WO2018078683A1 - 電力供給システム - Google Patents

電力供給システム Download PDF

Info

Publication number
WO2018078683A1
WO2018078683A1 PCT/JP2016/081399 JP2016081399W WO2018078683A1 WO 2018078683 A1 WO2018078683 A1 WO 2018078683A1 JP 2016081399 W JP2016081399 W JP 2016081399W WO 2018078683 A1 WO2018078683 A1 WO 2018078683A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage device
load
conversion device
converter
Prior art date
Application number
PCT/JP2016/081399
Other languages
English (en)
French (fr)
Inventor
健太 山邉
宏禎 小松
由紀久 飯島
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2018546942A priority Critical patent/JP6707309B2/ja
Priority to PCT/JP2016/081399 priority patent/WO2018078683A1/ja
Publication of WO2018078683A1 publication Critical patent/WO2018078683A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • Embodiments of the present invention relate to a power supply system.
  • a power supply system that combines a DC power generation device such as a solar battery panel and a DC power storage device such as a storage battery.
  • the power supply system is connected to an AC power system and supplies AC power to a load. For example, in the daytime, surplus power generated by the DC power generation device is stored in the DC power storage device, and at night, the DC power stored in the DC power storage device is converted into AC power and supplied to the load.
  • the load and the power system may be disconnected due to a system failure or the like, and may operate independently.
  • the self-sustained operation if the power generated by the DC power generator is larger than the power consumption of the load, surplus power is charged in the DC power storage device.
  • the DC power storage device When the DC power storage device is fully charged, the DC power storage device is overcharged. In this case, the DC power storage device may be disconnected for protection and it may be difficult to stably supply power to the load.
  • a power supply system it is desired that power can be stably supplied during independent operation.
  • Embodiment of this invention provides the electric power supply system which can supply electric power stably at the time of an autonomous operation.
  • a power supply system including a DC power generation device, a first power conversion device, a DC power storage device, and a second power conversion device.
  • the first power converter includes a first DC terminal and a first AC terminal.
  • the first DC terminal is connected to the DC power generator.
  • the first AC terminal is connected to an AC power system.
  • the first power conversion device converts DC power input from the DC power generation device into AC power, and supplies the AC power to a load connected between the first AC terminal and the power system.
  • the second power converter includes a second DC terminal and a second AC terminal.
  • the second DC terminal is connected to the DC power storage device.
  • the second AC terminal is connected to the first AC terminal, the load, and the power system.
  • the second power conversion device performs discharging from the DC power storage device and charging to the DC power storage device.
  • the first power conversion device and the second power conversion device are communicably connected.
  • the second power conversion device has an active power of the AC power larger than a power consumption of the load, and the DC power storage device cannot be charged, A first operation for transmitting a command for instructing to reduce the active power to the power consumption or less to the first power conversion device is performed.
  • 1 is a block diagram illustrating a power supply system according to a first embodiment. It is a block diagram which illustrates a part of electric power supply system of a 1st embodiment. It is a table
  • FIG. 1 is a block diagram illustrating a power supply system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a part of the power supply system of this embodiment.
  • the power supply system 50 includes a DC power generation device 1, a DC power storage device 2, a first power conversion device 10, and a second power conversion device 20.
  • the first power converter 10 is connected to the DC power generator 1, the power system 3, and the load 4.
  • Second power conversion device 20 is connected to each of DC power storage device 2, power system 3, load 4, and host controller 6.
  • the first power conversion device 10 is detachably connected to the DC power generation device 1, the power system 3, and the load 4 by, for example, a connector.
  • Second power conversion device 20 is detachably connected to DC power storage device 2, power system 3, load 4, and host controller 6 by, for example, a connector.
  • the first power converter 10 includes a first DC terminal 11 and a first AC terminal 12.
  • the first DC terminal 11 is connected to the DC power generator 1.
  • the first AC terminal 12 is connected to the power system 3 and the load 4.
  • the first power converter 10 functions as a power conditioner (PCS: Power Conditioning System) that converts DC power into AC power.
  • the first power converter 10 is supplied with DC power from the DC power generator 1.
  • the DC power generator 1 is, for example, a solar battery panel.
  • the first power conversion device 10 is supplied with DC power generated by the solar cell panel.
  • the DC power generator 1 may be any distributed power source that can supply DC power to the first power converter 10.
  • the second power conversion device 20 includes a second DC terminal 21 and a second AC terminal 22.
  • Second DC terminal 21 is connected to DC power storage device 2.
  • Second AC terminal 22 is connected to each of first AC terminal 12, power system 3, and load 4.
  • the second power conversion device 20 functions as a bidirectional power conditioner (PCS) that converts DC power into AC power and converts AC power into DC power.
  • Second power conversion device 20 discharges DC power storage device 2 and charges DC power storage device 2.
  • DC power storage device 2 is, for example, a storage battery such as a lead battery or a lithium ion battery.
  • DC power storage device 2 is connected to second power conversion device 20 via storage battery management device 9, for example.
  • the DC power storage device 2 is connected to the host controller 6 via, for example, the storage battery management device 9.
  • the storage battery management device 9 detects the remaining charge amount of the DC power storage device 2 and transmits the remaining charge data to the host controller 6.
  • the storage battery management device 9 provides a charging means corresponding to the type of storage battery of the DC power storage device 2.
  • the power system 3 is, for example, a power transmission line for supplying power to a power receiving facility of a consumer.
  • the power supplied from the power system 3 is alternating current.
  • the power system 3 is, for example, a commercial power transmission line.
  • the voltage of the AC power of the power system 3 is, for example, 6600 V (effective value).
  • the frequency of the AC power of the power system 3 is, for example, 50 Hz or 60 Hz.
  • the power system 3 may be, for example, a transmission line in a private power generation system.
  • Each of the first power conversion device 10 and the second power conversion device 20 is connected to the power system 3 via the circuit breaker 5.
  • the circuit breaker 5 is connected to each of the first power converter 10 and the second power converter 20 and the power system 3, and each of the first power converter 10 and the second power converter 20 is connected to the power system. 3 and an open state where it is separated from 3.
  • the introduction and release of the circuit breaker 5 are controlled by, for example, an administrator of the power system 3.
  • the insertion and release of the circuit breaker 5 are controlled by, for example, an electric power company.
  • Load 4 is an AC load.
  • the rated power of the load 4 corresponds to the AC power of the power system 3.
  • the load 4 is, for example, an electronic device.
  • the load 4 is connected to the 1st power converter device 10 and the 2nd power converter device 20 via a switchboard, a distribution board, etc., for example.
  • the load 4 is connected between the first power converter 10 and the circuit breaker 5.
  • the load 4 is connected between the second power converter 20 and the circuit breaker 5.
  • the transformer 8 When the voltage of the power system 3 is 6600 V, the transformer 8 is provided between the load 4 and the power system 3. The transformer 8 boosts the voltage output from the power supply system 50 and connects it to the power system 3. The transformer 8 steps down the voltage of the power system 3 and supplies it to the power supply system 50.
  • the host controller 6 monitors the state of the circuit breaker 5 and notifies the first power conversion device 10 or the second power conversion device 20 whether the circuit breaker 5 is turned on or opened.
  • the host controller 6 detects voltage and current before and after the load 4. Thereby, the host controller 6 calculates the power consumption of the load 4 and notifies the first power conversion device 10 or the second power conversion device 20 of the calculated power consumption value.
  • the host controller 6 detects the remaining charge of the DC power storage device 2 via the storage battery management device 9. Thereby, the host controller 6 acquires the remaining charge amount of the DC power storage device 2 and notifies the second power conversion device 20 thereof.
  • each data of the power consumption of the circuit breaker 5, the load 4, and the charge remaining amount of the DC power storage device is not limited to being input to the second control unit 26 via the host controller 6. Some or all of these data may be directly input to the second control unit 26.
  • the first power conversion device 10 includes a first power conversion unit 13. As shown in FIG. 2, the first power conversion unit 13 includes, for example, a first converter 14 and a harmonic filter 15.
  • the first converter 14 converts the DC voltage supplied from the DC power generator 1 into an AC voltage and outputs the AC voltage.
  • the first converter 14 for example, a self-excited converter is used.
  • the first converter 14 includes, for example, a switching element, and converts a DC voltage into an AC voltage by turning on and off the switching element.
  • a self-extinguishing element is used as the switching element of the first power conversion unit 13. More specifically, for example, a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor) or IGBT (Insulated / Gate / Bipolar / Transistor) is used.
  • MOSFET Metal / Oxide / Semiconductor / Field / Effect / Transistor
  • IGBT Insulated / Gate / Bipolar
  • the first converter 14 forms a bridge circuit with switching elements.
  • the circuit configuration of the first converter 14 is appropriately selected according to input / output voltage, output power, and the like.
  • the harmonic filter 15 removes harmonics generated by the switching operation of the switching element.
  • the first power conversion unit 13 may have switches 17 and 18 for input and output as in this example.
  • the switches 17 and 18 protect the first power conversion unit 13 by opening when the input / output voltage or current is excessive or insufficient.
  • the first power conversion device 10 includes a first control unit 16.
  • the 1st control part 16 contains processors, such as CPU and MPU, for example.
  • the 1st control part 16 controls each part of the 1st power converter device 10 by reading a predetermined program from the memory which is not illustrated, for example, and processing the program sequentially.
  • the memory storing the program may be provided in the first control unit 16 or may be provided separately from the first control unit 16 and electrically connected to the first control unit 16.
  • the first control unit 16 may include one processor or a plurality of processors.
  • the first control unit 16 acquires and processes data for controlling the switches 17 and 18.
  • the second power conversion device 20 includes a second power conversion unit 23.
  • the second power conversion unit 23 includes, for example, a second converter 24 and a harmonic filter 25.
  • the second power conversion unit 23 performs bidirectional conversion from DC power to AC power and from AC power to DC power.
  • the second converter 24 converts the DC voltage supplied from the DC power storage device 2 into an AC voltage and outputs the AC voltage.
  • the harmonic filter 25 removes harmonics generated by high frequency switching.
  • the configuration of the second power conversion unit 23 is the same as the configuration of the first power conversion unit 13 (FIG. 2). Input / output switches 27 and 28 may be included.
  • the second converter 24 converts the DC voltage supplied from the DC power storage device 2 into an AC voltage and outputs the AC voltage to the power system 3 or the load 4.
  • the DC power storage device 2 is discharged in this way.
  • the second converter 24 converts the AC voltage supplied from the DC power generator 1 or the power system 3 into a DC voltage and outputs the DC voltage to the DC power storage device 2.
  • the DC power storage device 2 is charged in this way.
  • the circuit configuration of the second converter 24 is appropriately selected similarly to the circuit configuration of the first converter 14.
  • the second power conversion device 20 has a second control unit 26. Similar to the first control unit 16, the second control unit 26 includes, for example, a processor such as a CPU or MPU. Each of the first control unit 16 and the second control unit 26 includes a communication interface (not shown). Thereby, the 1st power converter device 10 and the 2nd power converter device 20 can communicate mutually. As a communication method, wired or wireless may be used. The communication method is not particularly limited.
  • the AC power converted by each of the first converter 14 and the second converter 24 may be a single-phase AC or a three-phase AC.
  • the 1st power converter device 10 is a slave
  • the 2nd power converter device 20 is a master.
  • FIG. 3 is a table for explaining an operation example of the power supply system 50 according to the first embodiment.
  • the second control unit 26 of the second power conversion device 20 receives the open / close state of the circuit breaker 5 and the load from the host controller 6. 4 of the power consumption A is received.
  • the second control unit 26 transmits a command to the first control unit 16 of the first power conversion device 10 to control the operation of the first power conversion device 10.
  • the active power P1 of the AC power output from the first power conversion device 10 is larger than the power consumption A of the load 4.
  • the value of the power consumption A of the load 4 is obtained from the host controller 6, for example. For example, a predetermined rated power consumption value may be used as the value of the power consumption A of the load 4.
  • the power consumption A of the load 4 corresponds to the active power of the load 4.
  • the power storage state BAT of the DC power storage device 2 When the power storage state BAT of the DC power storage device 2 is “chargeable”, it indicates that the DC power storage device 2 can be charged. That is, the DC power storage device 2 is not fully charged, but is in a state in which DC power can be charged.
  • a relative charging rate called SOC State ⁇ of Charge
  • the SOC is defined as the ratio of the remaining charge to the charge capacity of the DC power storage device 2. For example, if the SOC is less than 80%, it is determined that charging is OK.
  • the storage state BAT of the DC power storage device 2 is “impossible to charge”, it indicates that the DC power storage device 2 is prohibited from being charged. That is, the DC power storage device 2 is in a fully charged state and cannot be charged with DC power. For example, if the SOC is 80% or more, it is determined that charging is not possible.
  • the second power conversion device 20 When the load 4 and the power system 3 are disconnected, the second power conversion device 20 performs the first operation OP1 when the power generation state PV is “sufficient” and the storage state BAT is “unchargeable”. To do.
  • the 2nd power converter device 20 determines with the load 4 and the electric power grid
  • the 2nd power converter device 20 acquires the state of circuit breaker 5 from host controller 6, for example.
  • the master-side second power conversion device 20 may monitor the state of the circuit breaker 5 and detect the open state of the circuit breaker 5.
  • the active power P1 is adjusted to the output value x3 by setting the fixed value x3 of the active power to the active power command value or setting the output limiter of the active power to the fixed value x3. can do.
  • the active power P1 can be adjusted by setting the reactive power Q1 output from the first power converter 10 to an appropriate value. More specifically, by changing the reactive power Q1 of the first power converter 10 from 0 to y1, the power factor of the power output from the first power converter 10 is lowered, and the first power converter 10 The effective power P (A) supplied to the load 4 can be reduced. In this case, the reactive power output from the first power converter 10 can be canceled by setting the command value of the reactive power Q2 of the second power converter 20 to -y1.
  • the second power conversion device 20 performs the second operation OP2 when the power generation state PV is “sufficient” and the storage state BAT is “chargeable” when the load 4 and the power system 3 are disconnected. To do.
  • the power consumption A is represented by x1-x2.
  • the second power conversion device 20 performs the third operation OP3 when the power generation state PV is “insufficient” when the load 4 and the power system 3 are disconnected.
  • the power consumption A is represented by x4 + x5.
  • the second power conversion device 20 on the master side performs an AVR (Automatic Voltage Regulator) operation. Therefore, the second power conversion device 20 can keep the output voltage on the load side constant in the first operation OP1 to the third operation OP3.
  • the second power conversion device 20 is set to output reactive power Q2 even when the active power output by the AVR operation is zero (OP1).
  • the reactive power Q2 at this time is set according to the power factor of the load.
  • FIG. 4 is a flowchart for explaining the operation of the power supply system of this embodiment.
  • the second power converter 20 detects whether or not the load 4 and the power system 3 are disconnected. Since the 2nd power converter device 20 is performing AVR operation, it can detect a disconnection state by being unable to synchronize with electric power system 3. Alternatively, it may be detected via the host controller 6 whether the circuit breaker 5 is in an open state or a closed state.
  • step S1 When it is detected in step S1 that the load 4 and the power system 3 are disconnected (in the case of YES), the second power converter 20 outputs the AC power output from the first power converter 10 in step S2. It is determined whether or not the active power P1 is greater than the power consumption A of the load 4.
  • the second power conversion device 20 may obtain the value of the power consumption A from, for example, the host controller 6 or may use a predetermined rated power consumption value.
  • step S1 When it is not detected in step S1 that the load 4 and the power system 3 are disconnected (in the case of NO), the process of step S1 is repeated.
  • step S3 the second power conversion device 20 determines whether or not the DC power storage device 2 can be charged. For example, SOC can be used to determine whether charging is possible.
  • the SOC data is acquired by the storage battery management device 9 and transmitted to the second power conversion device 20.
  • the SOC data may be transmitted to the second power conversion device 20 via the host controller 6.
  • overcharge of the DC power storage device 2 can be suppressed during the independent operation. For this reason, it is possible to suppress the disconnection of the DC power storage device 2 and stably supply power during the independent operation.
  • FIG. 5 is a block diagram illustrating a power supply system according to the second embodiment.
  • FIG. 6 is a table for explaining an operation example of the power supply system according to the second embodiment.
  • the 1st power converter device 110 is set as a master
  • the 2nd power converter device 120 is set as a slave.
  • the first power conversion device 110 as the master performs an AVR operation, and the operations of the first power conversion device 110 and the second power conversion device 120 are set based on the data acquired by the first power conversion device 110.
  • the first power conversion device 110 includes a first control unit 116, and the first control unit 116 is connected to the host controller 6.
  • the second power conversion device 120 includes a second control unit 126.
  • the first control unit 116 and the second control unit 126 are connected to each other and exchange data.
  • the other points are the same as in the case of the first embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.
  • the first control unit 116 acquires each data of the power consumption of the circuit breaker 5 and the load 4 and the remaining charge amount of the DC power storage device via the host controller 6. Alternatively, some or all of these data may be acquired directly.
  • the table in FIG. 6 shows an operation example when the first power conversion device 10 is a master and the second power conversion device 20 is a slave in a power supply system during a self-sustaining operation in which the load 4 and the power system 3 are disconnected. Show. That is, the first control unit 116 of the first power converter 110 receives the open / close state of the circuit breaker 5 and the value of the power consumption A of the load 4 from the host controller 6. The first control unit 116 transmits a command to the second control unit 126 of the second power conversion device 120 to control the operation of the second power conversion device 120.
  • the first power converter 110 executes the first operation OP1 when the power generation state PV is “sufficient” and the storage state BAT is “unchargeable” when the load 4 and the power system 3 are disconnected. To do.
  • the circuit breaker 5 is opened, it is determined that the load 4 and the power system 3 are disconnected.
  • the state of the circuit breaker 5 is acquired from the host controller 6, for example.
  • the 1st power converter device 110 by the side of the master may monitor the state of the circuit breaker 5, and may detect the open state of the circuit breaker 5.
  • the output of the active power P1 can be realized, for example, by switching from the follow-up command to the maximum power point in the maximum power point follow-up control to the fixed power command having a smaller active power, as in the first embodiment. .
  • the first power conversion device 10 executes the second operation OP2 when the power generation state PV is “sufficient” and the storage state BAT is “chargeable” when the load 4 and the power system 3 are disconnected. To do.
  • the power consumption A is represented by x1-x2.
  • the first power conversion device 10 executes the third operation OP3 when the load 4 and the power system 3 are disconnected when the power generation state PV is “insufficient”.
  • the power consumption A is represented by x4 + x5.
  • the output voltage can be kept constant in the first operation OP1 to the third operation OP3.
  • the first power conversion device 10 sets and outputs the reactive power Q1 according to the power factor of the load 4.
  • the reactive power Q2 to output is y.
  • one of the first power converter and the second power converter is set as a master and the other is set as a slave.
  • the master is the case where the power output from the DC power generator is larger than the AC power required by the load, and when the DC power storage device 2 cannot be charged, the master outputs the power output from the first power converter.
  • the desired AC power can be supplied to the load by reducing the voltage. Therefore, at the time of disconnection, it is possible to supply power to the load without completely stopping the second power converter by a gate block or the like. Since the second power conversion device does not stop completely even in such a situation, when the DC power storage device becomes in a chargeable state, the DC power storage device is immediately charged without going through a startup procedure. Can do.
  • the output power of the DC power generator varies with time, like a solar battery panel, so that the output power is leveled by the DC power storage device so as to absorb the change over time.
  • the storage battery of the DC power storage device deteriorates and the charge capacity decreases when the overcharge state is continued or the overcharge state is repeated. Therefore, it is necessary to protect the storage battery from an overcharged state. If the power supply system is connected to the power grid, the DC power storage device will be overcharged if the DC power generation device outputs a larger amount of power than required by the load, but if the power flow is reversed. There is no state.
  • the second power converter since the output power of the first power converter is reduced to a level required by the load and supplied, the second power converter does not charge the DC power storage device.
  • the second power converter stops charging the DC power storage device by setting the output power to zero. Therefore, the second power conversion device does not need to be interrupted, can be quickly charged when the DC power storage device can be charged, and can realize a seamless leveling operation.

Abstract

実施形態の電力供給システムは、直流発電装置と、直流蓄電装置と、第1、第2電力変換装置と、を備える。第1電力変換装置は、直流発電装置と接続される第1直流端子と、交流の電力系統と接続される第1交流端子と、を有する。第1電力変換装置は、直流発電装置から入力された直流電力を交流電力に変換して負荷に供給する。第2電力変換装置は、直流蓄電装置と接続される第2直流端子と、第1交流端子、負荷および電力系統と接続される第2交流端子と、を有する。第2電力変換装置は、直流蓄電装置の放電および充電を行う。第1、第2電力変換装置は、通信可能に接続される。第2電力変換装置は、負荷と電力系統とが切り離されたときに、交流電力の有効電力が負荷の消費電力よりも大きく、直流蓄電装置が充電不可である場合、有効電力を消費電力以下に下げるように指示する指令を、第1電力変換装置に送信する第1動作を実施する。

Description

電力供給システム
 本発明の実施形態は、電力供給システムに関する。
 太陽電池パネルなどの直流発電装置と、蓄電池などの直流蓄電装置とを組み合わせた電力供給システムがある。電力供給システムは、交流の電力系統と連系して、負荷に対して交流電力を供給する。たとえば、昼間には、直流発電装置で発電した電力の余剰分を直流蓄電装置に蓄え、夜間には、直流蓄電装置に蓄えた直流電力を交流電力に変換して負荷に供給する。
 電力供給システムにおいては、系統事故等により負荷と電力系統とが切り離され、自立運転する場合がある。自立運転時において、直流発電装置で発電された電力が負荷の消費電力よりも大きいと、余剰電力が直流蓄電装置に充電される。直流蓄電装置が満充電のときに充電されると、直流蓄電装置は過充電の状態となる。この場合、直流蓄電装置は、保護のため解列し、負荷への電力の安定供給が困難となる可能性がある。電力供給システムにおいては、自立運転時に電力を安定して供給できることが望まれる。
特開2002-171674号公報
 本発明の実施形態は、自立運転時に電力を安定して供給できる電力供給システムを提供する。
 本発明の実施形態によれば、直流発電装置と、第1電力変換装置と、直流蓄電装置と、第2電力変換装置と、を備えた電力供給システムが提供される。前記第1電力変換装置は、第1直流端子と、第1交流端子と、を有する。前記第1直流端子は、前記直流発電装置と接続される。前記第1交流端子は、交流の電力系統と接続される。前記第1電力変換装置は、前記直流発電装置から入力された直流電力を交流電力に変換し、前記交流電力を、前記第1交流端子と前記電力系統との間に接続された負荷に供給する。前記第2電力変換装置は、第2直流端子と、第2交流端子と、を有する。前記第2直流端子は、前記直流蓄電装置と接続される。前記第2交流端子は、前記第1交流端子、前記負荷および前記電力系統と接続される。前記第2電力変換装置は、前記直流蓄電装置からの放電および前記直流蓄電装置への充電を行う。前記第1電力変換装置と前記第2電力変換装置とは、通信可能に接続される。前記第2電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記交流電力の有効電力が前記負荷の消費電力よりも大きく、前記直流蓄電装置が充電不可である場合、前記有効電力を前記消費電力以下に下げるように指示する指令を、前記第1電力変換装置に送信する第1動作を実施する。
 本発明の実施形態によれば、自立運転時に電力を安定して供給できる電力供給システムを提供することができる。
第1の実施形態に係る電力供給システムを例示するブロック図である。 第1の実施形態の電力供給システムの一部を例示するブロック図である。 第1の実施形態に係る電力供給システムの動作例を説明する表図である。 第1の実施形態の電力供給システムの動作を説明するためのフローチャートである。 第2の実施形態に係る電力供給システムを例示するブロック図である。 第2の実施形態に係る電力供給システムの動作例を説明する表図である。
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る電力供給システムを例示するブロック図である。
 図2は、本実施形態の電力供給システムの一部を例示するブロック図である。
 図1に示すように、電力供給システム50は、直流発電装置1と、直流蓄電装置2と、第1電力変換装置10と、第2電力変換装置20と、を備える。
 第1電力変換装置10は、直流発電装置1、電力系統3および負荷4に接続される。第2電力変換装置20は、直流蓄電装置2、電力系統3、負荷4および上位コントローラ6のそれぞれに接続される。第1電力変換装置10は、たとえば、コネクタなどにより、直流発電装置1、電力系統3および負荷4に着脱可能に接続される。第2電力変換装置20は、たとえば、コネクタなどにより、直流蓄電装置2、電力系統3、負荷4および上位コントローラ6に着脱可能に接続される。
 第1電力変換装置10は、第1直流端子11と、第1交流端子12と、を含む。第1直流端子11は、直流発電装置1に接続される。第1交流端子12は、電力系統3および負荷4に接続される。第1電力変換装置10は、直流電力を交流電力に変換するパワーコンディショナ(PCS:Power Conditioning System)として機能する。第1電力変換装置10には、直流発電装置1から直流電力が供給される。直流発電装置1は、たとえば、太陽電池パネルである。第1電力変換装置10には、太陽電池パネルで発電された直流電力が供給される。直流発電装置1は、直流電力を第1電力変換装置10に供給可能な分散型電源であればよい。
 第2電力変換装置20は、第2直流端子21と、第2交流端子22と、を含む。第2直流端子21は、直流蓄電装置2と接続される。第2交流端子22は、第1交流端子12、電力系統3および負荷4のそれぞれと接続される。第2電力変換装置20は、直流電力を交流電力に変換し、交流電力を直流電力に変換する双方向のパワーコンディショナ(PCS)として機能する。第2電力変換装置20は、直流蓄電装置2からの放電および直流蓄電装置2への充電を行う。直流蓄電装置2は、たとえば、鉛電池、リチウムイオン電池などの蓄電池である。
 直流蓄電装置2は、たとえば蓄電池管理装置9を介して、第2電力変換装置20に接続される。直流蓄電装置2は、たとえば蓄電池管理装置9を介して、上位コントローラ6に接続される。蓄電池管理装置9は、直流蓄電装置2の充電残量を検出して、充電残量のデータを上位コントローラ6に送信する。蓄電池管理装置9は、直流蓄電装置2の蓄電池の種類に応じた充電手段を提供する。
 電力系統3は、たとえば、電力を需要家の受電設備に供給するための送電線である。電力系統3の供給する電力は、交流である。電力系統3は、たとえば、商用電源の送電線である。電力系統3の交流電力の電圧は、たとえば、6600V(実効値)である。電力系統3の交流電力の周波数は、たとえば、50Hzまたは60Hzである。電力系統3は、たとえば、自家発電システム内の送電線などでもよい。
 第1電力変換装置10および第2電力変換装置20のそれぞれは、遮断器5を介して電力系統3に接続される。遮断器5は、第1電力変換装置10および第2電力変換装置20のそれぞれと電力系統3とを接続する投入状態と、第1電力変換装置10および第2電力変換装置20のそれぞれを電力系統3から切り離す開放状態と、を有する。遮断器5の投入および開放は、たとえば、電力系統3の管理者によって制御される。遮断器5の投入および開放は、たとえば、電力会社などによって制御される。
 負荷4は、交流負荷である。負荷4の定格電力は、電力系統3の交流電力に対応する。負荷4は、たとえば、電子機器である。負荷4は、たとえば、配電盤や分電盤などを介して第1電力変換装置10および第2電力変換装置20に接続される。負荷4は、第1電力変換装置10と遮断器5との間に接続される。負荷4は、第2電力変換装置20と遮断器5との間に接続される。系統事故等により遮断器5が開放状態になり、電力系統3と負荷4とが切り離された場合、電力供給システムは自立運転モードに移行する。この場合、負荷4は、直流発電装置1および直流蓄電装置2から電力の供給を受ける。
 電力系統3の電圧が6600Vの場合には、負荷4と電力系統3との間に変圧器8が設けられる。変圧器8は、電力供給システム50から出力される電圧を昇圧して電力系統3に連系する。変圧器8は、電力系統3の電圧を降圧して電力供給システム50に供給する。
 上位コントローラ6は、遮断器5の状態を監視し、遮断器5が投入または開放のいずれの状態であるかを、第1電力変換装置10または第2電力変換装置20に通知する。上位コントローラ6は、負荷4の前後で電圧および電流を検知する。これにより、上位コントローラ6は、負荷4の消費電力を算出し、算出した消費電力の値を第1電力変換装置10または第2電力変換装置20に通知する。上位コントローラ6は、蓄電池管理装置9を介して、直流蓄電装置2の充電残量を検知する。これにより上位コントローラ6は、直流蓄電装置2の充電残量を取得し、第2電力変換装置20に通知する。
 なお、遮断器5、負荷4の消費電力および直流蓄電装置の充電残量の各データは、上位コントローラ6を介して、第2制御部26に入力される場合に限らない。これらのデータの一部または全部は、直接第2制御部26に入力されてもよい。
 第1電力変換装置10は、第1電力変換部13を有する。図2に示すように、第1電力変換部13は、たとえば、第1変換器14と、高調波フィルタ15と、を有する。第1変換器14は、直流発電装置1から供給される直流電圧を交流電圧に変換して出力する。第1変換器14には、たとえば、自励式の変換器が用いられる。第1変換器14は、たとえば、スイッチング素子を有し、スイッチング素子のオンおよびオフによって、直流電圧を交流電圧に変換する。第1電力変換部13のスイッチング素子には、たとえば、自己消弧型の素子が用いられる。より具体的には、たとえば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などが用いられる。
 たとえば、第1変換器14は、スイッチング素子によりブリッジ回路を構成する。第1変換器14の回路構成は、入出力電圧や出力電力等によって適切に選定される。
 高調波フィルタ15は、スイッチング素子のスイッチング動作によって発生した高調波を除去する。
 第1電力変換部13は、この例のように、入出力にスイッチ17,18を有してもよい。スイッチ17,18は、入出力の電圧や電流が過大であったり、過少であったりした場合に、開放することによって第1電力変換部13を保護する。
 第1電力変換装置10は、第1制御部16を有する。第1制御部16は、たとえば、CPUやMPUなどのプロセッサを含む。第1制御部16は、たとえば、図示しないメモリから所定のプログラムを読み出し、そのプログラムを逐次処理することで、第1電力変換装置10の各部を統括的に制御する。プログラムを記憶したメモリは、第1制御部16内に設けてもよいし、第1制御部16と別に設け、第1制御部16と電気的に接続してもよい。また、第1制御部16は、1つのプロセッサを含んでもよいし、複数のプロセッサを含んでもよい。第1制御部16は、スイッチ17,18を制御するためのデータの取得および処理を実行する。
 第2電力変換装置20は、第2電力変換部23を有する。第2電力変換部23は、たとえば、第2変換器24と、高調波フィルタ25と、を有する。第2電力変換部23は、直流電力から交流電力、および、交流電力から直流電力への双方向の変換を行う。第2変換器24は、直流蓄電装置2から供給される直流電圧を交流電圧に変換して出力する。高調波フィルタ25は、高周波スイッチングによって発生した高調波を除去する。第2電力変換部23の構成は、第1電力変換部13の構成と同様である(図2)。入出力のスイッチ27,28を含んでもよい。第2変換器24は、直流蓄電装置2から供給される直流電圧を交流電圧に変換して電力系統3または負荷4に出力する。直流蓄電装置2は、このようにして放電する。また、第2変換器24は、直流発電装置1または電力系統3から供給される交流電圧を直流電圧に変換して直流蓄電装置2に出力する。直流蓄電装置2は、このようにして充電される。
 第2変換器24の回路構成は、第1変換器14の回路構成と同様に適切に選定される。
 第2電力変換装置20は、第2制御部26を有する。第2制御部26は、第1制御部16と同様に、たとえば、CPUやMPUなどのプロセッサを含む。第1制御部16および第2制御部26のそれぞれは、通信インターフェイス(図示せず)を備える。これにより、第1電力変換装置10と第2電力変換装置20とは、相互に通信可能である。通信方法としては、有線を用いてもよいし、無線を用いてもよい。通信方法は、特に限定されない。
 第1変換器14および第2変換器24のそれぞれが変換する交流電力は、単相交流でもよいし、三相交流でもよい。
 以下、系統事故等により遮断器5が開放状態となり、電力供給システム50が自立運転する場合について説明する。本実施形態では、第1電力変換装置10がスレーブ、第2電力変換装置20がマスタである。
 図3は、第1の実施形態に係る電力供給システム50の動作例を説明する表図である。
 負荷4および電力系統3が切り離された自立運転時の電力供給システム50においては、第2電力変換装置20の第2制御部26は、上位コントローラ6から、遮断器5の開閉状態、および、負荷4の消費電力Aの値を受信する。第2制御部26は、第1電力変換装置10の第1制御部16に対して、指令を送信し、第1電力変換装置10の動作を制御する。
 図3において、直流発電装置1の発電状態PVが「十分」の場合、直流発電装置1の発電量は十分であることを示す。つまり、第1電力変換装置10から出力される交流電力の有効電力P1が負荷4の消費電力Aよりも大きい。負荷4の消費電力Aの値は、たとえば、上位コントローラ6から取得する。負荷4の消費電力Aの値は、たとえば、予め定められた定格消費電力の値を用いてもよい。負荷4の消費電力Aは、負荷4の有効電力に対応する。直流発電装置1の発電状態PVが「不十分」の場合、直流発電装置1の発電量が不十分であることを示す。つまり、第1電力変換装置10から出力される交流電力の有効電力P1が負荷4の消費電力Aよりも小さい。
 直流蓄電装置2の蓄電状態BATが「充電可」の場合、直流蓄電装置2は充電可能であることを示す。つまり、直流蓄電装置2は、満充電の状態ではなく、直流電力を充電可能な状態である。充電可能か否かの判定には、たとえば、SOC(State of Charge)と呼ばれる相対的な充電率を用いることができる。SOCとは、直流蓄電装置2の充電容量に対する充電残量の比率として定義される。たとえば、SOCが80%未満であれば、充電OKと判定する。直流蓄電装置2の蓄電状態BATが「充電不可」の場合、直流蓄電装置2が充電が禁止されていることを示す。つまり、直流蓄電装置2は、満充電の状態であり、直流電力を充電不可な状態である。たとえば、SOCが80%以上であれば、充電不可と判定する。
 スレーブ側の第1電力変換装置10から出力される交流電力の第1状態PCS1において、たとえば、「P1=x1、Q1=0」は、有効電力P1がx1であり、無効電力Q1が0であることを意味する。マスタ側の第2電力変換装置20に入力される交流電力の第2状態PCS2において、たとえば、「P2=-x2、Q2=y」は、有効電力P2の電力量がx2で、無効電力Q2の電力量がyであることを意味する。有効電力P2の「-」は充電を意味し、「+」は放電を意味する。
 第2電力変換装置20は、負荷4と電力系統3とが切り離されたときに、発電状態PVが「十分」であり、蓄電状態BATが「充電不可」である場合、第1動作OP1を実施する。第2電力変換装置20は、遮断器5が開放状態になったときに、負荷4と電力系統3とが切り離されたと判定する。第2電力変換装置20は、遮断器5の状態を、たとえば、上位コントローラ6から取得する。なお、マスタ側の第2電力変換装置20が遮断器5の状態を監視し、遮断器5の開放状態を検知してもよい。第1動作OP1においては、第2電力変換装置20は、有効電力P1(=x1)を消費電力A以下に下げるように指示する指令を、第1電力変換装置10に送信する。これにより、有効電力P1は、x1からx3に下げられる。x3には、たとえば、消費電力Aの値が用いられる。これにより、直流蓄電装置2への過充電が抑制される。
 第1電力変換装置10の有効電力P1の出力調整の方法としては、たとえば、最大電力点追従制御(MPPT)の最大電力点への追従指令から、有効電力P1=x3となる固定電力指令に切り替える方法がある。より具体的には、たとえば、有効電力の固定値x3を有効電力指令値に設定したり、有効電力の出力リミッタを固定値x3に設定したりすることによって、有効電力P1を出力値x3に調整することができる。
 第1電力変換装置10が出力する無効電力Q1を適切な値に設定することによって、有効電力P1を調整することもできる。より具体的には、第1電力変換装置10の無効電力Q1を0からy1とすることによって、第1電力変換装置10から出力される電力の力率を下げて、第1電力変換装置10から負荷4に供給する有効電力P(A)を引き下げることができる。この場合には、第2電力変換装置20の無効電力Q2の指令値を-y1とすることによって、第1電力変換装置10から出力された無効電力をキャンセルすることができる。
 第2電力変換装置20は、負荷4と電力系統3とが切り離されたときに、発電状態PVが「十分」であり、蓄電状態BATが「充電可」である場合、第2動作OP2を実施する。第2動作OP2においては、有効電力P1(=x1)と消費電力Aとの差分(=x2)を、直流蓄電装置2に充電する。この場合、消費電力Aは、x1-x2で表される。
 第2電力変換装置20は、負荷4と電力系統3とが切り離されたときに、発電状態PVが「不十分」の場合、第3動作OP3を実施する。第3動作OP3においては、消費電力Aと有効電力P1(=x4)との差分(=x5)を、直流蓄電装置2から放電する。この場合、消費電力Aは、x4+x5で表される。
 マスタ側の第2電力変換装置20は、AVR(Automatic Voltage Regulator)動作をする。そのため、第2電力変換装置20は、第1動作OP1~第3動作OP3において、負荷側の出力電圧を一定に保つことができる。なお、この例では、第2電力変換装置20は、AVR動作によって出力する有効電力がゼロの場合(OP1)であっても、無効電力Q2を出力するように設定されている。このときの無効電力Q2は、負荷の力率に応じて設定される。
 図4は、本実施形態の電力供給システムの動作を説明するためのフローチャートである。
 まず、ステップS1において、第2電力変換装置20は、負荷4と電力系統3とが切り離されたか否かを検知する。第2電力変換装置20は、AVR動作をしているので、電力系統3との同期がとれないことによって、解列状態を検知することができる。あるいは、上位コントローラ6を介して、遮断器5が開放状態であるか、投入状態であるかを検知してもよい。
 ステップS1で、負荷4と電力系統3とが切り離されたことを検知した場合(YESの場合)、ステップS2において、第2電力変換装置20は、第1電力変換装置10から出力される交流電力の有効電力P1が負荷4の消費電力Aよりも大きいか否かを判定する。第2電力変換装置20は、消費電力Aの値を、たとえば、上位コントローラ6から取得してもよいし、予め定められた定格消費電力の値を用いてもよい。ステップS1で、負荷4と電力系統3とが切り離されたことを検知しない場合(NOの場合)、ステップS1の処理が繰り返される。
 ステップS2で、有効電力P1(=x1)が消費電力Aよりも大きいと判定された場合(YESの場合)、処理は、ステップS3に遷移する。ステップS3において、第2電力変換装置20は、直流蓄電装置2が充電可能か否かを判定する。充電可能か否かの判定には、たとえば、SOCを用いることができる。SOCのデータは、蓄電池管理装置9によって取得され、第2電力変換装置20に送信される。SOCのデータは、上位コントローラ6を介して第2電力変換装置20に送信されてもよい。
 ステップS2で、有効電力P1(=x4)が消費電力Aよりも大きくないと判定した場合(NOの場合)には、処理は、ステップS4に遷移する。ステップS4において、第2電力変換装置20は、消費電力Aと有効電力P1(=x4)との差分(=x5)を直流蓄電装置2から放電する(ステップS4)。
 ステップS3で、直流蓄電装置2に充電不可と判定された場合(NOの場合)、ステップS5において、第2電力変換装置20は、有効電力P1(=x1)を消費電力A以下に下げるように指示する指令を、第1電力変換装置10に送信する。
 ステップS3で、直流蓄電装置2に充電可能と判定された場合(YESの場合)、ステップS6において、第2電力変換装置20は、有効電力P1(=x1)と消費電力Aとの差分(=x2)を直流蓄電装置2に充電する(ステップS6)。
 このように、実施形態によれば、自立運転時において、直流蓄電装置2の過充電を抑制することができる。このため、直流蓄電装置2の解列を抑制し、自立運転時に電力を安定して供給することができる。
(第2の実施形態)
 図5は、第2の実施形態に係る電力供給システムを例示するブロック図である。
 図6は、第2の実施形態に係る電力供給システムの動作例を説明する表図である。
 本実施形態の場合には、第1電力変換装置110がマスタであり、第2電力変換装置120がスレーブに設定される。マスタである第1電力変換装置110がAVR動作をし、第1電力変換装置110が取得したデータに基づいて、第1電力変換装置110および第2電力変換装置120の動作を設定する。
 第1電力変換装置110は、第1制御部116を有し、第1制御部116は、上位コントローラ6に接続されている。第2電力変換装置120は、第2制御部126を有する。第1制御部116および第2制御部126は、互いに接続され、データの交換を行う。他の点では、第1の実施形態の場合と同様であり、同一の構成要素に同一の符号を付して、詳細な説明を省略する。なお、第1の実施形態の場合と同様に、第1制御部116は、上位コントローラ6を介して、遮断器5、負荷4の消費電力および直流蓄電装置の充電残量の各データを取得しもよいし、これらのデータの一部または全部を直接取得してもよい。
 図6の表は、負荷4と電力系統3とが切り離された自立運転時の電力供給システムにおいて、第1電力変換装置10をマスタ、第2電力変換装置20をスレーブとした場合の動作例について示している。すなわち、第1電力変換装置110の第1制御部116は、上位コントローラ6から、遮断器5の開閉状態、および、負荷4の消費電力Aの値を受信する。第1制御部116は、第2電力変換装置120の第2制御部126に対して、指令を送信し、第2電力変換装置120の動作を制御する。
 第1電力変換装置110は、負荷4と電力系統3とが切り離されたときに、発電状態PVが「十分」であり、蓄電状態BATが「充電不可」である場合、第1動作OP1を実行する。遮断器5が開放状態になったときに、負荷4と電力系統3とが切り離されたと判定する。遮断器5の状態は、たとえば、上位コントローラ6から取得する。なお、マスタ側の第1電力変換装置110が遮断器5の状態を監視し、遮断器5の開放状態を検知してもよい。第1動作OP1においては、有効電力P1(=x1)を消費電力A以下に下げる。これにより、有効電力P1は、x1からx3に下げられる。x3には、たとえば、消費電力Aの値が用いられる。これにより、直流蓄電装置2への過充電が抑制される。
 有効電力P1の出力は、第1の実施形態と同様に、たとえば、最大電力点追従制御の最大電力点への追従指令から、より小さい有効電力の固定電力指令に切り替える等により実現することができる。
 第1電力変換装置10は、負荷4と電力系統3とが切り離されたときに、発電状態PVが「十分」であり、蓄電状態BATが「充電可」である場合、第2動作OP2を実行する。第2動作OP2においては、有効電力P1(=x1)と消費電力Aとの差分(=x2)を直流蓄電装置2に充電するように指示する指令を、第2電力変換装置20に送信する。この場合、消費電力Aは、x1-x2で表される。
 第1電力変換装置10は、負荷4と電力系統3とが切り離されたときに、発電状態PVが「不十分」の場合、第3動作OP3を実行する。第3動作OP3においては、消費電力Aと有効電力P1(=x4)との差分(=x5)を直流蓄電装置2から放電するように指示する指令を、第2電力変換装置20に送信する。この場合、消費電力Aは、x4+x5で表される。
 マスタ側の第1電力変換装置10は、AVR動作をするので、第1動作OP1~第3動作OP3において、出力電圧を一定に保つことができる。第1電力変換装置10は、負荷4の力率に応じて、無効電力Q1を設定し、出力する。この例では、出力する無効電力Q2=yである。
 実施形態によれば、自立運転時に電力を安定して供給できる電力供給システムが提供できる。
 上述した2つの実施形態によれば、第1電力変換装置および第2電力変換装置のうち一方がマスタで他方がスレーブに設定される。マスタは、直流発電装置が出力する電力の大きさが、負荷の要求する交流電力よりも大きい場合であって、直流蓄電装置2が充電不可であるときには、第1電力変換装置が出力する電力を低下させて、所望の交流電力を負荷に供給することができる。そのため、解列時に、第2電力変換装置をゲートブロック等により完全に停止させることなく、負荷に電力供給することができる。第2電力変換装置は、このような状況でも、完全に停止しないので、直流蓄電装置が充電可能な状態となった場合に、起動手順を経ることなく、即座に直流蓄電装置に充電を行うことができる。
 このような電力供給システムでは、直流発電装置は、太陽電池パネルのように、出力できる電力が時間によって変化するので、時間変化を吸収するように、直流蓄電装置によって、出力電力を平準化する。
 直流蓄電装置の蓄電池は、過充電状態を継続したり、過充電状態を繰り返したりすると、劣化して充電容量が低下する。そのため、蓄電池を過充電状態から保護する必要がある。電力供給システムが電力系統に連系されている場合には、負荷が要求する電力よりも大きな電力を直流発電装置が出力しても、電力系統に逆潮流させれば、直流蓄電装置を過充電状態にすることはない。
 しかし、電力系統の事故等により、電力供給システムが解列された場合には、余剰の電力を逆潮流させることができない。そのため、余剰電力を直流蓄電装置に供給することとなり、蓄電池が過充電状態となるおそれがある。
 本実施形態の電力供給システムでは、第1電力変換装置の出力電力を負荷が要求する大きさまで低下させて供給するので、第2電力変換装置は、直流蓄電装置を充電することがない。第2電力変換装置は、出力電力をゼロに設定することによって直流蓄電装置の充電を停止する。そのため、第2電力変換装置は、遮断される必要がなく、直流蓄電装置の充電が可能となった時点で素早く充電を開始することができ、切れ目のない平準化動作を実現することができる。
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。たとえば、直流発電装置、第1電力変換装置、直流蓄電装置および第2電力変換装置などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
 その他、本発明の実施の形態として上述した電力供給システムを基にして、当業者が適宜設計変更して実施し得る全ての電力供給システムも、本発明の要旨を包含する限り、本発明の範囲に属する。
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例および修正例に想到し得るものであり、それら変更例および修正例についても本発明の範囲に属するものと了解される。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (6)

  1.  直流発電装置と、
     前記直流発電装置と接続される第1直流端子と、交流の電力系統と接続される第1交流端子と、を有し、前記直流発電装置から入力された直流電力を交流電力に変換し、前記交流電力を、前記第1交流端子と前記電力系統との間に接続された負荷に供給する第1電力変換装置と、
     直流蓄電装置と、
     前記第1電力変換装置に通信可能に接続され、前記直流蓄電装置と接続される第2直流端子と、前記第1交流端子、前記負荷および前記電力系統と接続される第2交流端子と、を有し、前記直流蓄電装置からの放電および前記直流蓄電装置への充電を行う第2電力変換装置と、
     を備え、
     前記第2電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記交流電力の有効電力が前記負荷の消費電力よりも大きく、前記直流蓄電装置が充電不可である場合、前記有効電力を前記消費電力以下に下げるように指示する指令を、前記第1電力変換装置に送信する第1動作を実施する電力供給システム。
  2.  前記第2電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記有効電力が前記消費電力よりも大きく、前記直流蓄電装置が充電可能である場合、前記有効電力と前記消費電力との差分を、前記直流蓄電装置に充電する第2動作を実施する請求項1記載の電力供給システム。
  3.  前記第2電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記有効電力が前記消費電力よりも小さい場合、前記消費電力と前記有効電力との差分を、前記直流蓄電装置から放電する第3動作を実施する請求項1記載の電力供給システム。
  4.  直流発電装置と、
     前記直流発電装置と接続される第1直流端子と、交流の電力系統と接続される第1交流端子と、を有し、前記直流発電装置から入力される直流電力を交流電力に変換し、前記交流電力を、前記第1交流端子と前記電力系統との間に接続された負荷に供給する第1電力変換装置と、
     直流蓄電装置と、
     前記第1電力変換装置に通信可能に接続され、前記直流蓄電装置と接続される第2直流端子と、前記第1交流端子、前記負荷および前記電力系統と接続される第2交流端子と、を有し、前記直流蓄電装置からの放電および前記直流蓄電装置への充電を行う第2電力変換装置と、
     を備え、
     前記第1電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記交流電力の有効電力が前記負荷の消費電力よりも大きく、前記直流蓄電装置が充電不可である場合、前記有効電力を前記消費電力以下に下げる第1動作を実施する電力供給システム。
  5.  前記第1電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記有効電力が前記消費電力よりも大きく、前記直流蓄電装置が充電可能である場合、前記有効電力と前記消費電力との差分を前記直流蓄電装置に充電するように指示する指令を、前記第2電力変換装置に送信する第2動作を実施する請求項4記載の電力供給システム。
  6.  前記第1電力変換装置は、前記負荷と前記電力系統とが切り離されたときに、前記有効電力が前記消費電力よりも小さい場合、前記消費電力と前記有効電力との差分を前記直流蓄電装置から放電するように指示する指令を、前記第2電力変換装置に送信する第3動作を実施する請求項4記載の電力供給システム。
PCT/JP2016/081399 2016-10-24 2016-10-24 電力供給システム WO2018078683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018546942A JP6707309B2 (ja) 2016-10-24 2016-10-24 電力供給システム
PCT/JP2016/081399 WO2018078683A1 (ja) 2016-10-24 2016-10-24 電力供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081399 WO2018078683A1 (ja) 2016-10-24 2016-10-24 電力供給システム

Publications (1)

Publication Number Publication Date
WO2018078683A1 true WO2018078683A1 (ja) 2018-05-03

Family

ID=62024548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081399 WO2018078683A1 (ja) 2016-10-24 2016-10-24 電力供給システム

Country Status (2)

Country Link
JP (1) JP6707309B2 (ja)
WO (1) WO2018078683A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411388B2 (ja) 2019-11-12 2024-01-11 株式会社Subaru 電動車両の充電システム、充電ケーブル及び電動車両の電源システム
US11973351B2 (en) 2019-12-12 2024-04-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046532A (ja) * 2011-08-26 2013-03-04 Sanken Electric Co Ltd 電力平準化装置
JP2013150369A (ja) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp 系統連系用電力変換システム
JP2014155269A (ja) * 2013-02-06 2014-08-25 Ryoju Estate Co Ltd 保安電源システム、およびその制御方法
JP2016171653A (ja) * 2015-03-12 2016-09-23 株式会社東芝 単独運転検出システム、単独運転検出方法、および単独運転検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167913A (ja) * 2015-03-09 2016-09-15 清水建設株式会社 電力供給システム及び電力供給方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046532A (ja) * 2011-08-26 2013-03-04 Sanken Electric Co Ltd 電力平準化装置
JP2013150369A (ja) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp 系統連系用電力変換システム
JP2014155269A (ja) * 2013-02-06 2014-08-25 Ryoju Estate Co Ltd 保安電源システム、およびその制御方法
JP2016171653A (ja) * 2015-03-12 2016-09-23 株式会社東芝 単独運転検出システム、単独運転検出方法、および単独運転検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411388B2 (ja) 2019-11-12 2024-01-11 株式会社Subaru 電動車両の充電システム、充電ケーブル及び電動車両の電源システム
US11973351B2 (en) 2019-12-12 2024-04-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter

Also Published As

Publication number Publication date
JPWO2018078683A1 (ja) 2019-06-24
JP6707309B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
EP3190682B1 (en) Power supply system and method
KR102234703B1 (ko) 에너지 저장 시스템 및 이의 제어 방법
US10298006B2 (en) Energy storage system and method of driving the same
US9899871B2 (en) Islanded operating system
JP6455661B2 (ja) 自立運転システム
JP5508796B2 (ja) 電源システム制御方法及び電源システム制御装置
US11223229B2 (en) Uninterruptible power supply system comprising energy storage system
JP5980641B2 (ja) パワーコンディショナおよび電力供給システム
JP2015195674A (ja) 蓄電池集合体制御システム
JP2013247795A (ja) 分散型電源の自立運転システム
US20210111581A1 (en) Hybrid energy storage system
JP2013176282A (ja) 発電設備及び電力貯蔵装置を備えた発電システム及びその制御方法並びにプログラム
WO2013125425A1 (ja) 電力変換装置および直流システム
CN112106288B (zh) 电力变换装置以及电力变换系统
JP6707309B2 (ja) 電力供給システム
JP5450685B2 (ja) 電力変換装置
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置
JP6479516B2 (ja) 入力制御蓄電システム
KR20180099279A (ko) 에너지 저장 장치를 포함하는 에너지 저장 시스템
JPWO2018155442A1 (ja) 直流給電システム
JP7020824B2 (ja) バッテリー用コンバータ及び三相蓄電システム
WO2013121899A1 (ja) 電気機器
CN117691644A (zh) 一种光储系统、能量转换系统、逆变器及功率平衡方法
KR20180099276A (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
JP2021035203A (ja) 電力供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919594

Country of ref document: EP

Kind code of ref document: A1