WO2018077526A1 - Method for achieving increased accuracy of the quantity in pressure-controlled metering systems - Google Patents

Method for achieving increased accuracy of the quantity in pressure-controlled metering systems Download PDF

Info

Publication number
WO2018077526A1
WO2018077526A1 PCT/EP2017/072835 EP2017072835W WO2018077526A1 WO 2018077526 A1 WO2018077526 A1 WO 2018077526A1 EP 2017072835 W EP2017072835 W EP 2017072835W WO 2018077526 A1 WO2018077526 A1 WO 2018077526A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
metering valve
metering
control
reducing agent
Prior art date
Application number
PCT/EP2017/072835
Other languages
German (de)
French (fr)
Inventor
Edna Boos
Matthias Burger
Marc Chaineux
Roland Waschler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020197014408A priority Critical patent/KR20190068608A/en
Priority to EP17767806.7A priority patent/EP3529469A1/en
Priority to CN201780065616.9A priority patent/CN109844276A/en
Publication of WO2018077526A1 publication Critical patent/WO2018077526A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • F01N2610/144Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1821Injector parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1822Pump parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is based on a method for operating a metering system, in which a pressure control is combined with an adaptation of the control of a metering valve with the aim of an improved
  • the present invention relates to a computer program that performs each step of the method when running on a computing device, as well as a machine-readable one
  • Storage medium storing the computer program.
  • the invention relates to an electronic control device which is set up to carry out the method.
  • Pressure-controlled metering systems are generally based on the principle that a pump provides a desired system pressure and regulates to the narrowest possible range around a defined setpoint, and a
  • Dosing typically a metering valve based on this pressure by setting a matching valve opening time the desired amount.
  • the metered quantity accuracy depends essentially on the tolerance of the metering valve.
  • volumetry in so-called “volumetric systems” without return the ia high accuracy of the (reciprocating) pump and the property that in the stationary state, the very well-known, funded by the pump quantity also leaves the system as dosed amount again, This is thanks to the principle of volumetry in combination with the
  • N H3-releasing reagents are used, which are added to the exhaust gas.
  • an aqueous urea solution is used for this, which is injected into the exhaust gas line upstream of the S CR catalyst.
  • Reducing agent tank is generally provided a hydraulic metering system comprising a feed pump, a pressure line, a metering module, with at least one metering valve, and the required sensors and an electronic control device.
  • the feed pump promotes the feed pump
  • Reducing agent solution from the reducing agent tank via the pressure line in the dosing.
  • the metering valve is opened when it is activated, ie when an electric current is applied for control. It is kept open for a fixed drive time, so that reducing agent is injected into the exhaust system. If the metering valve is no longer activated, ie no current is applied, the metering valve closes again.
  • a pressure regulator regulates the pressure in the SCR system by adjusting the control of the feed pump according to the current requirements for the opening time of the metering valve.
  • the aim of this regulation is to adapt the prevailing, actual pressure to a desired pressure.
  • the method described herein is characterized in that an adaptive
  • Feedforward control is used for the control.
  • the control signal of the feed pump motor is at different
  • the adaptive feedforward controller As soon as the adaptive feedforward controller has learned two or more points, it is used to determine the necessary next actuating signal of the feed pump motor. Next to the
  • Feed pump motor other actuators of the metering system can be used as a control signal, but the feed pump motor provides a very accurate signal. As a result, high pressure overshoots and undershoots associated with large dosing quantity changes as well as associated long control times are avoided, thus optimizing the control quality.
  • Dosing systems which comprise a delivery module, with a generally low tolerance, a typically more tolerant thereetets metering valve, a pressure module connecting the delivery module and the metering valve and arranged between the delivery module and the metering pressure sensor. It should be noted that in this SCR system no return is provided and therefore the metering system, if not injected, represents a closed system- and no reducing agent solution can escape. While a pressure control is performed in the metering system, an adaptation of the control of the tolerance-loaded metering valve takes place.
  • the adaptation of the control of the metering valve can be carried out by means of an adaptation factor.
  • the adaptation factor depends on an integral quantity conveyed by the delivery module and on a nominal amount metered in by the metering valve, and can in particular be calculated as a quotient of the delivered quantity and the nominal metered quantity for a specific period of time.
  • Adaptation factor can be quantized a deviation of the actually metered by the metering amount of a nominal amount and this deviation can be corrected by adapting the control of the metering valve by means of the adaptation factor.
  • a high accuracy of the metered amount can be achieved in an integral manner, since the complete pumped and generally low tolerance amount is completely metered in because of the absence of return.
  • the high accuracy of the conveyor module is used in order to obtain a high accuracy - and thus a low tolerance - of the conveyed quantity.
  • a reciprocating pump to serve in the delivery module the one at each stroke by the volume of the reciprocating piston
  • the metering valve By adapting the metering valve, its activation duration can preferably be adapted.
  • the valve flow characteristic can be corrected by means of the adaptation factor. This offers a possibility, on the basis of the deviations, to carry out a quantized adaptation of the control of the metering valve.
  • the delivery module with pressure sensor and the pressure line as a controlled system with the prevailing system pressure as a control variable form a closed loop, via which the pressure control can be made.
  • a desired pressure to be established by the delivery module is compared with an actual pressure prevailing in the delivery conduit.
  • Conveyor module e.g. via a two-position controller, so controlled that the actual pressure adapts to the desired pressure.
  • a pressure-controlled system is obtained.
  • pressure-controlled systems a high accuracy of the pressure prevailing in the dosing system is achieved.
  • the pressure built up by the delivery module can not be reduced due to the absence of return and remains constant until dosing.
  • the computer program is set up to perform each step of the method, in particular when it is performed on a computing device or controller. It allows the implementation of the method in a conventional electronic control unit without having to make any structural changes. For this it is on the machine-readable
  • Control unit which is adapted to adapt the opening duration.
  • FIG. 1 shows an SCR system that can be operated by means of an embodiment of the method according to the invention.
  • FIG. 2 shows a flow diagram of an embodiment of the invention
  • FIG. 3 shows a diagram of a standardized reducing agent flow rate over a system pressure, which tolerances are governed purely volumetrically
  • Dosing system for a purely pressure-controlled dosing system and for a regulated according to an embodiment of the method according to the invention shows system.
  • FIG. 1 shows an SCR system 10 for delivering reducing agent through a
  • Pressure line 11 in a SCR catalyst not shown. It comprises a delivery module 12, which comprises a delivery pump 13, which is set up to deliver reduction agent from a reduction agent tank 14.
  • the feed pump 13 is designed as a reciprocating pump.
  • the delivery module 12 is connected via the pressure line 11 with a metering module 15, wherein reducing agent is conveyed by the delivery module 12 through the pressure line 11 to the metering module 15, where it then by a
  • Metering valve 16 is metered into an exhaust line, not shown. Furthermore, the pressure line 11 has a pressure sensor 17 which measures an actual pressure p ta t in the pressure line 11.
  • the pressure sensor 17 and the delivery module 12 are connected to an electronic control unit 18 and form a common control loop. Based on a from the
  • Pressure sensor 17 measured actual pressure p ta t and a desired pressure Pgew controls the electronic control unit 18 by means of a pressure control, the feed pump 13.
  • the electronic control unit 18 is also with the
  • Dosing module 15 and connected to the metering valve 16 and can control this.
  • the adaptation of the control of the metering valve 16 takes place within the electronic control unit 18. It should be noted here that no return into the reducing agent tank 14 is provided in this metering system, so that the delivery module 12, the pressure line 11 and the metering module 15 a form a closed system. A built-up by the delivery module 13 pressure p remains constant until dosing. Likewise, the sponsored
  • FIG. 2 shows a flow diagram of an embodiment of the invention
  • a pressure control 30 follows, at which first a pressure difference ⁇ is calculated 31 from the actual pressure ptat and the desired pressure p gew .
  • Pressure difference ⁇ then passes through a filter 32, in which undesirable
  • Interference signals are removed.
  • filter 32 a low-pass filter will be used which suppresses high-frequency signal components resulting from measurement noise or high-frequency pressure oscillations.
  • a two-point controller 33. If the filtered pressure difference ⁇ below a threshold p s, in other words, the feed pump 13 are the actual pressure p ta t and the desired pressure p gew, is close to each other is not actuated 34 and there is no hub.
  • the feed pump in accordance with a pump frequency f p is adjusted 35 so that In this case, the actual pressure p ta t adapts to the desired pressure Pgew
  • Reducing agent mass m p easily determined 36.
  • the reductant mass delivered per stroke is determined by the volume of the piston.
  • the reducing agent mass delivered per stroke is combined with one via a
  • Measurement period executed number of strokes multiplied.
  • an adaptation 40 of the control metering valve 16 takes place, which is based on the volumetric principle of the underlying metering system. It is exploited that the integrally promoted reducing agent mass m p is completely metered through the metering valve 16. From a desired reducing agent mass m ge w is by means of
  • the electronic control unit 18 determines a nominally metered mass m n 41.
  • the nominal metered reducing agent mass m n is a supposedly integrally metered reducing agent mass of a nominal metering valve.
  • the nominal metering valve is tolerance-free with respect to the reducing agent mass metered in by it. Consequently, the nominally metered reducing agent mass m n is only dependent on the actual pressure p ta t and thus has a very low tolerance after the pressure control 30. From the nominally metered reducing agent mass m n and the integrally conveyed reducing agent mass m p , a quotient is calculated according to formula 1 over the measuring period 42: dov- m (formula 1)
  • Deviation between the actually metered reducing agent mass and the nominal metered reducing agent mass m n is an ideal
  • the adaptation factor aov is used in the following for an
  • the method is illustrated by the following example.
  • the metering valve 16 should, for example due to manufacturing tolerances and / or aging effects, Add 10% excess reducing agent. As a result, the
  • the nominally metered reducing agent mass m n is determined by the electronic control unit 18 41 so that it corresponds to the desired reducing agent mass m ge w at prevailing, actual pressure p ta t.
  • the calculation 42 of the adaptation factor aov according to formula 1 results as follows:
  • the activation period t a must then compared to a nominal
  • Control duration shortened by the reciprocal of the adaptation factor aov to compensate for the positive mass tolerance of the metering valve 16.
  • Driving time is therefore shortened by 1 «9%.
  • FIG. 3 shows a diagram of a standardized reducing agent mass flow rate R, above the system pressure p. There are shown a nominal 50, a maximum 51 and a minimum 52 course for the feed pump. The mass tolerance of
  • Feed pump 13 can be read as the difference between the maximum curve 51 and the minimum curve 52. Similarly, a nominal 60, a maximum 61 and a minimum 62 course for the metering valve 16 are shown. Similarly, the pressure tolerance and the mass tolerance of the metering valve 16 can be read out as the difference between the maximum course 61 and the minimum course 62. From the nominal curve 60, the nominal metered
  • Reducing agent mass m n are determined for the respective actual pressure p ta t.
  • the diagram from FIG. 3 shows a total tolerance 70 of a volumetric metering system operated purely pilot-operated, a total tolerance 80 of a purely pressure-controlled metering system and a total tolerance 90 of a metering system regulated according to an exemplary embodiment of the method according to the invention.
  • the total tolerance 70 of the purely pilot-operated, volumetric metering system results from the tolerance of Feed pump 13 and the tolerance of the metering valve 16.
  • the total tolerance 80 of the purely pressure-controlled metering system is essentially only dependent on the quantity tolerance of the metering valve 16.
  • the low pressure tolerance of the pressure-controlled is essentially only dependent on the quantity tolerance of the metering valve 16.
  • Dosing system combined with the reduced mass tolerance of the volumetrically controlled dosing system. Therefore, it is relatively small compared to the other two total tolerances 70 and 80. Above all, the mass tolerance is reduced by the method according to the invention, which is represented in the diagram by the symbolized as arrows projection of the total tolerances 70, 80 and 90 to the normalized reducing agent mass flow rate R m .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

The invention relates to a method for operating a pressurized metering system, comprising a conveyor module, a metering valve and a pressure sensor, wherein, during a pressure control, an adaptation of the control of the metering valve that is subject to tolerances is carried out with the aim of improving the integral accuracy of the metered quantity.

Description

Beschreibung Titel  Description title
Verfahren zur Realisierung erhöhter Mengengenauigkeit in druckgeregelten Dosiersystemen  Method for implementing increased quantity accuracy in pressure-controlled metering systems
Die vorliegende Erfindung geht aus von einem Verfahren zum Betreiben eines Dosiersystems, bei dem eine Druckregelung mit einer Adaption der Ansteuerung eines Dosierventils kombiniert wird mit dem Ziel einer verbesserten The present invention is based on a method for operating a metering system, in which a pressure control is combined with an adaptation of the control of a metering valve with the aim of an improved
Mengengenauigkeit des Gesamtsystems. Des Weiteren betrifft die vorliegende Erfindung ein Computerprogramm, das jeden Schritt des Verfahrens ausführt, wenn sie auf einem Rechengerät abläuft, sowie ein maschinenlesbares Quantity accuracy of the entire system. Furthermore, the present invention relates to a computer program that performs each step of the method when running on a computing device, as well as a machine-readable one
Speichermedium, welches das Computerprogramm speichert. Schließlich betrifft die Erfindung ein elektronisches Steuergerät, welches eingerichtet ist, um das Verfahren auszuführen. Storage medium storing the computer program. Finally, the invention relates to an electronic control device which is set up to carry out the method.
Stand der Technik State of the art
Druckgeregelte Dosiersysteme basieren in der Regel auf dem Prinzip, dass eine Pumpe einen gewünschten Systemdruck bereitstellt und auf einen möglichst engen Bereich um einen definierten Sollwert einregelt, und eine  Pressure-controlled metering systems are generally based on the principle that a pump provides a desired system pressure and regulates to the narrowest possible range around a defined setpoint, and a
Dosiereinrichtung, typischerweise ein Dosierventil ausgehend von diesem Druck durch Einstellung einer dazu passenden Ventilöffnungszeit die gewünschte Menge dosiert. In derartigen Systemen hängt die Dosiermengengenauigkeit im Wesentlichen von der Toleranz des Dosierventils ab. Dosing, typically a metering valve based on this pressure by setting a matching valve opening time the desired amount. In such systems, the metered quantity accuracy depends essentially on the tolerance of the metering valve.
Alternativ macht man sich in sog.„volumetrischen Systemen" ohne Rücklauf die i.a. hohe Genauigkeit der (Hubkolben-)Pumpe sowie die Eigenschaft, dass im stationären Zustand die sehr genau bekannte, durch die Pumpe geförderte Menge das System als dosierte Menge auch wieder verlässt, zu Nutze. Dabei stellt sich dank des Prinzips der Volumetrie in Kombination mit den  Alternatively, one makes in so-called "volumetric systems" without return the ia high accuracy of the (reciprocating) pump and the property that in the stationary state, the very well-known, funded by the pump quantity also leaves the system as dosed amount again, This is thanks to the principle of volumetry in combination with the
vergleichsweise kleinen Mengentoleranzen der Hubkolbenpumpe im Mittel eine hohe Mengengenauigkeit ein. Bzgl. des Druckes existiert hierbei jedoch im Allgemeinen kein geschlossener Regelkreis, vielmehr stellt sich der Systemdruck in Abhängigkeit von der Vorsteuerung sowie den Toleranzen der Pumpe und des Dosierventils ein und wird nicht nachgeregelt, was in der Regel zu comparatively small quantity tolerances of the reciprocating pump on average a high quantity accuracy. Concerning. However, the pressure exists here in In general, no closed loop, rather, the system pressure is a function of the pilot control and the tolerances of the pump and the metering valve and is not readjusted, which is usually too
vergleichsweise großen Toleranzen im sich einstellenden Systemdruck führt. Damit ist Stand der Technik eine hohe Druckstabilität bei vergleichsweise hohercomparatively large tolerances in self-adjusting system pressure leads. Thus, prior art is a high pressure stability at relatively high
Dosiermengentoleranz in druckgeregelten Systemen oder verbesserte Dosing quantity tolerance in pressure-controlled systems or improved
Dosiermengentoleranz auf Kosten höherer Druckschwankungen in rein vorgesteuerten„volumetrischen Systemen". Es sind auch Verfahren und Vorrichtungen zum Betreiben einer Dosing quantity tolerance at the expense of higher pressure fluctuations in purely pilot-operated "volumetric systems." There are also methods and apparatus for operating a
Brennkraftmaschine insbesondere bei Kraftfahrzeugen bekannt, in deren Abgasstrang ein S CR- Katalysator (Selective Catalytic Reduction) angeordnet ist, der die im Abgas der Brennkraftmaschine enthaltenen Stickoxide (NOx) in Gegenwart eines Reduktionsmittels zu Stickstoff reduziert. Hierdurch kann der Anteil von Stickoxiden im Abgas erheblich verringert werden. Für den Ablauf der Internal combustion engine, in particular in motor vehicles, in whose exhaust gas line an S CR catalyst (Selective Catalytic Reduction) is arranged, which reduces the nitrogen oxides (NOx) contained in the exhaust of the internal combustion engine in the presence of a reducing agent to nitrogen. As a result, the proportion of nitrogen oxides in the exhaust gas can be significantly reduced. For the course of the
Reaktion wird Ammoniak (N H3) benötigt. Als Reaktionsmittel werden N H3- abspaltende Reagenzien eingesetzt, die dem Abgas zugemischt werden. In der Regel wird hierfür eine wässrige Harnstofflösung verwendet, die stromaufwärts des S CR- Katalysators in den Abgasstrang eingedüst wird. Reaction requires ammonia (N H3). As reactants, N H3-releasing reagents are used, which are added to the exhaust gas. As a rule, an aqueous urea solution is used for this, which is injected into the exhaust gas line upstream of the S CR catalyst.
Zur Förderung und Dosierung der Reduktionsmittellösung aus einem For the promotion and dosage of the reducing agent solution from a
Reduktionsmitteltank ist im Allgemeinen ein hydraulisches Dosiersystem vorgesehen, das eine Förderpumpe, eine Druckleitung, ein Dosiermodul, mit wenigstens einem Dosierventil, sowie die erforderliche Sensorik und eine elektronische Steuereinrichtung umfasst. Die Förderpumpe fördert die Reducing agent tank is generally provided a hydraulic metering system comprising a feed pump, a pressure line, a metering module, with at least one metering valve, and the required sensors and an electronic control device. The feed pump promotes the
Reduktionsmittellösung aus dem Reduktionsmitteltank über die Druckleitung in das Dosiermodul. Zur bedarfsgerechten Dosierung wird die erforderliche bzw. gewünschte Dosiermasse der Reduktionsmittellösung über das oder die  Reducing agent solution from the reducing agent tank via the pressure line in the dosing. For the appropriate dosage, the required or desired dosage of the reducing agent solution over the or
Dosierventil(e) in den Abgasstrang eindosiert. Dosing valve (s) metered into the exhaust system.
Das Dosierventil wird geöffnet, wenn es angesteuert wird, d.h. wenn ein elektrischer Strom zur Ansteuerung anliegt. Es wird über eine festgelegte Ansteuerdauer offen gehalten, sodass Reduktionsmittel in den Abgasstrang eingedüst wird. Wenn das Dosierventil nicht mehr angesteuert wird, d.h. kein Strom anliegt, schließt das Dosierventil wieder. Die Ansteuerdauer und der in der Druckleitung und somit auch im Dosierventil herrschende Druck sind neben der Geometrie der Spritzlochscheibe die wesentlichen Faktoren, die die eindosierte Menge festlegen. Hierbei gilt zu beachten, dass das Dosierventil nicht unmittelbar auf die Ansteuerung reagiert. Infolgedessen entweicht eine unbestimmte Masse der Reduktionsmittellösung unkontrolliert in den The metering valve is opened when it is activated, ie when an electric current is applied for control. It is kept open for a fixed drive time, so that reducing agent is injected into the exhaust system. If the metering valve is no longer activated, ie no current is applied, the metering valve closes again. The driving time and in the Pressure line and thus also prevailing in the metering pressure, in addition to the geometry of the spray orifice plate, the essential factors that determine the metered amount. It should be noted that the dosing valve does not react directly to the activation. As a result, an indefinite mass of the reducing agent solution escapes uncontrollably into the
Abgasstrang. Die tatsächlich eindosierte Reduktionsmittellösung weicht folglich von der tatsächlichen Reduktionsmittelmasse ab, sodass das Dosierventil stark toleranzbehaftet ist.  Exhaust system. The actually metered in reducing agent solution thus deviates from the actual reducing agent mass, so that the metering valve is heavily toleranced.
In der DE 10 2010 031 655 AI wird ein Verfahren zum Betreiben eines druckgeregelten Dosiersystems für einen S CR- Katalysator beschrieben. Ein Druckregler regelt den Druck im SCR-System, indem er die Ansteuerung der Förderpumpe entsprechend den aktuellen Anforderungen an die Öffnungsdauer des Dosierventils einstellt. Ziel dieser Regelung ist es, den vorherrschenden, tatsächlichen Druck an einen gewünschten Druck anzupassen. Das hierin beschriebene Verfahren zeichnet sich dadurch aus, dass eine adaptive In DE 10 2010 031 655 AI a method for operating a pressure-controlled metering system for a S CR catalyst is described. A pressure regulator regulates the pressure in the SCR system by adjusting the control of the feed pump according to the current requirements for the opening time of the metering valve. The aim of this regulation is to adapt the prevailing, actual pressure to a desired pressure. The method described herein is characterized in that an adaptive
Vorsteuerung für die Regelung eingesetzt wird. Bei der adaptiven Vorsteuerung wird das Stellsignal des Förderpumpenmotors bei unterschiedlichen Feedforward control is used for the control. In adaptive pilot control, the control signal of the feed pump motor is at different
Ansteuerungen des Dosierventils eingelernt. Sobald die adaptive Vorsteuerung zwei oder mehr Punkte eingelernt hat, wird sie verwendet, um das notwendige nächste Stellsignal des Förderpumpenmotors zu ermitteln. Neben dem The teachings of the dosing valve are taught. As soon as the adaptive feedforward controller has learned two or more points, it is used to determine the necessary next actuating signal of the feed pump motor. Next to the
Förderpumpenmotor können auch andere Aktoren des Dosiersystems als Stellsignal eingesetzt werden, jedoch bietet der Förderpumpenmotor ein sehr genaues Signal. Als Resultat werden bei großen Dosiermengenänderungen auftretende hohe Drucküber- und -unterschwinger sowie damit verbundene lange Einregelungszeiten vermieden und somit die Regelgüte optimiert. Feed pump motor, other actuators of the metering system can be used as a control signal, but the feed pump motor provides a very accurate signal. As a result, high pressure overshoots and undershoots associated with large dosing quantity changes as well as associated long control times are avoided, thus optimizing the control quality.
Offenbarung der Erfindung Die Erfindung betrifft ein Verfahren zum Betreiben von druckbehafteten DISCLOSURE OF THE INVENTION The invention relates to a method for operating pressurized
Dosiersystemen, welche ein Fördermodul, mit einer in der Regel geringen Toleranz, ein typischerweise stärker toleranzbehaftetets Dosierventil, eine das Fördermodul und das Dosierventil verbindende Druckleitung und einen zwischen dem Fördermodul und dem Dosierventil angeordneten Drucksensor umfassen. Es gilt hierbei zu beachten, dass in diesem SCR-System kein Rücklauf vorgesehen ist und demzufolge das Dosiersystem , wenn nicht eingespritzt wird, ein geschlossenes System darstellt- und keine Reduktionsmittellösung entweichen kann. Während bei dem Dosiersystem eine Druckregelung vorgenommen wird, erfolgt eine Adaption der Ansteuerung des toleranzbehafteten Dosierventils. Daraus resultiert, dass die Vorteile eines druckgeregelten Systems, nämlich vor allem die geringe Toleranz des Drucks beim Eindosieren, und die Vorteile eines volumetrischen Systems, nämlich vor allem die integral geringe Toleranz der geförderten und dann auch eindosierten Menge, kombiniert werden, um eine insgesamt geringere Gesamttoleranz während des Eindosiervorgangs zu erhalten. Dosing systems, which comprise a delivery module, with a generally low tolerance, a typically more tolerantbehältetets metering valve, a pressure module connecting the delivery module and the metering valve and arranged between the delivery module and the metering pressure sensor. It should be noted that in this SCR system no return is provided and therefore the metering system, if not injected, represents a closed system- and no reducing agent solution can escape. While a pressure control is performed in the metering system, an adaptation of the control of the tolerance-loaded metering valve takes place. The result is that the advantages of a pressure-controlled system, namely the low tolerance of the pressure during metering, and the advantages of a volumetric system, namely the integrally low tolerance of the delivered and then metered amount are combined, to a total of lower Total tolerance during dosing.
Vorzugsweise kann die Adaption der Ansteuerung des Dosierventils mittels eines Adaptionsfaktors durchgeführt werden. Der Adaptionsfaktor hängt von einer durch das Fördermodul geförderten integralen Menge und von einer nominal durch das Dosierventil eindosierten Menge ab und kann insbesondere für einen festgelegten Zeitraum als Quotient aus der geförderten Menge und der nominal eindosierten Menge berechnet werden. Durch die Berechnung des Preferably, the adaptation of the control of the metering valve can be carried out by means of an adaptation factor. The adaptation factor depends on an integral quantity conveyed by the delivery module and on a nominal amount metered in by the metering valve, and can in particular be calculated as a quotient of the delivered quantity and the nominal metered quantity for a specific period of time. By calculating the
Adaptionsfaktors kann eine Abweichung der tatsächlich vom Dosierventil eindosierten Menge von einer nominalen Menge quantisiert werden und diese Abweichung kann durch die Adaption der Ansteuerung des Dosierventils mittels des Adaptionsfaktors korrigiert werden. Zudem gilt, dass in volumetrischen Dosiersystemen integral eine hohe Genauigkeit der eindosierten Menge erreicht werden kann, da die komplette geförderte und im Allgemeinen mit geringer Toleranz behaftete Menge aufgrund des nicht vorhandenen Rücklaufs vollständig eindosiert wird. Hierbei nutzt man die hohe Genauigkeit des Fördermoduls, um eine hohe Genauigkeit - und damit eine niedrige Toleranz - der geförderten Menge zu erhalten. Als Beispiel soll eine Hubkolbenpumpe im Fördermodul dienen, die bei jedem Hub eine durch das Volumen des Hubkolbens Adaptation factor can be quantized a deviation of the actually metered by the metering amount of a nominal amount and this deviation can be corrected by adapting the control of the metering valve by means of the adaptation factor. In addition, in volumetric metering systems, a high accuracy of the metered amount can be achieved in an integral manner, since the complete pumped and generally low tolerance amount is completely metered in because of the absence of return. Here, the high accuracy of the conveyor module is used in order to obtain a high accuracy - and thus a low tolerance - of the conveyed quantity. As an example, a reciprocating pump to serve in the delivery module, the one at each stroke by the volume of the reciprocating piston
vorgegebene Menge fördert. promotes given amount.
Durch die Adaption des Dosierventils kann bevorzugt dessen Ansteuerdauer angepasst werden. Um die Ansteuerdauer zu berechnen, kann insbesondere die Ventildurchflusskennlinie mittels des Adaptionsfaktors korrigiert werden. Dies bietet eine Möglichkeit, auf Grundlage der Abweichungen, eine quantisierte Adaption der Ansteuerung des Dosierventils vorzunehmen. By adapting the metering valve, its activation duration can preferably be adapted. In order to calculate the activation duration, in particular the valve flow characteristic can be corrected by means of the adaptation factor. This offers a possibility, on the basis of the deviations, to carry out a quantized adaptation of the control of the metering valve.
Vorzugsweise bilden das Fördermodul mit Drucksensor und die Druckleitung als Regelstrecke mit dem dort herrschenden Systemdruck als Regelgröße einen geschlossenen Regelkreis, über den die Druckregelung vorgenommen werden kann. Im Zuge dieser Regelung wird ein gewünschter Druck, der durch das Fördermodul aufgebaut werden soll, mit einem tatsächlichen Druck, der in der Druckleitung vorherrscht, verglichen. Auf Grundlage dessen wird das Preferably, the delivery module with pressure sensor and the pressure line as a controlled system with the prevailing system pressure as a control variable form a closed loop, via which the pressure control can be made. In the course of this regulation, a desired pressure to be established by the delivery module is compared with an actual pressure prevailing in the delivery conduit. On the basis of that will
Fördermodul, z.B. über einen Zweipunktregler, so angesteuert, dass sich der tatsächliche Druck dem gewünschten Druck anpasst. Als Resultat wird ein druckgeregeltes System erhalten. In druckgeregelten Systemen wird eine hohe Genauigkeit des im Dosiersystem vorherrschenden Drucks erreicht.. Der vom Fördermodul aufgebaute Druck kann aufgrund des nicht vorhandenen Rücklaufs nicht abgebaut werden und bleibt bis zum Eindosieren konstant. Conveyor module, e.g. via a two-position controller, so controlled that the actual pressure adapts to the desired pressure. As a result, a pressure-controlled system is obtained. In pressure-controlled systems, a high accuracy of the pressure prevailing in the dosing system is achieved. The pressure built up by the delivery module can not be reduced due to the absence of return and remains constant until dosing.
Das Computerprogramm ist eingerichtet, jeden Schritt des Verfahrens durchzuführen, insbesondere, wenn es auf einem Rechengerät oder Steuergerät durchgeführt wird. Es ermöglicht die Implementierung des Verfahrens in einem herkömmlichen elektronischen Steuergerät, ohne hieran bauliche Veränderungen vornehmen zu müssen. Hierzu ist es auf dem maschinenlesbaren The computer program is set up to perform each step of the method, in particular when it is performed on a computing device or controller. It allows the implementation of the method in a conventional electronic control unit without having to make any structural changes. For this it is on the machine-readable
Speichermedium gespeichert. Storage medium stored.
Durch Aufspielen des Computerprogramms auf ein herkömmliches By putting the computer program on a conventional
elektronisches Steuergerät, wird das erfindungsgemäße elektronische electronic control unit, the inventive electronic
Steuergerät erhalten, welches eingerichtet ist, die Öffnungsdauer zu adaptieren. Control unit, which is adapted to adapt the opening duration.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.
Figur 1 zeigt ein SCR-System, das mittels eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens betrieben werden kann. Figur 2 zeigt ein Ablaufdiagramm eines Ausführungsbeispiels des Figure 1 shows an SCR system that can be operated by means of an embodiment of the method according to the invention. FIG. 2 shows a flow diagram of an embodiment of the invention
erfindungsgemäßen Verfahrens. inventive method.
Figur 3 zeigt ein Diagramm einer normierten Reduktionsmittelflussrate über einem Systemdruck, welches Toleranzen für ein rein volumetrisch geregeltesFIG. 3 shows a diagram of a standardized reducing agent flow rate over a system pressure, which tolerances are governed purely volumetrically
Dosiersystem, für ein rein druckgeregeltes Dosiersystem und für ein gemäß einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens geregeltes System aufzeigt. Ausführungsbeispiel der Erfindung Dosing system, for a purely pressure-controlled dosing system and for a regulated according to an embodiment of the method according to the invention shows system. Embodiment of the invention
Die Erfindung wird nachfolgend am Beispiel eines Dosiersystems in Form eines SCR-Systems (Selective Catalytic Reduction) beschrieben. Figur 1 zeigt ein SCR-System 10 zur Förderung von Reduktionsmittel durch eineThe invention is described below using the example of a metering system in the form of an SCR system (Selective Catalytic Reduction). FIG. 1 shows an SCR system 10 for delivering reducing agent through a
Druckleitung 11 in einen nicht dargestellten SCR-Katalysator. Es umfasst ein Fördermodul 12, welches eine Förderpumpe 13 umfasst, die eingerichtet ist Reduktionsmittel aus einem Reduktionsmitteltank 14 zu fördern. In dieser Ausführungsform ist die Förderpumpe 13 als Hubkolbenpumpe ausgebildet. Das Fördermodul 12 ist über die Druckleitung 11 mit einem Dosiermodul 15 verbunden, wobei Reduktionsmittel vom Fördermodul 12 durch die Druckleitung 11 zum Dosiermodul 15 gefördert wird, wo es anschließend durch ein Pressure line 11 in a SCR catalyst, not shown. It comprises a delivery module 12, which comprises a delivery pump 13, which is set up to deliver reduction agent from a reduction agent tank 14. In this embodiment, the feed pump 13 is designed as a reciprocating pump. The delivery module 12 is connected via the pressure line 11 with a metering module 15, wherein reducing agent is conveyed by the delivery module 12 through the pressure line 11 to the metering module 15, where it then by a
Dosierventil 16 in einen nicht dargestellten Abgasstrang eindosiert wird. Des Weiteren weist die Druckleitung 11 einen Drucksensor 17 auf, der einen tatsächlichen Druck ptat in der Druckleitung 11 misst. Der Drucksensor 17 und das Fördermodul 12 sind mit einem elektronischen Steuergerät 18 verbunden und bilden einen gemeinsamen Regelkreis. Auf Grundlage eines vom Metering valve 16 is metered into an exhaust line, not shown. Furthermore, the pressure line 11 has a pressure sensor 17 which measures an actual pressure p ta t in the pressure line 11. The pressure sensor 17 and the delivery module 12 are connected to an electronic control unit 18 and form a common control loop. Based on a from the
Drucksensor 17 gemessenen tatsächlichen Drucks ptat und eines gewünschten Drucks Pgew steuert das elektronische Steuergerät 18 mittels einer Druckregelung die Förderpumpe 13. Das elektronische Steuergerät 18 ist außerdem mit demPressure sensor 17 measured actual pressure p ta t and a desired pressure Pgew controls the electronic control unit 18 by means of a pressure control, the feed pump 13. The electronic control unit 18 is also with the
Dosiermodul 15 bzw. mit dem Dosierventil 16 verbunden und kann diese steuern. Die Adaption der Ansteuerung des Dosierventils 16 erfolgt innerhalb des elektronischen Steuergeräts 18. Es ist hierbei anzumerken, dass in diesem Dosiersystem kein Rücklauf in den Reduktionsmitteltank 14 vorgesehen ist, sodass das Fördermodul 12, die Druckleitung 11 und das Dosiermodul 15 ein geschlossenes System bilden. Ein durch das Fördermodul 13 aufgebauter Druck p bleibt bis zur Eindosierung konstant. Ebenso kann die geförderte Dosing module 15 and connected to the metering valve 16 and can control this. The adaptation of the control of the metering valve 16 takes place within the electronic control unit 18. It should be noted here that no return into the reducing agent tank 14 is provided in this metering system, so that the delivery module 12, the pressure line 11 and the metering module 15 a form a closed system. A built-up by the delivery module 13 pressure p remains constant until dosing. Likewise, the sponsored
Reduktionsmittelmenge nicht anderweitig zurückfließen und wird beim Reductant amount does not otherwise flow back and is the
Eindosieren vollständig über das Dosierventil 16 in den Abgasstrang eindosiert. Metering completely metered via the metering valve 16 in the exhaust line.
Figur 2 zeigt ein Ablaufdiagramm eines Ausführungsbeispiels des FIG. 2 shows a flow diagram of an embodiment of the invention
erfindungsgemäßen Verfahrens. Zu Beginn wird der tatsächliche Druck ptat durch den Drucksensor 17 gemessen 20. Gemäß dem Ausführungsbeispiel folgt eine Druckregelung 30, bei der zuerst eine Druckdifferenz Δρ aus dem tatsächlichen Druck ptat und dem gewünschten Druck pgew berechnet 31 wird. Die inventive method. At the beginning, the actual pressure p ta t is measured by the pressure sensor 17. According to the embodiment, a pressure control 30 follows, at which first a pressure difference Δρ is calculated 31 from the actual pressure ptat and the desired pressure p gew . The
Druckdifferenz Δρ passiert dann einen Filter 32, bei dem unerwünschte Pressure difference Δρ then passes through a filter 32, in which undesirable
Störsignale entfernt werden. Als Filter 32 wird ein Tiefpassfilter verwendet werden, der hochfrequente Signalanteile, die von Messrauschen oder hochfrequenten Druckschwingungen herrühren, unterdrückt. Im Anschluss durchläuft die gefilterte Druckdifferenz Δρ«ι( einen Zweipunktregler 33. Liegt die gefilterte Druckdifferenz Δρηκ unter einer Schwelle ps, mit anderen Worten liegen der tatsächliche Druck ptat und der gewünschte Druck pgew nahe beieinander, wird die Förderpumpe 13 nicht angesteuert 34 und es erfolgt kein Hub. Liegt die gefilterte Druckdifferenz Δρηκ allerdings über der Schwelle ps, mit anderen Worten liegen der tatsächliche Druck ptat und der gewünschten Druck pgew weit auseinander, wird die Förderpumpe entsprechend einer Pumpfrequenz fp nachgeregelt 35, sodass sich der tatsächliche Druck ptat dem gewünschten Druck Pgew anpasst. In beiden Fällen lässt sich eine integral geförderte Interference signals are removed. As filter 32, a low-pass filter will be used which suppresses high-frequency signal components resulting from measurement noise or high-frequency pressure oscillations. Following the filtered pressure difference Δρ 'passes ι (a two-point controller 33. If the filtered pressure difference Δρηκ below a threshold p s, in other words, the feed pump 13 are the actual pressure p ta t and the desired pressure p gew, is close to each other is not actuated 34 and there is no hub. however, If the filtered pressure difference Δρηκ above the threshold p s, in other words, are the actual pressure p ta t and the desired pressure p wt far apart, the feed pump in accordance with a pump frequency f p is adjusted 35 so that In this case, the actual pressure p ta t adapts to the desired pressure Pgew
Reduktionsmittelmasse mp leicht ermitteln 36. Im Falle der Hubkolbenpumpe ist die pro Hub geförderte Reduktionsmittelmasse durch das Volumen des Kolbens festgelegt. Um die integral geförderte Reduktionsmittelmasse mp zu ermitteln 36, wird die pro Hub geförderte Reduktionsmittelmasse mit einer über einen Reducing agent mass m p easily determined 36. In the case of the reciprocating pump, the reductant mass delivered per stroke is determined by the volume of the piston. In order to determine the integrally conveyed reducing agent mass m p , the reducing agent mass delivered per stroke is combined with one via a
Messzeitraum ausgeführten Anzahl von Hüben multipliziert. Measurement period executed number of strokes multiplied.
Während der Druckregelung 30 erfolgt eine Adaption 40 der Ansteuerung Dosierventils 16, die auf dem volumetrischen Prinzip des zugrundeliegenden Dosiersystems beruht. Dabei wird ausgenutzt, dass die integral geförderte Reduktionsmittelmasse mp vollständig durch das Dosierventil 16 eindosiert wird. Aus einer gewünschten Reduktionsmittelmasse mgew wird mittels des During the pressure control 30, an adaptation 40 of the control metering valve 16 takes place, which is based on the volumetric principle of the underlying metering system. It is exploited that the integrally promoted reducing agent mass m p is completely metered through the metering valve 16. From a desired reducing agent mass m ge w is by means of
elektronischen Steuergeräts 18 eine nominal eindosierte Masse mn ermittelt 41. Als nominal eindosierte Reduktionsmittelmasse mn wird eine vermeintlich integral eindosierte Reduktionsmittelmasse eines nominalen Dosierventils bezeichnet. Das nominale Dosierventil ist definitionsgemäß gegenüber der von ihm eindosierten Reduktionsmittelmasse toleranzfrei. Folglich ist die nominal eindosierte Reduktionsmittelmasse mn lediglich vom tatsächlichen Druck ptat abhängig und somit nach der Druckregelung 30 mit sehr geringer Toleranz behaftet. Aus der nominal eindosierten Reduktionsmittelmasse mn und der integral geförderten Reduktionsmittelmasse mp wird gemäß Formel 1 über den Messzeitraum ein Quotient berechnet 42: dov - m (Formel 1) electronic control unit 18 determines a nominally metered mass m n 41. The nominal metered reducing agent mass m n is a supposedly integrally metered reducing agent mass of a nominal metering valve. By definition, the nominal metering valve is tolerance-free with respect to the reducing agent mass metered in by it. Consequently, the nominally metered reducing agent mass m n is only dependent on the actual pressure p ta t and thus has a very low tolerance after the pressure control 30. From the nominally metered reducing agent mass m n and the integrally conveyed reducing agent mass m p , a quotient is calculated according to formula 1 over the measuring period 42: dov- m (formula 1)
Dieser Quotient wird als Adaptionsfaktor aov bezeichnet und gibt eine This quotient is called adaptation factor aov and gives a
Abweichung zwischen der tatsächlich eindosierten Reduktionsmittelmasse und der nominal eindosierten Reduktionsmittelmasse mn. In einem idealen Deviation between the actually metered reducing agent mass and the nominal metered reducing agent mass m n . In an ideal
Dosiersystem ohne Toleranzen ergibt sich der Adaptionsfaktor aov daher zu eins. Der Adaptionsfaktor aov wird im Folgenden dazu verwendet eine im  Dosing system without tolerances results in the adaptation factor aov therefore to one. The adaptation factor aov is used in the following for an
elektronischen Steuergerät 18 hinterlegte, nominale Ventildurchflusskennlinie Qn zu korrigieren 43, um gemäß Formel 2 eine adaptierte Ventildurchflusskennlinie Qad zu erhalten: electronic control unit 18 to correct nominal valve flow characteristic Q n 43 to obtain an adapted valve flow characteristic Qad according to formula 2:
Qad - Qn ' aDV (Formel 2) Qad - Qn 'a DV (Formula 2)
In der adaptierten Ventildurchflusskennlinie Qad worden wird also die Abweichung zwischen der tatsächlich eindosierten Reduktionsmittelmasse und der nominal eindosierten Reduktionsmittelmasse mn berücksichtigt. Auf Grundlage dieser adaptierten Ventildurchflusskennlinie Qad erfolgt eine Anpassung 44 einer benötigten Ventilansteuerdauer ta. Als Resultat wird die Ventilansteuerdauer ta abhängig vom Adaptionsfaktor aov und somit von der integral geförderten Reduktionsmittelmasse mp und der nominal eindosierten Reduktionsmittelmasse mn angepasst 44. Dadurch weist das Dosierventil 16 nach der Anpassung 44 der Ventilansteuerdauer ta eine deutlich reduzierte stationäre Massetoleranz auf. In the adapted valve flow characteristic Q a d, therefore, the deviation between the actually metered reducing agent mass and the nominally metered reducing agent mass m n is taken into account. An adjustment is carried out 44 of a required Ventilansteuerdauer a t on the basis of these adapted valve flow characteristic Q a d. As a result, Ventilansteuerdauer t is a function of the adaptation factor 44. aov and thus adjusted by the integrally supported reducing agent mass m p and the nominal metered reducing agent mass m n Thus, the metering valve 16 after the adjustment 44 of the Ventilansteuerdauer t a a significantly reduced stationary mass tolerance.
Das Verfahren wird an folgendem Beispiel verdeutlicht. Das Dosierventil 16 soll, beispielsweise aufgrund von Fertigungstoleranzen und/oder Alterungseffekten, 10% zu viel Reduktionsmittelmasse eindosieren. Als Folge fördert die The method is illustrated by the following example. The metering valve 16 should, for example due to manufacturing tolerances and / or aging effects, Add 10% excess reducing agent. As a result, the
Förderpumpe 13 die im Vergleich zu einer gewünschten Reduktionsmittelmasse rrigew um 10% zu hohe integral geförderte Reduktionsmittelmasse mp, um bei der Druckregelung 30 den tatsächlichen Druck ptat an den gewünschten Druck pgew anzupassen. Die nominal eindosierte Reduktionsmittelmasse mn wird durch das elektronische Steuergerät 18 so ermittelt 41, dass sie bei vorherrschendem, tatsächlichem Druck ptat der gewünschten Reduktionsmittelmasse mgew entspricht. Die Berechnung 42 des Adaptionsfaktors aov nach Formel 1 ergibt sich folgendermaßen: Feed pump 13 in comparison to a desired reducing agent rrigew mass to 10% too high integrally supported reducing agent mass m p to assist in pressure control 30 the actual pressure p ta t at the desired pressure p adapt wt. The nominally metered reducing agent mass m n is determined by the electronic control unit 18 41 so that it corresponds to the desired reducing agent mass m ge w at prevailing, actual pressure p ta t. The calculation 42 of the adaptation factor aov according to formula 1 results as follows:
_ M 0% = (Fromel l') DV 100% _M 0% = (Fromel l ') D V 100%
Die Ansteuerdauer ta muss daraufhin im Vergleich zu einer nominalen The activation period t a must then compared to a nominal
Ansteuerdauer um den Kehrwert des Adaptionsfaktors aov verkürzt werden, um die positive Massentoleranz des Dosierventils 16 zu kompensieren. Die  Control duration shortened by the reciprocal of the adaptation factor aov to compensate for the positive mass tolerance of the metering valve 16. The
1  1
Ansteuerdauer ist daher um 1 « 9% verkürzt.  Driving time is therefore shortened by 1 «9%.
1 , 1  1, 1
Figur 3 zeigt ein Diagramm einer normierten Reduktionsmittelmassenflussrate R, über dem Systemdruck p. Es sind ein nominaler 50, ein maximaler 51 und ein minimaler 52 Verlauf für die Förderpumpe dargestellt. Die Massentoleranz derFIG. 3 shows a diagram of a standardized reducing agent mass flow rate R, above the system pressure p. There are shown a nominal 50, a maximum 51 and a minimum 52 course for the feed pump. The mass tolerance of
Förderpumpe 13 kann als Differenz des maximalen Verlaufs 51 und des minimalen Verlauf 52 ausgelesen werden. Ebenso sind ein nominaler 60, ein maximaler 61 und ein minimaler 62 Verlauf für das Dosierventil 16 dargestellt. Analog kann die Drucktoleranz und die Massentoleranz des Dosierventils 16 als Differenz des maximalen Verlaufs 61 und des minimalen Verlauf 62 ausgelesen werden. Aus dem nominalen Verlauf 60 kann die nominal eindosierte Feed pump 13 can be read as the difference between the maximum curve 51 and the minimum curve 52. Similarly, a nominal 60, a maximum 61 and a minimum 62 course for the metering valve 16 are shown. Similarly, the pressure tolerance and the mass tolerance of the metering valve 16 can be read out as the difference between the maximum course 61 and the minimum course 62. From the nominal curve 60, the nominal metered
Reduktionsmittelmasse mn für den jeweiligen tatsächlichen Druck ptat ermittelt werden. Des Weiteren zeigt das Diagramm aus Figur 3 eine Gesamttoleranz 70 eines rein vorgesteuert betriebenen, volumetrischen Dosiersystems, eine Gesamttoleranz 80 eines rein druckgeregelten Dosiersystems und eine Gesamttoleranz 90 eines gemäß einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens geregelten Dosiersystems . Die Gesamttoleranz 70 des rein vorgesteuert betriebenen, volumetrischen Dosiersystems ergibt sich aus der Toleranz der Förderpumpe 13 und der Toleranz des Dosierventils 16. Die Gesamttoleranz 80 des rein druckgeregelten Dosiersystems hingegen ist im Wesentlichen nur noch von der Mengentoleranz des Dosierventils 16 abhängig. Bei der Gesamttoleranz 90 des gemäß dem Ausführungsbeispiel des erfindungsgemäßen Verfahrens geregelten Dosiersystems wird die geringe Drucktoleranz des druckgeregeltenReducing agent mass m n are determined for the respective actual pressure p ta t. Furthermore, the diagram from FIG. 3 shows a total tolerance 70 of a volumetric metering system operated purely pilot-operated, a total tolerance 80 of a purely pressure-controlled metering system and a total tolerance 90 of a metering system regulated according to an exemplary embodiment of the method according to the invention. The total tolerance 70 of the purely pilot-operated, volumetric metering system results from the tolerance of Feed pump 13 and the tolerance of the metering valve 16. The total tolerance 80 of the purely pressure-controlled metering system, however, is essentially only dependent on the quantity tolerance of the metering valve 16. In the total tolerance 90 of the regulated according to the embodiment of the method according to the invention metering system, the low pressure tolerance of the pressure-controlled
Dosiersystems mit der reduzierten Massentoleranz des volumetrisch geregelten Dosiersystems kombiniert. Deshalb ist sie im Vergleich zu den beiden anderen Gesamttoleranzen 70 und 80 relativ klein. Vor allem die Massentoleranz wird durch das erfindungsgemäße Verfahren reduziert, was im Diagramm durch die als Pfeile symbolisierte Projektion der Gesamttoleranzen 70, 80 und 90 auf die normierte Reduktionsmittelmassenflussrate Rm dargestellt ist. Dosing system combined with the reduced mass tolerance of the volumetrically controlled dosing system. Therefore, it is relatively small compared to the other two total tolerances 70 and 80. Above all, the mass tolerance is reduced by the method according to the invention, which is represented in the diagram by the symbolized as arrows projection of the total tolerances 70, 80 and 90 to the normalized reducing agent mass flow rate R m .

Claims

Ansprüche claims
1. Verfahren zum Betreiben eines druckbehafteten Dosiersystems (10), welches ein Fördermodul (12), ein Dosierventil (16) und einen 1. A method for operating a pressurized metering system (10), which comprises a delivery module (12), a metering valve (16) and a
Drucksensor (17) umfasst, dadurch gekennzeichnet, dass, während ei Druckregelung (30) vorgenommen wird, eine Adaption (40) der Ansteuerung des toleranzbehafteten Dosierventils (16) erfolgt.  Pressure sensor (17), characterized in that, while ei pressure control (30) is carried out, an adaptation (40) of the control of the tolerance-sensitive metering valve (16).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Adapti (40) der Ansteuerung des Dosierventils (16) mittels eines 2. The method according to claim 1, characterized in that the Adapti (40) of the control of the metering valve (16) by means of a
Adaptionsfaktors (aov), der abhängt von einer durch das Fördermodul (12) geförderten Menge (mp) und einer nominal durch das Dosierventil (16) eindosierten Menge (mn), durchgeführt wird. Adaptation factor (aov), which depends on an amount (m p ) delivered by the delivery module (12) and a nominal amount (m n ) metered in by the metering valve (16).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der 3. The method according to claim 2, characterized in that the
Adaptionsfaktor (aov) für einen festgelegten Zeitraum als Quotient aus der integral geförderten Menge (mp) und der integralen, nominal eindosierten Menge (mn) berechnet (42) wird. Adaptation factor (aov) for a fixed period as a quotient of the integrally funded amount (m p ) and the integral, nominally metered amount (m n ) is calculated (42).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch 4. The method according to any one of the preceding claims, characterized
gekennzeichnet, dass durch die Adaption (40) eine Ansteuerdauer (ta) des Dosierventils (16) angepasst (44) wird. characterized in that by the adaptation (40) a control period (t a ) of the metering valve (16) adapted (44).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass eine 5. The method according to claim 4, characterized in that a
Ventildurchflusskennlinie (Qad) mittels des Adaptionsfaktors (aov) korrigiert (43) wird, um die Ansteuerdauer (ta) zu berechnen. Valve flow characteristic (Q a d) by means of the adaptation factor (aov) is corrected (43) to calculate the driving time (t a ).
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch 6. The method according to any one of the preceding claims, characterized
gekennzeichnet, dass die Druckregelung (30) mittels eines  characterized in that the pressure control (30) by means of a
geschlossenen Regelkreises für das Fördermodul (12) und den Drucksensor (17) vorgenommen wird. closed loop for the delivery module (12) and the Pressure sensor (17) is made.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die 7. The method according to claim 6, characterized in that the
Druckregelung (30) durch einen Zweipunktregler (33) vorgenommen wird, der das Fördermodul (13) ansteuert (34, 35).  Pressure control (30) by a two-position controller (33) is performed, which controls the conveyor module (13) (34, 35).
8. Computerprogramm, welches eingerichtet ist, jeden Schritt des 8. Computer program which is set up every step of the
Verfahrens nach einem der Ansprüche 1 bis 7 durchzuführen.  Method according to one of claims 1 to 7 perform.
9. Maschinenlesbares Speichermedium, auf welchem ein 9. Machine-readable storage medium on which a
Computerprogramm nach Anspruch 8 gespeichert ist.  Computer program according to claim 8 is stored.
10. Elektronisches Steuergerät (18), welches eingerichtet ist, um mittels des Verfahrens nach einem der Ansprüche 1 bis 7 das Dosiersystem (10) zu betreiben. 10. Electronic control device (18) which is adapted to operate by means of the method according to one of claims 1 to 7, the dosing system (10).
PCT/EP2017/072835 2016-10-24 2017-09-12 Method for achieving increased accuracy of the quantity in pressure-controlled metering systems WO2018077526A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197014408A KR20190068608A (en) 2016-10-24 2017-09-12 A method for achieving an increase in both accuracy in a pressure-controlled metering system
EP17767806.7A EP3529469A1 (en) 2016-10-24 2017-09-12 Method for achieving increased accuracy of the quantity in pressure-controlled metering systems
CN201780065616.9A CN109844276A (en) 2016-10-24 2017-09-12 Method for realizing the accuracy of measurement being improved in by pressure controlled dosing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016220795.4A DE102016220795A1 (en) 2016-10-24 2016-10-24 Method for implementing increased quantity accuracy in pressure-controlled metering systems
DE102016220795.4 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018077526A1 true WO2018077526A1 (en) 2018-05-03

Family

ID=59859080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/072835 WO2018077526A1 (en) 2016-10-24 2017-09-12 Method for achieving increased accuracy of the quantity in pressure-controlled metering systems

Country Status (5)

Country Link
EP (1) EP3529469A1 (en)
KR (1) KR20190068608A (en)
CN (1) CN109844276A (en)
DE (1) DE102016220795A1 (en)
WO (1) WO2018077526A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020202134A1 (en) 2020-02-19 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Method of operating a dosing agent system
DE102020202511A1 (en) 2020-02-27 2021-09-02 Robert Bosch Gesellschaft mit beschränkter Haftung Process for the realization of increased dosing mass accuracy in pressure-regulated dosing systems with at least two throttle valves
DE102020107451A1 (en) 2020-03-18 2021-09-23 Volkswagen Aktiengesellschaft Method for controlling and correcting the injection quantity of a pressure-regulated metering system for exhaust gas aftertreatment of an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031655A1 (en) 2010-07-22 2012-01-26 Robert Bosch Gmbh Method for operating pressure-regulated dosing system for selective catalytic reduction catalyzer, utilizing dosing system which comprises dosing valve and actuator, particularly pump motor for uptitration of fluid reducing agent solution
DE102010049071A1 (en) * 2010-10-20 2012-04-26 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a metering device
DE102011118214A1 (en) * 2011-11-11 2013-05-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a metering device
US20130263581A1 (en) * 2010-12-16 2013-10-10 Daiji Nagaoka Exhaust-pipe injection system
EP2873820A1 (en) * 2013-11-14 2015-05-20 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2898197A1 (en) * 2012-08-14 2015-07-29 Emitec Gesellschaft für Emissionstechnologie mbH Method for operating a metering device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031655A1 (en) 2010-07-22 2012-01-26 Robert Bosch Gmbh Method for operating pressure-regulated dosing system for selective catalytic reduction catalyzer, utilizing dosing system which comprises dosing valve and actuator, particularly pump motor for uptitration of fluid reducing agent solution
DE102010049071A1 (en) * 2010-10-20 2012-04-26 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a metering device
US20130263581A1 (en) * 2010-12-16 2013-10-10 Daiji Nagaoka Exhaust-pipe injection system
DE102011118214A1 (en) * 2011-11-11 2013-05-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating a metering device
EP2898197A1 (en) * 2012-08-14 2015-07-29 Emitec Gesellschaft für Emissionstechnologie mbH Method for operating a metering device
EP2873820A1 (en) * 2013-11-14 2015-05-20 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Also Published As

Publication number Publication date
EP3529469A1 (en) 2019-08-28
DE102016220795A1 (en) 2018-04-26
KR20190068608A (en) 2019-06-18
CN109844276A (en) 2019-06-04

Similar Documents

Publication Publication Date Title
EP1399653B1 (en) Device and method for metering a reductant for eliminating nitrogen oxide from exhaust gases
EP1799979B1 (en) Device for the metered injection of a reducing agent into the exhaust manifold of an internal combustion engine
EP2995816B1 (en) Method for monitoring and controlling an electric motor for driving a pump
DE102004053124B4 (en) Valve opening degree control system and common rail fuel injection system
EP0837986B1 (en) Device and process to regulate fuel pressure in a high pressure accumulator
EP1568874B1 (en) Method and apparatus for controlling the volume flow in a fuel injection system of an internal combustion engine
WO2018077526A1 (en) Method for achieving increased accuracy of the quantity in pressure-controlled metering systems
DE102009012093A1 (en) Method for adjusting the dosages of the reducing agent with selective catalytic reduction
DE102011110056A1 (en) Method for dosing a reducing agent
DE102010030860A1 (en) Method for operating reducing agent dosing system for selective catalytic reduction catalyst-converter in exhaust line of combustion engine of motor car, involves actuating metering valve for dosing certain dosage amount into exhaust line
DE102009005012A1 (en) Method for operating dosing device, particularly dosing pump, involves supplying reducing agent for exhaust tract, particularly of vehicle, and determining parameter which is changed in dependence of supply of reducing agent
EP3976963B1 (en) Method and device for determining an amplitude of a pump-induced fluid pressure fluctuation of a fluid
EP0399991B1 (en) Process and device for controlling the movement of a hydraulically actuated valve
WO2008009563A1 (en) Method for operating a fuel system of an internal combustion engine
DE102011003499A1 (en) Method for monitoring dosing system, particularly for selective catalytic reduction catalytic converter, involves comparing control value of feed pump with predetermined reference values
DE102011088699B4 (en) Method for controlling a reciprocating pump
WO2017005347A1 (en) Method for operating an exhaust after-treatment system comprising an scr-catalyst
DE102010031655A1 (en) Method for operating pressure-regulated dosing system for selective catalytic reduction catalyzer, utilizing dosing system which comprises dosing valve and actuator, particularly pump motor for uptitration of fluid reducing agent solution
DE102017102964A1 (en) Self-tuning circuit for controlling input pressure values for an aftertreatment system
DE102019207142A1 (en) Systems and methods for compensating a reductant delivery system in an aftertreatment system of an internal combustion engine
DE19735938A1 (en) Method and device for controlling an internal combustion engine
WO2021008978A1 (en) Method for operating a system with a plurality of metering valves
DE102015216222A1 (en) Method for component control in a dosing system
DE102014225200A1 (en) Method and control unit for controlling a reciprocating piston pump
DE102019212831A1 (en) Method for operating a pump and SCR supply system with such a pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17767806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014408

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017767806

Country of ref document: EP