WO2018076545A1 - 换热器组件、室内机、空调器、控制方法和控制装置 - Google Patents

换热器组件、室内机、空调器、控制方法和控制装置 Download PDF

Info

Publication number
WO2018076545A1
WO2018076545A1 PCT/CN2016/113798 CN2016113798W WO2018076545A1 WO 2018076545 A1 WO2018076545 A1 WO 2018076545A1 CN 2016113798 W CN2016113798 W CN 2016113798W WO 2018076545 A1 WO2018076545 A1 WO 2018076545A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
temperature
expansion valve
electronic expansion
flow path
Prior art date
Application number
PCT/CN2016/113798
Other languages
English (en)
French (fr)
Inventor
马勇
李凤国
朱洲
马收
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610970217.4A external-priority patent/CN106338163A/zh
Priority claimed from CN201610970008.XA external-priority patent/CN106403199A/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018076545A1 publication Critical patent/WO2018076545A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to a heat exchanger assembly, an indoor unit, an air conditioner, a control method and a control device.
  • the current air conditioner absorbs heat from the heat exchanger of the indoor unit to condense the moisture in the air to achieve the dehumidification effect.
  • users often want the air conditioner to be both hot and dehumidified, and existing air conditioners cannot meet the requirements.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention is required to provide a heat exchanger assembly, an indoor unit, an air conditioner, a control method, and a control device.
  • the heat exchanger assembly of the embodiment of the present invention is used for an indoor unit of an air conditioner, the indoor unit is formed with a duct, and the heat exchanger assembly is disposed in the air duct and includes:
  • a refrigerant flow path of the first heat exchanger and a first electronic expansion valve of the refrigerant flow path of the second heat exchanger are connected in series.
  • the refrigerant flow path of the first heat exchanger is longer than the refrigerant flow path of the second heat exchanger.
  • the length ratio of the refrigerant flow path of the first heat exchanger to the refrigerant flow path of the second heat exchanger is 3-10.
  • the spacing between the first heat exchanger and the second heat exchanger is 20-50 millimeters.
  • An indoor unit according to an embodiment of the present invention is used for an air conditioner, and the indoor unit includes the heat exchanger assembly according to any of the above embodiments.
  • the indoor unit includes:
  • the air duct is formed in the casing and includes an air inlet and an air outlet formed in the casing;
  • the first heat exchanger includes a plurality of first heat exchanger segments disposed around the cross flow fan and corresponding to the air inlets;
  • the second heat exchanger includes a second heat exchanger section disposed in alignment with at least one of the first heat exchanger segments.
  • the first heat exchanger section includes a lower heat exchanger section
  • the second heat exchanger section includes an auxiliary lower heat exchanger section disposed in alignment with the lower heat exchanger section
  • the indoor unit includes a lower water tray disposed in the outer casing;
  • the lower heat exchanger section and the auxiliary lower heat exchanger section are disposed above the lower water tray.
  • the first heat exchanger section includes a medium heat exchanger section located at an intermediate position of the first heat exchanger; the second heat exchanger section includes and the medium heat exchanger The auxiliary heat exchanger section of the segment alignment setting.
  • the first heat exchanger section includes a middle heat exchanger section at an intermediate position of the first heat exchanger and a tail heat exchanger section connected to the middle heat exchanger section;
  • the indoor unit further includes an upper water tray disposed in the outer casing, the tail heat exchanger section being located above the upper water tray.
  • the air conditioner further includes:
  • a second electronic expansion valve connected to the refrigerant flow path of the second heat exchanger
  • An outdoor heat exchanger the refrigerant flow path of the outdoor heat exchanger being connected to the second electronic expansion valve;
  • a compressor that connects the outdoor heat exchanger with a refrigerant flow path of the first heat exchanger.
  • a control method of an embodiment of the present invention is for controlling an air conditioner, the air conditioner including an indoor unit, the indoor unit is formed with a duct and includes a heat exchanger assembly disposed in the duct, the heat exchanger assembly The first heat exchanger, the second heat exchanger located at an upper portion of the first heat exchanger, and the refrigerant flow path connecting the first heat exchanger and the refrigerant of the second heat exchanger The first electronic expansion valve of the flow path, the control method comprising the following steps:
  • the opening degree of the first electronic expansion valve is controlled according to the current dew point temperature.
  • the step of calculating a current dew point temperature based on the indoor temperature and the target relative humidity comprises the following steps:
  • the step of controlling the opening of the first electronic expansion valve according to the dew point temperature comprises the following steps:
  • the opening degree of the first electronic expansion valve is controlled to bring the temperature of the second heat exchanger to a preset temperature when the current dew point temperature is not more than 0 degrees Celsius.
  • the predetermined temperature is -1 to 3 degrees Celsius.
  • the air conditioner comprises:
  • a second electronic expansion valve connected to the refrigerant flow path of the second heat exchanger
  • An outdoor heat exchanger the refrigerant flow path of the outdoor heat exchanger being connected to the second electronic expansion valve;
  • the control method further includes the following steps:
  • the opening degree of the second electronic expansion valve is controlled according to the current outdoor temperature, the current indoor temperature, the frequency of the compressor, and the opening degree of the first electronic expansion valve.
  • a control device for controlling an air conditioner, the air conditioner including an indoor unit, the indoor unit being formed with a duct and including a heat exchanger assembly disposed in the duct, the heat exchanger assembly The first heat exchanger, the second heat exchanger located at an upper portion of the first heat exchanger, and the refrigerant flow path connecting the first heat exchanger and the refrigerant of the second heat exchanger a flow path first electronic expansion valve, the control device comprising:
  • a first control module configured to control an opening degree of the first electronic expansion valve according to the current dew point temperature.
  • the air conditioner includes a memory for storing a lookup table of indoor temperature, relative humidity, and dew point temperature
  • the determining module includes:
  • a searching unit configured to search the current dew point temperature in the lookup table according to the current indoor temperature and the target relative humidity.
  • the first control module comprises:
  • a determining unit configured to determine whether the current dew point temperature is greater than 0 degrees Celsius
  • a first control unit configured to control an opening degree of the first electronic expansion valve when the current dew point temperature is greater than 0 degrees Celsius to bring the temperature of the second heat exchanger to the current dew point temperature
  • a second control unit configured to control an opening degree of the first electronic expansion valve to bring the temperature of the second heat exchanger to a preset temperature when the current dew point temperature is not greater than 0 degrees Celsius.
  • the predetermined temperature is -1 to 3 degrees Celsius.
  • the air conditioner comprises:
  • a second electronic expansion valve connected to the refrigerant flow path of the second heat exchanger
  • An outdoor heat exchanger the refrigerant flow path of the outdoor heat exchanger being connected to the second electronic expansion valve;
  • the control device further includes:
  • a second control module configured to control an opening degree of the second electronic expansion valve according to a current outdoor temperature, the current indoor temperature, a frequency of the compressor, and an opening degree of the first electronic expansion valve.
  • An air conditioner according to an embodiment of the present invention includes the control device according to any of the above embodiments.
  • FIG. 1 is a schematic plan view of an indoor unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the system configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing another system configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing still another system configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is another schematic plan view of an indoor unit according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a control method according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a control device according to an embodiment of the present invention.
  • FIG. 8 is another schematic flowchart of a control method according to an embodiment of the present invention.
  • FIG. 9 is still another schematic flowchart of a control method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of still another flow of a control method according to an embodiment of the present invention.
  • FIG. 11 is another schematic flow chart of a control method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of still another flow of the control method according to an embodiment of the present invention.
  • the air conditioner 100 The air conditioner 100, the indoor unit 10, the heat exchanger assembly 12, the first heat exchanger 122, the first heat exchanger section 1222, the lower heat exchanger section 1224, the middle heat exchanger section 1226, the tail heat exchanger section 1228, a second heat exchanger 124, a second heat exchanger section 1242, an auxiliary lower heat exchanger section 1244, an auxiliary medium heat exchanger section 1246, a throttle device 126, a one-way throttle valve 1262, a first electronic expansion valve 1264, Air duct 14, air inlet 142, air outlet 144, outer casing 15, air guiding strip 152, cross flow fan 16, lower water tray 17, upper water tray 18, second electronic expansion valve 20, outdoor heat exchanger 30,
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connecting should be understood broadly, unless it is specifically defined and defined, for example, it may be a fixed connection, a detachable connection, or an integral connection; They are mechanical connections, they can be electrically connected or can communicate with each other; they can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements.
  • intermediate medium which can be the internal communication of two elements or the interaction of two elements.
  • an indoor unit 10 is used in an air conditioner 100, and an indoor unit 10 includes a heat exchanger assembly 12.
  • the indoor unit 10 is formed with a duct 14, and the heat exchanger assembly 12 is disposed within the duct 14.
  • heat exchanger assembly 12 includes a first heat exchanger 122, a second heat exchanger 124, and a throttling device 126.
  • the second heat exchanger 124 is located at an upper portion of at least a portion of the first heat exchanger 122.
  • the throttle device 126 is connected in series to the refrigerant flow path of the first heat exchanger 122 and the refrigerant flow path of the second heat exchanger 124.
  • the air conditioner 100 when the air conditioner 100 needs to simultaneously heat and dehumidify, by adjusting the refrigerant flow path of the air conditioner 100, the high temperature and high pressure refrigerant can pass through the first heat exchanger 122 first, and the refrigerant is first.
  • the heat exchanger 122 radiates heat, and the throttle device 126 decompresses the refrigerant flowing out of the first heat exchanger 122 and then introduces it into the second heat exchanger 124, and the refrigerant absorbs heat in the second heat exchanger 124.
  • the refrigerant absorbs the heat of the air, and the water vapor in the air condenses into a liquid state and is separated from the air to achieve the purpose of dehumidification, and the dehumidified air passes through the first heat exchange.
  • the device 122 absorbs the heat released by the refrigerant, and the temperature of the air rises to achieve the purpose of heating.
  • the air conditioner 100 using the heat exchanger assembly 12 described above can realize the function of dehumidifying while heating.
  • the air conditioner 100 of the embodiment of the present invention includes an indoor unit 10.
  • the air conditioner 100 using the indoor unit 10 can realize the function of dehumidifying while heating.
  • the second heat exchanger 124 is located at the upper wind of at least a portion of the first heat exchanger 122, that is, the air passing through the second heat exchanger 124 also passes through the first a heat exchanger 122, the temperature of the air passing through the second heat exchanger 124 is lower when heating and dehumidification are required at the same time,
  • the portion of the air passes through the first heat exchanger 122, the temperature difference between the air and the first heat exchanger 122 is large, and heat exchange with the first heat exchanger 122 is easy, and therefore, the first heat exchanger 122
  • the overall heat exchange efficiency is high.
  • the air conditioner 100 further includes a second electronic expansion valve 20, an outdoor heat exchanger 30, and a compressor 40.
  • the second electronic expansion valve 20 is connected to the refrigerant flow path of the second heat exchanger 124.
  • the refrigerant flow path of the outdoor heat exchanger 30 is connected to the second electronic expansion valve 20.
  • the compressor 40 connects the outdoor heat exchanger 30 and the refrigerant flow path of the first heat exchanger 122.
  • the second electronic expansion valve 20, the outdoor heat exchanger 30, the compressor 40, and the heat exchanger assembly 12 can form a closed refrigerant flow path that continuously flows with the air in the heat exchanger assembly 12 and the outdoor heat exchanger 30. Exchange and exchange to achieve continuous adjustment of indoor air.
  • the second electronic expansion valve 20, the outdoor heat exchanger 30, and the compressor 40 may collectively constitute an outdoor unit, and the outdoor unit is usually installed outdoors and is connected to the indoor unit 10 in a refrigerant flow path.
  • the air conditioner 100 also includes a four-way valve 50.
  • the four-way valve 50 is a control valve having four connection ports, which are a valve inlet, a first valve outlet, a second valve outlet, and a third valve outlet, respectively.
  • the valve inlet is switchably coupled to one of the second valve outlet or the third valve outlet, and the first valve outlet is in communication with the other of the second valve outlet or the third valve outlet.
  • the valve inlet is connected to the outlet end of the compressor 40
  • the first valve outlet is connected to the inlet end of the compressor 40
  • the second valve outlet is connected to the refrigerant flow path of the first heat exchanger 122
  • the third valve outlet is connected.
  • the refrigerant flow path of the outdoor heat exchanger 30 is a control valve having four connection ports, which are a valve inlet, a first valve outlet, a second valve outlet, and a third valve outlet, respectively.
  • the air conditioner 100 can have multiple working modes.
  • the working mode of the air conditioner 100 includes at least a heating and dehumidifying mode, a cooling mode, and a dehumidifying mode.
  • the heating and dehumidifying mode the air conditioner 100 lowers the relative humidity of the indoor air while raising the indoor air temperature.
  • the cooling mode or the dehumidification mode the air conditioner 100 lowers the relative humidity of the indoor air while cooling the indoor air.
  • valve inlet communicates with the second valve outlet
  • first valve outlet communicates with the third valve outlet.
  • the refrigerant flows out of the compressor 40, enters the heat exchanger assembly 12 through the four-way valve 50, and flows back to the compressor 40 through the second expansion valve, the outdoor heat exchanger 30, and the four-way valve 50.
  • the valve inlet communicates with the third valve outlet, and the first valve outlet communicates with the second valve outlet.
  • the refrigerant After flowing out of the compressor 40, the refrigerant enters the outdoor heat exchanger 30 through the four-way valve 50, and then flows back to the compressor 40 through the second expansion valve, the heat exchanger assembly 12, and the four-way valve 50.
  • the throttle device 126 is a one-way throttle valve 1262.
  • the one-way throttle valve 1262 functions to throttle and decompress the refrigerant.
  • the one-way throttle valve 1262 does not act as a throttle for decompression of the refrigerant.
  • the air conditioner 100 using the heat exchanger assembly 12 can achieve the effect of heating and dehumidifying.
  • the throttle device 126 is a first electronic expansion valve 1264.
  • the first electronic expansion valve 1264 can have different opening degrees under the driving of the electronic control signal, and the different opening degrees enable the first electronic expansion valve 1264 to have different throttling and decompression of the refrigerant flowing through the first electronic expansion valve 1264. effect. Specifically, in the heating and dehumidifying mode, the smaller the opening degree of the first expansion valve, the smaller the pressure of the refrigerant flowing through the second heat exchanger 124.
  • the air conditioner 100 using the heat exchanger assembly 12 can achieve the effect of heating and dehumidifying.
  • the air conditioner 100 using the first electronic expansion valve 1264 can also be operated in the heating mode, and the heating is performed. In the mode, the air conditioner 100 warms the indoor air, but does not dehumidify the indoor air, and is suitable for a drier and cold indoor environment.
  • the refrigerant flow path of the first heat exchanger 122 is longer than the refrigerant flow path of the second heat exchanger 124.
  • the air conditioner 100 is passed through the first heat exchanger 122 in the heating and dehumidifying mode.
  • the temperature after the second heat exchanger 124 rises.
  • the heating capacity of the first heat exchanger 122 for the air needs to be greater than the cooling capacity of the second heat exchanger 124 for dehumidifying the air, and the first heat exchanger
  • the refrigerant flow path of 122 is in series with the refrigerant flow path of the second heat exchanger 124, that is, the total amount of refrigerant flowing through the first heat exchanger 122 and the second heat exchanger 124 is the same, and therefore, the first heat exchange can be set.
  • the refrigerant flow path of the device 122 is longer than the refrigerant flow path of the second heat exchanger 124, so that the air conditioner 100 can achieve the purpose of heating after passing through the heat exchanger assembly 12 in the heating and dehumidifying mode.
  • the refrigerant flow path of the first heat exchanger 122 is longer than the refrigerant flow path of the second heat exchanger 124, and the length of the heat exchange coil of the first heat exchanger 122 is longer than that of the second heat exchanger.
  • the length of the heat exchange coil of 124 is longer than that of the second heat exchanger.
  • the length ratio of the refrigerant flow path of the first heat exchanger 122 to the refrigerant flow path of the second heat exchanger 124 is 3-10.
  • the heating capacity of the first heat exchanger 122 and the dehumidification capacity of the second heat exchanger 124 can be well balanced, and the first heat exchanger 122 has better dehumidification effect. It also has a good heating effect.
  • the spacing between the first heat exchanger 122 and the second heat exchanger 124 is 20-50 millimeters.
  • the first heat exchanger 122 does not have too much influence on the temperature of the second heat exchanger 124, so that the water vapor cannot condense in the second heat exchanger 124, and at the same time, The space occupied by the heat exchanger assembly 12 is not too large.
  • the interval between the first heat exchanger 122 and the second heat exchanger 124 refers to the distance between the closest faces between the first heat exchanger 122 and the second heat exchanger 124.
  • the second heat exchanger 124 has a flat shape, and a section of the first heat exchanger 122 corresponding to the second heat exchanger 124 also has a flat shape and a second heat exchange.
  • the 124 is parallel, so the spacing between the first heat exchanger 122 and the second heat exchanger 124 is the distance between the first heat exchanger 122 and the plane closest to the second heat exchanger 124.
  • the indoor unit 10 of the embodiment of the present invention further includes a casing 15 and a cross flow fan 16.
  • the air duct 14 is formed in the outer casing 15, and the air duct 14 includes an air inlet 142 and an air outlet 144 formed in the outer casing 15.
  • the first heat exchanger 122 includes a plurality of first heat exchanger segments 1222, and a plurality of first heat exchanger segments 1222 surround the cross flow fan 16 and are disposed corresponding to the air inlets 142.
  • the second heat exchanger 124 includes at least one second heat exchanger section 1242 disposed in alignment with the first heat exchanger section 1222.
  • the air enters the outer casing 15 from the air inlet 142 under the driving of the cross flow fan 16, and the plurality of first heat exchanger segments 1222 are disposed around the cross flow fan 16 such that all the air necessarily passes through the first heat exchanger 122, and the indoor unit 10
  • the heat exchange efficiency is high.
  • the second heat exchanger 124 includes at least one second heat exchanger section 1242 disposed in alignment with the first heat exchanger section 1222 such that the heat exchanger assembly 12 is easily disposed within the outer casing 15.
  • air is drawn into the outer casing 15 from the air inlet 142 by the cross-flow fan 16.
  • Air passes through the heat exchanger assembly 12 along the air duct 14, where the air passes through the second heat exchanger section 1242 and the first heat exchange at a position corresponding to the first heat exchanger section 1222.
  • the section 1222 reaches the cross flow fan 16 where it passes directly through the first heat exchanger section 1222 to the cross flow fan 16.
  • the cross flow fan 16 drives air to exit the outer casing 15 from the air outlet 144.
  • the outer casing 15 includes an air guiding strip 152 with an air guiding strip 152 disposed at the air outlet 144.
  • the air guiding strip 152 moves to change the air outlet angle of the air outlet 144.
  • the first heat exchanger section 1222 includes a lower heat exchanger section 1224
  • the second heat exchanger section 1242 includes an auxiliary lower heat exchanger section 1244 disposed in alignment with the lower heat exchanger section 1224.
  • the indoor unit 10 includes a lower water tray 17 disposed within the outer casing 15, and a lower heat exchanger section 1224 and an auxiliary lower heat exchanger section 1244 are disposed above the lower water tray 17.
  • the lower water tray 17 is conveniently collected to collect condensed water formed on the lower heat exchanger section 1224 and the auxiliary lower heat exchanger section 1244.
  • the lower heat exchanger section 1224 and the auxiliary lower heat exchanger section 1244 are vertical It is arranged to facilitate the flow of condensed water into the lower water tray 17, and the side of the lower water tray 17 is disposed in a substantially U shape to accommodate the condensed water.
  • the first heat exchanger section 1222 includes a medium heat exchanger section 1226 located intermediate the first heat exchanger 122.
  • the second heat exchanger section 1242 includes an auxiliary medium heat exchanger section 1246 disposed in alignment with the middle heat exchanger section 1226.
  • the intermediate position of the auxiliary heat exchanger section 1246 and the first heat exchanger 122 is aligned with the intermediate position of the air inlet 142 to ensure air. It is in sufficient contact with the auxiliary medium heat exchanger section 1246 to provide the air conditioner 100 with better dehumidification capability in the heating and dehumidifying mode.
  • the first heat exchanger section 1222 includes a middle heat exchanger section 1226 located intermediate the first heat exchanger 122 and a tail heat exchanger section 1228 coupled to the middle heat exchanger section 1226.
  • the indoor unit 10 further includes an upper water tray 18, the upper water tray 18 is disposed within the outer casing 15, and the tail heat exchanger section 1228 is located above the upper water tray 18.
  • the tail heat exchanger section 1228 and the middle heat exchanger section 1226 are disposed at an acute or right angle and the angles of the two are opposite to the cross flow fan 16 so that the first heat exchanger 122 can better surround the cross flow.
  • the fan 16 increases the overall heat exchange efficiency of the indoor unit 10.
  • the side of the upper water tray 18 is arranged to be generally U-shaped to facilitate the containment of condensed water.
  • control method of the embodiment of the present invention is for controlling the air conditioner 100 to which the heat exchanger assembly 12 of the above-described Embodiment 2 is applied.
  • the control method includes the steps:
  • S20 Control the opening degree of the first electronic expansion valve 1264 according to the current dew point temperature.
  • control device 60 of the embodiment of the present invention includes a confirmation module 62 module and a first control module 64.
  • the control method of the embodiment of the present invention can be realized by the control device 60 of the embodiment of the present invention.
  • the air conditioner 100 of the embodiment of the present invention includes a control device 60.
  • step S10 of the control method of the embodiment of the present invention may be implemented by the confirmation module 62
  • step S20 may be implemented by the first control module 64.
  • the confirmation module 62 can be used to confirm the current dew point temperature based on the current indoor temperature and the target relative temperature.
  • the first control module 64 can be configured to control the opening of the first electronic expansion valve 1264 based on the current dew point temperature.
  • control method and control device 60 can control the opening of the first electronic expansion valve 1264 so that the air conditioner 100 can operate in the heating and dehumidifying mode.
  • control method further includes a step S00 before receiving step S10: receiving a user input to enter a heating and dehumidifying mode.
  • Control device 60 also includes a receiving module 66, which may be implemented by receiving module 66. That is, the receiving module 66 can be configured to receive user input to enter the heating and dehumidifying mode.
  • the user input may be an instruction input by the user immediately.
  • the user input may be a selection operation of the user on the remote controller of the air conditioner 100 or a touch or pressing operation of the user on the panel of the air conditioner 100.
  • the user input may also be an operation instruction preset by the user.
  • the user when the indoor temperature is lower than 10 degrees Celsius and the relative humidity is higher than 90%, the user automatically inputs an instruction to enter the heating and dehumidifying mode, and the air conditioner 100 enters.
  • the start command of the heating and dehumidifying mode may be preset by the user.
  • the user input may be implemented in other forms, which is not limited herein.
  • the current indoor temperature may be detected by the first temperature sensor 200, and the first temperature sensor 200 may be disposed on the outer surface of the casing of the indoor unit 10.
  • the target relative humidity refers to the relative humidity of the indoor air after being adjusted by the air conditioner 100 in the heating and dehumidifying mode.
  • the target relative humidity can be set by the user autonomously.
  • the target relative humidity can be 30% to 80%, so that the humidity of the air is moderate, and the comfort of the human body is ensured.
  • step S10 includes the steps of:
  • S102 Find the current dew point temperature in the lookup table according to the current indoor temperature and the target relative humidity.
  • the air conditioner 100 includes a memory 80 that can be used to store a lookup table of room temperature, relative humidity, and dew point temperature established in step S101.
  • the confirmation module 62 includes a lookup unit 622 that can be used to implement step S102. That is to say, the searching unit 622 can find the current dew point temperature in the lookup table according to the current indoor temperature and the target relative humidity.
  • the lookup table provides a one-to-one correspondence.
  • the lookup table can be established after the data is detected in the laboratory or calculated and calculated by the fitting formula. Table 1 gives some parts of the look-up table for indoor temperature, relative humidity and dew point temperature.
  • the searching unit 622 first receives the current indoor temperature detected by the first temperature sensor 200 and reads the target relative humidity set by the user, and then searches for a corresponding current dew point temperature in the lookup table.
  • step S20 includes the steps of:
  • S203 Control the opening degree of the first electronic expansion valve 1264 when the current dew point temperature is not more than 0 degrees Celsius to bring the temperature of the second heat exchanger 124 to a preset temperature.
  • the first control module 64 includes a determination unit 642, a first control unit 644, and a second control unit 646.
  • Step S201 can be implemented by the determining unit 642
  • step S202 can be implemented by the first control unit 644,
  • step S203 can be implemented by the second control unit 646. That is, the determining unit 642 can be used to determine whether the current dew point temperature is greater than 0 degrees Celsius.
  • the first control unit 644 can be configured to control the opening of the first electronic expansion valve 1264 when the current dew point temperature is greater than 0 degrees Celsius to bring the temperature of the second heat exchanger 124 to the current dew point temperature.
  • the second control unit 646 can be configured to control the opening of the first electronic expansion valve 1264 to bring the temperature of the second heat exchanger 124 to a preset temperature when the current dew point temperature is not greater than 0 degrees Celsius.
  • the temperature of the second heat exchanger 124 refers to the temperature of the heat exchange coil in the second heat exchanger 124.
  • a second temperature sensor 300 may be disposed on the changeover tube of the second heat exchanger 124, and the second temperature sensor 300 is configured to detect the second change The temperature of the heat exchange coil of the heater 124.
  • the temperature of the second heat exchanger 124 needs to be lower than the current indoor temperature, and the water vapor in the air condenses into liquid water when it passes through the second heat exchanger 124 when it is cooled.
  • the pressure of the refrigerant flowing through the second heat exchanger 124 can be adjusted by controlling the opening degree of the first electronic expansion valve 1264, and the heat exchange efficiency of the refrigerant of different pressures in the second heat exchanger 124 is different, and thus can be controlled.
  • the temperature of the second heat exchanger 124 for example, when the temperature of the second heat exchanger 124 needs to be reduced, can control the decrease in the opening degree of the first electronic expansion valve 1264.
  • the temperature detected by the second temperature sensor 300 can be observed, and the opening degree of the first electronic expansion valve 1264 can be continuously adjusted so that the temperature of the second heat exchanger 124 reaches the target value.
  • step S202 when the current dew point temperature is greater than 0 degrees Celsius, the opening degree of the first electronic expansion valve 1264 is controlled to bring the temperature of the second heat exchanger 124 to the dew point temperature, and at this time, the second heat exchanger 124 is dehumidified.
  • the relative humidity of the air can reach the target relative humidity.
  • step S203 when the current dew point temperature is not more than 0 degrees Celsius, the opening degree of the first electronic expansion valve 1264 is controlled to bring the temperature of the second heat exchanger 124 to a preset temperature.
  • the preset temperature may be that the air conditioner 100 is set at the factory.
  • the opening degree of the first electronic expansion valve 1264 is adjusted so that the temperature of the second heat exchanger 124 reaches the current dew point temperature, The liquid water condensed on the second heat exchanger 124 may freeze and hinder the heat exchange between the refrigerant of the second heat exchanger 124 and the air, resulting in poor dehumidification.
  • the preset temperature is -1 to 3 degrees Celsius.
  • the preset temperature is 1 degree Celsius. In this way, condensation water is prevented from solidifying and frosting in the second heat exchanger 124.
  • control method further includes the steps of:
  • S30 Control the opening degree of the second electronic expansion valve 20 according to the current outdoor temperature, the current indoor temperature, the frequency of the compressor 40, and the opening degree of the first electronic expansion valve 1264.
  • control device 60 further includes a second control module 68.
  • Step S30 can be implemented by the second control module 68. That is, the second control module 68 can be configured to control the opening degree of the second electronic expansion valve 20 according to the current outdoor temperature, the current indoor temperature, the frequency of the compressor 40, and the opening degree of the first electronic expansion valve 1264.
  • a third temperature sensor 400 may be disposed on the outdoor unit of the air conditioner, and the third temperature sensor 400 is configured to detect the current outdoor temperature.
  • the current indoor temperature can be detected by the first temperature sensor 200, and the frequency of the compressor 40 can be detected after the rotation speed of the compressor 40 is detected.
  • the opening degree of the first electronic expansion valve 1264 can be acquired by the second control unit 646 for controlling the first electronic unit.
  • the data of the opening degree of the expansion valve 1264 is obtained to obtain the opening degree of the first electronic expansion valve 1264, and the position of the spool of the first electronic expansion valve 1264 may be directly detected to obtain the opening degree of the first electronic expansion valve 1264.
  • the correspondence between the current outdoor temperature, the current indoor temperature, the frequency of the compressor 40, the opening degree of the first electronic expansion valve 1264, and the opening degree of the second electronic expansion valve 20 is adjusted in advance in the laboratory.
  • the second control module 68 controls the opening of the second electronic expansion valve 20 according to the corresponding relationship to control the second electronic expansion valve 20.
  • the air conditioner 100 employing the heat exchanger assembly 12 of the second embodiment of the present invention has other modes of operation, such as a dehumidification mode, a heating mode, and a cooling mode. Please refer to Figure 12 in some embodiments.
  • the control method further includes the steps of:
  • S01 receiving a user input to enter one of a dehumidification mode or a heating mode or a cooling mode;
  • S03 Control the opening degree of the second electronic expansion valve 20 according to the current outdoor temperature, the current indoor temperature, the frequency of the compressor 40, and the opening degree of the first electronic expansion valve 1264.
  • step S01 can be implemented by receiving module 66
  • step S02 can be implemented by first control module 64
  • step S03 can be implemented by second control module 68. That is, the receiving module 66 can also be configured to receive a user input to enter one of a dehumidification mode or a heating mode or a cooling mode.
  • the first control module 64 can also be used to control the opening of the first electronic expansion valve 1264 to be fully open.
  • the second control module 68 can also be configured to control the opening of the second electronic expansion valve 20 based on the current outdoor temperature, the current indoor temperature, the frequency of the compressor 40, and the opening of the first electronic expansion valve 1264.
  • the air conditioner 100 can operate in a variety of different modes of operation to meet the different needs of the user.
  • the manner in which the control method is specifically implemented is similar to the manner in which the air conditioner 100 is controlled to operate in the heating and dehumidifying mode, and details are not described herein again.
  • Particular features, structures, materials or features described in the manner or examples are included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Abstract

一种换热器组件(12)、一种室内机(10)、空调器(100)、控制方法和控制装置,其中换热器组件(12)用于空调器(100)的室内机(10),室内机(10)形成有风道(14),换热器组件(12)用于设置在风道(14)内,并包括第一换热器(122)、第二换热器(124)和节流装置(126)。第二换热器(124)位于至少部分第一换热器(122)的上风处。第一电子膨胀阀(1264)串联连接第一换热器(122)的冷媒流路和第二换热器(124)的冷媒流路。上述换热器组件(12)中,当空调器(100)需要同时制热和除湿时,通过调节空调器(100)的冷媒流路,使得室内空气在穿过第二换热器(124)时冷媒吸收空气的热量,空气中的水蒸汽冷凝成液态并与空气分离以达到除湿的目的,除湿后的空气在穿过第一换热器(122)时吸收冷媒放出的热量,空气的温度升高以达到制热的目的。

Description

换热器组件、室内机、空调器、控制方法和控制装置
优先权信息
本申请请求2016年10月28日向中国国家知识产权局提交的、专利申请号为201610970217.4和201610970008.X的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及空调器技术领域,特别涉及一种换热器组件、室内机、空调器、控制方法和控制装置。
背景技术
目前的空调器通过室内机的换热器吸热制冷凝结空气中的水分以达到除湿的效果。然而,对于阴冷且潮湿的天气,用户往往希望空调器既能制热又能除湿,现有的空调器无法满足要求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种换热器组件、室内机、空调器、控制方法和控制装置。
本发明实施方式的换热器组件用于空调器的室内机,所述室内机形成有风道,所述换热器组件用于设置在所述风道内并包括:
第一换热器;
位于至少部分所述第一换热器的上风处的第二换热器;和
串联连接所述第一换热器的冷媒流路和所述第二换热器的冷媒流路的第一电子膨胀阀。
在某些实施方式中,所述第一换热器的冷媒流路长于所述第二换热器的冷媒流路。
在某些实施方式中,所述第一换热器的冷媒流路与所述第二换热器的冷媒流路的长度比为3-10。
在某些实施方式中,所述第一换热器与所述第二换热器之间的间隔为20-50毫米。
本发明实施方式的室内机用于空调器,所述室内机包括上述任一实施方式所述的换热器组件。
在某些实施方式中,所述室内机包括:
外壳,所述风道形成在所述外壳内并包括有形成于所述外壳的进风口及出风口;和
贯流风机;
所述第一换热器包括围绕所述贯流风机且与所述进风口对应设置的多个第一换热器段;
所述第二换热器包括与至少一个所述第一换热器段对齐设置的第二换热器段。
在某些实施方式中,所述第一换热器段包括下换热器段,所述第二换热器段包括与所述下换热器段对齐设置的辅助下换热器段,
所述室内机包括设置在所述外壳内的下接水盘;
所述下换热器段和所述辅助下换热器段设置在所述下接水盘的上方。
在某些实施方式中,所述第一换热器段包括位于所述第一换热器的中间位置的中换热器段;所述第二换热器段包括与所述中换热器段对齐设置的辅助中换热器段。
在某些实施方式中,所述第一换热器段包括位于所述第一换热器的中间位置的中换热器段和与所述中换热器段连接的尾换热器段;
所述室内机还包括设置在所述外壳内的上接水盘,所述尾换热器段位于所述上接水盘的上方。
本发明实施方式的空调器上述任一项所述的室内机。
在某些实施方式中,所述空调器还包括:
与所述第二换热器的冷媒流路连接的第二电子膨胀阀;
室外换热器,所述室外换热器的冷媒流路与所述第二电子膨胀阀连接;和
压缩机,所述压缩机连接所述室外换热器与所述第一换热器的冷媒流路。
本发明实施方式的控制方法用于控制空调器,所述空调器包括室内机,所述室内机形成有风道并包括有设置在所述风道内的换热器组件,所述换热器组件包括第一换热器、位于至少部分所述第一换热器的上风处的第二换热器和串联连接所述第一换热器的冷媒流路与所述第二换热器的冷媒流路的第一电子膨胀阀,所述控制方法包括以下步骤:
根据当前室内温度和目标相对湿度确定当前露点温度;和
根据所述当前露点温度控制所述第一电子膨胀阀的开度。
在某些实施方式中,所述根据所述室内温度及所述目标相对湿度计算当前露点温度的步骤包括以下步骤:
建立室内温度、相对湿度和露点温度的查询表;和
根据所述当前室内温度和所述目标相对湿度在所述查询表内查找所述当前露点温度。
在某些实施方式中,所述根据所述露点温度控制所述第一电子膨胀阀的开度的步骤包括以下步骤:
判断所述当前露点温度是否大于0摄氏度;
在所述当前露点温度大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到所述当前露点温度;和
在所述当前露点温度不大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到预设温度。
在某些实施方式中,所述预设温度为-1至3摄氏度。
在某些实施方式中,所述空调器包括:
与所述第二换热器的冷媒流路连接的第二电子膨胀阀;
室外换热器,所述室外换热器的冷媒流路与所述第二电子膨胀阀连接;和
压缩机,所述压缩机连接所述室外换热器与所述第一换热器的冷媒流路;
所述控制方法还包括以下步骤:
根据当前室外温度、所述当前室内温度、所述压缩机的频率和所述第一电子膨胀阀的开度控制所述第二电子膨胀阀的开度。
本发明实施方式的控制装置用于控制空调器,所述空调器包括室内机,所述室内机形成有风道并包括有设置在所述风道内的换热器组件,所述换热器组件包括第一换热器、位于至少部分所述第一换热器的上风处的第二换热器和串联连接所述第一换热器的冷媒流路及所述第二换热器的冷媒流路第一电子膨胀阀,所述控制装置包括:
确定模块,用于根据当前室内温度和目标相对湿度确定当前露点温度;和
第一控制模块,用于根据所述当前露点温度控制所述第一电子膨胀阀的开度。
在某些实施方式中,所述空调器包括有存储器,所述存储器用于存储室内温度、相对湿度和露点温度的查询表,所述确定模块包括:
查找单元,用于根据所述当前室内温度和所述目标相对湿度在所述查询表内查找所述当前露点温度。
在某些实施方式中,所述第一控制模块包括:
判断单元,用于判断所述当前露点温度是否大于0摄氏度;
第一控制单元,用于在所述当前露点温度大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到所述当前露点温度;和
第二控制单元,用于在所述当前露点温度不大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到预设温度。
在某些实施方式中,所述预设温度为-1至3摄氏度。
在某些实施方式中,所述空调器包括:
与所述第二换热器的冷媒流路连接的第二电子膨胀阀;
室外换热器,所述室外换热器的冷媒流路与所述第二电子膨胀阀连接;和
压缩机,所述压缩机连接所述室外换热器与所述第一换热器的冷媒流路;
所述控制装置还包括:
第二控制模块,用于根据当前室外温度、所述当前室内温度、所述压缩机的频率和所述第一电子膨胀阀的开度控制所述第二电子膨胀阀的开度。
本发明实施方式的空调器包括上述任一实施方式所述的控制装置。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是根据本发明实施方式的室内机的平面示意图;
图2是根据本发明实施方式的空调器的系统构成示意图;
图3是根据本发明实施方式的空调器的另一系统构成示意图;
图4是根据本发明实施方式的空调器的又一系统构成示意图;
图5是根据本发明实施方式的室内机的另一平面示意图;
图6是根据本发明实施方式的控制方法的流程示意图;
图7是根据本发明实施方式的控制装置的模块示意图;
图8是根据本发明实施方式的控制方法的另一流程示意图;
图9是根据本发明实施方式的控制方法的又一流程示意图;
图10是根据本发明实施方式的控制方法的再一流程示意图;
图11是根据本发明实施方式的控制方法的另又一流程示意图;
图12是根据本发明实施方式的控制方法的另再一流程示意图。
主要元件及符号说明:
空调器100、室内机10、换热器组件12、第一换热器122、第一换热器段1222、下换热器段1224、中换热器段1226、尾换热器段1228、第二换热器124、第二换热器段1242、辅助下换热器段1244、辅助中换热器段1246、节流装置126、单向节流阀1262、第一电子膨胀阀1264、风道14、进风口142、出风口144、外壳15、导风条152、贯流风机16、下接水盘17、上接水盘18、第二电子膨胀阀20、室外换热器30、压缩机40、四通阀50、控制装置60、确定模块62、查找单元622、第一控制模块64、判断单元642、第一控制单元644、第二控制单元646、接收模块66、第二控制模块68、存储器80、第一温度传感器200、第二温度传感器300、第三温度传感器400。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施方式的室内机10用于空调器100,室内机10包括换热器组件12。室内机10形成有风道14,换热器组件12设置在风道14内。
请参阅图2,在本发明实施方式中,换热器组件12包括第一换热器122、第二换热器124和节流装置126。第二换热器124位于至少部分第一换热器122的上风处。节流装置126串联连接第一换热器122的冷媒流路和第二换热器124的冷媒流路。
上述的换热器组件12中,当空调器100需要同时制热和除湿时,通过调节空调器100的冷媒流路,可使得高温高压的冷媒先经过第一换热器122,冷媒在第一换热器122内放热,节流装置126将从第一换热器122流出的冷媒节流减压后引入第二换热器124,冷媒在第二换热器124内吸热。此时,室内空气在穿过第二换热器124时冷媒吸收空气的热量,空气中的水蒸汽冷凝成液态并与空气分离以达到除湿的目的,除湿后的空气在穿过第一换热器122时吸收冷媒放出的热量,空气的温度升高以达到制热的目的。
如此,运用上述换热器组件12的空调器100能实现制热的同时除湿的功能。
本发明实施方式的空调器100包括室内机10。
如此,运用室内机10的空调器100可以实现制热的同时除湿的功能。
需要指出的是,在本发明实施方式中,第二换热器124位于至少部分第一换热器122的上风处,也就是说,穿过第二换热器124的空气也会穿过第一换热器122,在同时需要制热和除湿时,空气穿过第二换热器124后的温度较低, 当这部分空气穿过第一换热器122时,空气与第一换热器122之间的温差较大,容易与第一换热器122进行热交换,因此,第一换热器122的整体换热效率较高。
在某些实施方式中,空调器100还包括第二电子膨胀阀20、室外换热器30和压缩机40。
第二电子膨胀阀20与第二换热器124的冷媒流路连接。
室外换热器30的冷媒流路与第二电子膨胀阀20连接。
压缩机40连接室外换热器30与第一换热器122的冷媒流路。
如此,第二电子膨胀阀20、室外换热器30、压缩机40与换热器组件12可以组成闭合的冷媒流路,冷媒在换热器组件12和室外换热器30内与空气持续地进行换交换,以达到持续调节室内空气的目的。
在实际使用中,第二电子膨胀阀20、室外换热器30和压缩机40可共同构成室外机,室外机通常设置在室外且与室内机10保持冷媒流路连接。
在某些实施方式中,空调器100还包括四通阀50。
四通阀50是具有四个连接端口的控制阀,四个连接端口分别为阀进口、第一阀出口、第二阀出口和第三阀出口。在四通阀50的内部,阀进口可切换地连通第二阀出口或第三阀出口中的一个,而第一阀出口则连通第二阀出口或第三阀出口中的另一个。在本发明实施方式中,阀进口连接压缩机40的出口端,第一阀出口连接压缩机40的进口端,第二阀出口连接第一换热器122的冷媒流路,第三阀出口连接室外换热器30的冷媒流路。
可以理解,空调器100可以有多种工作模式,在本发明实施方式中,空调器100的工作模式至少包括制热除湿模式、制冷模式和除湿模式。在制热除湿模式下,空调器100使室内空气升温的同时使室内空气的相对湿度降低。在制冷模式或除湿模式下,空调器100使室内空气降温的同时使室内空气的相对湿度降低。
在制热除湿模式下,阀进口连通第二阀出口,第一阀出口连通第三阀出口。 冷媒从压缩机40流出后经过四通阀50进入换热器组件12,再经过第二膨胀阀、室外换热器30和四通阀50流回压缩机40。
在制冷模式或除湿模式下,阀进口连通第三阀出口,第一阀出口连通第二阀出口。冷媒从压缩机40流出后经过四通阀50进入室外换热器30,再经过第二膨胀阀、换热器组件12和四通阀50流回压缩机40。
如此,通过控制切换四通阀50的连接端口之间的连通关系,可以实现空调器100不同工作模式的切换,满足用户的多种需求。
请参阅图3,在本发明的实施例1中,节流装置126为单向节流阀1262。当冷媒从第一换热器122流经单向节流阀1262流至第二换热器124时,单向节流阀1262对冷媒起到节流减压的作用。当冷媒从第二换热器124流经单向节流阀1262流至第一换热器122时,单向节流阀1262对冷媒不起节流减压的作用。
如此,运用换热器组件12的空调器100可以实现制热除湿的效果。
请参阅图4,在本发明的实施例2中,节流装置126为第一电子膨胀阀1264。第一电子膨胀阀1264可以在电控信号的驱动下有不同的开度,不同的开度使得第一电子膨胀阀1264可以对流经第一电子膨胀阀1264的冷媒有不同的节流减压的作用。具体地,在制热除湿模式下,第一膨胀阀的开度越小,则流经第二换热器124的冷媒压力越小。
如此,通过调节第一电子膨胀阀1264的开度,运用换热器组件12的空调器100可以实现制热除湿的效果。
进一步的,由于第一电子膨胀阀1264的节流减压的作用不受流路方向的影响,故运用第一电子膨胀阀1264的上述空调器100还可以在制热模式下运行,在制热模式下,空调器100使室内空气升温,但不会对室内空气除湿,对于较干燥且阴冷的室内环境较为适用。
在某些实施方式中,第一换热器122的冷媒流路长于第二换热器124的冷媒流路。
如此,使得空调器100在制热除湿模式下,空气在先后穿过第一换热器122 及第二换热器124后的温度升高。
可以理解,为了达到除湿的同时还能制热的目的,第一换热器122对空气的制热能力需要大于第二换热器124对空气除湿时的制冷能力,而由于第一换热器122的冷媒流路与第二换热器124的冷媒流路串联,也就是说流经第一换热器122及第二换热器124的冷媒总量相同,因此,可以设置第一换热器122的冷媒流路长于第二换热器124的冷媒流路,使得空调器100在制热除湿模式下,空气穿过换热器组件12后可以达到制热的目的。
在本发明实施方式中,第一换热器122的冷媒流路长于第二换热器124的冷媒流路指的是第一换热器122的换热盘管的长度长于第二换热器124的换热盘管的长度。
在某些实施方式中,第一换热器122的冷媒流路与第二换热器124的冷媒流路的长度比为3-10。
如此,保证在制热除湿模式下,第一换热器122的制热能力与第二换热器124的除湿能力能达到较好的平衡,第一换热器122既具有较好的除湿效果又有较好的制热效果。
在某些实施方式中,第一换热器122与第二换热器124之间的间隔为20-50毫米。
如此,使得在制热除湿模式下,第一换热器122不会对第二换热器124的温度产生太大的影响而导致水蒸汽在第二换热器124内不能冷凝,同时,也使得换热器组件12占据的空间不至于太大。
需要说明的是,上述的第一换热器122与第二换热器124之间的间隔指的是第一换热器122与第二换热器124之间最接近的面之间的距离。在本发明实施方式中,如图1所示,第二换热器124呈平板状,第一换热器122上与第二换热器124对应的一段也呈平板状且与第二换热器124平行,因此第一换热器122与第二换热器124之间的间隔即为第一换热器122与第二换热器124最接近的平面之间的距离。
请再参阅图1,本发明实施方式的室内机10还包括外壳15和贯流风机16。风道14形成在外壳15内,风道14包括形成于外壳15的进风口142及出风口144。
第一换热器122包括多个第一换热器段1222,多个第一换热器段1222围绕贯流风机16且与进风口142对应设置。
第二换热器124包括至少一个与第一换热器段1222对齐设置的第二换热器段1242。
如此,空气在贯流风机16的驱动下从进风口142进入外壳15,多个第一换热器段1222围绕贯流风机16设置,使得所有空气必然经过第一换热器122,室内机10的换热效率较高。
另外,第二换热器124包括至少一个与第一换热器段1222对齐设置的第二换热器段1242,使得换热器组件12容易布置在外壳15内。
在实际使用中,在贯流风机16的驱动下,空气从进风口142被吸入外壳15内。空气沿着风道14穿过换热器组件12,在第二换热器段1242与第一换热器段1222对应的位置,空气先后穿过第二换热器段1242和第一换热器段1222到达贯流风机16,在其余位置,空气直接穿过第一换热器段1222到达贯流风机16。贯流风机16驱动空气从出风口144排出外壳15。
在某些实施方式中,外壳15包括导风条152,导风条152设置在出风口144处。导风条152运动以改变出风口144的出风角度。
在某些实施方式中,第一换热器段1222包括下换热器段1224,第二换热器段1242包括与下换热器段1224对齐设置的辅助下换热器段1244。室内机10包括设置在外壳15内的下接水盘17,下换热器段1224和辅助下换热器段1244设置在下接水盘17的上方。
如此,方便下接水盘17收集形成在下换热器段1224和辅助下换热器段1244上的冷凝水。
在本发明实施方式中,下换热器段1224和辅助下换热器段1244均呈竖直 设置,以方便冷凝水流入下接水盘17中,下接水盘17的侧面设置为大致呈U型以便于盛装冷凝水。
请参阅图5,在某些实施方式中,第一换热器段1222包括位于第一换热器122的中间位置的中换热器段1226。第二换热器段1242包括与中换热器段1226对齐设置的辅助中换热器段1246。
如此,由于第一换热器122设置在与进风口142对应的位置,辅助中换热器段1246与第一换热器122的中间位置对齐也就是与进风口142的中间位置对齐,保证空气与辅助中换热器段1246充分接触以使空调器100在制热除湿模式下有较好的除湿能力。
在某些实施方式中,第一换热器段1222包括位于第一换热器122的中间位置的中换热器段1226和与中换热器段1226连接的尾换热器段1228。室内机10还包括上接水盘18,上接水盘18设置在外壳15内,尾换热器段1228位于上接水盘18的上方。
如此,方便上接水盘18收集形成在尾换热器段1228上的冷凝水。
具体地,尾换热器段1228与中换热器段1226呈锐角或直角设置且二者所夹的角与贯流风机16相对,以使得第一换热器122能更好地围绕贯流风机16,提高室内机10的总体换热效率。
在本发明实施方式中,上接水盘18的侧面设置为大致呈U型以便于盛装冷凝水。
请参阅图6,本发明实施方式的控制方法用于控制应用上述实施例2中的换热器组件12的空调器100。控制方法包括步骤:
S10:根据当前室内温度和目标相对湿度确定当前露点温度;和
S20:根据当前露点温度控制第一电子膨胀阀1264的开度。
请参阅图7,本发明实施方式的控制装置60包括确认模块62模块和第一控制模块64。本发明实施方式的控制方法可由本发明实施方式的控制装置60实现。
本发明实施方式的空调器100包括控制装置60。
具体地,本发明实施方式的控制方法的步骤S10可以由确认模块62实现,步骤S20可由第一控制模块64实现。也就是说,确认模块62可用于根据当前室内温度及目标相对温度确认当前露点温度。第一控制模块64可用于根据当前露点温度控制第一电子膨胀阀1264的开度。
如此,控制方法和控制装置60通过控制第一电子膨胀阀1264的开度,使得空调器100可以在制热除湿模式下工作。
请参阅图8,进一步地,控制方法在步骤S10之前还包括步骤S00:接收用户输入以进入制热除湿模式。
控制装置60还包括接收模块66,步骤S30可以由接收模块66实现。也就是说,接收模块66可用于接收用户输入以进入制热除湿模式。
在本发明实施方式中,用户输入可以是用户即时输入的指令,具体地,用户输入可以是用户在空调器100的遥控器上的选择操作或者用户在空调器100面板上的触摸或按压操作。
另外,用户输入也可以是用户预先设置好的操作指令,例如当室内温度低于10摄氏度且相对湿度高于90%时自动视为用户输入了进入制热除湿模式的指令,而空调器100进入制热除湿模式的启动指令可以是用户预先设置好的。
当然,在其他实施方式中,用户输入可以由其他的形式实现,在此不作限制。
具体地,当前室内温度可以由第一温度传感器200检测,第一温度传感器200可以设置在室内机10的壳体的外表面上。
在本发明实施方式中,目标相对湿度指室内空气经空调器100在制热除湿模式调节后的相对湿度。该目标相对湿度是可以由用户自主设置的,优选地,目标相对湿度可以是30%到80%,以使得空气的湿度适中,保证人体的舒适性。
请参阅图9,在某些实施方式中,步骤S10包括步骤:
S101:建立室内温度、相对湿度和露点温度的查询表;和
S102:根据当前室内温度和目标相对湿度在查询表内查找当前露点温度。
请再参阅图7,在某些实施方式中,空调器100包括存储器80,存储器80可以用于存储步骤S101中建立的室内温度、相对湿度和露点温度的查询表。确认模块62包括查找单元622,查找单元622可用于实现步骤S102。也就是说,查找单元622可根据当前室内温度和目标相对湿度在查询表内查找当前露点温度。
可以理解,在不同的室内温度下要达到某一个目标相对湿度,会存在不同的露点温度,而查询表提供了三者一一对应的关系。查询表可以是在实验室内检测得出各数据后建立的或者通过拟合公式计算并建立的。表1给出了室内温度、相对湿度和露点温度的查询表的部分内容。
表1
室内温度(℃) 13 12 11 10 9 8 7 6 5
相对湿度 60% 60% 60% 60% 60% 60% 60% 60% 60%
露点温度(℃) 5.4 4.5 3.5 2.6 1.6 0.7 -0.2 -1.1 -2.1
室内温度(℃) 13 12 11 10 9 8 7 6 5
相对湿度 55% 55% 55% 55% 55% 55% 55% 55% 55%
露点温度(℃) 4.1 3.2 2.3 1.38 0.5 -0.4 -1.4 -2.3 -3.2
具体地,查找单元622在实施步骤S102时,先接收第一温度传感器200检测得到的当前室内温度并且读取用户设置的目标相对湿度,然后在查询表中查找得到对应的当前露点温度。
请参阅图10,在某些实施方式中,步骤S20包括步骤:
S201:判断当前露点温度是否大于0摄氏度;
S202:在当前露点温度大于0摄氏度时控制第一电子膨胀阀1264的开度以使第二换热器124的温度达到当前露点温度;和
S203:在当前露点温度不大于0摄氏度时控制第一电子膨胀阀1264的开度以使第二换热器124的温度达到预设温度。
请再参阅图7,在某些实施方式中,第一控制模块64包括判断单元642、第一控制单元644和第二控制单元646。步骤S201可由判断单元642实施,步骤S202可由第一控制单元644实施,步骤S203可由第二控制单元646实施。也就是说,判断单元642可用于判断当前露点温度是否大于0摄氏度。第一控制单元644可用于在当前露点温度大于0摄氏度时控制第一电子膨胀阀1264的开度以使第二换热器124的温度达到当前露点温度。第二控制单元646可用于在当前露点温度不大于0摄氏度时控制第一电子膨胀阀1264的开度以使第二换热器124的温度达到预设温度。
需要说明的是,上述第二换热器124的温度指的是第二换热器124内的换热盘管的温度。在本发明实施方式中,为了便于监测第二换热器124的温度,可以在第二换热器124的换盘管上设置第二温度传感器300,第二温度传感器300用于检测第二换热器124的换热盘管的温度。
可以理解,为了达到除湿的效果,第二换热器124的温度需要低于当前室内温度,空气中的水蒸汽在穿过第二换热器124时遇冷后冷凝成液态水。
具体地,通过控制第一电子膨胀阀1264的开度可以调节流经第二换热器124的冷媒的压力,不同压力的冷媒在第二换热器124内的换热效率不同,进而可以控制第二换热器124的温度,例如需要将第二换热器124的温度减小时,可以控制第一电子膨胀阀1264的开度减小。
在实际操作中,可以通过观察第二温度传感器300检测得到的温度,并连续调整第一电子膨胀阀1264的开度以使得第二换热器124的温度达到目标值。
步骤S202中,在当前露点温度大于0摄氏度时,通过控制第一电子膨胀阀1264的开度以使第二换热器124的温度达到露点温度,此时通过第二换热器124除湿后的空气相对湿度可以达到目标相对湿度。
步骤S203中,在当前露点温度不大于0摄氏度时,通过控制第一电子膨胀阀1264的开度以使第二换热器124的温度达到预设温度。其中预设温度可以是空调器100在出厂时设置好的。
由于在常压下,液态水的凝固点为0摄氏度,在当前露点温度不大于0摄氏度时,如果调节第一电子膨胀阀1264的开度使第二换热器124的温度达到当前露点温度,则冷凝在第二换热器124上的液态水可能会结冰而阻碍第二换热器124的冷媒与空气进行热交换,导致除湿的效果不好。
在某些实施方式中,预设温度为-1至3摄氏度。
优选地,预设温度为1摄氏度。如此,防止冷凝水在第二换热器124内凝固结霜。
请参阅图11,在某些实施方式中,控制方法还包括步骤:
S30:根据当前室外温度、当前室内温度、压缩机40的频率和第一电子膨胀阀1264的开度控制第二电子膨胀阀20的开度。
请再参阅图2,在某些实施方式中,控制装置60还包括第二控制模块68。步骤S30可由第二控制模块68实施。也就是说,第二控制模块68可用于根据当前室外温度、当前室内温度、压缩机40的频率和第一电子膨胀阀1264的开度控制第二电子膨胀阀20的开度。
具体地,可以在空调室外机上设置第三温度传感器400,第三温度传感器400用于检测得到当前室外温度。当前室内温度可由第一温度传感器200检测得到,压缩机40的频率可检测压缩机40的转速后换算得到,第一电子膨胀阀1264的开度可获取第二控制单元646用于控制第一电子膨胀阀1264的开度的数据以得到第一电子膨胀阀1264的开度,也可以直接检测第一电子膨胀阀1264的阀芯的位置以得到第一电子膨胀阀1264的开度。
在实际使用中,当前室外温度、当前室内温度、压缩机40的频率、第一电子膨胀阀1264的开度以及第二电子膨胀阀20的开度的对应关系是预先在实验室调试好后,在空调器100出厂时设置的,第二控制模块68根据对应关系匹配得到第二电子膨胀阀20的开度后控制第二电子膨胀阀20。
可以理解,运用本发明实施例2的换热器组件12的空调器100还有其余的工作模式,例如除湿模式、制热模式和制冷模式。请参阅图12在某些实施方式 中,控制方法还包括步骤:
S01:接收用户输入以进入除湿模式或制热模式或制冷模式中的一个;
S02:控制第一电子膨胀阀1264的开度为全开;和
S03:根据当前室外温度、当前室内温度、压缩机40的频率和第一电子膨胀阀1264的开度控制第二电子膨胀阀20的开度。
在某些实施方式中,步骤S01可由接收模块66实现,步骤S02可由第一控制模块64实现,步骤S03可由第二控制模块68实现。也就是说,接收模块66还可用于接收用户输入以进入除湿模式或制热模式或制冷模式中的一个。第一控制模块64还可用于控制第一电子膨胀阀1264的开度为全开。第二控制模块68还可用于根据当前室外温度、当前室内温度、压缩机40的频率和第一电子膨胀阀1264的开度控制第二电子膨胀阀20的开度。
如此,空调器100可以在多种不同的工作模式下工作,以满足用户的不同需求。具体的实施控制方法的方式与控制空调器100在制热除湿模式下工作的方式相似,在此不再赘述。在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (22)

  1. 一种换热器组件,用于空调器的室内机,所述室内机形成有风道,其特征在于,所述换热器组件用于设置在所述风道内并包括:
    第一换热器;
    位于至少部分所述第一换热器的上风处的第二换热器;和
    串联连接所述第一换热器的冷媒流路和所述第二换热器的冷媒流路的第一电子膨胀阀。
  2. 如权利要求1所述的换热器组件,其特征在于,所述第一换热器的冷媒流路长于所述第二换热器的冷媒流路。
  3. 如权利要求1所述的换热器组件,其特征在于,所述第一换热器的冷媒流路与所述第二换热器的冷媒流路的长度比为3-10。
  4. 如权利要求1所述的换热器组件,其特征在于,所述第一换热器与所述第二换热器之间的间隔为20-50毫米。
  5. 一种室内机,用于空调器,其特征在于,所述室内机包括如权利要求1-4任意一项所述的换热器组件。
  6. 如权利要求5所述的室内机,其特征在于,所述室内机包括:
    外壳,所述风道形成在所述外壳内并包括有形成于所述外壳的进风口及出风口;和
    贯流风机;
    所述第一换热器包括围绕所述贯流风机且与所述进风口对应设置的多个第一换热器段;
    所述第二换热器包括与至少一个所述第一换热器段对齐设置的第二换热器段。
  7. 如权利要求6所述的室内机,其特征在于,所述第一换热器段包括下换 热器段,所述第二换热器段包括与所述下换热器段对齐设置的辅助下换热器段,
    所述室内机包括设置在所述外壳内的下接水盘;
    所述下换热器段和所述辅助下换热器段设置在所述下接水盘的上方。
  8. 如权利要求6所述的室内机,其特征在于,所述第一换热器段包括位于所述第一换热器的中间位置的中换热器段;所述第二换热器段包括与所述中换热器段对齐设置的辅助中换热器段。
  9. 如权利要求6所述的室内机,其特征在于,所述第一换热器段包括位于所述第一换热器的中间位置的中换热器段和与所述中换热器段连接的尾换热器段;
    所述室内机还包括设置在所述外壳内的上接水盘,所述尾换热器段位于所述上接水盘的上方。
  10. 一种空调器,其特征在于,包括如权利要求5所述的室内机。
  11. 如权利要求10所述的空调器,其特征在于,所述空调器还包括:
    与所述第二换热器的冷媒流路连接的第二电子膨胀阀;
    室外换热器,所述室外换热器的冷媒流路与所述第二电子膨胀阀连接;和
    压缩机,所述压缩机连接所述室外换热器与所述第一换热器的冷媒流路。
  12. 一种控制方法,用于控制空调器,所述空调器包括室内机,所述室内机形成有风道并包括有设置在所述风道内的换热器组件,所述换热器组件包括第一换热器、位于至少部分所述第一换热器的上风处的第二换热器和串联连接所述第一换热器的冷媒流路与所述第二换热器的冷媒流路的第一电子膨胀阀,其特征在于,所述控制方法包括以下步骤:
    根据当前室内温度和目标相对湿度确定当前露点温度;和
    根据所述当前露点温度控制所述第一电子膨胀阀的开度。
  13. 如权利要求12所述的控制方法,其特征在于,所述根据所述室内温度及所述目标相对湿度计算当前露点温度的步骤包括以下步骤:
    建立室内温度、相对湿度和露点温度的查询表;和
    根据所述当前室内温度和所述目标相对湿度在所述查询表内查找所述当前露点温度。
  14. 如权利要求13所述的控制方法,其特征在于,所述根据所述露点温度控制所述第一电子膨胀阀的开度的步骤包括以下步骤:
    判断所述当前露点温度是否大于0摄氏度;
    在所述当前露点温度大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到所述当前露点温度;和
    在所述当前露点温度不大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到预设温度。
  15. 如权利要求14所述的控制方法,其特征在于,所述预设温度为-1至3摄氏度。
  16. 如权利要求12所述的控制方法,其特征在于,所述空调器包括:
    与所述第二换热器的冷媒流路连接的第二电子膨胀阀;
    室外换热器,所述室外换热器的冷媒流路与所述第二电子膨胀阀连接;和
    压缩机,所述压缩机连接所述室外换热器与所述第一换热器的冷媒流路;
    所述控制方法还包括以下步骤:
    根据当前室外温度、所述当前室内温度、所述压缩机的频率和所述第一电子膨胀阀的开度控制所述第二电子膨胀阀的开度。
  17. 一种控制装置,用于控制空调器,所述空调器包括室内机,所述室内机形成有风道并包括有设置在所述风道内的换热器组件,所述换热器组件包括第一换热器、位于至少部分所述第一换热器的上风处的第二换热器和串联连接所述第一换热器的冷媒流路及所述第二换热器的冷媒流路第一电子膨胀阀,其特征在于,所述控制装置包括:
    确定模块,用于根据当前室内温度和目标相对湿度确定当前露点温度;和
    第一控制模块,用于根据所述当前露点温度控制所述第一电子膨胀阀的开度。
  18. 如权利要求17所述的控制装置,其特征在于,所述空调器包括有存储器,所述存储器用于存储室内温度、相对湿度和露点温度的查询表,所述确定模块包括:
    查找单元,用于根据所述当前室内温度和所述目标相对湿度在所述查询表内查找所述当前露点温度。
  19. 如权利要求18所述的控制装置,其特征在于,所述第一控制模块包括:
    判断单元,用于判断所述当前露点温度是否大于0摄氏度;
    第一控制单元,用于在所述当前露点温度大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到所述当前露点温度;和
    第二控制单元,用于在所述当前露点温度不大于0摄氏度时控制所述第一电子膨胀阀的开度以使所述第二换热器的温度达到预设温度。
  20. 如权利要求19所述的控制装置,其特征在于,所述预设温度为-1至3摄氏度。
  21. 如权利要求17所述的控制装置,其特征在于,所述空调器包括:
    与所述第二换热器的冷媒流路连接的第二电子膨胀阀;
    室外换热器,所述室外换热器的冷媒流路与所述第二电子膨胀阀连接;和
    压缩机,所述压缩机连接所述室外换热器与所述第一换热器的冷媒流路;
    所述控制装置还包括:
    第二控制模块,用于根据当前室外温度、所述当前室内温度、所述压缩机的频率和所述第一电子膨胀阀的开度控制所述第二电子膨胀阀的开度。
  22. 一种空调器,其特征在于,包括如权利要求17-21任意一项所述的控制装置。
PCT/CN2016/113798 2016-10-28 2016-12-30 换热器组件、室内机、空调器、控制方法和控制装置 WO2018076545A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610970217.4A CN106338163A (zh) 2016-10-28 2016-10-28 换热器组件、室内机和空调器
CN201610970008.XA CN106403199A (zh) 2016-10-28 2016-10-28 控制方法、控制装置和空调器
CN201610970008.X 2016-10-28
CN201610970217.4 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018076545A1 true WO2018076545A1 (zh) 2018-05-03

Family

ID=62024236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113798 WO2018076545A1 (zh) 2016-10-28 2016-12-30 换热器组件、室内机、空调器、控制方法和控制装置

Country Status (1)

Country Link
WO (1) WO2018076545A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553316A (zh) * 2019-09-30 2019-12-10 保尔雅(北京)被动式建筑科技有限公司 一种节能的等温除湿的热泵系统
CN114076383A (zh) * 2020-08-17 2022-02-22 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116385A (ja) * 1999-10-20 2001-04-27 Fujitsu General Ltd 空気調和機
JP2002243307A (ja) * 2001-02-14 2002-08-28 Daikin Ind Ltd 空気調和装置
CN101149168A (zh) * 2006-09-21 2008-03-26 海尔集团公司 定温除湿空调器及其控制方法
CN101532745A (zh) * 2009-03-13 2009-09-16 南京天加空调设备有限公司 节能型全功能制冷循环系统
CN103062851A (zh) * 2013-01-07 2013-04-24 青岛海信日立空调系统有限公司 空调系统及其除湿方法
CN103185384A (zh) * 2011-12-29 2013-07-03 珠海格力电器股份有限公司 空调器及用于空调器的湿度控制方法和装置
CN103512155A (zh) * 2013-09-30 2014-01-15 美的集团股份有限公司 一种空调控制方法及控制系统
CN105258212A (zh) * 2015-07-31 2016-01-20 广东海悟科技有限公司 一种机房空调系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116385A (ja) * 1999-10-20 2001-04-27 Fujitsu General Ltd 空気調和機
JP2002243307A (ja) * 2001-02-14 2002-08-28 Daikin Ind Ltd 空気調和装置
CN101149168A (zh) * 2006-09-21 2008-03-26 海尔集团公司 定温除湿空调器及其控制方法
CN101532745A (zh) * 2009-03-13 2009-09-16 南京天加空调设备有限公司 节能型全功能制冷循环系统
CN103185384A (zh) * 2011-12-29 2013-07-03 珠海格力电器股份有限公司 空调器及用于空调器的湿度控制方法和装置
CN103062851A (zh) * 2013-01-07 2013-04-24 青岛海信日立空调系统有限公司 空调系统及其除湿方法
CN103512155A (zh) * 2013-09-30 2014-01-15 美的集团股份有限公司 一种空调控制方法及控制系统
CN105258212A (zh) * 2015-07-31 2016-01-20 广东海悟科技有限公司 一种机房空调系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553316A (zh) * 2019-09-30 2019-12-10 保尔雅(北京)被动式建筑科技有限公司 一种节能的等温除湿的热泵系统
CN114076383A (zh) * 2020-08-17 2022-02-22 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机存储介质
CN114076383B (zh) * 2020-08-17 2023-05-30 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机存储介质

Similar Documents

Publication Publication Date Title
US11867413B2 (en) HVAC unit with hot gas reheat
JP4207166B2 (ja) 除湿空調機
US20120303165A1 (en) Control system and method for both energy saving and comfort control in an air conditioning system
US9927134B2 (en) Air conditioner units having improved make-up air module communication
CN106839324A (zh) 一种空调器及其恒温除湿控制方法
CN105352042A (zh) 空调室内机和空调器
CN106403199A (zh) 控制方法、控制装置和空调器
CN104315743A (zh) 可调温房间除湿空调器
CN108775725A (zh) 三管制多联机的室内机及三管制多联机
JP2020197316A (ja) 空調システム
WO2018076545A1 (zh) 换热器组件、室内机、空调器、控制方法和控制装置
CN106152285B (zh) 空调系统及其控制方法
CN209445511U (zh) 空调器
WO2010067539A1 (ja) 空調システム
CN107062470A (zh) 一种空调器及其恒温除湿控制方法
CN211119681U (zh) 空调系统以及具有其的空调器
US20170321907A1 (en) Dehumidifier for High Airflow Rate Systems
JP2010078245A (ja) 調湿システム
CN207094911U (zh) 加湿空调
JP4039100B2 (ja) 空気調和機
JP5453795B2 (ja) 空調システム
CN110736142B (zh) 一种空调器及其不降温快速除湿控制方法
CN106545988A (zh) 换热器组件、室内机和空调器
CN108266868B (zh) 空调器的控制方法和空调器
CN108266931B (zh) 一种热管理系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16919609

Country of ref document: EP

Kind code of ref document: A1