WO2018077210A1 - 一种磁性能优良的无取向电工钢及其制造方法 - Google Patents

一种磁性能优良的无取向电工钢及其制造方法 Download PDF

Info

Publication number
WO2018077210A1
WO2018077210A1 PCT/CN2017/107797 CN2017107797W WO2018077210A1 WO 2018077210 A1 WO2018077210 A1 WO 2018077210A1 CN 2017107797 W CN2017107797 W CN 2017107797W WO 2018077210 A1 WO2018077210 A1 WO 2018077210A1
Authority
WO
WIPO (PCT)
Prior art keywords
oriented electrical
electrical steel
magnetic properties
steel according
present
Prior art date
Application number
PCT/CN2017/107797
Other languages
English (en)
French (fr)
Inventor
吕学钧
张峰
宗震宇
宋艳丽
陈凌云
王波
谢世殊
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP17864354.0A priority Critical patent/EP3533895B1/en
Priority to US16/343,216 priority patent/US11162154B2/en
Priority to JP2019521127A priority patent/JP6931391B2/ja
Priority to KR1020197013420A priority patent/KR20190068581A/ko
Priority to RU2019112782A priority patent/RU2723121C1/ru
Publication of WO2018077210A1 publication Critical patent/WO2018077210A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a steel sheet and a method of manufacturing the same, and more particularly to a non-oriented electrical steel sheet and a method of manufacturing the same.
  • a magnetic improvement method common in the prior art is: a non-oriented electrical steel sheet having a mass percentage of less than 1.5% of Si, which reduces the content of harmful elements such as C, N, S, O, Ti, etc., and reduces fine inclusions. The quantity, thereby reducing the iron loss and increasing the magnetic induction.
  • Another common magnetic improvement in the prior art is the addition of alloying elements to the steel to improve the magnetic properties of the finished product.
  • alloying elements for example, by adding rare earth elements, thereby controlling sulfides and reducing harmful impurity elements; for example, adding B element to form BN to suppress precipitation of AlN, however, the production process of adding B element is difficult to stably produce;
  • the magnetic properties can be improved by adding alloying elements Sn and Sb, and the recrystallization texture is improved by the segregation of the elements, thereby increasing the magnetic sensation.
  • the addition of Sn and Sb causes a certain degree of instability in the segregation of elements, and uneven surface segregation tends to cause the coating to fall off. Therefore, an improved means of adding an alloy to improve the magnetic properties of steel, although improving the magnetic properties of the finished product, inevitably causes an increase in manufacturing cost.
  • the improvement of the alloy to improve the magnetic properties of the steel itself is also unstable.
  • the Chinese Patent Publication No. CN103882293 entitled “Non-Oriented Electrical Steel and Its Production Method", published on June 25, 2014, discloses a non-oriented electrical steel.
  • This patent document compoundly adds Ce and Sn elements in the composition of non-oriented electrical steel having a mass percentage of Si of less than 1%. Therefore, the non-oriented electrical steel described in this patent document has a reduction in iron loss of 0.4 to 0.8 w/kg when the hot-rolled sheet is not subjected to normalization, and the magnetic induction is improved by 0.01 to 0.02 T.
  • One of the objects of the present invention is to provide a non-oriented electrical steel sheet excellent in magnetic properties, which reduces oxide inclusions and fine sulfides and nitrides controlling large particles by controlling the contents of chemical elements Si, Mn, and Al. Precipitation promotes grain growth after annealing, thereby obtaining a non-oriented electrical steel excellent in magnetic properties.
  • the present invention provides a non-oriented electrical steel sheet excellent in magnetic properties, the chemical element mass percentage thereof being:
  • Si 0.2 to 1.5%
  • Mn 0.01 to 0.30%
  • Al 0.001 to 0.009%
  • O 0.005 to 0.02%
  • S ⁇ 0.005% S ⁇ 0.005%
  • N ⁇ 0.005%
  • Ti ⁇ 0.002% balance It is Fe and other unavoidable impurities
  • the technical scheme of the invention limits the content and morphology of the low melting point oxide inclusions, especially the silicate oxide inclusions, by controlling the content ratio of the chemical elements Si, Al, Mn, thereby reducing the fine nitride, The sulfide is precipitated, whereby a non-oriented electrical steel sheet excellent in magnetic properties is obtained.
  • Silicon In the non-oriented electrical steel sheet excellent in magnetic properties according to the present invention, silicon is an effective element for increasing the electrical resistivity of steel. When the mass percentage of Si is less than 0.2%, the effect of effectively reducing the iron loss is not obtained; however, when the mass percentage of Si is more than 1.5%, the magnetic flux density is remarkably lowered, and the workability is deteriorated. Therefore, the mass percentage of silicon of the non-oriented electrical steel sheet excellent in magnetic properties according to the present invention is controlled to be 0.2 to 1.5%.
  • Manganese is used in the technical solution of the present invention to increase the electrical resistivity of steel while improving the surface state of the electrical steel, and therefore the mass percentage of manganese in the non-oriented electrical steel sheet excellent in magnetic properties according to the present invention is limited. It is 0.01 to 0.30%.
  • Aluminium One of the main harmful inclusions that deteriorates the magnetic properties of non-oriented silicon steels due to the suppression of grain growth by fine AlN particles.
  • the mass percentage of Al is controlled to be 0.001 to 0.009%, and Al/Si ⁇ 0.006.
  • Al is the strongest reducing agent and can reduce most of the free oxygen in molten steel. Under the condition that the mass percentage of aluminum is low, there is always a certain amount of free oxygen in the steel, and the weak deoxidizing elements Si and Mn in the steel are oxidized. As the temperature of the molten steel gradually decreases, the concentration of Si, Mn and O is gradually saturated, and a certain amount of SiO 2 and MnO are precipitated in the steel. Among them, the higher the Mn content, the more MnO is formed. The melting point of MnO is low, and the initial melting temperature is less than 1000 ° C.
  • MnO is easily deformed and pinned to the grain boundary, thereby suppressing the recrystallization effect and grain size growth. Therefore, in order to control the MnO content and the degree of deformation thereof, it is necessary to control the Mn/Si ratio.
  • Mn/Si ⁇ 0.2 the SiO 2 content in the oxide inclusions is high, and the composite regeneration of SiO 2 and MnO increases the melting point while reducing the degree of deformation, thereby reducing the hazard of MnO on the finished magnetic properties.
  • controlling the ratio of Mn/Si is beneficial to increase the content of SiO 2 and also to precipitate MnS and AlN at the interface of the SiO 2 inclusion phase, thereby reducing the amount of MnS and AlN dispersed precipitates in the steel. Conducive to the increase of the finished grain.
  • Carbon is a harmful residual element in the non-oriented electrical steel sheet of the present invention.
  • carbon strongly suppresses grain growth, easily deteriorates the magnetic properties of steel, and causes severe magnetic aging. Therefore, the mass percentage of carbon of the non-oriented electrical steel sheet excellent in magnetic properties according to the present invention is controlled to be 0.005% or less.
  • Sulfur is a harmful residual element in the non-oriented electrical steel sheet according to the present invention, and an increase in the mass percentage of sulfur causes an increase in the amount of sulfide precipitation such as manganese sulfide, which hinders grain growth and deteriorates iron loss. Therefore, the mass percentage of sulfur in the non-oriented electrical steel sheet excellent in magnetic properties according to the present invention is controlled to be 0.005% or less.
  • Nitrogen is a harmful residual element in the non-oriented electrical steel sheet according to the present invention, and as the mass percentage of nitrogen increases, precipitation of nitride such as AlN increases, which hinders grain growth and deteriorates iron loss. Therefore, in the non-oriented electrical steel sheet according to the present invention, the mass percentage of nitrogen is controlled to be 0.005% or less.
  • Titanium The harmful residual element of titanium in the non-oriented electrical steel sheet according to the present invention, as a strong magnetic deterioration element, must be strictly controlled. Therefore, the mass percentage of titanium in the non-oriented electrical steel sheet according to the present invention is controlled to be 0.002% or less of titanium.
  • the non-oriented electrical steel according to the present invention has SiO 2 -Al 2 O 3 -MnO ternary inclusions, wherein the volume percentage of SiO 2 is 95 to 98%, and the volume percentage of Al 2 O 3 is 2% to 3%, the volume percentage of MnO is below 2%.
  • the content of the inclusion is further limited by the technical solution because it has high ductility and a wide range of morphology for silicate-based inclusions.
  • the ratio of the ends of the inclusions is an acute angle (general morphology ratio ⁇ 3), and the volume percentage thereof is limited in order to prevent its inhibition of grain growth.
  • the grade of the silicate-based oxide inclusions (i.e., the C-type oxide inclusions) in the steel sheet is 1.5 or less.
  • the level of silicate-based oxide inclusions below 1.5 is more favorable to prevent its inhibition of grain growth, and the grade is evaluated according to GB10561-2005.
  • the grade of the silicate-based oxide inclusions in the steel sheet is 1.0 or less.
  • the grain size is 45 ⁇ m or more.
  • the grain size is 50 ⁇ m or more.
  • the ratio of Al/Si is further limited to Al/Si ⁇ 0.003.
  • the iron loss P 15/50 is 3.8 W/kg or less, and the magnetic induction is ⁇ 1.64 T.
  • the iron loss P 15/50 is 3.3 W/kg or less.
  • another object of the present invention is to provide a method for producing a non-oriented electrical steel sheet having excellent magnetic properties as described above, wherein the non-oriented electrical steel sheet obtained by the production method has a large improvement in iron loss and is easy to handle and is suitable for use in Large batch production.
  • the present invention provides a method for producing a non-oriented electrical steel sheet excellent in magnetic properties as described above, which comprises the steps of:
  • annealing the temperature of the annealed plate is controlled at 620 ° C ⁇ 900 ° C;
  • the definition of the heating temperature of the slab and the control of the hot rolling finishing temperature are for reducing the fine dispersion of AlN and MnS in the steel in the steel.
  • the plate temperature for annealing is controlled to be 620 ° C to 900 ° C.
  • the non-oriented electrical steel sheet according to the present invention is excellent in magnetic properties, and the iron loss of the steel sheet is greatly improved, the crystal grain size is 45 ⁇ m or more, the iron loss is 3.8 W/kg or less, and the magnetic induction is ⁇ 1.64 T.
  • non-oriented electrical steel sheet excellent in magnetic properties effectively controls the amount of oxide inclusions and fine sulfides and nitrides precipitated in large particles by controlling the ratio of chemical elements Si, Mn, and Al. And form.
  • the manufacturing method of the present invention has the advantages of low manufacturing cost and simple operation, since the manufacturing method of the present invention does not require the addition of rare earth elements or alloying elements such as Sn, Sb and B, It saves manufacturing costs, saves the operation steps of the production process, and is suitable for mass production.
  • Annealing Before annealing, the rolling oil and dirt on the surface are removed by using alkali solution at 60-90 °C, and the annealing is performed in a continuous annealing furnace of H 2 + N 2 mixed atmosphere. The temperature of the annealed plate is controlled at 620 ° C ⁇ 900 °C;
  • Coating Coating with a chromium-containing or chromium-free coating on the surface of the steel sheet.
  • the coating coating is selected according to the specific conditions of each embodiment, for example, a chromium-containing coating or a chromium-free coating may be used.
  • Table 1 lists the mass percentages of the respective chemical elements of the respective examples and comparative examples.
  • Table 2 lists the specific process parameters of the manufacturing methods of the respective examples and comparative examples.
  • Table 3 lists the performance parameters for each of the examples and comparative examples.
  • Table 4 lists the relevant parameter standards for the JIS standard.
  • the examples A1-A9 of the present case achieved the performance index of the non-oriented electrical steel sheet of the high grade 50A400 from the low grade 50A1000 according to the JIS standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种磁性能优良的无取向电工钢,其化学元素质量百分比为:Si:0.2~1.5%,Mn:0.01~0.30%,Al:0.001~0.009%,O:0.005~0.02%,C≤0.005%,S≤0.005%,N≤0.005%,Ti≤0.002%,余量为Fe以及其他不可避免的杂质;并且Al/Si≤0.006,Mn/Si≤0.2。其制造方法依次包括步骤:(1)冶炼;(2)热轧:加热温度为850℃~1250℃,终轧温度为800~1050℃;(3)酸洗;(4)冷轧;(5)退火:退火的板温控制在620℃~900℃;(6)涂层。

Description

一种磁性能优良的无取向电工钢及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种无取向电工钢板及其制造方法。
背景技术
近年来,随着下游市场对高效、节能、环保要求的日益加严,对于用于生产电机、压缩机、EI铁芯原料的无取向电工钢板的要求也更高。期望获得一种磁性能更优良、价格更低廉的无取向电工钢。
现有技术中常见的一种磁性改进手段为:对Si的质量百分比低于1.5%以下的无取向电工钢板,采用降低C、N、S、O、Ti等有害元素的含量,减少细小夹杂物数量,从而降低铁损,增加磁感。
现有技术中另一种常见的磁性改进手段为:向钢中添加合金元素,以改善成品磁性。例如:通过添加稀土元素,从而控制硫化物,降低有害杂质元素;又例如:通过添加B元素进而形成BN,以抑制AlN的析出,然而添加B元素的生产工艺,其稳定生产难度较大;此外,现有技术中还可以通过添加合金元素Sn、Sb对磁性进行改进,通过元素的偏聚,进而改善再结晶织构,从而增加磁感。然而,添加Sn、Sb使得元素偏聚也存在一定的不稳定性,且不均匀的表面偏聚容易使涂层脱落。因此,添加合金改善钢的磁性的改进手段,虽然能改善成品磁性,但不可避免的造成制造成本的增加。此外,添加合金改善钢的磁性的改进手段本身,也存在效果不稳定的情况。
例如,公开日为2014年6月25日,公开号为CN103882293,名称为“无取向电工钢及其生产方法”的中国专利文献公开了一种无取向电工钢。该专利文献在Si的质量百分含量低于1%的无取向电工钢的成分中复合添加Ce和Sn元素。因而,该专利文献所述的无取向电工钢在不进行热轧板常化处理时的铁损降低了0.4~0.8w/kg,同时磁感提高了0.01~0.02T。
发明内容
本发明的目的之一在于提供一种磁性能优良的无取向电工钢板,其通过对化学元素Si、Mn、Al含量的控制,减少控制大颗粒的氧化物夹杂物和细小的硫化物、氮化物析出,促进退火后的晶粒生长,从而获得磁性能优良的无取向电工钢。
基于上述发明目的,本发明提供了一种磁性能优良的无取向电工钢板,其化学元素质量百分比为:
Si:0.2~1.5%,Mn:0.01~0.30%,Al:0.001~0.009%,O:0.005~0.02%,C≤0.005%,S≤0.005%,N≤0.005%,Ti≤0.002%,余量为Fe以及其他不可避免的杂质;并且Al/Si≤0.006,Mn/Si≤0.2。
本发明技术方案通过对化学元素Si、Al、Mn的含量比例控制,从而限制了低熔点氧化物夹杂物,尤其是硅酸盐类氧化物夹杂物的数量和形态,进而减少了微细氮化物、硫化物的析出,由此获得磁性能优良的无取向电工钢板。
另外,本发明所述的磁性能优良的无取向电工钢板中的各化学元素的设计原理为:
硅:在本发明所述的磁性能优良的无取向电工钢板中,硅是增加钢的电阻率的有效元素。Si的质量百分比低于0.2%时,起不到有效降低铁损的作用;然而,Si的质量百分比高于1.5%时,磁通密度会显著降低,而且加工性会变差。因此,本发明所述的磁性能优良的无取向电工钢板的硅的质量百分比控制在0.2~1.5%。
锰:锰在本发明所述的技术方案中用于增加钢的电阻率,同时起到改善电工钢表面状态,因此在本发明所述的磁性能优良的无取向电工钢板的锰的质量百分比限定在0.01~0.30%。
铝:由于细小的AlN质点会抑制晶粒长大,是劣化无取向硅钢磁性的主要的有害夹杂物之一。此外,对Al的质量百分比低的钢而言,Als的含量越高,则Al和N元素结合数量就越多,进而产生的AlN夹杂物也就越多,因而对电磁性能的危害也就越大。因此,在本发明的技术方案中,除了对Al的质量百分比进行限制以外,同时对Al/Si比例进行限定,用以控制Als的含量,进而控制AlN析出量。鉴于此,在本发明所述的磁性能优良的无取向电工钢板中,Al的质量百分比控制在0.001~0.009%,并且Al/Si≤0.006。
此外,Al是最强的还原剂,可以还原钢水中绝大部分的自由氧。而在铝的质量百分比较低的条件下,钢中总是会存在一定的自由氧,并会氧化钢中的弱脱氧元素Si、Mn。随着钢液温度的逐步降低,Si、Mn元素和O的浓度积逐渐饱和,钢中就会析出一定数量的SiO2、MnO。其中,Mn含量越高,生成的MnO也就会越多。而MnO的熔点较低,初始熔化温度不足1000℃,在板坯加热、轧制过程中,MnO就很容易变形并且钉扎晶界,从而抑制再结晶效果和晶粒尺寸长大。因此,为了控制MnO含量及其变形程度,有必要控制Mn/Si比例。在Mn/Si≤0.2时,氧化物夹杂物中SiO2含量较高,通过SiO2、MnO的复合再生,提高熔点同时减少其变形程度,来减少MnO对成品磁性的危害。另一方面,控制Mn/Si 的比例,有利于提高SiO2的含量,也有利于MnS、AlN在SiO2夹杂物相界面上析出,从而降低钢中MnS、AlN弥散析出物的数量,也有利于成品晶粒的增大。
碳:碳是本发明所述的无取向电工钢板中的有害残余元素。在本发明技术案中,碳会强烈抑制晶粒成长,容易恶化钢的磁性,并产生严重的磁时效。因此,在本发明所述的磁性能优良的无取向电工钢板的碳的质量百分比控制在0.005%以下。
硫:硫是本发明所述的无取向电工钢板中的有害残余元素,硫的质量百分比增加会导致硫化锰等硫化物析出数量增加,阻碍晶粒长大、劣化铁损。因此,在本发明所述的磁性能优良的无取向电工钢板的硫的质量百分比控制在0.005%以下。
氮:氮是本发明所述的无取向电工钢板中的有害残余元素,随着氮的质量百分比的增加,使得AlN等氮化物析出增加,阻碍晶粒长大、劣化铁损。因此,在本发明所述的无取向电工钢板中氮的质量百分比控制在0.005%以下。
钛:钛在本发明所述的无取向电工钢板中的有害残余元素,作为强烈的磁性劣化元素,必须对其进行严格的控制。因此,本发明所述的无取向电工钢板中钛的质量百分比控制在钛在0.002%以下。
进一步地,在本发明所述的无取向电工钢,其具有SiO2-Al2O3-MnO三元夹杂物,其中SiO2的体积百分比在95~98%,Al2O3的体积百分比为2%~3%,MnO的体积百分比在2%以下。
为了进一步获得磁性性能优良的无取向电工钢板,本技术方案对于夹杂物的含量作了进一步地限定,这是因为:对于硅酸盐类的夹杂物,其具有高延展性,较宽范围的形态比(一般形态比≥3),所述夹杂物端部呈锐角,为了防止其对晶粒成长的抑制作用,对其体积百分比进行限定。
进一步地,在本发明所述的无取向电工钢中,钢板中硅酸盐类氧化物夹杂物(即C类氧化物夹杂物)的级别为1.5级以下。硅酸盐类氧化物夹杂物的级别1.5以下更有利于防止其对晶粒长大的抑制,其中级别按GB10561-2005评定。
更进一步地,在本发明所述的无取向电工钢中,钢板中硅酸盐类氧化物夹杂物的级别为1.0级以下。
优选地,在本发明所述的无取向电工钢中,晶粒尺寸在45μm以上。
更为优选地,在本发明所述的无取向电工钢中,晶粒尺寸在50μm以上。
进一步地,在本发明所述的无取向电工钢中,Al/Si≤0.003。为了进一步获得更好的实施效果,对于Al/Si的比例进一步限定为Al/Si≤0.003。
进一步地,在本发明所述的无取向电工钢中,铁损P15/50在3.8W/kg以下,磁感≥1.64T。
进一步地,在本发明所述的无取向电工钢中,铁损P15/50在3.3W/kg以下。
相应地,本发明的另一目的在于提供一种上述的磁性能优良的无取向电工钢板的制造方法,采用该制造方法所得到的无取向电工钢板,铁损程度大幅改善,操作简便,适用于批量大生产。
基于上述目的,本发明提供了一种上述的磁性能优良的无取向电工钢板的制造方法,其依次包括步骤:
(1)冶炼;
(2)热轧:加热温度为850℃~1250℃,终轧温度为800~1050℃;
(3)酸洗;
(4)冷轧;
(5)退火:退火的板温控制在620℃~900℃;
(6)涂层。
在本发明所述的制造方法的步骤(2)中,对板坯的加热温度的限定以及对热轧终轧温度的控制是为了减少钢中AlN和MnS在钢中细小弥散析出。
此外,为了防止消除应力退火后的铁损不合和波动,也为了使得退火后晶粒的进一步长大,因而对退火的板温控制在620℃~900℃。
本发明所述的无取向电工钢板的磁性能优良,钢板铁损大幅度改善,晶粒尺寸在45μm以上,铁损度在3.8W/kg以下,磁感≥1.64T。
此外,本发明所述的磁性能优良的无取向电工钢板通过对化学元素Si、Mn、Al含量比例的控制,有效控制了大颗粒的氧化物夹杂物和细小的硫化物、氮化物析出的数量和形态。
本发明所述的制造方法除了具有上述优点以外,还具有制造成本低,操作简单的优点,由于本发明所述的制造方法不需要添加稀土元素或合金元素,例如:Sn、Sb和B,因而节约了制造成本,节省了生产环节的操作步骤,适用于批量大生产。
具体实施方式
下面将结合具体的实施例对本发明所述的无取向电工钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A1-A9和对比例B1-B4
上述实施例和对比例的钢板采用下述步骤制得:
(1)冶炼:按照表1进行冶炼;
(2)热轧:加热温度为850℃~1250℃,终轧温度为800~1050℃;
(3)酸洗:冷轧前采用反复弯曲和酸洗,去除表面氧化铁皮,酸洗后喷水清除表面酸液和污垢;
(4)冷轧:连续冷轧机组轧制,控制总压下率为70~85%;
(5)退火:退火前先用60~90℃的采用碱液去除表面上轧制油和污垢,在H2+N2混合气氛连续退火炉退火生产,退火的板温控制在620℃~900℃;
(6)涂层:涂覆含铬或无铬涂层在钢板表面涂覆涂层。
需要说明的是,涂层涂料根据各实施方式的具体情况进行选择,例如:可以采用含铬涂层,也可以采用无铬涂层。
表1列出了各实施例和对比例的各化学元素的质量百分比。
表1.(wt%,余量为Fe和其他不可避免的杂质元素)
Figure PCTCN2017107797-appb-000001
注:硅酸盐类氧化物夹杂物级别按GB10561-2005评定。
表2列出了各实施例和对比例的制造方法的具体工艺参数。
表2
序号 热轧加热温度(℃) 终轧温度(℃) 压下率(%) 退火板温(℃)
A1 1138 876 80.4% 881
A2 1132 872 81.0% 886
A3 1145 876 82.5% 889
A4 1135 870 81.0% 880
A5 1131 870 75.0% 878
A6 1128 865 83.0% 872
A7 1200 1000 78.0% 720
A8 930 800 79.0% 900
A9 1060 830 73.0% 895
B1 1142 870 81.5% 887
B2 1135 869 80.5% 882
B3 1130 873 79.5% 879
B4 1132 875 80.8% 876
对上述实施例和对比例的钢板取样,进行性能测试,将试验测得到的相关性能参数列于表3中。
表3列出了各实施例和对比例的性能参数。
表3
Figure PCTCN2017107797-appb-000002
从表3可以看出,本案实施例A1-A9的铁损P15/50显著低于对比例B1-B4,说明本案实施例的磁性能较对比例优良。
表4列出了JIS标准的相关的参数标准。
表4
Figure PCTCN2017107797-appb-000003
从表4中可以看出,本案实施例A1-A9按JIS标准,由低牌号50A1000达到了高牌号50A400的无取向电工钢板性能指标。
结合表1及3,可以看出对比例B1和B3的Mn的质量百分比超过0.3%,且Mn/Si>0.2,因而导致其铁损值均高于3.8W/kg;对比例B2和B4的Al的质量百分比高于0.009%,且Al/Si>0.006,因此导致其铁损值无法低于3.8W/kg。此外,对比例B1-B4的硅酸盐类氧化物夹杂物级别过高和晶粒尺寸较小也是导致其实施效果不如本案实施例A1-A9的原因。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (10)

  1. 一种磁性能优良的无取向电工钢,其特征在于,其化学元素质量百分比为:
    Si:0.2~1.5%,Mn:0.01~0.30%,Al:0.001~0.009%,O:0.005~0.02%,C≤0.005%,S≤0.005%,N≤0.005%,Ti≤0.002%,余量为Fe以及其他不可避免的杂质;并且Al/Si≤0.006,Mn/Si≤0.2。
  2. 如权利要求1所述的无取向电工钢,其特征在于,其具有SiO2-Al2O3-MnO三元夹杂物,其中SiO2的体积百分比在95~98%,Al2O3的体积百分比为2%~3%,MnO的体积百分比在2%以下。
  3. 如权利要求1所述的无取向电工钢,其特征在于,钢板中硅酸盐类氧化物夹杂物的级别为1.5级以下。
  4. 如权利要求3所述的无取向电工钢,其特征在于,钢板中硅酸盐类氧化物夹杂物的级别为1.0级以下。
  5. 如权利要求1所述的无取向电工钢,其特征在于,晶粒尺寸在45μm以上。
  6. 如权利要求5所述的无取向电工钢,其特征在于,晶粒尺寸在50μm以上。
  7. 如权利要求1所述的无取向电工钢,其特征在于,Al/Si≤0.003。
  8. 如权利要求1-7中任意一项所述的无取向电工钢,其特征在于,铁损P15/50在3.8W/kg以下,磁感≥1.64T。
  9. 如权利要求8所述的无取向电工钢,其特征在于,铁损P15/50在3.3W/kg以下。
  10. 如权利要求1-9中任意一项所述的无取向电工钢的制造方法,其依次包括步骤:
    (1)冶炼;
    (2)热轧:加热温度为850℃~1250℃,终轧温度为800~1050℃;
    (3)酸洗;
    (4)冷轧;
    (5)退火:退火的板温控制在620℃~900℃;
    (6)涂层。
PCT/CN2017/107797 2016-10-28 2017-10-26 一种磁性能优良的无取向电工钢及其制造方法 WO2018077210A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17864354.0A EP3533895B1 (en) 2016-10-28 2017-10-26 Non-oriented electrical steel sheet having excellent magnetic properties
US16/343,216 US11162154B2 (en) 2016-10-28 2017-10-26 Non-oriented electrical steel having excellent magnetic properties
JP2019521127A JP6931391B2 (ja) 2016-10-28 2017-10-26 磁気特性に優れた無方向性電磁鋼及びその製造方法
KR1020197013420A KR20190068581A (ko) 2016-10-28 2017-10-26 우수한 자성을 갖는 무 방향성 전기강 및 그 제조 방법.
RU2019112782A RU2723121C1 (ru) 2016-10-28 2017-10-26 Неориентированная электротехническая сталь с превосходными магнитными свойствами и способ её производства

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610963121.5 2016-10-28
CN201610963121.5A CN108004463A (zh) 2016-10-28 2016-10-28 一种磁性能优良的无取向电工钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2018077210A1 true WO2018077210A1 (zh) 2018-05-03

Family

ID=62024347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107797 WO2018077210A1 (zh) 2016-10-28 2017-10-26 一种磁性能优良的无取向电工钢及其制造方法

Country Status (7)

Country Link
US (1) US11162154B2 (zh)
EP (1) EP3533895B1 (zh)
JP (1) JP6931391B2 (zh)
KR (1) KR20190068581A (zh)
CN (1) CN108004463A (zh)
RU (1) RU2723121C1 (zh)
WO (1) WO2018077210A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777232B (zh) * 2018-07-30 2021-10-22 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其制造方法
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112430777A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种超高磁感无取向电工钢板及其制造方法
CN112430778A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种薄规格无取向电工钢板及其制造方法
JP7001210B1 (ja) * 2020-04-16 2022-01-19 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
CN111471927B (zh) * 2020-04-27 2022-03-25 马鞍山钢铁股份有限公司 一种汽车发电机用高磁感无取向硅钢及其制备方法
US20230392227A1 (en) * 2020-11-27 2023-12-07 Nippon Steel Corporation Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet
CN115198169B (zh) * 2021-04-09 2023-07-07 宝山钢铁股份有限公司 一种无瓦楞状缺陷的高磁感低铁损无取向电工钢板及其制造方法
CN114411050B (zh) * 2021-12-21 2022-10-14 河北敬业高品钢科技有限公司 一种无取向电工钢及其制备方法
CN115094311B (zh) * 2022-06-17 2023-05-26 湖南华菱涟源钢铁有限公司 生产无取向电工钢的方法和无取向电工钢

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873939A (ja) * 1994-06-27 1996-03-19 Nkk Corp 磁気特性に優れた無方向性電磁鋼板の製造方法
CN101306434A (zh) * 2008-06-23 2008-11-19 首钢总公司 一种低碳低硅无铝半工艺无取向电工钢的制备方法
CN102796948A (zh) * 2011-05-27 2012-11-28 宝山钢铁股份有限公司 极低Ti含量的无取向电工钢板及其冶炼方法
WO2013054514A1 (ja) * 2011-10-11 2013-04-18 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN103614615A (zh) * 2013-09-24 2014-03-05 马钢(集团)控股有限公司 一种低成本冷轧无取向电工钢的制造方法
CN105779876A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 低牌号冷轧无取向电工钢薄带的生产方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874564B2 (ja) * 1994-08-23 1999-03-24 住友金属工業株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
JP2000008147A (ja) * 1998-06-24 2000-01-11 Sumitomo Metal Ind Ltd 磁気特性の優れた無方向性電磁鋼板およびその製造方法
EP1816226B1 (en) * 2004-11-04 2011-04-13 Nippon Steel Corporation Non-oriented electrical steel sheet superior in core loss.
CN101812629A (zh) * 2009-02-25 2010-08-25 宝山钢铁股份有限公司 铁损优良的无取向电工钢板及其制造方法
CN102453844B (zh) * 2010-10-25 2013-09-04 宝山钢铁股份有限公司 一种磁性优良的高效无取向硅钢制造方法
CN102134675B (zh) * 2011-02-22 2012-10-03 武汉钢铁(集团)公司 薄板坯连铸连轧生产的无取向电工钢及其方法
CN103361544B (zh) * 2012-03-26 2015-09-23 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873939A (ja) * 1994-06-27 1996-03-19 Nkk Corp 磁気特性に優れた無方向性電磁鋼板の製造方法
CN101306434A (zh) * 2008-06-23 2008-11-19 首钢总公司 一种低碳低硅无铝半工艺无取向电工钢的制备方法
CN102796948A (zh) * 2011-05-27 2012-11-28 宝山钢铁股份有限公司 极低Ti含量的无取向电工钢板及其冶炼方法
WO2013054514A1 (ja) * 2011-10-11 2013-04-18 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN103614615A (zh) * 2013-09-24 2014-03-05 马钢(集团)控股有限公司 一种低成本冷轧无取向电工钢的制造方法
CN105779876A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 低牌号冷轧无取向电工钢薄带的生产方法

Also Published As

Publication number Publication date
JP6931391B2 (ja) 2021-09-01
EP3533895B1 (en) 2021-12-29
EP3533895A4 (en) 2020-03-18
EP3533895A1 (en) 2019-09-04
US11162154B2 (en) 2021-11-02
JP2019536903A (ja) 2019-12-19
CN108004463A (zh) 2018-05-08
KR20190068581A (ko) 2019-06-18
RU2723121C1 (ru) 2020-06-08
US20200181727A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2018077210A1 (zh) 一种磁性能优良的无取向电工钢及其制造方法
CN103834858B (zh) 一种低铁损无取向硅钢的制造方法
JP6765448B2 (ja) 高磁気誘導かつ低鉄損の無方向性ケイ素鋼板及びその製造方法
WO2016150195A1 (zh) 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN102007226B (zh) 高强度无方向性电磁钢板及其制造方法
WO2021027797A1 (zh) 一种高磁感取向硅钢及其制造方法
CN101992210B (zh) 一种生产冷轧无取向硅钢无铝钢种的方法
WO2014047757A1 (zh) 一种高磁感普通取向硅钢的制造方法
CN103173678A (zh) 一种转子用无取向硅钢及其制造方法
WO2019105041A1 (zh) 磁性优良的无取向电工钢板及其制造方法
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
CN105238996A (zh) 一种厚度为0.2mm的冷轧薄带无取向硅钢及生产方法
CN110777232B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
JP7176221B2 (ja) 無方向性電磁鋼板およびその製造方法
CN105239005B (zh) 一种高磁导率无取向硅钢及生产方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
KR100872607B1 (ko) 펀칭 가공성과 왜곡 제거 소둔 후의 자기 특성이 우수한무방향성 전자 강판과 그 제조 방법
CN104195427A (zh) 一种低铁损高磁感无取向硅钢及生产方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
WO2020135438A1 (zh) 一种高强度覆铝基板用钢及其制造方法
WO2024017347A1 (zh) 一种无取向电工钢板及其制造方法
WO2024022109A1 (zh) 一种高磁感无取向电工钢板及其制造方法
WO2024017345A1 (zh) 一种无取向电工钢板及其制造方法
WO2023131223A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN110205570B (zh) 一种电气电子部件用铜合金的热处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013420

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017864354

Country of ref document: EP

Effective date: 20190528