WO2018078803A1 - Hybrid vehicle control method and control device - Google Patents

Hybrid vehicle control method and control device Download PDF

Info

Publication number
WO2018078803A1
WO2018078803A1 PCT/JP2016/082081 JP2016082081W WO2018078803A1 WO 2018078803 A1 WO2018078803 A1 WO 2018078803A1 JP 2016082081 W JP2016082081 W JP 2016082081W WO 2018078803 A1 WO2018078803 A1 WO 2018078803A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
predicted
engine
motor rotation
torque
Prior art date
Application number
PCT/JP2016/082081
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 矢部
和樹 落合
伸樹 林
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2016/082081 priority Critical patent/WO2018078803A1/en
Publication of WO2018078803A1 publication Critical patent/WO2018078803A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to a control method and a control apparatus for a hybrid vehicle that starts cranking of an engine using a motor as a start motor when a start determination is made when an electric vehicle mode is selected.
  • the EV ⁇ HEV switching line is set by subtracting the cranking torque required for engine cranking start from the maximum torque curve characteristic of the motor.
  • “EV mode” if the motor operating point due to the motor speed and motor torque crosses the EV ⁇ HEV switching line, an engine start request is issued, and the engine is cranked using the motor as the start motor.
  • the present disclosure has been made paying attention to the above-described problem, and an object thereof is to prevent a reduction in driving force transmitted to driving wheels when there is an acceleration request during engine cranking start.
  • the present disclosure has an electric vehicle mode and a hybrid vehicle mode as operation modes, and when an engine start determination is issued during selection of the electric vehicle mode, the motor is used as a start motor.
  • Start cranking start In this hybrid vehicle control method, when the electric vehicle mode is selected, it is assumed that the vehicle accelerates during cranking start from the start of engine start to the completion of start, and the predicted motor rotation during cranking start accompanying the assumed vehicle acceleration Find the amount of increase.
  • the target motor rotational speed is obtained by adding the predicted motor rotational speed increase to the current motor rotational speed.
  • the target motor speed is reached by increasing the motor speed without decreasing the motor output during cranking start.
  • the engine start determination is performed using the determined position as the predicted reaching operation point and the predicted reaching operation point as the determination reference position.
  • the engine start determination is performed based on the assumption that the vehicle accelerates during cranking start, so that when there is an acceleration request during engine cranking start, the driving force transmitted to the drive wheels is reduced. Can be prevented.
  • FIG. 1 is an overall system diagram illustrating a drive system and a control system of an FF hybrid vehicle to which a control method and a control device of Example 1 are applied.
  • FIG. 3 is a block configuration diagram illustrating a start determination unit and a target limit torque generation unit included in the engine start control unit of the integrated controller according to the first embodiment.
  • 4 is a flowchart showing a flow of an engine start control process executed by the integrated controller of the first embodiment. It is a map figure which shows the prediction motor rotation increase amount (DELTA) Nm map which searches the motor rotation increase amount map value by vehicle speed and battery output.
  • DELTA prediction motor rotation increase amount
  • FIG. 6 is a start determination explanatory diagram showing an outline of a start determination operation during the selection of “EV mode” in the first embodiment by a relational characteristic between the motor speed of the motor generator and the motor torque.
  • Time chart showing characteristics of motor rotational speed, transmission input rotational speed, engine rotational speed, motor maximum torque, target driving force, realizable driving force, and actual motor torque for explaining the engine start control operation of the first embodiment It is.
  • FIG. 10 is a problem explanatory diagram illustrating a problem of engine start control during selection of an “EV mode” in a comparative example, by a relational characteristic between a motor speed of a motor generator and a motor torque.
  • FIG. 7 is an operation explanatory diagram showing an outline of an engine start control operation during selection of an “EV mode” in the first embodiment, using a relational characteristic between the motor speed of the motor generator and the motor torque.
  • Example 1 shown in the drawings.
  • the control method and the control device in the first embodiment are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and equipped with a belt type continuously variable transmission as a transmission.
  • the configuration of the first embodiment will be described by being divided into an “overall system configuration”, an “engine start control block configuration”, and an “engine start control processing configuration”.
  • FIG. 1 shows a drive system and a control system of an FF hybrid vehicle (an example of a hybrid vehicle) to which the control method and the control device of the first embodiment are applied.
  • FF hybrid vehicle an example of a hybrid vehicle
  • the drive system of the FF hybrid vehicle includes an engine 1, a first clutch 2, a motor generator 3, a second clutch 4, a transmission input shaft 5, and a belt type continuously variable transmission 6. And a transmission output shaft 7, a final gear 8, and left and right drive wheels 9, 9.
  • the operation mode of the parallel hybrid drive system includes an electric vehicle mode (hereinafter referred to as “EV mode”), a hybrid vehicle mode (hereinafter referred to as “HEV mode”), and a drive torque control start mode (hereinafter referred to as “WSC”). Mode ”)) and the like.
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • WSC drive torque control start mode
  • “EV mode” is a mode in which the first clutch 2 is disengaged and the vehicle is driven only by the power of the motor generator 3.
  • the “HEV mode” is a mode in which the first clutch 2 is engaged and the vehicle travels in any of the motor assist mode, the traveling power generation mode, and the engine mode.
  • the “WSC mode” maintains the slip engagement state of the second clutch 4 by controlling the number of revolutions of the motor generator 3 at the time of P, N ⁇ D selection start from the “EV mode” or “HEV mode”. Then, the driving force transmitted to the left and right drive wheels 9, 9 via the belt-type continuously variable transmission 6 or the like as the engagement torque capacity of the second clutch 4 is determined by the accelerator opening APO and the vehicle speed VSP. It is a mode to start while controlling to be equivalent to the driving force.
  • “WSC” is an abbreviation of “Wet Start clutch”.
  • the engine 1 is capable of lean combustion, and is controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug.
  • MG start in which the motor generator 3 is used as a start motor, the second clutch 4 is in a slip engagement state, and the engine 1 is cranked while increasing the engagement torque of the first clutch 2, is basic.
  • starter start in which the engine 1 is started by the starter motor 10 is also an option, but “starter start” is only performed when a specific condition is satisfied, for example, when a start request is made at an extremely low temperature. Selected as the target state.
  • the first clutch 2 is interposed at a position between the engine 1 and the motor generator 3, and is set to “EV mode” when released and set to “HEV mode” when engaged.
  • a normally open dry multi-plate clutch or the like is used, and fastening / slip fastening / release is performed by hydraulic control.
  • the motor generator 3 has an AC synchronous motor structure, and performs torque control and rotation speed control by demonstrating a motor function when starting or running. During braking or deceleration, the generator function is performed to convert vehicle kinetic energy from the left and right drive wheels 9 and 9 into electric energy, and regenerative control is performed to charge the battery 12 via the inverter 11.
  • the second clutch 4 is a normally open wet multi-plate clutch or wet multi-plate brake provided in the forward / reverse switching mechanism, and generates a clutch transmission torque with the CL2 engagement torque by hydraulic control as an upper limit torque.
  • the second clutch 4 sends torque output from the drive source to the left and right drive wheels 9 and 9 via the transmission input shaft 5, the belt type continuously variable transmission 6, the transmission output shaft 7, and the final gear 8. Communicate.
  • the second clutch 2 is set at a position between the motor generator 3 and the belt-type continuously variable transmission 6, and the belt-type continuously variable transmission 6 and the left and right drive wheels 9, 9 are set. You may set to the position between.
  • the belt type continuously variable transmission 6 is bridged between a primary pulley 61 connected to the transmission input shaft 5, a secondary pulley 62 connected to the transmission output shaft 7, and the primary pulley 61 and the secondary pulley 62. And a pulley belt 63.
  • a stepless transmission ratio is obtained according to the winding diameter of the pulley belt 63 around the primary pulley 61 and the secondary pulley 62. That is, when the belt clamping width of the primary pulley 61 is widened and the belt clamping width of the secondary pulley 62 is narrowed, the gear ratio changes to the low gear ratio side. Further, as the belt clamping width of the primary pulley 61 becomes narrower and the belt clamping width of the secondary pulley 62 becomes wider, the gear ratio changes to the High gear ratio side.
  • the control system of the FF hybrid vehicle includes an integrated controller 14, a transmission controller 15, a clutch controller 16, an engine controller 17, a motor controller 18, and a battery controller 19. .
  • the engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, the CVT oil temperature sensor 24, the accelerator opening sensor 25, the G sensor 26, the brake sensor 27, and the wheels A speed sensor 28 and an inhibitor switch 29 are provided.
  • the integrated controller 14 is a controller that manages the parallel hybrid drive system in an integrated manner, and calculates a target driving force, a target state, and the like from the battery SOC state, accelerator opening APO, vehicle speed VSP, hydraulic oil temperature, and the like. Then, based on the calculation result, command values for the actuators (engine 1, first clutch 2, motor generator 3, second clutch 4, belt type continuously variable transmission 6) are calculated, via CAN communication line 20. To each of the controllers 15, 16, 17, 18, and 19.
  • the transmission controller 15 performs shift control by controlling the pulley hydraulic pressure supplied to the primary pulley 61 and the secondary pulley 62 of the belt-type continuously variable transmission 6 so as to achieve the shift command from the integrated controller 14.
  • the clutch controller 16 inputs sensor information from the engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, and the like, and also inputs a command from the integrated controller 14. Then, a CL1 hydraulic pressure command value to the first clutch 2 is output according to the selected operation mode and the like. Further, a CL2 hydraulic pressure command value to the second clutch 4 is output in response to a CL2 slip request or the like.
  • the engine controller 17 inputs sensor information from the engine speed sensor 21 and performs torque control and speed control of the engine 1 so as to achieve the engine torque command value and the engine speed command value from the integrated controller 14. Do.
  • the engine controller 17 outputs a fuel injection command and an ignition command when the cranking rotational speed reaches a predetermined rotational speed when the engine is started.
  • the motor controller 18 outputs a control command to the inverter 8 so as to achieve the motor torque command value and the motor rotation speed command value from the integrated controller 14, and performs torque control and rotation speed control of the motor generator 3.
  • the inverter 11 performs DC / AC mutual conversion, and converts the discharge current from the battery 12 into the drive current of the motor generator 3 during power running. Further, during regeneration, the generated current from the motor generator 3 is converted into a charging current for the battery 12.
  • the battery controller 19 manages the charge capacity (battery SOC) of the battery 9 and the battery temperature, and transmits battery information to the integrated controller 14 and the engine controller 17.
  • the battery output Pout is calculated based on the battery SOC and the battery temperature.
  • FIG. 2 shows a start determination unit 141 and a target limit torque generation unit 142 included in the engine start control unit 140 of the integrated controller 14 of the first embodiment.
  • start determination unit 141 and target limit torque generation unit 142 will be described.
  • the start determination unit 141 includes a predicted motor rotation increase amount calculation unit 141a, a driving force calculation unit 141b, a start determination unit 141c, and a target state calculation unit 141d.
  • the predicted motor rotation increase calculation unit 141a receives the vehicle speed VSP and the battery output Pout, searches for a motor rotation increase map value ⁇ NmMAP using a preset motor rotation increase map, and calculates the map value ⁇ NmMAP using a correction coefficient.
  • the predicted motor rotation increase amount ⁇ Nm is calculated after correction. That is, it is assumed that the vehicle is accelerated by the accelerator depressing operation by the driver during the cranking start from the start of the engine 1 to the completion of the start while the “EV mode” is selected, and the cranking start during the assumed vehicle acceleration is being performed.
  • a predicted motor rotation increase amount ⁇ Nm is calculated.
  • the driving force calculation unit 141b inputs the predicted motor rotation increase amount ⁇ Nm and the like, assumes that cranking start is started at the current motor operation point, and adds the predicted motor rotation increase amount ⁇ Nm to the current motor rotation number Nm.
  • the target motor speed Nmt is calculated. Then, the motor driving torque that can be realized at the predicted reaching operation point at which the motor operation point has reached the target motor rotation speed Nmt is subtracted from the maximum motor torque by the battery output Pout from the cranking torque necessary for cranking start of the engine 1.
  • the motor torque to the drive wheels 9 and 9 that can be realized at the predicted reaching operation point that has reached the target motor rotation speed Nmt is considered in consideration of the gear ratio of the belt-type continuously variable transmission 6, the gear ratio of the final gear 8, and the like.
  • the driving force (1 sec rating) that can be realized is calculated by converting the driving force to the driving wheels 9 and 9.
  • the start determination unit 141c performs engine start determination for starting cranking start of the engine 1 by comparing the drive force that can be realized from the drive force calculation unit 141b with the target drive force. That is, the “EV mode” is maintained while it is determined that the realizable driving force> the target driving force. However, if it is determined that the realizable driving force ⁇ the target driving force, an engine start determination flag is output.
  • the target driving force is determined by the accelerator opening APO and the vehicle speed VSP at the present time using a preset target driving force map.
  • the target state calculation unit 141d receives the output from the start determination unit 141c, the starter start request, and the MG start request, and calculates the target state (“MG start”, “starter start”). That is, when an engine start determination flag is output from the start determination unit 141c with insufficient driving force and an MG start request is input, “MG start” is calculated as the target state.
  • the target limit torque generator 142 includes an upper limit motor torque calculator 142a, a driving force calculator 142b, an upper limit limiter 142c, and a change rate limit 142d.
  • the upper limit motor torque calculation unit 142a receives the predicted motor rotation increase ⁇ Nm during cranking start calculated by the predicted motor rotation increase calculation unit 141a, and the predicted reaching operation in which the motor operating point has reached the target motor rotation number Nmt. The upper limit motor torque that can be realized in terms of points is calculated. Then, the upper limit motor torque and the battery output Pout are input and converted into a driving force that can realize the upper limit motor torque.
  • the driving force calculation unit 142b inputs a driving force equivalent to the upper limit motor torque calculated by the upper limit motor torque calculation unit 142a, limits the rate of change based on the cranking torque, etc., and is realized during cranking start.
  • the driving force that can be calculated is calculated. That is, the rate of increase in motor torque during cranking start is limited so as to ensure cranking torque when the motor operating point reaches the target motor rotation speed Nmt.
  • the upper limit limiting unit 142c inputs the driving force that can be realized during cranking start from the driving force calculation unit 142b and the target transmission input torque, and limits the upper limit of the driving force that can be realized.
  • the change rate limit 142 d is a drive force that can be transmitted to the drive wheels 9 and 9 by limiting the change rate of the drive force that can be realized with the upper limit limited by the upper limit limiting unit 142 c.
  • the generated target limit torque is realized by outputting an engagement torque command corresponding to the target limit torque to the second clutch 4 during cranking start in which the second clutch 4 is in the slip engagement state. That is, of the torque that can be output from the motor generator 3 by the rotational speed control, the upper limit torque is managed by the engagement torque of the second clutch 4 for the shared torque output to the left and right drive wheels 9 and 9 side.
  • FIG. 3 shows an engine start control process flow executed by the integrated controller 14 of the first embodiment. Hereinafter, each step of FIG. 3 representing the engine start control processing configuration will be described.
  • step S1 it is determined whether or not “EV mode” is being selected. If YES (while selecting “EV mode”), the process proceeds to step S3. If NO (other than selecting “EV mode”), the process proceeds to step S2.
  • step S2 following the determination that “EV mode” is not being selected in step S1, other control is executed, and the process proceeds to the end.
  • “other control” refers to HEV mode control performed during selection of “HEV mode”, mode transition control from “HEV mode” to “EV mode”, and the like.
  • step S3 following the determination that “EV mode” is being selected in step S1, the motor rotation increase map value ⁇ NmMAP is retrieved, and the motor rotation increase map value ⁇ NmMAP is multiplied by the correction coefficient to predict the motor rotation.
  • the increase amount ⁇ Nm is corrected and calculated, and the process proceeds to step S4.
  • the “predicted motor rotation increase amount ⁇ Nm” it is assumed that the accelerator pedal is depressed during cranking start, and further, the gear ratio of the belt type continuously variable transmission 6 is Suppose that it is the lowest gear ratio.
  • the search for the motor rotation increase map value ⁇ NmMAP is performed using the battery output Pout, the vehicle speed VSP, and the motor rotation increase map (FIG. 4). That is, the amount of motor rotation increase due to acceleration for each battery output Pout and each vehicle speed VSP is estimated, and the motor rotation increase amount during cranking start is defined as the motor rotation increase amount map shown in FIG.
  • the motor rotation increase amount map value ⁇ NmMAP is increased as the battery output Pout increases and the vehicle speed VSP decreases.
  • the drivability evaluation is performed, and the motor rotation increase map value ⁇ NmMAP may be ignored for a high vehicle speed region without the influence of the G pulling shock.
  • the predicted motor rotation increase ⁇ Nm is set to zero.
  • the road gradient is estimated based on the longitudinal G information and the like, and the motor rotation increase map value ⁇ NmMAP due to the road gradient is corrected. For example, when the road surface gradient is climbing, the vehicle acceleration is lower than that on a flat road. Therefore, correction is performed to decrease the motor rotation increase map value ⁇ NmMAP using a correction coefficient corresponding to the climbing gradient.
  • Predicted motor rotation increase [rpm] acceleration [m / s ⁇ 2] x gear ratio ⁇ tire diameter [m] x start time ...
  • Acceleration [m / s ⁇ 2] ⁇ input motor torque [Nm] x gear ratio ⁇ tire diameter [m]-(rolling + air resistance) [N]-inertia [N]-gradient resistance [N] ⁇ ⁇ vehicle weight [kg]...
  • step S4 following the calculation of the predicted motor rotation increase amount ⁇ Nm in step S3, the current motor rotation speed Nm and the predicted motor rotation increase amount ⁇ Nm are added together, and it is assumed that there is acceleration during cranking start.
  • the target motor rotation speed Nmt predicted to be reached is calculated, and the process proceeds to step S5.
  • step S5 following the calculation of the target motor rotation speed Nmt in step S4, the “realizable driving force” is calculated from the target motor rotation speed Nmt, the battery output Pout, and the start margin, and the process proceeds to step S6.
  • the maximum motor torque at the target motor rotation speed Nmt is obtained from “battery output Pout”.
  • Startting margin refers to “cranking torque” necessary for cranking the engine 1 using the motor generator 3.
  • “Achievable driving force” is the target motor speed Nmt by increasing the motor speed Nm while maintaining the motor torque Tm at the current motor operating point out of the current motor operating point (Nm, Tm). It is assumed that the predicted reaching operation point by is reached. This is a value obtained by converting the motor torque obtained by subtracting the cranking torque from the maximum motor torque at the predicted reaching operation point into the driving force transmitted to the drive wheels 9 and 9.
  • step S6 following the calculation of “realizable driving force” in step S5, it is determined whether or not the realizable driving force is equal to or less than the target driving force. If YES (realizable driving force ⁇ target driving force), the process proceeds to step S7. If NO (realizable driving force> target driving force), the process returns to step S3 to maintain the “EV mode”.
  • the “target driving force” is determined by the current accelerator opening APO and the vehicle speed VSP using a preset target driving force map (not shown).
  • step S7 following the start of engine start based on the determination that the driving force that can be realized in step S6 ⁇ the target driving force, a target limit torque is generated using the predicted motor rotation increase amount ⁇ Nm, and the process proceeds to step S8.
  • the “target limit torque” is the motor operating point (Nm, Tm) during cranking start that increases until the motor speed Nm reaches the predicted operating point by the target motor speed Nmt from the start of starting. This means the motor torque Tm that is subject to an upper limit and a change rate limit.
  • the “target limit torque” is set to a value that maintains the motor torque Tm at the start determination.
  • step S8 following the generation of the target limiting torque in step S7 or the determination that the CL2 slip engagement state is not established in step S9, CL2 slip control is performed, and the process proceeds to step S9.
  • the “CL2 slip control” is performed by setting the target engagement torque of the second clutch 4 to be equivalent to the target limit torque, and controlling the rotation speed of the motor generator 3.
  • the value obtained by adding the target slip rotation speed to the transmission input rotation speed INPREV to the belt type continuously variable transmission 6 is set as the motor rotation speed target value, and the actual motor rotation speed is set as the motor rotation speed target. Control to match the value.
  • step S9 following the CL2 slip control in step S8, it is determined whether or not the second clutch 4 is in the slip engagement state. If YES (CL2 slip engagement state), the process proceeds to step S10, and if NO (not CL2 slip engagement state), the process returns to step S8.
  • step S10 following the determination that the CL2 slip engagement state is set in step S9 or the determination that the engine start is not completed in step S11, the engine 1 is cranked and the process proceeds to step S11.
  • the cranking start of the engine 1 starts the engagement of the first clutch 2 released in the “EV mode”, and the cranking torque portion of the motor torque from the motor generator 3 is set to the first. This is done by transmitting to the engine 1 via the clutch 2.
  • step S11 following the cranking start of the engine 1 in step S10, it is determined whether the engine start is completed. If YES (engine start is complete), the process proceeds to step S12. If NO (engine start is not complete), the process returns to step S10.
  • the determination of “engine start complete” is made when the first clutch 2 is completely engaged (motor rotation speed ⁇ engine rotation speed) after the first explosion determination of the engine 1 is made.
  • step S12 following the determination that the engine start is complete in step S11, the operation mode is changed from “EV mode” to "HEV mode", and the process proceeds to the end.
  • engine start control processing operation “engine start control operation”, “engine start control contrast operation”, and “engine start control characteristic operation”.
  • step S1 step S2, step S3, step S4, step S5, and step S6 in the flowchart of FIG. Then, the driving force that can be realized in step S6> target driving force, and while the start determination condition is not satisfied, the flow of step S3 ⁇ step S4 ⁇ step S5 ⁇ step S6 is repeated, and the “EV mode” Is maintained.
  • step S3 a predicted motor rotation increase amount ⁇ Nm is calculated.
  • step S4 the current motor rotation speed Nmo and the predicted motor rotation increase amount ⁇ Nm are added, and reached when it is assumed that acceleration is occurring during cranking start. Then, the predicted target motor speed Nmt is calculated.
  • step S5 the driving force that can be realized by the target motor rotation speed Nmt, the battery output Pout, and the start margin is calculated.
  • step S6 it is determined whether or not the driving force that can be realized is equal to or less than the target driving force.
  • step S6 the driving force that can be realized in step S6 ⁇ target driving force and the start determination condition is satisfied, the cranking start of the engine 1 is started, and the process proceeds from step S6 to step S7 ⁇ step S8 ⁇ step S9. While it is determined in step S9 that the CL2 slip engagement state does not come out, the flow from step S8 to step S9 is repeated.
  • step S7 the target limit torque is generated using the predicted motor rotation increase amount ⁇ Nm.
  • step S8 CL2 slip control is performed.
  • step S9 it is determined whether or not the second clutch 4 is in the slip engagement state. Is done.
  • step S9 If it is determined in step S9 that the second clutch 4 is in the slip engagement state, the process proceeds from step S9 to step S10 to step S11. While it is determined in step S11 that the engine has not been started yet, the flow from step S10 to step S11 is repeated.
  • step S10 the motor generator 3 is used as a starter motor, and the engine 1 is cranked and started by engaging the first clutch 2.
  • step S11 it is determined whether the engine start is completed. If it is determined in step S11 that the engine has been started, the process proceeds from step S11 to step S12 ⁇ end, and the operation mode is changed from “EV mode” to “HEV mode”.
  • step S6 it is assumed that the motor operation point (Nm, Tm) at the current time is the motor operation point A while the “EV mode” is selected, as shown in FIG.
  • the motor operating point B in which the motor rotational speed Nm increases to the target motor rotational speed Nmt obtained by adding the predicted motor rotational speed increase ⁇ Nm to the current motor rotational speed Nmo while maintaining the motor torque Tm. It is assumed that the vehicle has moved to (predicted reaching operation point).
  • the motor torque obtained by subtracting the margin torque from the maximum motor torque is the motor torque that can be transmitted to the left and right drive wheels 9 and 9 side (realizable motor torque). Therefore, for example, as shown in FIG. 5, when the motor operating point moves from A ′ to A and the motor torque that can be realized at the motor operating point B (predicted reaching operating point) becomes equal to or less than the target driving torque, the engine starts. A decision is issued.
  • a predicted motor rotation increase amount ⁇ Nm during cranking start accompanying acceleration is calculated.
  • the start determination in the engine start control process is performed using the target motor rotation speed Nmt obtained by adding the predicted motor rotation increase amount ⁇ Nm to the current motor rotation speed Nmo as a determination reference position. Further, for the motor torque during cranking start, the target motor rotation speed Nmt obtained by adding the predicted motor rotation increase amount ⁇ Nm to the current motor rotation speed Nmo is used as a determination reference position, and the motor operation point B (predicted reaching operation point) is set. When it reaches, the target limit torque is generated so as to leave the cranking torque.
  • FIG. 6 is a time chart illustrating an example of an engine start control action by the engine start control process of the first embodiment. Hereinafter, the engine start control operation will be described with reference to FIG.
  • the motor torque starts to increase.
  • the target motor rotation speed Nmt obtained by adding the predicted motor rotation speed increase ⁇ Nm to the current motor rotation speed Nmo is used as the determination reference position, and the realizable driving force and the target driving force are determined.
  • the “EV mode” is maintained until the time t2 is reached from the time t1 as the power.
  • the cranking for increasing the engine speed is started by the motor generator 3, and the initial explosion determination is made at time t6.
  • the engine torque is added to the motor torque as the driving force that can be realized, and the driving force that can be realized until time t7 increases.
  • the engine start is completed and the mode transitions to the “HEV mode”. In the “HEV mode”, the driving force that can be realized by the sum of the engine 1 and the motor generator 3 is increased, and the driving force that can be realized reaches the target driving force at time t8.
  • the engine start is started at the time t4 when the driving force at which the motor torque can be realized is reached, as shown by the broken line characteristics in FIG. Is done. After time t4, the motor torque decreases along with the characteristics of the driving force that can be realized so as to ensure the cranking torque.
  • the EV ⁇ HEV switching line is set by subtracting the cranking torque necessary for engine cranking start from the maximum torque curve characteristic of the motor.
  • “EV mode” the motor operating point D ′ based on the motor speed Nm and motor torque Tm moves to the motor operating point D.
  • the EV ⁇ HEV switching line is crossed, an engine start determination is issued and the motor is started. Start cranking the engine as a motor.
  • the EV ⁇ HEV switching line is set on the assumption that the motor speed does not change by maintaining the vehicle running at a constant speed during the cranking start from the start to the completion of the engine start by the start determination.
  • the torque obtained by subtracting the cranking torque from the motor torque to the engine side is used as the driving force that can be transmitted to the driving wheel side. Therefore, there is an acceleration request by depressing the accelerator during cranking start, and when the motor speed increases, the motor drive torque transmitted to the drive wheel side is EV ⁇ HEV so as to secure the cranking torque to the engine side.
  • the switching line driving force limit line during start-up
  • the motor operation point reaches the motor operation point F due to the movement from the motor operation point F ′ as shown in FIG. 8 while the “EV mode” is selected.
  • the target motor rotational speed Nmt is calculated by adding the predicted motor rotational speed increase ⁇ Nm to the current motor rotational speed Nmo.
  • the engine start determination I try to put out.
  • the position at which the target motor speed Nmt is reached by increasing the motor speed Nm while maintaining the motor torque Tm at the start of the cranking start is predicted arrival driving. Let it be point B.
  • the motor output increases when the predicted reaching operation point B is reached by keeping the motor torque Tm at the start of the start during cranking start. Therefore, when there is an acceleration request during cranking start of the engine 1, the driving force transmitted to the left and right drive wheels 9, 9 can be increased.
  • the motor torque obtained by subtracting the cranking torque necessary for cranking start of the engine 1 from the motor maximum torque at the predicted reaching operation point B is converted into the driving force of the left and right drive wheels 9 and 9 to achieve the predicted arrival.
  • the driving force that can be realized at the operating point B is obtained.
  • the EV mode is maintained while the target driving force can be achieved with a margin, and when the target driving force can be achieved at the last minute, the engine A start determination is issued. Therefore, the target driving force at the start of starting can be secured as the driving force transmitted to the left and right drive wheels 9 and 9 during cranking start while securing the selection area of “EV mode”.
  • Example 1 when the predicted motor rotation increase amount ⁇ Nm is obtained, it is assumed that the vehicle accelerates when the driver depresses the accelerator and performs an operation while starting the engine.
  • Example 1 when the predicted motor rotation increase amount ⁇ Nm is obtained, the rotation increase map value ⁇ NmMAP is predicted based on the current vehicle speed VSP and the battery output Pout from the battery 12 connected to the motor generator 3.
  • the motor rotation increase amount increases as the vehicle speed decreases, and the motor rotation increase decreases as the vehicle speed increases.
  • the battery output Pout the motor rotation increase amount increases as the battery output Pout increases, and the motor rotation increase amount decreases as the battery output Pout decreases. Therefore, when determining the predicted motor rotation increase amount ⁇ Nm, by determining the predicted motor rotation increase amount ⁇ Nm based on the vehicle speed VSP and the battery output Pout, an appropriate predicted motor rotation increase amount ⁇ Nm corresponding to the level of the vehicle speed VSP and the battery output Pout is set. Can do.
  • the predicted motor rotation increase amount ⁇ Nm when the predicted motor rotation increase amount ⁇ Nm is obtained, the predicted motor rotation increase amount ⁇ Nm is higher as the vehicle speed VSP at the current time is lower, and the predicted motor rotation increase is higher when the current vehicle speed VSP is higher.
  • the amount ⁇ Nm is predicted to be low.
  • the EV range in the high vehicle speed range can be expanded by predicting the predicted motor rotation increase amount ⁇ Nm to be lower as the vehicle speed VSP is higher. Therefore, when obtaining the predicted motor rotation increase amount ⁇ Nm, the EV motor rotation increase amount ⁇ Nm is predicted according to the vehicle speed VSP, thereby ensuring the widest possible EV range while minimizing the drivability sensitivity to pulling shocks. Can do.
  • Example 1 when the predicted motor rotation increase amount ⁇ Nm is obtained, the predicted motor rotation increase amount ⁇ Nm is predicted to be lower as the road surface gradient of the traveling road surface is an uphill gradient.
  • the amount of increase in the motor rotation is lower as the slope is higher than the flat road. For this reason, by predicting the predicted motor rotation increase ⁇ Nm to be lower as the road surface gradient is higher, the EV region during traveling on the uphill road can be expanded. Therefore, when the predicted motor rotation increase amount ⁇ Nm is obtained, it is possible to expand the selection area of “EV mode” while traveling on the uphill road by predicting the predicted motor rotation increase amount ⁇ Nm lower as the road surface gradient is higher. it can.
  • An engine 1 and a motor (motor generator 3) are mounted as a drive source in a drive system from the drive source to the drive wheels 9 and 9.
  • the operation mode includes an electric vehicle mode (EV mode) using a motor (motor generator 3) as a drive source, and a hybrid vehicle mode (HEV mode) using the engine 1 and the motor (motor generator 3) as drive sources.
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • cranking start of the engine 1 is started using the motor (motor generator 3) as a start motor.
  • the predicted motor rotation increase amount ⁇ Nm is predicted to be lower as the road surface gradient of the traveling road surface is an uphill gradient (FIG. 3). For this reason, in addition to the effect of (5) or (6), when calculating the predicted motor rotation increase amount ⁇ Nm, the predicted motor rotation increase amount ⁇ Nm is predicted to be lower as the road surface gradient is higher, and the vehicle is traveling on an uphill road.
  • the area for selecting the “EV mode” can be expanded.
  • An engine 1 and a motor (motor generator 3) are mounted as a drive source in a drive system from the drive source to the drive wheels 9 and 9.
  • the operation mode includes an electric vehicle mode (EV mode) using a motor (motor generator 3) as a drive source, and a hybrid vehicle mode (HEV mode) using the engine 1 and the motor (motor generator 3) as drive sources.
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • a controller integrated controller 14 for starting cranking start of the engine 1 using the motor (motor generator 3) as a start motor is provided.
  • the controller accelerates the vehicle during the cranking start from the start of the engine 1 to the start completion while the electric vehicle mode (EV mode) is selected.
  • a predicted motor rotation increase amount ⁇ Nm during cranking start accompanying the assumed vehicle acceleration is obtained.
  • the target motor rotational speed Nmt is obtained by adding the predicted motor rotational speed increase ⁇ Nm to the current motor rotational speed Nm. It is assumed that cranking start is started at the current motor operation point A during the selection of the electric vehicle mode (EV mode).
  • a control device for a hybrid vehicle that prevents a reduction in driving force transmitted to the driving wheels (left and right driving wheels 9, 9) when there is an acceleration request during cranking start of the engine 1. can do.
  • the position at which the target motor speed Nmt is reached by increasing the motor speed Nm while maintaining the motor torque Tm at the start of the cranking start is predicted arrival driving.
  • An example of point B is shown.
  • the engine start determination an example of determining the predicted reaching operation point by increasing the motor rotation speed along the motor output line during cranking start may be used.
  • the engine start determination an example of determining the predicted attainment operation point by increasing the motor rotation speed with a rising slope from the motor torque at the start of the start during cranking start may be used. In short, any engine start determination may be made as long as the motor rotation speed Nm is increased without decreasing the motor output during cranking start.
  • the motor torque obtained by subtracting the cranking torque necessary for cranking start of the engine 1 from the motor maximum torque at the predicted reaching operation point B is converted into the driving force of the left and right drive wheels 9 and 9 to achieve the predicted arrival.
  • the driving force that can be realized at the operating point B is obtained.
  • the “EV mode” is maintained, and when the drive force that can be realized is less than or equal to the target drive force, the engine start determination is shown. .
  • the engine start determination may be made when the motor torque margin that can be realized at the predicted reaching operation point is equal to or less than the cranking torque.
  • the motor torque margin for the maximum torque curve characteristic of the motor is the value obtained by adding the engine torque to the cranking torque and the motor torque required to obtain the predicted motor rotation increase amount, and the EV ⁇ HEV switching line characteristic is set. It is good also as an example which performs engine starting determination. Further, a large number of EV ⁇ HEV switching line characteristics corresponding to acceleration during cranking start may be set according to vehicle speed, road surface gradient, battery output, and the like. When the EV ⁇ HEV switching line characteristic is set, the engine start determination is issued when the motor operating point crosses the EV ⁇ HEV switching line characteristic while the “EV mode” is selected.
  • control method and the control device of the present disclosure are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and having a belt type continuously variable transmission as a transmission. Indicated.
  • the control method and control device of the present disclosure can be applied to various hybrid vehicles as long as the hybrid vehicle has “EV mode” and “HEV mode” and starts the engine using a motor as a driving source for traveling as a starter motor. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The purpose of the present invention is to prevent a reduction in driving power transmitted to a drive wheel when there is a demand for acceleration during cranking start of an engine. Provided is an FF hybrid vehicle control method in which cranking start of an engine (1) is initiated using a motor generator (3) as a starter motor when an engine start determination is output while an EV mode is selected. While the EV mode is selected, a predicted motor speed increase amount ΔNm during cranking start is calculated assuming that the vehicle is accelerating. A target motor speed Nmt is calculated by adding the predicted motor speed increase amount ΔNm to a current motor speed Nm. When it is assumed that cranking start is initiated at a current motor operation point A while the EV mode is selected, a predicted arrival driving point B is set to a position at which the motor speed Nm reaches the target motor speed Nmt after being increased without causing motor output to be reduced during cranking start, and using the predicted arrival driving point B as a determination reference position, engine start determination is performed.

Description

ハイブリッド車両の制御方法と制御装置Control method and control apparatus for hybrid vehicle
 本開示は、電気自動車モードの選択時に始動判定がなされると、モータを始動モータとしてエンジンのクランキング始動を開始するハイブリッド車両の制御方法と制御装置に関する。 The present disclosure relates to a control method and a control apparatus for a hybrid vehicle that starts cranking of an engine using a motor as a start motor when a start determination is made when an electric vehicle mode is selected.
 従来、モータの最大トルクカーブ特性からエンジンのクランキング始動に必要なクランキングトルクを差し引いてEV→HEV切替線を設定している。そして、「EVモード」の選択時、モータ回転数とモータトルクによるモータ運転点が、EV→HEV切替線を横切ると、エンジン始動要求を出し、モータを始動モータとしてエンジンをクランキング始動するハイブリッド車両が知られている(例えば、特許文献1参照)。 Conventionally, the EV → HEV switching line is set by subtracting the cranking torque required for engine cranking start from the maximum torque curve characteristic of the motor. When “EV mode” is selected, if the motor operating point due to the motor speed and motor torque crosses the EV → HEV switching line, an engine start request is issued, and the engine is cranked using the motor as the start motor. Is known (see, for example, Patent Document 1).
特開2013-107539号公報JP 2013-107539 A
 しかしながら、従来装置にあっては、エンジン始動要求によるエンジン始動の開始から完了までのクランキング始動中、モータ回転数が変化しないと想定し、最大モータトルクからクランキングトルクを差し引いてEV→HEV切替線を設定している。従って、クランキング始動中にアクセル踏み込み操作による加速要求があり、モータ回転数が上昇すると、モータから駆動輪側へ伝達されるトルクは、エンジン側へのクランキングトルクを確保するようにEV→HEV切替線(始動中のモータ駆動力制限線)に沿って低下する。このとき、モータの最大トルクカーブ特性に対してクランキングトルクをマージンとするEV→HEV切替線は、モータ出力の等出力線よりも低く設定されている。このため、クランキング始動中に加速要求があるとき、モータ出力の低下に伴って駆動輪へ伝達される駆動力が低下してしまう、という問題があった。 However, in the conventional system, it is assumed that the motor speed does not change during the cranking start from the start to the completion of the engine start according to the engine start request, and the EV → HEV switching is performed by subtracting the cranking torque from the maximum motor torque. A line is set. Therefore, there is an acceleration request by depressing the accelerator during cranking start, and when the motor speed increases, the torque transmitted from the motor to the drive wheel side is EV → HEV so as to secure the cranking torque to the engine side. It decreases along the switching line (motor driving force limit line during startup). At this time, the EV → HEV switching line with the cranking torque as a margin with respect to the maximum torque curve characteristic of the motor is set lower than the equal output line of the motor output. For this reason, when there is an acceleration request during cranking start, there is a problem that the driving force transmitted to the driving wheels is reduced as the motor output decreases.
 本開示は、上記問題に着目してなされたもので、エンジンのクランキング始動中に加速要求があるとき、駆動輪へ伝達される駆動力の低下を防止することを目的とする。 The present disclosure has been made paying attention to the above-described problem, and an object thereof is to prevent a reduction in driving force transmitted to driving wheels when there is an acceleration request during engine cranking start.
 上記目的を達成するため、本開示は、運転モードとして、電気自動車モードと、ハイブリッド車モードと、を有し、電気自動車モードの選択中にエンジン始動判定が出されると、モータを始動モータとしてエンジンのクランキング始動を開始する。
このハイブリッド車両の制御方法において、電気自動車モードの選択中、エンジンの始動開始から始動完了までのクランキング始動中に車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量を求める。
予測モータ回転上昇量を、現時点のモータ回転数に加えることで目標モータ回転数を求める。
電気自動車モードの選択中、現時点のモータ運転点にてクランキング始動を開始すると想定したとき、クランキング始動中にモータ出力を低下させることなくモータ回転数を上昇させることで目標モータ回転数に到達した位置を予測到達運転点とし、予測到達運転点を判定基準位置としてエンジン始動判定を行う。
In order to achieve the above object, the present disclosure has an electric vehicle mode and a hybrid vehicle mode as operation modes, and when an engine start determination is issued during selection of the electric vehicle mode, the motor is used as a start motor. Start cranking start.
In this hybrid vehicle control method, when the electric vehicle mode is selected, it is assumed that the vehicle accelerates during cranking start from the start of engine start to the completion of start, and the predicted motor rotation during cranking start accompanying the assumed vehicle acceleration Find the amount of increase.
The target motor rotational speed is obtained by adding the predicted motor rotational speed increase to the current motor rotational speed.
When the cranking start is assumed to start at the current motor operating point while the electric vehicle mode is selected, the target motor speed is reached by increasing the motor speed without decreasing the motor output during cranking start. The engine start determination is performed using the determined position as the predicted reaching operation point and the predicted reaching operation point as the determination reference position.
 このように、クランキング始動中に車両が加速するとの想定に基づいてエンジン始動判定を行うことで、エンジンのクランキング始動中に加速要求があるとき、駆動輪へ伝達される駆動力の低下を防止することができる。 In this way, the engine start determination is performed based on the assumption that the vehicle accelerates during cranking start, so that when there is an acceleration request during engine cranking start, the driving force transmitted to the drive wheels is reduced. Can be prevented.
実施例1の制御方法と制御装置が適用されたFFハイブリッド車両の駆動系及び制御系を示す全体システム図である。1 is an overall system diagram illustrating a drive system and a control system of an FF hybrid vehicle to which a control method and a control device of Example 1 are applied. 実施例1の統合コントローラのエンジン始動制御部に有する始動判定部と目標制限トルク生成部を示すブロック構成図である。FIG. 3 is a block configuration diagram illustrating a start determination unit and a target limit torque generation unit included in the engine start control unit of the integrated controller according to the first embodiment. 実施例1の統合コントローラで実行されるエンジン始動制御処理に流れを示すフローチャートである。4 is a flowchart showing a flow of an engine start control process executed by the integrated controller of the first embodiment. 車速とバッテリ出力によるモータ回転上昇量マップ値を検索する予測モータ回転上昇量ΔNmマップを示すマップ図である。It is a map figure which shows the prediction motor rotation increase amount (DELTA) Nm map which searches the motor rotation increase amount map value by vehicle speed and battery output. 実施例1において「EVモード」の選択中における始動判定作用の概要をモータジェネレータのモータ回転数とモータトルクの関係特性にて示す始動判定説明図である。FIG. 6 is a start determination explanatory diagram showing an outline of a start determination operation during the selection of “EV mode” in the first embodiment by a relational characteristic between the motor speed of the motor generator and the motor torque. 実施例1のエンジン始動制御作用を説明するためのモータ回転数・変速機入力回転数・エンジン回転数・モータ最大トルク・目標駆動力・実現できる駆動力・実モータトルクの各特性を示すタイムチャートである。Time chart showing characteristics of motor rotational speed, transmission input rotational speed, engine rotational speed, motor maximum torque, target driving force, realizable driving force, and actual motor torque for explaining the engine start control operation of the first embodiment It is. 比較例において「EVモード」の選択中におけるエンジン始動制御の課題をモータジェネレータのモータ回転数とモータトルクの関係特性にて示す課題説明図である。FIG. 10 is a problem explanatory diagram illustrating a problem of engine start control during selection of an “EV mode” in a comparative example, by a relational characteristic between a motor speed of a motor generator and a motor torque. 実施例1において「EVモード」の選択中におけるエンジン始動制御作用の概要をモータジェネレータのモータ回転数とモータトルクの関係特性にて示す作用説明図である。FIG. 7 is an operation explanatory diagram showing an outline of an engine start control operation during selection of an “EV mode” in the first embodiment, using a relational characteristic between the motor speed of the motor generator and the motor torque.
 以下、本開示のハイブリッド車両の制御方法と制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing the hybrid vehicle control method and control device of the present disclosure will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。
実施例1における制御方法と制御装置は、1モータ・2クラッチと呼ばれるパラレルハイブリッド駆動系を有し、変速機としてベルト式無段変速機を搭載したFFハイブリッド車両に適用したものである。以下、実施例1の構成を、「全体システム構成」、「エンジン始動制御ブロック構成」、「エンジン始動制御処理構成」に分けて説明する。
First, the configuration will be described.
The control method and the control device in the first embodiment are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and equipped with a belt type continuously variable transmission as a transmission. Hereinafter, the configuration of the first embodiment will be described by being divided into an “overall system configuration”, an “engine start control block configuration”, and an “engine start control processing configuration”.
 [全体システム構成]
図1は、実施例1の制御方法と制御装置が適用されたFFハイブリッド車両(ハイブリッド車両の一例)の駆動系及び制御系を示す。以下、図1に基づいて、FFハイブリッド車両の駆動系及び制御系による全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an FF hybrid vehicle (an example of a hybrid vehicle) to which the control method and the control device of the first embodiment are applied. Hereinafter, based on FIG. 1, the whole system configuration by the drive system and control system of FF hybrid vehicle is demonstrated.
 FFハイブリッド車両の駆動系は、図1に示すように、エンジン1と、第1クラッチ2と、モータジェネレータ3と、第2クラッチ4と、変速機入力軸5と、ベルト式無段変速機6と、変速機出力軸7と、ファイナルギア8と、左右駆動輪9,9と、を備えている。パラレルハイブリッド駆動系による運転モードとしては、電気自動車モード(以下、「EVモード」という。)と、ハイブリッド車モード(以下、「HEVモード」という。)と、駆動トルクコントロール発進モード(以下、「WSCモード」という。)等を有する。 As shown in FIG. 1, the drive system of the FF hybrid vehicle includes an engine 1, a first clutch 2, a motor generator 3, a second clutch 4, a transmission input shaft 5, and a belt type continuously variable transmission 6. And a transmission output shaft 7, a final gear 8, and left and right drive wheels 9, 9. The operation mode of the parallel hybrid drive system includes an electric vehicle mode (hereinafter referred to as “EV mode”), a hybrid vehicle mode (hereinafter referred to as “HEV mode”), and a drive torque control start mode (hereinafter referred to as “WSC”). Mode ")) and the like.
 「EVモード」は、第1クラッチ2を解放状態とし、モータジェネレータ3の動力のみで走行するモードである。「HEVモード」は、第1クラッチ2を締結状態とし、モータアシストモード・走行発電モード・エンジンモードの何れかにより走行するモードである。「WSCモード」は、「EVモード」又は「HEVモード」からのP,N→Dセレクト発進時において、モータジェネレータ3を回転数制御することにより第2クラッチ4のスリップ締結状態を維持する。そして、第2クラッチ4の締結トルク容量を、ベルト式無段変速機6等を経由して左右の駆動輪9,9へ伝達される駆動力が、アクセル開度APOと車速VSPにより求められる目標駆動力相当になるようにコントロールしながら発進するモードである。なお、「WSC」とは、「Wet Start clutch」の略である。 “EV mode” is a mode in which the first clutch 2 is disengaged and the vehicle is driven only by the power of the motor generator 3. The “HEV mode” is a mode in which the first clutch 2 is engaged and the vehicle travels in any of the motor assist mode, the traveling power generation mode, and the engine mode. The “WSC mode” maintains the slip engagement state of the second clutch 4 by controlling the number of revolutions of the motor generator 3 at the time of P, N → D selection start from the “EV mode” or “HEV mode”. Then, the driving force transmitted to the left and right drive wheels 9, 9 via the belt-type continuously variable transmission 6 or the like as the engagement torque capacity of the second clutch 4 is determined by the accelerator opening APO and the vehicle speed VSP. It is a mode to start while controlling to be equivalent to the driving force. “WSC” is an abbreviation of “Wet Start clutch”.
 エンジン1は、希薄燃焼可能であり、スロットルアクチュエータによる吸入空気量とインジェクタによる燃料噴射量と、点火プラグによる点火時期の制御により、エンジントルクが指令値と一致するようにトルク制御される。このエンジン1の始動モードとしては、モータジェネレータ3を始動モータとし、第2クラッチ4をスリップ締結状態とし、第1クラッチ2の締結トルクを増しながらエンジン1をクランキング始動する「MG始動」を基本とする。なお、スタータモータ10によりエンジン1を始動する「スタータ始動」も選択肢としてあるが、例えば、極低温時での始動要求時等のように、特定条件が成立するときに限って「スタータ始動」が目標ステートとして選択される。 The engine 1 is capable of lean combustion, and is controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug. As a start mode of the engine 1, “MG start”, in which the motor generator 3 is used as a start motor, the second clutch 4 is in a slip engagement state, and the engine 1 is cranked while increasing the engagement torque of the first clutch 2, is basic. And Note that “starter start” in which the engine 1 is started by the starter motor 10 is also an option, but “starter start” is only performed when a specific condition is satisfied, for example, when a start request is made at an extremely low temperature. Selected as the target state.
 第1クラッチ2は、エンジン1とモータジェネレータ3との間の位置に介装され、解放により「EVモード」とし、締結により「HEVモード」にする。この第1クラッチ2としては、例えば、ノーマルオープンの乾式多板クラッチ等が用いられ、締結/スリップ締結/解放を油圧制御にて行う。 The first clutch 2 is interposed at a position between the engine 1 and the motor generator 3, and is set to “EV mode” when released and set to “HEV mode” when engaged. As the first clutch 2, for example, a normally open dry multi-plate clutch or the like is used, and fastening / slip fastening / release is performed by hydraulic control.
 モータジェネレータ3は、交流同期モータ構造であり、発進時や走行時、モータ機能を発揮してトルク制御や回転数制御を行う。そして、制動時や減速時、ジェネレータ機能を発揮して左右駆動輪9,9からの車両運動エネルギーを電気エネルギーに変換し、インバータ11を介してバッテリ12を充電する回生制御を行なう。 The motor generator 3 has an AC synchronous motor structure, and performs torque control and rotation speed control by demonstrating a motor function when starting or running. During braking or deceleration, the generator function is performed to convert vehicle kinetic energy from the left and right drive wheels 9 and 9 into electric energy, and regenerative control is performed to charge the battery 12 via the inverter 11.
 第2クラッチ4は、前後進切換機構に設けられたノーマルオープンの湿式多板クラッチや湿式多板ブレーキであり、油圧制御によるCL2締結トルクを上限トルクとして、クラッチ伝達トルクが発生する。この第2クラッチ4は、駆動源から出力されるトルクを、変速機入力軸5、ベルト式無段変速機6、変速機出力軸7、及びファイナルギア8を介し、左右駆動輪9,9へと伝達する。なお、第2クラッチ2は、図1に示すように、モータジェネレータ3とベルト式無段変速機6の間の位置に設定する以外に、ベルト式無段変速機6と左右駆動輪9,9の間の位置に設定しても良い。 The second clutch 4 is a normally open wet multi-plate clutch or wet multi-plate brake provided in the forward / reverse switching mechanism, and generates a clutch transmission torque with the CL2 engagement torque by hydraulic control as an upper limit torque. The second clutch 4 sends torque output from the drive source to the left and right drive wheels 9 and 9 via the transmission input shaft 5, the belt type continuously variable transmission 6, the transmission output shaft 7, and the final gear 8. Communicate. As shown in FIG. 1, the second clutch 2 is set at a position between the motor generator 3 and the belt-type continuously variable transmission 6, and the belt-type continuously variable transmission 6 and the left and right drive wheels 9, 9 are set. You may set to the position between.
 ベルト式無段変速機6は、変速機入力軸5に接続したプライマリプーリ61と、変速機出力軸7に接続したセカンダリプーリ62と、プライマリプーリ61とセカンダリプーリ62との間に架け渡されたプーリベルト63と、を有する。そして、プーリベルト63のプライマリプーリ61及びセカンダリプーリ62に対する巻き付き径に応じて無段階の変速比を得る。つまり、プライマリプーリ61のベルト挟持幅が広くなると共に、セカンダリプーリ62のベルト挟持幅が狭くなると変速比がLow変速比側に変化する。また、プライマリプーリ61のベルト挟持幅が狭くなると共に、セカンダリプーリ62のベルト挟持幅が広くなると変速比がHigh変速比側に変化する。 The belt type continuously variable transmission 6 is bridged between a primary pulley 61 connected to the transmission input shaft 5, a secondary pulley 62 connected to the transmission output shaft 7, and the primary pulley 61 and the secondary pulley 62. And a pulley belt 63. A stepless transmission ratio is obtained according to the winding diameter of the pulley belt 63 around the primary pulley 61 and the secondary pulley 62. That is, when the belt clamping width of the primary pulley 61 is widened and the belt clamping width of the secondary pulley 62 is narrowed, the gear ratio changes to the low gear ratio side. Further, as the belt clamping width of the primary pulley 61 becomes narrower and the belt clamping width of the secondary pulley 62 becomes wider, the gear ratio changes to the High gear ratio side.
 FFハイブリッド車両の制御系は、図1に示すように、統合コントローラ14と、変速機コントローラ15と、クラッチコントローラ16と、エンジンコントローラ17と、モータコントローラ18と、バッテリコントローラ19と、を備えている。そして、エンジン回転数センサ21と、モータ回転数センサ22と、変速機入力回転数センサ23と、CVT油温センサ24と、アクセル開度センサ25と、Gセンサ26と、ブレーキセンサ27と、車輪速センサ28と、インヒビタースイッチ29と、を備えている。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes an integrated controller 14, a transmission controller 15, a clutch controller 16, an engine controller 17, a motor controller 18, and a battery controller 19. . The engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, the CVT oil temperature sensor 24, the accelerator opening sensor 25, the G sensor 26, the brake sensor 27, and the wheels A speed sensor 28 and an inhibitor switch 29 are provided.
 前記統合コントローラ14は、パラレルハイブリッド駆動系を統合的に管理するコントローラであり、バッテリSOC状態、アクセル開度APO、車速VSP、作動油温等から目標駆動力や目標ステート等を演算する。そして、その演算結果に基づいて、各アクチュエータ(エンジン1、第1クラッチ2、モータジェネレータ3、第2クラッチ4、ベルト式無段変速機6)に対する指令値を演算し、CAN通信線20を介して各コントローラ15,16,17,18,19へと送信する。 The integrated controller 14 is a controller that manages the parallel hybrid drive system in an integrated manner, and calculates a target driving force, a target state, and the like from the battery SOC state, accelerator opening APO, vehicle speed VSP, hydraulic oil temperature, and the like. Then, based on the calculation result, command values for the actuators (engine 1, first clutch 2, motor generator 3, second clutch 4, belt type continuously variable transmission 6) are calculated, via CAN communication line 20. To each of the controllers 15, 16, 17, 18, and 19.
 変速機コントローラ15は、統合コントローラ14からの変速指令を達成するように、ベルト式無段変速機6のプライマリプーリ61とセカンダリプーリ62に供給されるプーリ油圧を制御することにより変速制御を行なう。 The transmission controller 15 performs shift control by controlling the pulley hydraulic pressure supplied to the primary pulley 61 and the secondary pulley 62 of the belt-type continuously variable transmission 6 so as to achieve the shift command from the integrated controller 14.
 クラッチコントローラ16は、エンジン回転数センサ21やモータ回転数センサ22や変速機入力回転数センサ23等からのセンサ情報を入力すると共に、統合コントローラ14からの指令を入力する。そして、選択される運転モード等に応じて第1クラッチ2へのCL1油圧指令値を出力する。また、CL2スリップ要求等に応じて第2クラッチ4へのCL2油圧指令値を出力する。 The clutch controller 16 inputs sensor information from the engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, and the like, and also inputs a command from the integrated controller 14. Then, a CL1 hydraulic pressure command value to the first clutch 2 is output according to the selected operation mode and the like. Further, a CL2 hydraulic pressure command value to the second clutch 4 is output in response to a CL2 slip request or the like.
 エンジンコントローラ17は、エンジン回転数センサ21からのセンサ情報を入力すると共に、統合コントローラ14からのエンジントルク指令値やエンジン回転数指令値を達成するように、エンジン1のトルク制御や回転数制御を行なう。このエンジンコントローラ17では、エンジン始動時、クランキング回転数が所定回転数に到達すると、燃料噴射指令と点火指令を出力する。 The engine controller 17 inputs sensor information from the engine speed sensor 21 and performs torque control and speed control of the engine 1 so as to achieve the engine torque command value and the engine speed command value from the integrated controller 14. Do. The engine controller 17 outputs a fuel injection command and an ignition command when the cranking rotational speed reaches a predetermined rotational speed when the engine is started.
 モータコントローラ18は、統合コントローラ14からのモータトルク指令値やモータ回転数指令値を達成するように、インバータ8に対し制御指令を出力し、モータジェネレータ3のトルク制御や回転数制御を行なう。なお、インバータ11は、直流/交流の相互変換を行うもので、力行時、バッテリ12からの放電電流をモータジェネレータ3の駆動電流に変換する。また、回生時、モータジェネレータ3からの発電電流をバッテリ12への充電電流に変換する。 The motor controller 18 outputs a control command to the inverter 8 so as to achieve the motor torque command value and the motor rotation speed command value from the integrated controller 14, and performs torque control and rotation speed control of the motor generator 3. The inverter 11 performs DC / AC mutual conversion, and converts the discharge current from the battery 12 into the drive current of the motor generator 3 during power running. Further, during regeneration, the generated current from the motor generator 3 is converted into a charging current for the battery 12.
 バッテリコントローラ19は、バッテリ9の充電容量(バッテリSOC)やバッテリ温度を管理し、バッテリ情報を統合コントローラ14やエンジンコントローラ17へと送信する。なお、バッテリ出力Poutは、バッテリSOCやバッテリ温度に基づいて算出される。 The battery controller 19 manages the charge capacity (battery SOC) of the battery 9 and the battery temperature, and transmits battery information to the integrated controller 14 and the engine controller 17. The battery output Pout is calculated based on the battery SOC and the battery temperature.
 [エンジン始動制御ブロック構成]
 図2は、実施例1の統合コントローラ14のエンジン始動制御部140に有する始動判定部141と目標制限トルク生成部142を示す。以下、始動判定部141と目標制限トルク生成部142の詳細構成を説明する。
[Engine start control block configuration]
FIG. 2 shows a start determination unit 141 and a target limit torque generation unit 142 included in the engine start control unit 140 of the integrated controller 14 of the first embodiment. Hereinafter, detailed configurations of the start determination unit 141 and the target limit torque generation unit 142 will be described.
 始動判定部141は、予測モータ回転上昇量演算部141aと、駆動力演算部141bと、始動判定部141cと、目標ステート演算部141dと、を有する。 The start determination unit 141 includes a predicted motor rotation increase amount calculation unit 141a, a driving force calculation unit 141b, a start determination unit 141c, and a target state calculation unit 141d.
 予測モータ回転上昇量演算部141aは、車速VSPとバッテリ出力Poutを入力し、予め設定されたモータ回転上昇量マップを用いてモータ回転上昇量マップ値ΔNmMAPを検索し、マップ値ΔNmMAPを補正係数により補正して予測モータ回転上昇量ΔNmを演算する。即ち、「EVモード」の選択中、エンジン1の始動開始から始動完了までのクランキング始動中に、ドライバによるアクセル踏み込み操作により車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量ΔNmを演算する。 The predicted motor rotation increase calculation unit 141a receives the vehicle speed VSP and the battery output Pout, searches for a motor rotation increase map value ΔNmMAP using a preset motor rotation increase map, and calculates the map value ΔNmMAP using a correction coefficient. The predicted motor rotation increase amount ΔNm is calculated after correction. That is, it is assumed that the vehicle is accelerated by the accelerator depressing operation by the driver during the cranking start from the start of the engine 1 to the completion of the start while the “EV mode” is selected, and the cranking start during the assumed vehicle acceleration is being performed. A predicted motor rotation increase amount ΔNm is calculated.
 駆動力演算部141bは、予測モータ回転上昇量ΔNm等を入力し、クランキング始動を現時点のモータ運転点で開始すると想定し、現時点のモータ回転数Nmに予測モータ回転上昇量ΔNmを加えることで目標モータ回転数Nmtを演算する。そして、モータ運転点が、目標モータ回転数Nmtに到達した予測到達運転点で実現できるモータ駆動トルクを、バッテリ出力Poutによる最大モータトルクから、エンジン1のクランキング始動に必要なクランキングトルクを差し引くことで演算する。さらに、目標モータ回転数Nmtに到達した予測到達運転点で実現できる駆動輪9,9側へのモータトルクを、ベルト式無段変速機6の変速比やファイナルギア8のギア比等を考慮し、駆動輪9,9に伝達する駆動力に換算することで、実現できる駆動力(1sec定格)を演算する。 The driving force calculation unit 141b inputs the predicted motor rotation increase amount ΔNm and the like, assumes that cranking start is started at the current motor operation point, and adds the predicted motor rotation increase amount ΔNm to the current motor rotation number Nm. The target motor speed Nmt is calculated. Then, the motor driving torque that can be realized at the predicted reaching operation point at which the motor operation point has reached the target motor rotation speed Nmt is subtracted from the maximum motor torque by the battery output Pout from the cranking torque necessary for cranking start of the engine 1. Calculate by Further, the motor torque to the drive wheels 9 and 9 that can be realized at the predicted reaching operation point that has reached the target motor rotation speed Nmt is considered in consideration of the gear ratio of the belt-type continuously variable transmission 6, the gear ratio of the final gear 8, and the like. The driving force (1 sec rating) that can be realized is calculated by converting the driving force to the driving wheels 9 and 9.
 始動判定部141cは、駆動力演算部141bからの実現できる駆動力と、目標駆動力との比較により、エンジン1のクランキング始動を開始するエンジン始動判定を行う。即ち、実現できる駆動力>目標駆動力と判定されている間は「EVモード」を維持する。しかし、実現できる駆動力≦目標駆動力と判定されると、エンジン始動判定フラグを出力する。なお、目標駆動力は、予め設定されている目標駆動力マップを用い、現時点でのアクセル開度APOと車速VSPにより決められる。 The start determination unit 141c performs engine start determination for starting cranking start of the engine 1 by comparing the drive force that can be realized from the drive force calculation unit 141b with the target drive force. That is, the “EV mode” is maintained while it is determined that the realizable driving force> the target driving force. However, if it is determined that the realizable driving force ≦ the target driving force, an engine start determination flag is output. The target driving force is determined by the accelerator opening APO and the vehicle speed VSP at the present time using a preset target driving force map.
 目標ステート演算部141dは、始動判定部141cからの出力とスタータ始動要求とMG始動要求を入力し、目標ステート(「MG始動」、「スタータ始動」)を演算する。即ち、駆動力不足の始動判定部141cからエンジン始動判定フラグが出力され、かつ、MG始動要求を入力すると、目標ステートとして「MG始動」が演算される。 The target state calculation unit 141d receives the output from the start determination unit 141c, the starter start request, and the MG start request, and calculates the target state (“MG start”, “starter start”). That is, when an engine start determination flag is output from the start determination unit 141c with insufficient driving force and an MG start request is input, “MG start” is calculated as the target state.
 目標制限トルク生成部142は、上限モータトルク演算部142aと、駆動力演算部142bと、上限制限部142cと、変化率制限142dと、を有する。 The target limit torque generator 142 includes an upper limit motor torque calculator 142a, a driving force calculator 142b, an upper limit limiter 142c, and a change rate limit 142d.
 上限モータトルク演算部142aは、予測モータ回転上昇量演算部141aにより演算されたクランキング始動中の予測モータ回転上昇量ΔNmを入力し、モータ運転点が目標モータ回転数Nmtに到達した予測到達運転点で実現できる上限モータトルクを演算する。そして、上限モータトルクとバッテリ出力Poutを入力し、上限モータトルクを実現できる駆動力に換算する。 The upper limit motor torque calculation unit 142a receives the predicted motor rotation increase ΔNm during cranking start calculated by the predicted motor rotation increase calculation unit 141a, and the predicted reaching operation in which the motor operating point has reached the target motor rotation number Nmt. The upper limit motor torque that can be realized in terms of points is calculated. Then, the upper limit motor torque and the battery output Pout are input and converted into a driving force that can realize the upper limit motor torque.
 駆動力演算部142bは、上限モータトルク演算部142aにより演算された上限モータトルク相当の実現できる駆動力を入力し、クランキングトルク等に基づいて上げ変化率を制限し、クランキング始動中に実現できる駆動力を演算する。つまり、モータ運転点が目標モータ回転数Nmtに到達したときにクランキングトルクを確保するように、クランキング始動中のモータトルクの上げ変化率が制限される。 The driving force calculation unit 142b inputs a driving force equivalent to the upper limit motor torque calculated by the upper limit motor torque calculation unit 142a, limits the rate of change based on the cranking torque, etc., and is realized during cranking start. The driving force that can be calculated is calculated. That is, the rate of increase in motor torque during cranking start is limited so as to ensure cranking torque when the motor operating point reaches the target motor rotation speed Nmt.
 上限制限部142cは、駆動力演算部142bからのクランキング始動中に実現できる駆動力と、目標変速機入力トルクとを入力し、実現できる駆動力の上限を制限する。 The upper limit limiting unit 142c inputs the driving force that can be realized during cranking start from the driving force calculation unit 142b and the target transmission input torque, and limits the upper limit of the driving force that can be realized.
 変化率制限142dは、上限制限部142cからの上限が制限された実現できる駆動力の変化率を制限したものを、駆動輪9,9に伝達可能な駆動力とする。そして、駆動輪9,9に伝達可能な駆動力を、ベルト式無段変速機6の変速比やファイナルギア8のギア比等を考慮して換算することにより、モータジェネレータ3から出力する目標制限トルク(=目標CL2INトルク)を生成する。 The change rate limit 142 d is a drive force that can be transmitted to the drive wheels 9 and 9 by limiting the change rate of the drive force that can be realized with the upper limit limited by the upper limit limiting unit 142 c. The target force output from the motor generator 3 is converted by converting the driving force that can be transmitted to the drive wheels 9 and 9 in consideration of the gear ratio of the belt-type continuously variable transmission 6, the gear ratio of the final gear 8, and the like. Torque (= target CL2IN torque) is generated.
 生成された目標制限トルクは、第2クラッチ4がスリップ締結状態とされるクランキング始動中において、目標制限トルクに相当する締結トルク指令を第2クラッチ4に出力することにより実現される。つまり、回転数制御によるモータジェネレータ3から出力可能なトルクのうち、左右駆動輪9,9側へ出力する分担トルクは、第2クラッチ4の締結トルクによって上限トルクが管理される。 The generated target limit torque is realized by outputting an engagement torque command corresponding to the target limit torque to the second clutch 4 during cranking start in which the second clutch 4 is in the slip engagement state. That is, of the torque that can be output from the motor generator 3 by the rotational speed control, the upper limit torque is managed by the engagement torque of the second clutch 4 for the shared torque output to the left and right drive wheels 9 and 9 side.
 [エンジン始動制御処理構成]
 図3は、実施例1の統合コントローラ14にて実行されるエンジン始動制御処理流れを示す。以下、エンジン始動制御処理構成をあらわす図3の各ステップについて説明する。
[Engine start control processing configuration]
FIG. 3 shows an engine start control process flow executed by the integrated controller 14 of the first embodiment. Hereinafter, each step of FIG. 3 representing the engine start control processing configuration will be described.
 ステップS1では、「EVモード」の選択中であるか否かを判断する。YESの場合(「EVモード」の選択中)はステップS3へ進み、NOの場合(「EVモード」の選択中以外)はステップS2へ進む。 In step S1, it is determined whether or not “EV mode” is being selected. If YES (while selecting “EV mode”), the process proceeds to step S3. If NO (other than selecting “EV mode”), the process proceeds to step S2.
 ステップS2では、ステップS1での「EVモード」の選択中以外であるとの判断に続き、他の制御を実行し、エンドへ進む。
ここで、「他の制御」とは、「HEVモード」の選択中になされるHEVモード制御、「HEVモード」から「EVモード」へのモード遷移制御、等をいう。
In step S2, following the determination that “EV mode” is not being selected in step S1, other control is executed, and the process proceeds to the end.
Here, “other control” refers to HEV mode control performed during selection of “HEV mode”, mode transition control from “HEV mode” to “EV mode”, and the like.
 ステップS3では、ステップS1での「EVモード」の選択中であるとの判断に続き、モータ回転上昇量マップ値ΔNmMAPを検索し、モータ回転上昇量マップ値ΔNmMAPに補正係数を掛けて予測モータ回転上昇量ΔNmを補正演算し、ステップS4へ進む。
ここで、「予測モータ回転上昇量ΔNm」の演算をするときは、クランキング始動中にアクセルペダルが踏み込まれた状況であることを想定し、さらに、ベルト式無段変速機6の変速比が、最Low変速比であることを前提とする。
In step S3, following the determination that “EV mode” is being selected in step S1, the motor rotation increase map value ΔNmMAP is retrieved, and the motor rotation increase map value ΔNmMAP is multiplied by the correction coefficient to predict the motor rotation. The increase amount ΔNm is corrected and calculated, and the process proceeds to step S4.
Here, when calculating the “predicted motor rotation increase amount ΔNm”, it is assumed that the accelerator pedal is depressed during cranking start, and further, the gear ratio of the belt type continuously variable transmission 6 is Suppose that it is the lowest gear ratio.
 モータ回転上昇量マップ値ΔNmMAPの検索は、バッテリ出力Poutと車速VSPとモータ回転上昇量マップ(図4)を用いて行われる。つまり、バッテリ出力Pout毎、及び、車速VSP毎の加速によるモータ回転上昇量を見積もり、クランキング始動中のモータ回転上昇量を、図4に示すモータ回転上昇量マップとして定義する。このモータ回転上昇量マップでは、バッテリ出力Poutが大きいほど、また、車速VSPが低いほどモータ回転上昇量マップ値ΔNmMAPを大とする。なお、バッテリ出力Pout毎に予測モータ回転上昇量ΔNmを求める理由は、バッテリ出力Poutが小さいほど、その回転数で出せるモータ最大トルクが小さくなるため、車両加速度は小さくなる(=モータ回転上昇量が少なくなる)からである。 The search for the motor rotation increase map value ΔNmMAP is performed using the battery output Pout, the vehicle speed VSP, and the motor rotation increase map (FIG. 4). That is, the amount of motor rotation increase due to acceleration for each battery output Pout and each vehicle speed VSP is estimated, and the motor rotation increase amount during cranking start is defined as the motor rotation increase amount map shown in FIG. In this motor rotation increase amount map, the motor rotation increase amount map value ΔNmMAP is increased as the battery output Pout increases and the vehicle speed VSP decreases. The reason for obtaining the predicted motor rotation increase amount ΔNm for each battery output Pout is that the smaller the battery output Pout, the smaller the motor maximum torque that can be output at that rotation speed, so the vehicle acceleration decreases (= the motor rotation increase amount decreases). Because it will be less).
 そして、(補正係数×モータ回転上昇量マップ値ΔNmMAP)により予測モータ回転上昇量ΔNmを求める理由は、クランキング始動中の加速要求に対し、単純に「EVモード」の選択領域を減らすのではなく、問題のシーンのみに効果があるようにするためである。よって、下記の(a),(b)に関しては、モータ回転上昇量マップ値ΔNmMAPを補正する。
(a) 特に、車速VSPが所定車速(例えば、15km/h)以上の時は変速比が高くなるため、G引きショックの乗員感度が小さい。そのため、上記モータ回転上昇量マップで決められるモータ回転上昇量マップ値ΔNmMAPの影響を減らせるように、車速VSPに応じた補正係数をかける。例えば、運転性評価を実施し、G引きショックの影響のない高車速領域については、モータ回転上昇量マップ値ΔNmMAPを無視しても良く、この場合、予測モータ回転上昇量ΔNmはゼロとされる。
(b) 前後G情報等により路面勾配の推定を実施し、路面勾配によるモータ回転上昇量マップ値ΔNmMAPを補正する。例えば、路面勾配が登り勾配時には、平坦路より車両加速度が低下するので、登り勾配に応じた補正係数によりモータ回転上昇量マップ値ΔNmMAPを低下させる補正を行う。
この理由は、「予測モータ回転上昇量ΔNm」を演算により求める場合は、
予測モータ回転上昇量[rpm]=加速度[m/s^2]×変速比÷タイヤ径[m]×始動時間…(1)
加速度[m/s^2]={入力モータトルク[Nm]×変速比÷タイヤ径[m]-(転がり+空気抵抗)[N]-イナーシャ[N]-勾配抵抗[N]}÷車重[kg]  …(2)
の式が用いられる。なお、入力モータトルクは、その車速(変速比を考慮してモータ回転数に換算)で出せる駆動最大トルク(=最大モータトルク-クランキングトルク)が、始動時間続いたとして演算される。つまり、上記(2)式から明らかなように、「予測モータ回転上昇量ΔNm」は、勾配抵抗により影響を受けることによる。
The reason why the predicted motor rotation increase ΔNm is calculated by (correction coefficient × motor rotation increase map value ΔNmMAP) is not simply to reduce the selection area of “EV mode” in response to the acceleration request during cranking start. This is so that only the problem scene is effective. Therefore, for the following (a) and (b), the motor rotation increase map value ΔNmMAP is corrected.
(a) In particular, when the vehicle speed VSP is equal to or higher than a predetermined vehicle speed (for example, 15 km / h), the gear ratio becomes high, and thus the passenger sensitivity of the G pulling shock is small. Therefore, a correction coefficient corresponding to the vehicle speed VSP is applied so as to reduce the influence of the motor rotation increase map value ΔNmMAP determined by the motor rotation increase map. For example, the drivability evaluation is performed, and the motor rotation increase map value ΔNmMAP may be ignored for a high vehicle speed region without the influence of the G pulling shock. In this case, the predicted motor rotation increase ΔNm is set to zero. .
(b) The road gradient is estimated based on the longitudinal G information and the like, and the motor rotation increase map value ΔNmMAP due to the road gradient is corrected. For example, when the road surface gradient is climbing, the vehicle acceleration is lower than that on a flat road. Therefore, correction is performed to decrease the motor rotation increase map value ΔNmMAP using a correction coefficient corresponding to the climbing gradient.
The reason for this is that when calculating the “predicted motor rotation rise amount ΔNm” by calculation,
Predicted motor rotation increase [rpm] = acceleration [m / s ^ 2] x gear ratio ÷ tire diameter [m] x start time ... (1)
Acceleration [m / s ^ 2] = {input motor torque [Nm] x gear ratio ÷ tire diameter [m]-(rolling + air resistance) [N]-inertia [N]-gradient resistance [N]} ÷ vehicle weight [kg]… (2)
The following formula is used. The input motor torque is calculated on the assumption that the drive maximum torque (= maximum motor torque−cranking torque) that can be output at the vehicle speed (converted to the motor rotation speed in consideration of the gear ratio) lasts for the start time. That is, as is clear from the above equation (2), the “predicted motor rotation increase amount ΔNm” is influenced by the gradient resistance.
 ステップS4では、ステップS3での予測モータ回転上昇量ΔNmの演算に続き、現時点のモータ回転数Nmと予測モータ回転上昇量ΔNmとを足し合わせ、クランキング始動中に加速があると想定したときに到達すると予測される目標モータ回転数Nmtを演算し、ステップS5へ進む。 In step S4, following the calculation of the predicted motor rotation increase amount ΔNm in step S3, the current motor rotation speed Nm and the predicted motor rotation increase amount ΔNm are added together, and it is assumed that there is acceleration during cranking start. The target motor rotation speed Nmt predicted to be reached is calculated, and the process proceeds to step S5.
 ステップS5では、ステップS4での目標モータ回転数Nmtの演算に続き、目標モータ回転数Nmtとバッテリ出力Poutと始動マージンにより「実現できる駆動力」を演算し、ステップS6へ進む。
ここで、「バッテリ出力Pout」により、目標モータ回転数Nmtでの最大モータトルクを求める。「始動マージン」とは、モータジェネレータ3を用いてエンジン1をクランキング始動するのに必要な「クランキングトルク」をいう。「実現できる駆動力」は、現在のモータ運転点(Nm,Tm)のうち、現在のモータ運転点でのモータトルクTmをそのまま維持したままでのモータ回転数Nmの上昇により目標モータ回転数Nmtによる予測到達運転点に到達したと想定する。この予測到達運転点での最大モータトルクからクランキングトルクを差し引いたモータトルクを、駆動輪9,9へ伝達される駆動力に換算した値をいう。
In step S5, following the calculation of the target motor rotation speed Nmt in step S4, the “realizable driving force” is calculated from the target motor rotation speed Nmt, the battery output Pout, and the start margin, and the process proceeds to step S6.
Here, the maximum motor torque at the target motor rotation speed Nmt is obtained from “battery output Pout”. “Starting margin” refers to “cranking torque” necessary for cranking the engine 1 using the motor generator 3. “Achievable driving force” is the target motor speed Nmt by increasing the motor speed Nm while maintaining the motor torque Tm at the current motor operating point out of the current motor operating point (Nm, Tm). It is assumed that the predicted reaching operation point by is reached. This is a value obtained by converting the motor torque obtained by subtracting the cranking torque from the maximum motor torque at the predicted reaching operation point into the driving force transmitted to the drive wheels 9 and 9.
 ステップS6では、ステップS5での「実現できる駆動力」の演算に続き、実現できる駆動力が目標駆動力以下であるか否かを判断する。YES(実現できる駆動力≦目標駆動力)の場合はステップS7へ進み、NO(実現できる駆動力>目標駆動力)の場合はステップS3へ戻って「EVモード」を維持する。
ここで、「目標駆動力」は、予め設定されている図外の目標駆動力マップを用い、現時点のアクセル開度APOと車速VSPにより決められる。
In step S6, following the calculation of “realizable driving force” in step S5, it is determined whether or not the realizable driving force is equal to or less than the target driving force. If YES (realizable driving force ≦ target driving force), the process proceeds to step S7. If NO (realizable driving force> target driving force), the process returns to step S3 to maintain the “EV mode”.
Here, the “target driving force” is determined by the current accelerator opening APO and the vehicle speed VSP using a preset target driving force map (not shown).
 ステップS7では、ステップS6での実現できる駆動力≦目標駆動力であるとの判断によるエンジン始動の開始に続き、予測モータ回転上昇量ΔNmを用いて目標制限トルクを生成し、ステップS8へ進む。
ここで、「目標制限トルク」とは、クランキング始動中のモータ運転点(Nm,Tm)のうち、モータ回転数Nmが始動開始から目標モータ回転数Nmtによる予測到達運転点へ到達するまで上昇する間、上限制限と変化率制限を受けるモータトルクTmのことをいう。実施例1では、「目標制限トルク」を、始動判定時のモータトルクTmをそのまま維持する値としている。
In step S7, following the start of engine start based on the determination that the driving force that can be realized in step S6 ≦ the target driving force, a target limit torque is generated using the predicted motor rotation increase amount ΔNm, and the process proceeds to step S8.
Here, the “target limit torque” is the motor operating point (Nm, Tm) during cranking start that increases until the motor speed Nm reaches the predicted operating point by the target motor speed Nmt from the start of starting. This means the motor torque Tm that is subject to an upper limit and a change rate limit. In the first embodiment, the “target limit torque” is set to a value that maintains the motor torque Tm at the start determination.
 ステップS8では、ステップS7での目標制限トルクの生成、或いは、ステップS9でのCL2スリップ締結状態ではないとの判断に続き、CL2スリップ制御を行い、ステップS9へ進む。
ここで、「CL2スリップ制御」は、第2クラッチ4の目標締結トルクを目標制限トルク相当とし、モータジェネレータ3を回転数制御することで行う。モータジェネレータ3の回転数制御では、ベルト式無段変速機6への変速機入力回転数INPREVに目標スリップ回転数を加えた値をモータ回転数目標値とし、実モータ回転数をモータ回転数目標値に一致させる制御を行う。
In step S8, following the generation of the target limiting torque in step S7 or the determination that the CL2 slip engagement state is not established in step S9, CL2 slip control is performed, and the process proceeds to step S9.
Here, the “CL2 slip control” is performed by setting the target engagement torque of the second clutch 4 to be equivalent to the target limit torque, and controlling the rotation speed of the motor generator 3. In the rotation speed control of the motor generator 3, the value obtained by adding the target slip rotation speed to the transmission input rotation speed INPREV to the belt type continuously variable transmission 6 is set as the motor rotation speed target value, and the actual motor rotation speed is set as the motor rotation speed target. Control to match the value.
 ステップS9では、ステップS8でのCL2スリップ制御に続き、第2クラッチ4がスリップ締結状態になったか否かを判断する。YES(CL2スリップ締結状態である)の場合はステップS10へ進み、NO(CL2スリップ締結状態ではない)の場合はステップS8へ戻る。
ここで、「第2クラッチ4のスリップ締結状態」は、第2クラッチ4の締結トルクが目標締結トルク(=目標制限トルク)になり、第2クラッチ4の差回転が目標スリップ回転数になると、スリップ締結状態であると判断する。
In step S9, following the CL2 slip control in step S8, it is determined whether or not the second clutch 4 is in the slip engagement state. If YES (CL2 slip engagement state), the process proceeds to step S10, and if NO (not CL2 slip engagement state), the process returns to step S8.
Here, in the “slip engagement state of the second clutch 4”, when the engagement torque of the second clutch 4 becomes the target engagement torque (= target limit torque) and the differential rotation of the second clutch 4 becomes the target slip rotation speed, It is judged that it is in a slip fastening state.
 ステップS10では、ステップS9でのCL2スリップ締結状態であるとの判断、或いは、ステップS11でのエンジン始動未完了であるとの判断に続き、エンジン1をクランキング始動し、ステップS11へ進む。
ここで、「エンジン1のクランキング始動」は、「EVモード」で解放されている第1クラッチ2の締結を開始し、モータジェネレータ3からのモータトルクのうち、クランキングトルク分を、第1クラッチ2を介してエンジン1に伝達することで行われる。
In step S10, following the determination that the CL2 slip engagement state is set in step S9 or the determination that the engine start is not completed in step S11, the engine 1 is cranked and the process proceeds to step S11.
Here, “the cranking start of the engine 1” starts the engagement of the first clutch 2 released in the “EV mode”, and the cranking torque portion of the motor torque from the motor generator 3 is set to the first. This is done by transmitting to the engine 1 via the clutch 2.
 ステップS11では、ステップS10でのエンジン1のクランキング始動に続き、エンジン始動が完了したか否かを判断する。YES(エンジン始動完了)の場合はステップS12へ進み、NO(エンジン始動未完了)の場合はステップS10へ戻る。
ここで、「エンジン始動完了」の判断は、エンジン1の初爆判定後、第1クラッチ2が完全締結状態(モータ回転数≒エンジン回転数)になったことで行う。
In step S11, following the cranking start of the engine 1 in step S10, it is determined whether the engine start is completed. If YES (engine start is complete), the process proceeds to step S12. If NO (engine start is not complete), the process returns to step S10.
Here, the determination of “engine start complete” is made when the first clutch 2 is completely engaged (motor rotation speed≈engine rotation speed) after the first explosion determination of the engine 1 is made.
 ステップS12では、ステップS11でのエンジン始動完了であるとの判断に続き、運転モードを「EVモード」から「HEVモード」へとモード遷移し、エンドへ進む。 In step S12, following the determination that the engine start is complete in step S11, the operation mode is changed from "EV mode" to "HEV mode", and the process proceeds to the end.
 次に、作用を説明する。
実施例1の作用を、「エンジン始動制御処理作用」、「エンジン始動制御作用」、「エンジン始動制御の対比作用」、「エンジン始動制御の特徴作用」に分けて説明する。
Next, the operation will be described.
The operation of the first embodiment will be described separately for “engine start control processing operation”, “engine start control operation”, “engine start control contrast operation”, and “engine start control characteristic operation”.
 [エンジン始動制御処理作用]
 以下、図3に示すフローチャート、及び、図5に示すモータの最大トルクカーブ特性に基づき、エンジン始動制御処理作用を説明する。
[Engine start control processing action]
The engine start control processing operation will be described below based on the flowchart shown in FIG. 3 and the maximum torque curve characteristic of the motor shown in FIG.
 「EVモード」の選択中のときは、図3のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6へと進む。そして、ステップS6にて実現できる駆動力>目標駆動力であり、始動判定条件が不成立である間は、ステップS3→ステップS4→ステップS5→ステップS6へと進む流れが繰り返され、「EVモード」が維持される。 When the “EV mode” is being selected, the process proceeds to step S1, step S2, step S3, step S4, step S5, and step S6 in the flowchart of FIG. Then, the driving force that can be realized in step S6> target driving force, and while the start determination condition is not satisfied, the flow of step S3 → step S4 → step S5 → step S6 is repeated, and the “EV mode” Is maintained.
 ステップS3では、予測モータ回転上昇量ΔNmが演算され、ステップS4では、現在のモータ回転数Nmoと予測モータ回転上昇量ΔNmとを足し合わせ、クランキング始動中に加速があると想定したときに到達すると予測される目標モータ回転数Nmtが演算される。そして、ステップS5では、目標モータ回転数Nmtとバッテリ出力Poutと始動マージンにより実現できる駆動力が演算される。ステップS6では、実現できる駆動力が目標駆動力以下であるか否かが判断される。 In step S3, a predicted motor rotation increase amount ΔNm is calculated. In step S4, the current motor rotation speed Nmo and the predicted motor rotation increase amount ΔNm are added, and reached when it is assumed that acceleration is occurring during cranking start. Then, the predicted target motor speed Nmt is calculated. In step S5, the driving force that can be realized by the target motor rotation speed Nmt, the battery output Pout, and the start margin is calculated. In step S6, it is determined whether or not the driving force that can be realized is equal to or less than the target driving force.
 その後、ステップS6にて実現できる駆動力≦目標駆動力であり、始動判定条件が成立すると、エンジン1のクランキング始動が開始され、ステップS6からステップS7→ステップS8→ステップS9へと進む。ステップS9にてCL2スリップ締結状態出ないと判断されている間は、ステップS8→ステップS9へと進む流れが繰り返される。 Thereafter, when the driving force that can be realized in step S6 ≦ target driving force and the start determination condition is satisfied, the cranking start of the engine 1 is started, and the process proceeds from step S6 to step S7 → step S8 → step S9. While it is determined in step S9 that the CL2 slip engagement state does not come out, the flow from step S8 to step S9 is repeated.
 ステップS7では、予測モータ回転上昇量ΔNmを用いて目標制限トルクが生成され、ステップS8では、CL2スリップ制御が行われ、ステップS9では、第2クラッチ4がスリップ締結状態になったか否かが判断される。 In step S7, the target limit torque is generated using the predicted motor rotation increase amount ΔNm. In step S8, CL2 slip control is performed. In step S9, it is determined whether or not the second clutch 4 is in the slip engagement state. Is done.
 ステップS9にて第2クラッチ4がスリップ締結状態になったと判断されると、ステップS9からステップS10→ステップS11へと進む。ステップS11にてエンジン始動未完了と判断されている間は、ステップS10→ステップS11へと進む流れが繰り返される。 If it is determined in step S9 that the second clutch 4 is in the slip engagement state, the process proceeds from step S9 to step S10 to step S11. While it is determined in step S11 that the engine has not been started yet, the flow from step S10 to step S11 is repeated.
 ステップS10では、モータジェネレータ3を始動モータとし、第1クラッチ2を締結することでエンジン1がクランキング始動される。ステップS11では、エンジン始動が完了したか否かが判断される。そして、ステップS11にてエンジン始動完了と判断されると、ステップS11からステップS12→エンドへと進み、運転モードが、「EVモード」から「HEVモード」へとモード遷移される。 In step S10, the motor generator 3 is used as a starter motor, and the engine 1 is cranked and started by engaging the first clutch 2. In step S11, it is determined whether the engine start is completed. If it is determined in step S11 that the engine has been started, the process proceeds from step S11 to step S12 → end, and the operation mode is changed from “EV mode” to “HEV mode”.
 上記ステップS6での始動判定では、図5に示すように、「EVモード」の選択中、現時点でのモータ運転点(Nm,Tm)がモータ運転点Aであるとする。このモータ運転点Aのうち、モータトルクTmを保持したままで、モータ回転数Nmが現在のモータ回転数Nmoに予測モータ回転上昇量ΔNmを加えた目標モータ回転数Nmtまで上昇したモータ運転点B(予測到達運転点)まで移動したとする。このモータ運転点Bにおいては、最大モータトルクからマージントルク分を差し引いたモータトルク分が、左右駆動輪9,9側へ伝達可能なモータトルク(実現できるモータトルク)になる。よって、例えば、図5に示すように、モータ運転点がA’からAへと移動し、モータ運転点B(予測到達運転点)での実現できるモータトルクが目標駆動トルク以下になると、エンジン始動判定が出される。 In the start determination in step S6, it is assumed that the motor operation point (Nm, Tm) at the current time is the motor operation point A while the “EV mode” is selected, as shown in FIG. Among the motor operating points A, the motor operating point B in which the motor rotational speed Nm increases to the target motor rotational speed Nmt obtained by adding the predicted motor rotational speed increase ΔNm to the current motor rotational speed Nmo while maintaining the motor torque Tm. It is assumed that the vehicle has moved to (predicted reaching operation point). At this motor operating point B, the motor torque obtained by subtracting the margin torque from the maximum motor torque is the motor torque that can be transmitted to the left and right drive wheels 9 and 9 side (realizable motor torque). Therefore, for example, as shown in FIG. 5, when the motor operating point moves from A ′ to A and the motor torque that can be realized at the motor operating point B (predicted reaching operating point) becomes equal to or less than the target driving torque, the engine starts. A decision is issued.
 そして、モータ運転点Aでクランキング始動が開始されると、第2クラッチ4のスリップ締結トルクの制御により、モータトルクTmが一定トルクのままで維持され、クランキング始動が完了するとほぼモータ運転点Bの位置に移動する。このモータ運転点Bでは、最大モータトルクから実現できるモータトルクを差し引いたモータトルク分がクランキングトルクになり、クランキングトルクを用いたエンジン1の始動が確保される。 When the cranking start is started at the motor operating point A, the motor torque Tm is maintained at a constant torque by the control of the slip engagement torque of the second clutch 4, and the motor operating point is almost completed when the cranking start is completed. Move to position B. At this motor operating point B, the motor torque obtained by subtracting the motor torque that can be realized from the maximum motor torque becomes the cranking torque, and the start of the engine 1 using the cranking torque is ensured.
 このように、先ず、クランキング始動中に車両の加速があると想定し、加速に伴うクランキング始動中の予測モータ回転上昇量ΔNmを演算する。そして、エンジン始動制御処理での始動判定は、現在のモータ回転数Nmoに予測モータ回転上昇量ΔNmを加えた目標モータ回転数Nmtを判定基準位置としてなされる。さらに、クランキング始動中のモータトルクについても、現在のモータ回転数Nmoに予測モータ回転上昇量ΔNmを加えた目標モータ回転数Nmtを判定基準位置とし、モータ運転点B(予測到達運転点)に到達したとき、クランキングトルクを残すように目標制限トルクを生成することでなされる。 Thus, first, assuming that there is acceleration of the vehicle during cranking start, a predicted motor rotation increase amount ΔNm during cranking start accompanying acceleration is calculated. The start determination in the engine start control process is performed using the target motor rotation speed Nmt obtained by adding the predicted motor rotation increase amount ΔNm to the current motor rotation speed Nmo as a determination reference position. Further, for the motor torque during cranking start, the target motor rotation speed Nmt obtained by adding the predicted motor rotation increase amount ΔNm to the current motor rotation speed Nmo is used as a determination reference position, and the motor operation point B (predicted reaching operation point) is set. When it reaches, the target limit torque is generated so as to leave the cranking torque.
 [エンジン始動制御作用]
 図6は、実施例1のエンジン始動制御処理によるエンジン始動制御作用の一例を示すタイムチャートである。以下、図6に基づいて、エンジン始動制御作用を説明する。
[Engine start control action]
FIG. 6 is a time chart illustrating an example of an engine start control action by the engine start control process of the first embodiment. Hereinafter, the engine start control operation will be described with reference to FIG.
 時刻t1にてアクセル踏み込み操作を行うとモータトルクの上昇を開始する。そして、現在のモータ回転数Nmoに予測モータ回転上昇量ΔNmを加えた目標モータ回転数Nmtを判定基準位置とし、実現できる駆動力と目標駆動力の大小を判断し、実現できる駆動力>目標駆動力である時刻t1から時刻t2に到達する直前までは、「EVモード」が維持される。そして、時刻t2に到達し、実現できる駆動力=目標駆動力になると、エンジン始動が開始され、時刻t2からエンジン始動が完了する時刻t7までが、クランキング始動中の区間になる。 When the accelerator is depressed at time t1, the motor torque starts to increase. Then, the target motor rotation speed Nmt obtained by adding the predicted motor rotation speed increase ΔNm to the current motor rotation speed Nmo is used as the determination reference position, and the realizable driving force and the target driving force are determined. The “EV mode” is maintained until the time t2 is reached from the time t1 as the power. Then, when the time t2 is reached and the realizable driving force = target driving force is reached, the engine start is started, and the time period from the time t2 to the time t7 when the engine start is completed becomes the cranking start interval.
 時刻t2にてエンジン始動が開始されると、図6の矢印Cで囲まれるモータトルク特性に示すように、エンジン1の初爆が判定される時刻t6までの間、目標制限トルクの生成に基づき、エンジン1の始動判定が出された時点のモータトルクが維持される。そして、時刻t2からCL2スリップ締結制御が開始され、時刻t3にてスリップ締結状態であると判断されると、時刻t2以降は、モータ回転数と変速機入力回転数INPREVとの差回転数が、目標スリップ回転数に維持される。そして、時刻t3の直後から実現できる駆動力と最大モータトルク(モータ上限)が低下を開始する。 When the engine start is started at time t2, as shown in the motor torque characteristic surrounded by the arrow C in FIG. 6, based on the generation of the target limit torque until the time t6 when the first explosion of the engine 1 is determined. The motor torque at the time when the engine 1 is determined to start is maintained. Then, CL2 slip engagement control is started from time t2, and when it is determined that the slip engagement state is at time t3, after time t2, the difference rotation speed between the motor rotation speed and the transmission input rotation speed INPREV is The target slip rotational speed is maintained. Then, the driving force and the maximum motor torque (motor upper limit) that can be realized immediately after time t3 start to decrease.
 時刻t5にて第1クラッチ2の締結トルクの発生を開始すると、モータジェネレータ3によりエンジン回転数を上昇させるクランキングが開始され、時刻t6にて初爆判定がなされる。時刻t6にて初爆が判定されると、実現できる駆動力として、モータトルクにエンジントルクが加わり、時刻t7まで実現できる駆動力が上昇する。時刻t7にて第1クラッチ2が完全締結し、モータ回転数とエンジン回転数が同回転数になると、エンジン始動を完了し、「HEVモード」へとモード遷移する。この「HEVモード」では、エンジン1とモータジェネレータ3の総和による実現できる駆動力が高まり、時刻t8になると、実現できる駆動力が目標駆動力に到達する。 When the generation of the engagement torque of the first clutch 2 is started at time t5, the cranking for increasing the engine speed is started by the motor generator 3, and the initial explosion determination is made at time t6. When the first explosion is determined at time t6, the engine torque is added to the motor torque as the driving force that can be realized, and the driving force that can be realized until time t7 increases. When the first clutch 2 is completely engaged at time t7 and the motor rotational speed and the engine rotational speed become the same rotational speed, the engine start is completed and the mode transitions to the “HEV mode”. In the “HEV mode”, the driving force that can be realized by the sum of the engine 1 and the motor generator 3 is increased, and the driving force that can be realized reaches the target driving force at time t8.
 一方、EV→HEV切替線を用いてエンジン始動を判定する比較例の場合、図6の破線特性に示すように、モータトルクが実現できる駆動力に到達する時刻t4のタイミングにてエンジン始動が開始される。そして、時刻t4以降は、クランキングトルクを確保するように、実現できる駆動力の特性に沿ってモータトルクが低下することになる。 On the other hand, in the case of the comparative example in which the engine start is determined using the EV → HEV switching line, the engine start is started at the time t4 when the driving force at which the motor torque can be realized is reached, as shown by the broken line characteristics in FIG. Is done. After time t4, the motor torque decreases along with the characteristics of the driving force that can be realized so as to ensure the cranking torque.
 [エンジン始動制御の対比作用]
 先ず、EV→HEV切替線を用いてエンジン始動を判定し、エンジン始動制御を行う比較例での課題を、図7に基づいて説明する。
[Contrast effect of engine start control]
First, a problem in a comparative example in which engine start is determined using an EV → HEV switching line and engine start control is performed will be described with reference to FIG.
 比較例の場合、図7に示すように、モータの最大トルクカーブ特性からエンジンのクランキング始動に必要なクランキングトルクを差し引いてEV→HEV切替線を設定している。そして、「EVモード」の選択時、モータ回転数NmとモータトルクTmによるモータ運転点D’がモータ運転点Dへ移動し、EV→HEV切替線を横切るとエンジン始動判定を出し、モータを始動モータとしてエンジンをクランキング始動する。 In the case of the comparative example, as shown in FIG. 7, the EV → HEV switching line is set by subtracting the cranking torque necessary for engine cranking start from the maximum torque curve characteristic of the motor. When “EV mode” is selected, the motor operating point D ′ based on the motor speed Nm and motor torque Tm moves to the motor operating point D. When the EV → HEV switching line is crossed, an engine start determination is issued and the motor is started. Start cranking the engine as a motor.
 つまり、始動判定によるエンジン始動の開始から完了までのクランキング始動中、車両が定速走行を維持することでモータ回転数が変化しないと想定し、EV→HEV切替線を設定している。そして、クランキング始動中は、モータトルクからエンジン側へのクランキングトルクを差し引いたトルク分を、駆動輪側へ伝達可能な駆動力にしている。従って、クランキング始動中にアクセル踏み込み操作による加速要求があり、モータ回転数が上昇すると、駆動輪側へ伝達されるモータ駆動トルクは、エンジン側へのクランキングトルクを確保するようにEV→HEV切替線(始動中の駆動力制限線)に沿ってモータ運転点D”まで低下する。このとき、モータの最大トルクカーブ特性に対してクランキングトルクをマージンとするEV→HEV切替線は、モータ出力の等出力線よりも低く設定されている。このため、クランキング始動中に加速要求があるとき、クランキング始動中に図7の矢印Eで示すモータトルクの低下があり、この結果、駆動輪へ伝達される駆動力が低下してしまう。 That is, the EV → HEV switching line is set on the assumption that the motor speed does not change by maintaining the vehicle running at a constant speed during the cranking start from the start to the completion of the engine start by the start determination. During cranking start, the torque obtained by subtracting the cranking torque from the motor torque to the engine side is used as the driving force that can be transmitted to the driving wheel side. Therefore, there is an acceleration request by depressing the accelerator during cranking start, and when the motor speed increases, the motor drive torque transmitted to the drive wheel side is EV → HEV so as to secure the cranking torque to the engine side. Along the switching line (driving force limit line during start-up), it decreases to the motor operating point D ″. At this time, the EV → HEV switching line with a margin of cranking torque for the maximum torque curve characteristic of the motor Therefore, when there is an acceleration request during cranking start, there is a decrease in motor torque indicated by arrow E in FIG. The driving force transmitted to the wheel is reduced.
 これに対し、実施例1の場合、「EVモード」の選択中、図8に示すように、モータ運転点が、モータ運転点F’からの移動によりモータ運転点Fへ到達したとする。このモータ運転点Fへ到達すると、クランキング始動を開始すると想定し、現時点のモータ回転数Nmoに予測モータ回転上昇量ΔNmを加えて目標モータ回転数Nmtを演算する。そして、目標モータ回転数Nmtに到達するモータ運転点F”(予測到達運転点)において、クランキング始動中にモータトルクを維持でき、かつ、クランキングトルク相当のトルクマージンを残すと、エンジン始動判定を出すようにしている。 On the other hand, in the case of the first embodiment, it is assumed that the motor operation point reaches the motor operation point F due to the movement from the motor operation point F ′ as shown in FIG. 8 while the “EV mode” is selected. When reaching this motor operating point F, it is assumed that cranking start is started, and the target motor rotational speed Nmt is calculated by adding the predicted motor rotational speed increase ΔNm to the current motor rotational speed Nmo. Then, at the motor operating point F ″ (predicted reaching operating point) that reaches the target motor rotational speed Nmt, if the motor torque can be maintained during cranking start and a torque margin equivalent to the cranking torque remains, the engine start determination I try to put out.
 従って、モータ運転点Fにてエンジン始動判定を出し、エンジン1のクランキング始動を開始すると、クランキング始動中にアクセル踏み込み操作による加速要求があり、モータ回転数が上昇しても、駆動輪側へ伝達されるモータトルクは、図8のモータ運転点Fからモータ運転点F”に示すように、モータ運転点Fでのモータトルクが維持される。このとき、エンジン1のクランキング始動が開始されるモータ運転点Fでのモータ出力の等出力線は、モータ運転点F”よりも低いトルク位置に設定される。このため、クランキング始動中に加速要求があるとき、クランキング始動中に図8の矢印Gで示すように、モータ出力の上昇があり、この結果、左右駆動輪9,9へ伝達される駆動力が上昇する。 Therefore, when the engine start determination is made at the motor operating point F and the cranking start of the engine 1 is started, there is an acceleration request by the accelerator depressing operation during the cranking start, and even if the motor speed increases, the drive wheel side The motor torque transmitted to the motor is maintained at the motor operating point F as shown from the motor operating point F to the motor operating point F ″ in FIG. 8. At this time, cranking start of the engine 1 is started. The equal output line of the motor output at the motor operating point F is set at a torque position lower than the motor operating point F ″. For this reason, when there is an acceleration request during cranking start, there is an increase in motor output during cranking start, as indicated by arrow G in FIG. 8, and as a result, the drive transmitted to the left and right drive wheels 9, 9. Power rises.
 [エンジン始動制御の特徴作用]
 実施例1では、「EVモード」の選択中、エンジン1の始動開始から始動完了までのクランキング始動中に車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量ΔNmを求める。予測モータ回転上昇量ΔNmを、現時点のモータ回転数Nmoに加えることで目標モータ回転数Nmtを求める。EVモードの選択中、現時点のモータ運転点Aにてクランキング始動を開始すると想定したとき、クランキング始動中にモータ出力を低下させることなくモータ回転数Nmを上昇させることで目標モータ回転数Nmtに到達した位置を予測到達運転点Bとする。そして、予測到達運転点Bを判定基準位置としてエンジン始動判定を行う。
[Characteristics of engine start control]
In the first embodiment, while the “EV mode” is selected, it is assumed that the vehicle accelerates during cranking start from the start of engine 1 to the completion of start, and the predicted motor rotation increase during cranking start accompanying the assumed vehicle acceleration Determine the quantity ΔNm. The target motor rotation speed Nmt is obtained by adding the predicted motor rotation increase amount ΔNm to the current motor rotation speed Nmo. When the crank mode start is assumed to start at the current motor operating point A during EV mode selection, the target motor speed Nmt is increased by increasing the motor speed Nm without lowering the motor output during cranking start. The position that has reached is assumed to be the predicted reaching operation point B. Then, the engine start determination is performed with the predicted reaching operation point B as the determination reference position.
 即ち、予測到達運転点Bを判定基準位置としてエンジン始動判定が行われることで、クランキング始動中に加速要求があるとき、エンジン始動判定が出され、エンジン1のクランキング始動が開始されるとする。このとき、クランキング始動中においては、モータ出力を低下させないままでのモータ回転数Nmの上昇によって目標モータ回転数Nmtへ到達することになる。従って、エンジン1のクランキング始動中に加速要求があるとき、左右駆動輪9,9へ伝達される駆動力の低下を防止することができる。 That is, when the engine start determination is performed with the predicted reaching operation point B as the determination reference position, when there is an acceleration request during cranking start, the engine start determination is issued and cranking start of the engine 1 is started. To do. At this time, during cranking start, the target motor speed Nmt is reached by the increase in the motor speed Nm without reducing the motor output. Therefore, when there is an acceleration request during cranking start of the engine 1, it is possible to prevent a reduction in the driving force transmitted to the left and right drive wheels 9, 9.
 実施例1では、エンジン始動判定を行うとき、クランキング始動中に始動開始時のモータトルクTmを保ったままでモータ回転数Nmを上昇させることで目標モータ回転数Nmtに到達した位置を予測到達運転点Bとする。 In the first embodiment, when the engine start determination is performed, the position at which the target motor speed Nmt is reached by increasing the motor speed Nm while maintaining the motor torque Tm at the start of the cranking start is predicted arrival driving. Let it be point B.
 即ち、エンジン始動判定が出されたとき、クランキング始動中に始動開始時のモータトルクTmを保ったままとすることで、予測到達運転点Bに到達したときにモータ出力が上昇する。従って、エンジン1のクランキング始動中に加速要求があるとき、左右駆動輪9,9へ伝達される駆動力を上昇させることができる。 That is, when the engine start determination is issued, the motor output increases when the predicted reaching operation point B is reached by keeping the motor torque Tm at the start of the start during cranking start. Therefore, when there is an acceleration request during cranking start of the engine 1, the driving force transmitted to the left and right drive wheels 9, 9 can be increased.
 実施例1では、予測到達運転点Bにおけるモータ最大トルクからエンジン1のクランキング始動に必要なクランキングトルクを差し引いたモータトルクを、左右駆動輪9,9の駆動力に換算することで予測到達運転点Bにて実現できる駆動力を求める。そして、エンジン始動判定を行うとき、実現できる駆動力が目標駆動力より大きい間は「EVモード」を維持し、実現できる駆動力が目標駆動力以下になると、エンジン始動判定を出す。 In the first embodiment, the motor torque obtained by subtracting the cranking torque necessary for cranking start of the engine 1 from the motor maximum torque at the predicted reaching operation point B is converted into the driving force of the left and right drive wheels 9 and 9 to achieve the predicted arrival. The driving force that can be realized at the operating point B is obtained. When the engine start determination is performed, the “EV mode” is maintained as long as the realizable driving force is greater than the target driving force, and when the realizable driving force is equal to or less than the target driving force, the engine start determination is issued.
 即ち、駆動力をベースとしてエンジン始動の有無を判定することで、余裕を持って目標駆動力を実現できる間は「EVモード」が維持され、目標駆動力をぎりぎりで実現できるタイミングになると、エンジン始動判定が出される。従って、「EVモード」の選択領域を確保しながら、クランキング始動中に左右駆動輪9,9へ伝達される駆動力として始動開始時の目標駆動力を確保することができる。 In other words, by determining whether or not the engine has been started based on the driving force, the EV mode is maintained while the target driving force can be achieved with a margin, and when the target driving force can be achieved at the last minute, the engine A start determination is issued. Therefore, the target driving force at the start of starting can be secured as the driving force transmitted to the left and right drive wheels 9 and 9 during cranking start while securing the selection area of “EV mode”.
 実施例1では、予測モータ回転上昇量ΔNmを求めるとき、エンジン始動中にドライバがアクセルを踏み増し操作を行うことにより車両が加速すると想定する。 In Example 1, when the predicted motor rotation increase amount ΔNm is obtained, it is assumed that the vehicle accelerates when the driver depresses the accelerator and performs an operation while starting the engine.
 即ち、発進時等であって、クランキング始動中にアクセルを踏み増し操作により加速要求があるとき、左右駆動輪9,9へ伝達される駆動力の低下を防止することができる。 That is, it is possible to prevent a decrease in the driving force transmitted to the left and right drive wheels 9 and 9 when starting and when there is a request for acceleration by depressing the accelerator during the cranking start.
 実施例1では、予測モータ回転上昇量ΔNmを求めるとき、現時点での車速VSPとモータジェネレータ3に接続されるバッテリ12からのバッテリ出力Poutに基づいて、回転上昇量マップ値ΔNmMAPを予測する。 In Example 1, when the predicted motor rotation increase amount ΔNm is obtained, the rotation increase map value ΔNmMAP is predicted based on the current vehicle speed VSP and the battery output Pout from the battery 12 connected to the motor generator 3.
 即ち、車速VSPについては、同じアクセル踏み込み量による操作を行ったとき、低車速側ほどモータ回転上昇量が大きくなり、高車速側ほどモータ回転上昇量が小さくなる。一方、バッテリ出力Poutについては、バッテリ出力Pout大きいほどモータ回転上昇量が大きくなり、バッテリ出力Poutが小さいほどモータ回転上昇量が小さくなる。従って、予測モータ回転上昇量ΔNmを求めるとき、車速VSPとバッテリ出力Poutに基づいて求めることで、車速VSPの高低とバッテリ出力Poutの大小に応じた適切な予測モータ回転上昇量ΔNmに設定することができる。 That is, with respect to the vehicle speed VSP, when an operation is performed with the same accelerator depression amount, the motor rotation increase amount increases as the vehicle speed decreases, and the motor rotation increase decreases as the vehicle speed increases. On the other hand, regarding the battery output Pout, the motor rotation increase amount increases as the battery output Pout increases, and the motor rotation increase amount decreases as the battery output Pout decreases. Therefore, when determining the predicted motor rotation increase amount ΔNm, by determining the predicted motor rotation increase amount ΔNm based on the vehicle speed VSP and the battery output Pout, an appropriate predicted motor rotation increase amount ΔNm corresponding to the level of the vehicle speed VSP and the battery output Pout is set. Can do.
 実施例1では、予測モータ回転上昇量ΔNmを求めるとき、現時点での車速VSPが低車速であるほど予測モータ回転上昇量ΔNmを高く、現時点での車速VSPが高車速であるほ予測モータ回転上昇量ΔNmを低く予測する。 In the first embodiment, when the predicted motor rotation increase amount ΔNm is obtained, the predicted motor rotation increase amount ΔNm is higher as the vehicle speed VSP at the current time is lower, and the predicted motor rotation increase is higher when the current vehicle speed VSP is higher. The amount ΔNm is predicted to be low.
 即ち、車速VSPについては、ベルト式無段変速機6の変速比がHigh側になる高車速域では、モータ出力の低下による駆動力低下が起因となって生じる引きショックの運転性感度が小さくなる。このため、車速VSPが高車速であるほど予測モータ回転上昇量ΔNmを低く予測することで、高車速域でのEV領域を拡大することができる。従って、予測モータ回転上昇量ΔNmを求めるとき、車速VSPに応じて予測モータ回転上昇量ΔNmを予測することで、引きショックに対する運転性感度を小さく抑えながら、EV領域を可能な限り広く確保することができる。 That is, with respect to the vehicle speed VSP, in the high vehicle speed range where the gear ratio of the belt type continuously variable transmission 6 is high, the drivability sensitivity of the pulling shock caused by the decrease in the driving force due to the decrease in the motor output is reduced. . For this reason, the EV range in the high vehicle speed range can be expanded by predicting the predicted motor rotation increase amount ΔNm to be lower as the vehicle speed VSP is higher. Therefore, when obtaining the predicted motor rotation increase amount ΔNm, the EV motor rotation increase amount ΔNm is predicted according to the vehicle speed VSP, thereby ensuring the widest possible EV range while minimizing the drivability sensitivity to pulling shocks. Can do.
 実施例1では、予測モータ回転上昇量ΔNmを求めるとき、走行路面の路面勾配が登坂勾配であるほど予測モータ回転上昇量ΔNmを低く予測する。 In Example 1, when the predicted motor rotation increase amount ΔNm is obtained, the predicted motor rotation increase amount ΔNm is predicted to be lower as the road surface gradient of the traveling road surface is an uphill gradient.
 即ち、路面勾配については、同じアクセル踏み込み量による操作を行ったとき、登坂勾配であるほど、平坦路に比べモータ回転上昇量は低下する。このため、路面勾配が登坂勾配であるほど予測モータ回転上昇量ΔNmを低く予測することで、登坂路走行時におけるEV領域を拡大することができる。従って、予測モータ回転上昇量ΔNmを求めるとき、路面勾配が登坂勾配であるほど予測モータ回転上昇量ΔNmを低く予測することで、登坂路走行中において「EVモード」の選択領域を拡大することができる。 That is, as for the road surface gradient, when the operation is performed with the same accelerator depression amount, the amount of increase in the motor rotation is lower as the slope is higher than the flat road. For this reason, by predicting the predicted motor rotation increase ΔNm to be lower as the road surface gradient is higher, the EV region during traveling on the uphill road can be expanded. Therefore, when the predicted motor rotation increase amount ΔNm is obtained, it is possible to expand the selection area of “EV mode” while traveling on the uphill road by predicting the predicted motor rotation increase amount ΔNm lower as the road surface gradient is higher. it can.
 次に、効果を説明する。
実施例1におけるFFハイブリッド車両の制御方法と制御装置にあっては、下記に列挙する効果が得られる。
Next, the effect will be described.
In the control method and control apparatus for the FF hybrid vehicle in the first embodiment, the effects listed below can be obtained.
 (1) 駆動源から駆動輪9,9へ至る駆動系に、駆動源としてエンジン1とモータ(モータジェネレータ3)が搭載される。運転モードとして、モータ(モータジェネレータ3)を駆動源とする電気自動車モード(EVモード)と、エンジン1とモータ(モータジェネレータ3)を駆動源とするハイブリッド車モード(HEVモード)と、を有する。
電気自動車モード(EVモード)の選択中にエンジン始動判定が出されると、モータ(モータジェネレータ3)を始動モータとしてエンジン1のクランキング始動を開始する。
このハイブリッド車両(FFハイブリッド車両)の制御方法において、電気自動車モード(EVモード)の選択中、エンジン1の始動開始から始動完了までのクランキング始動中に車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量ΔNmを求める。
予測モータ回転上昇量ΔNmを、現時点のモータ回転数Nmoに加えることで目標モータ回転数Nmtを求める。
電気自動車モード(EVモード)の選択中、現時点のモータ運転点Aにてクランキング始動を開始すると想定する。このとき、クランキング始動中にモータ出力を低下させることなくモータ回転数Nmを上昇させることで目標モータ回転数Nmtに到達した位置を予測到達運転点Bとし、予測到達運転点Bを判定基準位置としてエンジン始動判定を行う(図5)。
  このため、エンジン1のクランキング始動中に加速要求があるとき、駆動輪(左右駆動輪9,9)へ伝達される駆動力の低下を防止するハイブリッド車両(FFハイブリッド車両)の制御方法を提供することができる。
(1) An engine 1 and a motor (motor generator 3) are mounted as a drive source in a drive system from the drive source to the drive wheels 9 and 9. The operation mode includes an electric vehicle mode (EV mode) using a motor (motor generator 3) as a drive source, and a hybrid vehicle mode (HEV mode) using the engine 1 and the motor (motor generator 3) as drive sources.
When engine start determination is issued during the selection of the electric vehicle mode (EV mode), cranking start of the engine 1 is started using the motor (motor generator 3) as a start motor.
In this hybrid vehicle (FF hybrid vehicle) control method, it is assumed that the vehicle accelerates during cranking start from start of engine 1 to completion of start while selecting electric vehicle mode (EV mode), and assumed vehicle acceleration A predicted motor rotation increase amount ΔNm during cranking start associated with is obtained.
The target motor rotation speed Nmt is obtained by adding the predicted motor rotation increase amount ΔNm to the current motor rotation speed Nmo.
It is assumed that cranking start is started at the current motor operation point A during the selection of the electric vehicle mode (EV mode). At this time, the position at which the target motor speed Nmt is reached by increasing the motor speed Nm without lowering the motor output during cranking start is set as the predicted attainment operating point B, and the predicted attainment operating point B is set as the determination reference position. As shown in FIG.
Therefore, a control method for a hybrid vehicle (FF hybrid vehicle) is provided that prevents a reduction in driving force transmitted to the drive wheels (left and right drive wheels 9, 9) when there is an acceleration request during cranking start of the engine 1. can do.
 (2) エンジン始動判定を行うとき、クランキング始動中に始動開始時のモータトルクTmを保ったままでモータ回転数Nmを上昇させることで目標モータ回転数Nmtに到達した位置を予測到達運転点Bとする(図5)。
  このため、(1)の効果に加え、エンジン1のクランキング始動中に加速要求があるとき、左右駆動輪9,9へ伝達される駆動力を上昇させることができる。
(2) When engine start determination is performed, the position at which the target motor speed Nmt is reached by increasing the motor speed Nm while maintaining the motor torque Tm at the start of cranking is determined as the predicted reaching operation point B (FIG. 5).
For this reason, in addition to the effect of (1), when there is an acceleration request during cranking start of the engine 1, the driving force transmitted to the left and right drive wheels 9, 9 can be increased.
 (3) 予測到達運転点Bにおけるモータ最大トルクからエンジン1のクランキング始動に必要なクランキングトルクを差し引いたモータトルクを、駆動輪(左右駆動輪9,9)の駆動力に換算することで予測到達運転点Bにて実現できる駆動力を求める。
エンジン始動判定を行うとき、実現できる駆動力が目標駆動力より大きい間は電気自動車モード(EVモード)を維持し、実現できる駆動力が目標駆動力以下になると、エンジン始動判定を出す(図6)。
  このため、(2)の効果に加え、クランキング始動中に加速要求があるとき、加速要求に符合させて駆動輪(左右駆動輪9,9)へ伝達される駆動力の上昇を確保することができる。
(3) By converting the motor torque obtained by subtracting the cranking torque necessary for cranking start of the engine 1 from the maximum motor torque at the predicted reaching operation point B into the driving force of the driving wheels (left and right driving wheels 9, 9). The driving force that can be realized at the predicted reaching operation point B is obtained.
When the engine start determination is performed, the electric vehicle mode (EV mode) is maintained as long as the realizable driving force is larger than the target driving force, and when the realizable driving force falls below the target driving force, the engine start determination is issued (FIG. 6). ).
Therefore, in addition to the effect of (2), when there is an acceleration request during cranking start, it is ensured that the driving force transmitted to the driving wheels (left and right driving wheels 9, 9) is increased in accordance with the acceleration request. Can do.
 (4) 予測モータ回転上昇量ΔNmを求めるとき、エンジン始動中にドライバがアクセルを踏み増し操作を行うことにより車両が加速すると想定する(図3)。
  このため、(1)~(3)の効果に加え、クランキング始動中にアクセルを踏み増し操作により加速要求があるとき、駆動輪(左右駆動輪9,9)へ伝達される駆動力の低下を防止することができる。
(4) When the predicted motor rotation increase amount ΔNm is obtained, it is assumed that the vehicle accelerates when the driver depresses the accelerator and performs an operation while the engine is started (FIG. 3).
For this reason, in addition to the effects of (1) to (3), when there is a request for acceleration by stepping on the accelerator while cranking is started, the driving force transmitted to the driving wheels (left and right driving wheels 9, 9) is reduced. Can be prevented.
 (5) 予測モータ回転上昇量ΔNmを求めるとき、現時点での車速VSPとモータ(モータジェネレータ3)に接続されるバッテリ12からのバッテリ出力Poutに基づいて、予測モータ回転上昇量ΔNm(回転上昇量マップ値ΔNmMAP)を予測する(図4)。
  このため、(4)の効果に加え、予測モータ回転上昇量ΔNmを求めるとき、車速VSPの高低とバッテリ出力Poutの大小に応じた適切な予測回転上昇量ΔNmに設定することができる。
(5) When obtaining the predicted motor rotation increase amount ΔNm, based on the current vehicle speed VSP and the battery output Pout from the battery 12 connected to the motor (motor generator 3), the predicted motor rotation increase amount ΔNm (rotation increase amount) Map value ΔNmMAP) is predicted (FIG. 4).
For this reason, in addition to the effect of (4), when the predicted motor rotation increase amount ΔNm is obtained, it can be set to an appropriate predicted rotation increase amount ΔNm according to the level of the vehicle speed VSP and the battery output Pout.
 (6) 予測モータ回転上昇量ΔNmを求めるとき、現時点での車速VSPが低車速であるほど予測モータ回転上昇量ΔNmを高く、現時点での車速VSPが高車速であるほど予測モータ回転上昇量ΔNmを低く予測する(図3)。
  このため、(5)の効果に加え、予測モータ回転上昇量ΔNmを求めるとき、車速VSPに応じて予測モータ回転上昇量ΔNmを予測することで、引きショックに対する運転性感度を小さく抑えながら、EV領域を可能な限り広く確保することができる。
(6) When calculating the predicted motor rotation increase amount ΔNm, the lower the current vehicle speed VSP, the higher the predicted motor rotation increase amount ΔNm, and the higher the current vehicle speed VSP, the higher the predicted motor rotation increase amount ΔNm. Is predicted to be low (FIG. 3).
For this reason, in addition to the effect of (5), when determining the predicted motor rotation increase amount ΔNm, by predicting the predicted motor rotation increase amount ΔNm according to the vehicle speed VSP, EV The area can be secured as wide as possible.
 (7) 予測モータ回転上昇量ΔNmを求めるとき、走行路面の路面勾配が登坂勾配であるほど予測モータ回転上昇量ΔNmを低く予測する(図3)。
  このため、(5)又は(6)の効果に加え、予測モータ回転上昇量ΔNmを求めるとき、路面勾配が登坂勾配であるほど予測モータ回転上昇量ΔNmを低く予測することで、登坂路走行中において「EVモード」の選択領域を拡大することができる。
(7) When the predicted motor rotation increase amount ΔNm is obtained, the predicted motor rotation increase amount ΔNm is predicted to be lower as the road surface gradient of the traveling road surface is an uphill gradient (FIG. 3).
For this reason, in addition to the effect of (5) or (6), when calculating the predicted motor rotation increase amount ΔNm, the predicted motor rotation increase amount ΔNm is predicted to be lower as the road surface gradient is higher, and the vehicle is traveling on an uphill road. The area for selecting the “EV mode” can be expanded.
 (8) 駆動源から駆動輪9,9へ至る駆動系に、駆動源としてエンジン1とモータ(モータジェネレータ3)が搭載される。運転モードとして、モータ(モータジェネレータ3)を駆動源とする電気自動車モード(EVモード)と、エンジン1とモータ(モータジェネレータ3)を駆動源とするハイブリッド車モード(HEVモード)と、を有する。
電気自動車モード(EVモード)の選択中にエンジン始動判定が出されると、モータ(モータジェネレータ3)を始動モータとしてエンジン1のクランキング始動を開始するコントローラ(統合コントローラ14)を備える。
このハイブリッド車両(FFハイブリッド車両)の制御装置において、コントローラ(統合コントローラ14)は、電気自動車モード(EVモード)の選択中、エンジン1の始動開始から始動完了までのクランキング始動中に車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量ΔNmを求める。
クランキング始動を現時点のモータ運転点Aで開始すると想定し、現時点のモータ回転数Nmに予測モータ回転上昇量ΔNmを加えて目標モータ回転数Nmtを求める。
電気自動車モード(EVモード)の選択中、現時点のモータ運転点Aにてクランキング始動を開始すると想定する。このとき、クランキング始動中にモータ出力を低下させることなくモータ回転数Nmを上昇させることで目標モータ回転数Nmtに到達した位置を予測到達運転点Bとし、予測到達運転点Bを判定基準位置としてエンジン始動判定を行う(図5)。
  このため、エンジン1のクランキング始動中に加速要求があるとき、駆動輪(左右駆動輪9,9)へ伝達される駆動力の低下を防止するハイブリッド車両(FFハイブリッド車両)の制御装置を提供することができる。
(8) An engine 1 and a motor (motor generator 3) are mounted as a drive source in a drive system from the drive source to the drive wheels 9 and 9. The operation mode includes an electric vehicle mode (EV mode) using a motor (motor generator 3) as a drive source, and a hybrid vehicle mode (HEV mode) using the engine 1 and the motor (motor generator 3) as drive sources.
When engine start determination is issued during the selection of the electric vehicle mode (EV mode), a controller (integrated controller 14) for starting cranking start of the engine 1 using the motor (motor generator 3) as a start motor is provided.
In this hybrid vehicle (FF hybrid vehicle) control apparatus, the controller (integrated controller 14) accelerates the vehicle during the cranking start from the start of the engine 1 to the start completion while the electric vehicle mode (EV mode) is selected. Assuming that, a predicted motor rotation increase amount ΔNm during cranking start accompanying the assumed vehicle acceleration is obtained.
Assuming that cranking start is started at the current motor operating point A, the target motor rotational speed Nmt is obtained by adding the predicted motor rotational speed increase ΔNm to the current motor rotational speed Nm.
It is assumed that cranking start is started at the current motor operation point A during the selection of the electric vehicle mode (EV mode). At this time, the position at which the target motor speed Nmt is reached by increasing the motor speed Nm without lowering the motor output during cranking start is set as the predicted attainment operating point B, and the predicted attainment operating point B is set as the determination reference position. As shown in FIG.
Therefore, there is provided a control device for a hybrid vehicle (FF hybrid vehicle) that prevents a reduction in driving force transmitted to the driving wheels (left and right driving wheels 9, 9) when there is an acceleration request during cranking start of the engine 1. can do.
 以上、本開示のハイブリッド車両の制御方法と制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The hybrid vehicle control method and control device of the present disclosure have been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are permitted without departing from the gist of the invention according to each claim of the claims.
 実施例1では、エンジン始動判定を行うとき、クランキング始動中に始動開始時のモータトルクTmを保ったままでモータ回転数Nmを上昇させることで目標モータ回転数Nmtに到達した位置を予測到達運転点Bとする例を示した。しかし、エンジン始動判定を行うとき、クランキング始動中にモータ等出力線に沿ってモータ回転数を上昇させて予測到達運転点を決める例であっても良い。さらに、エンジン始動判定を行うとき、クランキング始動中に始動開始時のモータトルクから上昇傾きを持ってモータ回転数を上昇させて予測到達運転点を決める例であっても良い。要するに、エンジン始動判定を行うとき、クランキング始動中にモータ出力を低下させることなくモータ回転数Nmを上昇させる例であれば良い。 In the first embodiment, when the engine start determination is performed, the position at which the target motor speed Nmt is reached by increasing the motor speed Nm while maintaining the motor torque Tm at the start of the cranking start is predicted arrival driving. An example of point B is shown. However, when the engine start determination is performed, an example of determining the predicted reaching operation point by increasing the motor rotation speed along the motor output line during cranking start may be used. Further, when the engine start determination is performed, an example of determining the predicted attainment operation point by increasing the motor rotation speed with a rising slope from the motor torque at the start of the start during cranking start may be used. In short, any engine start determination may be made as long as the motor rotation speed Nm is increased without decreasing the motor output during cranking start.
 実施例1では、予測到達運転点Bにおけるモータ最大トルクからエンジン1のクランキング始動に必要なクランキングトルクを差し引いたモータトルクを、左右駆動輪9,9の駆動力に換算することで予測到達運転点Bにて実現できる駆動力を求める。そして、エンジン始動判定を行うとき、実現できる駆動力が目標駆動力より大きい間は「EVモード」を維持し、実現できる駆動力が目標駆動力以下になると、エンジン始動判定を出す例を示した。しかし、予測到達運転点で実現できるモータトルクマージンが、クランキングトルク以下になるとエンジン始動判定を出す例としても良い。また、モータの最大トルクカーブ特性に対するモータトルクマージンを、エンジンをクランキングトルクに、予測モータ回転上昇量を得るのに必要なモータトルクを加算した値とし、EV→HEV切替線特性を設定してエンジン始動判定を行う例としても良い。さらに、クランキング始動中の加速に対応するEV→HEV切替線特性を、車速や路面勾配やバッテリ出力等に応じて多数設定しておいても良い。なお、EV→HEV切替線特性を設定した場合、「EVモード」の選択中、モータ運転点が、EV→HEV切替線特性を横切るとエンジン始動判定を出す。 In the first embodiment, the motor torque obtained by subtracting the cranking torque necessary for cranking start of the engine 1 from the motor maximum torque at the predicted reaching operation point B is converted into the driving force of the left and right drive wheels 9 and 9 to achieve the predicted arrival. The driving force that can be realized at the operating point B is obtained. And when performing engine start determination, while the drive force that can be realized is larger than the target drive force, the “EV mode” is maintained, and when the drive force that can be realized is less than or equal to the target drive force, the engine start determination is shown. . However, the engine start determination may be made when the motor torque margin that can be realized at the predicted reaching operation point is equal to or less than the cranking torque. The motor torque margin for the maximum torque curve characteristic of the motor is the value obtained by adding the engine torque to the cranking torque and the motor torque required to obtain the predicted motor rotation increase amount, and the EV → HEV switching line characteristic is set. It is good also as an example which performs engine starting determination. Further, a large number of EV → HEV switching line characteristics corresponding to acceleration during cranking start may be set according to vehicle speed, road surface gradient, battery output, and the like. When the EV → HEV switching line characteristic is set, the engine start determination is issued when the motor operating point crosses the EV → HEV switching line characteristic while the “EV mode” is selected.
 実施例1では、本開示の制御方法と制御装置を、1モータ・2クラッチと呼ばれるパラレルハイブリッド駆動系を有し、変速機としてベルト式無段変速機を搭載したFFハイブリッド車両に適用する例を示した。しかし、本開示の制御方法と制御装置は、「EVモード」と「HEVモード」を有し、走行用駆動源としてのモータを始動モータとしてエンジンを始動するハイブリッド車両であれば様々なハイブリッド車両に適用することができる。 In the first embodiment, an example in which the control method and the control device of the present disclosure are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and having a belt type continuously variable transmission as a transmission. Indicated. However, the control method and control device of the present disclosure can be applied to various hybrid vehicles as long as the hybrid vehicle has “EV mode” and “HEV mode” and starts the engine using a motor as a driving source for traveling as a starter motor. Can be applied.

Claims (8)

  1.  駆動源から駆動輪へ至る駆動系に、前記駆動源としてエンジンとモータが搭載され、
     運転モードとして、前記モータを駆動源とする電気自動車モードと、前記エンジンと前記モータを駆動源とするハイブリッド車モードと、を有し、
     前記電気自動車モードの選択中にエンジン始動判定が出されると、前記モータを始動モータとして前記エンジンのクランキング始動を開始するハイブリッド車両の制御方法において、
     前記電気自動車モードの選択中、前記エンジンの始動開始から始動完了までのクランキング始動中に車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量を求め、
     前記予測モータ回転上昇量を、現時点のモータ回転数に加えることで目標モータ回転数を求め、
     前記電気自動車モードの選択中、現時点のモータ運転点にてクランキング始動を開始すると想定したとき、クランキング始動中にモータ出力を低下させることなくモータ回転数を上昇させることで前記目標モータ回転数に到達した位置を予測到達運転点とし、前記予測到達運転点を判定基準位置としてエンジン始動判定を行う
     ことを特徴とするハイブリッド車両の制御方法。
    In the drive system from the drive source to the drive wheel, an engine and a motor are mounted as the drive source,
    As an operation mode, an electric vehicle mode using the motor as a drive source, and a hybrid vehicle mode using the engine and the motor as a drive source,
    In the hybrid vehicle control method for starting cranking start of the engine using the motor as a start motor when engine start determination is issued during the selection of the electric vehicle mode,
    During the selection of the electric vehicle mode, assuming that the vehicle accelerates during cranking start from the start of the engine to the completion of start, obtain the predicted motor rotation increase amount during cranking start accompanying the assumed vehicle acceleration,
    By adding the predicted motor rotation increase amount to the current motor rotation number, a target motor rotation number is obtained,
    When the cranking start is assumed to start at the current motor operation point during the selection of the electric vehicle mode, the target motor rotation speed is increased by increasing the motor rotation speed without decreasing the motor output during cranking start. A control method for a hybrid vehicle, characterized in that an engine start determination is performed using a position that has reached the predicted arrival operating point as a predicted arrival operating point and the predicted reaching operating point as a determination reference position.
  2.  請求項1に記載されたハイブリッド車両の制御方法において、
     前記エンジン始動判定を行うとき、クランキング始動中に始動開始時のモータトルクを保ったままでモータ回転数を上昇させることで前記目標モータ回転数に到達した位置を予測到達運転点とする
     ことを特徴とするハイブリッド車両の制御方法。
    The hybrid vehicle control method according to claim 1, wherein:
    When performing the engine start determination, a position that has reached the target motor rotation number by increasing the motor rotation speed while maintaining the motor torque at the start of cranking start is set as a predicted reaching operation point. A control method for a hybrid vehicle.
  3.  請求項2に記載されたハイブリッド車両の制御方法において、
     前記予測到達運転点におけるモータ最大トルクから前記エンジンのクランキング始動に必要なクランキングトルクを差し引いたモータトルクを、前記駆動輪の駆動力に換算することで前記予測到達運転点にて実現できる駆動力を求め、
     前記エンジン始動判定を行うとき、前記実現できる駆動力が目標駆動力より大きい間は前記電気自動車モードを維持し、前記実現できる駆動力が前記目標駆動力以下になると、前記エンジン始動判定を出す
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle described in Claim 2,
    Driving that can be realized at the predicted reaching operation point by converting the motor torque obtained by subtracting the cranking torque necessary for cranking start of the engine from the maximum motor torque at the predicted reaching operation point into the driving force of the driving wheel. Seeking power,
    When the engine start determination is performed, the electric vehicle mode is maintained as long as the realizable driving force is larger than the target driving force, and the engine start determination is issued when the realizable driving force is equal to or less than the target driving force. A control method of a hybrid vehicle characterized by the above.
  4.  請求項1から請求項3までの何れか一項に記載されたハイブリッド車両の制御方法において、
     前記予測モータ回転上昇量を求めるとき、前記エンジン始動中にドライバがアクセルを踏み増し操作を行うことにより車両が加速すると想定する
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle as described in any one of Claim 1- Claim 3,
    The hybrid vehicle control method according to claim 1, wherein when the predicted motor rotation increase amount is obtained, it is assumed that the vehicle accelerates when a driver depresses an accelerator and performs an operation while the engine is started.
  5.  請求項4に記載されたハイブリッド車両の制御方法において、
     前記予測モータ回転上昇量を求めるとき、現時点での車速と前記モータに接続されるバッテリからのバッテリ出力に基づいて、前記予測モータ回転上昇量を予測する
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle described in Claim 4,
    The method for controlling a hybrid vehicle, wherein when the predicted motor rotation increase amount is obtained, the predicted motor rotation increase amount is predicted based on a current vehicle speed and a battery output from a battery connected to the motor.
  6.  請求項5に記載されたハイブリッド車両の制御方法において、
     前記予測モータ回転上昇量を求めるとき、現時点での車速が低車速であるほど前記予測モータ回転上昇量を高く、現時点での車速が高車速であるほど前記予測モータ回転上昇量を低く予測する
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle described in Claim 5,
    When calculating the predicted motor rotation increase amount, the predicted motor rotation increase amount is increased as the vehicle speed at the current time is lower, and the predicted motor rotation increase amount is predicted as the vehicle speed at the current time is higher. A control method of a hybrid vehicle characterized by the above.
  7.  請求項5又は請求項6に記載されたハイブリッド車両の制御方法において、
     前記予測モータ回転上昇量を求めるとき、走行路面の路面勾配が登坂勾配であるほど前記予測モータ回転上昇量を低く予測する
     ことを特徴とするハイブリッド車両の制御方法。
    In the hybrid vehicle control method according to claim 5 or 6,
    The method for controlling a hybrid vehicle, wherein when the predicted motor rotation increase amount is obtained, the predicted motor rotation increase amount is predicted to be lower as the road surface gradient of the traveling road surface is an uphill gradient.
  8.  駆動源から駆動輪へ至る駆動系に、前記駆動源としてエンジンとモータが搭載され、
     運転モードとして、前記モータを駆動源とする電気自動車モードと、前記エンジンと前記モータを駆動源とするハイブリッド車モードと、を有し、
     前記電気自動車モードの選択中にエンジン始動判定が出されると、前記モータを始動モータとして前記エンジンのクランキング始動を開始するコントローラを備えるハイブリッド車両の制御装置において、
     前記コントローラは、
     前記電気自動車モードの選択中、前記エンジンの始動開始から始動完了までのクランキング始動中に車両が加速すると想定し、想定した車両加速に伴うクランキング始動中の予測モータ回転上昇量を求め、
     前記予測モータ回転上昇量を、現時点のモータ回転数に加えることで目標モータ回転数を求め、
     前記現時点のモータ運転点からクランキング始動を開始すると想定し、クランキング始動中にモータ出力を低下させることなくモータ回転数を上昇させることによって前記目標モータ回転数への到達を予測したとき、到達した予測到達運転点でのモータトルクマージンがクランキングトルク相当になるとエンジン始動判定を出す制御処理を実行する
     ことを特徴とするハイブリッド車両の制御装置。
    In the drive system from the drive source to the drive wheel, an engine and a motor are mounted as the drive source,
    As an operation mode, an electric vehicle mode using the motor as a drive source, and a hybrid vehicle mode using the engine and the motor as a drive source,
    When an engine start determination is issued during the selection of the electric vehicle mode, a control device for a hybrid vehicle including a controller that starts cranking start of the engine using the motor as a start motor.
    The controller is
    During the selection of the electric vehicle mode, assuming that the vehicle accelerates during cranking start from the start of the engine to the completion of start, obtain the predicted motor rotation increase amount during cranking start accompanying the assumed vehicle acceleration,
    By adding the predicted motor rotation increase amount to the current motor rotation number, a target motor rotation number is obtained,
    Assuming that cranking start is started from the current motor operating point, when reaching the target motor rotational speed is predicted by increasing the motor rotational speed without decreasing the motor output during cranking starting, A control apparatus for a hybrid vehicle, wherein a control process for determining whether to start the engine is executed when the motor torque margin at the predicted reaching operation point corresponds to cranking torque.
PCT/JP2016/082081 2016-10-28 2016-10-28 Hybrid vehicle control method and control device WO2018078803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082081 WO2018078803A1 (en) 2016-10-28 2016-10-28 Hybrid vehicle control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082081 WO2018078803A1 (en) 2016-10-28 2016-10-28 Hybrid vehicle control method and control device

Publications (1)

Publication Number Publication Date
WO2018078803A1 true WO2018078803A1 (en) 2018-05-03

Family

ID=62023330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082081 WO2018078803A1 (en) 2016-10-28 2016-10-28 Hybrid vehicle control method and control device

Country Status (1)

Country Link
WO (1) WO2018078803A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109367403A (en) * 2018-11-27 2019-02-22 奇瑞汽车股份有限公司 The Motor torque control method and device of hybrid vehicle, storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138743A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Driving force control device of hybrid vehicle
JP2008254725A (en) * 2007-03-12 2008-10-23 Nissan Motor Co Ltd Engine start control device for hybrid car
WO2012011495A1 (en) * 2010-07-21 2012-01-26 日産自動車株式会社 Hybrid-vehicle control device
JP2012176713A (en) * 2011-02-28 2012-09-13 Jatco Ltd Control device of hybrid vehicle
JP2012240566A (en) * 2011-05-20 2012-12-10 Nissan Motor Co Ltd Electric travel controller for hybrid vehicle
JP2015093663A (en) * 2013-11-14 2015-05-18 日産自動車株式会社 Hybrid-vehicular control apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138743A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Driving force control device of hybrid vehicle
JP2008254725A (en) * 2007-03-12 2008-10-23 Nissan Motor Co Ltd Engine start control device for hybrid car
WO2012011495A1 (en) * 2010-07-21 2012-01-26 日産自動車株式会社 Hybrid-vehicle control device
JP2012176713A (en) * 2011-02-28 2012-09-13 Jatco Ltd Control device of hybrid vehicle
JP2012240566A (en) * 2011-05-20 2012-12-10 Nissan Motor Co Ltd Electric travel controller for hybrid vehicle
JP2015093663A (en) * 2013-11-14 2015-05-18 日産自動車株式会社 Hybrid-vehicular control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109367403A (en) * 2018-11-27 2019-02-22 奇瑞汽车股份有限公司 The Motor torque control method and device of hybrid vehicle, storage medium

Similar Documents

Publication Publication Date Title
JP5521340B2 (en) Control device for hybrid vehicle
JP4655723B2 (en) Vehicle and control method thereof
KR101542988B1 (en) Method for controlling hybrid electric vehicle using driving tendency of driver
JP5391654B2 (en) Control device for hybrid vehicle
RU2657658C1 (en) Damping control device for a hybrid vehicle
JP5338351B2 (en) Control device for hybrid vehicle
JP5059247B2 (en) Shift control device, hybrid vehicle, shift control method, and program
JP6458794B2 (en) Hybrid vehicle and control method thereof
WO2013027511A1 (en) Hybrid vehicle control apparatus
JP2007055493A (en) Vehicle and control method therefor
JP6361634B2 (en) Hybrid car
JP6354713B2 (en) Hybrid car
US10160446B2 (en) Device and method for controlling motor output of a hybrid vehicle
KR101724465B1 (en) Method and apparatus for controlling engine start for hybrid electric vehicle
KR101588793B1 (en) Method for controlling hybrid electric vehicle using driving tendency of driver
JP2018177084A (en) Control method of hybrid vehicle and control device of hybrid vehicle
WO2018078803A1 (en) Hybrid vehicle control method and control device
JP5453847B2 (en) Control device for hybrid vehicle
JP7147155B2 (en) hybrid car
JP6777225B2 (en) Hybrid vehicle control method and hybrid vehicle control device
JP6060757B2 (en) Vehicle control device
JP2020121696A (en) Control device of hybrid vehicle
JP6717063B2 (en) Control method and control device for hybrid vehicle
WO2018189904A1 (en) Electric vehicle control method and electric vehicle control device
JP6323378B2 (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP