WO2018077245A1 - 立体防伪微透镜薄片 - Google Patents

立体防伪微透镜薄片 Download PDF

Info

Publication number
WO2018077245A1
WO2018077245A1 PCT/CN2017/108099 CN2017108099W WO2018077245A1 WO 2018077245 A1 WO2018077245 A1 WO 2018077245A1 CN 2017108099 W CN2017108099 W CN 2017108099W WO 2018077245 A1 WO2018077245 A1 WO 2018077245A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
dimensional
microlens sheet
layer
counterfeit
Prior art date
Application number
PCT/CN2017/108099
Other languages
English (en)
French (fr)
Inventor
孙利强
Original Assignee
上海彩丞新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海彩丞新材料科技有限公司 filed Critical 上海彩丞新材料科技有限公司
Publication of WO2018077245A1 publication Critical patent/WO2018077245A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • G09F3/0294Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time where the change is not permanent, e.g. labels only readable under a special light, temperature indicating labels and the like
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions

Definitions

  • the present application relates to an anti-counterfeit mark using a microlens, and more particularly to an anti-counterfeit microlens sheet having a laminated structure.
  • stereoscopic optical sheets that visually present a three-dimensional pattern using moiré interference are often used in the field of anti-counterfeiting labels.
  • the stereoscopic optical sheets generate moiré by printing regularly arranged micro-patterns on the focal length layer of the transmissive sheet. The phenomenon of moir'e interference, which in turn presents a three-dimensional pattern.
  • the arrangement density of the microlens and the thickness of the focal length layer are calculated according to the refractive index, the radius of curvature and the arrangement pitch of the microlens, and the three-dimensional pattern of the marking function is printed under the focal length layer, and
  • the stereoscopic optical sheet manufactured by this process can only see the pattern under the microlens under the observation condition of the front viewing angle, and the stereoscopic pattern will become blurred or illegible when viewed from an oblique viewing angle, and it is impossible to follow the position. Changes achieve multiple stereo effects.
  • the Nickel Electroforming process used in the manufacture of conventional microlenses has the disadvantage of being easy to copy, it is less used in the field of anti-counterfeiting.
  • stereo optical plate is widely used in the field of graphic printing, such as stationery, publications, printed matter or advertising, because of its good design effect, it is difficult to use as an anti-counterfeiting certification mark because of its poor hiding effect. , will be used to verify the truth The pseudo micropattern is still difficult to embed inside the microlens.
  • the present application provides a stereoscopic microlens sheet capable of presenting a hidden stereo security pattern under different viewing conditions.
  • a stereoscopic anti-counterfeit microlens sheet may include: a microlens layer including a plurality of semispherical micro convex lenses arranged horizontally in a row direction and a column direction, disposed in a blank region between the plurality of micro convex lenses At least one product identification, a focal length layer formed of a transparent material and disposed under the microlens layer, a plurality of first three-dimensional patterns disposed under the focal length layer and arranged in an array in the same direction as the arrangement direction of the plurality of micro convex lenses, The arrangement density of the plurality of first three-dimensional patterns is configured to be 97.5% to 102.5% of the arrangement density of the plurality of micro-convex lenses.
  • the three-dimensional anti-counterfeit microlens sheet may further include: a plurality of two-dimensional patterns between the focal length layer and the plurality of first three-dimensional patterns, and between the plurality of two-dimensional patterns and the plurality of first three-dimensional patterns and with a plurality of micro
  • the convex lenses are arranged in the same direction in a direction in which a plurality of second three-dimensional patterns are arranged in an array.
  • the plurality of first three-dimensional patterns are different under different viewing conditions by adjusting the thickness of the microlens layer and the focal length layer, the arrangement density or arrangement pitch of the plurality of micro convex lenses, and the arrangement density or spacing of the plurality of first three-dimensional patterns Visual effect.
  • the stereoscopic anti-counterfeit microlens sheet according to an embodiment of the present application may further include a coating layer formed of a transparent material to cover the microlens layer and the product identification, and the refractive index of the coating layer is a refraction of the plurality of micro convex lenses The rate is 82.54% to 97.14%.
  • the display effect of the first three-dimensional pattern changes by printing the product identification pattern in a blank area between the plurality of micro-convex lenses such that the product identification is layered with the three-dimensional pattern for anti-counterfeiting.
  • the product identification pattern can still be clearly displayed.
  • the microlenses protruding on the upper surface of the microlens sheet are visually invisible, and the surface of the microlens sheet is made smoother and smoother, and also serves as a protective layer.
  • the hardness of the microlens sheet is prevented from being scratched by an external object to affect the recognition of the pattern.
  • the arrangement density or arrangement pitch of the plurality of micro-convex lenses and the arrangement density or spacing of the plurality of first three-dimensional patterns may achieve at least one of the following effects:
  • FIG. 1 is a cross-sectional view of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application.
  • FIG. 2 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present invention and an effect view when the stereo anti-counterfeit microlens sheet is observed by a camera.
  • FIG. 3 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the stereo anti-counterfeit microlens sheet having the coating layer is observed by a camera.
  • FIG. 4 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present invention and an effect view when the stereo anti-counterfeit microlens sheet is viewed at different distances.
  • FIG. 5 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the above-described three-dimensional anti-counterfeit microlens sheet having a coating layer is observed at different distances.
  • FIG. 6 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to another embodiment of the present application, and an effect view when the stereo anti-counterfeit microlens sheet having the coating layer is observed at different distances.
  • FIG. 7 illustrates a three-dimensional anti-counterfeiting micro with a coating layer according to another embodiment of the present application.
  • FIG. 8 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present application and an effect view when the stereo anti-counterfeit microlens sheet is observed under irradiation of an ultraviolet light source.
  • FIG. 9 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the above-described three-dimensional anti-counterfeit microlens sheet having a coating layer is observed under irradiation of an ultraviolet light source.
  • FIG. 10 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present invention and an effect view when the three-dimensional anti-counterfeit microlens sheet is viewed from different viewing angles.
  • FIG. 11 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the above-described three-dimensional anti-counterfeit microlens sheet having a coating layer is observed from different viewing angles.
  • pitch means the distance between the center points of any two adjacent elements, rather than the distance between the outer edges of the two adjacent elements that are close to each other.
  • switch indicates a situation in which a person observes a certain thing with an appropriate clear distance without using any external instrument under ordinary daylight illumination conditions.
  • FIG. 1 is a cross-sectional view of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application.
  • FIG. 2 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present invention and an effect view when the stereo anti-counterfeit microlens sheet is observed by a camera.
  • a three-dimensional anti-counterfeit microlens sheet 52 may include a microlens layer formed by horizontally arranging a plurality of micro-convex lenses 2 in a row direction and a column direction, and disposed on the plurality of micro-lens At least one of the blank areas between the convex lenses 2
  • Product identification 1 a focal length layer 4 formed of a transparent material and disposed under the microlens 2 and the product identification 1, and a plurality of first three-dimensional patterns 5 formed on the lower surface of the focal length layer 4.
  • the plurality of micro-convex lenses 2 may have a hemispherical shape, when the plurality of micro-convex lenses 2 are arranged in an array form, a blank area is generated between the adjacent four micro-convex lenses, and the blank area does not have a lens as a part of the transparent thin plate. effect. Then, at least one product identification 1 is provided in the blank area between the plurality of micro-convex lenses 2 by embossing.
  • the pitch between the adjacent two first three-dimensional patterns may be 90% to 110% of the spacing between the adjacent two micro-convex lenses 2.
  • the arrangement density of the first three-dimensional pattern 5 may be 97.5% to 102.5% of the arrangement density of the micro convex lenses.
  • the focal length layer 4 may be formed of a PET material, and the refractive index of the focal length layer 4 may be 82.54% to 97.14% of the refractive index of the micro convex lens. As an example, in an embodiment of the present application, the refractive index of the focal length layer 4 is 1.575.
  • the thickness 68 of the lenticular sheet 52 can be configured to be 0.0348 mm, and the arrangement density of the plurality of micro-convex lenses can be set to 1000/inch (for example, reference numeral 69 of FIG. 2)
  • the arrangement density of the plurality of first three-dimensional patterns is configured to be 1000.5/inch (for example, as indicated by reference numeral 67 of FIG. 2).
  • the stereo anti-counterfeit microlens sheet only displays the product mark (such as the "OK" of the product mark 1 in FIG. 2), and the plurality of first three-dimensional patterns (such as the first three-dimensional pattern 5) The word "authentic" is not visible.
  • the microlens sheet When the microlens sheet is viewed by, for example, the camera 64 built in the mobile phone, it is possible to see a plurality of first three-dimensional patterns, that is, "authentic" characters on the screen 65 of the mobile phone, presenting a clear three-dimensional effect.
  • the stereoscopic anti-counterfeit microlens sheet 52 may further include a coating layer 50 formed of a transparent material, and the refractive index of the coating layer 50 may be smaller than that of the micro-convex lens 2.
  • the refractive index of the coating layer 50 may be 1% to 13% smaller than the refractive index of the micro-convex lens 2.
  • the coating layer 50 may be formed of a transparent UV coating liquid 63, and its refractive index may be 1.4.
  • the thickness 62 of the microlens sheet is configured to be 0.28575 mm
  • the arrangement density of the plurality of micro-convex lenses is configured to be 400/inch (for example, reference numeral 60 of FIG. 3)
  • a plurality of The arrangement density of the first three-dimensional pattern is configured to be 400.1 / inch (for example, reference numeral 61 of FIG. 3).
  • the microlens sheet only displays the product mark (such as "OK" of the product mark 1 in FIG. 2), and the plurality of first three-dimensional patterns 5 (for example, "authentic") are not visible.
  • the microlens sheet When the microlens sheet is viewed by, for example, the camera 64 built in the mobile phone, it is possible to see a plurality of first three-dimensional patterns, that is, "authentic" characters on the screen 65 of the mobile phone, presenting a clear three-dimensional effect.
  • FIG. 4 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present invention and an effect view when the stereo anti-counterfeit microlens sheet is viewed at different distances.
  • the microlens sheet according to this embodiment has a structure similar to that of the microlens sheet shown in FIG. 2, except that in this embodiment, the focal length layer 77 is formed of a PC material having a refractive index of 1.575. .
  • the thickness 79 of the lenticular sheet can be configured to be 0.0496 mm, and the arrangement density of the plurality of micro lenticular lenses can be set to 700/inch (as indicated by reference numeral 78 in FIG. 4).
  • the arrangement density of a three-dimensional pattern is configured to be 700.06 per inch (as indicated by reference numeral 80 in FIG. 4).
  • the microlens sheet only displays the product logo 1 (eg, "OK"), while the plurality of first three-dimensional patterns 5 (eg, "authentic") are invisible 74. However, when the eye is close to the 75 microlens sheet, the plurality of first three-dimensional patterns 76 become visible.
  • FIG. 5 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the above-described three-dimensional anti-counterfeit microlens sheet having a coating layer is observed at different distances.
  • the microlens sheet according to this embodiment has a structure similar to that of the microlens sheet shown in FIG. 3, except that in this embodiment, the coating layer 72 is coated with UV having a refractive index of 1.36. The liquid coating is formed.
  • the thickness 71 of the lenticular sheet is configured to be 0.186 mm
  • the arrangement density of the plurality of micro lenticular lenses is set to 500 / inch (as indicated by reference numeral 70 in FIG. 5)
  • a plurality of first The arrangement density of the three-dimensional pattern is configured to be 500.03/inch (as shown in the figure). 5 is indicated by reference numeral 73).
  • the microlens sheet only displays the product logo 1 (eg, "OK"), while the plurality of first three-dimensional patterns 5 (eg, "authentic") are invisible 74. However, when the eye is close to the 75 microlens sheet, the plurality of first three-dimensional patterns 76 become visible.
  • FIG. 6 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to another embodiment of the present application, and an effect view when the stereo anti-counterfeit microlens sheet having the coating layer is observed at different distances.
  • the microlens sheet may include a microlens layer 2, a product mark 1, a focal length layer 4, a two-dimensional pattern 85, a second three-dimensional pattern 86, and a first three-dimensional pattern 5.
  • the microlens layer 2, the product mark 1, the focal length layer 4, and the first three-dimensional pattern 5 have the same structure as the corresponding structure of the embodiment shown in FIG. 2.
  • the focal length layer 4 is formed of a PET material having a refractive index of 1.575.
  • the thickness 89 of the lenticular sheet is configured to be 0.053 mm
  • the arrangement density of the plurality of micro lenticular lenses is 650 ⁇ /inch (as indicated by reference numeral 88 in FIG. 6)
  • the arrangement density of the plurality of three-dimensional patterns is 653. / inch
  • the arrangement density of the plurality of first three-dimensional patterns is configured to be 650.1 / inch (as indicated by reference numeral 90 in FIG. 6).
  • FIG. 7 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to another embodiment of the present application, and an effect view when the above-described stereo anti-counterfeit microlens sheet having a coating layer is observed at different distances.
  • the microlens sheeting as shown in FIG. 7 has a structure similar to that of the microlens sheet of FIG. 6, except that in this embodiment, the microlens sheet includes a coating layer 50 formed over the microlens layer by coating, The coating layer 50 is formed of a UV coating liquid 84 having a refractive index of 1.45.
  • the focal length layer 4 is formed of a PET material having a refractive index of 1.575.
  • the thickness 83 of the microlens sheet is configured to be 0.4 mm
  • the arrangement density of the plurality of micro-convex lenses is set to 400/inch (as indicated by reference numeral 82 in FIG. 7)
  • the arrangement density of the plurality of three-dimensional patterns is configured to 402. /inch (as indicated by reference numeral 87 in Fig. 7), said more
  • the arrangement density of the first three-dimensional patterns is configured to be 400.02/inch (as indicated by reference numeral 87 in Fig. 7).
  • FIG. 8 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present application and an effect view when the stereo anti-counterfeit microlens sheet is observed under irradiation of an ultraviolet light source.
  • the microlens sheet according to this embodiment has a structure similar to that of the microlens sheet of FIG.
  • the focal length layer 4 is formed of a PET material having a refractive index of 1.575.
  • the thickness 95 of the microlens sheet is configured to be 0.02898 mm
  • the arrangement density of the plurality of micro-convex lenses is 1200/inch (as indicated by reference numeral 91 in FIG. 8)
  • the arrangement density of the plurality of three-dimensional patterns is configured to be 1,206. / inch
  • the arrangement density of the plurality of first three-dimensional patterns is configured to be 1200.4 / inch (as indicated by reference numeral 96 in FIG. 8).
  • FIG. 9 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the above-described three-dimensional anti-counterfeit microlens sheet having a coating layer is observed under irradiation of an ultraviolet light source.
  • the microlens sheet according to this embodiment has a structure similar to that of the microlens sheet of FIG.
  • the focal length layer 4 is formed of a PET material having a refractive index of 1.575.
  • the coating layer 50 is formed of a transparent UV coating liquid 93 having a refractive index of 1.4.
  • the thickness 92 of the microlens sheet is configured to be 0.095 mm
  • the arrangement density of the plurality of micro-convex lenses is set to 1200/inch (as indicated by reference numeral 91 in Fig. 9)
  • the arrangement of the plurality of three-dimensional patterns The density is configured to be 1206 per inch
  • the arrangement density of the plurality of first three-dimensional patterns is configured to be 1200.4 per inch (as indicated by reference numeral 94 in FIG. 9).
  • only two-dimensional patterns 85 eg, "2D”
  • second three-dimensional patterns 86 eg, "3D
  • multiple first three-dimensional patterns 5 for example "authentic
  • the microlens sheet is irradiated with the ultraviolet light source 12
  • the plurality of first three-dimensional patterns 76 become visible.
  • FIG. 10 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet according to an embodiment of the present invention and an effect view when the three-dimensional anti-counterfeit microlens sheet is viewed from different viewing angles.
  • the microlens sheet according to this embodiment has a structure similar to that of the microlens sheet of FIG.
  • the focal length layer 4 is formed of a PET material having a refractive index of 1.575.
  • the thickness 101 of the microlens sheet is configured to be 0.06 mm
  • the arrangement density of the plurality of micro-convex lenses is set to 300/inch (as indicated by reference numeral 97 in FIG. 10)
  • the arrangement density of the plurality of three-dimensional patterns is configured to 306. / inch
  • the arrangement density of the plurality of first three-dimensional patterns is configured to be 300.2 / inch (as indicated by reference numeral 100 in FIG. 10).
  • first three-dimensional patterns 5 For example, the word "authentic” is invisible 74.
  • the viewing angle is changed to an angle 14 that is oblique to the plane of the lenticular sheet, the plurality of first three-dimensional patterns 76 become visible.
  • FIG. 11 is a schematic view showing the structure of a three-dimensional anti-counterfeit microlens sheet having a coating layer according to an embodiment of the present application, and an effect view when the above-described three-dimensional anti-counterfeit microlens sheet having a coating layer is observed from different viewing angles.
  • the microlens sheet according to this embodiment has a structure similar to that of the microlens sheet of FIG.
  • the focal length layer 4 is formed of a PET material having a refractive index of 1.575.
  • the coating layer 50 is formed of a transparent UV coating liquid 99 having a refractive index of 1.4.
  • the thickness 98 of the lenticular sheet is configured to be 0.2 mm
  • the arrangement density of the plurality of micro lenticular lenses is configured to be 300/inch (as indicated by reference numeral 97 in Fig. 11)
  • the arrangement of the plurality of three-dimensional patterns The density is configured to be 306/inch
  • the arrangement density of the plurality of first three-dimensional patterns is configured to be 300.2/inch (as indicated by reference numeral 100 in FIG. 11).
  • first three-dimensional patterns 5 eg, "genuine "The words” are invisible 74.
  • the plurality of first three-dimensional patterns 76 become visible.
  • a plurality of semi-spherical micro-convex lenses are arrayed After the form alignment, a product identification pattern is embedded in a blank region formed between adjacent micro-convex lenses, and then a coating layer is formed by coating over the micro-convex lens array as needed, so that the micro-convex lens is hidden under ordinary viewing conditions. Then, a focal length layer and a pattern layer are sequentially formed under the micro convex lens array, and the arrangement density of the authentication pattern to be imprinted on the pattern layer is calculated according to parameters such as the refractive index of the micro convex lens, the radius of curvature, and the refractive index of the focal length layer.
  • the arrangement pitch is printed or embossed according to the arrangement density or the arrangement pitch so that the authentication pattern is observed only under specific conditions.
  • the microlens sheet produced by the above process has the advantage of being difficult to copy or counterfeit, and therefore the authenticity of the identified product can be identified based on the characteristics.

Abstract

一种立体防伪微透镜薄片(52),包括:微透镜层,包括排列成阵列形式的多个微型凸透镜(2)、设置在多个微型凸透镜(2)之间的空白区域中的至少一个产品标识(1)、由透明材料形成并且设置在微透镜层下方的焦距层(4,77)、设置在焦距层(4,77)下方并且以与多个微型凸透镜(2)的布置方向相同的方向排列成阵列形式的多个第一三维图案(5,76)、以及由透明材料形成为覆盖微透镜层和产品标识(1)的涂覆层(50,72),涂覆层(50,72)用于隐藏凸出于立体防伪微透镜薄片(52)表面的微型凸透镜(2),同时起到保护作用。立体防伪微透镜薄片(52)根据精确地计算而调整各部件的结构使得第一三维图案(5,76)仅在特定的条件下呈现,从而具有难以复制或仿造的优点,作为防伪标识,具有很好的市场前景。

Description

立体防伪微透镜薄片
相关申请的交叉引用
本申请要求于2016年10月27日提交的中国专利申请号为“201610957099.3”的优先权,其全部内容作为整体并入本申请中。
技术领域
本申请涉及一种采用微透镜的防伪标识,更具体地,涉及具有叠层结构的防伪微透镜薄片。
背景技术
目前,在防伪标识领域中经常使用利用云纹干涉在视觉上呈现立体图案的立体光学片,这种立体光学片通过在透射性薄片的焦距层上印刷呈规律性排列的微图案来产生云纹干涉(moir'e interference)现象,进而呈现三维立体图案。在传统的立体光学片的制造中,根据微透镜的折射率、曲率半径和排列间距而计算出微透镜的排列密度和焦距层的厚度,在焦距层下方印刷起标识作用的三维图案,而通过这种工艺制造出的立体光学片仅仅在正面视角的观察条件下才能看到微透镜下方的图案,当以倾斜的视角观察时,立体图案将变得模糊或者难以辨认,更无法随着位置的变化实现多重立体效果。同时,由于在传统微透镜的制造中所使用的电铸(Nickel Electroforming)工艺具有易于复制的缺点,因此较少应用于防伪领域。
对于钱币等其他防伪安全技术而言,虽然可使用紫外线等辅助手段呈现普通观察条件下未显示的隐藏图案从而实现防伪效果,但是其使用的二维图案同样具有易于复制的缺点。
此外,虽然立体光学版由于其具有良好的设计效果而广泛地用于文具类、出版物、印刷物或是广告等平面印刷标识领域,但是由于其隐藏效果不佳而难以作为防伪认证标识使用,而且,在将用于验证真 伪的微图案嵌入微透镜内部时仍具有一定的难度。
发明内容
为克服现有技术中的至少一个不足,本申请提供一种能够在不同观察条件下呈现隐藏的立体防伪图案的立体微透镜薄片。
根据本申请一个实施方式的立体防伪微透镜薄片可包括:微透镜层,包括以行方向和列方向水平布置的半球形的多个微型凸透镜、设置在多个微型凸透镜之间的空白区域中的至少一个产品标识、由透明材料形成并且设置在微透镜层下方的焦距层、设置在焦距层下方并且以与多个微型凸透镜的布置方向相同的方向排列成阵列形式的多个第一三维图案,多个第一三维图案的排列密度配置为多个微型凸透镜的排列密度的97.5%至102.5%。立体防伪微透镜薄片还可包括:位于焦距层与多个第一三维图案之间的多个二维图案,以及位于多个二维图案与多个第一三维图案之间并且以与多个微型凸透镜的布置方向相同的方向排列成阵列形式的多个第二三维图案。通过调整微透镜层和焦距层的厚度、多个微型凸透镜的排列密度或排列间距、以及多个第一三维图案的排列密度或间距使得多个第一三维图案在不同的观察条件下呈现不同的视觉效果。
根据本申请一个实施方式的立体防伪微透镜薄片还可包括涂覆层,该涂覆层由透明材料形成为覆盖微透镜层和产品标识,并且涂覆层的折射率是多个微型凸透镜的折射率的82.54%至97.14%。
在本申请的一个实施方式中,通过在多个微型凸透镜之间的空白区域印刷产品标识图案使得将产品标识与用于防伪的立体图案分层设置,从而在第一三维图案的呈现效果发生变化时仍能够清晰地显示产品标识图案。
此外,通过在微透镜层上方设置透明涂覆层,使得在微透镜薄片的上表面凸出的微透镜在视觉上不可见,且使微透镜薄片的表面更加平整光滑,同时还作为保护层提升微透镜薄片的硬度,防止其被外部物体刮擦影响图案的辨识度。
根据本申请的上述技术方案,通过调整微透镜层和焦距层的厚度、 多个微型凸透镜的排列密度或排列间距、以及多个第一三维图案的排列密度或间距可实现以下至少一个效果:
1、在普通观察条件下具有颜色变换及普通三维效果,而将眼部靠近微透镜薄片时能够看到用于防伪的第一三维图案;
2、在通过摄像头观察时,能够看到用裸眼无法观察到的第一三维图案呈现清晰的立体效果;
3、在使用紫外线光源照射微透镜薄片时,能够看到普通观察条件下无法观察到的第一三维图案呈现清晰的立体效果;
4、当改变视角为与微透镜薄片所在的平面形成锐角时,能够看到在正面直视时无法观察到的第一三维图案呈现清晰的立体效果。
附图说明
本申请的实施方式在附图的各图中以举例而非限制的方式示出,在附图中,相同的附图标记指代相似的结构。
图1是根据本申请实施方式的具有涂覆层的立体防伪微透镜薄片的剖视图。
图2示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及通过摄像头观察该立体防伪微透镜薄片时的效果图。
图3示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及通过摄像头观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
图4示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及以不同的距离观察该立体防伪微透镜薄片时的效果图。
图5示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及以不同的距离观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
图6示出了根据本申请另一实施方式的立体防伪微透镜薄片的结构示意图以及以不同的距离观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
图7示出了根据本申请另一实施方式的具有涂覆层的立体防伪微 透镜薄片的结构示意图以及以不同的距离观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
图8示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及在紫外线光源的照射下观察该立体防伪微透镜薄片时的效果图。
图9示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及在紫外线光源的照射下观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
图10示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及以不同的视角观察该立体防伪微透镜薄片时的效果图。
图11示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及以不同的视角观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
具体实施方式
下面参考附图对本申请的具体实施方式进行详细的说明。通过以下说明将更好地理解本申请的优点和特征以及实现所述优点和特征的方法。但是,本申请不限定于以下公开的实施方式。
本说明书中使用的术语“间距(pitch)”表示任意两个相邻元件的中心点之间的距离,而不是上述两个相邻元件的彼此靠近的外边缘之间的距离。另外,当使用“普通观察条件”时,其表示普通的日光照明条件下人在不使用任何外部仪器以适当的明视距离观察某个事物时的情形。
图1是根据本申请实施方式的具有涂覆层的立体防伪微透镜薄片的剖视图。图2示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及通过摄像头观察该立体防伪微透镜薄片时的效果图。
参考图1和图2,根据本申请实施方式的立体防伪微透镜薄片52可包括:有多个微型凸透镜2以行方向和列方向水平布置而形成的微透镜层、设置在所述多个微型凸透镜2之间的空白区域中的至少一个 产品标识1、由透明材料形成并且设置于微透镜2和产品标识1的下方的焦距层4、以及形成在焦距层4的下表面的多个第一三维图案5。
由于多个微型凸透镜2可具有半球形形状,因此以阵列形式排列多个微型凸透镜2时,相邻的四个微型凸透镜之间产生空白区域,而该空白区域作为透明薄板的一部分不具有透镜的效果。然后,通过压印的方式在多个微型凸透镜2之间的空白区域中设置至少一个产品标识1。
对应第一三维图案5的排列方式,相邻的两个第一三维图案之间的间距(pitch)可以是相邻的两个微型凸透镜2之间的间距的90%至110%。或者类似地,第一三维图案5的排列密度可以是微型凸透镜的排列密度的97.5%~102.5%。
焦距层4可由PET材料形成,并且焦距层4的折射率可以是微型凸透镜的折射率的82.54%~97.14%。作为示例,在本申请的实施方式中,焦距层4的折射率为1.575。
如图2所示,根据该实施方式,可将微透镜薄片52的厚度68配置成0.0348mm,将多个微型凸透镜的排列密度配置成1000个/英寸(例如,图2的附图标记69所示),并且将多个第一三维图案的排列密度配置成1000.5个/英寸(例如,图2的附图标记67所示)。这时,在普通观察条件66下,立体防伪微透镜薄片仅显示产品标志(如图2中的产品标识1的“OK”字样),而多个第一三维图案(如第一三维图案5的“正品”字样)是不可见的。当通过例如内置在移动电话中的摄像头64观察微透镜薄片时,能够在移动电话的屏幕65上看到多个第一三维图案即“正品”字样呈现清晰的三维效果。
图3示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及通过摄像头观察该立体防伪微透镜薄片时的效果图。根据该实施方式,立体防伪微透镜薄片52还可包括由透明材料形成的涂覆层50,涂覆层50的折射率可小于微型凸透镜2的折射率。例如,涂覆层50的折射率可以比微型凸透镜2的折射率小1%至13%。
涂覆层50可由透明UV涂覆液63形成,并且其折射率可以是1.4。
如图3所示,根据该实施方式,微透镜薄片的厚度62配置成0.28575mm,多个微型凸透镜的排列密度配置成400个/英寸(例如,图3的附图标记60),并且多个第一三维图案的排列密度配置成400.1个/英寸(例如,图3的附图标记61)。这时,在普通观察条件66下,微透镜薄片仅显示产品标志(如图2中的产品标识1的“OK”字样),而多个第一三维图案5(例如“正品”字样)是不可见的。当通过例如内置在移动电话中的摄像头64观察微透镜薄片时,能够在移动电话的屏幕65上看到多个第一三维图案即“正品”字样呈现清晰的三维效果。
图4示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及以不同的距离观察该立体防伪微透镜薄片时的效果图。
如图4所示,根据该实施方式的微透镜薄片具有与图2所示的微透镜薄片相似的结构,不同点在于:在该实施方式中,焦距层77由折射率为1.575的PC材料形成。
根据该实施方式,可将微透镜薄片的厚度79配置为0.0496mm、将多个微型凸透镜的排列密度配置为700个/英寸(如图4中的附图标记78所示)、将多个第一三维图案的排列密度配置为700.06个/英寸(如图4中的附图标记80所示)。在普通观察条件66下,微透镜薄片仅显示产品标志1(例如“OK”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,将眼部靠近75微透镜薄片时则多个第一三维图案76变得可见。
图5示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及以不同的距离观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
如图5所示,根据该实施方式的微透镜薄片具有与图3所示的微透镜薄片相似的结构,不同点在于:在该实施方式中,涂覆层72由折射率为1.36的UV涂覆液形成。
根据该实施方式,将微透镜薄片的厚度71配置为0.186mm、将多个微型凸透镜的排列密度配置为500个/英寸(如图5中的附图标记70所示)、将多个第一三维图案的排列密度配置为500.03个/英寸(如图 5中的附图标记73所示)。在普通观察条件66下,微透镜薄片仅显示产品标志1(例如“OK”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,将眼部靠近75微透镜薄片时则多个第一三维图案76变得可见。
图6示出了根据本申请另一实施方式的立体防伪微透镜薄片的结构示意图以及以不同的距离观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。
如图6所示,微透镜薄片可包括微透镜层2、产品标识1、焦距层4、二维图案85、第二三维图案86、以及第一三维图案5。其中,微透镜层2、产品标识1、焦距层4、以及第一三维图案5具有与图2所示的实施方式的对应结构相同的结构。
根据该实施方式,焦距层4由折射率为1.575的PET材料形成。微透镜薄片的厚度89配置为0.053mm,多个微型凸透镜的排列密度配置为650个/英寸(如图6中的附图标记88所示),并且多个三维图案的排列密度配置为653个/英寸,多个第一三维图案的排列密度配置为650.1个/英寸(如图6中的附图标记90所示)。在普通观察条件66下,仅可观察到二维图案85(例如“2D”字样)或第二三维图案86(例如“3D”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,将眼部靠近75微透镜薄片时则多个第一三维图案76变得可见。
图7示出了根据本申请另一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及以不同的距离观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。如图7所示的微透镜薄片具有与图6的微透镜薄片相似的结构,不同点在于,在该实施方式中,微透镜薄片包括通过涂覆形成在微透镜层上方的涂覆层50,涂覆层50由折射率为1.45的UV涂覆液84形成。
根据该实施方式,焦距层4由折射率为1.575的PET材料形成。微透镜薄片的厚度83配置为0.4mm,多个微型凸透镜的排列密度配置为400个/英寸(如图7中的附图标记82所示),并且多个三维图案的排列密度配置为402个/英寸(如图7中的附图标记87所示)、所述多 个第一三维图案的排列密度配置为400.02个/英寸(如图7中的附图标记87所示)。在普通观察条件66下,仅可观察到二维图案(例如“2D”字样)或第二三维图案86(例如“3D”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,将眼部靠近75微透镜薄片时则多个第一三维图案76变得可见。
图8示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及在紫外线光源的照射下观察该立体防伪微透镜薄片时的效果图。如图8所示,根据该实施方式的微透镜薄片具有与图6的微透镜薄片的结构相似的结构。
根据该实施方式,焦距层4由折射率为1.575的PET材料形成。微透镜薄片的厚度95配置为0.02898mm,多个微型凸透镜的排列密度配置为1200个/英寸(如图8中的附图标记91所示),并且多个三维图案的排列密度配置为1206个/英寸,将多个第一三维图案的排列密度配置为1200.4个/英寸(如图8中的附图标记96所示)。在普通观察条件下,仅可观察到二维图案85(“2D”字样)或第二三维图案86(例如“3D”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,使用紫外线光源12照射微透镜薄片时,多个第一三维图案76变得可见。
图9示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及在紫外线光源的照射下观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。如图9所示,根据该实施方式的微透镜薄片具有与图7的微透镜薄片的结构相似的结构。
根据该实施方式,焦距层4由折射率为1.575的PET材料形成。涂覆层50由折射率为1.4的透明UV涂覆液93形成。
根据该实施方式,微透镜薄片的厚度92配置为0.095mm,多个微型凸透镜的排列密度配置为1200个/英寸(如图9中的附图标记91所示),并且多个三维图案的排列密度配置为1206个/英寸,多个第一三维图案的排列密度配置为1200.4个/英寸(如图9中的附图标记94所示)。在普通观察条件66下,仅可观察到二维图案85(例如“2D”字样)和/或第二三维图案86(例如“3D”字样),而多个第一三维图案 5(例如“正品”字样)是不可见的74。然而,使用紫外线光源12照射微透镜薄片时,多个第一三维图案76变得可见。
图10示出了根据本申请一实施方式的立体防伪微透镜薄片的结构示意图以及以不同的视角观察该立体防伪微透镜薄片时的效果图。如图10所示,根据该实施方式的微透镜薄片具有与图6的微透镜薄片的结构相似的结构。
根据该实施方式,焦距层4由折射率为1.575的PET材料形成。微透镜薄片的厚度101配置为0.06mm,多个微型凸透镜的排列密度配置为300个/英寸(如图10中的附图标记97所示),并且多个三维图案的排列密度配置为306个/英寸,多个第一三维图案的排列密度配置为300.2个/英寸(如图10中的附图标记100所示)。在正面视角的普通观察条件66下,仅可观察到二维图案85(例如“2D”字样)和/或第二三维图案86(例如“3D”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,将视角改变为与微透镜薄片所在平面呈倾斜的角度14时,多个第一三维图案76变得可见。
图11示出了根据本申请一实施方式的具有涂覆层的立体防伪微透镜薄片的结构示意图以及以不同的视角观察上述具有涂覆层的立体防伪微透镜薄片时的效果图。如图11所示,根据该实施方式的微透镜薄片具有与图7的微透镜薄片的结构相似的结构。
根据该实施方式,焦距层4由折射率为1.575的PET材料形成。涂覆层50由折射率为1.4的透明UV涂覆液99形成。
根据该实施方式,微透镜薄片的厚度98配置为0.2mm,多个微型凸透镜的排列密度配置为300个/英寸(如图11中的附图标记97所示),并且多个三维图案的排列密度配置为306个/英寸,多个第一三维图案的排列密度配置为300.2个/英寸(如图11中的附图标记100所示)。在普通观察条件66下,仅可观察到二维图案85(例如“2D”字样)和/或第二三维图案86(例如“3D”字样),而多个第一三维图案5(例如“正品”字样)是不可见的74。然而,将视角改变为与微透镜薄片所在平面呈倾斜的角度14时,多个第一三维图案76变得可见。
根据本申请各实施方式,将多个半圆球形状的微型凸透镜以阵列 形式排列之后在相邻的微型凸透镜之间形成的空白区域中嵌入产品标识图案,然后根据需要在微型凸透镜阵列上方通过涂覆形成涂覆层,使得微型凸透镜在普通观察条件下被隐藏。接着,在微型凸透镜阵列下方顺序地形成焦距层、图案层,并且根据微型凸透镜的折射率、曲率半径、焦距层的折射率等参数计算出待压印在图案层上的认证图案的排列密度或排列间距,根据该排列密度或排列间距印刷或压印认证图案,使得仅在特定的条件下观察到认证图案。经过以上过程制作的微透镜薄片具有难以复制或仿造的优点,因此可根据该特性辨认所标识产品的真伪。

Claims (3)

  1. 立体防伪微透镜薄片,包括:
    微透镜层,包括以行方向和列方向水平布置的多个微型凸透镜;
    至少一个产品标识,设置在所述多个微型凸透镜之间的空白区域;
    焦距层,由透明材料形成并且设置在所述微透镜层下方;
    多个第一三维图案,设置在所述焦距层的下方,并且以与所述多个微型凸透镜的布置方向相同的方向排列成阵列形式,
    其中,所述多个第一三维图案的排列密度配置为所述多个微型凸透镜的排列密度的97.5%至102.5%。
  2. 如权利要求1所述的立体防伪微透镜薄片,还包括:
    涂覆层,由透明材料形成为覆盖所述微透镜层和所述产品标识,所述涂覆层的折射率是所述多个微型凸透镜的折射率的82.54%至97.14%。
  3. 如权利要求1或2所述的立体防伪微透镜薄片,还包括:
    多个二维图案,位于所述焦距层与所述多个第一三维图案之间;以及
    多个第二三维图案,位于所述多个二维图案与所述多个第一三维图案之间,并且以与所述多个微型凸透镜的布置方向相同的方向排列成阵列形式。
PCT/CN2017/108099 2016-10-27 2017-10-27 立体防伪微透镜薄片 WO2018077245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610957099.3 2016-10-27
CN201610957099.3A CN107993561B (zh) 2016-10-27 2016-10-27 立体防伪微透镜薄片

Publications (1)

Publication Number Publication Date
WO2018077245A1 true WO2018077245A1 (zh) 2018-05-03

Family

ID=62024345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108099 WO2018077245A1 (zh) 2016-10-27 2017-10-27 立体防伪微透镜薄片

Country Status (2)

Country Link
CN (1) CN107993561B (zh)
WO (1) WO2018077245A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491277A (zh) * 2019-08-06 2019-11-22 江阴通利光电科技有限公司 耐高温封装式动态立体显示防伪膜
CN112562489A (zh) * 2020-12-15 2021-03-26 武汉华工图像技术开发有限公司 一种可变的动态全息防伪标识及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281294A1 (en) * 2009-10-30 2012-11-08 Arjowiggins Security Security element comprising an adhesive and a substrate bearing an optical structure, and associated method
CN104203528A (zh) * 2012-02-03 2014-12-10 韩国铸造、安全印刷与Id卡操作公司 具有三维安全元件的注塑产品及其制造方法
CN105374281A (zh) * 2014-08-11 2016-03-02 赵成载 利用精细图案和微透镜而使图案移动的三维标签
CN105845023A (zh) * 2016-05-04 2016-08-10 何炎权 防伪标识加密方法、防伪标识加密装置及其制作方法
CN206379112U (zh) * 2016-10-27 2017-08-04 上海彩丞新材料科技有限公司 立体防伪微透镜薄片

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634220A (en) * 1983-02-07 1987-01-06 Minnesota Mining And Manufacturing Company Directionally imaged sheeting
CA1267173A (en) * 1985-09-23 1990-03-27 Thomas I. Bradshaw Sheet containing contour-dependent directional image and method for forming the same
JP5163036B2 (ja) * 2007-09-27 2013-03-13 凸版印刷株式会社 表示体及びラベル付き物品
JP5245430B2 (ja) * 2008-02-04 2013-07-24 凸版印刷株式会社 表示体及びラベル付き物品
JP2013120354A (ja) * 2011-12-08 2013-06-17 Dainippon Printing Co Ltd セキュリティ媒体及びそれを用いた真贋判定方法
CN103358808B (zh) * 2012-03-28 2015-12-16 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN103625154B (zh) * 2012-08-21 2016-05-18 中钞特种防伪科技有限公司 一种光学防伪元件及使用该光学防伪元件的产品
CN203325345U (zh) * 2013-07-01 2013-12-04 成都得迈科贸有限公司 复合一体式微透镜防伪标识
CN105929550A (zh) * 2016-05-20 2016-09-07 深圳市裕同包装科技股份有限公司 一种裸眼立体印刷品及其制作方法
CN106054290B (zh) * 2016-08-03 2018-06-19 绍兴京华激光材料科技有限公司 一种复合膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281294A1 (en) * 2009-10-30 2012-11-08 Arjowiggins Security Security element comprising an adhesive and a substrate bearing an optical structure, and associated method
CN104203528A (zh) * 2012-02-03 2014-12-10 韩国铸造、安全印刷与Id卡操作公司 具有三维安全元件的注塑产品及其制造方法
CN105374281A (zh) * 2014-08-11 2016-03-02 赵成载 利用精细图案和微透镜而使图案移动的三维标签
CN105845023A (zh) * 2016-05-04 2016-08-10 何炎权 防伪标识加密方法、防伪标识加密装置及其制作方法
CN206379112U (zh) * 2016-10-27 2017-08-04 上海彩丞新材料科技有限公司 立体防伪微透镜薄片

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491277A (zh) * 2019-08-06 2019-11-22 江阴通利光电科技有限公司 耐高温封装式动态立体显示防伪膜
CN112562489A (zh) * 2020-12-15 2021-03-26 武汉华工图像技术开发有限公司 一种可变的动态全息防伪标识及其制备方法
CN112562489B (zh) * 2020-12-15 2022-12-23 武汉华工图像技术开发有限公司 一种可变的动态全息防伪标识及其制备方法

Also Published As

Publication number Publication date
CN107993561A (zh) 2018-05-04
CN107993561B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US20240059094A1 (en) Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products
US11529822B2 (en) Micro-optic device with integrated focusing element and image element structure
KR102380813B1 (ko) 광 스위치 장치
CN105636798B (zh) 安全设备和制造方法
CN102869518B (zh) 波纹放大装置
US10987967B2 (en) Micro-optic device with double sided optical effect
CN109476173A (zh) 制造安全装置的方法
JP2007514188A (ja) マイクロ光学セキュリティ及び画像表示システム
KR101472921B1 (ko) 미세 패턴과 마이크로 렌즈를 이용한 입체라벨
CN104023991A (zh) 光学可变防伪元件
CN107614281A (zh) 组合微透镜光学装置
US10223948B2 (en) Three-dimensional label having moving patterns using fine patterns and microlens
JP5906653B2 (ja) 表示体および物品
WO2018077245A1 (zh) 立体防伪微透镜薄片
CN111572235B (zh) 一种隐藏式立体成像薄膜
CN206379112U (zh) 立体防伪微透镜薄片
KR20110077037A (ko) 입체 비표 시트
TWI422496B (zh) 具有可繞射光柵點的微結構及其應用
JP2015099187A (ja) 立体視画像表示体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865022

Country of ref document: EP

Kind code of ref document: A1