WO2018189904A1 - Electric vehicle control method and electric vehicle control device - Google Patents

Electric vehicle control method and electric vehicle control device Download PDF

Info

Publication number
WO2018189904A1
WO2018189904A1 PCT/JP2017/015369 JP2017015369W WO2018189904A1 WO 2018189904 A1 WO2018189904 A1 WO 2018189904A1 JP 2017015369 W JP2017015369 W JP 2017015369W WO 2018189904 A1 WO2018189904 A1 WO 2018189904A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
target driving
mode
force
strong
Prior art date
Application number
PCT/JP2017/015369
Other languages
French (fr)
Japanese (ja)
Inventor
大悟 岸
聡 春井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/015369 priority Critical patent/WO2018189904A1/en
Priority to JP2019512166A priority patent/JP6747583B2/en
Publication of WO2018189904A1 publication Critical patent/WO2018189904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to an electric vehicle control method and an electric vehicle control device.
  • the conventional control apparatus does not disclose a vehicle that can provide regenerative power with a motor. For this reason, in such a vehicle, there is room for study on deterioration of fuel consumption in control when the deceleration force applied to the vehicle by the driver is changed.
  • This disclosure has been made paying attention to the above problem, and aims to suppress deterioration of fuel consumption when the strong deceleration mode is selected.
  • the present disclosure applies a deceleration force to the vehicle according to the driver's selection when in a coast state by the accelerator release operation.
  • This deceleration force can be changed in at least two stages of a first deceleration force and a second deceleration force that is larger than the first deceleration force.
  • This electric vehicle control method includes a motor capable of applying a driving force and a regenerative force to the vehicle, a normal mode, and a strong regenerative mode according to a driver's selection.
  • the first target driving force is calculated on the regeneration side during the selection of the normal mode
  • the second target driving force stronger on the regeneration side than the first target driving force is calculated during the selection of the strong regeneration mode.
  • the third target driving force that is larger than the second target driving force is set to the negative side during the selection of the strong deceleration mode. Is calculated. And the regenerative force according to each calculated target drive force is output to a motor.
  • the third target driving force that is larger than the second target driving force on the negative side is calculated, and the regenerative force corresponding to the calculated third target driving force is output to the motor.
  • the strong deceleration mode is selected, deterioration of fuel consumption can be suppressed.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle (an example of an electric vehicle) to which a control method and a control device of Example 1 are applied.
  • FIG. 3 is a block diagram illustrating an internal configuration of an integrated controller according to the first embodiment. 3 is a coast target driving force map showing an example of a target driving force characteristic with respect to a vehicle speed during selection of a normal mode during coasting and a target driving force characteristic with respect to the vehicle speed during selection of a strong regeneration mode during coasting in the first embodiment.
  • 6 is a flowchart illustrating a flow of target driving force characteristic selection control processing executed during coasting by a target driving force calculation unit according to the first embodiment.
  • FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment. It is a 1 target driving force map.
  • FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment. It is a 2 target driving force map.
  • FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment. It is a 2 target driving force map.
  • FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment.
  • It is a 3 target driving force map.
  • Vehicle speed VSP, accelerator opening APO, overdrive switch information target drive force when overdrive switch is changed from O / D ON state to O / D OFF state by driver operation during normal mode selection in Example 1
  • It is a time chart which shows each characteristic of.
  • Vehicle speed VSP, accelerator opening APO, overdrive switch information target drive when overdrive switch is changed from O / D ON state to O / D OFF state by driver operation while strong regeneration mode is selected in Example 1
  • It is a time chart which shows each characteristic of force.
  • Example 1 shown in the drawings.
  • the control method and control device of the first embodiment are applied to an FF hybrid vehicle (an example of an electric vehicle) having a parallel hybrid drive system called a 1-motor / 2-clutch.
  • FF hybrid vehicle an example of an electric vehicle
  • 1-motor / 2-clutch a parallel hybrid drive system
  • the configuration of the first embodiment will be described by being divided into “the overall system configuration”, “the detailed configuration of the integrated controller”, and “the detailed configuration of the target driving force calculation unit”.
  • FIG. 1 shows an overall system of an FF hybrid vehicle to which a control method and a control device of Embodiment 1 are applied.
  • the overall system configuration of the FF hybrid vehicle will be described below with reference to FIG.
  • the drive system of the FF hybrid vehicle includes an engine 1 (Eng), a first clutch 2 (CL1), a motor / generator 3 (MG), a second clutch 4 (CL2), and a speed change.
  • a machine input shaft 5 and a belt type continuously variable transmission 6 (abbreviated as “CVT”) are provided.
  • the transmission output shaft 7 of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 11R and 11L via a final reduction gear train 8, a front differential gear 9, and left and right front wheel drive shafts 10R and 10L.
  • the engine 1 is torque controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug. Further, when the engine 1 is not in the combustion operation state but in the cranking operation state in which the first clutch 2 is engaged in the fuel cut state (fuel supply stop), the friction torque is generated by the frictional sliding resistance between the piston and the inner wall of the cylinder. appear.
  • the first clutch 2 is a normally open dry multi-plate friction clutch that is hydraulically operated and interposed between the engine 1 and the motor / generator 3, and complete engagement / slip engagement / release is controlled by the first clutch hydraulic pressure. The If the first clutch 2 is in the fully engaged state, the motor torque + engine torque is transmitted to the second clutch 4, and if it is in the released state, only the motor torque is transmitted to the second clutch 4.
  • the motor / generator 3 is a three-phase AC permanent magnet synchronous motor connected to the engine 1 via the first clutch 2.
  • the motor / generator 3 uses a high-power battery 12 as a power source, and an inverter 13 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil via an AC harness 14. Connected.
  • the motor / generator 3 performs motor torque control and motor rotation speed control during starting and running, and also collects (charges) vehicle kinetic energy to the high-power battery 12 by regenerative brake control during braking and deceleration. . That is, the motor / generator 3 can apply driving force and regenerative force to the vehicle.
  • the motor / generator 3 is a braking device that applies a braking force to the FF hybrid vehicle when a deceleration request is generated by using the regenerative force generated during regeneration as a braking force applied to the vehicle.
  • the second clutch 4 is a wet-type multi-plate friction clutch by hydraulic operation that is interposed between the motor / generator 3 and the left and right front wheels 11R and 11L as drive wheels, and is completely engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
  • the second clutch 4 of the first embodiment uses a forward clutch and a reverse brake provided in a forward / reverse switching mechanism of the belt type continuously variable transmission 6 using a planetary gear. That is, during forward travel, the forward clutch is the second clutch 4 (CL2), and during reverse travel, the reverse brake is the second clutch 4 (CL2).
  • the belt type continuously variable transmission 6 includes a primary pulley 61, a secondary pulley 62, and a belt 63 wound around the pulleys 61 and 62. And it is a transmission which obtains a stepless gear ratio by changing the belt winding diameter by the transmission hydraulic pressure to the belt primary oil chamber and the secondary oil chamber by the transmission hydraulic pressure.
  • the primary pulley 61 has a fixed sheave fixed to the transmission input shaft 5 and a movable sheave supported slidably on the transmission input shaft 5.
  • the secondary pulley 62 has a fixed sheave fixed to the transmission output shaft 7 and a movable sheave slidably supported on the transmission output shaft 7.
  • the belt 63 is a metal belt and is sandwiched between the fixed sheave and the movable sheave.
  • the pulley width of the primary pulley 61 and the secondary pulley 62 is changed, and the diameter of the clamping surface of the belt 63 is changed to freely control the gear ratio (pulley ratio).
  • the gear ratio is changed to the low side.
  • the gear ratio changes to the high side.
  • the first clutch 2, the motor / generator 3 and the second clutch 4 constitute a one-motor / two-clutch drive system, and there are “EV mode” and “HEV mode” as main drive modes by this drive system.
  • the “EV mode” is an electric vehicle mode in which the first clutch 2 is disengaged and the second clutch 4 is engaged and only the motor / generator 3 is used as a drive source. Driving in the “EV mode” is referred to as “EV driving”. .
  • the “HEV mode” is a hybrid vehicle mode in which the first clutch 2 and the second clutch 4 are engaged and the engine 1 and the motor / generator 3 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
  • the control system of the FF hybrid vehicle includes an integrated controller 21, a transmission controller 22, a clutch controller 23, an engine controller 24, a motor controller 25 (motor control unit), and a battery controller 26. It is equipped with.
  • These control devices including the integrated controller 21 are connected via a CAN communication line 27 (CAN is an abbreviation for “Controller-Area-Network”) so that bidirectional information can be exchanged.
  • CAN is an abbreviation for “Controller-Area-Network”
  • sensors a motor rotation speed sensor 31, a transmission input rotation speed sensor 32, an accelerator opening sensor 33, an engine rotation speed sensor 34, an oil temperature sensor 35, a transmission output rotation speed sensor 36, and the like. It is equipped with.
  • the vehicle speed sensor 37, the inhibitor switch 38, the overdrive switch 39, and the mode selection switch 40 mode selection part
  • the integrated controller 21 is an integrated control device having a function of appropriately managing the energy consumption of the entire vehicle.
  • the integrated controller 21 inputs information from an accelerator opening sensor 33, a vehicle speed sensor 37, an inhibitor switch 38, an overdrive switch 39, a mode selection switch 40, and the like. Then, the target driving force is calculated based on the input information. Based on the calculation result of the target driving force, command values for the engine 1, the motor / generator 3, the belt type continuously variable transmission 6, etc. are calculated, and the controllers 22, 23, 24, 25 and 26. Based on the input information, various controls such as mode transition control between “EV mode” and “HEV mode”, target driving force control, and the like are performed.
  • the transmission controller 22 receives the shift command from the integrated controller 21, information from the transmission input rotation speed sensor 32, the transmission output rotation speed sensor 36, the overdrive switch 39, and the like, and the belt type continuously variable transmission 6.
  • the shift hydraulic pressure control is performed.
  • the clutch controller 23 inputs information from the integrated controller 21, the motor rotation speed sensor 31, the transmission input rotation speed sensor 32, and the like, and controls the engagement hydraulic pressure of the first clutch 2 (CL1) and the second clutch 4 (CL2). I do.
  • the engine controller 24 inputs the engine torque command value from the integrated controller 21, information from the engine speed sensor 34, etc., and performs fuel injection control, ignition control, fuel cut control, torque control, etc. of the engine 1.
  • the motor controller 25 performs power running control and regenerative control of the motor / generator 3 by the inverter 13 based on a command (motor torque command value or the like) from the integrated controller 21. That is, the driving force and the regenerative force corresponding to the target driving force calculated by the target driving force calculation unit 100 are output to the motor / generator 3.
  • the battery controller 26 manages the charge capacity SOC of the high-power battery 12 and transmits the SOC information to the integrated controller 21 and the engine controller 24.
  • the inhibitor switch 38 detects a range position (P range position / R range position / N range position / D range position / L range position) selected by a driver operation based on the position of the select lever 15.
  • the overdrive switch 39 is provided on the select lever 15.
  • the overdrive switch 39 detects ON / OFF of the switch.
  • the overdrive switch 39 inputs ON / OFF information to the transmission controller 22 as overdrive switch information. This switch is normally ON. If the switch is ON (O / D on), selection of all gear ratios is permitted. If the switch is OFF (O / D off), selection of the overdrive gear ratio is not permitted. Further, when the switch is changed from ON to OFF by the driver operation during the selection of the D range position, the integrated controller 21 determines the downshift amount of the gear ratio according to the vehicle speed VSP (vehicle speed). Then, it is input from the integrated controller 21 to the transmission controller 22 and the like.
  • VSP vehicle speed
  • the mode selection switch 40 is a switch in which “normal mode (weak regeneration mode)” and “strong regeneration mode” can be selected according to the driver's selection.
  • the mode selection switch 40 inputs the selected mode information to the integrated controller 21 as mode selection switch information. While “strong regeneration mode” is selected, the target driving force characteristics for the accelerator opening APO in the middle and low opening range are assigned to the negative target driving force side than when “normal mode” is selected (Fig. 5 to 7).
  • FIG. 2 illustrates an internal configuration of the integrated controller according to the first embodiment. The detailed configuration of the integrated controller will be described below with reference to FIG.
  • the integrated controller includes a target driving force calculation unit 100, a torque / speed ratio distribution calculation unit 200, and a target engine torque / target motor torque distribution calculation unit 300. Further, as shown in FIG. 2, the integrated controller includes a target gear ratio calculation unit 400, a target engine torque calculation unit 500, and a target motor torque calculation unit 600.
  • the target driving force calculation unit 100 uses the target driving force map to calculate the target from the accelerator opening APO, the vehicle speed VSP (vehicle speed), the range position, the overdrive switch information, the mode selection switch information, and the like. Calculate the driving force. Details of the target driving force calculation unit 100 will be described later.
  • the torque / transmission ratio distribution calculation unit 200 calculates the distribution of the overall vehicle torque and the transmission ratio of the belt-type continuously variable transmission 6 to achieve the target driving force calculated by the target driving force calculation unit 100.
  • the target engine torque / target motor torque distribution calculation unit 300 calculates the distribution of the target engine torque and the target motor torque based on the torque calculated by the torque / speed ratio distribution calculation unit 200.
  • the target gear ratio calculation unit 400 calculates a gear ratio command value corresponding to the gear ratio calculated by the torque / speed ratio distribution calculation unit 200.
  • the gear ratio command value is input to the transmission controller 22.
  • the target engine torque calculation unit 500 calculates an engine torque command value corresponding to the target engine torque calculated by the target engine torque / target motor torque distribution calculation unit 300.
  • the engine torque command value is input to the engine controller 24.
  • the target motor torque calculation unit 600 calculates a motor torque command value corresponding to the target motor torque calculated by the target engine torque / target motor torque distribution calculation unit 300.
  • the motor torque command value is input to the motor controller 25.
  • FIG. 3 shows an example of the target driving force characteristic with respect to the vehicle speed during selection of the normal mode during coasting and the target driving force characteristic with respect to the vehicle speed during selection of the strong regeneration mode during coasting.
  • FIG. 4 shows a flow of a target driving force characteristic selection control process executed during coasting by the target driving force calculation unit of the first embodiment.
  • FIGS. 5 to 7 show the target driving force characteristics with respect to the accelerator opening during the selection of the normal mode at the predetermined speed and the target driving force with respect to the accelerator opening during the selection of the strong regeneration mode at the predetermined speed in the first embodiment. An example of a characteristic is shown. The detailed configuration of the target driving force calculation unit will be described below with reference to FIGS.
  • the target driving force calculation unit 100 calculates four target driving forces when in the coast state by the accelerator release operation, as shown in FIG. As the four target driving forces, “first normal target driving force (first target driving force)”, “second normal target driving force (fourth target driving force)”, and “first strong regeneration target driving force (second) Target driving force) ”and“ second strong regeneration target driving force (third target driving force) ”.
  • These four target driving forces are selected by a driver operation on the overdrive switch 39 and the mode selection switch 40.
  • the overdrive switch 39 is operated from ON to OFF by the driver operation in the coast state by the accelerator release operation, the engine braking force (deceleration force) applied to the vehicle increases. That is, when the engine braking force in the O / D on state is the first deceleration force and the engine braking force in the O / D off state is the second deceleration force, the second deceleration force is greater than the first deceleration force.
  • First normal target driving force is selected when the normal deceleration mode is selected when the normal drive mode is selected and the overdrive switch 39 is turned on (O / D on state) by the driver operation. This is the target driving force calculated during selection. As shown in FIG. 2, the first normal target driving force is calculated on the regeneration side as equivalent to engine braking in the O / D on state at the D range position.
  • “Second normal target driving force” is the normal strong deceleration when the normal mode is being selected and the normal strong deceleration mode is selected by the driver operation when the overdrive switch 39 is in the OFF state (O / D off state). This is the target driving force calculated during mode selection. As shown in FIG. 3, the second normal target driving force is calculated to be larger on the negative side than the first normal target driving force. The second normal target driving force is calculated as an engine brake equivalent in the O / D off state at the D range position.
  • First strong regeneration target driving force is selected when the strong regeneration mode is selected when the strong regeneration mode is selected and the overdrive switch 39 is turned on (O / D on state) by the driver operation. This is the target driving force calculated during the selection of the regenerative deceleration mode. As shown in FIG. 3, the first strong regeneration target driving force is calculated on the regeneration side as being equivalent to engine braking in the O / D on state during selection of the strong regeneration deceleration mode. That is, as shown in FIG. 3, the first strong regeneration target driving force is calculated more strongly on the regeneration side than the first normal target driving force and the second normal target driving force.
  • “Second strong regeneration target driving force” is selected when the strong regeneration mode is selected, and the strong regeneration strong deceleration mode is selected when the overdrive switch 39 is turned off (O / D off state) by the driver operation. This is the target driving force calculated during the selection of the strong regeneration strong deceleration mode. As shown in FIG. 3, the second strong regeneration target driving force is calculated to be larger on the negative side than the first strong regeneration target driving force. Further, the negative increase amount from the first strong regeneration target driving force to the second strong regeneration target driving force is made equal to the negative increase amount from the first normal target driving force to the second normal target driving force. . However, the second strong regeneration target driving force is limited by a predetermined lower limit target driving force.
  • the second strong regeneration target driving force when the second strong regeneration target driving force is increased to the negative side, the second strong regeneration target driving force is limited so as not to be increased more negative than the predetermined lower limit target driving force.
  • the “predetermined lower limit target driving force” refers to a target driving force when the L range position is selected by the select lever 15, for example. Further, the “predetermined lower limit target driving force” is obtained in advance as a value suitable for running through experiments or the like.
  • the target driving force characteristics of these four target driving forces change while maintaining each target driving force when the vehicle speed VSP decreases due to deceleration. Then, when the vehicle speed VSP decreases due to deceleration and the vehicle approaches to stop, the target driving force is gradually decreased, and when the vehicle enters the stop region, the target driving force (creep torque) is shifted.
  • the first normal target driving force three of the first normal target driving force, the second normal target driving force, and the first strong regenerative target driving force are output by the regenerative force of the motor / generator 3, for example.
  • the remaining second strong regenerative target driving force is output by the regenerative force and engine brake force of the motor / generator 3, for example.
  • the brake pedal operation is not required, and the braking force can be controlled by the accelerator return / release operation.
  • the “strong regeneration mode” in which the target driving force is increased to the negative side of the “normal mode” is sometimes referred to as “one pedal mode” in which driving / braking is controlled by accelerator work to the accelerator pedal.
  • step S1 it is determined whether or not the normal mode is selected by the mode selection switch 40. If YES (normal mode), the process proceeds to step S2. If NO (strong regeneration mode), the process proceeds to step S5.
  • step S2 following the determination that the normal mode is in step S1, it is determined whether or not the switch information from the overdrive switch 39 is ON (O / D on). If YES (O / D on), the process proceeds to step S3. If NO (O / D off), the process proceeds to step S4.
  • step S3 the first normal target driving force is calculated based on the determination of “normal mode” in step S1 and the determination of “O / D on” in step S2, and the process proceeds to return.
  • step S4 the second normal target driving force is calculated based on the determination of “normal mode” in step S1 and the determination of “O / D off” in step S2, and the process proceeds to return.
  • step S5 it is determined whether or not the switch information from the overdrive switch 39 is ON (O / D on) following the determination that the strong regeneration mode is in step S1. If YES (O / D on), the process proceeds to step S6. If NO (O / D off), the process proceeds to step S7.
  • step S6 the first strong regeneration target driving force is calculated based on the determination of “strong regeneration mode” in step S1 and “O / D on” in step S5, and the process proceeds to return. .
  • step S7 the second strong regeneration target driving force is calculated based on the determination of “strong regeneration mode” in step S1 and “O / D off” in step S5, and the process proceeds to return. .
  • FIGS. 5 to 7 show that the accelerator opening APO is expanded to the fully open position including the accelerator release operation and the accelerator depression operation, and the first normal target driving force, the second normal target driving force, the first strong regeneration target driving force, The case where each of the 2 strong regeneration target driving forces is set to all accelerator opening APOs is shown.
  • the vehicle travels using one of these three target driving force maps.
  • the three target driving force maps are properly used according to the driving scene and the like.
  • target driving force characteristic selection control processing action “target driving force characteristic selection control action”
  • target driving force characteristic selection control action “characteristic action of target driving force characteristic selection control”.
  • step S1 When the normal mode is being selected and the overdrive switch 39 is selected to be on / off by operating the driver, the process proceeds from step S1 to step S2 to step S3.
  • step S3 the first normal target driving force is calculated, and the process proceeds from step S3 to return.
  • the vehicle is controlled according to the first normal target driving force.
  • step S1 when the normal mode is being selected and the overdrive switch 39 is changed from O / D ON to O / D OFF by a driver operation, the process proceeds from step S1 to step S2 to step S4.
  • step S4 the second normal target driving force is calculated, and the process proceeds from step S4 to return. Then, the vehicle is controlled according to the second normal target driving force.
  • step S6 the first strong regeneration target driving force is calculated, and the process proceeds from step S6 to return. Then, the vehicle is controlled according to the first strong regeneration target driving force.
  • step S7 the second strong regeneration target driving force is calculated, and the process proceeds from step S7 to return. Then, the vehicle is controlled according to the second strong regeneration target driving force.
  • step S1 when the vehicle is running and the strong regeneration mode is selected while the normal mode is selected, “YES” is changed to “NO” in step S1, and the process proceeds from step S1 to step S5.
  • step S1 when the vehicle is running and the normal mode is selected while the strong regeneration mode is selected, “NO” is changed to “YES” in step S1, and the process proceeds from step S1 to step S2. .
  • FIG. 8 shows the vehicle speed VSP / accelerator opening APO / overdrive switch when the overdrive switch 39 is changed from the O / D on state to the O / D off state by a driver operation while the normal mode is selected in the first embodiment.
  • Each characteristic of information and target driving force is shown.
  • FIG. 9 shows the vehicle speed VSP, the accelerator opening APO, and the overdrive when the overdrive switch 39 is changed from the O / D on state to the O / D off state by the driver operation while the strong regeneration mode is selected in the first embodiment.
  • Each characteristic of switch information and target driving force is shown.
  • the target driving force characteristic selection control action in the coast state by the accelerator release operation is divided into “selecting the normal mode” and “selecting the strong regeneration mode”. To do. 8 and 9, it is assumed that the D position is selected as the range position by the driver operation.
  • Accelerator release operation is performed by driver operation at time t10.
  • the overdrive switch 39 is in the O / D on state. For this reason, the first normal target driving force is calculated.
  • This time t10 corresponds to step S1 ⁇ step S2 ⁇ step S3 in the flowchart of FIG.
  • the overdrive switch 39 remains in the O / D on state. Therefore, the first normal target driving force is calculated according to the vehicle speed VSP. During this time, the first normal target driving force is calculated on the regeneration side. From time t10 to time t11 corresponds to Step S1, Step S2, Step S3, and Return in the flowchart of FIG.
  • the overdrive switch 39 is changed from the O / D on state to the O / D off state by a driver operation. Therefore, the first normal target driving force is changed to the second normal target driving force.
  • the period from time t11 to time t12 corresponds to a transition period from the first normal target driving force to the second normal target driving force.
  • the normal target driving force is calculated so as to change (gradually) from the first normal target driving force to the second normal target driving force with a ramp inclination.
  • the normal target driving force is not limited here because it does not become larger than the predetermined lower limit target driving force on the negative side. The same applies to subsequent times.
  • the overdrive switch 39 is maintained in the O / D off state. Therefore, the second normal target driving force is calculated according to the vehicle speed VSP. During this period, the second normal target driving force that is larger than the first normal target driving force on the negative side is calculated. From time t12 to time t13 corresponds to step S1, step S2, step S4, and return in the flowchart of FIG.
  • the overdrive switch 39 is changed from the O / D off state to the O / D on state by a driver operation. Therefore, the second normal target driving force is changed to the first normal target driving force.
  • a period from time t13 to time t14 corresponds to a transition period from the second normal target driving force to the first normal target driving force.
  • the normal target driving force is calculated so as to change from the second normal target driving force to the first normal target driving force with a ramp inclination.
  • the transition period ends, and the first normal target driving force is calculated.
  • this corresponds to step S1 ⁇ step S2 ⁇ step S3 in the flowchart of FIG.
  • the first normal target driving force is calculated according to the vehicle speed VSP.
  • the first normal target driving force and the second normal target driving force corresponding to the overdrive switch information by the driver operation are calculated during the selection of the normal mode.
  • step S1 ⁇ step S5 ⁇ step S6 in the flowchart of FIG.
  • the overdrive switch 39 remains in the O / D on state. Therefore, the first strong regeneration target driving force is calculated according to the vehicle speed VSP. During this time, the first strong regeneration target driving force is calculated on the regeneration side. From time t20 to time t21 corresponds to step S1, step S5, step S6, and return in the flowchart of FIG.
  • the overdrive switch 39 is changed from the O / D on state to the O / D off state by a driver operation. Therefore, the first strong regeneration target driving force is changed to the second strong regeneration target driving force. And from time t21 to time t22, it corresponds to a transition period from the first strong regeneration target driving force to the second strong regeneration target driving force. For this reason, the strong regeneration target driving force is calculated so that the ramp inclination changes (gradually) from the first strong regeneration target driving force to the second strong regeneration target driving force. However, the strong regeneration target driving force is limited so as not to become larger than the predetermined lower limit target driving force.
  • the transition period ends, and the second strong regeneration target driving force is calculated.
  • the calculated second strong regeneration target driving force becomes larger on the negative side than the predetermined lower limit target driving force, it is limited so as not to become larger on the negative side than the predetermined lower limit target driving force. .
  • This time t22 corresponds to step S1 ⁇ step S5 ⁇ step S7 in the flowchart of FIG.
  • the second strong regeneration target driving force is calculated according to the vehicle speed VSP. During this time, the second strong regeneration target driving force that is larger than the first strong regeneration target driving force on the negative side is calculated. From the time t22 to the time t23, the calculated second strong regeneration target driving force is larger than the predetermined lower limit target driving force on the negative side from the first half to the middle stage. It is limited so that it does not become larger than the negative side of the force.
  • the calculated second strong regeneration target driving force does not become more negative than the predetermined lower limit target driving force, and thus is not limited by the predetermined lower limit target driving force.
  • the overdrive switch 39 is changed from the O / D off state to the O / D on state by a driver operation. Therefore, the second strong regeneration target driving force is changed to the first strong regeneration target driving force.
  • the period from time t23 to time t24 corresponds to a transition period from the second strong regeneration target driving force to the first strong regeneration target driving force. For this reason, the target driving force is calculated so as to change from the second strong regeneration target driving force to the first strong regeneration target driving force with the ramp inclination.
  • the transition period ends, and the first strong regeneration target driving force is calculated.
  • This time t24 corresponds to step S1 ⁇ step S5 ⁇ step S6 in the flowchart of FIG.
  • the first strong regeneration target driving force is calculated according to the vehicle speed VSP.
  • the first strong regeneration target driving force and the second strong regeneration target driving force corresponding to the overdrive switch information by the driver operation are calculated while the strong regeneration mode is selected. Is done.
  • the first strong regeneration target is selected during the selection of the strong deceleration mode.
  • a second strong regeneration target driving force that is larger on the negative side than the driving force is calculated.
  • the regenerative force corresponding to the calculated second strong regenerative target driving force is output to the motor / generator 3.
  • the motor / generator is increased as the engine braking force in the O / D off state increases as the deceleration force applied to the vehicle.
  • the second strong regeneration target driving force that is larger on the negative side than the first strong regeneration target driving force is calculated. That is, when the strong regenerative strong deceleration mode is selected, the regenerative force of the motor / generator 3 is suppressed from being reduced by increasing the target driving force. As a result, when the strong regeneration strong deceleration mode is selected, deterioration of fuel consumption is suppressed.
  • the change in the second strong regeneration target driving force with respect to the change in the accelerator opening APO including the accelerator release operation and the accelerator stepping operation is made continuous. That is, for example, in the second strong regeneration target driving force of the first target driving force map of FIG. 5, even if the deceleration range by the accelerator operation is larger than the first normal target driving force or the like, the negative second strong regeneration is performed.
  • the target drive force can be easily adjusted by operating the accelerator. Therefore, the second strong regeneration target driving force can be easily adjusted by the accelerator operation.
  • first normal target driving force, the second normal target driving force, and the first strong regenerative target driving force with respect to the change in the accelerator opening APO are similarly changed continuously (for example, FIG. 5). ). Accordingly, each target driving force can be easily adjusted by the accelerator operation in the same manner for the first normal target driving force, the second normal target driving force, and the first strong regeneration target driving force.
  • the negative increase amount from the first strong regeneration target driving force to the second strong regeneration target driving force is the negative increase amount from the first normal target driving force to the second normal target driving force.
  • Example 1 when increasing from the first strong regeneration target driving force to the second strong regeneration target driving force on the negative side, the second strong regeneration target driving force is limited by a predetermined lower limit target driving force. For example, if the negative second strong regeneration target driving force becomes too large, the deceleration control deteriorates. On the other hand, in Example 1, by restricting the second strong regeneration target driving force with a predetermined lower limit target driving force, the second strong regeneration target driving force is suppressed from becoming excessively large on the negative side. Therefore, it is possible to avoid the deterioration of the deceleration control due to the second strong regeneration target driving force becoming excessively large on the negative side.
  • the second strong regeneration target driving force is made equal to the first strong regeneration target driving force in a region where the accelerator opening APO including the accelerator releasing operation and the accelerator stepping operation is intermediate or higher. That is, for example, as shown in the second target driving force map of FIG. 6, in the region where the accelerator opening APO is intermediate or higher, the second strong regeneration target driving force is made equal to the first strong regeneration target driving force. Accordingly, the second strong regeneration target driving force can be increased with good response to a driver operation that requires a high target driving force (positive side) during acceleration or the like. In addition, in a region where the accelerator opening APO is intermediate or higher, for example, as shown in FIG. 6, the second normal target driving force is made equal to the first normal target driving force. As a result, the second normal target driving force can be increased with good response to a driver operation that requires a high target driving force (positive side) during acceleration or the like.
  • the change gradient of the accelerator opening APO in the constant speed target driving force region used for constant speed traveling is changed to the accelerator opening APO in the region other than the constant speed target driving force region. Be gentler than the slope of change. That is, for example, as shown in the third target driving force map of FIG. 7, the change gradient of the accelerator opening APO in this constant speed target driving force region is made gentler than the changing gradient of the accelerator opening APO in other regions. . For this reason, the accelerator opening APO in constant speed travel can be widened. Thereby, even if the accelerator opening APO slightly changes, the constant speed travel can be maintained, so that the constant speed travel is facilitated. Accordingly, it is possible to facilitate the operation at a constant speed.
  • the constant speed target driving force area is a predetermined ratio area with respect to the maximum target driving force, and is set in advance.
  • This control method for an electric vehicle includes a motor (motor / generator 3) and a mode selection unit (mode selection switch 40).
  • the motor can apply driving force and regenerative force to the electric vehicle.
  • the mode selection unit can select the normal mode and the strong regeneration mode according to the driver's selection.
  • the first target driving force (first normal target driving force) is calculated on the regeneration side during the selection of the normal mode, and the first target driving force stronger on the regeneration side than the first target driving force is selected during the strong regeneration mode.
  • the target driving force (first strong regeneration target driving force).
  • the change in the third target driving force (second strong regeneration target driving force) with respect to the change in accelerator opening APO including the accelerator release operation and the accelerator stepping operation make it continuous.
  • the third target driving force (second strong regeneration target driving force) can be easily adjusted by the accelerator operation.
  • the fourth target driving force (second normal target driving force) when the normal mode is selected and the driver is operating in the normal strong deceleration mode using the second deceleration force (engine braking force in the O / D off state). ) Is calculated.
  • the fourth target driving force is set larger on the negative side than the first target driving force (first normal target driving force).
  • the negative increase amount from the second target driving force (first strong regeneration target driving force) to the third target driving force (second strong regeneration target driving force) is changed from the first target driving force to the fourth target driving force.
  • the amount of increase on the negative side Therefore, in addition to the effects (1) to (2), it is possible to provide a change in the target driving force expected by the driver in the strong regeneration mode.
  • the third target driving force is set to a predetermined lower limit. It is limited by the target driving force (target driving force when the L range position is selected). For this reason, in addition to the effects (1) to (3), it is possible to avoid the deterioration of the deceleration control due to the third target driving force (second strong regeneration target driving force) being excessively increased on the negative side.
  • the third target driving force (second strong regeneration target driving force) is changed to the second target driving force (first strong regeneration).
  • Target driving force For this reason, in addition to the effects (1) to (4) above, the third target driving force (second strong regeneration) is responsive to driver operations that require a high target driving force (positive side) during acceleration or the like. Target driving force) can be increased.
  • the change gradient of the accelerator opening in the constant speed target driving force region used for constant speed traveling is set in the region other than the constant speed target driving force region.
  • a deceleration force is applied to the vehicle according to the driver's selection.
  • This deceleration force is changed in at least two stages: a first deceleration force (engine braking force in the O / D on state) and a second deceleration force (engine braking force in the O / D off state) greater than the first deceleration force.
  • a motor motor / generator 3
  • mode selection unit mode selection switch 40
  • target driving force calculation unit 100 a motor control unit (motor controller 25)
  • the motor can apply driving force and regenerative force to the electric vehicle.
  • the mode selection unit can select the normal mode and the strong regeneration mode according to the driver's selection.
  • the target driving force calculation unit 100 calculates the first target driving force (first normal target driving force) on the regeneration side during the selection of the normal mode, and the regeneration side rather than the first target driving force during the selection of the strong regeneration mode.
  • the motor control unit outputs a regenerative force corresponding to each target driving force calculated by the target driving force calculation unit to the motor.
  • the target driving force calculation unit selects the third target while selecting the strong deceleration mode.
  • a driving force (second strong regeneration target driving force) is calculated.
  • the third target driving force is set to be more negative than the second target driving force. For this reason, when the strong deceleration mode (strong regeneration strong deceleration mode) is selected, the control apparatus of the electric vehicle (FF hybrid vehicle) which suppresses deterioration of a fuel consumption can be provided.
  • FF hybrid vehicle electric vehicle
  • control method and control device for the electric vehicle according to the present disclosure have been described based on the first embodiment.
  • specific configuration is not limited to the first embodiment, and design changes and additions are permitted without departing from the gist of the invention according to each claim of the claims.
  • the deceleration force applied to the vehicle according to the driver's selection has two stages of the first deceleration force and the second deceleration force is shown.
  • the present invention is not limited to this, and three or more stages may be used.
  • the selection of the first deceleration force and the second deceleration force to be applied to the vehicle can be changed according to the ON / OFF selection of the driver's overdrive switch 39.
  • the selection of the first deceleration force and the second deceleration force applied to the vehicle may be changeable according to the D range position / L range position of the range position. In short, it is sufficient that the deceleration force applied to the vehicle can be changed according to the driver's selection.
  • the four target driving forces calculated in the coast state by the accelerator release operation are output by the regenerative force and the engine braking force of the motor / generator 3 .
  • the four target driving forces may be output only by the regenerative force of the motor / generator 3, or may be output by an engine braking force or a braking force by a mechanical brake.
  • control method and the control device of the present disclosure are applied to an FF hybrid vehicle.
  • the control method and the control device of the present disclosure can be applied not only to the FF hybrid vehicle but also to the FR hybrid vehicle.
  • the present invention can be applied not only to hybrid vehicles but also to electric vehicles.
  • any electric vehicle having a motor / generator as a drive source can be applied.
  • a switch or the like that is the same as or different from the overdrive switch 39 is provided, and the target driving force calculated in the coast state by the accelerator release operation is output by the regenerative force of the motor / generator. .

Abstract

The purpose of the present invention is to suppress the deterioration of fuel economy when a strong deceleration mode is selected. An electric vehicle control method can change deceleration force in two steps as a first deceleration force and a second deceleration force larger than the first deceleration force in a coasting state caused by an acceleration release operation, said deceleration force being imparted to a vehicle according to a driver's selection. The electric vehicle control method is provided with: a motor/generator (3) capable of imparting driving force and regenerative force to the electric vehicle; and a mode selection switch (40) capable of selecting a normal mode and a strong regeneration mode according to a driver's selection. During the selection of the normal mode, a first normal target driving force is calculated on the regeneration side. During the selection of the strong regeneration mode, a first strong-regeneration target driving force stronger on the regeneration side than the first normal target driving force is calculated. When a strong-regeneration/strong-deceleration mode using the second deceleration force is selected by a driver's operation during the selection of the strong regeneration mode, a second strong-regeneration target driving force made larger on the negative side than the first strong-regeneration target driving force is calculated during the selection of the strong deceleration mode, and regenerative force according to each calculated target driving force is output to a motor.

Description

電動車両の制御方法及び電動車両の制御装置Electric vehicle control method and electric vehicle control apparatus
 本開示は、電動車両の制御方法及び電動車両の制御装置に関する。 The present disclosure relates to an electric vehicle control method and an electric vehicle control device.
 従来、車両用駆動力制御装置では、ドライバがアクセルから足を離しているコースト時に、ドライバの選択に応じて車両に付与する減速力を小さい減速力と大きい減速力との2段階で変更することが可能である(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, in a vehicle driving force control device, when a driver is on a coast away from an accelerator, the deceleration force to be applied to the vehicle is changed in two stages, a small deceleration force and a large deceleration force, according to the driver's selection. (For example, refer to Patent Document 1).
特開2000-238556号公報JP 2000-238556 A
 しかし、従来の制御装置では、モータで回生力を付与可能な車両に関する開示がされていない。そのため、そのような車両において、ドライバが車両に付与する減速力を変更したときの制御における燃費の悪化ついて、検討の余地がある。 However, the conventional control apparatus does not disclose a vehicle that can provide regenerative power with a motor. For this reason, in such a vehicle, there is room for study on deterioration of fuel consumption in control when the deceleration force applied to the vehicle by the driver is changed.
 本開示は、上記問題に着目してなされたもので、強減速モードが選択されているとき、燃費の悪化を抑制することを目的とする。 This disclosure has been made paying attention to the above problem, and aims to suppress deterioration of fuel consumption when the strong deceleration mode is selected.
 上記目的を達成するため、本開示は、アクセル解放操作によるコースト状態のとき、ドライバの選択に応じて車両に減速力を付与する。この減速力は、第1減速力と第1減速力よりも大きい第2減速力との少なくとも2段階で変更可能である。
この電動車両の制御方法において、車両に駆動力および回生力を付与可能なモータと、通常モードと、強回生モードと、をドライバの選択に応じて選択可能なモード選択部と、を備える。その制御方法において、通常モードの選択中、回生側に第1目標駆動力を算出し、強回生モードの選択中、第1目標駆動力よりも回生側に強い第2目標駆動力を算出する。その強回生モードの選択中であって、ドライバ操作により第2減速力による強減速モードを選択すると、強減速モードの選択中、第2目標駆動力よりも負側に大きくした第3目標駆動力を算出する。そして、算出した各目標駆動力に応じた回生力をモータに出力する。
In order to achieve the above object, the present disclosure applies a deceleration force to the vehicle according to the driver's selection when in a coast state by the accelerator release operation. This deceleration force can be changed in at least two stages of a first deceleration force and a second deceleration force that is larger than the first deceleration force.
This electric vehicle control method includes a motor capable of applying a driving force and a regenerative force to the vehicle, a normal mode, and a strong regenerative mode according to a driver's selection. In the control method, the first target driving force is calculated on the regeneration side during the selection of the normal mode, and the second target driving force stronger on the regeneration side than the first target driving force is calculated during the selection of the strong regeneration mode. When the strong regeneration mode is being selected and the strong deceleration mode by the second deceleration force is selected by the driver operation, the third target driving force that is larger than the second target driving force is set to the negative side during the selection of the strong deceleration mode. Is calculated. And the regenerative force according to each calculated target drive force is output to a motor.
 このように、強減速モードのとき、第2目標駆動力よりも負側に大きくした第3目標駆動力を算出し、算出した第3目標駆動力に応じた回生力をモータに出力することで、強減速モードが選択されているとき、燃費の悪化を抑制できうる。 Thus, in the strong deceleration mode, the third target driving force that is larger than the second target driving force on the negative side is calculated, and the regenerative force corresponding to the calculated third target driving force is output to the motor. When the strong deceleration mode is selected, deterioration of fuel consumption can be suppressed.
実施例1の制御方法及び制御装置が適用されたFFハイブリッド車両(電動車両の一例)を示す全体システム図である。1 is an overall system diagram illustrating an FF hybrid vehicle (an example of an electric vehicle) to which a control method and a control device of Example 1 are applied. 実施例1の統合コントローラの内部構成を示すブロック図である。FIG. 3 is a block diagram illustrating an internal configuration of an integrated controller according to the first embodiment. 実施例1においてコースト時の通常モードの選択中における車速に対する目標駆動力特性とコースト時の強回生モードの選択中における車速に対する目標駆動力特性の一例を示すコースト目標駆動力マップである。3 is a coast target driving force map showing an example of a target driving force characteristic with respect to a vehicle speed during selection of a normal mode during coasting and a target driving force characteristic with respect to the vehicle speed during selection of a strong regeneration mode during coasting in the first embodiment. 実施例1の目標駆動力算出部にてコースト時に実行される目標駆動力特性選択制御処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of target driving force characteristic selection control processing executed during coasting by a target driving force calculation unit according to the first embodiment. 実施例1において所定の速度での通常モードの選択中におけるアクセル開度に対する目標駆動力特性と、所定の速度での強回生モードの選択中におけるアクセル開度に対する目標駆動力特性の一例を示す第1目標駆動力マップである。FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment. It is a 1 target driving force map. 実施例1において所定の速度での通常モードの選択中におけるアクセル開度に対する目標駆動力特性と、所定の速度での強回生モードの選択中におけるアクセル開度に対する目標駆動力特性の一例を示す第2目標駆動力マップである。FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment. It is a 2 target driving force map. 実施例1において所定の速度での通常モードの選択中におけるアクセル開度に対する目標駆動力特性と、所定の速度での強回生モードの選択中におけるアクセル開度に対する目標駆動力特性の一例を示す第3目標駆動力マップである。FIG. 11 is a diagram illustrating an example of a target driving force characteristic with respect to an accelerator opening during selection of a normal mode at a predetermined speed and a target driving force characteristic with respect to an accelerator opening during selection of a strong regeneration mode at a predetermined speed in the first embodiment. It is a 3 target driving force map. 実施例1において通常モードの選択中にドライバ操作によりオーバードライブスイッチがO/Dオン状態からO/Dオフ状態へ変更されたときの車速VSP・アクセル開度APO・オーバードライブスイッチ情報・目標駆動力の各特性を示すタイムチャートである。Vehicle speed VSP, accelerator opening APO, overdrive switch information, target drive force when overdrive switch is changed from O / D ON state to O / D OFF state by driver operation during normal mode selection in Example 1 It is a time chart which shows each characteristic of. 実施例1において強回生モードの選択中にドライバ操作によりオーバードライブスイッチがO/Dオン状態からO/Dオフ状態へ変更されたときの車速VSP・アクセル開度APO・オーバードライブスイッチ情報・目標駆動力の各特性を示すタイムチャートである。Vehicle speed VSP, accelerator opening APO, overdrive switch information, target drive when overdrive switch is changed from O / D ON state to O / D OFF state by driver operation while strong regeneration mode is selected in Example 1 It is a time chart which shows each characteristic of force.
 以下、本開示の電動車両の制御方法及び電動車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, a best mode for realizing an electric vehicle control method and an electric vehicle control device according to the present disclosure will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。
実施例1の制御方法及び制御装置は、1モータ・2クラッチと呼ばれるパラレルハイブリッド駆動系を備えるFFハイブリッド車両(電動車両の一例)に適用する。以下、実施例1の構成を、「全体システム構成」、「統合コントローラの詳細構成」、「目標駆動力算出部の詳細構成」に分けて説明する。
First, the configuration will be described.
The control method and control device of the first embodiment are applied to an FF hybrid vehicle (an example of an electric vehicle) having a parallel hybrid drive system called a 1-motor / 2-clutch. Hereinafter, the configuration of the first embodiment will be described by being divided into “the overall system configuration”, “the detailed configuration of the integrated controller”, and “the detailed configuration of the target driving force calculation unit”.
 [全体システム構成]
  図1は、実施例1の制御方法及び制御装置が適用されたFFハイブリッド車両の全体システムを示す。以下、図1に基づいてFFハイブリッド車両の全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows an overall system of an FF hybrid vehicle to which a control method and a control device of Embodiment 1 are applied. The overall system configuration of the FF hybrid vehicle will be described below with reference to FIG.
 FFハイブリッド車両の駆動系は、図1に示すように、エンジン1(Eng)と、第1クラッチ2(CL1)と、モータ/ジェネレータ3(MG)と、第2クラッチ4(CL2)と、変速機入力軸5と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の変速機出力軸7は、終減速ギヤトレイン8とフロントデファレンシャルギヤ9と左右の前輪ドライブシャフト10R,10Lを介し、左右の前輪11R,11Lに駆動連結される。 As shown in FIG. 1, the drive system of the FF hybrid vehicle includes an engine 1 (Eng), a first clutch 2 (CL1), a motor / generator 3 (MG), a second clutch 4 (CL2), and a speed change. A machine input shaft 5 and a belt type continuously variable transmission 6 (abbreviated as “CVT”) are provided. The transmission output shaft 7 of the belt type continuously variable transmission 6 is drivingly connected to the left and right front wheels 11R and 11L via a final reduction gear train 8, a front differential gear 9, and left and right front wheel drive shafts 10R and 10L.
 エンジン1は、スロットルアクチュエータによる吸入空気量とインジェクタによる燃料噴射量と、点火プラグによる点火時期の制御により、エンジントルクが指令値と一致するようにトルク制御される。また、エンジン1は、燃焼運転状態ではなく、フューエルカット状態(燃料供給停止)で第1クラッチ2を締結したクランキング運転状態とすると、ピストンとシリンダー内壁との摩擦摺動抵抗等によりフリクショントルクを発生する。 The engine 1 is torque controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug. Further, when the engine 1 is not in the combustion operation state but in the cranking operation state in which the first clutch 2 is engaged in the fuel cut state (fuel supply stop), the friction torque is generated by the frictional sliding resistance between the piston and the inner wall of the cylinder. appear.
 第1クラッチ2は、エンジン1とモータ/ジェネレータ3との間に介装された油圧作動によるノーマルオープンの乾式多板摩擦クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/解放が制御される。この第1クラッチ2が完全締結状態ならモータトルク+エンジントルクが第2クラッチ4へと伝達され、解放状態ならモータトルクのみが、第2クラッチ4へと伝達される。 The first clutch 2 is a normally open dry multi-plate friction clutch that is hydraulically operated and interposed between the engine 1 and the motor / generator 3, and complete engagement / slip engagement / release is controlled by the first clutch hydraulic pressure. The If the first clutch 2 is in the fully engaged state, the motor torque + engine torque is transmitted to the second clutch 4, and if it is in the released state, only the motor torque is transmitted to the second clutch 4.
 モータ/ジェネレータ3は、第1クラッチ2を介してエンジン1に連結された三相交流の永久磁石型同期モータである。このモータ/ジェネレータ3は、強電バッテリ12を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ13が、ACハーネス14を介して接続される。モータ/ジェネレータ3は、発進時や走行時にモータトルク制御やモータ回転数制御を行うと共に、制動時や減速時に回生ブレーキ制御による車両運動エネルギーの強電バッテリ12への回収(充電)を行なうものである。即ち、このモータ/ジェネレータ3は、車両に駆動力および回生力を付与可能である。そして、このモータ/ジェネレータ3は、回生時に発生する回生力を車両に付与される制動力として用いることで、減速要求発生時にFFハイブリッド車両に制動力を付与する制動装置となる。 The motor / generator 3 is a three-phase AC permanent magnet synchronous motor connected to the engine 1 via the first clutch 2. The motor / generator 3 uses a high-power battery 12 as a power source, and an inverter 13 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil via an AC harness 14. Connected. The motor / generator 3 performs motor torque control and motor rotation speed control during starting and running, and also collects (charges) vehicle kinetic energy to the high-power battery 12 by regenerative brake control during braking and deceleration. . That is, the motor / generator 3 can apply driving force and regenerative force to the vehicle. The motor / generator 3 is a braking device that applies a braking force to the FF hybrid vehicle when a deceleration request is generated by using the regenerative force generated during regeneration as a braking force applied to the vehicle.
 第2クラッチ4は、モータ/ジェネレータ3と駆動輪である左右の前輪11R,11Lとの間に介装された油圧作動による湿式の多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/解放が制御される。実施例1の第2クラッチ4は、遊星ギヤによるベルト式無段変速機6の前後進切替機構に設けられた前進クラッチと後退ブレーキを流用している。つまり、前進走行時には、前進クラッチが第2クラッチ4(CL2)とされ、後退走行時には、後退ブレーキが第2クラッチ4(CL2)とされる。 The second clutch 4 is a wet-type multi-plate friction clutch by hydraulic operation that is interposed between the motor / generator 3 and the left and right front wheels 11R and 11L as drive wheels, and is completely engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled. The second clutch 4 of the first embodiment uses a forward clutch and a reverse brake provided in a forward / reverse switching mechanism of the belt type continuously variable transmission 6 using a planetary gear. That is, during forward travel, the forward clutch is the second clutch 4 (CL2), and during reverse travel, the reverse brake is the second clutch 4 (CL2).
 ベルト式無段変速機6は、プライマリプーリ61と、セカンダリプーリ62と、両プーリ61,62に巻き付けたベルト63と、を有して構成される。そして、変速油圧によりベルトプライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比を得る変速機である。 The belt type continuously variable transmission 6 includes a primary pulley 61, a secondary pulley 62, and a belt 63 wound around the pulleys 61 and 62. And it is a transmission which obtains a stepless gear ratio by changing the belt winding diameter by the transmission hydraulic pressure to the belt primary oil chamber and the secondary oil chamber by the transmission hydraulic pressure.
 プライマリプーリ61は、変速機入力軸5に固定された固定シーブと、変速機入力軸5に摺動自在に支持された可動シーブと、を有している。セカンダリプーリ62は、変速機出力軸7に固定された固定シーブと、変速機出力軸7に摺動自在に支持された可動シーブと、を有している。ベルト63は、金属ベルトであり、それぞれの固定シーブと可動シーブとの間に挟持される。 The primary pulley 61 has a fixed sheave fixed to the transmission input shaft 5 and a movable sheave supported slidably on the transmission input shaft 5. The secondary pulley 62 has a fixed sheave fixed to the transmission output shaft 7 and a movable sheave slidably supported on the transmission output shaft 7. The belt 63 is a metal belt and is sandwiched between the fixed sheave and the movable sheave.
 ベルト式無段変速機6では、プライマリプーリ61とセカンダリプーリ62のプーリ幅を変更し、ベルト63の挟持面の径を変更して変速比(プーリ比)を自在に制御する。ここで、プライマリプーリ61のプーリ幅が広くなると共に、セカンダリプーリ62のプーリ幅が狭くなると変速比がLow側に変化する。また、プライマリプーリ61のプーリ幅が狭くなると共に、セカンダリプーリ62のプーリ幅が広くなると変速比がHigh側に変化する。 In the belt type continuously variable transmission 6, the pulley width of the primary pulley 61 and the secondary pulley 62 is changed, and the diameter of the clamping surface of the belt 63 is changed to freely control the gear ratio (pulley ratio). Here, when the pulley width of the primary pulley 61 is increased and the pulley width of the secondary pulley 62 is decreased, the gear ratio is changed to the low side. Further, when the pulley width of the primary pulley 61 becomes narrower and the pulley width of the secondary pulley 62 becomes wider, the gear ratio changes to the high side.
 第1クラッチ2とモータ/ジェネレータ3と第2クラッチ4により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる主な駆動態様として、「EVモード」と「HEVモード」を有する。「EVモード」は、第1クラッチ2を解放し、第2クラッチ4を締結してモータ/ジェネレータ3のみを駆動源に有する電気自動車モードであり、「EVモード」による走行を「EV走行」という。「HEVモード」は、第1クラッチ2と第2クラッチ4を締結してエンジン1とモータ/ジェネレータ3を駆動源に有するハイブリッド車モードであり、「HEVモード」による走行を「HEV走行」という。 The first clutch 2, the motor / generator 3 and the second clutch 4 constitute a one-motor / two-clutch drive system, and there are “EV mode” and “HEV mode” as main drive modes by this drive system. The “EV mode” is an electric vehicle mode in which the first clutch 2 is disengaged and the second clutch 4 is engaged and only the motor / generator 3 is used as a drive source. Driving in the “EV mode” is referred to as “EV driving”. . The “HEV mode” is a hybrid vehicle mode in which the first clutch 2 and the second clutch 4 are engaged and the engine 1 and the motor / generator 3 are used as driving sources, and traveling in the “HEV mode” is referred to as “HEV traveling”.
 FFハイブリッド車両の制御系は、図1に示すように、統合コントローラ21と、変速機コントローラ22と、クラッチコントローラ23と、エンジンコントローラ24と、モータコントローラ25(モータ制御部)と、バッテリコントローラ26と、を備えている。統合コントローラ21を含むこれらの制御デバイスは、CAN通信線27(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続されている。そして、センサ類として、モータ回転数センサ31と、変速機入力回転数センサ32と、アクセル開度センサ33と、エンジン回転数センサ34と、油温センサ35と、変速機出力回転数センサ36と、を備えている。さらに、車速センサ37と、インヒビタースイッチ38と、オーバードライブスイッチ39と、モード選択スイッチ40(モード選択部)と、を備えている。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes an integrated controller 21, a transmission controller 22, a clutch controller 23, an engine controller 24, a motor controller 25 (motor control unit), and a battery controller 26. It is equipped with. These control devices including the integrated controller 21 are connected via a CAN communication line 27 (CAN is an abbreviation for “Controller-Area-Network”) so that bidirectional information can be exchanged. As sensors, a motor rotation speed sensor 31, a transmission input rotation speed sensor 32, an accelerator opening sensor 33, an engine rotation speed sensor 34, an oil temperature sensor 35, a transmission output rotation speed sensor 36, and the like. It is equipped with. Furthermore, the vehicle speed sensor 37, the inhibitor switch 38, the overdrive switch 39, and the mode selection switch 40 (mode selection part) are provided.
 統合コントローラ21は、車両全体の消費エネルギーを適切に管理する機能を担う統合制御デバイスである。統合コントローラ21は、アクセル開度センサ33、車速センサ37と、インヒビタースイッチ38と、オーバードライブスイッチ39と、モード選択スイッチ40、等からの情報を入力する。そして、入力情報に基づいて、目標駆動力を算出する。そして、目標駆動力の算出結果に基づき、エンジン1、モータ/ジェネレータ3、ベルト式無段変速機6、等に対する指令値を演算し、CAN通信線27を介して各コントローラ22,23,24,25,26へと送信する。そして、入力情報に基づいて「EVモード」と「HEVモード」との間のモード遷移制御、目標駆動力制御、等の様々な制御を行う。 The integrated controller 21 is an integrated control device having a function of appropriately managing the energy consumption of the entire vehicle. The integrated controller 21 inputs information from an accelerator opening sensor 33, a vehicle speed sensor 37, an inhibitor switch 38, an overdrive switch 39, a mode selection switch 40, and the like. Then, the target driving force is calculated based on the input information. Based on the calculation result of the target driving force, command values for the engine 1, the motor / generator 3, the belt type continuously variable transmission 6, etc. are calculated, and the controllers 22, 23, 24, 25 and 26. Based on the input information, various controls such as mode transition control between “EV mode” and “HEV mode”, target driving force control, and the like are performed.
 変速機コントローラ22は、統合コントローラ21からの変速指令、変速機入力回転数センサ32、変速機出力回転数センサ36、オーバードライブスイッチ39、等からの情報を入力し、ベルト式無段変速機6の変速油圧制御等を行う。 The transmission controller 22 receives the shift command from the integrated controller 21, information from the transmission input rotation speed sensor 32, the transmission output rotation speed sensor 36, the overdrive switch 39, and the like, and the belt type continuously variable transmission 6. The shift hydraulic pressure control is performed.
 クラッチコントローラ23は、統合コントローラ21、モータ回転数センサ31、変速機入力回転数センサ32、等からの情報を入力し、第1クラッチ2(CL1)や第2クラッチ4(CL2)の締結油圧制御を行う。 The clutch controller 23 inputs information from the integrated controller 21, the motor rotation speed sensor 31, the transmission input rotation speed sensor 32, and the like, and controls the engagement hydraulic pressure of the first clutch 2 (CL1) and the second clutch 4 (CL2). I do.
 エンジンコントローラ24は、統合コントローラ21からのエンジントルク指令値、エンジン回転数センサ34、等からの情報を入力し、エンジン1の燃料噴射制御や点火制御や燃料カット制御やトルク制御等を行う。 The engine controller 24 inputs the engine torque command value from the integrated controller 21, information from the engine speed sensor 34, etc., and performs fuel injection control, ignition control, fuel cut control, torque control, etc. of the engine 1.
 モータコントローラ25は、統合コントローラ21からの指令(モータトルク指令値等)に基づいて、インバータ13によるモータ/ジェネレータ3の力行制御や回生制御等を行う。即ち、目標駆動力算出部100で算出された目標駆動力に応じた駆動力や回生力をモータ/ジェネレータ3へ出力する。 The motor controller 25 performs power running control and regenerative control of the motor / generator 3 by the inverter 13 based on a command (motor torque command value or the like) from the integrated controller 21. That is, the driving force and the regenerative force corresponding to the target driving force calculated by the target driving force calculation unit 100 are output to the motor / generator 3.
 バッテリコントローラ26は、強電バッテリ12の充電容量SOC等を管理し、SOC情報を統合コントローラ21やエンジンコントローラ24へと送信する。 The battery controller 26 manages the charge capacity SOC of the high-power battery 12 and transmits the SOC information to the integrated controller 21 and the engine controller 24.
 インヒビタースイッチ38は、セレクトレバー15の位置に基づいてドライバ操作により選択されるレンジ位置(Pレンジ位置・Rレンジ位置・Nレンジ位置・Dレンジ位置・Lレンジ位置)を検出する。 The inhibitor switch 38 detects a range position (P range position / R range position / N range position / D range position / L range position) selected by a driver operation based on the position of the select lever 15.
 オーバードライブスイッチ39は、セレクトレバー15に設けられている。このオーバードライブスイッチ39は、スイッチのON/OFFを検出する。オーバードライブスイッチ39は、ON/OFFの情報をオーバードライブスイッチ情報として変速機コントローラ22へ入力する。このスイッチは、通常はONになっている。スイッチがON(O/Dオン)であると、全ての変速比の選択が許可される。スイッチがOFF(O/Dオフ)であると、オーバードライブ変速比の選択が許可されない。また、Dレンジ位置の選択中、ドライバ操作によりスイッチがONからOFFへ変更されると、統合コントローラ21では車速VSP(車両速度)に応じて、変速比のダウンシフト量が決定される。そして、統合コントローラ21から変速機コントローラ22等へ入力される。 The overdrive switch 39 is provided on the select lever 15. The overdrive switch 39 detects ON / OFF of the switch. The overdrive switch 39 inputs ON / OFF information to the transmission controller 22 as overdrive switch information. This switch is normally ON. If the switch is ON (O / D on), selection of all gear ratios is permitted. If the switch is OFF (O / D off), selection of the overdrive gear ratio is not permitted. Further, when the switch is changed from ON to OFF by the driver operation during the selection of the D range position, the integrated controller 21 determines the downshift amount of the gear ratio according to the vehicle speed VSP (vehicle speed). Then, it is input from the integrated controller 21 to the transmission controller 22 and the like.
 モード選択スイッチ40は、「通常モード(弱回生モード)」と「強回生モード」がドライバの選択に応じて選択可能なスイッチである。モード選択スイッチ40は、選択されたモード情報をモード選択スイッチ情報として統合コントローラ21へ入力する。「強回生モード」の選択中、アクセル開度APOが中低開度領域の目標駆動力特性は、「通常モード」の選択中よりも負の目標駆動力側に移行させた割り付けとしている(図5~図7参照)。 The mode selection switch 40 is a switch in which “normal mode (weak regeneration mode)” and “strong regeneration mode” can be selected according to the driver's selection. The mode selection switch 40 inputs the selected mode information to the integrated controller 21 as mode selection switch information. While “strong regeneration mode” is selected, the target driving force characteristics for the accelerator opening APO in the middle and low opening range are assigned to the negative target driving force side than when “normal mode” is selected (Fig. 5 to 7).
 [統合コントローラの詳細構成]
  図2は、実施例1の統合コントローラの内部構成を示す。以下、図2に基づいて統合コントローラの詳細構成を説明する。
[Detailed configuration of integrated controller]
FIG. 2 illustrates an internal configuration of the integrated controller according to the first embodiment. The detailed configuration of the integrated controller will be described below with reference to FIG.
 統合コントローラは、図2に示すように、目標駆動力算出部100と、トルク・変速比分配演算部200と、目標エンジントルク・目標モータトルク配分演算部300と、を有する。さらに、統合コントローラは、図2に示すように、目標変速比演算部400と、目標エンジントルク演算部500と、目標モータトルク演算部600と、を有する。 As shown in FIG. 2, the integrated controller includes a target driving force calculation unit 100, a torque / speed ratio distribution calculation unit 200, and a target engine torque / target motor torque distribution calculation unit 300. Further, as shown in FIG. 2, the integrated controller includes a target gear ratio calculation unit 400, a target engine torque calculation unit 500, and a target motor torque calculation unit 600.
 目標駆動力算出部100は、目標駆動力マップを用いて、アクセル開度APOと、車速VSP(車両速度)と、レンジ位置と、オーバードライブスイッチ情報と、モード選択スイッチ情報と、等から、目標駆動力を算出する。なお、目標駆動力算出部100の詳細は、後述する。 The target driving force calculation unit 100 uses the target driving force map to calculate the target from the accelerator opening APO, the vehicle speed VSP (vehicle speed), the range position, the overdrive switch information, the mode selection switch information, and the like. Calculate the driving force. Details of the target driving force calculation unit 100 will be described later.
 トルク・変速比分配演算部200は、目標駆動力算出部100にて算出された目標駆動力を達成するための車両全体のトルクとベルト式無段変速機6の変速比の分配を演算する。 The torque / transmission ratio distribution calculation unit 200 calculates the distribution of the overall vehicle torque and the transmission ratio of the belt-type continuously variable transmission 6 to achieve the target driving force calculated by the target driving force calculation unit 100.
 目標エンジントルク・目標モータトルク配分演算部300は、トルク・変速比分配演算部200で演算されたトルクに基づいて、目標エンジントルクと目標モータトルクの配分を演算する。 The target engine torque / target motor torque distribution calculation unit 300 calculates the distribution of the target engine torque and the target motor torque based on the torque calculated by the torque / speed ratio distribution calculation unit 200.
 目標変速比演算部400は、トルク・変速比分配演算部200で演算された変速比に対応した変速比指令値を演算する。変速比指令値は、変速機コントローラ22へ入力される。 The target gear ratio calculation unit 400 calculates a gear ratio command value corresponding to the gear ratio calculated by the torque / speed ratio distribution calculation unit 200. The gear ratio command value is input to the transmission controller 22.
 目標エンジントルク演算部500は、目標エンジントルク・目標モータトルク配分演算部300で演算された目標エンジントルクに対応したエンジントルク指令値を演算する。エンジントルク指令値は、エンジンコントローラ24へ入力される。 The target engine torque calculation unit 500 calculates an engine torque command value corresponding to the target engine torque calculated by the target engine torque / target motor torque distribution calculation unit 300. The engine torque command value is input to the engine controller 24.
 目標モータトルク演算部600は、目標エンジントルク・目標モータトルク配分演算部300で演算された目標モータトルクに対応したモータトルク指令値を演算する。モータトルク指令値は、モータコントローラ25へ入力される。 The target motor torque calculation unit 600 calculates a motor torque command value corresponding to the target motor torque calculated by the target engine torque / target motor torque distribution calculation unit 300. The motor torque command value is input to the motor controller 25.
 [目標駆動力算出部の詳細構成]
  図3は、コースト時の通常モードの選択中における車速に対する目標駆動力特性とコースト時の強回生モードの選択中における車速に対する目標駆動力特性の一例を示す。図4は、実施例1の目標駆動力算出部にてコースト時に実行される目標駆動力特性選択制御処理の流れを示す。図5~図7は、実施例1において所定の速度での通常モードの選択中におけるアクセル開度に対する目標駆動力特性と所定の速度での強回生モードの選択中におけるアクセル開度に対する目標駆動力特性の一例を示す。以下、図3~図7に基づいて目標駆動力算出部の詳細構成を説明する。
[Detailed configuration of target driving force calculation unit]
FIG. 3 shows an example of the target driving force characteristic with respect to the vehicle speed during selection of the normal mode during coasting and the target driving force characteristic with respect to the vehicle speed during selection of the strong regeneration mode during coasting. FIG. 4 shows a flow of a target driving force characteristic selection control process executed during coasting by the target driving force calculation unit of the first embodiment. FIGS. 5 to 7 show the target driving force characteristics with respect to the accelerator opening during the selection of the normal mode at the predetermined speed and the target driving force with respect to the accelerator opening during the selection of the strong regeneration mode at the predetermined speed in the first embodiment. An example of a characteristic is shown. The detailed configuration of the target driving force calculation unit will be described below with reference to FIGS.
 目標駆動力算出部100は、図3に示すように、アクセル解放操作によるコースト状態のとき、4つの目標駆動力を算出する。4つの目標駆動力として、「第1通常目標駆動力(第1目標駆動力)」と「第2通常目標駆動力(第4目標駆動力)」と「第1強回生目標駆動力(第2目標駆動力)」と「第2強回生目標駆動力(第3目標駆動力)」とを設定している。 The target driving force calculation unit 100 calculates four target driving forces when in the coast state by the accelerator release operation, as shown in FIG. As the four target driving forces, “first normal target driving force (first target driving force)”, “second normal target driving force (fourth target driving force)”, and “first strong regeneration target driving force (second) Target driving force) ”and“ second strong regeneration target driving force (third target driving force) ”.
 これらの4つの目標駆動力は、オーバードライブスイッチ39とモード選択スイッチ40に対するドライバ操作により選択される。ここで、アクセル解放操作によるコースト状態のとき、ドライバ操作によりオーバードライブスイッチ39がONからOFFへ操作されると、車両に付与するエンジンブレーキ力(減速力)が大きくなる。即ち、O/Dオン状態におけるエンジンブレーキ力を第1減速力とし、O/Dオフ状態におけるエンジンブレーキ力を第2減速力とするとき、第2減速力は第1減速力よりも大きくなる。 These four target driving forces are selected by a driver operation on the overdrive switch 39 and the mode selection switch 40. Here, when the overdrive switch 39 is operated from ON to OFF by the driver operation in the coast state by the accelerator release operation, the engine braking force (deceleration force) applied to the vehicle increases. That is, when the engine braking force in the O / D on state is the first deceleration force and the engine braking force in the O / D off state is the second deceleration force, the second deceleration force is greater than the first deceleration force.
 「第1通常目標駆動力」は、通常モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がON状態(O/Dオン状態)による通常減速モードが選択されると、通常減速モードの選択中に算出される目標駆動力である。この第1通常目標駆動力は、図2に示すように、Dレンジ位置のO/Dオン状態におけるエンジンブレーキ相当として回生側に算出される。 “First normal target driving force” is selected when the normal deceleration mode is selected when the normal drive mode is selected and the overdrive switch 39 is turned on (O / D on state) by the driver operation. This is the target driving force calculated during selection. As shown in FIG. 2, the first normal target driving force is calculated on the regeneration side as equivalent to engine braking in the O / D on state at the D range position.
 「第2通常目標駆動力」は、通常モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がOFF状態(O/Dオフ状態)による通常強減速モードが選択されると、通常強減速モードの選択中に算出される目標駆動力である。この第2通常目標駆動力は、図3に示すように、第1通常目標駆動力よりも負側に大きく算出される。第2通常目標駆動力は、Dレンジ位置のO/Dオフ状態におけるエンジンブレーキ相当として算出される。 “Second normal target driving force” is the normal strong deceleration when the normal mode is being selected and the normal strong deceleration mode is selected by the driver operation when the overdrive switch 39 is in the OFF state (O / D off state). This is the target driving force calculated during mode selection. As shown in FIG. 3, the second normal target driving force is calculated to be larger on the negative side than the first normal target driving force. The second normal target driving force is calculated as an engine brake equivalent in the O / D off state at the D range position.
 「第1強回生目標駆動力」は、強回生モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がON状態(O/Dオン状態)による強回生減速モードが選択されると、強回生減速モードの選択中に算出される目標駆動力である。この第1強回生目標駆動力は、図3に示すように、強回生減速モードの選択中におけるO/Dオン状態におけるエンジンブレーキ相当として回生側に算出される。即ち、第1強回生目標駆動力は、図3に示すように、第1通常目標駆動力と第2通常目標駆動力よりも回生側に強く算出される。 “First strong regeneration target driving force” is selected when the strong regeneration mode is selected when the strong regeneration mode is selected and the overdrive switch 39 is turned on (O / D on state) by the driver operation. This is the target driving force calculated during the selection of the regenerative deceleration mode. As shown in FIG. 3, the first strong regeneration target driving force is calculated on the regeneration side as being equivalent to engine braking in the O / D on state during selection of the strong regeneration deceleration mode. That is, as shown in FIG. 3, the first strong regeneration target driving force is calculated more strongly on the regeneration side than the first normal target driving force and the second normal target driving force.
 「第2強回生目標駆動力」は、強回生モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がOFF状態(O/Dオフ状態)による強回生強減速モードが選択されると、強回生強減速モードの選択中に算出される目標駆動力である。この第2強回生目標駆動力は、図3に示すように、第1強回生目標駆動力よりも負側に大きく算出される。また、第1強回生目標駆動力から第2強回生目標駆動力への負側の増加量は、第1通常目標駆動力から第2通常目標駆動力への負側の増加量と同等にする。ただし、第2強回生目標駆動力は、所定の下限目標駆動力により制限される。即ち、第2強回生目標駆動力を負側に大きくするとき、第2強回生目標駆動力を所定の下限目標駆動力よりも負側に大きくしないように制限する。ここで、「所定の下限目標駆動力」とは、例えば、セレクトレバー15でLレンジ位置が選択されているときの目標駆動力をいう。また、「所定の下限目標駆動力」は、予め実験等により走行に適する値を求める。 “Second strong regeneration target driving force” is selected when the strong regeneration mode is selected, and the strong regeneration strong deceleration mode is selected when the overdrive switch 39 is turned off (O / D off state) by the driver operation. This is the target driving force calculated during the selection of the strong regeneration strong deceleration mode. As shown in FIG. 3, the second strong regeneration target driving force is calculated to be larger on the negative side than the first strong regeneration target driving force. Further, the negative increase amount from the first strong regeneration target driving force to the second strong regeneration target driving force is made equal to the negative increase amount from the first normal target driving force to the second normal target driving force. . However, the second strong regeneration target driving force is limited by a predetermined lower limit target driving force. That is, when the second strong regeneration target driving force is increased to the negative side, the second strong regeneration target driving force is limited so as not to be increased more negative than the predetermined lower limit target driving force. Here, the “predetermined lower limit target driving force” refers to a target driving force when the L range position is selected by the select lever 15, for example. Further, the “predetermined lower limit target driving force” is obtained in advance as a value suitable for running through experiments or the like.
 これら4つの目標駆動力の目標駆動力特性は、図3に示すように、減速により車速VSPが低下するとき、各目標駆動力を維持したまま推移する。そして、減速により車速VSPが低下して車両が停車に近づくと目標駆動力を徐々に減少し、停車領域になると正の目標駆動力(クリープトルク)に移行するようにしている。 As shown in FIG. 3, the target driving force characteristics of these four target driving forces change while maintaining each target driving force when the vehicle speed VSP decreases due to deceleration. Then, when the vehicle speed VSP decreases due to deceleration and the vehicle approaches to stop, the target driving force is gradually decreased, and when the vehicle enters the stop region, the target driving force (creep torque) is shifted.
 また、これら4つの目標駆動力のうち、第1通常目標駆動力と第2通常目標駆動力と第1強回生目標駆動力の3つは、例えばモータ/ジェネレータ3の回生力により出力される。残りの第2強回生目標駆動力は、例えばモータ/ジェネレータ3の回生力とエンジンブレーキ力により出力される。 Of these four target driving forces, three of the first normal target driving force, the second normal target driving force, and the first strong regenerative target driving force are output by the regenerative force of the motor / generator 3, for example. The remaining second strong regenerative target driving force is output by the regenerative force and engine brake force of the motor / generator 3, for example.
 このように、殆どの減速シーンにおいてブレーキペダル操作を要さず、アクセル戻し/解放操作による制動力コントロールが可能である。特に、「通常モード」よりも負側に目標駆動力を大きくした「強回生モード」は、アクセルペダルへのアクセルワークにより駆動/制動をコントロールする「1ペダルモード」と呼ばれることがある。 Thus, in most deceleration scenes, the brake pedal operation is not required, and the braking force can be controlled by the accelerator return / release operation. In particular, the “strong regeneration mode” in which the target driving force is increased to the negative side of the “normal mode” is sometimes referred to as “one pedal mode” in which driving / braking is controlled by accelerator work to the accelerator pedal.
 次に、目標駆動力特性選択制御処理構成をあらわす図4の各ステップについて説明する。なお、このフローチャートは、インヒビタースイッチ38からのレンジ位置情報が「Dレンジ位置」になると開始されるとき、この制御処理構成を開始する。 Next, each step of FIG. 4 representing the target driving force characteristic selection control processing configuration will be described. This flowchart starts this control processing configuration when it starts when the range position information from the inhibitor switch 38 becomes the “D range position”.
 ステップS1では、モード選択スイッチ40において通常モードが選択されたか否かを判断する。YES(通常モード)の場合はステップS2へ進み、NO(強回生モード)の場合はステップS5へ進む。 In step S1, it is determined whether or not the normal mode is selected by the mode selection switch 40. If YES (normal mode), the process proceeds to step S2. If NO (strong regeneration mode), the process proceeds to step S5.
 ステップS2では、ステップS1での通常モードであるとの判断に続き、オーバードライブスイッチ39からのスイッチ情報がON(O/Dオン)か否かを判断する。YES(O/Dオン)の場合はステップS3へ進み、NO(O/Dオフ)の場合はステップS4へ進む。 In step S2, following the determination that the normal mode is in step S1, it is determined whether or not the switch information from the overdrive switch 39 is ON (O / D on). If YES (O / D on), the process proceeds to step S3. If NO (O / D off), the process proceeds to step S4.
 ステップS3では、ステップS1での「通常モード」との判断、及び、ステップS2での「O/Dオン」との判断より、第1通常目標駆動力を算出し、リタ-ンへ進む。 In step S3, the first normal target driving force is calculated based on the determination of “normal mode” in step S1 and the determination of “O / D on” in step S2, and the process proceeds to return.
 ステップS4では、ステップS1での「通常モード」との判断、及び、ステップS2での「O/Dオフ」との判断より、第2通常目標駆動力を算出し、リタ-ンへ進む。 In step S4, the second normal target driving force is calculated based on the determination of “normal mode” in step S1 and the determination of “O / D off” in step S2, and the process proceeds to return.
 ステップS5では、ステップS1での強回生モードであるとの判断に続き、オーバードライブスイッチ39からのスイッチ情報がON(O/Dオン)か否かを判断する。YES(O/Dオン)の場合はステップS6へ進み、NO(O/Dオフ)の場合はステップS7へ進む。 In step S5, it is determined whether or not the switch information from the overdrive switch 39 is ON (O / D on) following the determination that the strong regeneration mode is in step S1. If YES (O / D on), the process proceeds to step S6. If NO (O / D off), the process proceeds to step S7.
 ステップS6では、ステップS1での「強回生モード」との判断、及び、ステップS5での「O/Dオン」との判断より、第1強回生目標駆動力を算出し、リタ-ンへ進む。 In step S6, the first strong regeneration target driving force is calculated based on the determination of “strong regeneration mode” in step S1 and “O / D on” in step S5, and the process proceeds to return. .
 ステップS7では、ステップS1での「強回生モード」との判断、及び、ステップS5での「O/Dオフ」との判断より、第2強回生目標駆動力を算出し、リタ-ンへ進む。 In step S7, the second strong regeneration target driving force is calculated based on the determination of “strong regeneration mode” in step S1 and “O / D off” in step S5, and the process proceeds to return. .
 次に、図5~図7について説明する。図5~図7は、アクセル開度APOをアクセル解放操作とアクセル踏込操作を含む全開まで拡大して、第1通常目標駆動力と第2通常目標駆動力と第1強回生目標駆動力と第2強回生目標駆動力のそれぞれを、全てのアクセル開度APOに設定した場合を示している。これら3つの目標駆動力マップのいずれかを使用して、車両は走行する。3つの目標駆動力マップは、運転シーン等に応じて使い分ける。 Next, FIGS. 5 to 7 will be described. 5 to 7 show that the accelerator opening APO is expanded to the fully open position including the accelerator release operation and the accelerator depression operation, and the first normal target driving force, the second normal target driving force, the first strong regeneration target driving force, The case where each of the 2 strong regeneration target driving forces is set to all accelerator opening APOs is shown. The vehicle travels using one of these three target driving force maps. The three target driving force maps are properly used according to the driving scene and the like.
 次に、作用を説明する。
実施例1の作用を、「目標駆動力特性選択制御処理作用」と、「目標駆動力特性選択制御作用」と、「目標駆動力特性選択制御の特徴作用」に分けて説明する。
Next, the operation will be described.
The operation of the first embodiment will be described by dividing it into “target driving force characteristic selection control processing action”, “target driving force characteristic selection control action”, and “characteristic action of target driving force characteristic selection control”.
 [目標駆動力特性選択制御処理作用]
  以下、図4のフローチャートに基づいて、目標駆動力特性選択制御処理作用を説明する。
[Target driving force characteristic selection control processing action]
Hereinafter, the target driving force characteristic selection control processing operation will be described based on the flowchart of FIG.
 通常モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がO/Dオンに選択されるときは、ステップS1→ステップS2→ステップS3へと進む。ステップS3では、第1通常目標駆動力が算出され、ステップS3→リタ-ンへと進む。そして、第1通常目標駆動力に応じて車両が制御される。 When the normal mode is being selected and the overdrive switch 39 is selected to be on / off by operating the driver, the process proceeds from step S1 to step S2 to step S3. In step S3, the first normal target driving force is calculated, and the process proceeds from step S3 to return. The vehicle is controlled according to the first normal target driving force.
 次に、通常モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がO/DオンからO/Dオフへ変更されると、ステップS1→ステップS2→ステップS4へと進む。ステップS4では、第2通常目標駆動力が算出され、ステップS4→リタ-ンへと進む。そして、第2通常目標駆動力に応じて車両が制御される。 Next, when the normal mode is being selected and the overdrive switch 39 is changed from O / D ON to O / D OFF by a driver operation, the process proceeds from step S1 to step S2 to step S4. In step S4, the second normal target driving force is calculated, and the process proceeds from step S4 to return. Then, the vehicle is controlled according to the second normal target driving force.
 次に、強回生モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がO/Dオンに選択されるときは、ステップS1→ステップS5→ステップS6へと進む。ステップS6では、第1強回生目標駆動力が算出され、ステップS6→リタ-ンへと進む。そして、第1強回生目標駆動力に応じて車両が制御される。 Next, when the strong regeneration mode is being selected and the overdrive switch 39 is selected to be ON / D ON by a driver operation, the process proceeds from step S1 to step S5 to step S6. In step S6, the first strong regeneration target driving force is calculated, and the process proceeds from step S6 to return. Then, the vehicle is controlled according to the first strong regeneration target driving force.
 次に、強回生モードの選択中であって、ドライバ操作によりオーバードライブスイッチ39がO/DオンからO/Dオフへ変更されると、ステップS1→ステップS5→ステップS7へと進む。ステップS7では、第2強回生目標駆動力が算出され、ステップS7→リタ-ンへと進む。そして、第2強回生目標駆動力に応じて車両が制御される。 Next, when the strong regeneration mode is being selected and the overdrive switch 39 is changed from O / D ON to O / D OFF by a driver operation, the process proceeds from step S1 to step S5 to step S7. In step S7, the second strong regeneration target driving force is calculated, and the process proceeds from step S7 to return. Then, the vehicle is controlled according to the second strong regeneration target driving force.
 ここで、走行中であって、通常モードの選択中に、強回生モードが選択された場合には、ステップS1において「YES」から「NO」になり、ステップS1→ステップS5へと進む。また、反対に、走行中であって、強回生モードの選択中に、通常モードが選択された場合には、ステップS1において「NO」から「YES」になり、ステップS1→ステップS2へと進む。 Here, when the vehicle is running and the strong regeneration mode is selected while the normal mode is selected, “YES” is changed to “NO” in step S1, and the process proceeds from step S1 to step S5. On the other hand, when the vehicle is running and the normal mode is selected while the strong regeneration mode is selected, “NO” is changed to “YES” in step S1, and the process proceeds from step S1 to step S2. .
 [目標駆動力特性選択制御作用]
  図8は、実施例1において通常モードの選択中にドライバ操作によりオーバードライブスイッチ39がO/Dオン状態からO/Dオフ状態へ変更されたときの車速VSP・アクセル開度APO・オーバードライブスイッチ情報・目標駆動力の各特性を示す。図9は、実施例1において強回生モードの選択中にドライバ操作によりオーバードライブスイッチ39がO/Dオン状態からO/Dオフ状態へ変更されたときの車速VSP・アクセル開度APO・オーバードライブスイッチ情報・目標駆動力の各特性を示す。以下、図8と図9に基づいて、アクセル解放操作によるコースト状態のときの目標駆動力特性選択制御作用を、「通常モードの選択中」と、「強回生モードの選択中」に分けて説明する。なお、図8と図9において、ドライバ操作によりレンジ位置はDレンジ位置が選択されているものとする。
[Target drive force characteristics selection control action]
FIG. 8 shows the vehicle speed VSP / accelerator opening APO / overdrive switch when the overdrive switch 39 is changed from the O / D on state to the O / D off state by a driver operation while the normal mode is selected in the first embodiment. Each characteristic of information and target driving force is shown. FIG. 9 shows the vehicle speed VSP, the accelerator opening APO, and the overdrive when the overdrive switch 39 is changed from the O / D on state to the O / D off state by the driver operation while the strong regeneration mode is selected in the first embodiment. Each characteristic of switch information and target driving force is shown. Hereinafter, based on FIG. 8 and FIG. 9, the target driving force characteristic selection control action in the coast state by the accelerator release operation is divided into “selecting the normal mode” and “selecting the strong regeneration mode”. To do. 8 and 9, it is assumed that the D position is selected as the range position by the driver operation.
 (通常モードの選択中)
  以下、図8に基づいて、アクセル解放操作によるコースト状態のときであって通常モードの選択中の目標駆動力特性選択制御作用を説明する。
(Normal mode selected)
Hereinafter, based on FIG. 8, the target driving force characteristic selection control operation in the coast state by the accelerator release operation and during the selection of the normal mode will be described.
 時刻t10のとき、ドライバ操作によりアクセル解放操作が行われる。このとき、オーバードライブスイッチ39はO/Dオン状態である。このため、第1通常目標駆動力が算出される。この時刻t10のときは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS3に相当する。 Accelerator release operation is performed by driver operation at time t10. At this time, the overdrive switch 39 is in the O / D on state. For this reason, the first normal target driving force is calculated. This time t10 corresponds to step S1 → step S2 → step S3 in the flowchart of FIG.
 時刻t10から時刻t11までの間、オーバードライブスイッチ39がO/Dオン状態のままである。このため、車速VSPに応じて、第1通常目標駆動力が算出される。この間は、第1通常目標駆動力が回生側に算出される。この時刻t10から時刻t11までは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS3→リターンに相当する。 From time t10 to time t11, the overdrive switch 39 remains in the O / D on state. Therefore, the first normal target driving force is calculated according to the vehicle speed VSP. During this time, the first normal target driving force is calculated on the regeneration side. From time t10 to time t11 corresponds to Step S1, Step S2, Step S3, and Return in the flowchart of FIG.
 時刻t11のとき、ドライバ操作によりオーバードライブスイッチ39がO/Dオン状態からO/Dオフ状態へ変更される。このため、第1通常目標駆動力から第2通常目標駆動力へ変更される。そして、時刻t11から時刻t12までの間は、第1通常目標駆動力から第2通常目標駆動力への過渡期に相当する。このため、第1通常目標駆動力から第2通常目標駆動力へランプ傾きで(徐々に)変更されるように、通常目標駆動力が算出される。なお、通常目標駆動力は、所定の下限目標駆動力よりも負側に大きくならないので、ここでは制限されない。これ以降の時刻においても同様である。 At time t11, the overdrive switch 39 is changed from the O / D on state to the O / D off state by a driver operation. Therefore, the first normal target driving force is changed to the second normal target driving force. The period from time t11 to time t12 corresponds to a transition period from the first normal target driving force to the second normal target driving force. For this reason, the normal target driving force is calculated so as to change (gradually) from the first normal target driving force to the second normal target driving force with a ramp inclination. The normal target driving force is not limited here because it does not become larger than the predetermined lower limit target driving force on the negative side. The same applies to subsequent times.
 時刻t12のとき、過渡期が終了し、第2通常目標駆動力が算出される。この時刻t12のときは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS4に相当する。 At time t12, the transition period ends and the second normal target driving force is calculated. At time t12, this corresponds to step S1 → step S2 → step S4 in the flowchart of FIG.
 時刻t12から時刻t13までの間、オーバードライブスイッチ39がO/Dオフ状態に維持される。このため、車速VSPに応じて、第2通常目標駆動力が算出される。この間は、第1通常目標駆動力よりも負側に大きくした第2通常目標駆動力が算出される。この時刻t12から時刻t13までは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS4→リターンに相当する。 From time t12 to time t13, the overdrive switch 39 is maintained in the O / D off state. Therefore, the second normal target driving force is calculated according to the vehicle speed VSP. During this period, the second normal target driving force that is larger than the first normal target driving force on the negative side is calculated. From time t12 to time t13 corresponds to step S1, step S2, step S4, and return in the flowchart of FIG.
 時刻t13のとき、ドライバ操作によりオーバードライブスイッチ39がO/Dオフ状態からO/Dオン状態へ変更される。このため、第2通常目標駆動力から第1通常目標駆動力へ変更される。そして、時刻t13から時刻t14までの間は、第2通常目標駆動力から第1通常目標駆動力への過渡期に相当する。このため、第2通常目標駆動力から第1通常目標駆動力へランプ傾きで変更されるように、通常目標駆動力が算出される。
時刻t14のとき、過渡期が終了し、第1通常目標駆動力が算出される。この時刻t14のときは、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS3に相当する。なお、時刻t14以降は、車速VSPに応じて、第1通常目標駆動力が算出される。
At time t13, the overdrive switch 39 is changed from the O / D off state to the O / D on state by a driver operation. Therefore, the second normal target driving force is changed to the first normal target driving force. A period from time t13 to time t14 corresponds to a transition period from the second normal target driving force to the first normal target driving force. For this reason, the normal target driving force is calculated so as to change from the second normal target driving force to the first normal target driving force with a ramp inclination.
At time t14, the transition period ends, and the first normal target driving force is calculated. At time t14, this corresponds to step S1 → step S2 → step S3 in the flowchart of FIG. After time t14, the first normal target driving force is calculated according to the vehicle speed VSP.
 このように、実施例1の目標駆動力特性選択制御では、通常モードの選択中、ドライバ操作によるオーバードライブスイッチ情報に応じた第1通常目標駆動力と第2通常目標駆動力が算出される。 Thus, in the target driving force characteristic selection control of the first embodiment, the first normal target driving force and the second normal target driving force corresponding to the overdrive switch information by the driver operation are calculated during the selection of the normal mode.
 (強回生モードの選択中)
  以下、図9に基づいて、アクセル解放操作によるコースト状態のときであって強回生モードの選択中の目標駆動力特性選択制御作用を説明する。
(When the strong regeneration mode is selected)
Hereinafter, based on FIG. 9, the target driving force characteristic selection control operation in the coasting state by the accelerator release operation and during the selection of the strong regeneration mode will be described.
 時刻t20のとき、ドライバ操作によりアクセル解放操作が行われる。このとき、オーバードライブスイッチ39はO/Dオン状態である。このため、第1強回生目標駆動力が算出される。この時刻t20のときは、図4のフローチャートにおいて、ステップS1→ステップS5→ステップS6に相当する。 At time t20, the accelerator release operation is performed by the driver operation. At this time, the overdrive switch 39 is in the O / D on state. For this reason, the first strong regeneration target driving force is calculated. At time t20, this corresponds to step S1 → step S5 → step S6 in the flowchart of FIG.
 時刻t20から時刻t21までの間、オーバードライブスイッチ39がO/Dオン状態のままである。このため、車速VSPに応じて、第1強回生目標駆動力が算出される。この間は、第1強回生目標駆動力が回生側に算出される。この時刻t20から時刻t21までは、図4のフローチャートにおいて、ステップS1→ステップS5→ステップS6→リターンに相当する。 From time t20 to time t21, the overdrive switch 39 remains in the O / D on state. Therefore, the first strong regeneration target driving force is calculated according to the vehicle speed VSP. During this time, the first strong regeneration target driving force is calculated on the regeneration side. From time t20 to time t21 corresponds to step S1, step S5, step S6, and return in the flowchart of FIG.
 時刻t21のとき、ドライバ操作によりオーバードライブスイッチ39がO/Dオン状態からO/Dオフ状態へ変更される。このため、第1強回生目標駆動力から第2強回生目標駆動力へ変更される。そして、時刻t21から時刻t22までの間、第1強回生目標駆動力から第2強回生目標駆動力への過渡期に相当する。このため、第1強回生目標駆動力から第2強回生目標駆動力へランプ傾きで(徐々に)変更されるように、強回生目標駆動力が算出される。ただし、強回生目標駆動力が、所定の下限目標駆動力よりも負側に大きくならないように制限される。 At time t21, the overdrive switch 39 is changed from the O / D on state to the O / D off state by a driver operation. Therefore, the first strong regeneration target driving force is changed to the second strong regeneration target driving force. And from time t21 to time t22, it corresponds to a transition period from the first strong regeneration target driving force to the second strong regeneration target driving force. For this reason, the strong regeneration target driving force is calculated so that the ramp inclination changes (gradually) from the first strong regeneration target driving force to the second strong regeneration target driving force. However, the strong regeneration target driving force is limited so as not to become larger than the predetermined lower limit target driving force.
 時刻t22のとき、過渡期が終了し、第2強回生目標駆動力が算出される。このとき、算出される第2強回生目標駆動力は、所定の下限目標駆動力よりも負側に大きくなってしまうため、所定の下限目標駆動力よりも負側に大きくならないように制限される。この時刻t22のときは、図4のフローチャートにおいて、ステップS1→ステップS5→ステップS7に相当する。 At time t22, the transition period ends, and the second strong regeneration target driving force is calculated. At this time, since the calculated second strong regeneration target driving force becomes larger on the negative side than the predetermined lower limit target driving force, it is limited so as not to become larger on the negative side than the predetermined lower limit target driving force. . This time t22 corresponds to step S1 → step S5 → step S7 in the flowchart of FIG.
 時刻t22から時刻t23までの間、オーバードライブスイッチ39がO/Dオフ状態に維持される。このため、車速VSPに応じて、第2強回生目標駆動力が算出される。この間は、第1強回生目標駆動力よりも負側に大きくした第2強回生目標駆動力が算出される。この時刻t22から時刻t23までの間において、前半から中盤にかけて、算出される第2強回生目標駆動力は、所定の下限目標駆動力よりも負側に大きくなってしまうため、所定の下限目標駆動力よりも負側に大きくならないように制限される。また、時刻t22から時刻t23までの間の後半において、算出される第2強回生目標駆動力は、所定の下限目標駆動力よりも負側に大きくならないため、所定の下限目標駆動力により制限されない。この時刻t22から時刻t23までは、図4のフローチャートにおいて、ステップS1→ステップS5→ステップS7→リターンに相当する。 From time t22 to time t23, the overdrive switch 39 is maintained in the O / D off state. Therefore, the second strong regeneration target driving force is calculated according to the vehicle speed VSP. During this time, the second strong regeneration target driving force that is larger than the first strong regeneration target driving force on the negative side is calculated. From the time t22 to the time t23, the calculated second strong regeneration target driving force is larger than the predetermined lower limit target driving force on the negative side from the first half to the middle stage. It is limited so that it does not become larger than the negative side of the force. Further, in the latter half of the period from time t22 to time t23, the calculated second strong regeneration target driving force does not become more negative than the predetermined lower limit target driving force, and thus is not limited by the predetermined lower limit target driving force. . From time t22 to time t23 corresponds to step S1, step S5, step S7, and return in the flowchart of FIG.
 時刻t23のとき、ドライバ操作によりオーバードライブスイッチ39がO/Dオフ状態からO/Dオン状態へ変更される。このため、第2強回生目標駆動力から第1強回生目標駆動力へ変更される。そして、時刻t23から時刻t24までの間、第2強回生目標駆動力から第1強回生目標駆動力への過渡期に相当する。このため、第2強回生目標駆動力から第1強回生目標駆動力へランプ傾きで変更されるように、目標駆動力が算出される。 At time t23, the overdrive switch 39 is changed from the O / D off state to the O / D on state by a driver operation. Therefore, the second strong regeneration target driving force is changed to the first strong regeneration target driving force. The period from time t23 to time t24 corresponds to a transition period from the second strong regeneration target driving force to the first strong regeneration target driving force. For this reason, the target driving force is calculated so as to change from the second strong regeneration target driving force to the first strong regeneration target driving force with the ramp inclination.
 時刻t24のとき、過渡期が終了し、第1強回生目標駆動力が算出される。この時刻t24のときは、図4のフローチャートにおいて、ステップS1→ステップS5→ステップS6に相当する。なお、時刻t24以降は、車速VSPに応じて、第1強回生目標駆動力が算出される。 At time t24, the transition period ends, and the first strong regeneration target driving force is calculated. This time t24 corresponds to step S1 → step S5 → step S6 in the flowchart of FIG. After time t24, the first strong regeneration target driving force is calculated according to the vehicle speed VSP.
 このように、実施例1の目標駆動力特性選択制御では、強回生モードの選択中、ドライバ操作によるオーバードライブスイッチ情報に応じた第1強回生目標駆動力と第2強回生目標駆動力が算出される。 As described above, in the target driving force characteristic selection control according to the first embodiment, the first strong regeneration target driving force and the second strong regeneration target driving force corresponding to the overdrive switch information by the driver operation are calculated while the strong regeneration mode is selected. Is done.
 [目標駆動力特性選択制御の特徴作用]
  実施例1では、強回生モードの選択中であって、ドライバ操作によりO/Dオフ状態による強回生強減速モード(強減速モード)を選択すると、強減速モードの選択中、第1強回生目標駆動力よりも負側に大きくした第2強回生目標駆動力を算出する。そして、算出した第2強回生目標駆動力に応じた回生力をモータ/ジェネレータ3に出力する。例えば、強回生強減速モードが選択されているとき、第1強回生目標駆動力を変化させないと、車両に付与する減速力としてO/Dオフ状態におけるエンジンブレーキ力が増えた分、モータ/ジェネレータ3の回生力を小さくする制御が行われ、燃費が悪化する。これに対し、実施例1では、強回生強減速モードが選択されているとき、第1強回生目標駆動力よりも負側に大きくした第2強回生目標駆動力が算出される。即ち、強回生強減速モードが選択されているとき、目標駆動力を大きくすることで、モータ/ジェネレータ3の回生力が小さくなることが抑制される。この結果、強回生強減速モードが選択されているとき、燃費の悪化が抑制される。
[Characteristic effect of target driving force characteristic selection control]
In the first embodiment, when the strong regeneration mode is selected and the strong regeneration strong deceleration mode (strong deceleration mode) in the O / D OFF state is selected by the driver operation, the first strong regeneration target is selected during the selection of the strong deceleration mode. A second strong regeneration target driving force that is larger on the negative side than the driving force is calculated. Then, the regenerative force corresponding to the calculated second strong regenerative target driving force is output to the motor / generator 3. For example, when the strong regeneration strong deceleration mode is selected and the first strong regeneration target driving force is not changed, the motor / generator is increased as the engine braking force in the O / D off state increases as the deceleration force applied to the vehicle. Control to reduce the regenerative power of No. 3 is performed, and fuel consumption deteriorates. On the other hand, in the first embodiment, when the strong regeneration strong deceleration mode is selected, the second strong regeneration target driving force that is larger on the negative side than the first strong regeneration target driving force is calculated. That is, when the strong regenerative strong deceleration mode is selected, the regenerative force of the motor / generator 3 is suppressed from being reduced by increasing the target driving force. As a result, when the strong regeneration strong deceleration mode is selected, deterioration of fuel consumption is suppressed.
 実施例1では、強回生強減速モードの選択中、アクセル解放操作とアクセル踏込操作を含むアクセル開度APOの変化に対する第2強回生目標駆動力の変化を連続にする。
即ち、例えば図5の第1目標駆動力マップの第2強回生目標駆動力において、第1通常目標駆動力等よりもアクセル操作による減速の範囲が拡大されても、負側の第2強回生目標駆動力の調整をアクセル操作で容易に行える。従って、アクセル操作によって、容易に第2強回生目標駆動力を調整することができる。加えて、アクセル開度APOの変化に対する第1通常目標駆動力と第2通常目標駆動力と第1強回生目標駆動力についても同様に、各目標駆動力の変化を連続にする(例えば図5)。これにより、第1通常目標駆動力と第2通常目標駆動力と第1強回生目標駆動力についても同様に、アクセル操作によって、容易に各目標駆動力を調整することができる。
In the first embodiment, during the selection of the strong regeneration strong deceleration mode, the change in the second strong regeneration target driving force with respect to the change in the accelerator opening APO including the accelerator release operation and the accelerator stepping operation is made continuous.
That is, for example, in the second strong regeneration target driving force of the first target driving force map of FIG. 5, even if the deceleration range by the accelerator operation is larger than the first normal target driving force or the like, the negative second strong regeneration is performed. The target drive force can be easily adjusted by operating the accelerator. Therefore, the second strong regeneration target driving force can be easily adjusted by the accelerator operation. In addition, the first normal target driving force, the second normal target driving force, and the first strong regenerative target driving force with respect to the change in the accelerator opening APO are similarly changed continuously (for example, FIG. 5). ). Accordingly, each target driving force can be easily adjusted by the accelerator operation in the same manner for the first normal target driving force, the second normal target driving force, and the first strong regeneration target driving force.
 実施例1では、第1強回生目標駆動力から第2強回生目標駆動力への負側の増加量は、第1通常目標駆動力から第2通常目標駆動力への負側の増加量と同等にする。即ち、強回生モードにおける目標駆動力の変化を、通常モードにおける目標駆動力の変化と同じにする。従って、強回生モードにおいてドライバが期待している目標駆動力の変化を提供できる。 In the first embodiment, the negative increase amount from the first strong regeneration target driving force to the second strong regeneration target driving force is the negative increase amount from the first normal target driving force to the second normal target driving force. Make equal. That is, the change in the target driving force in the strong regeneration mode is made the same as the change in the target driving force in the normal mode. Accordingly, it is possible to provide a change in the target driving force expected by the driver in the strong regeneration mode.
 実施例1では、第1強回生目標駆動力から第2強回生目標駆動力へ負側に大きくするとき、第2強回生目標駆動力を、所定の下限目標駆動力により制限する。例えば、負側の第2強回生目標駆動力が大きくなり過ぎると、減速コントロールが悪化する。これに対し、実施例1では、第2強回生目標駆動力を、所定の下限目標駆動力により制限することで、負側に第2強回生目標駆動力が大きくなり過ぎることが抑制される。従って、負側に第2強回生目標駆動力が大きくなり過ぎることによる減速コントロールの悪化を回避できる。 In Example 1, when increasing from the first strong regeneration target driving force to the second strong regeneration target driving force on the negative side, the second strong regeneration target driving force is limited by a predetermined lower limit target driving force. For example, if the negative second strong regeneration target driving force becomes too large, the deceleration control deteriorates. On the other hand, in Example 1, by restricting the second strong regeneration target driving force with a predetermined lower limit target driving force, the second strong regeneration target driving force is suppressed from becoming excessively large on the negative side. Therefore, it is possible to avoid the deterioration of the deceleration control due to the second strong regeneration target driving force becoming excessively large on the negative side.
 実施例1では、アクセル解放操作とアクセル踏込操作を含むアクセル開度APOが中間以上の領域は、第2強回生目標駆動力を第1強回生目標駆動力と同等にする。即ち、例えば図6の第2目標駆動力マップに示すように、アクセル開度APOが中間以上の領域は、第2強回生目標駆動力を第1強回生目標駆動力に揃える。従って、加速時等における高い目標駆動力(正側)が要求されるドライバ操作に対して、反応良く第2強回生目標駆動力を上げることができる。加えて、アクセル開度APOが中間以上の領域は、例えば図6に示すように、第2通常目標駆動力を第1通常目標駆動力と同等にする。これにより、加速時等における高い目標駆動力(正側)が要求されるドライバ操作に対して、反応良く第2通常目標駆動力を上げることができる。 In the first embodiment, the second strong regeneration target driving force is made equal to the first strong regeneration target driving force in a region where the accelerator opening APO including the accelerator releasing operation and the accelerator stepping operation is intermediate or higher. That is, for example, as shown in the second target driving force map of FIG. 6, in the region where the accelerator opening APO is intermediate or higher, the second strong regeneration target driving force is made equal to the first strong regeneration target driving force. Accordingly, the second strong regeneration target driving force can be increased with good response to a driver operation that requires a high target driving force (positive side) during acceleration or the like. In addition, in a region where the accelerator opening APO is intermediate or higher, for example, as shown in FIG. 6, the second normal target driving force is made equal to the first normal target driving force. As a result, the second normal target driving force can be increased with good response to a driver operation that requires a high target driving force (positive side) during acceleration or the like.
 実施例1では、第2強回生目標駆動力では、一定速走行で使用する一定速目標駆動力領域におけるアクセル開度APOの変化勾配を、一定速目標駆動力領域以外の領域におけるアクセル開度APOの変化勾配よりも緩やかにする。即ち、例えば図7の第3目標駆動力マップに示すように、この一定速目標駆動力領域におけるアクセル開度APOの変化勾配を、その他の領域におけるアクセル開度APOの変化勾配よりも緩やかにする。このため、一定速走行におけるアクセル開度APOに幅を持たすことができる。これにより、アクセル開度APOが多少変化しても一定速走行を維持できるため、一定速走行を行いやすくなる。従って、一定速走行の操作を容易にすることができる。加えて、第1通常目標駆動力と第2通常目標駆動力と第1強回生目標駆動力についても同様にする。即ち、これら3つの目標駆動力についても、一定速走行で使用する一定速目標駆動力領域におけるアクセル開度APOの変化勾配を、一定速目標駆動力領域以外の領域におけるアクセル開度APOの変化勾配よりも緩やかにする(例えば図7)。これにより、一定速走行の操作を容易にすることができる。なお、一定速目標駆動力領域は、最大目標駆動力に対する所定の割合領域であり、予め設定されている。 In the first embodiment, with the second strong regenerative target driving force, the change gradient of the accelerator opening APO in the constant speed target driving force region used for constant speed traveling is changed to the accelerator opening APO in the region other than the constant speed target driving force region. Be gentler than the slope of change. That is, for example, as shown in the third target driving force map of FIG. 7, the change gradient of the accelerator opening APO in this constant speed target driving force region is made gentler than the changing gradient of the accelerator opening APO in other regions. . For this reason, the accelerator opening APO in constant speed travel can be widened. Thereby, even if the accelerator opening APO slightly changes, the constant speed travel can be maintained, so that the constant speed travel is facilitated. Accordingly, it is possible to facilitate the operation at a constant speed. In addition, the same applies to the first normal target driving force, the second normal target driving force, and the first strong regeneration target driving force. That is, for these three target driving forces, the change gradient of the accelerator opening APO in the constant speed target driving force region used for constant speed traveling is changed to the change gradient of the accelerator opening APO in a region other than the constant speed target driving force region. (For example, FIG. 7). Thereby, operation of constant speed travel can be made easy. The constant speed target driving force area is a predetermined ratio area with respect to the maximum target driving force, and is set in advance.
 次に、効果を説明する。
実施例1のFFハイブリッド車両の制御方法及び制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the control method and control apparatus for the FF hybrid vehicle of the first embodiment, the effects listed below can be obtained.
 (1) アクセル解放操作によるコースト状態のとき、ドライバの選択に応じて車両に減速力を付与する。この減速力は、第1減速力(O/Dオン状態におけるエンジンブレーキ力)と第1減速力よりも大きい第2減速力(O/Dオフ状態におけるエンジンブレーキ力)との少なくとも2段階で変更可能である。
  この電動車両(FFハイブリッド車両)の制御方法において、モータ(モータ/ジェネレータ3)と、モード選択部(モード選択スイッチ40)と、を備える。
  モータは、電動車両に駆動力および回生力を付与可能である。
  モード選択部は、通常モードと、強回生モードと、をドライバの選択に応じて選択可能である。
  その制御方法において、通常モードの選択中、回生側に第1目標駆動力(第1通常目標駆動力)を算出し、強回生モードの選択中、第1目標駆動力よりも回生側に強い第2目標駆動力(第1強回生目標駆動力)を算出する。
  その強回生モードの選択中であって、ドライバ操作により第2減速力による強減速モード(強回生強減速モード)を選択すると、強減速モードの選択中、第2目標駆動力よりも負側に大きくした第3目標駆動力(第2強回生目標駆動力)を算出する。
  そして、算出した各目標駆動力(第1通常目標駆動力/第1強回生目標駆動力/第2強回生目標駆動力)に応じた回生力をモータに出力する。
  このため、強減速モード(強回生強減速モード)が選択されているとき、燃費の悪化を抑制する電動車両(FFハイブリッド車両)の制御方法を提供することができる。
(1) When the vehicle is coasted by the accelerator release operation, a deceleration force is applied to the vehicle according to the driver's selection. This deceleration force is changed in at least two stages: a first deceleration force (engine braking force in the O / D on state) and a second deceleration force (engine braking force in the O / D off state) greater than the first deceleration force. Is possible.
This control method for an electric vehicle (FF hybrid vehicle) includes a motor (motor / generator 3) and a mode selection unit (mode selection switch 40).
The motor can apply driving force and regenerative force to the electric vehicle.
The mode selection unit can select the normal mode and the strong regeneration mode according to the driver's selection.
In the control method, the first target driving force (first normal target driving force) is calculated on the regeneration side during the selection of the normal mode, and the first target driving force stronger on the regeneration side than the first target driving force is selected during the strong regeneration mode. 2. Calculate the target driving force (first strong regeneration target driving force).
When the strong regeneration mode is being selected and the strong deceleration mode with the second deceleration force (strong regeneration strong deceleration mode) is selected by the driver operation, the second target driving force is set to the negative side during the selection of the strong deceleration mode. The increased third target driving force (second strong regeneration target driving force) is calculated.
Then, a regenerative force corresponding to each calculated target driving force (first normal target driving force / first strong regenerative target driving force / second strong regenerative target driving force) is output to the motor.
For this reason, when the strong deceleration mode (strong regeneration strong deceleration mode) is selected, the control method of the electric vehicle (FF hybrid vehicle) which suppresses deterioration of a fuel consumption can be provided.
 (2) 強減速モード(強回生強減速モード)の選択中、アクセル解放操作とアクセル踏込操作を含むアクセル開度APOの変化に対する第3目標駆動力(第2強回生目標駆動力)の変化を連続にする。
  このため、上記(1)の効果に加え、アクセル操作によって、容易に第3目標駆動力(第2強回生目標駆動力)を調整することができる。
(2) While the strong deceleration mode (strong regeneration strong deceleration mode) is selected, the change in the third target driving force (second strong regeneration target driving force) with respect to the change in accelerator opening APO including the accelerator release operation and the accelerator stepping operation Make it continuous.
For this reason, in addition to the effect of (1), the third target driving force (second strong regeneration target driving force) can be easily adjusted by the accelerator operation.
 (3) 通常モードの選択中であって、ドライバ操作により第2減速力(O/Dオフ状態におけるエンジンブレーキ力)による通常強減速モードのとき、第4目標駆動力(第2通常目標駆動力)を算出する。この第4目標駆動力は、第1目標駆動力(第1通常目標駆動力)よりも負側に大きくした。
  第2目標駆動力(第1強回生目標駆動力)から第3目標駆動力(第2強回生目標駆動力)への負側の増加量は、第1目標駆動力から第4目標駆動力への負側の増加量と同等にする。
  このため、上記(1)~(2)の効果に加え、強回生モードにおいてドライバが期待している目標駆動力の変化を提供できる。
(3) The fourth target driving force (second normal target driving force) when the normal mode is selected and the driver is operating in the normal strong deceleration mode using the second deceleration force (engine braking force in the O / D off state). ) Is calculated. The fourth target driving force is set larger on the negative side than the first target driving force (first normal target driving force).
The negative increase amount from the second target driving force (first strong regeneration target driving force) to the third target driving force (second strong regeneration target driving force) is changed from the first target driving force to the fourth target driving force. The amount of increase on the negative side of
Therefore, in addition to the effects (1) to (2), it is possible to provide a change in the target driving force expected by the driver in the strong regeneration mode.
 (4) 第2目標駆動力(第1強回生目標駆動力)から第3目標駆動力(第2強回生目標駆動力)へ負側に大きくするとき、第3目標駆動力を、所定の下限目標駆動力(Lレンジ位置が選択されているときの目標駆動力)により制限する。
  このため、上記(1)~(3)の効果に加え、負側に第3目標駆動力(第2強回生目標駆動力)が大きくなり過ぎることによる減速コントロールの悪化を回避できる。
(4) When increasing the second target driving force (first strong regeneration target driving force) to the third target driving force (second strong regeneration target driving force) on the negative side, the third target driving force is set to a predetermined lower limit. It is limited by the target driving force (target driving force when the L range position is selected).
For this reason, in addition to the effects (1) to (3), it is possible to avoid the deterioration of the deceleration control due to the third target driving force (second strong regeneration target driving force) being excessively increased on the negative side.
 (5) アクセル解放操作とアクセル踏込操作を含むアクセル開度APOが中間開度以上の領域は、第3目標駆動力(第2強回生目標駆動力)を第2目標駆動力(第1強回生目標駆動力)と同等にする。
  このため、上記(1)~(4)の効果に加え、加速時等における高い目標駆動力(正側)が要求されるドライバ操作に対して、反応良く第3目標駆動力(第2強回生目標駆動力)を上げることができる。
(5) In a region where the accelerator opening APO including the accelerator release operation and the accelerator depression operation is greater than or equal to the intermediate opening, the third target driving force (second strong regeneration target driving force) is changed to the second target driving force (first strong regeneration). Target driving force)
For this reason, in addition to the effects (1) to (4) above, the third target driving force (second strong regeneration) is responsive to driver operations that require a high target driving force (positive side) during acceleration or the like. Target driving force) can be increased.
 (6) 第3目標駆動力(第2強回生目標駆動力)では、一定速走行で使用する一定速目標駆動力領域におけるアクセル開度の変化勾配を、一定速目標駆動力領域以外の領域におけるアクセル開度の変化勾配よりも緩やかにする。
  このため、上記(1)~(5)の効果に加え、一定速走行の操作を容易にすることができる。
(6) With the third target driving force (second strong regenerative target driving force), the change gradient of the accelerator opening in the constant speed target driving force region used for constant speed traveling is set in the region other than the constant speed target driving force region. Use a gentler gradient than the change in accelerator opening.
For this reason, in addition to the effects (1) to (5) described above, a constant speed traveling operation can be facilitated.
 (7) アクセル解放操作によるコースト状態のとき、ドライバの選択に応じて車両に減速力を付与する。この減速力は、第1減速力(O/Dオン状態におけるエンジンブレーキ力)と第1減速力よりも大きい第2減速力(O/Dオフ状態におけるエンジンブレーキ力)との少なくとも2段階で変更可能である。
  この電動車両(FFハイブリッド車両)の制御装置において、モータ(モータ/ジェネレータ3)と、モード選択部(モード選択スイッチ40)と、目標駆動力算出部100と、モータ制御部(モータコントローラ25)と、を備える。
  モータは、電動車両に駆動力および回生力を付与可能である。
  モード選択部は、通常モードと、強回生モードと、をドライバの選択に応じて選択可能である。
  目標駆動力算出部100は、通常モードの選択中、回生側に第1目標駆動力(第1通常目標駆動力)を算出し、強回生モードの選択中、第1目標駆動力よりも回生側に強い第2目標駆動力(第1強回生目標駆動力)を算出する。
  モータ制御部は、目標駆動力算出部が算出した各目標駆動力に応じた回生力をモータに出力する。
  その目標駆動力算出部は、強回生モードの選択中であって、ドライバ操作により第2減速力による強減速モード(強回生強減速モード)を選択すると、強減速モードの選択中、第3目標駆動力(第2強回生目標駆動力)を算出する。この第3目標駆動力は、第2目標駆動力よりも負側に大きくした。
  このため、強減速モード(強回生強減速モード)が選択されているとき、燃費の悪化を抑制する電動車両(FFハイブリッド車両)の制御装置を提供することができる。
(7) When coasting by accelerator release operation, a deceleration force is applied to the vehicle according to the driver's selection. This deceleration force is changed in at least two stages: a first deceleration force (engine braking force in the O / D on state) and a second deceleration force (engine braking force in the O / D off state) greater than the first deceleration force. Is possible.
In this electric vehicle (FF hybrid vehicle) control device, a motor (motor / generator 3), a mode selection unit (mode selection switch 40), a target driving force calculation unit 100, a motor control unit (motor controller 25), .
The motor can apply driving force and regenerative force to the electric vehicle.
The mode selection unit can select the normal mode and the strong regeneration mode according to the driver's selection.
The target driving force calculation unit 100 calculates the first target driving force (first normal target driving force) on the regeneration side during the selection of the normal mode, and the regeneration side rather than the first target driving force during the selection of the strong regeneration mode. A second target driving force (first strong regeneration target driving force) that is strong against
The motor control unit outputs a regenerative force corresponding to each target driving force calculated by the target driving force calculation unit to the motor.
When the strong regeneration mode is selected and the strong deceleration mode (strong regeneration strong deceleration mode) by the second deceleration force is selected by a driver operation, the target driving force calculation unit selects the third target while selecting the strong deceleration mode. A driving force (second strong regeneration target driving force) is calculated. The third target driving force is set to be more negative than the second target driving force.
For this reason, when the strong deceleration mode (strong regeneration strong deceleration mode) is selected, the control apparatus of the electric vehicle (FF hybrid vehicle) which suppresses deterioration of a fuel consumption can be provided.
 以上、本開示の電動車両の制御方法及び制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The control method and control device for the electric vehicle according to the present disclosure have been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are permitted without departing from the gist of the invention according to each claim of the claims.
 実施例1では、ドライバの選択に応じて車両に付与する減速力を第1減速力と第2減速力の2段階とする例を示した。しかし、これに限らず、3段階以上としても良い。 In the first embodiment, an example in which the deceleration force applied to the vehicle according to the driver's selection has two stages of the first deceleration force and the second deceleration force is shown. However, the present invention is not limited to this, and three or more stages may be used.
 実施例1では、車両に付与する第1減速力と第2減速力の選択を、ドライバのオーバードライブスイッチ39のON/OFF選択に応じて変更可能とする例を示した。しかし、これに限られない。例えば、車両に付与する第1減速力と第2減速力の選択を、レンジ位置のDレンジ位置/Lレンジ位置に応じて変更可能としても良い。要するに、車両に付与する減速力を、ドライバの選択に応じて変更可能であれば良い。 In the first embodiment, an example is shown in which the selection of the first deceleration force and the second deceleration force to be applied to the vehicle can be changed according to the ON / OFF selection of the driver's overdrive switch 39. However, it is not limited to this. For example, the selection of the first deceleration force and the second deceleration force applied to the vehicle may be changeable according to the D range position / L range position of the range position. In short, it is sufficient that the deceleration force applied to the vehicle can be changed according to the driver's selection.
 実施例1では、アクセル解放操作によるコースト状態のときに算出される4つの目標駆動力を、モータ/ジェネレータ3の回生力やエンジンブレーキ力により出力する例を示した。しかし、これに限られない。例えば、その4つの目標駆動力を、モータ/ジェネレータ3の回生力のみにより出力しても良いし、エンジンブレーキ力やメカブレーキによる制動力により出力しても良い。 In the first embodiment, an example in which the four target driving forces calculated in the coast state by the accelerator release operation are output by the regenerative force and the engine braking force of the motor / generator 3 is shown. However, it is not limited to this. For example, the four target driving forces may be output only by the regenerative force of the motor / generator 3, or may be output by an engine braking force or a braking force by a mechanical brake.
 実施例1では、本開示の制御方法及び制御装置をFFハイブリッド車両に適用する例を示した。しかし、本開示の制御方法及び制御装置は、FFハイブリッド車両に限らず、FRハイブリッド車両に対しても適用することができる。さらに、ハイブリッド車両に限らず、電気自動車に対しても適用することができる。要するに、駆動源にモータ/ジェネレータを有する電動車両であれば適用できる。なお、電気自動車に適用する場合には、オーバードライブスイッチ39と同一又は別のスイッチ等を設け、アクセル解放操作によるコースト状態のときに算出される目標駆動力はモータ/ジェネレータの回生力により出力する。
 
In the first embodiment, an example in which the control method and the control device of the present disclosure are applied to an FF hybrid vehicle has been described. However, the control method and the control device of the present disclosure can be applied not only to the FF hybrid vehicle but also to the FR hybrid vehicle. Furthermore, the present invention can be applied not only to hybrid vehicles but also to electric vehicles. In short, any electric vehicle having a motor / generator as a drive source can be applied. When applied to an electric vehicle, a switch or the like that is the same as or different from the overdrive switch 39 is provided, and the target driving force calculated in the coast state by the accelerator release operation is output by the regenerative force of the motor / generator. .

Claims (7)

  1.  アクセル解放操作によるコースト状態のとき、ドライバの選択に応じて車両に付与する減速力を第1減速力と前記第1減速力よりも大きい第2減速力との少なくとも2段階で変更可能な電動車両の制御方法において、
     電動車両に駆動力および回生力を付与可能なモータと、
     通常モードと、強回生モードと、をドライバの選択に応じて選択可能なモード選択部と、を備え、
     前記通常モードの選択中、回生側に第1目標駆動力を算出し、前記強回生モードの選択中、前記第1目標駆動力よりも回生側に強い第2目標駆動力を算出し、
     前記強回生モードの選択中であって、ドライバ操作により前記第2減速力による強減速モードを選択すると、前記強減速モードの選択中、前記第2目標駆動力よりも負側に大きくした第3目標駆動力を算出し、
     算出した各目標駆動力に応じた回生力を前記モータに出力する
     ことを特徴とする電動車両の制御方法。
    An electric vehicle capable of changing a deceleration force to be applied to the vehicle according to a driver's selection in at least two stages of a first deceleration force and a second deceleration force larger than the first deceleration force in a coast state by an accelerator release operation In the control method of
    A motor capable of imparting driving force and regenerative power to an electric vehicle;
    A mode selection unit capable of selecting a normal mode and a strong regeneration mode according to the driver's selection;
    Calculating the first target driving force on the regeneration side during the selection of the normal mode, and calculating the second target driving force stronger on the regeneration side than the first target driving force during the selection of the strong regeneration mode;
    When the strong regeneration mode is being selected and the strong deceleration mode by the second deceleration force is selected by a driver operation, the third target driving force is set to be larger than the second target driving force on the negative side during the selection of the strong deceleration mode. Calculate the target driving force,
    A regenerative force corresponding to each calculated target driving force is output to the motor.
  2.  請求項1に記載された電動車両の制御方法において、
     前記強減速モードの選択中、前記アクセル解放操作とアクセル踏込操作を含むアクセル開度の変化に対する前記第3目標駆動力の変化を連続にする
     ことを特徴とする電動車両の制御方法。
    In the control method of the electric vehicle according to claim 1,
    A control method for an electric vehicle characterized in that, during the selection of the strong deceleration mode, a change in the third target driving force with respect to a change in the accelerator opening including the accelerator release operation and the accelerator depression operation is made continuous.
  3.  請求項1又は請求項2に記載された電動車両の制御方法において、
     前記通常モードの選択中であって、ドライバ操作により前記第2減速力による通常強減速モードのとき、前記第1目標駆動力よりも負側に大きくした第4目標駆動力を算出し、
     前記第2目標駆動力から前記第3目標駆動力への負側の増加量は、前記第1目標駆動力から前記第4目標駆動力への負側の増加量と同等にする
     ことを特徴とする電動車両の制御方法。
    In the control method of the electric vehicle according to claim 1 or 2,
    When the normal mode is being selected and the normal strong deceleration mode using the second deceleration force is performed by a driver operation, a fourth target driving force that is larger than the first target driving force on the negative side is calculated.
    The negative increase amount from the second target driving force to the third target driving force is equal to the negative increase amount from the first target driving force to the fourth target driving force. A method for controlling an electric vehicle.
  4.  請求項1から請求項3までの何れか一項に記載された電動車両の制御方法において、
     前記第2目標駆動力から前記第3目標駆動力へ負側に大きくするとき、前記第3目標駆動力を、所定の下限目標駆動力により制限する
     ことを特徴とする電動車両の制御方法。
    In the control method of the electric vehicle as described in any one of Claim 1- Claim 3,
    The method for controlling an electric vehicle, wherein the third target driving force is limited by a predetermined lower limit target driving force when increasing from the second target driving force to the third target driving force on the negative side.
  5.  請求項1から請求項4までの何れか一項に記載された電動車両の制御方法において、
     前記アクセル解放操作とアクセル踏込操作を含むアクセル開度が中間開度以上の領域は、前記第3目標駆動力を前記第2目標駆動力と同等にする
     ことを特徴とする車両の制御方法。
    In the control method of the electric vehicle as described in any one of Claim 1- Claim 4,
    The vehicle control method characterized in that the third target driving force is made equal to the second target driving force in a region where the accelerator opening including the accelerator releasing operation and the accelerator stepping operation is an intermediate opening or more.
  6.  請求項1から請求項5までの何れか一項に記載された電動車両の制御方法において、
     前記第3目標駆動力では、一定速走行で使用する一定速目標駆動力領域におけるアクセル開度の変化勾配を、前記一定速目標駆動力領域以外の領域における前記アクセル開度の変化勾配よりも緩やかにする
     ことを特徴とする車両の制御方法。
    In the control method of the electric vehicle as described in any one of Claim 1- Claim 5,
    With the third target driving force, the change gradient of the accelerator opening in the constant speed target driving force region used for constant speed traveling is gentler than the changing gradient of the accelerator opening in a region other than the constant speed target driving force region. A method for controlling a vehicle.
  7.  アクセル解放操作によるコースト状態のとき、ドライバの選択に応じて車両に付与する減速力を第1減速力と前記第1減速力よりも大きい第2減速力との少なくとも2段階で変更可能な電動車両の制御装置において、
     電動車両に駆動力および回生力を付与可能なモータと、
     通常モードと、強回生モードと、をドライバの選択に応じて選択可能なモード選択部と、
     前記通常モードの選択中、回生側に第1目標駆動力を算出し、前記強回生モードの選択中、前記第1目標駆動力よりも回生側に強い第2目標駆動力を算出する目標駆動力算出部と、
     前記目標駆動力算出部が算出した各目標駆動力に応じた回生力を前記モータに出力するモータ制御部と、を備え、
     前記目標駆動力算出部は、前記強回生モードの選択中であって、ドライバ操作により前記第2減速力による強減速モードを選択すると、前記強減速モードの選択中、前記第2目標駆動力よりも負側に大きくした第3目標駆動力を算出する
     ことを特徴とする電動車両の制御装置。
    An electric vehicle capable of changing a deceleration force to be applied to the vehicle according to a driver's selection in at least two stages of a first deceleration force and a second deceleration force larger than the first deceleration force in a coast state by an accelerator release operation In the control device of
    A motor capable of imparting driving force and regenerative power to an electric vehicle;
    A mode selection unit capable of selecting a normal mode and a strong regeneration mode according to the driver's selection;
    A target driving force that calculates a first target driving force on the regeneration side during the selection of the normal mode and calculates a second target driving force that is stronger on the regeneration side than the first target driving force during the selection of the strong regeneration mode. A calculation unit;
    A motor controller that outputs to the motor a regenerative force corresponding to each target driving force calculated by the target driving force calculator;
    The target driving force calculation unit selects the strong deceleration mode based on the second deceleration force by a driver operation while the strong regeneration mode is selected, and the second target driving force is selected during the selection of the strong deceleration mode. The third target driving force that is also increased to the negative side is calculated.
PCT/JP2017/015369 2017-04-14 2017-04-14 Electric vehicle control method and electric vehicle control device WO2018189904A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/015369 WO2018189904A1 (en) 2017-04-14 2017-04-14 Electric vehicle control method and electric vehicle control device
JP2019512166A JP6747583B2 (en) 2017-04-14 2017-04-14 Electric vehicle control method and electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015369 WO2018189904A1 (en) 2017-04-14 2017-04-14 Electric vehicle control method and electric vehicle control device

Publications (1)

Publication Number Publication Date
WO2018189904A1 true WO2018189904A1 (en) 2018-10-18

Family

ID=63793292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015369 WO2018189904A1 (en) 2017-04-14 2017-04-14 Electric vehicle control method and electric vehicle control device

Country Status (2)

Country Link
JP (1) JP6747583B2 (en)
WO (1) WO2018189904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382841B2 (en) 2020-01-22 2023-11-17 株式会社Subaru vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998509A (en) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp Regenerative braking controller for electric vehicle
JPH10174213A (en) * 1996-12-06 1998-06-26 Toyota Motor Corp Control apparatus for electric vehicle
JPH1118207A (en) * 1997-06-27 1999-01-22 Toyota Motor Corp Braking controller for electric vehicle
JP2000197210A (en) * 1998-12-28 2000-07-14 Toyota Motor Corp Device for controlling traveling of hybrid vehicle
JP2014057417A (en) * 2012-09-12 2014-03-27 Mazda Motor Corp Vehicular control device
JP2014128075A (en) * 2012-12-25 2014-07-07 Mitsubishi Motors Corp Regenerative brake controlling device
JP2014135814A (en) * 2013-01-09 2014-07-24 Hitachi Automotive Systems Ltd Travel control system of vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222329B2 (en) * 2010-08-05 2013-06-26 本田技研工業株式会社 Braking device for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998509A (en) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp Regenerative braking controller for electric vehicle
JPH10174213A (en) * 1996-12-06 1998-06-26 Toyota Motor Corp Control apparatus for electric vehicle
JPH1118207A (en) * 1997-06-27 1999-01-22 Toyota Motor Corp Braking controller for electric vehicle
JP2000197210A (en) * 1998-12-28 2000-07-14 Toyota Motor Corp Device for controlling traveling of hybrid vehicle
JP2014057417A (en) * 2012-09-12 2014-03-27 Mazda Motor Corp Vehicular control device
JP2014128075A (en) * 2012-12-25 2014-07-07 Mitsubishi Motors Corp Regenerative brake controlling device
JP2014135814A (en) * 2013-01-09 2014-07-24 Hitachi Automotive Systems Ltd Travel control system of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382841B2 (en) 2020-01-22 2023-11-17 株式会社Subaru vehicle

Also Published As

Publication number Publication date
JPWO2018189904A1 (en) 2020-03-12
JP6747583B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US9637108B2 (en) Vehicle driving-torque control device
KR100908950B1 (en) A control device of a vehicle
US8825253B2 (en) Hybrid vehicle control device
JP5521340B2 (en) Control device for hybrid vehicle
RU2657658C1 (en) Damping control device for a hybrid vehicle
CN107176159B (en) Control system for regenerative braking in a hybrid vehicle
US8932181B2 (en) Control device of vehicle drive device
US10253876B2 (en) Vehicle regenerative speed control device
US10246077B2 (en) Vehicle regenerative speed control device
JP6112214B2 (en) Control device for hybrid vehicle
JP6575235B2 (en) Hybrid vehicle start control method and start control device
US11130403B1 (en) One-pedal drive system for a vehicle
WO2013150966A1 (en) Hybrid vehicle control device and hybrid vehicle control method
JP6702505B2 (en) Electric vehicle control device and electric vehicle control method
JP6172266B2 (en) Control device for hybrid vehicle
JP2018177084A (en) Control method of hybrid vehicle and control device of hybrid vehicle
JP5453847B2 (en) Control device for hybrid vehicle
JP6747583B2 (en) Electric vehicle control method and electric vehicle control device
CN108082177B (en) Creep elimination method in hybrid powertrain
JP6777225B2 (en) Hybrid vehicle control method and hybrid vehicle control device
JP6741150B2 (en) Electric vehicle control device and electric vehicle control method
JP2017218028A (en) Control method and control apparatus for hybrid vehicle
JP2006141127A (en) Controller for vehicle
JP2001263388A (en) Engagement control device for electromagnetic clutch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905577

Country of ref document: EP

Kind code of ref document: A1