. Furthermore, you may measure the voltage of the location with high possibility that a voltage will exceed a normal range on the distribution line 4. FIG.
  • the control unit 102 ⁇ / b> A controls the hydrogen production unit 104 ⁇ / b> A to set the voltage of the distribution line 4 within a predetermined range. That is, the control unit 102A controls the hydrogen production unit 104A to set the voltage at a predetermined position in the distribution line 4 to a predetermined range based on the voltage value at the predetermined position in the distribution line 4 measured by the voltage measuring instrument 110A.
  • the first voltage which is the upper limit value of the predetermined range, is determined based on a voltage that causes reverse power flow at a predetermined position of the distribution line.
  • the control unit 102A controls the hydrogen production unit 104A so that the voltage at a predetermined position in the distribution line 4 is within the range of the specified voltage 182V to 222V of the commercial system.
  • control unit 102A produces hydrogen when the voltage at a predetermined position of the distribution line 4 is equal to or higher than the first voltage and the hydrogen storage amount stored in the hydrogen storage unit 106A is equal to or less than the first hydrogen amount.
  • the part 104A is made to produce hydrogen.
  • the first hydrogen amount is, for example, a hydrogen amount of 90% when the hydrogen storage unit 106A is full.
  • the control unit 102A can control the hydrogen production unit 104A so that the hydrogen storage amount stored in the hydrogen storage unit 106A does not exceed the upper limit value of the hydrogen storage unit 106A.
  • the control unit 102A may perform control to adjust the hydrogen control amount of the hydrogen production unit 104A according to the hydrogen storage amount stored in the hydrogen storage unit 106A. That is, the control unit 102A performs control to reduce the hydrogen production amount of the hydrogen production unit 104A as the hydrogen storage amount approaches the first hydrogen amount, and stop the hydrogen production when the first hydrogen amount is reached.
  • the hydrogen production amount of the hydrogen production unit 104A can be increased, and the voltage at a predetermined position of the distribution line 4 can be further lowered.
  • control unit 102A determines that the voltage at a predetermined position of the distribution line 4 is less than or equal to the value of the second voltage and the hydrogen storage amount stored in the hydrogen storage unit 106A is greater than or equal to the second hydrogen amount.
  • the power generation control of the fuel cell unit 108A is performed so as to be equal to or higher than the value of two voltages.
  • the second voltage is, for example, 187 V based on the specified voltage 182 V to 222 V of the commercial system.
  • the second hydrogen amount is, for example, a hydrogen amount of 10% when the hydrogen storage unit 106A is full.
  • control unit 102A determines that the fuel cell is in a state where the voltage at a predetermined position of the distribution line 4 is 187 V or less and the hydrogen storage amount stored in the hydrogen storage unit 106A is 10% or more of the full tank. Control is performed to cause the unit 108A to generate power.
  • the voltage at the predetermined position of the distribution line 4 can be maintained at the specified voltage 182V to 222V. Further, power generation can be stopped when the amount of hydrogen stored in the hydrogen storage unit 106A is insufficient.
  • the voltage adjustment device 100B is a device that brings the voltage of the distribution line 4 into a predetermined range based on information on the voltage of the distribution line 4, and includes a control unit 102B, a hydrogen production unit 104B, a voltage measurement unit 110B, and a hydrogen supply unit. 112B. That is, the voltage regulator 100B includes a hydrogen supply unit 112B instead of the hydrogen storage unit 106A and the fuel cell unit 108A.
  • the same number is attached
  • control unit 102B is connected to the hydrogen production unit 104B, the voltage measurement unit 110B, and the hydrogen supply unit 112B, and controls the hydrogen production unit 104B and the hydrogen supply unit 112B. That is, similarly to the control unit 102A, the control unit 102B controls the hydrogen production unit 104B to control the voltage of the distribution line 4 within a predetermined range based on information on the voltage of the distribution line 4. Further, the control unit 102B can perform cooperative control with the control unit 102A of the voltage regulator 100A.
  • the hydrogen supply unit 112B supplies the hydrogen produced by the hydrogen production unit 104B to an external hydrogen utilization device 14, for example, a hydrogen pipeline or a fuel cell vehicle. More specifically, the hydrogen supply unit 112B supplies the hydrogen produced by the hydrogen production unit 104B to the hydrogen utilization device 14 under the control of the control unit 102B. Note that a hydrogen supply unit may be further provided in the hydrogen storage unit 106A of the voltage regulator 100A. In the present embodiment, the hydrogen production unit 104A corresponds to the first hydrogen production unit, and the hydrogen production unit 104B corresponds to the second hydrogen production unit.
  • the control unit 102A and the control unit 102B have a cooperation function when connected to the same distribution line. That is, in order to suppress the voltage increase of the distribution line 4 at a predetermined position, it is more effective to increase the load at a position close to the power transmission end. Therefore, in the example shown in FIG. 1, the control units 102A and 102B perform cooperative control so that hydrogen production is performed first from the hydrogen production unit 104A located at a position close to the power transmission end, and then the hydrogen production unit. Let 104B perform hydrogen production. In this case, control part 102A, 102B of each voltage regulator 100A, 100B has recorded the connection position of the distribution line 4 previously. Thereby, it is possible to perform voltage rise suppression control in order from the voltage regulating device close to the power transmission end of the distribution line 4, that is, the voltage rise suppression effect is high, and the voltage of the distribution line 4 can be lowered more efficiently. Is possible.
  • control units 102A and 102B may cause the hydrogen production unit 104B to generate power first in accordance with the hydrogen storage amount of the hydrogen storage unit 106A. Thereby, when there is no margin in the hydrogen storage amount of the hydrogen storage unit 106A, it is possible to cause the hydrogen production unit 104B to preferentially produce hydrogen.
  • FIG. 2 is a flowchart illustrating an example of the control operation of the control unit 102A. Based on FIG. 2, an example of the control operation of the control unit 102A alone will be described.
  • operation parameters of the control unit 102A the operation voltage upper limit value is indicated by Vup_exe
  • the target voltage upper limit value is indicated by Vup_target
  • the hydrogen storage amount upper limit value is indicated by Cup
  • the unit operation power is indicated by Punit
  • the maximum rated input power of 104A is indicated as “Prated”.
  • the operating voltage upper limit Vup_exe is a threshold voltage at which the control unit 102A starts control for suppressing the voltage increase
  • the target voltage upper limit Vup_target corresponds to the first voltage value and is a target voltage when the voltage increase suppressing control is performed.
  • these values are set according to the constraint condition for suppressing the voltage rise.
  • the low voltage in Japan is defined as 202V ⁇ 20V, that is, between 182V and 222V.
  • the operating voltage upper limit Vup_exe is set to a slightly lower 220V
  • the target voltage upper limit Vup_target is set to 215V.
  • the control unit 102A compares the measurement voltage V acquired from the voltage measurement unit 110A with the operating voltage upper limit Vup_exe (step S10). When the measured voltage V is less than or equal to the operating voltage upper limit Vup_exe (step S10: NO), the process is repeated from step S10. On the other hand, when the measured voltage V is larger than the operating voltage upper limit Vup_exe (step S10: YES), the control unit 102A determines that the voltage increase suppression control needs to be performed, and acquires the hydrogen storage amount C acquired from the hydrogen storage unit 106A. And the hydrogen storage amount upper limit Cup are compared (step S12).
  • step S12 When the hydrogen storage amount C of the hydrogen storage unit is larger than the hydrogen storage amount upper limit Cup (step S12: YES), the processing is repeated from step S10.
  • the hydrogen storage amount C is equal to or less than the hydrogen storage amount upper limit Cup, that is, when the hydrogen storage amount C of the hydrogen storage unit has a margin (NO in step S12)
  • the hydrogen production power of the hydrogen production unit 104A Is set to the unit operating power Punit, and hydrogen production by the hydrogen production unit 104A is started. That is, the control unit 102A sets the input power command value pin with the unit operation power Punit as an initial value, and outputs the command value pin to the hydrogen production unit 104A.
  • control unit 102A compares the measured voltage V with the target voltage upper limit Vup_target after starting the voltage rise suppression control (step S16).
  • the measured voltage V is larger than the target voltage upper limit Vup_target (step S16: YES)
  • step S18: NO When the input power command value pin is greater than or equal to the maximum rated input power Prated (step S18: NO), the process is repeated from step S16. On the other hand, when the input power command value pin is smaller than the maximum rated input power Prated (step S18: YES), the input power command value pin to the hydrogen production unit 104A is increased by the unit operation power Punit, and the hydrogen production unit 104A. And repeat from step S16.
  • step S16 when the measured voltage V is smaller than the target voltage upper limit Vup_target (step S16: NO), the input power command value Pin to the hydrogen production unit 104A is decreased by the unit operation power Punit and output to the hydrogen production unit 104A. (Step S22).
  • step S24 it is determined whether or not the input power command value Pin is 0 or less (step S24).
  • step S24: NO the processing from step S16 is repeated.
  • step S24: YES the input power command value Pin is set to 0 and output to the hydrogen production unit 104A (step S26), and the processing from step S10 is repeated.
  • the control unit 102A determines the hydrogen production of the hydrogen production unit 104A as the unit operation power Punit. Start with. Further, the hydrogen production power of the hydrogen production unit 104A is increased by unit operation power Punit until the measurement voltage V becomes smaller than the operating voltage upper limit Vup_target until the upper limit is reached. On the other hand, when the measurement voltage V becomes smaller than the operating voltage upper limit Vup_target, the hydrogen production power of the hydrogen production unit 104A is reduced by unit operation power Punit. By performing such processing, the measurement voltage V at a predetermined position is controlled to be smaller than the operating voltage upper limit Vup_target.
  • control units 102A and 102B are controlled by the hydrogen production units 104A and 104B to control the distribution line voltage within a predetermined range based on the distribution line voltage.
  • the voltage of a distribution line can be made into a predetermined range, and it can prevent that a reverse power flow arises in the predetermined position of a distribution line.
  • the voltage at a predetermined position of the distribution line 4 is input to the control units 102A and 102B.
  • the supply and demand supplied or consumed via the distribution line 4 Control is performed to cause the hydrogen production unit 104C to perform hydrogen production in accordance with the electric power.
  • FIG. 3 is a block diagram showing a configuration of the voltage regulation system 1 according to the second embodiment.
  • the control unit 102C acquires the amount of power generated by the power generation device 6 and the power consumption of the power consumer 8. That is, the control unit 102C presets the tidal current power threshold Pth at the cooperation point that is a predetermined position of the distribution line, and based on the acquired generated power Ppv of the power generation apparatus and the demand power Pload of the power consumer 8
  • the input power command value pin of the hydrogen production unit 104C is calculated by the following equation (2). That is, the electric power corresponding to the input electric power command value pin shown in the equation (2) corresponds to the voltage of the portion exceeding the voltage causing the reverse flow.
  • the control unit 102C has a conversion table between the power value indicated by Ppv-Pload and the voltage value at the cooperation point that is a predetermined position of the distribution line, and the tidal power value indicated by Ppv-Pload is used as the voltage value.
  • the tidal power threshold value Pth is set in advance. That is, in the present embodiment, the tidal power value indicated by Ppv-Pload corresponds to information on the voltage of the distribution line.
  • the voltage in a distribution line in which the relationship between the tidal power and the voltage is grasped in advance, the voltage can be adjusted depending on the power supply and demand.
  • a hydrogen supply unit may be further provided in the hydrogen storage unit 106C of the voltage regulator 100C.
  • control unit 102C hydrogen-produces electric power that exceeds a predetermined threshold value Pth out of electric power difference between the generated electric power Ppv of the power generator 6 and the consumed electric power Pload of the electric power consumer 8. Control to be consumed for hydrogen production of the section 104C was performed. Thereby, it is possible to make the voltage in the predetermined position of a distribution line below the voltage which a reverse power flow produces.
  • control is performed to cause the hydrogen production unit 104C to perform hydrogen production according to the supply and demand power supplied or consumed via the distribution line. According to the power demand plan of the house 8, the hydrogen production unit 104C is controlled to perform hydrogen production.
  • the hydrogen production unit 104C is controlled to perform hydrogen production.
  • control is performed to cause the hydrogen production unit 104C to perform hydrogen production based on the information on the power consumption Pload of the power consumer 8 without using the information on the generated power Ppv of the power generation device 6. More specifically, the control unit 102C acquires the power demand plan of the power consumer 8 connected to the power distribution system instead of measuring the voltage.
  • the power consumer 8 has determined a power demand plan in advance and can acquire the power demand plan in advance will be described. Note that, for example, the power consumption of the power consumer 8 measured in the past may be recorded, and the power consumption for each time, day of the week, or the like may be statistically calculated to form a power demand plan.
  • the control unit 102C causes the hydrogen production unit 104C to produce hydrogen based on the power demand plan acquired from the power consumer 8 at a time when the power demand is low.
  • the hydrogen production unit 104 ⁇ / b> C is made to produce hydrogen when power demand is equal to or less than a preset threshold value.
  • This set threshold value is a statistically determined threshold value, and the possibility that a reverse power flow voltage is generated when the power demand falls below this threshold value. That is, in the present embodiment, the power demand in the power demand plan corresponds to information on the voltage of the distribution line.
  • control unit 102C causes the hydrogen production unit 104C to produce hydrogen at a time when the power demand is low, based on the power demand plan acquired from the power consumer 8. Thereby, it is possible to make the voltage in the predetermined position of a distribution line below the voltage which a reverse power flow produces.
  • At least a part of the data processing method in the voltage regulation system 1 may be configured by hardware or software.
  • a program that realizes at least a part of the functions of the data processing method may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
  • a program that realizes at least a part of the functions of the data processing method may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
  • 1 Voltage adjustment system
  • 4 Distribution line
  • 6 Power generation device
  • 8 Electric power consumer
  • 100A to 100C Voltage adjustment device
  • 102A to 102C Control unit
  • 104A to 104C Hydrogen production unit
  • 106A Hydrogen storage unit
  • 106C Hydrogen storage unit
  • 108A Fuel cell unit
  • 108C Fuel cell unit
  • 110A Voltage measurement unit
  • 110B Voltage measurement unit
  • 112B Hydrogen supply unit

Abstract

【課題】配電線電圧が規定範囲外に逸脱することを抑制するとともに、配電線に逆潮流が生じることを抑制できる電圧調整システム、及び電圧調整システムの制御方法を提供する。 【解決手段】本実施形態に係る電圧調整装置は、再生可能エネルギーを用いた発電装置と系統連系した配電線を介して供給される電力を用いて、水の電気分解により水素を製造する第1水素製造部と、配電線の電圧に関する情報に基づき、配電線の電圧を所定範囲にする制御を第1水素製造部で行う制御部と、を備える。

Description

電圧調整システム及びその制御方法
 本発明の実施形態は、電圧調整システム及びその制御方法に関する。
 近年、太陽光発電や風力発電などの再生可能エネルギーの導入が各国で積極的に進められている。これらの再生可能エネルギーを用いた発電装置と系統連系した配電線の電圧は、負荷や電線抵抗により送出点から距離が遠くなるにつれて下がることが知られている。
このため、配電線の各点において電圧が規定範囲となるように、柱上変圧器などにより調整されている。
 ところが、このような電圧低下対策がされた配電系統に再生可能エネルギーを用いた発電装置が系統連系されることにより、逆に電圧が規定範囲を超えて上昇し、再生可能エネルギーを用いた発電装置が解列してしまう恐れがある。
特開2006-340539号公報 特開2007-068337公報 特開2009-071889号公報
 本発明が解決しようとする課題は、配電線電圧が規定範囲外に逸脱することを抑制するとともに、配電線に逆潮流が生じることを抑制できる電圧調整システム及びその制御方法を提供することである。
 本実施形態に係る電圧調整装置は、再生可能エネルギーを用いた発電装置と系統連系した配電線を介して供給される電力を用いて、水の電気分解により水素を製造する第1水素製造部と、前記配電線の電圧に関する情報に基づき、前記配電線の電圧を所定範囲にする制御を前記第1水素製造部で行う制御部と、を備える。
 本発明により、配電線電圧が規定範囲外に逸脱することを抑制するとともに、配電線に逆潮流が生じることを抑制できる。
第1実施形態に係る電圧調整システムの構成を示すブロック図。 制御部の制御動作の一例を説明するフローチャートを示す図。 第2実施形態に係る電圧調整システムの構成を示すブロック図。
 以下、図面を参照して、本発明の実施形態における電圧調整システム及びその制御方法について説明する。
(第1実施形態)
 第1実施形態に係る電圧調整システムは、制御部が配電線の電圧に基づき、配電線の電圧を所定範囲にする制御を水素製造部に行うことで、配電線の所定位置に逆潮流が生じるのを防ごうとしたものである。より詳しく、以下に説明する。
 図1に基づき第1実施形態に係る電圧調整システム1の構成を説明する。図1は、第1実施形態に係る電圧調整システム1の構成を示すブロック図である。この図1に示すように、電圧調整システム1は、線路電圧降下補償器(LDC:Line Drop Com-pensator)2を介して配電線4から供給される電力を用いて水素を製造するシステムであり、1又は複数の電圧調整装置100A、100Bを備えて構成されている。
 線路電圧降下補償器2は、負荷電流に応じて母線電圧を自動的に変更して調整する。すなわち、線路電圧降下補償器2は、商用系統である上位系統の送り出し電圧を重負荷時には高く、軽負荷時には低くすることで、配電線4の電圧を一定に保たせるように電圧降下補償を行う。
 発電装置6は、再生可能エネルギーを用いて発電し、配電線4と系統連系している。すなわち、この発電装置6は、再生可能エネルギーを用いて発電する。例えば、発電装置6は、太陽光を用いた太陽光発電装置(PV: Photovoltaic)で構成される。或いは、風力を用いた風力発電装置など主に再生可能エネルギーを用いた発電装置で構成される。この発電装置6は、化石燃料などの燃料が不要であるが、その発電量は天候や風力などの環境の影響を受けるため不安定であり、発電出力を調整することが難しい。電力需要家8は、例えば製造工場などであり、配電線4から供給される電力を消費する。
 また、電圧調整装置100A、100Bのそれぞれは、高圧で配電線5と電気的に接続されるか、或いは、柱上変圧器10、12を介して配電線4と電気的に接続されている。
柱上変圧器10、12は、例えば6725~6725Vの高圧を182~222Vの低圧に変換する変圧器である。
 電圧調整装置100Aは、配電線4の電圧に関する情報に基づき、配電線4の所定位置の電圧を所定範囲にする装置であり、制御部102Aと、水素製造部104Aと、水素貯蔵部106Aと、燃料電池部108Aと、電圧計測部110Aとを、備えて構成されている。
 制御部102Aは、水素製造部104Aと、水素貯蔵部106Aと、燃料電池部108Aと、電圧計測部110Aとに接続され、水素製造部104A、及び燃料電池部108Aの制御を行う。また、制御部102Aは、電圧調整装置100Bの制御部102Bとの連携制御が可能である。制御部102Aの詳細な制御動作は後述する。
 水素製造部104Aは、配電線4から供給された電力を用いて、水の電気分解により水素を製造し、この製造した水素を水素貯蔵部106Aに蓄える。水素製造部104Aは、例えば、アルカリ性の溶液に電流を流すことにより、水素と酸素とを製造する電気水分解装置である。すなわち、水素製造部104Aは、水素配管を介して、生成した水素を水素貯蔵部106Aに蓄える。これにより、水素製造部104Aは、配電線から供給される電力を用いて水素を生成し、配電線の電圧を降下させることが可能である。より詳細には、水素製造部104Aは、制御部102Aと接続され、制御部102Aの制御に従い水の電気分解を行い、配電線4から供給される電力を消費することで、配電線4の電圧を降下させる。
 水素貯蔵部106Aは、例えば水素タンクで構成され、水素製造部104Aから移相された水素を貯蔵する。すなわち、水素貯蔵部106Aは、水素配管を介して水素製造部104Aと、燃料電池部108Aとに連通している。また、水素貯蔵部106Aは、貯蔵している水素貯蔵量を制御部102Aに出力している。
 燃料電池部108Aは、水素貯蔵部106Aに蓄えられた水素を用いて発電した電力を配電線4に供給する。すなわち、この燃料電池部108Aは、制御部102Aの制御に従い、酸素と、水素配管から供給される水素とを用いて電気を発電する。酸素は空気中の酸素を利用してもよいし、水素製造部104Aが水素製造に伴い出力する酸素を酸素タンクに蓄積したものを使用してもよい。これにより、配電線4の電圧を燃料電池部108Aによる発電により上昇させることが可能である。
 電圧計測部110Aは、例えば電圧調整装置100Aが配電線4と接続する位置の電圧を計測し、制御部102Aに電圧計測値を送信する。電圧の計測をする箇所は、電圧調整装置100Aと配電系統との接続箇所に限定しない。すなわち、配電線の電圧を直接計測した値を用いてもよいし、特定の需要家の接続点で計測した値を用いてもよい。さらに配電線4上で、電圧が正常範囲を超える可能性が高い箇所の電圧を計測してもよい。
 ここでは、制御部102Aの詳細な制御動作例について説明する。制御部102Aは、配電線4の電圧に関する情報に基づき、配電線4の電圧を所定範囲にする制御を水素製造部104Aに行う。すなわち、制御部102Aは、電圧計測器110Aが計測した配電線4における所定位置の電圧値に基づき、配電線4における所定位置の電圧を所定範囲にする制御を水素製造部104Aで行う。この所定範囲の上限値である第1電圧は、配電線の所定位置に逆潮流が生じる電圧に基づき定められている。例えば、系統連系されている商用系統の規定電圧が182V~222Vである場合には、規定電圧に基づき、柱状変圧器からの引き出し線で軽負荷時に7Vの電圧降下を見込んで215Vに上限値を定める。すなわち、商用系統の規定電圧222Vを超える場合に、所定位置に逆潮流が生じてしまう可能性が高くなる。このため、制御部102Aは、配電線4における所定位置の電圧を商用系統の規定電圧182V~222Vの範囲内になるように、水素製造部104Aの制御を行うのである。
 また、制御部102Aは、配電線4の所定位置の電圧が上述の第1電圧以上であり、且つ水素貯蔵部106Aに貯蔵される水素貯蔵量が第1水素量以下である場合に、水素製造部104Aに水素を製造させる。ここでの第1水素量は、例えば水素貯蔵部106Aの満タン時の90%の水素量である。
 これにより、制御部102Aは、水素貯蔵部106Aに貯蔵される水素貯蔵量が水素貯蔵部106Aの上限値を超えないように水素製造部104Aの制御を行うことが可能である。この場合、制御部102Aは、水素貯蔵部106Aに貯蔵される水素貯蔵量に応じて水素製造部104Aの水素制御量を調整する制御を行ってもよい。すなわち、制御部102Aは、水素貯蔵量が第1水素量に近づくに従い、水素製造部104Aの水素製造量を低下させ、第1水素量になると水素製造を停止させる制御を行う。これにより、水素貯蔵量に余裕がある場合には、水素製造部104Aの水素製造量を増加させ、配電線4の所定位置の電圧をより降下させることが可能である。
 さらにまた、制御部102Aは、配電線4の所定位置の電圧が第2電圧の値以下であり、且つ水素貯蔵部106Aに貯蔵される水素貯蔵量が第2水素量以上である場合に、第2電圧の値以上になるように燃料電池部108Aの発電制御を行う。ここでの、第2電圧は、商用系統の規定電圧182V~222Vに基づき、例えば187Vである。第2水素量は、例えば水素貯蔵部106Aにおける満タン時の10%の水素量である。具体的には、制御部102Aは、配電線4の所定位置の電圧が187V以下であり、水素貯蔵部106Aに貯蔵される水素貯蔵量が満タン時の10%以上である場合に、燃料電池部108Aに発電させる制御を行う。
 これにより、配電線4の所定位置の電圧を規定電圧182V~222Vに維持可能である。また、水素貯蔵部106Aに貯蔵される水素貯蔵量が不足する場合には発電を停止可能である。
 ここでは、電圧調整装置100Bの構成について説明する。電圧調整装置100Bは、配電線4の電圧に関する情報に基づき、配電線4の電圧を所定範囲にする装置であり、制御部102Bと、水素製造部104Bと、電圧計測部110Bと、水素供給部112Bを、備えて構成されている。すなわち、電圧調整装置100Bは、水素貯蔵部106A、及び、燃料電池部108Aが無い代わりに、水素供給部112Bを備えて構成されている。
なお、電圧調整装置100Aと同等の構成には、同一番号を付し、重複説明は必要な場合にのみ行うこととする。
 より詳細には、制御部102Bは、水素製造部104Bと、電圧計測部110Bと、水素供給部112Bとに接続され、水素製造部104B、及び水素供給部112Bの制御を行う。すなわち、制御部102Bは、制御部102Aと同様に、配電線4の電圧に関する情報に基づき、配電線4の電圧を所定範囲にする制御を水素製造部104Bに行う。また、制御部102Bは、電圧調整装置100Aの制御部102Aとの連携制御が可能である。
 水素供給部112Bは、水素製造部104Bが製造した水素を外部の水素利用装置14、例えば水素パイプラインや燃料電池自動車に水素を供給する。より詳細には、水素供給部112Bは、制御部102Bの制御に従い、水素製造部104Bが製造した水素を水素利用装置14に供給する。なお、電圧調整装置100Aの水素貯蔵部106Aに水素供給部を更に設けてもよい。また、本実施形態では、水素製造部104Aが第1水素製造部に対応し、水素製造部104Bが第2水素製造部に対応する。
 ここでは、制御部102Aと制御部102Bとの連携制御について説明する。制御部102Aと制御部102Bとは、同一の配電線に接続される場合に、連携機能を有する。すなわち、所定位置における配電線4の電圧上昇を抑制するには、電力の送出端から距離が近い位置にある負荷を増やす方がより効果的である。そこで、図1に示す例では、制御部102A、102Bは、連携制御を行い、電力の送出端から距離が近い位置にある水素製造部104Aから先に水素製造を行なわせ、次に水素製造部104Bに水素製造を行なわせる。この場合、各電圧調整装置100A、100Bの制御部102A、102Bは、配電線4の接続位置を予め記録している。これにより、配電線4の送電端から近い、すなわち電圧上昇抑制効果が高い電圧調整装置から順に電圧上昇抑制制御を行うことが可能であり、より効率的に配電線4の電圧を降下させることが可能である。
 また、制御部102A、102Bは、水素貯蔵部106Aの水素貯蔵量に応じて、水素製造部104Bを先に発電させても良い。これにより、水素貯蔵部106Aの水素貯蔵量に余裕がない場合には、水素製造部104Bに優先的に水素製造を行わせることが可能である。
 図2は、制御部102Aの制御動作の一例を説明するフローチャートを示す図であり、図2に基づき、制御部102A単独での制御動作の一例を説明する。ここでは、制御部102Aの動作パラメータとして、動作電圧上限値をVup_exeで示し、目標電圧上限値をVup_targetで示し、水素貯蔵量上限値をCupで示し、単位操作電力をPunitで示し、水素製造部104Aの最大定格入力電力をPratedで示す。すなわち、動作電圧上限Vup_exeは制御部102Aが電圧上昇抑制の制御を開始する閾値電圧であり、目標電圧上限Vup_targetが第1電圧値に対応し、電圧上昇抑制制御を実施する際の目標電圧である。ここでは、これらの値を、電圧上昇抑制の制約条件によって設定する。例えば、日本国内の低圧電圧は202V±20V、すなわち、182Vから222Vの間と規定されている。この場合、動作電圧上限Vup_exeをやや低めの220V、目標電圧上限Vup_targetを215Vのように設定する。
 また、一定の動作周期で繰り返し実行され、1制御周期の間に、電圧計測部110Aからの計測電圧Vと、水素貯蔵部106Aから水素貯蔵量Cを取得する場合について説明する。
 先ず、制御部102Aは、電圧計測部110Aから取得した計測電圧Vと、動作電圧上限Vup_exeとを、比較する(ステップS10)。計測電圧Vが動作電圧上限Vup_exe以下である場合(ステップS10:NO)に、ステップS10の処理から繰り返す。一方で、計測電圧Vが動作電圧上限Vup_exeより大きい場合(ステップS10:YES)に、制御部102Aは、電圧上昇抑制制御の実施が必要と判断し、水素貯蔵部106Aから取得した水素貯蔵量Cと水素貯蔵量上限Cupとを、比較する(ステップS12)。
 水素貯蔵部の水素貯蔵量Cが水素貯蔵量上限値Cupより大きい場合(ステップS12:YES)に、ステップS10の処理から繰り返す。一方で、水素貯蔵量Cが水素貯蔵量上限Cup以下である場合に、すなわち、水素貯蔵部の水素貯蔵量Cに余裕がある場合(ステップS12:NO)に、水素製造部104Aの水素製造電力を単位操作電力Punitに設定し、水素製造部104Aの水素製造を開始させる。すなわち、制御部102Aは、単位操作電力Punitを初期値として入力電力指令値pinを設定し、水素製造部104Aへ指令値pinを出力する。
 次に、制御部102Aは、電圧上昇抑制制御を開始した後に、計測電圧Vと目標電圧上限Vup_targetを比較する(ステップS16)。計測電圧Vが目標電圧上限Vup_targetよりも大きい場合(ステップS16:YES)に、入力電力指令値pinが最大定格入力電力Pratedより小さいか比較する(ステップS18)。
 入力電力指令値pinが最大定格入力電力Prated以上の場合(ステップS18:NO)に、ステップS16の処理から繰り返す。一方で、入力電力指令値pinが最大定格入力電力Pratedより小さい場合(ステップS18:YES)に、水素製造部104Aへの入力電力指令値pinを単位操作電力Punitだけ増加させて、水素製造部104Aへ出力し、ステップS16の処理から繰り返す。
 一方で、計測電圧Vが目標電圧上限Vup_targetよりも小さい場合(ステップS16:NO)に、水素製造部104Aへの入力電力指令値Pinを単位操作電力Punitだけ減少させて、水素製造部104Aへ出力する(ステップS22)。
 次に、入力電力指令値Pinが0以下か否かを判定し(ステップS24)、入力電力指令値Pinが0より大きい場合(ステップS24:NO)に、ステップS16からの処理を繰り返す。一方で、入力電力指令値Pinが0以下の場合(ステップS24:YES)に、入力電力指令値Pinを0として、水素製造部104Aへ出力(ステップS26)し、ステップS10の処理から繰り返す。
 このように、計測電圧Vが動作電圧上限Vup_exeを超えると共に、水素貯蔵量Cが水素貯蔵量上限Cupに達していない場合に、制御部102Aは、水素製造部104Aの水素製造を単位操作電力Punitで開始させる。また、計測電圧Vが動作電圧上限Vup_targetより小さくなるまで、水素製造部104Aの水素製造電力を単位操作電力Punitずつ上限に達するまで増加させる。一方で、計測電圧Vが動作電圧上限Vup_targetより小さくなると、水素製造部104Aの水素製造電力を単位操作電力Punitずつ低減する。このような処理を行うことで、所定位置の計測電圧Vは、動作電圧上限Vup_targetより小さくなるように制御される。
 以上のように、本実施形態においては、制御部102A、102Bが配電線の電圧に基づき、配電線の電圧を所定範囲にする制御を水素製造部104A、104Bで行うこととした。これにより、配電線の電圧を所定範囲にすることが可能であり、配電線の所定位置に逆潮流が生じるのを防ぐことができる。
(第2実施形態)
 上述した第1実施形態においては、配電線4の所定位置の電圧を制御部102A、102Bに入力することとしたが、第2実施形態においては、配電線4を介して供給又は消費される需給電力に従い、水素製造部104Cに水素製造を行わせる制御を行うようにしている。以下、上述した第1実施形態と異なる部分を説明する。
 図3は、第2実施形態に係る電圧調整システム1の構成を示すブロック図である。制御部102Cは、発電装置6の発電電力量と電力需要家8の消費電力を取得する。すなわち、制御部102Cは、配電線の所定位置である連携点における潮流電力閾値Pthを予め設定し、取得した発電装置の発電電力Ppv、及び、電力需要家8の需要電力Ploadを基に、下述の(1)式を満たすときに、水素製造部104Cの入力電力指令値pinを下述の(2)式で算出する。すなわち、(2)式で示す入力電力指令値pinに相当する電力が、逆潮流を生じさせる電圧を超える部分の電圧に対応する。
 換言すると、入力電力指令値pinに相当する電力を消費すると、配電線の所定位置である連携点における電圧が逆潮流を生じさせる電圧以下になる。この場合、例えば制御部102Cは、Ppv-Ploadで示す電力値と配電線の所定位置である連携点における電圧値の変換テーブルを有しており、Ppv-Ploadで示す潮流電力値を電圧値に変換し、潮流電力閾値Pthを予め設定している。すなわち、本実施形態では、Ppv-Ploadで示す潮流電力値が、配電線の電圧に関する情報に対応する。
Ppv-Pload>Pth                (1)式
pin=Ppv-Pload-Pth            (2)式
例えば、仮に潮流電力閾値Pth=0と設定すると、下述の(3)式の条件を満たす時に、入力電力指令値pinが下述の(4)式で決定される。
Ppv-Pload>0                  (3)式
pin=Ppv-Pload                (4)式
このように、制御部102Cは、逆潮流にならないように、(2)式で示す発電装置6の発電電力Ppvと電力需要家8の消費電力Ploadとの差の電力のうち、予め定められた閾値Pthを超える電力を水素製造部104Cの水素製造に消費させる制御を行う。このような制御方法によれば、潮流電力と電圧の関係が予め把握されている配電線においては、電力需給によって電圧調整が可能となる。なお、電圧調整装置100Cの水素貯蔵部106Cに水素供給部を更に設けてもよい。
 以上のように本実施形態では、制御部102Cが、発電装置6の発電電力Ppvと電力需要家8の消費電力Ploadとの差の電力のうち、予め定められた閾値Pthを超える電力を水素製造部104Cの水素製造に消費させる制御を行うこととした。これにより、配電線の所定位置における電圧を逆潮流が生じる電圧以下にすることが可能である。
(第3実施形態)
 上述した第2実施形態においては、配電線を介して供給又は消費される需給電力に従い、水素製造部104Cに水素製造を行わせる制御を行うこととしたが、第3実施形態においては、電力需要家8の電力需要計画に従い、水素製造部104Cに水素製造を行わせる制御を行うようにしている。以下、上述した第2実施形態と異なる部分を説明する。
 第3実施形態に係る電圧調整システム1の構成は第2実施形態と同等であるので説明を省略する。すなわち、第3実施形態では、発電装置6の発電電力Ppvの情報を用いずに、電力需要家8の消費電力Ploadの情報に基づき、水素製造部104Cに水素製造を行わせる制御を行う。より詳細には、制御部102Cは、電圧を計測する代わりに配電系統に接続された電力需要家8の電力需要計画を取得する。ここでは、電力需要家8は、電力需要計画を予め定めており、この電力需要計画を予め取得可能である場合について説明する。なお、例えば、過去に計測された電力需要家8の消費電力を記録し、時間、曜日毎などの消費電力を統計的に算出し、電力需要計画としてもよい。
 制御部102Cは、電力需要家8から取得した電力需要計画に基づき、電力需要が少ない時刻において、水素製造部104Cに水素を製造させる。例えば、予め設定した閾値以下の電力需要時に、水素製造部104Cに水素を製造させる。この設定した閾値は、統計的に定められた閾値であり、この閾値を電力需要が下回る場合に逆潮流電圧が発生する可能性が上がる。すなわち、本実施形態では、電力需要計画における需要電力が配電線の電圧に関する情報に対応する。これにより、工場などの大口の電力需要家において、工場の休業時に負荷が大きく減ることにより、相対的に発電装置6の発電電力が大きくなり配電線の電圧が上昇することを抑制するのである。例えば、工場が休業している土日に水素を製造させ、逆潮流を抑制しつつ、製造した水素を水素貯蔵部106Cに蓄える。
 以上のように本実施形態では、制御部102Cが、電力需要家8から取得した電力需要計画に基づき、電力需要が少ない時刻において水素製造部104Cに水素を製造させることとした。これにより、配電線の所定位置における電圧を逆潮流が生じる電圧以下にすることが可能である。
 本実施形態による電圧調整システム1におけるデータ処理方法の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、データ処理方法の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。また、データ処理方法の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1:電圧調整システム、4:配電線、6:発電装置、8:電力需要家、100A~100C:電圧調整装置、102A~102C:制御部、104A~104C:水素製造部、106A:水素貯蔵部、106C:水素貯蔵部、108A:燃料電池部、108C:燃料電池部、110A:電圧計測部、110B:電圧計測部、112B:水素供給部

Claims (11)

  1.  再生可能エネルギーを用いた発電装置と系統連系した配電線を介して供給される電力を用いて、水の電気分解により水素を製造する第1水素製造部と、
     前記配電線の電圧に関する情報に基づき、前記配電線の電圧を所定範囲にする制御を前記第1水素製造部で行う制御部と、
     を備える電圧調整システム。
  2.  前記所定範囲の上限値は、前記配電線の所定位置に逆潮流が生じる電圧に基づき定められている請求項1に記載の電圧調整システム。
  3.  前記所定範囲は、前記配電線の規定電圧の範囲内である請求項1又は2に記載の電圧調整システム。
  4.  前記配電線を介して供給される電力を用いて、水の電気分解により水素を製造する第2水素製造部を更に備え、
     前記制御部は、前記第1水素製造部、及び前記第2水素製造部のうち、前記配電線の送電端に近い方の水素製造部から順に水素製造の制御を行う請求項1乃至3のいずれか一項に記載の電圧調整システム。
  5.  前記配電線における所定位置の電圧を計測する電圧計測部を更に備え、
     前記制御部は、前記電圧計測部の電圧計測値に基づき、前記配電線における所定位置の電圧が第1電圧の値以下になるように前記第1水素製造部の制御を行う請求項1乃至4のいずれか一項に記載の電圧調整システム。
  6.  前記制御部は、前記配電線に接続された電力需要家の需要電力と、前記発電装置の発電電力との情報を取得し、当該発電電力と、当該需要電力との差の電力のうち、予め定められた閾値を超える電力を前記第1水素製造部の水素製造に消費させる制御を行う請求項1乃至4のいずれか一項に記載の電圧調整システム。
  7.  前記水素を貯蔵する水素貯蔵部を更に備え、
     前記制御部は、前記電圧が前記第1電圧の値より大きく、且つ前記水素貯蔵部に貯蔵される水素貯蔵量が第1水素量以下である場合に、前記第1水素製造部に水素を製造させる請求項5に記載の電圧調整システム。
  8.  前記水素を貯蔵する水素貯蔵部と、
     前記水素貯蔵部の水素を用いて、電力を発電する燃料電池部と、を更に備え、
     前記制御部は、前記電圧計測部により計測された電圧が第2電圧の値以下あり、且つ、水素貯蔵部の水素貯蔵量が第2水素量以上である場合に、前記第2電圧の値以上になるように前記燃料電池部の発電制御を行う請求項5に記載の電圧調整システム。
  9.  外部の水素利用装置に水素を供給する水素供給部を更に備える請求項1乃至8のいずれか一項に記載の電圧調整システム。
  10.  制御部は、前記配電線に接続された電力需要家の電力需要計画における需要電力に基づき、前記第1水素製造部に前記水素を製造させる制御を行う請求項1に記載の電圧調整システム。
  11.  再生可能エネルギーを用いた発電装置と系統連系した配電線を介して供給される電力を用いて、水の電気分解により水素を製造する水素製造部を少なくとも有する電圧調整システムの制御方法であって、
     前記配電線の電圧に関する情報を取得する取得工程と、
     前記情報に基づき、前記配電線の電圧を所定範囲にする制御を前記水素製造部に行う制御工程と、
     を備える電圧調整システムの制御方法。
PCT/JP2016/082127 2016-10-28 2016-10-28 電圧調整システム及びその制御方法 WO2018078812A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082127 WO2018078812A1 (ja) 2016-10-28 2016-10-28 電圧調整システム及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082127 WO2018078812A1 (ja) 2016-10-28 2016-10-28 電圧調整システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2018078812A1 true WO2018078812A1 (ja) 2018-05-03

Family

ID=62023326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082127 WO2018078812A1 (ja) 2016-10-28 2016-10-28 電圧調整システム及びその制御方法

Country Status (1)

Country Link
WO (1) WO2018078812A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116442A (ja) * 2020-01-23 2021-08-10 東芝エネルギーシステムズ株式会社 水素システムの制御装置、水素生成システム、及び水素システムの制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010500A (ja) * 2000-06-15 2002-01-11 Toshiba Eng Co Ltd 電力需要供給制御システム
JP2006340539A (ja) * 2005-06-03 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> 分散エネルギーシステム運転制御方法、運転制御装置、およびプログラム
JP2011244544A (ja) * 2010-05-14 2011-12-01 Toshiba Corp 電力供給システム
JP2016082771A (ja) * 2014-10-20 2016-05-16 東京瓦斯株式会社 エネルギー制御システム
WO2016092774A1 (ja) * 2014-12-09 2016-06-16 株式会社デンソー 電力供給システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010500A (ja) * 2000-06-15 2002-01-11 Toshiba Eng Co Ltd 電力需要供給制御システム
JP2006340539A (ja) * 2005-06-03 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> 分散エネルギーシステム運転制御方法、運転制御装置、およびプログラム
JP2011244544A (ja) * 2010-05-14 2011-12-01 Toshiba Corp 電力供給システム
JP2016082771A (ja) * 2014-10-20 2016-05-16 東京瓦斯株式会社 エネルギー制御システム
WO2016092774A1 (ja) * 2014-12-09 2016-06-16 株式会社デンソー 電力供給システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116442A (ja) * 2020-01-23 2021-08-10 東芝エネルギーシステムズ株式会社 水素システムの制御装置、水素生成システム、及び水素システムの制御方法
JP7336172B2 (ja) 2020-01-23 2023-08-31 東芝エネルギーシステムズ株式会社 水素システムの制御装置、水素生成システム、及び水素システムの制御方法

Similar Documents

Publication Publication Date Title
EP3068007B1 (en) System and method for improved reactive power speed-of-response for a wind farm
US8373312B2 (en) Solar power generation stabilization system and method
JP5582831B2 (ja) 太陽光発電システム
US20120133209A1 (en) Integration of renewable power generating technologies with integrated volt/var control systems
JP2007249341A (ja) 水素製造システム
JP2007135355A (ja) 系統安定化装置
CN107834564B (zh) 一种微电网系统的小干扰电压稳定性的控制方法
JP2019532206A (ja) 風力タービン制御方法及びシステム
CN112736968A (zh) 一种新能源制氢系统及其控制方法
JP2020058168A (ja) 水素供給システム及び水素供給方法
US9537420B2 (en) Method and apparatus for power module output power regulation
WO2020121428A1 (ja) 水素システムの制御装置、及び水素システムの制御方法
US11444461B2 (en) System and method for dynamically estimating inverter-based resource reactive power capability
JP2016226238A (ja) 再生可能エネルギー出力システム、再生可能エネルギー出力変動抑制方法および再生可能エネルギー出力変動抑制プログラム
WO2018078812A1 (ja) 電圧調整システム及びその制御方法
KR20120100157A (ko) 에너지 저장 장치를 이용한 부하 전력 공급 시스템 및 방법
US10038322B2 (en) Systems and methods for controlling performance parameters of an energy storage device
JP2021116442A (ja) 水素システムの制御装置、水素生成システム、及び水素システムの制御方法
el Harry Mhamdi et al. A power management strategy for hybrid photovoltaic diesel system with battery storage
TW201817111A (zh) 穩定微電網電壓之儲能系統實虛功控制裝置
JP2018014775A (ja) 統括制御装置、統括制御システム、統括制御方法および統括制御プログラム
JP2012165622A (ja) 給電システム
CN108054777B (zh) 风电制氢控制策略生成方法、装置、存储介质和计算设备
CN109038685B (zh) 再生能源管理系统
TW201742351A (zh) 微電網穩定裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP