WO2013150966A1 - Hybrid vehicle control device and hybrid vehicle control method - Google Patents
Hybrid vehicle control device and hybrid vehicle control method Download PDFInfo
- Publication number
- WO2013150966A1 WO2013150966A1 PCT/JP2013/059353 JP2013059353W WO2013150966A1 WO 2013150966 A1 WO2013150966 A1 WO 2013150966A1 JP 2013059353 W JP2013059353 W JP 2013059353W WO 2013150966 A1 WO2013150966 A1 WO 2013150966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- target
- clutch
- motor
- engine
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 20
- 230000005540 biological transmission Effects 0.000 claims abstract description 46
- 230000001172 regenerating effect Effects 0.000 claims description 53
- 238000004364 calculation method Methods 0.000 claims description 34
- 230000008929 regeneration Effects 0.000 description 88
- 238000011069 regeneration method Methods 0.000 description 88
- 230000008569 process Effects 0.000 description 17
- 230000009467 reduction Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
- B60W10/115—Stepped gearings with planetary gears
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/02—Clutches
- B60W2710/021—Clutch engagement state
- B60W2710/023—Clutch engagement rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/60—Control of electric machines, e.g. problems related to electric motors or generators
- B60Y2300/64—Drag run or drag torque compensation, e.g. motor to drive engine with drag torque or engine speed is brought to start speed before injection and firing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to a hybrid vehicle control technology.
- a hybrid vehicle control device that prevents overcharge of a battery while obtaining a target vehicle deceleration force during a coast in the EV mode is known (see JP2010-143511A).
- An object of the present invention is to provide a control device capable of realizing a target vehicle deceleration force while preventing hunting of the engine rotation speed.
- a control apparatus for a hybrid vehicle includes an engine, a motor generator, a clutch that intermittently connects the engine, and a transmission.
- the clutch When the clutch is engaged, the driving force of the engine and the motor generator is input to the transmission.
- the vehicle travels in the HEV mode that is transmitted to the shaft.
- the clutch When the clutch is released, the vehicle travels in the EV mode that transmits the driving force of only the motor generator to the input shaft of the transmission.
- the hybrid vehicle control device determines whether or not an accelerator release determining means for determining whether or not an accelerator pedal is being released, and whether or not a charge amount of a battery that exchanges power with a motor generator is greater than or equal to a predetermined amount.
- Charge state determination means for calculating engine friction torque
- motor generator regenerative torque calculation means for calculating torque that can be regenerated by the motor generator
- calculated motor generator regenerative torque are obtained.
- the motor generator torque control means for controlling the torque of the motor generator, and when the accelerator pedal is released in the EV mode or HEV mode and the battery charge amount is determined to be greater than or equal to a predetermined amount, the target according to the vehicle speed
- the transmission gear ratio is controlled so that the gear ratio is obtained.
- a target clutch engagement capacity for calculating a target clutch engagement capacity based on the calculated engine friction torque and the calculated motor generator regenerative torque when the transmission ratio is controlled by the transmission ratio control means
- Capacity calculation means and clutch engagement capacity control means for controlling the engagement capacity of the clutch so as to obtain the target clutch engagement capacity.
- FIG. 1 is an overall system diagram showing a hybrid vehicle to which a hybrid vehicle control device according to the first embodiment is applied.
- FIG. 2 is a control block diagram of the integrated controller.
- FIG. 3 is a characteristic diagram of the EV / HEV mode selection map.
- FIG. 4 is a characteristic diagram of the target charge / discharge amount.
- FIG. 5 is a timing chart of the reference example.
- FIG. 6 is a timing chart of the first embodiment.
- FIG. 7 is a control block diagram of the operating point command unit.
- FIG. 8 is a characteristic diagram showing the relationship between the vehicle speed and the driver requested vehicle braking force.
- FIG. 9 is a characteristic diagram of the vehicle braking force with respect to the vehicle speed and the gear ratio.
- FIG. 1 is an overall system diagram showing a hybrid vehicle to which a hybrid vehicle control device according to the first embodiment is applied.
- FIG. 2 is a control block diagram of the integrated controller.
- FIG. 3 is a characteristic diagram of the EV / HEV mode selection
- FIG. 10 is a characteristic diagram showing the relationship between the vehicle speed and the gear ratio for outputting the driver-requested vehicle braking force by the engine friction torque.
- FIG. 11 is a flowchart for explaining calculation of the target motor torque, the target gear ratio, and the target first clutch torque capacity.
- FIG. 12 is a flowchart for explaining calculation of the target motor torque, the target gear ratio, and the target first clutch torque capacity according to the second embodiment.
- FIG. 1 is an overall system diagram showing a rear-wheel drive hybrid vehicle to which the hybrid vehicle control device in the first embodiment is applied.
- the hybrid vehicle to which the hybrid vehicle control device is applied is not limited to the rear wheel drive vehicle, and may be a front wheel drive vehicle or a four wheel drive vehicle.
- the drive system of the hybrid vehicle includes an engine 100, a first clutch CL1, a motor generator 110, a second clutch CL2, an automatic transmission 120, a propeller shaft 130, a differential 140, left and right drive shafts 151 and 152, and drive wheels 163 and 164.
- the motor generator 110 is hereinafter simply referred to as “motor 110”.
- Engine 100 is a gasoline engine or a diesel engine.
- the engine controller 1 performs start control and stop control of the engine 100 and valve opening control of the throttle valve based on the target engine torque command.
- a flywheel 170 is provided on the engine output shaft.
- the first clutch CL1 is a clutch that is interposed between the engine 100 and the motor 110 and can change the torque capacity continuously or stepwise.
- the “torque capacity” of the clutch is the magnitude of torque that can be transmitted by the clutch.
- target first clutch torque capacity a target torque capacity (hereinafter referred to as “target first clutch torque capacity”) command of the first clutch CL1
- the first clutch controller 5 uses the first clutch control oil pressure generated by the first clutch hydraulic unit 6 to Engagement / release (torque capacity) of the first clutch CL1 is controlled.
- a dry single plate clutch whose torque capacity can be changed by a hydraulic actuator 14 having a piston 14a is used.
- the motor 110 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
- the motor controller 2 controls the motor 110 by applying the three-phase alternating current generated by the inverter 3 based on the target motor torque command and the target motor rotation speed command.
- the motor 110 is an electric motor that rotates by receiving power supplied from the battery 4, and as a generator that generates an electromotive force at both ends of the stator coil when the rotor receives rotational energy from the engine 100 or driving wheels. Function. The generated power is charged in the battery 4.
- the state in which the motor 110 operates as an electric motor is referred to as “power running”, and the state in which the motor 110 operates as a generator is referred to as “regeneration”.
- the rotor of the motor 110 is connected to the transmission input shaft of the automatic transmission 120 via a damper.
- the second clutch CL2 is a clutch that is interposed between the motor 110 and the drive wheels 163 and 164 and can change the torque capacity continuously or stepwise.
- the AT controller 7 uses the control hydraulic pressure generated by the second clutch hydraulic unit 8 based on the target torque capacity (hereinafter referred to as “target second clutch torque capacity”) command of the second clutch CL2 to set the second clutch CL2. Controls fastening / release (torque capacity).
- target second clutch torque capacity target torque capacity
- the second clutch CL2 for example, a wet multi-plate clutch or a wet multi-plate brake capable of changing the torque capacity by continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
- the first clutch hydraulic unit 6 and the second clutch hydraulic unit 8 are built in an AT hydraulic control valve unit 180 attached to the automatic transmission 120.
- the automatic transmission 120 automatically switches, for example, stepped gear stages such as forward 7 speed / reverse 1 speed according to the vehicle speed, accelerator opening, and the like.
- the second clutch CL2 is not newly added as a dedicated clutch. Among the plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission 120, the second clutch CL2 is an optimum clutch or brake that is arranged on the torque transmission path. Selected.
- the output shaft of the automatic transmission 120 is connected to the left and right drive wheels 163 and 164 via the propeller shaft 130, the differential 140, and the left and right drive shafts 151 and 152.
- the hybrid drive system includes an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and a drive torque control travel mode (hereinafter referred to as “WSC mode”). .) And other driving modes.
- EV mode electric vehicle travel mode
- HEV mode hybrid vehicle travel mode
- WSC mode drive torque control travel mode
- EV mode is a mode in which the first clutch CL1 is disengaged and the vehicle travels only with the power of the motor 110.
- HEV mode is a mode in which the first clutch CL1 is engaged and the vehicle is driven by the driving force of the engine 100 and the motor 110.
- the clutch transmission torque that causes the second clutch CL2 to be in the slip engagement state and passes through the second clutch CL2 is: In this mode, the vehicle starts while controlling the clutch torque capacity so that the required driving torque is determined according to the vehicle state and driver operation.
- “WSC” is an abbreviation of “Wet Start clutch”.
- the control system of the hybrid vehicle includes an engine, a motor, an automatic transmission, a brake, an integrated controller 1, 2, 7, 9, 10, an inverter 3, a battery 4, a first clutch controller 5, a first clutch hydraulic unit 6, The second clutch hydraulic unit 8 is configured.
- the six controllers 1, 2, 5, 7, 9, and 10 are connected via a CAN communication line 11 that can exchange information with each other.
- the engine controller 1 inputs the engine rotation speed information from the engine rotation speed sensor 12, the target engine torque command from the integrated controller 10, and other necessary information.
- the engine controller 1 outputs a command for controlling the engine operating point (Ne, Te) to the throttle valve actuator or the like of the engine 100.
- the motor controller 2 inputs information from the resolver 13 that detects the rotor rotation position of the motor 110, a target motor torque command and target motor rotation speed command from the integrated controller 10, and other necessary information.
- the motor controller 2 outputs a command for controlling the motor operating point (Nm, Tm) of the motor 110 to the inverter 3. Further, the motor controller 2 monitors the battery charge amount SOC that represents the charge capacity of the battery 4.
- the battery charge amount SOC information is used for control information of the motor 110 and is supplied to the integrated controller 10 via the CAN communication line 11.
- the first clutch controller 5 inputs the sensor information from the first clutch stroke sensor 15, the target first clutch torque capacity command from the integrated controller 10, and other necessary information.
- the first clutch stroke sensor 15 detects the stroke position of the piston 14 a of the hydraulic actuator 14.
- the first clutch controller 5 outputs a command for controlling engagement / release (torque capacity) of the first clutch CL 1 to the first clutch hydraulic unit 6 in the AT hydraulic control valve unit 180.
- AT controller 7 inputs information from accelerator opening sensor 16, vehicle speed sensor 17, and other sensors 18 (transmission input rotation speed sensor, inhibitor switch, etc.).
- the AT controller 7 searches for the optimum gear position based on the position where the operating point determined by the accelerator opening APO and the vehicle speed VSP exists on the shift map when traveling in the D range, and sends a control command for obtaining the searched gear position to the AT hydraulic control.
- the AT hydraulic control valve unit 180 controls the engagement and release of each frictional engagement element (not shown).
- the shift map is a map in which an upshift line and a downshift line are written according to the accelerator opening and the vehicle speed.
- the AT controller 7 performs the following second clutch control in addition to the automatic shift control. That is, when a target second clutch torque capacity command is input from the integrated controller 10, a command for controlling engagement / release (torque capacity) of the second clutch CL 2 is sent to the second clutch hydraulic unit 8 in the AT hydraulic control valve unit 180. Output.
- the brake controller 9 inputs a wheel speed sensor 19 for detecting each wheel speed of the four wheels, sensor information from the brake stroke sensor 20, a regenerative cooperative control command from the integrated controller 10, and other necessary information.
- the brake controller 9 compensates for the shortage with the mechanical braking force (hydraulic braking force or motor braking force) when the regenerative braking force is insufficient with respect to the required braking force required from the brake stroke BS at the time of brake depression braking.
- regenerative cooperative brake control is performed.
- the integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency.
- the integrated controller 10 inputs necessary information from the motor rotation speed sensor 21 that detects the motor rotation speed Nmot, other sensors / switches 22, and the CAN communication line 11.
- the integrated controller 10 outputs a target engine torque command, a target motor torque command and a target motor rotation speed command, a target first clutch torque capacity command, a target second clutch torque capacity command, and a regeneration cooperative control command.
- FIG. 2 is a control block diagram showing calculation processing executed in the integrated controller 10.
- the integrated controller 10 includes a target driving force calculation unit 31, a mode selection unit 32, a target charge / discharge power calculation unit 33, and an operating point command unit 34.
- the target driving force calculation unit 31 calculates a target driving force tFo0 by searching a target driving force map from the accelerator opening APO and the vehicle speed VSP.
- the mode selection unit 32 selects “EV mode” or “HEV mode” from the accelerator opening APO and the vehicle speed VSP using the EV / HEV mode selection map shown in FIG. 3, and selects the selected mode as the target travel mode. To do. However, if the battery charge SOC is equal to or less than the predetermined value, the “HEV mode” is forcibly set as the target travel mode. Further, when starting from the “EV mode” or “HEV mode”, the “WSC mode” is selected as the target travel mode until the vehicle speed VSP becomes the first set vehicle speed VSP1.
- the operating point commanding unit 34 determines the operating point of the power train that combines the power source and the drive system, the target engine torque, the target motor torque (may be the target motor rotational speed), the target first clutch torque capacity, It is defined by the 2-clutch torque capacity and the target gear ratio.
- motor regeneration is performed during the coasting in the EV mode.
- the motor regeneration is continued even after the battery 4 is fully charged by the motor regeneration, the battery 4 is overcharged and the battery 4 is deteriorated. There is a risk of inviting.
- the motor regeneration is canceled to prevent overcharging of the battery 4, the deceleration braking force cannot be obtained.
- FIG. 5 is a timing chart of a reference example showing control during coasting in the EV mode.
- “Coast” means that the vehicle is traveling inertia on a downhill or flat ground. For example, it can be determined that the vehicle is coasting when the accelerator opening APO is zero and the brake pedal is not depressed.
- the accelerator opening becomes zero at the timing of t2 and shifts to coasting in the EV mode.
- the motor regeneration is performed by maintaining the motor regeneration possible torque (Tmot) at a negative constant value (see the solid line in the third stage in FIG. 5). Since the battery 4 is charged by the motor regeneration, the battery charge amount SOC increases with a predetermined inclination from t2 (see the fourth stage in FIG. 5).
- the third and fourth threshold values Vs3 and Vs4 are prepared in advance for the battery charge amount SOC.
- the third threshold value Vs3 is a charging upper limit value (indicating a fully charged state) in the EV mode, and is set to a value slightly lower than the first threshold value Vs1 that is the charging upper limit value in the HEV mode.
- the fourth threshold value Vs4 is a charging lower limit value in the EV mode, and is set to a value slightly higher than the second threshold value Vs2 that is the charging lower limit value in the HEV mode.
- the motor regeneration possible torque (Tmot) is increased toward zero with a predetermined inclination from the timing t3 when the battery charge SOC reaches the third threshold value Vs3 due to the motor regeneration.
- the absolute value of the motor regeneration torque becomes small, and the slope of the battery charge amount SOC becomes gentler than t3.
- the motor torque is increased with the same inclination, and is held at a positive constant value at the timing of t5. That is, from t4, the motor 110 is powered to reduce the battery charge amount SOC (see the solid line in the third stage in FIG. 5).
- the first clutch CL1 starts to be engaged at the timing of t3, and the first clutch CL1 is completely engaged at the time t4 (see the second stage in FIG. 5).
- the first clutch torque capacity (CL1 torque capacity) is shown superimposed on a two-dot chain line.
- the negative first clutch torque capacity indicates that the engine friction torque is acting on the drive system via the engaged first clutch CL1.
- the difference between the absolute value of the engine friction torque and the motor regenerative torque (Tmot) becomes the vehicle braking torque. Therefore, the vehicle braking force can be obtained by determining the target motor torque during power running so that the motor regenerative torque (Tmot) does not exceed the absolute value of the engine friction torque.
- the slope of the battery charge SOC becomes gentler than before t3, and the battery charge SOC is reduced at t4 when the first clutch CL1 is completely engaged. Peak value.
- the battery charge amount SOC then gradually decreases until t5, and then decreases with a steeper slope than before t5 (see the fourth stage in FIG. 5).
- the battery charge SOC reaches the fourth threshold value Vs4 at the timing of t6 due to the decrease in the battery charge SOC.
- the target motor torque power running torque
- the target motor torque Tmot power running torque
- the inclination of the torque is relaxed and the torque is held at a negative constant value at the timing of t8. That is, from t7, motor regeneration possible torque is applied again to perform motor regeneration, and the battery charge amount SOC is increased (see the fourth stage in FIG. 5).
- the first clutch torque capacity is increased toward zero from t7 and is made to coincide with the target motor torque Tmot at timing t8.
- the first clutch is engaged while preventing overcharging of the battery 4, and the difference between the absolute value of the engine friction torque and the motor regenerative torque (Tmot). Is used as a vehicle braking torque to decelerate the vehicle.
- the following operation is executed in order to cooperatively control the motor regeneration possible torque, the target first clutch torque capacity, and the target gear ratio with respect to the driver request vehicle braking force.
- FIG. 6 shows how the accelerator opening APO, the motor rotation speed Nmot, the engine rotation speed Neng, the target motor torque Tmot, the target first clutch torque capacity, the battery charge amount SOC, and the like change during the coasting in the EV mode. Is shown.
- the hybrid vehicle is operated in the same manner as in the reference example.
- the case of the reference example is shown by overlapping with a thin line.
- the feedforward target gear ratio of ⁇ 1> is instructed to the automatic transmission 120 from the timing t3 when the battery charge SOC reaches the third threshold value Vs3, the inclination of the motor rotation speed is a reference example. It becomes more gradual and settles to a constant value at the timing of t4.
- the target first clutch torque capacity (hydraulic pressure) of the above ⁇ 2> is instructed to the first clutch CL1 from t3, the inclination of the first clutch torque capacity to the negative side is more gradual than that of the reference example. It settles to a negative constant value at the timing.
- the first clutch is completely engaged, whereby engine friction torque acts on the vehicle and engine braking is obtained.
- the target motor torque Tmot reaches zero at the timing of t4.
- the battery charge amount SOC is kept constant from t4.
- the battery charge amount SOC is not changed while obtaining the target vehicle braking force by giving the feedforward target gear ratio.
- the automatic transmission 120 is downshifted too much and the engine brake becomes too effective, and it is not necessary to perform motor powering to alleviate this effect.
- the power generation torque calculation unit 41 calculates a power generation torque Tgen [Nm] by searching a predetermined table (power generation torque table) from the current motor rotation speed Nmot.
- the “power generation torque” is torque that can be regenerated at the current motor rotation speed Nmot.
- the power generation torque Tgen is given as a negative value. This is because the motor torque is defined as a positive value during power running and the motor torque as a negative value during regeneration.
- the maximum value selection unit 42 compares the power generation torque Tgen with the motor regenerative torque [Nm] from the motor regenerative torque calculation unit 65, and selects and outputs the larger side. Since the two torques are negative values, the smaller negative value is selected.
- the motor regenerative torque is the maximum torque that the motor 110 can regenerate.
- the calculation method of the motor regenerative torque that is performed by the motor regenerative torque calculation unit 65 is omitted.
- the motor regeneration possible torque is an upper limit value determined by various requirements such as the battery charge amount SOC, the state of the inverter 3, and the torque required when starting the engine.
- the maximum torque that can be regenerated by the motor 110 is obtained based on the battery charge amount SOC and the state of the inverter 3, and the value obtained by subtracting the torque necessary for engine start from the obtained torque is set as the motor regenerative torque. Therefore, the difference from the power generation torque Tgen is as follows.
- the power generation torque Tgen is the maximum regenerative torque (almost determined if the maximum kW is determined).
- the motor regenerative torque is a value having a meaning such as a limit value determined in real time from various requirements of the system.
- the motor regeneration possible torque is a constant negative value because of motor regeneration.
- the motor regeneration possible torque is negative. It goes from zero to zero. Since the absolute value of the motor regenerative torque calculated in this way during the coasting in the EV mode is smaller than the absolute value of the power generation torque, the maximum value selection unit 42 does the motor regeneration during the coasting in the EV mode. Output possible torque.
- the maximum value limiter 43 limits the negative output from the maximum value selector 42 to zero at the maximum. Referring to FIG. 6, during the period from t2 to t3, the motor regeneration possible torque is given as a negative value, and the battery charge amount SOC increases. Since the motor regenerative torque increases from t3 toward zero, the slope of the battery charge amount SO becomes gentler than before t3. The motor regeneration possible torque reaches zero at t4, and the target motor torque is maintained at zero after t4. That is, the motor regenerative torque is maintained at zero after t4 due to the function of the maximum value limiting unit 43.
- the engine friction torque calculation unit 44 calculates an engine friction torque Teng by searching a predetermined table (engine friction torque table) from the engine rotation speed Neng.
- the feedforward target gear ratio calculation unit 45 calculates a feedforward target gear ratio Rff by searching a predetermined table (target gear ratio table) from the vehicle speed VSP.
- a driver requested vehicle braking force table in which a driver requested vehicle braking force Fdrv corresponding to the vehicle speed VSP is defined as shown in FIG.
- the vehicle braking force Fdrv is a driving force converted to a drive shaft axis.
- the vehicle braking force Fdrv is basically a negative value, but a positive value is given in a region where the vehicle speed VSP is low. This is because creep torque is applied in a region where the vehicle speed VSP is low.
- the relationship between the engine rotational speed Neng and the engine friction torque Teng is defined as in the engine friction torque table shown in FIG. Further, from the following equations (1) and (2), the relationship of the vehicle braking force Fdrvf generated by the engine friction with respect to the vehicle speed VSP can be defined for each gear ratio RATIO as shown in the graph of FIG. 9B.
- Fdrvf [N] Teng [Nm] ⁇ RATIO ⁇ final reduction ratio / dynamic rotation radius [m] ... (1)
- VSP [km / h] Neng [rpm] / (RATIO ⁇ final reduction ratio) ⁇ Dynamic rotation radius [m] ⁇ 2 ⁇ ⁇ 60/1000 (2)
- the feedforward target gear ratio calculation unit 45 calculates the driving braking force determined from the engine friction torque Teng and the driver requested vehicle braking force Fdrv when the battery 4 is not fully regenerated because the battery 4 is fully charged.
- the target gear ratio is calculated in a feed-forward manner.
- the full regeneration possibility determination unit 50 includes a driver request vehicle braking force calculation unit 46, a vehicle braking force calculation unit 51, absolute value calculation units 52 and 53, and a comparison unit 54.
- the vehicle braking force calculation unit 51 calculates an actual vehicle braking force from the motor regenerative torque and the current gear ratio of the automatic transmission according to the following equation.
- Actual vehicle braking force Motor regenerative torque x Current gear ratio x Proportional constant (3)
- the absolute value calculation unit 52 calculates the absolute value of the actual vehicle braking force
- the absolute value calculation unit 53 calculates the absolute value of the driver request vehicle braking force.
- the comparison unit 54 compares the absolute value calculated by the absolute value calculation unit 52 with the absolute value calculated by the absolute value calculation unit 53.
- the full regeneration coast target speed ratio (the full regeneration target speed ratio during the coast) is outside the scope of the present invention, and therefore the calculation method of the full regeneration coast target speed ratio is omitted.
- the target first clutch torque capacity calculating unit 56 includes an engine friction torque calculating unit 44, a dividing unit 57, an absolute value calculating unit 58, a subtracting unit 59, a limiting unit 60, an absolute value calculating unit 61, and a multiplying unit 62.
- the target first clutch torque capacity calculation unit 56 calculates the target first clutch torque capacity Ccl1 by the following equation.
- Ccl1
- the engine friction torque calculation unit 44 determines the magnitude of the engine friction torque Teng using the engine friction torque table shown in FIG.
- First clutch torque capacity ratio 1 ⁇
- the first clutch torque capacity ratio is 0% when full regeneration is possible and 100% when full regeneration is impossible.
- the target first clutch torque capacity changes according to the motor regeneration possible ratio (
- the motor regenerative torque is equal to the power generation torque Tgen
- the first clutch torque capacity ratio is 0% from the equation (5)
- the target first clutch torque capacity is from the equation (4). Zero. Therefore, the first clutch torque capacity (CL1 capacity) becomes zero from t2 to t3, and the first clutch CL1 is in a disconnected state.
- the first clutch torque capacity ratio becomes larger than 0% from the equation (5).
- the first clutch torque capacity ratio becomes 100% from the equation (5). That is, the first clutch CL1 is completely engaged at t4.
- the engine 100 is rotated by the drive system, so that the engine rotational speed Neng is zero at t3, but rises and becomes equal to the motor rotational speed Nmot at the timing of t4. It is maintained at a constant value after t4.
- the engine speed Neng changes from zero to a positive value during the period from t3 to t4
- the engine friction torque Teng changes from zero to a negative value.
- the flowchart of FIG. 11 shows the flow of the control described using the control block of FIG. 7, that is, the control for calculating the target motor torque, the target gear ratio, and the target first clutch torque capacity.
- the process of the flowchart shown in FIG. 11 is executed at regular time intervals (for example, every 10 ms).
- step S1 the driver request vehicle braking force Fdrv is calculated from the vehicle speed VSP.
- step S2 it is determined whether or not the vehicle is in coasting in the EV mode and the vehicle speed VSP exceeds the first predetermined vehicle speed V1.
- the current process is terminated as it is (the control of this embodiment is not performed). This is because, for example, as a system operation requirement or a fuel consumption target, there is a request to basically run in the EV mode at the first predetermined vehicle speed V1 or less.
- the fuel efficiency is better when the vehicle is driven with inertia while the first clutch CL1 is in the non-engaged state than the engine brake by engaging the first clutch CL1.
- step S3 it is determined whether or not the battery charge amount SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force Fdrv can be achieved only by full regeneration.
- the determination as to whether or not the driver-required vehicle braking force Fdrv can be achieved only by full regeneration is performed by the full regeneration possibility determination unit 50 of FIG.
- Said 3rd threshold value Vs3 is a charge upper limit in EV mode (refer FIG. 5, FIG. 6).
- step S3 If it is determined in step S3 that the battery charge SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force Fdrv can be achieved only by full regeneration, the process proceeds to steps S4 to S6.
- the processes in steps S4 to S6 are performed in the period from t2 to t3 in FIG.
- step S4 the motor regeneration possible torque is set as the target motor torque.
- step S5 the full regeneration coast target speed ratio (see FIG. 7), which is the normal target speed ratio in the EV mode, is calculated, and the calculated full regeneration coast target speed ratio is set as the target speed ratio.
- step S7 it is determined whether or not the motor regeneration possible torque gradual reduction processing mode is set. For example, when the battery charge amount SOC becomes equal to or greater than the third threshold value Vs3, it is determined that the motor regeneration possible torque gradual reduction processing mode has been entered. When it is in the motor regeneration possible torque gradual reduction processing mode, the process proceeds to steps S8 to S10. The processes in steps S8 to S10 are performed in the period from t3 to t4 in FIG.
- step S8 the motor regeneration possible torque is gradually reduced.
- the motor regenerative torque is gradually increased to zero (see the period from t3 to t4 in FIG. 6). Then, the gradual reduction value of the motor regenerative torque is set as the target motor torque.
- step S9 the feedforward target speed ratio Rff is calculated using the feedforward target speed ratio table, and the calculated feedforward target speed ratio Rff is set as the target speed ratio.
- step S10 the target first clutch torque capacity is calculated from the above equation (4). As a result, the EV mode is shifted to the HEV mode.
- step S7 When the motor regeneration possible torque gradual reduction processing mode is not set in step S7, the process proceeds to steps S11 to S13.
- the processes in steps S11 to S13 are performed in a period after t4 in FIG.
- step S11 the target motor torque is set to zero (no regeneration or power running).
- step S12 the feedforward target speed ratio Rff is calculated using the above-mentioned feedforward target speed ratio table, and the calculated feedforward target speed ratio Rff is set as the target speed ratio.
- step S13 the torque capacity when the first clutch is completely engaged is calculated as the target first clutch torque capacity. That is, the HEV mode is set.
- the hybrid vehicle control apparatus includes an engine 100, a motor 110 (motor generator), a first clutch CL1 that intermittently connects between them, and an automatic transmission 120 (transmission).
- an engine 100 a motor 110 (motor generator), a first clutch CL1 that intermittently connects between them, and an automatic transmission 120 (transmission).
- the CL1 When the CL1 is engaged, the driving force of the engine 100 and the motor GM is transmitted in the HEV mode to transmit the driving force to the input shaft of the automatic transmission 120.
- the first clutch CL1 is released, the driving force of only the motor GM is used as the input shaft of the transmission. EV mode travel is transmitted to the vehicle.
- the accelerator release and charge state determination means for determining whether the battery is being coasted (accelerator being released) and the battery charge amount SOC is in a fully charged state (predetermined amount or more), engine friction An engine friction torque calculating unit 44 (engine friction torque calculating unit) that calculates torque, a motor regenerative torque calculating unit 65 (motor regenerative torque calculating unit) that calculates torque that can be regenerated by the motor 110, and this calculation.
- Motor controller 2 (motor torque control means) for controlling the motor torque so as to obtain a motor regenerative torque, coasting in EV mode (accelerator being released), and the battery charge amount SOC being fully charged (predetermined amount or more)
- motor controller 2 for controlling the motor torque so as to obtain a motor regenerative torque, coasting in EV mode (accelerator being released), and the battery charge amount SOC being fully charged (predetermined amount or more)
- driver request vehicle braking force calculation unit 46 target vehicle deceleration force calculation means that calculates the target vehicle deceleration force) and the calculated driver request vehicle braking force Fdrv and the calculated engine friction torque
- a feedforward target speed ratio calculating unit 45 (target speed ratio calculating means) for calculating a speed ratio Rff (target speed ratio) and the speed ratio of the automatic transmission 120 so as to obtain the feedforward target speed ratio Rff.
- Target first clutch torque based on the AT controller 7 (speed ratio control means) and the calculated driver request vehicle braking force Fdrv and the calculated motor regenerative torque when the speed ratio is controlled by the controller 7
- Target first clutch torque capacity calculation unit 56 for calculating capacity (target clutch engagement capacity)
- a target clutch engagement capacity calculating means A target clutch engagement capacity calculating means), and a first clutch controller 5 for controlling the torque capacity of the first clutch as the target first clutch torque capacity is obtained (clutch connection capacity control means).
- the feedforward target gear ratio (target gear ratio) is set so that the driver requested vehicle braking force (target vehicle deceleration force) is generated by the vehicle deceleration force generated by the engine friction torque when the first clutch CL1 is fully engaged. Ratio) is calculated, it is possible to obtain a feeling of vehicle deceleration without a sense of incongruity.
- the motor controller 2 (motor generator torque control means) maintains the motor regenerative torque at zero when the first clutch controller 5 (clutch engagement capacity control means) fully engages the first clutch CL1. Therefore, useless charging / discharging can be eliminated.
- the flowchart of FIG. 12 shows the flow of processing for calculating the target motor torque, the target gear ratio, and the target first clutch torque capacity of the second embodiment, and replaces FIG. 11 of the first embodiment.
- the same number is attached
- the process of the flowchart shown in FIG. 12 is also executed at regular time intervals (for example, every 10 ms).
- the regenerative torque, the target first clutch torque capacity, and the target gear ratio are coordinated with the driver request vehicle braking force. Control.
- step S21 it is determined whether or not the vehicle speed VSP exceeds the second predetermined vehicle speed V2 during the coasting in the HEV mode.
- the current process is terminated as it is (the control of the second embodiment is not performed). This is because, for example, as a system operation requirement or a fuel consumption target, there is a request to basically run in the HEV mode at the second predetermined vehicle speed V2 or lower.
- the second predetermined vehicle speed V2 may be the same as the first predetermined vehicle speed 1.
- step S22 the battery charge amount SOC is compared with the third threshold value Vs3, and in step S23, it is determined whether or not the driver-requested vehicle braking force can be achieved only by full regeneration.
- steps S22 and S23 when the battery charge SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force can be achieved only by full regeneration, the process proceeds to steps S24, S5, and S6.
- step S24 the target motor torque corresponding to the driver request vehicle braking force Fdrv is calculated, and the calculated target motor torque corresponding to the driver request vehicle braking force Fdrv is set as the target motor torque.
- step S5 the full regeneration coast target speed ratio (see FIG. 7), which is the normal target speed ratio in the EV mode, is calculated, and the calculated full regeneration coast target speed ratio is set as the target speed ratio.
- step S23 If the charge amount SOC is less than the third threshold value Vs3 in step S22, but it is determined in step S23 that the driver-required vehicle braking force cannot be achieved only by full regeneration, the process proceeds to step S4, and the motor regeneration possible torque is set as the target motor torque. .
- step S25 the target gear ratio at the time of full regeneration in the HEV mode is calculated, and the calculated target gear ratio at the time of full regeneration is set as the target gear ratio.
- the reason for calculating the target gear ratio during full regeneration in the HEV mode when the driver-required vehicle braking force cannot be achieved only by full regeneration will be described.
- the driver-required vehicle braking force can be achieved only by full regeneration
- the driver-required vehicle braking force can be achieved by only full regeneration in the EV mode (when the first clutch CL1 is released).
- the driver-required vehicle braking force cannot be achieved only by full regeneration, the driver-required vehicle braking force must be achieved only by full regeneration in the HEV mode (when the first clutch CL1 is engaged).
- the difference in gear ratio between when the driver-requested vehicle braking force can be achieved only by full regeneration in the EV mode and when the driver-requested vehicle braking force cannot be achieved only by full regeneration in the HEV mode is that the engine 100 is driven by the first clutch CL1.
- the difference is whether or not it is fastened. Even when the first clutch CL1 is engaged and when it is not engaged, the engine braking force changes even when the speed ratio is the same.
- the purpose is to obtain the driver requested vehicle braking force Fdrv regardless of whether the first clutch CL1 is engaged or disengaged. Therefore, the driver request depends on whether the first clutch CL1 is disengaged or engaged. There is a difference in the gear ratio for achieving the vehicle braking force Fdrv.
- a gear ratio that satisfies the driver-requested vehicle braking force Fdrv by full regeneration in the HEV mode is calculated.
- the target gear ratio during full regeneration in the HEV mode is calculated based on the driver requested vehicle braking force Fdrv, motor regeneration possible torque, and engine friction torque.
- step S26 the torque capacity when the first clutch CL1 is completely engaged is calculated as the target first clutch torque capacity. That is, the HEV mode is maintained.
- step S7 it is determined whether or not the motor regeneration torque gradual reduction processing mode is set. For example, when the battery charge amount SOC becomes equal to or greater than the third threshold value Vs3, it is determined that the motor regeneration torque gradual reduction processing mode has been entered. When it is in the motor regenerative torque gradual reduction processing mode, the process proceeds to steps S8, S9, and S27.
- step S8 the motor regeneration possible torque is gradually reduced.
- the motor regenerative torque is gradually increased to zero (see the period from t3 to t4 in FIG. 6). Then, the gradual reduction value of the motor regenerative torque is set as the target motor torque.
- step S9 the feedforward target speed ratio Rff is calculated using the above-mentioned feedforward target speed ratio table, and the calculated feedforward target speed ratio Rff is set as the target speed ratio.
- step S27 the torque capacity when the first clutch is completely engaged is calculated as the target first clutch torque capacity. That is, the HEV mode is maintained.
- the vehicle braking force when the brake pedal is not depressed can be generated by the motor regeneration and the engine brake. Therefore, the hybrid vehicle tries to generate a vehicle braking force equivalent to a vehicle driven only by the engine. Then, the vehicle deceleration torque during the coast shared by the engine brake can be smaller than that of the vehicle driven only by the engine. Therefore, in the hybrid vehicle, in order to generate the engine brake, the engine speed is controlled to be smaller than that of the vehicle driven only by the engine. Therefore, in order to prevent the driver from feeling uncomfortable due to an engine rotation feeling different from that of a vehicle driven only by an engine, it is necessary to cause engine rotation during vehicle braking that can occur in a vehicle driven only by the engine. is there.
- the engine rotational speed when the target vehicle deceleration force is obtained during coasting with a vehicle driven only by the engine is determined in advance as the target rotational speed, and the target vehicle deceleration force is set based on the target rotational speed. To do. As a result, even in a hybrid vehicle, it is possible to obtain the same engine rotation feeling as during coasting in a vehicle driven only by an engine.
- the present invention is not limited to the embodiment described above.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
This hybrid vehicle control device, which enters an HEV mode for traveling by means of driving forces of an engine and a motor-generator when a clutch is engaged, or an EV mode for traveling by means of the driving force of the motor-generator alone when the clutch is disengaged, controls the gear ratio of a transmission so as to achieve a target gear ratio that corresponds to a vehicle speed when the accelerator pedal is determined to have been released in the EV mode or the HEV mode and the charged capacity of a battery is determined to be equal to or greater than a predetermined capacity, and calculates, on the basis of an engine friction torque and a torque that can be regenerated by the motor-generator, a target clutch engagement capacity while the gear ratio is being controlled. Then, the hybrid vehicle control device controls the clutch engagement capacity so as to achieve the target clutch engagement capacity.
Description
本発明は、ハイブリッド車両の制御技術に関する。
The present invention relates to a hybrid vehicle control technology.
EVモードでのコースト中に、目標車両減速力を得ながらバッテリの過充電を防止するハイブリッド車両の制御装置が知られている(JP2010-143511A参照)。
A hybrid vehicle control device that prevents overcharge of a battery while obtaining a target vehicle deceleration force during a coast in the EV mode is known (see JP2010-143511A).
JP2010-143511Aに記載の技術では、EVモードでのコースト中にバッテリ充電量が所定量以上になると、クラッチを締結して、エンジンフリクショントルクを車両減速力として作用させる。さらに、有段変速機を1段ダウン側へ変速し、過大となってしまう車両減速力を、モータを力行させることで打消し、バッテリの過充電を防止しつつトータルで目標車両減速力を成立させている。
In the technology described in JP2010-143511A, when the battery charge amount exceeds a predetermined amount during the coasting in the EV mode, the clutch is engaged and the engine friction torque acts as a vehicle deceleration force. In addition, shifting the stepped transmission to the 1st down side cancels the excessive vehicle deceleration force by powering the motor and establishes the total target vehicle deceleration force while preventing overcharging of the battery. I am letting.
しかしながら、モータを力行させるので、バッテリ充電量SOCが変化する。従って、バッテリ充電量SOCの変化に応じてエンジン回転速度がハンチングすると共に、モータジェネレータが回生と力行の間で遷移する際に、車両減速力が多少変動する可能性がある。
However, since the motor is powered, the battery charge SOC changes. Therefore, the engine speed hunts in accordance with the change in the battery charge amount SOC, and the vehicle deceleration force may fluctuate somewhat when the motor generator transitions between regeneration and power running.
本発明は、エンジン回転速度のハンチングを防止しつつ目標車両減速力を実現し得る制御装置を提供することを目的とする。
An object of the present invention is to provide a control device capable of realizing a target vehicle deceleration force while preventing hunting of the engine rotation speed.
一実施形態におけるハイブリッド車両の制御装置は、エンジンと、モータジェネレータと、これらの間を断続するクラッチと、変速機とを備え、クラッチの締結時には、エンジン及びモータジェネレータの駆動力を変速機の入力軸に伝達するHEVモードの走行となり、クラッチの解放時には、モータジェネレータのみの駆動力を変速機の入力軸に伝達するEVモードの走行となる。このハイブリッド車両の制御装置は、アクセルペダルの解放中であるか否かを判定するアクセル解放判定手段と、モータジェネレータと電力を授受するバッテリの充電量が所定量以上であるか否かを判定する充電状態判定手段と、エンジンのフリクショントルクを算出するエンジンフリクショントルク算出手段と、モータジェネレータが回生可能なトルクを算出するモータジェネレータ回生可能トルク算出手段と、算出されるモータジェネレータ回生可能トルクが得られるようにモータジェネレータのトルクを制御するモータジェネレータトルク制御手段と、EVモードまたはHEVモードでのアクセルペダルの解放中かつバッテリの充電量が所定量以上であると判定されると、車速に応じた目標変速比が得られるように変速機の変速比を制御する変速比制御手段と、変速比制御手段により変速比が制御されているときに、算出されるエンジンフリクショントルクと算出されるモータジェネレータ回生可能トルクとに基づき目標クラッチ締結容量を算出する目標クラッチ締結容量算出手段と、目標クラッチ締結容量が得られるようにクラッチの締結容量を制御するクラッチ締結容量制御手段とを備える。
A control apparatus for a hybrid vehicle according to an embodiment includes an engine, a motor generator, a clutch that intermittently connects the engine, and a transmission. When the clutch is engaged, the driving force of the engine and the motor generator is input to the transmission. The vehicle travels in the HEV mode that is transmitted to the shaft. When the clutch is released, the vehicle travels in the EV mode that transmits the driving force of only the motor generator to the input shaft of the transmission. The hybrid vehicle control device determines whether or not an accelerator release determining means for determining whether or not an accelerator pedal is being released, and whether or not a charge amount of a battery that exchanges power with a motor generator is greater than or equal to a predetermined amount. Charge state determination means, engine friction torque calculation means for calculating engine friction torque, motor generator regenerative torque calculation means for calculating torque that can be regenerated by the motor generator, and calculated motor generator regenerative torque are obtained. The motor generator torque control means for controlling the torque of the motor generator, and when the accelerator pedal is released in the EV mode or HEV mode and the battery charge amount is determined to be greater than or equal to a predetermined amount, the target according to the vehicle speed The transmission gear ratio is controlled so that the gear ratio is obtained. A target clutch engagement capacity for calculating a target clutch engagement capacity based on the calculated engine friction torque and the calculated motor generator regenerative torque when the transmission ratio is controlled by the transmission ratio control means Capacity calculation means and clutch engagement capacity control means for controlling the engagement capacity of the clutch so as to obtain the target clutch engagement capacity.
本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
Embodiments of the present invention and advantages of the present invention will be described below in detail with reference to the accompanying drawings.
(第1実施形態)
図1は、第1実施形態におけるハイブリッド車両の制御装置を適用する後輪駆動のハイブリッド車両を示す全体システム図である。ただし、ハイブリッド車両の制御装置を適用するハイブリッド車両は、後輪駆動車に限定されることはなく、前輪駆動車や四輪駆動車であってもよい。 (First embodiment)
FIG. 1 is an overall system diagram showing a rear-wheel drive hybrid vehicle to which the hybrid vehicle control device in the first embodiment is applied. However, the hybrid vehicle to which the hybrid vehicle control device is applied is not limited to the rear wheel drive vehicle, and may be a front wheel drive vehicle or a four wheel drive vehicle.
図1は、第1実施形態におけるハイブリッド車両の制御装置を適用する後輪駆動のハイブリッド車両を示す全体システム図である。ただし、ハイブリッド車両の制御装置を適用するハイブリッド車両は、後輪駆動車に限定されることはなく、前輪駆動車や四輪駆動車であってもよい。 (First embodiment)
FIG. 1 is an overall system diagram showing a rear-wheel drive hybrid vehicle to which the hybrid vehicle control device in the first embodiment is applied. However, the hybrid vehicle to which the hybrid vehicle control device is applied is not limited to the rear wheel drive vehicle, and may be a front wheel drive vehicle or a four wheel drive vehicle.
ハイブリッド車両の駆動系は、エンジン100、第1クラッチCL1、モータジェネレータ110、第2クラッチCL2、自動変速機120、プロペラシャフト130、ディファレンシャル140、左右のドライブシャフト151、152、駆動輪163、164を有する。モータジェネレータ110は、以下単に「モータ110」と呼ぶ。
The drive system of the hybrid vehicle includes an engine 100, a first clutch CL1, a motor generator 110, a second clutch CL2, an automatic transmission 120, a propeller shaft 130, a differential 140, left and right drive shafts 151 and 152, and drive wheels 163 and 164. Have. The motor generator 110 is hereinafter simply referred to as “motor 110”.
エンジン100は、ガソリンエンジンやディーゼルエンジンである。エンジンコントローラ1は、目標エンジントルク指令に基づいて、エンジン100の始動制御や停止制御、スロットルバルブのバルブ開度制御を行う。エンジン出力軸には、フライホイール170を設けている。
Engine 100 is a gasoline engine or a diesel engine. The engine controller 1 performs start control and stop control of the engine 100 and valve opening control of the throttle valve based on the target engine torque command. A flywheel 170 is provided on the engine output shaft.
第1クラッチCL1は、エンジン100とモータ110の間に介装され、トルク容量を連続的にまたは段階的に変更し得るクラッチである。クラッチの「トルク容量」とは、クラッチが伝達し得るトルクの大きさのことである。第1クラッチコントローラ5は、第1クラッチCL1の目標トルク容量(以下「目標第1クラッチトルク容量」という。)指令に基づいて、第1クラッチ油圧ユニット6により作り出された第1クラッチ制御油圧により、第1クラッチCL1の締結・解放(トルク容量)を制御する。第1クラッチCL1としては、例えばピストン14aを有する油圧アクチュエータ14により、トルク容量を変更し得る乾式単板クラッチを用いる。
The first clutch CL1 is a clutch that is interposed between the engine 100 and the motor 110 and can change the torque capacity continuously or stepwise. The “torque capacity” of the clutch is the magnitude of torque that can be transmitted by the clutch. Based on a target torque capacity (hereinafter referred to as “target first clutch torque capacity”) command of the first clutch CL1, the first clutch controller 5 uses the first clutch control oil pressure generated by the first clutch hydraulic unit 6 to Engagement / release (torque capacity) of the first clutch CL1 is controlled. As the first clutch CL1, for example, a dry single plate clutch whose torque capacity can be changed by a hydraulic actuator 14 having a piston 14a is used.
モータ110は、ロータに永久磁石を埋設し、ステータにステータコイルが巻き付けられた同期型モータジェネレータである。モータコントローラ2は、目標モータトルク指令及び目標モータ回転速度指令に基づいて、インバータ3によって生成された三相交流を印加することにより、モータ110を制御する。モータ110は、バッテリ4からの電力の供給を受けて回転駆動する電動機として、またロータがエンジン100や駆動輪から回転エネルギを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能する。発電した電力は、バッテリ4に充電する。以下、モータ110が電動機として動作する状態を「力行」、モータ110が発電機として動作する状態を「回生」という。モータ110のロータは、ダンパを介して自動変速機120の変速機入力軸に連結されている。
The motor 110 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. The motor controller 2 controls the motor 110 by applying the three-phase alternating current generated by the inverter 3 based on the target motor torque command and the target motor rotation speed command. The motor 110 is an electric motor that rotates by receiving power supplied from the battery 4, and as a generator that generates an electromotive force at both ends of the stator coil when the rotor receives rotational energy from the engine 100 or driving wheels. Function. The generated power is charged in the battery 4. Hereinafter, the state in which the motor 110 operates as an electric motor is referred to as “power running”, and the state in which the motor 110 operates as a generator is referred to as “regeneration”. The rotor of the motor 110 is connected to the transmission input shaft of the automatic transmission 120 via a damper.
第2クラッチCL2は、モータ110と駆動輪163、164の間に介装され、トルク容量を連続的にまたは段階的に変更し得るクラッチである。ATコントローラ7は、第2クラッチCL2の目標トルク容量(以下「目標第2クラッチトルク容量」という。)指令に基づいて、第2クラッチ油圧ユニット8により作り出された制御油圧により、第2クラッチCL2の締結・解放(トルク容量)を制御する。第2クラッチCL2としては、例えば、比例ソレノイドで油流量および油圧を連続的に制御して、トルク容量を変更し得る湿式多板クラッチや湿式多板ブレーキを用いる。第1クラッチ油圧ユニット6と第2クラッチ油圧ユニット8は、自動変速機120に付設されるAT油圧コントロールバルブユニット180に内蔵されている。
The second clutch CL2 is a clutch that is interposed between the motor 110 and the drive wheels 163 and 164 and can change the torque capacity continuously or stepwise. The AT controller 7 uses the control hydraulic pressure generated by the second clutch hydraulic unit 8 based on the target torque capacity (hereinafter referred to as “target second clutch torque capacity”) command of the second clutch CL2 to set the second clutch CL2. Controls fastening / release (torque capacity). As the second clutch CL2, for example, a wet multi-plate clutch or a wet multi-plate brake capable of changing the torque capacity by continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used. The first clutch hydraulic unit 6 and the second clutch hydraulic unit 8 are built in an AT hydraulic control valve unit 180 attached to the automatic transmission 120.
自動変速機120は、例えば、前進7速/後退1速等の有段階の変速段を車速やアクセル開度等に応じて自動的に切換える。第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機120の各変速段で締結される複数の摩擦締結要素のうち、トルク伝達経路に配置される最適なクラッチやブレーキを選択している。そして、自動変速機120の出力軸は、プロペラシャフト130、ディファレンシャル140、左右のドライブシャフト151、152を介して左右の駆動輪163、164に連結されている。
The automatic transmission 120 automatically switches, for example, stepped gear stages such as forward 7 speed / reverse 1 speed according to the vehicle speed, accelerator opening, and the like. The second clutch CL2 is not newly added as a dedicated clutch. Among the plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission 120, the second clutch CL2 is an optimum clutch or brake that is arranged on the torque transmission path. Selected. The output shaft of the automatic transmission 120 is connected to the left and right drive wheels 163 and 164 via the propeller shaft 130, the differential 140, and the left and right drive shafts 151 and 152.
ハイブリッド駆動系は、電気自動車走行モード(以下、「EVモード」という。)と、ハイブリッド車走行モード(以下、「HEVモード」という。)と、駆動トルクコントロール走行モード(以下、「WSCモード」という。)等の走行モードを有する。
The hybrid drive system includes an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and a drive torque control travel mode (hereinafter referred to as “WSC mode”). .) And other driving modes.
「EVモード」は、第1クラッチCL1を解放状態とし、モータ110の動力のみで走行するモードである。
“EV mode” is a mode in which the first clutch CL1 is disengaged and the vehicle travels only with the power of the motor 110.
「HEVモード」は、第1クラッチCL1を締結状態として、エンジン100とモータ110の駆動力で走行するモードである。
“HEV mode” is a mode in which the first clutch CL1 is engaged and the vehicle is driven by the driving force of the engine 100 and the motor 110.
「WSCモード」は、例えば、「EVモード」からの発進時、または、「HEVモード」からの発進時に、第2クラッチCL2をスリップ締結状態とし、第2クラッチCL2を経過するクラッチ伝達トルクが、車両状態やドライバ操作に応じて決まる要求駆動トルクとなるように、クラッチトルク容量をコントロールしながら発進するモードである。なお、「WSC」とは「Wet Start clutch」の略である。
In the “WSC mode”, for example, when starting from the “EV mode” or starting from the “HEV mode”, the clutch transmission torque that causes the second clutch CL2 to be in the slip engagement state and passes through the second clutch CL2 is: In this mode, the vehicle starts while controlling the clutch torque capacity so that the required driving torque is determined according to the vehicle state and driver operation. “WSC” is an abbreviation of “Wet Start clutch”.
次に、ハイブリッド車両の制御系について説明する。
Next, the control system of the hybrid vehicle will be described.
ハイブリッド車両の制御系は、エンジン、モータ、自動変速機、ブレーキ、統合の各コントローラ1、2、7、9、10、インバータ3、バッテリ4、第1クラッチコントローラ5、第1クラッチ油圧ユニット6、第2クラッチ油圧ユニット8から構成されている。なお、6つの各コントローラ1、2、5、7、9、10は、情報交換が互いに可能なCAN通信線11を介して接続されている。
The control system of the hybrid vehicle includes an engine, a motor, an automatic transmission, a brake, an integrated controller 1, 2, 7, 9, 10, an inverter 3, a battery 4, a first clutch controller 5, a first clutch hydraulic unit 6, The second clutch hydraulic unit 8 is configured. The six controllers 1, 2, 5, 7, 9, and 10 are connected via a CAN communication line 11 that can exchange information with each other.
エンジンコントローラ1は、エンジン回転速度センサ12からのエンジン回転速度情報と、統合コントローラ10からの目標エンジントルク指令と、他の必要情報を入力する。エンジンコントローラ1は、エンジン動作点(Ne,Te)を制御する指令を、エンジン100のスロットルバルブアクチュエータ等へ出力する。
The engine controller 1 inputs the engine rotation speed information from the engine rotation speed sensor 12, the target engine torque command from the integrated controller 10, and other necessary information. The engine controller 1 outputs a command for controlling the engine operating point (Ne, Te) to the throttle valve actuator or the like of the engine 100.
モータコントローラ2は、モータ110のロータ回転位置を検出するレゾルバ13からの情報と、統合コントローラ10からの目標モータトルク指令および目標モータ回転速度指令と、他の必要情報を入力する。モータコントローラ2は、モータ110のモータ動作点(Nm,Tm)を制御する指令をインバータ3へ出力する。また、モータコントローラ2は、バッテリ4の充電容量を表すバッテリ充電量SOCを監視している。このバッテリ充電量SOC情報は、モータ110の制御情報に用いられると共に、CAN通信線11を介して、統合コントローラ10へ供給される。
The motor controller 2 inputs information from the resolver 13 that detects the rotor rotation position of the motor 110, a target motor torque command and target motor rotation speed command from the integrated controller 10, and other necessary information. The motor controller 2 outputs a command for controlling the motor operating point (Nm, Tm) of the motor 110 to the inverter 3. Further, the motor controller 2 monitors the battery charge amount SOC that represents the charge capacity of the battery 4. The battery charge amount SOC information is used for control information of the motor 110 and is supplied to the integrated controller 10 via the CAN communication line 11.
第1クラッチコントローラ5は、第1クラッチストロークセンサ15からのセンサ情報と、統合コントローラ10からの目標第1クラッチトルク容量指令と、他の必要情報を入力する。第1クラッチストロークセンサ15は、油圧アクチュエータ14のピストン14aのストローク位置を検出する。第1クラッチコントローラ5は、第1クラッチCL1の締結・解放(トルク容量)を制御する指令をAT油圧コントロールバルブユニット180内の第1クラッチ油圧ユニット6に出力する。
The first clutch controller 5 inputs the sensor information from the first clutch stroke sensor 15, the target first clutch torque capacity command from the integrated controller 10, and other necessary information. The first clutch stroke sensor 15 detects the stroke position of the piston 14 a of the hydraulic actuator 14. The first clutch controller 5 outputs a command for controlling engagement / release (torque capacity) of the first clutch CL 1 to the first clutch hydraulic unit 6 in the AT hydraulic control valve unit 180.
ATコントローラ7は、アクセル開度センサ16と、車速センサ17と、他のセンサ類18(変速機入力回転速度センサ、インヒビタースイッチ等)からの情報を入力する。ATコントローラ7は、Dレンジ走行時、アクセル開度APOと車速VSPにより決まる運転点がシフトマップ上で存在する位置により最適な変速段を検索し、検索した変速段を得る制御指令をAT油圧コントロールバルブユニット180に出力する。AT油圧コントロールバルブユニット180は、図示を省略した各摩擦締結要素の締結および解放を制御する。上記のシフトマップとは、アクセル開度と車速に応じてアップシフト線とダウンシフト線を書き込んだマップのことである。
AT controller 7 inputs information from accelerator opening sensor 16, vehicle speed sensor 17, and other sensors 18 (transmission input rotation speed sensor, inhibitor switch, etc.). The AT controller 7 searches for the optimum gear position based on the position where the operating point determined by the accelerator opening APO and the vehicle speed VSP exists on the shift map when traveling in the D range, and sends a control command for obtaining the searched gear position to the AT hydraulic control. Output to the valve unit 180. The AT hydraulic control valve unit 180 controls the engagement and release of each frictional engagement element (not shown). The shift map is a map in which an upshift line and a downshift line are written according to the accelerator opening and the vehicle speed.
また、ATコントローラ7は、上記自動変速制御に加えて、次の第2クラッチ制御を行う。すなわち、統合コントローラ10から目標第2クラッチトルク容量指令を入力した場合、第2クラッチCL2の締結・解放(トルク容量)を制御する指令をAT油圧コントロールバルブユニット180内の第2クラッチ油圧ユニット8に出力する。
The AT controller 7 performs the following second clutch control in addition to the automatic shift control. That is, when a target second clutch torque capacity command is input from the integrated controller 10, a command for controlling engagement / release (torque capacity) of the second clutch CL 2 is sent to the second clutch hydraulic unit 8 in the AT hydraulic control valve unit 180. Output.
ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19と、ブレーキストロークセンサ20からのセンサ情報と、統合コントローラ10からの回生協調制御指令と、他の必要情報を入力する。ブレーキコントローラ9は、ブレーキ踏込み制動時、ブレーキストロークBSから求められる要求制動力に対し、回生制動力だけでは不足する場合、その不足分を機械制動力(液圧制動力やモータ制動力)で補うように、回生協調ブレーキ制御を行なう。
The brake controller 9 inputs a wheel speed sensor 19 for detecting each wheel speed of the four wheels, sensor information from the brake stroke sensor 20, a regenerative cooperative control command from the integrated controller 10, and other necessary information. The brake controller 9 compensates for the shortage with the mechanical braking force (hydraulic braking force or motor braking force) when the regenerative braking force is insufficient with respect to the required braking force required from the brake stroke BS at the time of brake depression braking. In addition, regenerative cooperative brake control is performed.
統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担う。統合コントローラ10は、モータ回転速度Nmotを検出するモータ回転速度センサ21や、他のセンサ・スイッチ類22からの必要情報、およびCAN通信線11を介して情報を入力する。統合コントローラ10は、目標エンジントルク指令、目標モータトルク指令および目標モータ回転速度指令、目標第1クラッチトルク容量指令、目標第2クラッチトルク容量指令、回生協調制御指令を出力する。
The integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency. The integrated controller 10 inputs necessary information from the motor rotation speed sensor 21 that detects the motor rotation speed Nmot, other sensors / switches 22, and the CAN communication line 11. The integrated controller 10 outputs a target engine torque command, a target motor torque command and a target motor rotation speed command, a target first clutch torque capacity command, a target second clutch torque capacity command, and a regeneration cooperative control command.
図2は、統合コントローラ10において実行される算出処理を示す制御ブロック図である。図2に示すように、統合コントローラ10は、目標駆動力算出部31、モード選択部32、目標充放電電力算出部33、動作点指令部34を有する。
FIG. 2 is a control block diagram showing calculation processing executed in the integrated controller 10. As shown in FIG. 2, the integrated controller 10 includes a target driving force calculation unit 31, a mode selection unit 32, a target charge / discharge power calculation unit 33, and an operating point command unit 34.
目標駆動力算出部31は、アクセル開度APOと車速VSPとから、目標駆動力マップを検索することにより、目標駆動力tFo0を算出する。
The target driving force calculation unit 31 calculates a target driving force tFo0 by searching a target driving force map from the accelerator opening APO and the vehicle speed VSP.
モード選択部32は、アクセル開度APOと車速VSPとから、図3に示すEV・HEVモード選択マップを用いて「EVモード」または「HEVモード」を選択し、選択したモードを目標走行モードとする。ただし、バッテリ充電量SOCが所定値以下であれば、強制的に「HEVモード」を目標走行モードとする。また、「EVモード」または「HEVモード」からの発進時、車速VSPが第1設定車速VSP1になるまでは、「WSCモード」を目標走行モードとして選択する。
The mode selection unit 32 selects “EV mode” or “HEV mode” from the accelerator opening APO and the vehicle speed VSP using the EV / HEV mode selection map shown in FIG. 3, and selects the selected mode as the target travel mode. To do. However, if the battery charge SOC is equal to or less than the predetermined value, the “HEV mode” is forcibly set as the target travel mode. Further, when starting from the “EV mode” or “HEV mode”, the “WSC mode” is selected as the target travel mode until the vehicle speed VSP becomes the first set vehicle speed VSP1.
動作点指令部34は、動力源と駆動系を合わせたパワートレインの動作点を、目標エンジントルクと、目標モータトルク(目標モータ回転速度でもよい)と、目標第1クラッチトルク容量と、目標第2クラッチトルク容量と、目標変速比とで規定する。
The operating point commanding unit 34 determines the operating point of the power train that combines the power source and the drive system, the target engine torque, the target motor torque (may be the target motor rotational speed), the target first clutch torque capacity, It is defined by the 2-clutch torque capacity and the target gear ratio.
ハイブリッド車両では、EVモードでのコースト中にモータ回生が行われるが、モータ回生によってバッテリ4が満充電になった後もモータ回生を継続すると、バッテリ4が過充電となってバッテリ4の劣化を招く恐れがある。しかしながら、バッテリ4の過充電防止のためにモータ回生を解除すると、減速制動力が得られなくなる。
In the hybrid vehicle, motor regeneration is performed during the coasting in the EV mode. However, if the motor regeneration is continued even after the battery 4 is fully charged by the motor regeneration, the battery 4 is overcharged and the battery 4 is deteriorated. There is a risk of inviting. However, if the motor regeneration is canceled to prevent overcharging of the battery 4, the deceleration braking force cannot be obtained.
そこで、バッテリ4の過充電を防止しつつ、エンジンブレーキを併用して望みの減速制動力が得られるようにした参考例がある。これについて図5を参照して説明する。図5は、EVモードでのコースト中の制御を示す参考例のタイミングチャートである。「コースト」とは、下り坂や平地で車両が惰性で走行していることをいう。例えば、アクセル開度APOがゼロで、かつブレーキペダルが踏み込まれていないときに、コーストであると判断することができる。
Therefore, there is a reference example in which the desired deceleration braking force is obtained by using the engine brake together while preventing the battery 4 from being overcharged. This will be described with reference to FIG. FIG. 5 is a timing chart of a reference example showing control during coasting in the EV mode. “Coast” means that the vehicle is traveling inertia on a downhill or flat ground. For example, it can be determined that the vehicle is coasting when the accelerator opening APO is zero and the brake pedal is not depressed.
EVモードでの走行途中のt1でアクセルペダルを戻したとき、t2のタイミングでアクセル開度がゼロになり、EVモードでのコースト中に移行する。EVモードでのコーストへの移行開始より、モータ回生可能トルク(Tmot)を負の一定値で維持することにより、モータ回生を行う(図5第3段目の実線参照)。モータ回生によってバッテリ4が充電されるため、t2からバッテリ充電量SOCが所定の傾きで増加してゆく(図5第4段目参照)。
¡When the accelerator pedal is returned at t1 during traveling in the EV mode, the accelerator opening becomes zero at the timing of t2 and shifts to coasting in the EV mode. From the start of the shift to the coast in the EV mode, the motor regeneration is performed by maintaining the motor regeneration possible torque (Tmot) at a negative constant value (see the solid line in the third stage in FIG. 5). Since the battery 4 is charged by the motor regeneration, the battery charge amount SOC increases with a predetermined inclination from t2 (see the fourth stage in FIG. 5).
参考例では、バッテリ充電量SOCに対して第3、第4の閾値Vs3、Vs4を予め用意している。このうち、第3閾値Vs3は、EVモードでの充電上限値(満充電状態を示す)であって、HEVモードでの充電上限値である第1閾値Vs1よりもわずかに低い値を設定している。一方、第4閾値Vs4は、EVモードでの充電下限値であって、HEVモードでの充電下限値である第2閾値Vs2よりもわずかに高い値を設定している。このため、モータ回生によってバッテリ充電量SOCが第3閾値Vs3に到達するt3のタイミングより、モータ回生可能トルク(Tmot)を所定の傾きでゼロに向かって大きくする。モータ回生トルクの絶対値は小さくなり、バッテリ充電量SOCの傾きがt3より緩やかとなる。t4のタイミングでモータ回生可能トルク(Tmot)がゼロになった後も同じ傾きでモータトルクを大きくし、t5のタイミングで正の一定値に保持する。つまり、t4からは、バッテリ充電量SOCを減らすため、モータ110を力行させる(図5第3段目の実線参照)。
In the reference example, the third and fourth threshold values Vs3 and Vs4 are prepared in advance for the battery charge amount SOC. Among these, the third threshold value Vs3 is a charging upper limit value (indicating a fully charged state) in the EV mode, and is set to a value slightly lower than the first threshold value Vs1 that is the charging upper limit value in the HEV mode. Yes. On the other hand, the fourth threshold value Vs4 is a charging lower limit value in the EV mode, and is set to a value slightly higher than the second threshold value Vs2 that is the charging lower limit value in the HEV mode. For this reason, the motor regeneration possible torque (Tmot) is increased toward zero with a predetermined inclination from the timing t3 when the battery charge SOC reaches the third threshold value Vs3 due to the motor regeneration. The absolute value of the motor regeneration torque becomes small, and the slope of the battery charge amount SOC becomes gentler than t3. After the motor regenerative torque (Tmot) becomes zero at the timing of t4, the motor torque is increased with the same inclination, and is held at a positive constant value at the timing of t5. That is, from t4, the motor 110 is powered to reduce the battery charge amount SOC (see the solid line in the third stage in FIG. 5).
一方、t3のタイミングで第1クラッチCL1を締結し始め、t4で完全に第1クラッチCL1を締結する(図5第2段目参照)。第1クラッチCL1の完全締結状態では、エンジン回転速度Nengが変速機入力軸回転速度Ntrin(=モータ回転速度Nmot)と一致し、エンジン100が駆動系によって連れ回される。つまり、エンジンフリクショントルクがエンジンブレーキとして駆動系に作用する。
Meanwhile, the first clutch CL1 starts to be engaged at the timing of t3, and the first clutch CL1 is completely engaged at the time t4 (see the second stage in FIG. 5). In the fully engaged state of the first clutch CL1, the engine rotational speed Neng matches the transmission input shaft rotational speed Ntrin (= motor rotational speed Nmot), and the engine 100 is rotated by the drive system. That is, the engine friction torque acts on the drive system as an engine brake.
図5第3段目には、第1クラッチトルク容量(CL1トルク容量)を二点鎖線で重ねて記載している。第1クラッチトルク容量が負であることは、締結された第1クラッチCL1を介してエンジンフリクショントルクが駆動系に作用していることを表す。この場合、t4以降では、エンジンフリクショントルクの絶対値とモータ回生可能トルク(Tmot)の差が車両制動トルクになる。従って、エンジンフリクショントルクの絶対値をモータ回生可能トルク(Tmot)が超えないように力行時の目標モータトルクを定めておくことで、車両制動力を得ることができる。
In the third row of FIG. 5, the first clutch torque capacity (CL1 torque capacity) is shown superimposed on a two-dot chain line. The negative first clutch torque capacity indicates that the engine friction torque is acting on the drive system via the engaged first clutch CL1. In this case, after t4, the difference between the absolute value of the engine friction torque and the motor regenerative torque (Tmot) becomes the vehicle braking torque. Therefore, the vehicle braking force can be obtained by determining the target motor torque during power running so that the motor regenerative torque (Tmot) does not exceed the absolute value of the engine friction torque.
t3から、モータ回生可能トルク(Tmot)をゼロへと増大させることにより、バッテリ充電量SOCの傾きがt3以前よりも緩やかとなり、第1クラッチCL1が完全に締結されるt4でバッテリ充電量SOCがピーク値となる。バッテリ充電量SOCは、その後t5までは緩やかに低下し、t5からは、t5以前より急な傾きで低下してゆく(図5第4段目参照)。
By increasing the motor regenerative torque (Tmot) to zero from t3, the slope of the battery charge SOC becomes gentler than before t3, and the battery charge SOC is reduced at t4 when the first clutch CL1 is completely engaged. Peak value. The battery charge amount SOC then gradually decreases until t5, and then decreases with a steeper slope than before t5 (see the fourth stage in FIG. 5).
バッテリ充電量SOCの低下によって、t6のタイミングでバッテリ充電量SOCが第4閾値Vs4に到達する。t6では、これ以上バッテリ充電量SOCが減少しないように、目標モータトルク(力行トルク)を所定の傾きで小さくする。t7のタイミングで目標モータトルクTmot(力行トルク)がゼロになると、トルクの傾きを緩くし、t8のタイミングでトルクを負の一定値に保持する。つまり、t7からは、再びモータ回生可能トルクを与えてモータ回生を行い、バッテリ充電量SOCを増加させる(図5第4段目参照)。
The battery charge SOC reaches the fourth threshold value Vs4 at the timing of t6 due to the decrease in the battery charge SOC. At t6, the target motor torque (power running torque) is decreased with a predetermined slope so that the battery charge SOC does not decrease any more. When the target motor torque Tmot (power running torque) becomes zero at the timing of t7, the inclination of the torque is relaxed and the torque is held at a negative constant value at the timing of t8. That is, from t7, motor regeneration possible torque is applied again to perform motor regeneration, and the battery charge amount SOC is increased (see the fourth stage in FIG. 5).
一方、t7より第1クラッチトルク容量をゼロに向けて大きくし、t8のタイミングで目標モータトルクTmotと一致させる。
On the other hand, the first clutch torque capacity is increased toward zero from t7 and is made to coincide with the target motor torque Tmot at timing t8.
このように、参考例では、モータ110を力行させることによって、バッテリ4の過充電を防止しつつ、第1クラッチを締結してエンジンフリクショントルクの絶対値とモータ回生可能トルク(Tmot)との差を車両制動トルクとして用いて車両を減速させている。
As described above, in the reference example, by driving the motor 110, the first clutch is engaged while preventing overcharging of the battery 4, and the difference between the absolute value of the engine friction torque and the motor regenerative torque (Tmot). Is used as a vehicle braking torque to decelerate the vehicle.
しかしながら、バッテリ充電量SOCはt4以降で変化する。このバッテリ充電量SOCの変化に応じて、エンジン回転速度Neng(=変速機入力軸回転速度Ntrin)がハンチングすると共に、モータ110が回生と力行の間で遷移する際に、車両制動力が多少変動する可能性がある(図5最下段の点線で囲った箇所を参照)。
However, the battery charge SOC changes after t4. The engine rotational speed Neng (= transmission input shaft rotational speed Ntrin) hunts according to the change in the battery charge amount SOC, and the vehicle braking force slightly varies when the motor 110 transitions between regeneration and power running. (See the portion surrounded by the dotted line at the bottom of FIG. 5).
そこで本実施形態では、ドライバ要求車両制動力に対し、モータ回生可能トルク、目標第1クラッチトルク容量及び目標変速比を協調制御するために、次の操作を実行する。
Therefore, in the present embodiment, the following operation is executed in order to cooperatively control the motor regeneration possible torque, the target first clutch torque capacity, and the target gear ratio with respect to the driver request vehicle braking force.
〈1〉EVモードでのコースト中にバッテリ4が満充電状態となり、モータ回生できなくなったとき、第1クラッチCL1の完全締結後のエンジンフリクションによる成り行き車両制動力が目標車両制動力となるような目標変速比をフィードフォワード的に指示する。このフィードフォワード的に指示する目標変速比を、「フィードフォワード目標変速比」と呼ぶ。
<1> When the battery 4 is fully charged during the coasting in the EV mode and the motor cannot be regenerated, the resulting vehicle braking force due to engine friction after the first clutch CL1 is completely engaged becomes the target vehicle braking force. A target gear ratio is instructed in a feed-forward manner. This target gear ratio instructed in a feedforward manner is referred to as “feedforward target gear ratio”.
〈2〉バッテリ4が満充電状態になると、モータ回生可能トルクをゼロに向かって増加させる。このとき、モータ回生可能トルクが増加するに従って、目標車両制動力を満たし続けるように目標第1クラッチトルク容量(油圧)を指示することで、車両制動力を変化させずに第1クラッチCL1の締結を行う。
<2> When the battery 4 is fully charged, the motor regenerative torque is increased toward zero. At this time, the first clutch CL1 is engaged without changing the vehicle braking force by instructing the target first clutch torque capacity (hydraulic pressure) to continue to satisfy the target vehicle braking force as the motor regenerative torque increases. I do.
〈3〉モータ回生可能トルクをゼロに向かって増加させることによって、モータ回生可能トルクがゼロとなる。このとき、モータ回生からモータ力行へと移行させずに、回生終了で止まるように、目標モータトルクをゼロに制限する。
<3> By increasing the motor regenerative torque toward zero, the motor regenerative torque becomes zero. At this time, the target motor torque is limited to zero so as to stop at the end of regeneration without shifting from motor regeneration to motor power running.
この目標モータトルク(モータ回生可能トルク)、目標第1クラッチトルク容量及び目標変速比の協調制御について、図6を参照して説明する。図6は、EVモードでのコースト中に、アクセル開度APO、モータ回転速度Nmot、エンジン回転速度Neng、目標モータトルクTmot、目標第1クラッチトルク容量、バッテリ充電量SOCなどがどのように変化するのかを示している。ここで、ハイブリッド車両の運転は、参考例と同じように行ったと仮定する。比較のため、参考例の場合を細線で重ねて示している。
The cooperative control of the target motor torque (motor regeneration possible torque), the target first clutch torque capacity, and the target gear ratio will be described with reference to FIG. FIG. 6 shows how the accelerator opening APO, the motor rotation speed Nmot, the engine rotation speed Neng, the target motor torque Tmot, the target first clutch torque capacity, the battery charge amount SOC, and the like change during the coasting in the EV mode. Is shown. Here, it is assumed that the hybrid vehicle is operated in the same manner as in the reference example. For comparison, the case of the reference example is shown by overlapping with a thin line.
本実施形態では、バッテリ充電量SOCが第3閾値Vs3に到達するt3のタイミングより、上記〈1〉のフィードフォワード目標変速比を自動変速機120に指示するので、モータ回転速度の傾きが参考例よりも緩やかとなり、t4のタイミングで一定値に落ち着く。同じく、t3より上記〈2〉の目標第1クラッチトルク容量(油圧)を第1クラッチCL1に指示するので、第1クラッチトルク容量の負側への傾きは参考例よりも緩やかであり、t4のタイミングで負の一定値に落ち着く。t4で第1クラッチは完全締結され、これによってエンジンフリクショントルクが車両に作用して、エンジンブレーキが得られる。
In the present embodiment, since the feedforward target gear ratio of <1> is instructed to the automatic transmission 120 from the timing t3 when the battery charge SOC reaches the third threshold value Vs3, the inclination of the motor rotation speed is a reference example. It becomes more gradual and settles to a constant value at the timing of t4. Similarly, since the target first clutch torque capacity (hydraulic pressure) of the above <2> is instructed to the first clutch CL1 from t3, the inclination of the first clutch torque capacity to the negative side is more gradual than that of the reference example. It settles to a negative constant value at the timing. At t4, the first clutch is completely engaged, whereby engine friction torque acts on the vehicle and engine braking is obtained.
同じく、t3より目標モータトルクTmot(=回生可能トルク)をゼロに向かって増加したとき、t4のタイミングで目標モータトルクTmotゼロに到達する。このとき、上記〈3〉で目標モータトルクTmotをゼロに維持するので、バッテリ充電量SOCはt4より一定値を保つ。
Similarly, when the target motor torque Tmot (= regenerative torque) is increased toward zero from t3, the target motor torque Tmot reaches zero at the timing of t4. At this time, since the target motor torque Tmot is maintained at zero in the above <3>, the battery charge amount SOC is kept constant from t4.
本実施形態では、フィードフォワード目標変速比を与えることで目標車両制動力を得つつ、バッテリ充電量SOCが変動しないようにした。これによって、参考例のように自動変速機120をダウンシフトしすぎてエンジンブレーキが効き過ぎ、この効き過ぎを緩和するためモータ力行するようなことはしなくて済む。この結果、モータ110が発電と充電とを繰り返す状態遷移が生じないため、エンジン回転速度Neng(=変速機入力軸回転速度Ntrin)のハンチング及び無駄な充放電をすることなく、目標車両制動力を実現できる。
In this embodiment, the battery charge amount SOC is not changed while obtaining the target vehicle braking force by giving the feedforward target gear ratio. As a result, as in the reference example, the automatic transmission 120 is downshifted too much and the engine brake becomes too effective, and it is not necessary to perform motor powering to alleviate this effect. As a result, since the state transition in which the motor 110 repeats power generation and charging does not occur, the target vehicle braking force is reduced without hunting the engine rotational speed Neng (= transmission input shaft rotational speed Ntrin) and unnecessary charging / discharging. realizable.
図2の動作点指令部34で行われるこの制御について、図7の制御ブロック図を参照して説明する。
2 will be described with reference to the control block diagram of FIG.
図7において、発電トルク算出部41は、現在のモータ回転速度Nmotから所定のテーブル(発電トルクテーブル)を検索することにより、発電トルクTgen[Nm]を算出する。「発電トルク」とは、現在のモータ回転速度Nmotで回生できるトルクのことである。この発電トルクTgenは、負の値で与えている。これは、力行のときモータトルクを正の値で、回生のときモータトルクを負の値で定義しているためである。
In FIG. 7, the power generation torque calculation unit 41 calculates a power generation torque Tgen [Nm] by searching a predetermined table (power generation torque table) from the current motor rotation speed Nmot. The “power generation torque” is torque that can be regenerated at the current motor rotation speed Nmot. The power generation torque Tgen is given as a negative value. This is because the motor torque is defined as a positive value during power running and the motor torque as a negative value during regeneration.
最大値選択部42は、この発電トルクTgenと、モータ回生可能トルク算出部65からのモータ回生可能トルク[Nm]とを比較し、大きい側を選択して出力する。2つのトルクはいずれも負の値であるので、負の値のうち絶対値で小さいほうを選択する。
The maximum value selection unit 42 compares the power generation torque Tgen with the motor regenerative torque [Nm] from the motor regenerative torque calculation unit 65, and selects and outputs the larger side. Since the two torques are negative values, the smaller negative value is selected.
「モータ回生可能トルク」とは、モータ110が回生できる最大のトルクのことである。モータ回生可能トルク算出部65で行われるモータ回生可能トルクの算出方法は省略する。簡単には、モータ回生可能トルクは、バッテリ充電量SOCやインバータ3の状態、エンジン始動時に必要なトルクなど、様々な要件で定まる上限値である。例えば、バッテリ充電量SOCやインバータ3の状態に基づいて、モータ110が回生できる最大のトルクを求め、求めたトルクから、エンジン始動に必要なトルクを減算した値をモータ回生可能トルクとする。従って、発電トルクTgenとの違いは次のようなものである。すなわち、発電トルクTgenは、最大回生トルク(最大kWが定まればほぼ確定)である。一方、モータ回生可能トルクは、システムの様々な要件からリアルタイムに定まる制限値といった意味合いを有する値である。
“The motor regenerative torque” is the maximum torque that the motor 110 can regenerate. The calculation method of the motor regenerative torque that is performed by the motor regenerative torque calculation unit 65 is omitted. In brief, the motor regeneration possible torque is an upper limit value determined by various requirements such as the battery charge amount SOC, the state of the inverter 3, and the torque required when starting the engine. For example, the maximum torque that can be regenerated by the motor 110 is obtained based on the battery charge amount SOC and the state of the inverter 3, and the value obtained by subtracting the torque necessary for engine start from the obtained torque is set as the motor regenerative torque. Therefore, the difference from the power generation torque Tgen is as follows. That is, the power generation torque Tgen is the maximum regenerative torque (almost determined if the maximum kW is determined). On the other hand, the motor regenerative torque is a value having a meaning such as a limit value determined in real time from various requirements of the system.
具体的には、EVモードでのコースト中は、モータ回生のため、モータ回生可能トルクは負の一定値となり、バッテリ充電量SOCが第3閾値Vs3に到達すると、モータ回生可能トルクは、負の一定値からゼロに向かっていく。EVモードでのコースト中に、このように算出されるモータ回生可能トルクの絶対値は、発電トルクの絶対値より小さいために、最大値選択部42は、EVモードでのコースト中にはモータ回生可能トルクを出力する。
Specifically, during coasting in the EV mode, the motor regeneration possible torque is a constant negative value because of motor regeneration. When the battery charge amount SOC reaches the third threshold value Vs3, the motor regeneration possible torque is negative. It goes from zero to zero. Since the absolute value of the motor regenerative torque calculated in this way during the coasting in the EV mode is smaller than the absolute value of the power generation torque, the maximum value selection unit 42 does the motor regeneration during the coasting in the EV mode. Output possible torque.
最大値制限部43は、最大値選択部42からの負の出力を最大でゼロに制限する。図6を参照すると、t2~t3の期間では、モータ回生可能トルクが負の値で与えられて、バッテリ充電量SOCが増加する。t3からモータ回生可能トルクがゼロに向かって上昇することで、バッテリ充電量SOの傾きがt3以前よりも緩やかとなる。t4でモータ回生可能トルクがゼロに到達し、t4以降で目標モータトルクがゼロに維持される。つまり、t4以降でモータ回生可能トルクがゼロに維持されるのは、最大値制限部43の働きによる。
The maximum value limiter 43 limits the negative output from the maximum value selector 42 to zero at the maximum. Referring to FIG. 6, during the period from t2 to t3, the motor regeneration possible torque is given as a negative value, and the battery charge amount SOC increases. Since the motor regenerative torque increases from t3 toward zero, the slope of the battery charge amount SO becomes gentler than before t3. The motor regeneration possible torque reaches zero at t4, and the target motor torque is maintained at zero after t4. That is, the motor regenerative torque is maintained at zero after t4 due to the function of the maximum value limiting unit 43.
図7に戻って説明を続ける。エンジンフリクショントルク算出部44は、エンジン回転速度Nengから所定のテーブル(エンジンフリクショントルクテーブル)を検索することにより、エンジンフリクショントルクTengを算出する。
Referring back to FIG. The engine friction torque calculation unit 44 calculates an engine friction torque Teng by searching a predetermined table (engine friction torque table) from the engine rotation speed Neng.
フィードフォワード目標変速比算出部45は、車速VSPから所定のテーブル(目標変速比テーブル)を検索することにより、フィードフォワード目標変速比Rffを算出する。
The feedforward target gear ratio calculation unit 45 calculates a feedforward target gear ratio Rff by searching a predetermined table (target gear ratio table) from the vehicle speed VSP.
ここで、フィードフォワード目標変速比テーブルをどのように設定するかについて説明する。まず、図8に示すような、車速VSPに応じたドライバ要求車両制動力Fdrvが規定された、ドライバ要求車両制動力テーブルが与えられる。ここで、車両制動力Fdrvとは、ドライブシャフト軸換算の駆動力のことである。車両制動力Fdrvは、基本的に負の値であるが、車速VSPが小さい領域では正の値を与えている。これは、車速VSPが小さい領域でクリープトルクを与えるためである。
Here, how to set the feedforward target gear ratio table will be described. First, a driver requested vehicle braking force table in which a driver requested vehicle braking force Fdrv corresponding to the vehicle speed VSP is defined as shown in FIG. Here, the vehicle braking force Fdrv is a driving force converted to a drive shaft axis. The vehicle braking force Fdrv is basically a negative value, but a positive value is given in a region where the vehicle speed VSP is low. This is because creep torque is applied in a region where the vehicle speed VSP is low.
一方、エンジン回転速度Nengと、エンジンフリクショントルクTengとの関係は、図9(A)に示すエンジンフリクショントルクテーブルのように規定される。また、下記(1)式および(2)式とにより、車速VSPに対するエンジンフリクションにより生じる車両制動力Fdrvfの関係は、図9(B)に示すグラフのように、各変速比RATIOごとに規定できる。
Fdrvf[N]=Teng[Nm]×RATIO×終減速比/動回転半径[m]
…(1)
VSP[km/h]=Neng[rpm]/(RATIO×終減速比)
×動回転半径[m]×2π×60/1000 …(2) On the other hand, the relationship between the engine rotational speed Neng and the engine friction torque Teng is defined as in the engine friction torque table shown in FIG. Further, from the following equations (1) and (2), the relationship of the vehicle braking force Fdrvf generated by the engine friction with respect to the vehicle speed VSP can be defined for each gear ratio RATIO as shown in the graph of FIG. 9B. .
Fdrvf [N] = Teng [Nm] × RATIO × final reduction ratio / dynamic rotation radius [m]
... (1)
VSP [km / h] = Neng [rpm] / (RATIO × final reduction ratio)
× Dynamic rotation radius [m] × 2π × 60/1000 (2)
Fdrvf[N]=Teng[Nm]×RATIO×終減速比/動回転半径[m]
…(1)
VSP[km/h]=Neng[rpm]/(RATIO×終減速比)
×動回転半径[m]×2π×60/1000 …(2) On the other hand, the relationship between the engine rotational speed Neng and the engine friction torque Teng is defined as in the engine friction torque table shown in FIG. Further, from the following equations (1) and (2), the relationship of the vehicle braking force Fdrvf generated by the engine friction with respect to the vehicle speed VSP can be defined for each gear ratio RATIO as shown in the graph of FIG. 9B. .
Fdrvf [N] = Teng [Nm] × RATIO × final reduction ratio / dynamic rotation radius [m]
... (1)
VSP [km / h] = Neng [rpm] / (RATIO × final reduction ratio)
× Dynamic rotation radius [m] × 2π × 60/1000 (2)
ここで、(1)式および(2)式の終減速比、動回転半径は一定値である。
Here, the final reduction ratio and dynamic rotation radius in the equations (1) and (2) are constant values.
図10(A)に示すように、図9(B)のグラフを図8のドライバ要求車両制動力テーブルと重ね合わせたときの、それぞれのグラフの交点の関係を抽出する(図10(B))ことにより、エンジンフリクショントルクTengによりドライバ要求車両制動力を出力するための、車速VSPと変速比RATIO(変速段)との関係を規定した変速比テーブルが得られる。このときの変速比RATIOを改めてフィードフォワード目標変速比Rffと置くことによって、フィードフォワード目標変速比テーブルが設定できる。
As shown in FIG. 10 (A), when the graph of FIG. 9 (B) is superimposed on the driver requested vehicle braking force table of FIG. 8, the relationship between the intersections of the respective graphs is extracted (FIG. 10 (B)). Thus, a gear ratio table defining the relationship between the vehicle speed VSP and the gear ratio RATIO (speed stage) for outputting the driver requested vehicle braking force by the engine friction torque Teng is obtained. By setting the transmission gear ratio RATIO at this time as the feedforward target transmission gear ratio Rff, the feedforward target transmission gear ratio table can be set.
つまり、このフィードフォワード目標変速比算出部45は、バッテリ4が満充電状態となったためにフル回生できなくなったときに、エンジンフリクショントルクTengから定まる成り行き制動力と、ドライバ要求車両制動力Fdrvとを用いて、フィードフォワード的に目標変速比を算出する。このようにして求めたフィードフォワード目標変速比Rffを自動変速機120に与えることによって、フル回生できなくなったときに、参考例で生じていた変速後の減速力過多そのものを回避でき、回生と放電を繰り返すことそのものを回避できる。
In other words, the feedforward target gear ratio calculation unit 45 calculates the driving braking force determined from the engine friction torque Teng and the driver requested vehicle braking force Fdrv when the battery 4 is not fully regenerated because the battery 4 is fully charged. The target gear ratio is calculated in a feed-forward manner. By providing the feedforward target speed ratio Rff thus determined to the automatic transmission 120, it is possible to avoid excessive deceleration force itself after the shift that has occurred in the reference example when full regeneration cannot be performed. Can be avoided.
フル回生可能判定部50は、ドライバ要求車両制動力算出部46、車両制動力算出部51、絶対値算出部52、53、比較部54を備えている。
The full regeneration possibility determination unit 50 includes a driver request vehicle braking force calculation unit 46, a vehicle braking force calculation unit 51, absolute value calculation units 52 and 53, and a comparison unit 54.
車両制動力算出部51は、モータ回生可能トルクと自動変速機の現在の変速比から、次式により実車両制動力を算出する。
実車両制動力=モータ回生可能トルク×現在の変速比×比例定数 …(3) The vehicle brakingforce calculation unit 51 calculates an actual vehicle braking force from the motor regenerative torque and the current gear ratio of the automatic transmission according to the following equation.
Actual vehicle braking force = Motor regenerative torque x Current gear ratio x Proportional constant (3)
実車両制動力=モータ回生可能トルク×現在の変速比×比例定数 …(3) The vehicle braking
Actual vehicle braking force = Motor regenerative torque x Current gear ratio x Proportional constant (3)
(3)式の実車両制動力もドライブシャフト軸換算の駆動力である。
(3) The actual vehicle braking force of equation (3) is also the driving force converted to the drive shaft axis.
絶対値算出部52は、実車両制動力の絶対値を算出し、絶対値算出部53は、ドライバ要求車両制動力の絶対値を算出する。比較部54は、絶対値算出部52で算出された絶対値と、絶対値算出部53で算出された絶対値とを比較する。ドライバ要求車両制動力算出部46は、前記した図8に示すドライバ要求車両制動力テーブルを用いて、ドライバ要求車両制動力の大きさを決める。実車両制動力の絶対値がドライバ要求車両制動力Fdrvの絶対値を下回っているときには、車両制動力が要求に満たない、つまりフル回生が可能であると判断して、フル回生可能フラグ=1とする。これ以外では、フル回生可能フラグ=0である。実車両制動力の絶対値がドライバ要求車両制動力の絶対値を下回っているときとは、モータ回生するのに何の制約も無い、つまりモータ回生のみでドライバ要求車両制動力を達成できるときである。
The absolute value calculation unit 52 calculates the absolute value of the actual vehicle braking force, and the absolute value calculation unit 53 calculates the absolute value of the driver request vehicle braking force. The comparison unit 54 compares the absolute value calculated by the absolute value calculation unit 52 with the absolute value calculated by the absolute value calculation unit 53. The driver requested vehicle braking force calculation unit 46 determines the magnitude of the driver requested vehicle braking force using the driver requested vehicle braking force table shown in FIG. When the absolute value of the actual vehicle braking force is less than the absolute value of the driver requested vehicle braking force Fdrv, it is determined that the vehicle braking force is less than the requirement, that is, full regeneration is possible, and the full regeneration possible flag = 1. And In other cases, the full regeneration enable flag = 0. When the absolute value of the actual vehicle braking force is less than the absolute value of the driver requested vehicle braking force, there is no restriction on motor regeneration, that is, when the driver requested vehicle braking force can be achieved only by motor regeneration. is there.
選択部55は、フル回生可能フラグの値を選択指示信号として用いて、2つの変速比のいずれかを選択する。すなわち、フル回生可能フラグ=1のときには、フル回生時コースト目標変速比を選択し、フル回生可能フラグ=0のときには、フィードフォワード目標変速比Rffを選択し、選択した変速比を目標変速比として出力する。
The selection unit 55 selects one of the two gear ratios using the value of the full regeneration enable flag as a selection instruction signal. That is, when the full regeneration enable flag = 1, the coast target speed ratio at full regeneration is selected. When the full regeneration enable flag = 0, the feedforward target speed ratio Rff is selected, and the selected speed ratio is set as the target speed ratio. Output.
なお、フル回生時コースト目標変速比(コースト中のフル回生時目標変速比のこと)については、本発明の対象外であるため、フル回生時コースト目標変速比の算出方法については省略する。
Note that the full regeneration coast target speed ratio (the full regeneration target speed ratio during the coast) is outside the scope of the present invention, and therefore the calculation method of the full regeneration coast target speed ratio is omitted.
目標第1クラッチトルク容量算出部56は、エンジンフリクショントルク算出部44、除算部57、絶対値算出部58、減算部59、制限部60、絶対値算出部61、乗算部62を備えている。
The target first clutch torque capacity calculating unit 56 includes an engine friction torque calculating unit 44, a dividing unit 57, an absolute value calculating unit 58, a subtracting unit 59, a limiting unit 60, an absolute value calculating unit 61, and a multiplying unit 62.
目標第1クラッチトルク容量算出部56は、次式により目標第1クラッチトルク容量Ccl1を算出する。
Ccl1=|Teng|×(1-|モータ回生可能トルク/Tgen|) …(4) The target first clutch torquecapacity calculation unit 56 calculates the target first clutch torque capacity Ccl1 by the following equation.
Ccl1 = | Teng | × (1- | Motor regeneration possible torque / Tgen |) (4)
Ccl1=|Teng|×(1-|モータ回生可能トルク/Tgen|) …(4) The target first clutch torque
Ccl1 = | Teng | × (1- | Motor regeneration possible torque / Tgen |) (4)
エンジンフリクショントルク算出部44は、前記した図9(A)に示すエンジンフリクショントルクテーブルを用いて、エンジンフリクショントルクTengの大きさを決める。
The engine friction torque calculation unit 44 determines the magnitude of the engine friction torque Teng using the engine friction torque table shown in FIG.
ここで、第1クラッチトルク容量率は、次式により与えられる値である。
第1クラッチトルク容量率=1-|モータ回生可能トルク/Tgen| …(5) Here, the first clutch torque capacity ratio is a value given by the following equation.
First clutch torque capacity ratio = 1− | Motor regenerative torque / Tgen | (5)
第1クラッチトルク容量率=1-|モータ回生可能トルク/Tgen| …(5) Here, the first clutch torque capacity ratio is a value given by the following equation.
First clutch torque capacity ratio = 1− | Motor regenerative torque / Tgen | (5)
第1クラッチトルク容量率は、フル回生可能時に0%、フル回生不可能時に100%となる。第1クラッチトルク容量率がゼロでないときには、モータ回生可能割合(|モータ回生可能トルク/Tgen|)に応じて目標第1クラッチトルク容量が変化し、モータ回生が全くできないとき、第1クラッチCL1は完全締結となる。
The first clutch torque capacity ratio is 0% when full regeneration is possible and 100% when full regeneration is impossible. When the first clutch torque capacity ratio is not zero, the target first clutch torque capacity changes according to the motor regeneration possible ratio (| motor regeneration possible torque / Tgen |), and when the motor regeneration cannot be performed at all, the first clutch CL1 Completely concluded.
図6を参照すると、t2~t3では、モータ回生可能トルクは発電トルクTgenに等しく、(5)式より第1クラッチトルク容量率は0%となり、(4)式より目標第1クラッチトルク容量はゼロである。このため、t2~t3で第1クラッチトルク容量(CL1容量)はゼロとなり、第1クラッチCL1は非接続状態にある。
Referring to FIG. 6, from t2 to t3, the motor regenerative torque is equal to the power generation torque Tgen, the first clutch torque capacity ratio is 0% from the equation (5), and the target first clutch torque capacity is from the equation (4). Zero. Therefore, the first clutch torque capacity (CL1 capacity) becomes zero from t2 to t3, and the first clutch CL1 is in a disconnected state.
t3からモータ回生可能トルクが絶対値で小さくなっていくと、(5)式より第1クラッチトルク容量率は0%より大きくなる。t4でモータ回生可能トルクがゼロになると、(5)式より第1クラッチトルク容量率が100%になる。つまり、t4で第1クラッチCL1が完全締結状態となる。第1クラッチCL1の完全締結状態では、エンジン100が駆動系によって連れ回されることから、エンジン回転速度Nengはt3でゼロであったものが、上昇してt4のタイミングでモータ回転速度Nmotと一致し、t4以降で一定値に維持される。t3~t4の期間でエンジン回転速度Nengがゼロから正の値へと変化すると、エンジンフリクショントルクTengがゼロから負の値へと変化する。
When the motor regenerative torque becomes smaller in absolute value from t3, the first clutch torque capacity ratio becomes larger than 0% from the equation (5). When the motor regenerative torque becomes zero at t4, the first clutch torque capacity ratio becomes 100% from the equation (5). That is, the first clutch CL1 is completely engaged at t4. In the fully engaged state of the first clutch CL1, the engine 100 is rotated by the drive system, so that the engine rotational speed Neng is zero at t3, but rises and becomes equal to the motor rotational speed Nmot at the timing of t4. It is maintained at a constant value after t4. When the engine speed Neng changes from zero to a positive value during the period from t3 to t4, the engine friction torque Teng changes from zero to a negative value.
図11のフローチャートは、図7の制御ブロックを用いて説明した制御、つまり目標モータトルク、目標変速比、目標第1クラッチトルク容量を算出する制御の流れを示す。図11に示すフローチャートの処理は、一定時間毎(例えば10ms毎)に実行する。
The flowchart of FIG. 11 shows the flow of the control described using the control block of FIG. 7, that is, the control for calculating the target motor torque, the target gear ratio, and the target first clutch torque capacity. The process of the flowchart shown in FIG. 11 is executed at regular time intervals (for example, every 10 ms).
ステップS1では、車速VSPからドライバ要求車両制動力Fdrvを算出する。
In step S1, the driver request vehicle braking force Fdrv is calculated from the vehicle speed VSP.
ステップS2では、EVモードでのコースト中、かつ車速VSPが第1所定車速V1を超えているか否かを判定する。ここで、アクセル開度APO=0、かつブレーキペダルが踏み込まれていない(ブレーキストロークBS=0)ときに、コースト中であると判断する。EVモードでのコースト中であっても、車速VSPが第1所定車速V1以下の領域では、そのまま今回の処理を終了する(本実施形態の制御を行わない)。これは、例えばシステムの動作要件や燃費目標として、第1所定車速V1以下では、基本的にEVモードで走行させたい要求があるからである。すなわち、第1所定車速V1以下の車速域では、第1クラッチCL1を締結することによるエンジンブレーキよりも、第1クラッチCL1を非締結状態としたまま車両を惰性で走らせた方が燃費がよくなる場合がある。
In step S2, it is determined whether or not the vehicle is in coasting in the EV mode and the vehicle speed VSP exceeds the first predetermined vehicle speed V1. Here, it is determined that the vehicle is coasting when the accelerator opening APO = 0 and the brake pedal is not depressed (brake stroke BS = 0). Even during the coasting in the EV mode, in the region where the vehicle speed VSP is equal to or lower than the first predetermined vehicle speed V1, the current process is terminated as it is (the control of this embodiment is not performed). This is because, for example, as a system operation requirement or a fuel consumption target, there is a request to basically run in the EV mode at the first predetermined vehicle speed V1 or less. That is, in a vehicle speed range that is equal to or lower than the first predetermined vehicle speed V1, the fuel efficiency is better when the vehicle is driven with inertia while the first clutch CL1 is in the non-engaged state than the engine brake by engaging the first clutch CL1. There is.
一方、EVモードでのコースト中、かつ車速VSPが第1所定車速V1を超えている場合には、本実施形態の制御を行わせるためステップS3以降に進む。ステップS3では、バッテリ充電量SOCが第3閾値Vs3未満であり、かつドライバ要求車両制動力Fdrvをフル回生だけで達成できるか否かを判定する。ここで、ドライバ要求車両制動力Fdrvをフル回生だけで達成できるか否かの判定は、図7のフル回生可能判定部50が行う。上記の第3閾値Vs3は、EVモードでの充電上限値である(図5、図6参照)。
On the other hand, when coasting in the EV mode and the vehicle speed VSP exceeds the first predetermined vehicle speed V1, the process proceeds to step S3 and subsequent steps in order to perform the control of the present embodiment. In step S3, it is determined whether or not the battery charge amount SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force Fdrv can be achieved only by full regeneration. Here, the determination as to whether or not the driver-required vehicle braking force Fdrv can be achieved only by full regeneration is performed by the full regeneration possibility determination unit 50 of FIG. Said 3rd threshold value Vs3 is a charge upper limit in EV mode (refer FIG. 5, FIG. 6).
ステップS3でバッテリ充電量SOCが第3閾値Vs3未満であり、かつドライバ要求車両制動力Fdrvをフル回生だけで達成できると判定すると、ステップS4~S6に進む。ステップS4~S6の処理は、図6ではt2からt3までの期間で行う処理である。
If it is determined in step S3 that the battery charge SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force Fdrv can be achieved only by full regeneration, the process proceeds to steps S4 to S6. The processes in steps S4 to S6 are performed in the period from t2 to t3 in FIG.
ステップS4では、モータ回生可能トルクを目標モータトルクとする。ステップS5では、EVモードでの通常目標変速比であるフル回生時コースト目標変速比(図7参照)を算出し、算出したフル回生時コースト目標変速比を目標変速比とする。
In step S4, the motor regeneration possible torque is set as the target motor torque. In step S5, the full regeneration coast target speed ratio (see FIG. 7), which is the normal target speed ratio in the EV mode, is calculated, and the calculated full regeneration coast target speed ratio is set as the target speed ratio.
ステップS6では、目標第1クラッチトルク容量=0とする。つまり、バッテリ充電量SOCが第3閾値Vs3未満であり、かつドライバ要求車両制動力Fdrvをフル回生だけで達成できるときには、EVモードのままである。
In step S6, the target first clutch torque capacity = 0. That is, when the battery charge amount SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force Fdrv can be achieved only by full regeneration, the EV mode remains.
ステップS3でバッテリ充電量SOCが第3閾値Vs3以上である場合や、ドライバ要求車両制動力Fdrvをフル回生だけで達成できない場合には、ステップS7に進む。ステップS7では、モータ回生可能トルク漸減処理モードであるか否かを判定する。例えば、バッテリ充電量SOCが第3閾値Vs3以上となったときに、モータ回生可能トルク漸減処理モードに移行したと判断する。モータ回生可能トルク漸減処理モードであるときには、ステップS8~S10に進む。ステップS8~S10の処理は、図6ではt3よりt4までの期間で行う処理である。
If it is determined in step S3 that the battery charge SOC is greater than or equal to the third threshold value Vs3, or if the driver-requested vehicle braking force Fdrv cannot be achieved only by full regeneration, the process proceeds to step S7. In step S7, it is determined whether or not the motor regeneration possible torque gradual reduction processing mode is set. For example, when the battery charge amount SOC becomes equal to or greater than the third threshold value Vs3, it is determined that the motor regeneration possible torque gradual reduction processing mode has been entered. When it is in the motor regeneration possible torque gradual reduction processing mode, the process proceeds to steps S8 to S10. The processes in steps S8 to S10 are performed in the period from t3 to t4 in FIG.
ステップS8では、モータ回生可能トルクの漸減処理を行う。モータ回生可能トルクの漸減処理では、モータ回生可能トルクをゼロまで徐々に大きくしていく(図6のt3~t4の期間参照)。そして、モータ回生可能トルクの漸減処理値を目標モータトルクとする。ステップS9では、前記したフィードフォワード目標変速比テーブルを用いてフィードフォワード目標変速比Rffを算出し、算出したフィードフォワード目標変速比Rffを目標変速比とする。
In step S8, the motor regeneration possible torque is gradually reduced. In the gradual reduction process of the motor regenerative torque, the motor regenerative torque is gradually increased to zero (see the period from t3 to t4 in FIG. 6). Then, the gradual reduction value of the motor regenerative torque is set as the target motor torque. In step S9, the feedforward target speed ratio Rff is calculated using the feedforward target speed ratio table, and the calculated feedforward target speed ratio Rff is set as the target speed ratio.
ステップS10では、上記(4)式より、目標第1クラッチトルク容量を算出する。これによって、EVモードからHEVモードに移行させる。
In step S10, the target first clutch torque capacity is calculated from the above equation (4). As a result, the EV mode is shifted to the HEV mode.
ステップS7でモータ回生可能トルク漸減処理モードないときには、ステップS11~S13以降に進む。ステップS11~S13の処理は、図6ではt4以降の期間で行う処理である。
When the motor regeneration possible torque gradual reduction processing mode is not set in step S7, the process proceeds to steps S11 to S13. The processes in steps S11 to S13 are performed in a period after t4 in FIG.
ステップS11では、目標モータトルクをゼロとする(回生も力行もしない)。ステップS12では、前記したフィードフォワード目標変速比テーブルを用いて、フィードフォワード目標変速比Rffを算出し、算出したフィードフォワード目標変速比Rffを目標変速比とする。
In step S11, the target motor torque is set to zero (no regeneration or power running). In step S12, the feedforward target speed ratio Rff is calculated using the above-mentioned feedforward target speed ratio table, and the calculated feedforward target speed ratio Rff is set as the target speed ratio.
ステップS13では、第1クラッチの完全締結時のトルク容量を目標第1クラッチトルク容量として算出する。つまり、HEVモードとする。
In step S13, the torque capacity when the first clutch is completely engaged is calculated as the target first clutch torque capacity. That is, the HEV mode is set.
図示しない別のフローでは、このように算出した目標モータトルク、目標変速比、目標第1クラッチトルク容量を指示する。
In another flow (not shown), the target motor torque, target gear ratio, and target first clutch torque capacity calculated in this way are indicated.
ここで、本実施形態の作用効果を説明する。
Here, the function and effect of this embodiment will be described.
本実施形態におけるハイブリッド車両の制御装置では、エンジン100と、モータ110(モータジェネレータ)と、これらの間を断続する第1クラッチCL1と、自動変速機120(変速機)とを備え、第1クラッチCL1の締結時には、エンジン100及びモータGMの駆動力を自動変速機120の入力軸に伝達するHEVモードの走行となり、第1クラッチCL1の解放時には、モータGMのみの駆動力を変速機の入力軸に伝達するEVモードの走行となる。このハイブリッド車両の制御装置では、コースト中(アクセル解放中)、かつバッテリ充電量SOCが満充電状態(所定量以上)にあるか否かを判定するアクセル解放中かつ充電状態判定手段と、エンジンフリクショントルクを算出するエンジンフリクショントルク算出部44(エンジンフリクショントルク算出手段)と、モータ110が回生可能なトルクを算出するモータ回生可能トルク算出部65(モータ回生可能トルク算出手段)と、この算出されるモータ回生可能トルクが得られるようにモータトルクを制御するモータコントローラ2(モータトルク制御手段)と、EVモードでのコースト中(アクセル解放中)かつバッテリ充電量SOCが満充電状態(所定量以上)にあることが判定されたとき、ドライバ要求車両制動力Fdrv(目標車両減速力)を算出するドライバ要求車両制動力算出部46(目標車両減速力算出手段)と、この算出されるドライバ要求車両制動力Fdrvと算出されるエンジンフリクショントルクとに基づき、フィードフォワード目標変速比Rff(目標変速比)を算出するフィードフォワード目標変速比算出部45(目標変速比算出手段)と、このフィードフォワード目標変速比Rffが得られるように自動変速機120の変速比を制御するATコントローラ7(変速比制御手段)と、このコントローラ7により変速比が制御されているときに、算出されるドライバ要求車両制動力Fdrvと算出されるモータ回生可能トルクとに基づき目標第1クラッチトルク容量(目標クラッチ締結容量)を算出する目標第1クラッチトルク容量算出部56(目標クラッチ締結容量算出手段)と、この目標第1クラッチトルク容量が得られるように第1クラッチのトルク容量を制御する第1クラッチコントローラ5(クラッチ締結容量制御手段)とを備えている。
The hybrid vehicle control apparatus according to the present embodiment includes an engine 100, a motor 110 (motor generator), a first clutch CL1 that intermittently connects between them, and an automatic transmission 120 (transmission). When the CL1 is engaged, the driving force of the engine 100 and the motor GM is transmitted in the HEV mode to transmit the driving force to the input shaft of the automatic transmission 120. When the first clutch CL1 is released, the driving force of only the motor GM is used as the input shaft of the transmission. EV mode travel is transmitted to the vehicle. In this hybrid vehicle control device, the accelerator release and charge state determination means for determining whether the battery is being coasted (accelerator being released) and the battery charge amount SOC is in a fully charged state (predetermined amount or more), engine friction An engine friction torque calculating unit 44 (engine friction torque calculating unit) that calculates torque, a motor regenerative torque calculating unit 65 (motor regenerative torque calculating unit) that calculates torque that can be regenerated by the motor 110, and this calculation. Motor controller 2 (motor torque control means) for controlling the motor torque so as to obtain a motor regenerative torque, coasting in EV mode (accelerator being released), and the battery charge amount SOC being fully charged (predetermined amount or more) When it is determined that the vehicle is in the driver's request vehicle braking force Fdrv Based on the driver request vehicle braking force calculation unit 46 (target vehicle deceleration force calculation means) that calculates the target vehicle deceleration force) and the calculated driver request vehicle braking force Fdrv and the calculated engine friction torque, A feedforward target speed ratio calculating unit 45 (target speed ratio calculating means) for calculating a speed ratio Rff (target speed ratio) and the speed ratio of the automatic transmission 120 so as to obtain the feedforward target speed ratio Rff. The target first clutch torque based on the AT controller 7 (speed ratio control means) and the calculated driver request vehicle braking force Fdrv and the calculated motor regenerative torque when the speed ratio is controlled by the controller 7 Target first clutch torque capacity calculation unit 56 for calculating capacity (target clutch engagement capacity) A target clutch engagement capacity calculating means), and a first clutch controller 5 for controlling the torque capacity of the first clutch as the target first clutch torque capacity is obtained (clutch connection capacity control means).
本実施形態によれば、EVモードでのコースト中(アクセル解放中)、かつバッテリの充電量が満充電状態(所定量以上)にあるときに、モータ回生可能トルク、目標第1クラッチトルク容量及びフィードフォワード目標変速比を協調制御するので、従来装置のように自動変速機120をダウンシフトし過ぎて、エンジンブレーキ達成のためにモータGMを力行しないで済む。これによって、エンジン回転速度のハンチングを防止できると共に、ドライバ要求車両制動力(目標車両減速力)を実現することができる。
According to the present embodiment, when the EV mode is coasting (accelerator being released) and the battery charge amount is in a fully charged state (a predetermined amount or more), the motor regeneration possible torque, the target first clutch torque capacity, Since the feedforward target gear ratio is cooperatively controlled, it is not necessary to downshift the automatic transmission 120 as in the conventional device and to power the motor GM to achieve engine braking. As a result, it is possible to prevent hunting of the engine speed and to realize a driver-requested vehicle braking force (target vehicle deceleration force).
本実施形態によれば、第1クラッチCL1が完全締結したときのエンジンフリクショントルクで生じる車両減速力によって、ドライバ要求車両制動力(目標車両減速力)が生じるようにフィードフォワード目標変速比(目標変速比)を算出するので、違和感のない車両減速感を得ることができる。
According to the present embodiment, the feedforward target gear ratio (target gear ratio) is set so that the driver requested vehicle braking force (target vehicle deceleration force) is generated by the vehicle deceleration force generated by the engine friction torque when the first clutch CL1 is fully engaged. Ratio) is calculated, it is possible to obtain a feeling of vehicle deceleration without a sense of incongruity.
本実施形態によれば、モータコントローラ2(モータジェネレータトルク制御手段)は、第1クラッチコントローラ5(クラッチ締結容量制御手段)が第1クラッチCL1を完全締結したときにモータ回生可能トルクをゼロに維持するので、無駄な充放電をなくすことができる。
According to this embodiment, the motor controller 2 (motor generator torque control means) maintains the motor regenerative torque at zero when the first clutch controller 5 (clutch engagement capacity control means) fully engages the first clutch CL1. Therefore, useless charging / discharging can be eliminated.
(第2実施形態)
図12のフローチャートは、第2実施形態の目標モータトルク、目標変速比、目標第1クラッチトルク容量を算出する処理の流れを示すもので、第1実施形態の図11と置き換わるものである。第1実施形態の図11と同一部分には、同一の番号を付している。図12に示すフローチャートの処理も、一定時間毎(例えば10ms毎)に実行する。 (Second Embodiment)
The flowchart of FIG. 12 shows the flow of processing for calculating the target motor torque, the target gear ratio, and the target first clutch torque capacity of the second embodiment, and replaces FIG. 11 of the first embodiment. The same number is attached | subjected to the same part as FIG. 11 of 1st Embodiment. The process of the flowchart shown in FIG. 12 is also executed at regular time intervals (for example, every 10 ms).
図12のフローチャートは、第2実施形態の目標モータトルク、目標変速比、目標第1クラッチトルク容量を算出する処理の流れを示すもので、第1実施形態の図11と置き換わるものである。第1実施形態の図11と同一部分には、同一の番号を付している。図12に示すフローチャートの処理も、一定時間毎(例えば10ms毎)に実行する。 (Second Embodiment)
The flowchart of FIG. 12 shows the flow of processing for calculating the target motor torque, the target gear ratio, and the target first clutch torque capacity of the second embodiment, and replaces FIG. 11 of the first embodiment. The same number is attached | subjected to the same part as FIG. 11 of 1st Embodiment. The process of the flowchart shown in FIG. 12 is also executed at regular time intervals (for example, every 10 ms).
第1実施形態では、EVモードでのコースト中(アクセル解放中)にバッテリが満充電状態(所定量以上)になると、ドライバ要求車両制動力に対し、回生可能トルク、目標第1クラッチトルク容量及び目標変速比を協調制御した。第2実施形態では、HEVモードでのコースト中にバッテリが満充電状態(所定量以上)になると、ドライバ要求車両制動力に対し、回生可能トルク、目標第1クラッチトルク容量及び目標変速比を協調制御する。
In the first embodiment, when the battery is fully charged (predetermined amount or more) during the coasting in EV mode (when the accelerator is released), the regenerative torque, the target first clutch torque capacity, The target gear ratio was controlled cooperatively. In the second embodiment, when the battery is in a fully charged state (a predetermined amount or more) during the coasting in the HEV mode, the regenerative torque, the target first clutch torque capacity, and the target gear ratio are coordinated with the driver request vehicle braking force. Control.
以下では、第1実施形態と異なる処理について主に説明する。ステップS21では、HEVモードでのコースト中、かつ車速VSPが第2所定車速V2を超えているか否かを判定する。ここでは、アクセル開度APO=0、かつブレーキペダルが踏み込まれていない(ブレーキストロークBS=0)場合に、コースト中であると判断する。HEVモードでのコースト中であっても、車速VSPが第2所定車速V2以下の領域では、そのまま今回の処理を終了する(第2実施形態の制御を行わない)。これは、例えばシステムの動作要件や燃費目標として、第2所定車速V2以下では、基本的にHEVモードで走行させたい要求があるためである。第2所定車速V2は、第1所定車速1と同じにしてもよい。
In the following, processing different from the first embodiment will be mainly described. In step S21, it is determined whether or not the vehicle speed VSP exceeds the second predetermined vehicle speed V2 during the coasting in the HEV mode. Here, it is determined that the vehicle is coasting when the accelerator opening APO = 0 and the brake pedal is not depressed (brake stroke BS = 0). Even during the coasting in the HEV mode, in the region where the vehicle speed VSP is equal to or lower than the second predetermined vehicle speed V2, the current process is terminated as it is (the control of the second embodiment is not performed). This is because, for example, as a system operation requirement or a fuel consumption target, there is a request to basically run in the HEV mode at the second predetermined vehicle speed V2 or lower. The second predetermined vehicle speed V2 may be the same as the first predetermined vehicle speed 1.
一方、HEVモードでのコースト中、かつ車速VSPが第2所定車速V2を超えている場合には、第2実施形態の制御を行わせるため、ステップS22以降に進む。ステップS22では、バッテリ充電量SOCと第3閾値Vs3を比較し、ステップS23では、ドライバ要求車両制動力をフル回生だけで達成できるか否かを判定する。ステップS22、S23で、バッテリ充電量SOCが第3閾値Vs3未満であり、かつドライバ要求車両制動力をフル回生だけで達成できるときには、ステップS24、S5、S6に進む。
On the other hand, during the coasting in the HEV mode and when the vehicle speed VSP exceeds the second predetermined vehicle speed V2, the process proceeds to step S22 and subsequent steps in order to perform the control of the second embodiment. In step S22, the battery charge amount SOC is compared with the third threshold value Vs3, and in step S23, it is determined whether or not the driver-requested vehicle braking force can be achieved only by full regeneration. In steps S22 and S23, when the battery charge SOC is less than the third threshold value Vs3 and the driver-requested vehicle braking force can be achieved only by full regeneration, the process proceeds to steps S24, S5, and S6.
ステップS24では、ドライバ要求車両制動力Fdrv相当の目標モータトルク算出し、算出したドライバ要求車両制動力Fdrv相当の目標モータトルクを目標モータトルクとする。ステップS5では、EVモードでの通常目標変速比であるフル回生時コースト目標変速比(図7参照)を算出し、算出したフル回生時コースト目標変速比を目標変速比とする。
In step S24, the target motor torque corresponding to the driver request vehicle braking force Fdrv is calculated, and the calculated target motor torque corresponding to the driver request vehicle braking force Fdrv is set as the target motor torque. In step S5, the full regeneration coast target speed ratio (see FIG. 7), which is the normal target speed ratio in the EV mode, is calculated, and the calculated full regeneration coast target speed ratio is set as the target speed ratio.
ステップS6では、目標第1クラッチトルク容量=0とする。これによってEVモードへ移行させる。
In step S6, the target first clutch torque capacity = 0. This shifts to the EV mode.
ステップS22で充電量SOCは第3閾値Vs3未満であるが、ステップS23でドライバ要求車両制動力をフル回生だけで達成できないと判定すると、ステップS4に進み、モータ回生可能トルクを目標モータトルクとする。
If the charge amount SOC is less than the third threshold value Vs3 in step S22, but it is determined in step S23 that the driver-required vehicle braking force cannot be achieved only by full regeneration, the process proceeds to step S4, and the motor regeneration possible torque is set as the target motor torque. .
ステップS25では、HEVモードでのフル回生時の目標変速比を算出し、算出したフル回生時目標変速比を目標変速比とする。ここで、ドライバ要求車両制動力をフル回生だけで達成できないときに、HEVモードでのフル回生時の目標変速比を算出する理由について説明する。ドライバ要求車両制動力をフル回生だけで達成できるときには、EVモードで(第1クラッチCL1が開放されているとき)ドライバ要求車両制動力をフル回生だけで達成できるようにした。一方、ドライバ要求車両制動力をフル回生だけで達成できないときは、HEVモードで(第1クラッチCL1が締結されているとき)ドライバ要求車両制動力をフル回生だけで達成できるようにしなければならない。EVモードにおいてドライバ要求車両制動力をフル回生だけで達成できるときと、HEVモードにおいてドライバ要求車両制動力をフル回生だけで達成できないときとの変速比の違いは、エンジン100を第1クラッチCL1で締結しているか否かにおける違いとなる。第1クラッチCL1を締結しているときと締結していないときとで同じ変速比であっても、エンジンブレーキ力が変化する。目的は、第1クラッチCL1の締結、開放に関わらずドライバ要求車両制動力Fdrvが得られるようにすることなので、第1クラッチCL1が開放されているときと締結されているときとで、ドライバ要求車両制動力Fdrvを達成する変速比に違いがある。よって、HEVモードでのフル回生でドライバ要求車両制動力Fdrvを満たす変速比を算出する。このHEVモードでのフル回生時の目標変速比は、ドライバ要求車両制動力Fdrv、モータ回生可能トルク、エンジンフリクショントルクに基づいて算出する。
In step S25, the target gear ratio at the time of full regeneration in the HEV mode is calculated, and the calculated target gear ratio at the time of full regeneration is set as the target gear ratio. Here, the reason for calculating the target gear ratio during full regeneration in the HEV mode when the driver-required vehicle braking force cannot be achieved only by full regeneration will be described. When the driver-required vehicle braking force can be achieved only by full regeneration, the driver-required vehicle braking force can be achieved by only full regeneration in the EV mode (when the first clutch CL1 is released). On the other hand, when the driver-required vehicle braking force cannot be achieved only by full regeneration, the driver-required vehicle braking force must be achieved only by full regeneration in the HEV mode (when the first clutch CL1 is engaged). The difference in gear ratio between when the driver-requested vehicle braking force can be achieved only by full regeneration in the EV mode and when the driver-requested vehicle braking force cannot be achieved only by full regeneration in the HEV mode is that the engine 100 is driven by the first clutch CL1. The difference is whether or not it is fastened. Even when the first clutch CL1 is engaged and when it is not engaged, the engine braking force changes even when the speed ratio is the same. The purpose is to obtain the driver requested vehicle braking force Fdrv regardless of whether the first clutch CL1 is engaged or disengaged. Therefore, the driver request depends on whether the first clutch CL1 is disengaged or engaged. There is a difference in the gear ratio for achieving the vehicle braking force Fdrv. Therefore, a gear ratio that satisfies the driver-requested vehicle braking force Fdrv by full regeneration in the HEV mode is calculated. The target gear ratio during full regeneration in the HEV mode is calculated based on the driver requested vehicle braking force Fdrv, motor regeneration possible torque, and engine friction torque.
ステップS26では、第1クラッチCL1の完全締結時のトルク容量を目標第1クラッチトルク容量として算出する。つまり、HEVモードのままとする。
In step S26, the torque capacity when the first clutch CL1 is completely engaged is calculated as the target first clutch torque capacity. That is, the HEV mode is maintained.
ステップS22で充電量SOCが第3閾値Vs3以上であると判定するとステップS7に進み、モータ回生トルク漸減処理モードであるか否かを判定する。例えば、バッテリ充電量SOCが第3閾値Vs3以上となったときに、モータ回生トルク漸減処理モードに移行したと判断する。モータ回生トルク漸減処理モードであるときには、ステップS8、S9、S27に進む。
If it is determined in step S22 that the charge amount SOC is greater than or equal to the third threshold value Vs3, the process proceeds to step S7, where it is determined whether or not the motor regeneration torque gradual reduction processing mode is set. For example, when the battery charge amount SOC becomes equal to or greater than the third threshold value Vs3, it is determined that the motor regeneration torque gradual reduction processing mode has been entered. When it is in the motor regenerative torque gradual reduction processing mode, the process proceeds to steps S8, S9, and S27.
ステップS8では、モータ回生可能トルクの漸減処理を行う。モータ回生可能トルクの漸減処理では、モータ回生可能トルクをゼロまで徐々に大きくしていく(図6のt3~t4の期間参照)。そして、モータ回生可能トルクの漸減処理値を目標モータトルクとする。
In step S8, the motor regeneration possible torque is gradually reduced. In the gradual reduction process of the motor regenerative torque, the motor regenerative torque is gradually increased to zero (see the period from t3 to t4 in FIG. 6). Then, the gradual reduction value of the motor regenerative torque is set as the target motor torque.
ステップS9では、前記したフィードフォワード目標変速比テーブルを用いてフィードフォワード目標変速比Rffを算出し、算出したフィードフォワード目標変速比Rffを目標変速比とする。
In step S9, the feedforward target speed ratio Rff is calculated using the above-mentioned feedforward target speed ratio table, and the calculated feedforward target speed ratio Rff is set as the target speed ratio.
ステップS27では、第1クラッチの完全締結時のトルク容量を目標第1クラッチトルク容量として算出する。つまり、HEVモードのままとする。
In step S27, the torque capacity when the first clutch is completely engaged is calculated as the target first clutch torque capacity. That is, the HEV mode is maintained.
このように、第2実施形態によれば、HEVモードでのコースト中(アクセル解放中)、かつバッテリの充電量が満充電状態(所定量以上)にあるときに、モータ回生可能トルク、目標第1クラッチトルク容量及び目標変速比を協調制御するので、参考例のように自動変速機120をダウンシフトしすぎてエンジンブレーキ達成のためにモータGMを力行しないで済む。これによって、エンジン回転速度のハンチングを防止できると共に、ドライバ要求車両制動力を実現することができる。
Thus, according to the second embodiment, when the HEV mode is coasting (accelerator being released) and the battery charge amount is in a fully charged state (a predetermined amount or more), the motor regeneration possible torque, the target first Since the one-clutch torque capacity and the target gear ratio are coordinately controlled, it is not necessary to downshift the automatic transmission 120 too much and run the motor GM to achieve engine braking as in the reference example. As a result, it is possible to prevent hunting of the engine speed and to realize the driver-requested vehicle braking force.
ハイブリッド車両では、ブレーキペダルを踏まないときの車両制動力をモータ回生とエンジンブレーキとで生じさせることができるため、ハイブリッド車両でエンジンのみで駆動される車両と同等の車両制動力を生じさせようとすると、エンジンブレーキで分担するコースト中の車両減速トルクは、エンジンのみで駆動される車両に対して小さくて済む。そのため、ハイブリッド車両では、エンジンブレーキを生じさせるために、エンジンのみで駆動される車両と比べて、小さいエンジン回転速度に制御される。従って、エンジンのみで駆動される車両と異なるエンジン回転フィーリングによって運転者に違和感を生じさせないようにするために、エンジンのみで駆動される車両において生じうる車両制動時のエンジン回転を生じさせる必要がある。
In a hybrid vehicle, the vehicle braking force when the brake pedal is not depressed can be generated by the motor regeneration and the engine brake. Therefore, the hybrid vehicle tries to generate a vehicle braking force equivalent to a vehicle driven only by the engine. Then, the vehicle deceleration torque during the coast shared by the engine brake can be smaller than that of the vehicle driven only by the engine. Therefore, in the hybrid vehicle, in order to generate the engine brake, the engine speed is controlled to be smaller than that of the vehicle driven only by the engine. Therefore, in order to prevent the driver from feeling uncomfortable due to an engine rotation feeling different from that of a vehicle driven only by an engine, it is necessary to cause engine rotation during vehicle braking that can occur in a vehicle driven only by the engine. is there.
このため、エンジンのみで駆動される車両でのコースト中に目標車両減速力が得られるときのエンジン回転速度を目標回転速度として予め定めておき、この目標回転速度に基づいて目標車両減速力を設定する。これによって、ハイブリッド車両においても、エンジンのみで駆動される車両でのコースト中と同じエンジン回転フィーリングを得ることができる。
For this reason, the engine rotational speed when the target vehicle deceleration force is obtained during coasting with a vehicle driven only by the engine is determined in advance as the target rotational speed, and the target vehicle deceleration force is set based on the target rotational speed. To do. As a result, even in a hybrid vehicle, it is possible to obtain the same engine rotation feeling as during coasting in a vehicle driven only by an engine.
本発明は、上述した実施形態に限定されることはない。
The present invention is not limited to the embodiment described above.
本願は、2012年4月6日に日本国特許庁に出願された特願2012-087055に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
This application claims priority based on Japanese Patent Application No. 2012-087055 filed with the Japan Patent Office on April 6, 2012, the entire contents of which are incorporated herein by reference.
Claims (5)
- エンジンと、モータジェネレータと、これらの間を断続するクラッチと、変速機とを備え、前記クラッチの締結時には前記エンジン及び前記モータジェネレータの駆動力を前記変速機の入力軸に伝達するHEVモードの走行となり、前記クラッチの解放時には前記モータジェネレータのみの駆動力を前記変速機の入力軸に伝達するEVモードの走行となるハイブリッド車両の制御装置において、
アクセルペダルの解放中であるか否かを判定するアクセル解放判定手段と、
前記モータジェネレータと電力を授受するバッテリの充電量が所定量以上であるか否かを判定する充電状態判定手段と、
前記エンジンのフリクショントルクを算出するエンジンフリクショントルク算出手段と、
前記モータジェネレータが回生可能なトルクを算出するモータジェネレータ回生可能トルク算出手段と、
前記算出されるモータジェネレータ回生可能トルクが得られるように前記モータジェネレータのトルクを制御するモータジェネレータトルク制御手段と、
前記EVモードまたはHEVモードで、アクセルペダルの解放中かつ前記バッテリの充電量が所定量以上であると判定されると、車速に応じた目標変速比が得られるように前記変速機の変速比を制御する変速比制御手段と、
前記変速比制御手段により変速比が制御されているときに、前記算出されるエンジンフリクショントルクと、前記算出されるモータジェネレータ回生可能トルクとに基づき目標クラッチ締結容量を算出する目標クラッチ締結容量算出手段と、
前記算出される目標クラッチ締結容量が得られるように前記クラッチの締結容量を制御するクラッチ締結容量制御手段と
を備えるハイブリッド車両の制御装置。 An HEV mode running that includes an engine, a motor generator, a clutch that intermittently connects between them, and a transmission, and that transmits the driving force of the engine and the motor generator to the input shaft of the transmission when the clutch is engaged. In the hybrid vehicle control device that is traveling in the EV mode in which the driving force of only the motor generator is transmitted to the input shaft of the transmission when the clutch is released,
Accelerator release determination means for determining whether or not the accelerator pedal is being released;
Charge state determination means for determining whether or not a charge amount of a battery that exchanges power with the motor generator is a predetermined amount or more;
Engine friction torque calculating means for calculating the friction torque of the engine;
Motor generator regenerative torque calculating means for calculating torque that can be regenerated by the motor generator;
Motor generator torque control means for controlling the torque of the motor generator so as to obtain the calculated motor generator regenerative torque;
In the EV mode or HEV mode, when it is determined that the accelerator pedal is released and the battery charge amount is greater than or equal to a predetermined amount, the transmission gear ratio is adjusted so that a target gear ratio according to the vehicle speed is obtained. Gear ratio control means for controlling;
Target clutch engagement capacity calculation means for calculating a target clutch engagement capacity based on the calculated engine friction torque and the calculated motor generator regenerative torque when the transmission ratio is controlled by the transmission ratio control means. When,
A control device for a hybrid vehicle, comprising: clutch engagement capacity control means for controlling the engagement capacity of the clutch so that the calculated target clutch engagement capacity is obtained. - 請求項1に記載のハイブリッド車両の制御装置において、
前記クラッチが完全締結したときのエンジンフリクショントルクで生じる車両減速力によって目標車両減速力が生じるように、前記目標変速比を算出する目標変速比算出手段をさらに備えるハイブリッド車両の制御装置。 In the hybrid vehicle control device according to claim 1,
A hybrid vehicle control device further comprising target gear ratio calculation means for calculating the target gear ratio such that a target vehicle deceleration force is generated by a vehicle deceleration force generated by an engine friction torque when the clutch is completely engaged. - 請求項1または請求項2に記載のハイブリッド車両の制御装置において、
エンジンのみで駆動される車両でのアクセルペダル解放中に目標車両減速力が得られるときのエンジン回転速度を目標回転速度として予め定めておき、この目標回転速度に基づいて前記目標車両減速力を設定するハイブリッド車両の制御装置。 In the hybrid vehicle control device according to claim 1 or 2,
The engine rotational speed when the target vehicle deceleration force is obtained during release of the accelerator pedal in a vehicle driven only by the engine is determined in advance as the target rotational speed, and the target vehicle deceleration force is set based on the target rotational speed. A control device for a hybrid vehicle. - 請求項1から請求項3のいずれか一項に記載のハイブリッド車両の制御装置において、
前記モータジェネレータトルク制御手段は、前記クラッチ締結容量制御手段が前記クラッチを完全締結したときに前記モータジェネレータ回生可能トルクをゼロに維持するハイブリッド車両の制御装置。 In the control apparatus of the hybrid vehicle as described in any one of Claims 1-3,
The motor generator torque control means is a hybrid vehicle control device that maintains the motor generator regenerative torque at zero when the clutch engagement capacity control means fully engages the clutch. - エンジンと、モータジェネレータと、これらの間を断続するクラッチと、変速機とを備え、前記クラッチの締結時には前記エンジン及び前記モータジェネレータの駆動力を前記変速機の入力軸に伝達するHEVモードの走行となり、前記クラッチの解放時には前記モータジェネレータのみの駆動力を前記変速機の入力軸に伝達するEVモードの走行となるハイブリッド車両の制御方法において、
アクセルペダルの解放中であるか否かを判定し、
前記モータジェネレータと電力を授受するバッテリの充電量が所定量以上であるか否かを判定し、
前記エンジンのフリクショントルクを算出し、
前記モータジェネレータが回生可能なトルクを算出し、
前記算出されるモータジェネレータ回生可能トルクが得られるように前記モータジェネレータのトルクを制御し、
前記EVモードまたはHEVモードで、アクセルペダルの解放中かつ前記バッテリの充電量が所定量以上であると判定されると、車速に応じた目標変速比が得られるように前記変速機の変速比を制御し、
前記変速比が制御されているときに、前記算出されるエンジンフリクショントルクと、前記算出されるモータジェネレータ回生可能トルクとに基づき目標クラッチ締結容量を算出し、
前記算出される目標クラッチ締結容量が得られるように前記クラッチの締結容量を制御する、
ハイブリッド車両の制御方法。 An HEV mode running that includes an engine, a motor generator, a clutch that intermittently connects between them, and a transmission, and that transmits the driving force of the engine and the motor generator to the input shaft of the transmission when the clutch is engaged. In the hybrid vehicle control method for EV mode running in which the driving force of only the motor generator is transmitted to the input shaft of the transmission when the clutch is released,
Determine whether the accelerator pedal is being released,
Determining whether or not a charge amount of a battery that exchanges power with the motor generator is a predetermined amount or more;
Calculating the friction torque of the engine,
Calculate the torque that the motor generator can regenerate,
Control the torque of the motor generator so that the calculated motor generator regenerative torque is obtained,
In the EV mode or HEV mode, when it is determined that the accelerator pedal is released and the battery charge amount is greater than or equal to a predetermined amount, the transmission gear ratio is adjusted so that a target gear ratio according to the vehicle speed is obtained. Control
When the gear ratio is controlled, a target clutch engagement capacity is calculated based on the calculated engine friction torque and the calculated motor generator regenerative torque,
Controlling the clutch engagement capacity so as to obtain the calculated target clutch engagement capacity;
Control method of hybrid vehicle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012087055A JP2015116832A (en) | 2012-04-06 | 2012-04-06 | Hybrid-vehicular control apparatus |
JP2012-087055 | 2012-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013150966A1 true WO2013150966A1 (en) | 2013-10-10 |
Family
ID=49300451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059353 WO2013150966A1 (en) | 2012-04-06 | 2013-03-28 | Hybrid vehicle control device and hybrid vehicle control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015116832A (en) |
WO (1) | WO2013150966A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015076230A1 (en) * | 2013-11-25 | 2015-05-28 | いすゞ自動車株式会社 | Hybrid vehicle, and method of controlling same |
CN109720334A (en) * | 2017-10-31 | 2019-05-07 | 丰田自动车株式会社 | Hybrid vehicle |
US10946853B2 (en) * | 2017-11-13 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Drive force control system for hybrid vehicles |
CN114677872A (en) * | 2021-02-23 | 2022-06-28 | 北京新能源汽车股份有限公司 | Motor torque control method and device for simulating manual gear |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101822285B1 (en) | 2016-06-13 | 2018-01-26 | 현대자동차주식회사 | Shifting control method for hybrid vehicles |
WO2018189891A1 (en) * | 2017-04-14 | 2018-10-18 | 日産自動車株式会社 | Hybrid vehicle control method and hybrid vehicle control device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003061211A (en) * | 2001-08-20 | 2003-02-28 | Honda Motor Co Ltd | Controller of hybrid vehicle |
JP2009208565A (en) * | 2008-03-03 | 2009-09-17 | Nissan Motor Co Ltd | Clutch controller of hybrid vehicle |
JP2010143511A (en) * | 2008-12-22 | 2010-07-01 | Nissan Motor Co Ltd | Control device for hybrid vehicle |
JP2012017060A (en) * | 2010-07-09 | 2012-01-26 | Aisin Aw Co Ltd | Control device |
-
2012
- 2012-04-06 JP JP2012087055A patent/JP2015116832A/en active Pending
-
2013
- 2013-03-28 WO PCT/JP2013/059353 patent/WO2013150966A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003061211A (en) * | 2001-08-20 | 2003-02-28 | Honda Motor Co Ltd | Controller of hybrid vehicle |
JP2009208565A (en) * | 2008-03-03 | 2009-09-17 | Nissan Motor Co Ltd | Clutch controller of hybrid vehicle |
JP2010143511A (en) * | 2008-12-22 | 2010-07-01 | Nissan Motor Co Ltd | Control device for hybrid vehicle |
JP2012017060A (en) * | 2010-07-09 | 2012-01-26 | Aisin Aw Co Ltd | Control device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015076230A1 (en) * | 2013-11-25 | 2015-05-28 | いすゞ自動車株式会社 | Hybrid vehicle, and method of controlling same |
JP2015101192A (en) * | 2013-11-25 | 2015-06-04 | いすゞ自動車株式会社 | Hybrid electric vehicle and hybrid electric vehicle control method |
CN109720334A (en) * | 2017-10-31 | 2019-05-07 | 丰田自动车株式会社 | Hybrid vehicle |
CN109720334B (en) * | 2017-10-31 | 2022-03-11 | 丰田自动车株式会社 | Hybrid vehicle |
US10946853B2 (en) * | 2017-11-13 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Drive force control system for hybrid vehicles |
CN114677872A (en) * | 2021-02-23 | 2022-06-28 | 北京新能源汽车股份有限公司 | Motor torque control method and device for simulating manual gear |
CN114677872B (en) * | 2021-02-23 | 2024-05-10 | 北京新能源汽车股份有限公司 | Motor torque control method and device for simulating manual gear |
Also Published As
Publication number | Publication date |
---|---|
JP2015116832A (en) | 2015-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100908950B1 (en) | A control device of a vehicle | |
EP2639130B1 (en) | Hybrid vehicle control device | |
US9637108B2 (en) | Vehicle driving-torque control device | |
KR100837903B1 (en) | Engine starting control apparatus of hybrid vehicle | |
JP5176421B2 (en) | Control device for hybrid vehicle | |
JP5391654B2 (en) | Control device for hybrid vehicle | |
EP2743149A1 (en) | Hybrid vehicle control unit | |
JP4506721B2 (en) | Hybrid vehicle control device and hybrid vehicle control method. | |
JP2010143511A (en) | Control device for hybrid vehicle | |
WO2013150966A1 (en) | Hybrid vehicle control device and hybrid vehicle control method | |
JP5476721B2 (en) | Control device for hybrid vehicle | |
JP2010188776A (en) | Controller for hybrid vehicle | |
JP6015773B2 (en) | Control device for hybrid vehicle | |
JP6492908B2 (en) | Control device for hybrid vehicle | |
JP5141369B2 (en) | Control device for hybrid vehicle | |
JP2010143512A (en) | Control apparatus for hybrid vehicle | |
JP5761327B2 (en) | Control device for hybrid vehicle | |
JP5338958B2 (en) | Control device for hybrid vehicle | |
JP5874165B2 (en) | Control device for hybrid vehicle | |
JP2010228593A (en) | Device for control of accelerator depression reaction force in hybrid vehicle | |
JP6971076B2 (en) | Hybrid vehicle | |
JP5251958B2 (en) | Control device for hybrid vehicle | |
JP5950038B2 (en) | Control device for hybrid vehicle | |
JP2012153317A (en) | Vehicle control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13772300 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13772300 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |