WO2018076482A1 - 电机 - Google Patents

电机 Download PDF

Info

Publication number
WO2018076482A1
WO2018076482A1 PCT/CN2016/109545 CN2016109545W WO2018076482A1 WO 2018076482 A1 WO2018076482 A1 WO 2018076482A1 CN 2016109545 W CN2016109545 W CN 2016109545W WO 2018076482 A1 WO2018076482 A1 WO 2018076482A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
field
rotor portion
motor
Prior art date
Application number
PCT/CN2016/109545
Other languages
English (en)
French (fr)
Inventor
吴迪
陈金涛
诸自强
胡义明
王洪晓
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610952007.2A external-priority patent/CN106505815B/zh
Priority claimed from CN201610971208.7A external-priority patent/CN106451968B/zh
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Priority to US16/346,168 priority Critical patent/US11177727B2/en
Publication of WO2018076482A1 publication Critical patent/WO2018076482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/003Structural associations of slip-rings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly

Definitions

  • the present invention relates to the field of motor technology, and more particularly to an electric machine.
  • the speed control function of the motor has gradually gained more attention.
  • the motor needs to perform special control or structural design in order to change the working speed in a wide range in consideration of the torque characteristics.
  • the motor in the related art uses the field weakening control to achieve the above purpose.
  • this method has certain limitations on the parameters of the motor, and cannot balance the low speed and large torque working area and the high speed and low torque high efficiency operation.
  • the present invention aims to solve at least one of the above technical problems in the related art to some extent.
  • the present invention provides a motor that fully combines the characteristics of a wide range of high-efficiency operation sections of a pole-changing motor, and has the characteristics of high torque and high power density, and is suitable for use in household appliances, electric vehicles, and wind power generation. When high torque direct drive is required.
  • a motor includes: an exciting stator, a salient pole rotor portion, and an exciting rotor portion, wherein any two of the exciting stator, the salient pole rotor portion, and the exciting rotor portion are relatively rotatable; a mechanism that selects between the salient pole rotor portion and the field rotor portion by selectively fixing a relative position of the excitation stator, the salient pole rotor portion, and the excitation rotor portion At least one of the acts acts as a rotor that is rotatable relative to the field stator.
  • the motor of the embodiment of the invention when the motor is operated in the low-speed and large-torque region, the operating state with a higher number of equivalent pole pairs is adopted, and the output torque is large.
  • the equivalent pole pair When the motor is operated in the high-speed running range, the equivalent pole pair is adopted.
  • a small number of operating states naturally meet high-speed operation requirements without the need for field weakening control, and because the operating frequency is reduced, the efficiency is greatly improved, and the equivalent rotor pole pairs and operating electric frequency differences of the three operating states of the motor are different.
  • the variable pole variable pressure operation without changing the motor winding connection is realized, and the working range of the motor speed is broadened, thereby effectively increasing the torque density and high power density of the motor and increasing the application range of the motor.
  • the exciting stator, the salient pole rotor portion and the exciting rotor portion By arranging the exciting stator, the salient pole rotor portion and the exciting rotor portion so as to be rotatable relative to each other, and selectively fixing two of them by a switching mechanism, at least one of the salient pole rotor portion and the exciting rotor portion is formed as
  • the rotor can be rotated relative to the excitation stator, and the rotor pole number and the motor running frequency can be adjusted and controlled without changing the motor winding connection, so that the optimal efficiency range of the motor is low speed and large torque range and high speed low rotation.
  • the switching between the moment intervals effectively increases the torque density and high power density of the motor and increases the application range of the motor.
  • the motor has compact structure, small footprint and wide working range, and can realize controlled adjustment of the number of rotor poles and operating frequency without changing the connection of the motor windings, compared with the motor of the same whole machine volume in the related art. Can output Greater torque and power, with high torque, high power density and so on.
  • the motor according to an embodiment of the present invention may further have the following additional technical features:
  • the field stator, the salient pole rotor portion, and the field rotor portion are sequentially spaced from the outside to the inside in the radial direction of the motor.
  • the field stator, the salient pole rotor portion and the field rotor portion are sequentially spaced from the inside to the outside in the radial direction of the motor.
  • the switching mechanism is switchable between a first state and a second state, one of the salient rotor portion and the field rotor portion being adapted to be coupled to a load transmission, the switching And fixing a relative position of the excitation stator to the other of the salient pole rotor portion and the excitation rotor portion when the mechanism is in the first state, and fixing the salient pole when the switching mechanism is in the second state a rotor portion and the field rotor portion.
  • the switching mechanism includes: an excitation stator fixing ring, the relative position of the field stator fixing ring and the field stator is fixed; a salient rotor fixing ring, the salient rotor fixing ring and the The relative position of the salient pole rotor portion is fixed; the field rotor fixing ring is fixed, the relative position of the field rotor fixing ring and the field rotor portion is fixed, and one of the salient rotor fixing ring and the field rotor fixing ring is suitable Connected to the load transmission; a driving portion and a sliding ring, the sliding ring is driven to slide by the driving portion, and when the switching mechanism is in the first state, the sliding ring is driven by the driving portion Cooperating with the other of the excitation stator fixing ring and the salient rotor fixing ring and the exciting rotor fixing ring, respectively, when the switching mechanism is in the second state, the sliding ring is in the driving portion
  • the driving is matched with the salient rotor
  • the driving portion is a control coil that drives the sliding ring to slide by electromagnetic induction.
  • the sliding ring, the exciting stator fixing ring, the salient rotor fixing ring and the exciting rotor fixing ring are respectively provided with latching teeth
  • the switching mechanism is in the first In the state, the latches on the slip ring respectively mesh with the latches on the field stator retaining ring and the latches on the other of the salient rotor retaining ring and the field rotor retaining ring.
  • the switching mechanism is in the second state, the latches on the slip ring respectively mesh with the latches on the salient rotor retaining ring and the latches on the field rotor retaining ring.
  • a motor shaft adapted to be coupled to the load drive, the motor shaft being driven to rotate by the rotor.
  • the method further includes: a stator casing, the excitation stator, the salient pole rotor portion, and the excitation rotor portion are both disposed in the stator casing, the excitation stator and the stator a casing drive connection; an end cover, the salient rotor portion and the motor shaft are respectively drivingly connected to the end cover, the excitation stator fixing ring is drivingly connected to the stator casing, and the salient rotor fixing ring Connected to the motor shaft, the field rotor retaining ring is drivingly connected to the field rotor portion.
  • the switching mechanism is provided in the field rotor portion.
  • a bearing is respectively passed between the stator casing and the motor shaft, between the end cover and the field rotor portion, and between the field rotor portion and the stator casing Cooperate.
  • the method further includes: a stator casing, the excitation stator, the salient pole rotor portion, and the excitation rotor portion are both disposed in the stator casing, the excitation stator and the stator a casing drive connection; an end cover, the salient pole rotor portion is drivingly connected to the end cover, the motor shaft is drivingly connected to the excitation rotor portion, and the excitation stator fixing ring is drivingly connected to the stator casing
  • the salient rotor retaining ring is drivingly coupled to the salient rotor portion, and the field rotor retaining ring is drivingly coupled to the motor shaft.
  • the switching mechanism is disposed outside the field rotor portion and adjacent to one end of the field rotor portion.
  • stator housing and the motor shaft and the end cover and the motor shaft are respectively matched by bearings.
  • the switching mechanism is disposed outside the excitation stator and adjacent to one end of the excitation stator.
  • the method further includes: an outer rotor casing, wherein the field stator, the salient pole rotor portion, and the field rotor portion are both disposed in the outer rotor casing, and the field rotor portion is
  • the outer rotor casing is connected to the inner rotor casing; the salient pole rotor portion is drivingly connected to the inner rotor casing and the inner rotor casing is drivingly connected with a motor adapted to be connected to the load transmission a stator housing, the excitation stator is drivingly connected to the stator housing, the excitation stator fixing ring is drivingly connected to the stator housing, and the salient rotor fixing ring is connected to the salient rotor portion
  • the field rotor retaining ring is drivingly coupled to the outer rotor casing.
  • the outer rotor casing and the motor shaft and the stator casing and the motor shaft are respectively matched by bearings.
  • the method further includes: an outer rotor casing, wherein the field stator, the salient pole rotor portion, and the field rotor portion are both disposed in the stator casing, and the field rotor portion
  • the outer rotor casing drive connection; the inner rotor casing, the excitation stator is connected to the fixed support shaft, and the salient rotor portion and the fixed support shaft are respectively connected with the inner rotor casing,
  • the field stator fixing ring is drivingly connected to the fixed support shaft, and the salient rotor fixing ring is drivingly connected to the inner rotor casing, and the field rotor fixing ring is drivingly connected to the outer rotor casing.
  • the outer rotor casing and the fixed support shaft and the inner rotor casing and the fixed support shaft are respectively engaged by bearings.
  • the fixed support shaft is a hollow shaft having a circular cross section.
  • the field stator comprises: a stator core; a stator winding, the stator winding being wound on the stator core.
  • the field rotor portion includes: a rotor core; a permanent magnet, the permanent magnet being disposed on the rotor core.
  • the salient pole rotor portion includes: a plurality of magnet cores; a plurality of non-magnetically-permeable spacers, a plurality of the magnet cores and a plurality of the non-magnetic spacers along The circumferential direction of the motor is alternately arranged.
  • the field stator is driven by an alternating current and generates a pole number of a rotating magnetic field of p s , and a pole pair of the exciting field generated by the field rotor portion is p f , the magnet
  • FIG. 1 is a partial structural schematic view of a motor according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the switching mechanism of the motor shown in Figure 1 in a first state
  • Figure 3 is a cross-sectional view of the switching mechanism of the motor shown in Figure 1 in a second state
  • Figure 4 is a comparison diagram of the back electromotive force of the motor shown in Figure 1 in different states
  • Figure 5 is a partial structural view of a motor according to another embodiment of the present invention.
  • Figure 6 is a cross-sectional view of the switching mechanism of the motor shown in Figure 5 in a first state
  • Figure 7 is a cross-sectional view of the switching mechanism of the motor shown in Figure 5 in a second state
  • FIG. 8 is a partial structural schematic view of a motor having a pole number of 4 in a field rotor portion according to an embodiment of the present invention
  • FIG. 9 is a partial structural schematic view of a motor having a pole number of 4 in a field rotor portion according to still another embodiment of the present invention.
  • FIG. 10 is a partial structural schematic view of a motor having a pole number of 4 in a field rotor portion according to another embodiment of the present invention.
  • Figure 11 is a half cross-sectional view of a motor in accordance with one embodiment of the present invention.
  • Figure 12 is a schematic view showing the structure of the motor shown in Figure 11 when the switching mechanism is in the first state;
  • Figure 13 is a schematic view showing the structure of the motor shown in Figure 11 when the switching mechanism is in the second state;
  • Figure 14 is a graph showing the comparison of the pole pair number and the terminal voltage of the motor in two operating states according to an embodiment of the present invention
  • Figure 15 is a half cross-sectional view of a motor in accordance with another embodiment of the present invention.
  • Figure 16 is a schematic view showing the structure of the motor shown in Figure 15 when the switching mechanism is in the first state;
  • Figure 17 is a schematic view showing the structure of the motor shown in Figure 15 when the switching mechanism is in the second state;
  • Figure 18 is a schematic structural view of a field rotor portion of a motor according to an embodiment of the present invention.
  • Figure 19 is a schematic structural view of a field rotor portion of a motor according to still another embodiment of the present invention.
  • Figure 20 is a schematic view showing the structure of a field rotor portion of a motor according to another embodiment of the present invention.
  • excitation stator fixing ring 51: excitation stator fixing ring; 52: salient rotor fixing ring; 53: excitation rotor fixing ring;
  • 541 drive unit (control coil); 542: slip ring;
  • 61 outer rotor casing; 62: inner rotor casing; 63: stator casing; 64: end cover;
  • the motor in the related art uses the field weakening control to achieve the above purpose.
  • this method has certain limitations on the parameters of the motor, and cannot balance the low speed and large torque working area and the high speed and low torque high efficiency operation.
  • variable pole induction motor of the related art works at a fixed grid frequency, and by changing the connection mode of the stator windings, the number of rotor poles induced in the rotor cage is adjusted to adjust the motor speed, but
  • the above method is limited by the fact that the induction motor application is not suitable for the synchronous motor, and the stator winding connection needs to be changed, which is very outdated under the general trend of the development of the DC variable frequency motor.
  • a memory motor can be constructed by using a low-coercive permanent magnet such as AlNiCo, and the magnetization direction of the rotor permanent magnet can be adjusted online by the winding to achieve the purpose of synchronous motor pole-changing, but the above method
  • the low coercive force of the permanent magnet has a lower magnetic energy level, which tends to cause the overall power density of the motor to be much lower than that of the conventional permanent magnet synchronous motor.
  • the present invention proposes a motor that fully combines the characteristics of a large-range adjustment of a high-efficiency operating range of a pole-changing motor, and the motor winding does not require any change in the process of changing the number of poles, and has high torque and high power density.
  • the motor 100 according to an embodiment of the present invention will be specifically described below with reference to FIGS. 1 through 20.
  • the motor 100 includes an exciting stator 10, a salient pole rotor portion 20, an exciting rotor portion 30, and a switching mechanism 50.
  • any two of the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 can be relatively rotated, and the switching mechanism 50 can optionally fix the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30.
  • the relative positions of the two of the two are selected to be at least one of the salient pole rotor portion 20 and the field rotor portion 30 to act as a rotatable stator 10 Turn the rotor.
  • the motor 100 is mainly composed of the exciting stator 10, the salient pole rotor portion 20, the exciting rotor portion 30, and the switching mechanism 50.
  • the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 are formed substantially in a cylindrical shape, and are coaxially disposed in the axial direction (up and down direction as shown in FIG. 2), and the field stator 10 and the salient pole rotor portion 20 are provided. Any two of the exciting rotor portions 30 can be relatively rotated, that is, the salient pole rotor portion 20 can be rotated relative to the exciting stator 10 or the exciting rotor portion 30, and the exciting rotor portion 30 can also be relatively The rotary rotor portion 20 or the exciting stator 10 is rotated.
  • the switching mechanism 50 can fix the relative position between the field stator 10 and the field rotor portion 30 (shown in FIG. 2), and can also fix the field rotor portion 30 and the salient pole portion 20 (as shown in FIGS. 3 and 7).
  • the field rotor portion 30 may be rotated relative to the field stator 10 to form a rotor rotatable relative to the field stator 10.
  • the rotor of the motor 100 in the same state transmits power to the load, thereby not changing the winding connection of the motor 100.
  • the pole-changing operation of the motor 100 is realized, that is, the control adjustment of the number of rotor poles and the operating frequency of the motor 100 is realized.
  • the motor 100 when the motor 100 operates in the low-speed and large-torque region, the operating state with a higher equivalent pole pair is used, and the output torque is large.
  • the equivalent pole pair When the motor 100 operates in the high-speed running interval, the equivalent pole pair is used.
  • the running state naturally satisfies the high-speed working requirement without the weak magnetic control, and the efficiency is greatly improved because the operating frequency is lowered, thereby effectively increasing the torque density and high power density of the motor 100, and increasing the application of the motor 100. range.
  • the motor 100 can be relatively rotated by arranging the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 to any two, and optionally fixing two of them by the switching mechanism 50, thereby making At least one of the salient pole rotor portion 20 and the field rotor portion 30 is formed as a rotor that is rotatable relative to the field stator 10, thereby achieving control adjustment of the number of rotor poles and the operating frequency of the motor 100 without changing the winding connection of the motor 100.
  • the optimal efficiency interval of the motor 100 is switched between the low speed large torque interval and the high speed low torque interval, the torque density and the high power density of the motor 100 are effectively improved, and the application range of the motor 100 is increased.
  • the motor 100 has the advantages of compact structure, small occupied space and wide working range, and can realize controlled adjustment of the number of rotor poles and the operating frequency without changing the winding connection of the motor 100, and has the advantages of high torque and high power density.
  • the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 are sequentially spaced from the outside to the inside in the radial direction of the motor 100.
  • the excitation stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are formed in a substantially circular cross section, and the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are formed.
  • the radial direction of the motor 100 is sequentially spaced from the outside to the inside.
  • the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 respectively form a three-layer ring that is coaxially arranged
  • the convex structure rotor portion 20 is located inside the excitation stator 10 and outside the excitation rotor portion 30, and is disposed at intervals between the three to avoid interference when any two of them rotate relative to each other, thereby affecting the motor 100. normal work.
  • the switching mechanism 50 can fix the relative position between the field stator 10 and the field rotor portion 30 (shown in FIG. 2), so that the salient pole rotor portion 20 is rotated relative to the field stator 10 and the field rotor portion 30, and is formed to be The rotor that rotates relative to the field stator 10; the switching mechanism 50 can also fix the relative position between the field rotor portion 30 and the salient rotor portion 20 (shown in FIGS.
  • the portion 30 is rotated relative to the field stator 10 to form a rotor rotatable relative to the field stator 10; or the switching mechanism 50 can fix the relative position between the field stator 10 and the salient rotor portion 20 (shown in FIG. 6), thereby
  • the field rotor portion 30 is rotatable with respect to the field stator 10 and the salient pole rotor portion 20, respectively, and is formed as a rotor rotatable relative to the field stator 10.
  • the rotor of the motor 100 in three states can respectively output torque to the load to realize the motor 100. The switching of the three working states.
  • the switching mechanism 50 is switchable between a first state and a second state, one of the salient rotor portion 20 and the field rotor portion 30 being adapted to be coupled to a load drive, the switching mechanism 50 being in the In one state, the relative positions of the field stator 10 and the other of the salient pole rotor portion 20 and the field rotor portion 30 are fixed, and when the switching mechanism 50 is in the second state, the relative positions of the salient rotor portion 20 and the field rotor portion 30 are fixed.
  • the load is drivingly coupled to the salient pole rotor portion 20, that is, the load and the salient pole rotor portion 20 can be synchronized or synchronized without moving, and the switching mechanism
  • the relative position of the field stator 10 and the field rotor portion 30 may be fixed, and the relative position of the load and the field rotor portion 30, that is, the fixed load, the relative position of the salient pole rotor portion 20 and the field rotor portion 30 may be fixed.
  • the switching mechanism 50 When the switching mechanism 50 is in the first state (the position shown in FIG. 2), the switching mechanism 50 fixedly connects the relative positions of the exciting stator 10 and the exciting rotor portion 30, so that the exciting stator 10 and the exciting rotor portion 30 do not move synchronously, and the salient pole
  • the rotor portion 20 forms a rotor rotatable relative to the field stator 10; when the switching mechanism 50 is in the second state (the position shown in FIG. 3), the switching mechanism 50 fixedly connects the relative positions of the salient rotor portion 20 and the field rotor portion 30.
  • the salient pole rotor portion 20 and the exciting rotor portion 30 can be moved or not moved with the load to achieve the purpose of transmitting power and motion to the load, and the salient pole rotor portion 20 and the exciting rotor portion 30 are formed to be rotatable relative to the exciting stator 10.
  • the rotor thereby switching between the first state and the second state of the motor 100 by the switching mechanism 50, thereby achieving adjustment of the equivalent rotor pole logarithm and the operating point frequency, thereby realizing the pole-changing operation of the motor 100.
  • the present invention is not limited thereto.
  • the load is drivingly coupled to the exciting rotor portion 30, that is, the load and the exciting rotor portion 30 may be synchronized or synchronized without moving, and the switching mechanism 50 may
  • the relative positions of the fixed field stator 10 and the salient pole rotor portion 20 may be fixed to the relative positions of the load and the salient pole rotor portion 20, that is, the relative positions of the fixed load, the salient pole rotor portion 20, and the exciting rotor portion 30.
  • the load is drivingly coupled to the field rotor portion 30, that is, the load and the field rotor portion 30 can be synchronized or synchronized without movement, when the switching mechanism 50 is in the first state (as shown in FIG. 6).
  • Switching machine The structure 50 fixedly connects the relative positions of the field stator 10 and the salient pole rotor portion 20 such that the field stator 10 and the salient pole rotor portion 20 do not move synchronously, and the field rotor portion 30 forms a rotor rotatable relative to the field stator 10; when the switching mechanism 50 When in the second state (the position shown in FIG.
  • the switching mechanism 50 fixedly connects the relative positions of the salient rotor portion 20 and the exciting rotor portion 30, so that the salient rotor portion 20 and the exciting rotor portion 30 can move synchronously with the load or Without moving, the salient pole rotor portion 20 and the exciting rotor portion 30 form a rotor rotatable relative to the field stator 10, thereby switching between the first state and the second state of the motor 100 by the switching mechanism 50, thereby realizing the equivalent rotor
  • the pole logarithm and the operating point frequency are adjusted to achieve the pole-changing operation of the motor 100.
  • the switching mechanism 50 includes an excitation stator fixing ring 51, a salient rotor fixing ring 52, a field rotor fixing ring 53 driving portion 541, and a slip ring 542.
  • the relative positions of the field stator fixing ring 51 and the field stator 10 are fixed, and the salient pole rotor is fixed.
  • the relative position of the ring 52 and the salient pole rotor portion 20 is fixed, the relative position of the exciting rotor fixing ring 53 and the exciting rotor portion 30 is fixed, and one of the salient rotor fixing ring 52 and the exciting rotor fixing ring 53 is adapted to be connected to the load transmission.
  • the slide ring 542 is driven to slide by the driving portion 541.
  • the slide ring 542 When the switching mechanism 50 is in the first state, the slide ring 542 is driven by the driving portion 541 and the field stator fixing ring 51 and the salient rotor fixing ring 52 and the field rotor fixing ring 53 respectively. In another cooperation, when the switching mechanism 50 is in the second state, the slide ring 542 is engaged with the salient rotor fixing ring 52 and the field rotor fixing ring 53 by the driving portion 541, respectively.
  • the switching mechanism 50 is mainly composed of an exciting stator fixing ring 51, a salient rotor fixing ring 52, an exciting rotor fixing ring 53, a driving portion 541, and a slip ring 542.
  • the field stator fixing ring 51 is formed substantially in a cylindrical structure, and the lower end of the field stator fixing ring 51 is movably connected to the load, and the relative positions of the field stator fixing ring 51 and the field stator 10 are fixed, that is, the field stator fixing ring 51 and the field stator 10 are excited.
  • the load may be drivingly coupled to the salient rotor retaining ring 52 (as shown in Figures 2 and 3, synchronized between the two), or may be coupled to the field rotor retaining ring 53 (as shown in Figures 6 and 7). Show that the two move synchronously).
  • the slip ring 542 is disposed adjacent to the field stator fixing ring 51, the salient pole rotor fixing ring 52, and the field rotor fixing ring 53, and can be driven in the axial direction (up and down direction as shown in FIG. 2) by the driving portion 541, thereby realizing the motor 100.
  • the switching between the different states in turn, enables the pole-changing operation of the motor 100.
  • the salient pole rotor portion 20 is coupled to the load transmission.
  • the switching mechanism 50 When the switching mechanism 50 is in the first state (as shown in FIG. 2), the sliding ring 542 is driven by the driving portion 541, and one end is matched with the field stator fixing ring 51. The other end is engaged with the field rotor fixing ring 53, so that the relative positions of the field stator 10 and the field rotor portion 30 are fixed (i.e., synchronized without moving).
  • the salient pole rotor portion 20 is formed as a rotor that rotates relative to the field stator 10.
  • the switching mechanism 50 When the switching mechanism 50 is in the second shape In the state (as shown in FIG.
  • the slide ring 542 is driven by the driving portion 541, one end is engaged with the salient rotor fixing ring 52, and the other end is engaged with the exciting rotor fixing ring 53, so that the salient pole rotor portion 20 and the excitation
  • the relative position of the rotor portion 30 is fixed (i.e., synchronized motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the field rotor portion 30 is coupled to the load transmission.
  • the slip ring 542 is driven by the driving portion 541, one end and the field stator
  • the fixing ring 51 is fitted, and the other end is engaged with the salient rotor fixing ring 52, so that the relative positions of the exciting stator 10 and the salient pole rotor portion 20 are fixed (ie, synchronously not moving).
  • the exciting rotor portion 30 is formed as a relative exciting stator. 10 rotating rotors.
  • the switching mechanism 50 is in the second state (as shown in FIG.
  • the slide ring 542 is driven by the driving portion 541, one end is engaged with the salient rotor fixing ring 52, and the other end is engaged with the exciting rotor fixing ring 53, thereby
  • the relative positions of the salient pole rotor portion 20 and the exciting rotor portion 30 are fixed (i.e., synchronized motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the motor 100 according to the present invention can quickly achieve switching between the first state and the second state by the switching mechanism 50, thereby realizing the number of rotor poles and the operation of the motor 100 without changing the winding connection of the motor 100.
  • the frequency control adjustment increases the torque and power output by the motor 100, increasing the application range of the motor 100.
  • the drive unit 541 is a control coil that slides the slide ring 542 by electromagnetic induction.
  • the driving portion 541 a control coil that can slide the sliding ring 542 by electromagnetic induction, the wiring inside the motor 100 can be simplified, making the overall structure of the motor 100 simpler.
  • the sliding ring 542, the field stator fixing ring 51, the salient rotor fixing ring 52 and the field rotor fixing ring 53 are respectively provided with latching teeth.
  • the latching teeth on the sliding ring 542 are respectively The latches on the field stator retaining ring 51 and the latches on the other of the salient rotor retaining ring 52 and the field rotor retaining ring 53 are engaged.
  • the latches on the slip ring 542 are respectively The latches on the salient rotor retaining ring 52 engage with the latches on the field rotor retaining ring 53.
  • the sliding ring 542 is formed substantially in a cylindrical structure.
  • the inner wall and the outer wall of the sliding ring 542 of the cylindrical structure are respectively provided with engaging teeth, and the outer wall of the salient rotor fixing ring 52 is provided.
  • the latching teeth are provided with engaging teeth on the inner wall of the exciting rotor fixing ring 53, and the engaging teeth on the inner wall of the sliding ring 542 can be engaged with the engaging teeth on the outer walls of the salient rotor fixing ring 52 and the exciting stator fixing ring 51, and the sliding ring 542
  • the latches on the outer wall can be engaged with the latches on the inner wall of the field rotor retaining ring 53 to enhance the slip ring 542 and the field stator retaining ring 51, the salient rotor retaining ring 52 and the field rotor retaining ring by the cooperation of the teeth.
  • the connection reliability between 53 ensures the normal operation of the motor 100.
  • the switching mechanism 50 when the switching mechanism 50 is in the first state (as shown in FIG. 2), the latches on the outer wall of the slip ring 542 mesh with the latches on the inner wall of the field rotor retaining ring 53, and the latches on the inner wall of the slip ring 542 Engaging the teeth on the outer wall of the field stator fixing ring 51 to ensure the transmission connection between the field stator 10 and the field rotor portion 30, and the excitation stator 10 and the excitation
  • the magnetic rotor portion 30 is synchronously rotated; when the switching mechanism 50 is in the second state (as shown in FIG.
  • the latches on the inner wall of the sliding ring 542 mesh with the latches on the outer wall of the salient rotor retaining ring 52, and the slip ring
  • the latches on the outer wall of the 542 mesh with the latches on the inner wall of the field rotor retaining ring 53, thereby ensuring the transmission connection of the salient pole rotor portion 20 and the field rotor portion 30, and the salient pole rotor portion 20 and the field rotor portion 30 rotate in synchronization.
  • the latches on the inner wall of the slip ring 542 can engage with the engaging teeth on the outer walls of the field rotor retaining ring 53 and the field stator retaining ring 51, the slip ring
  • the latches on the outer wall of the 542 can be engaged with the latches on the inner wall of the salient rotor retaining ring 52, thereby enhancing the slip ring 542 and the field stator retaining ring 51, the salient rotor retaining ring 52 and the exciting rotor by the cooperation of the engaging teeth.
  • the connection reliability between the fixing rings 53 ensures the normal operation of the motor 100.
  • the switching mechanism 50 when the switching mechanism 50 is in the first state (as shown in FIG. 6), the latches on the outer wall of the slip ring 542 mesh with the latches on the inner wall of the salient rotor retaining ring 52, and the card on the inner wall of the slip ring 542 The teeth mesh with the teeth on the outer wall of the field stator fixing ring 51, thereby ensuring the transmission connection between the field stator 10 and the salient pole rotor portion 20, and the field stator 10 and the salient pole rotor portion 20 are not rotated synchronously; when the switching mechanism 50 is in the second state (as shown in Fig.
  • the latches on the inner wall of the slip ring 542 mesh with the latches on the outer wall of the field rotor retaining ring 53, the latches on the outer wall of the slip ring 542 and the card on the inner wall of the salient rotor retaining ring 52.
  • the teeth are meshed to ensure the transmission connection between the salient pole rotor portion 20 and the exciting rotor portion 30, and the salient pole rotor portion 20 and the exciting rotor portion 30 rotate in synchronization.
  • the motor 100 further includes a motor shaft 41 adapted to be coupled to a load drive, the motor shaft 41 being driven to rotate by the rotor.
  • the motor 100 is mainly composed of an exciting stator 10, a salient pole rotor portion 20, an exciting rotor portion 30, a switching mechanism 50, and a motor shaft 41.
  • the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 are formed substantially in a cylindrical shape, and are coaxially disposed in the axial direction (up and down direction as shown in FIG. 2), and the field stator 10 and the salient pole rotor portion 20 are provided.
  • any two of the exciting rotor portions 30 can be relatively rotated, that is, the salient pole rotor portion 20 can be rotated relative to the exciting stator 10 or the exciting rotor portion 30, and the exciting rotor portion 30 can also be relatively The rotary rotor portion 20 or the exciting stator 10 is rotated.
  • the switching mechanism 50 can fix the relative position between the field stator 10 and the field rotor portion 30 (shown in FIG. 2), and can also fix the field rotor portion 30 and the salient pole portion 20 (as shown in FIGS. 3 and 7).
  • the field rotor portion 30 may be rotated relative to the field stator 10 to form a rotor that is rotatable relative to the field stator 10 and drives the motor shaft 41.
  • the rotor of the motor 100 in the same state can drive the motor shaft 41 to rotate, and thus does not change.
  • the pole-changing operation of the motor 100 is realized, that is, the control adjustment of the number of rotor poles and the operating frequency of the motor 100 is realized.
  • the motor 100 can be relatively rotated by arranging the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 to any two, and optionally fixing two of them by the switching mechanism 50, thereby making At least one of the salient pole rotor portion 20 and the field rotor portion 30 is formed as a rotor that is rotatable relative to the field stator 10, thereby achieving control adjustment of the number of rotor poles and the operating frequency of the motor 100 without changing the winding connection of the motor 100.
  • the optimal efficiency interval of the motor 100 is switched between the low speed large torque interval and the high speed low torque interval, the torque density and the high power density of the motor 100 are effectively improved, and the application range of the motor 100 is increased.
  • the motor 100 has the advantages of compact structure, small occupied space and wide working range, and can realize controlled adjustment of the number of rotor poles and the operating frequency without changing the winding connection of the motor 100, and has the advantages of high torque and high power density.
  • the motor 100 further includes a stator casing 63 and an end cover 64.
  • the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 are both disposed in the stator casing 63, and are excited.
  • the stator 10 is drivingly connected to the stator casing 63.
  • the salient pole rotor portion 20 and the motor shaft 41 are respectively drivingly connected to the end cover 64.
  • the exciting stator fixing ring 51 is drivingly connected with the stator casing 63.
  • the salient rotor fixing ring 52 and the motor shaft 41 are connected.
  • the drive connection, the field rotor retaining ring 53 is drivingly coupled to the field rotor portion 30.
  • the stator casing 63 is formed substantially in a cylindrical structure in which one end (upper end) is open, and the exciting stator 10, the salient pole rotor portion 20, and the exciting stator 10 are radially oriented in the stator casing 63.
  • the outer casings are sequentially disposed in the stator casing 63 and disposed coaxially, thereby protecting the internal components of the motor 100 through the stator casing 63 to avoid accidental damage.
  • the field stator fixing ring 51 is disposed at the upper end of the middle portion of the stator casing 63 and integrally formed with the stator casing 63.
  • the switching mechanism 50 When the switching mechanism 50 is in the first state (the position shown in FIG. 2), the sliding ring 542 is driven by the driving portion 541, one end is engaged with the field stator fixing ring 51, and the other end is engaged with the field rotor fixing ring 53, thereby exciting
  • the relative positions of the stator 10 and the exciting rotor portion 30 are fixed (i.e., the two are in synchronization with each other), and at this time, the salient pole rotor portion 20 is formed as a rotor that rotates relative to the exciting stator 10.
  • the switching mechanism 50 When the switching mechanism 50 is in the second state (as shown in FIG.
  • the sliding ring 542 is driven by the driving portion 541, one end is engaged with the salient rotor fixing ring 52, and the other end is engaged with the exciting rotor fixing ring 53, thereby
  • the relative positions of the salient pole rotor portion 20 and the exciting rotor portion 30 are fixed (ie, the two are in synchronous motion),
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the switching between the first state and the second state of the motor 100 is realized by the switching mechanism 50, thereby realizing the adjustment of the equivalent rotor pole number and the operating point frequency, thereby realizing the pole-changing operation of the motor 100.
  • the switching mechanism 50 is provided in the field rotor portion 30.
  • the switching mechanism 50 is provided between the field rotor portion 30 and the motor shaft 41, and is adjacent to one end (inner wall) of the field rotor portion 30, so that the circuit wiring of the switching mechanism 50 can be simplified, and the switching mechanism 50 can be enhanced. Reliability. It should be noted that the switching mechanism 50 can be electromagnetic or mechanical, and can be selected by those skilled in the art according to actual design requirements.
  • stator casing 63 and the motor shaft 41 between the stator casing 63 and the motor shaft 41, between the end cover 64 and the field rotor portion 30, and between the field rotor portion 30 and the stator casing 63 are respectively engaged by bearings 70.
  • the motor 100 further includes a stator casing 63 and an end cover 64.
  • the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 are both disposed in the stator casing 63, and the field stator 10 is
  • the stator casing 63 is drivingly connected
  • the salient pole rotor portion 20 is drivingly connected to the end cover 64
  • the motor shaft 41 is drivingly connected to the exciting rotor portion
  • the exciting stator fixing ring 51 is drivingly connected to the stator casing 63
  • the salient rotor fixing ring 52 is coupled with
  • the salient pole rotor portion 20 is drivingly coupled
  • the field rotor retaining ring 53 is drivingly coupled to the motor shaft 41.
  • the stator casing 63 is formed substantially in a cylindrical structure in which one end (upper end) is open, and the exciting stator 10, the salient pole rotor portion 20, and the exciting stator 10 portion are along the stator casing 63.
  • the radial directions are sequentially spaced apart from the outside to the inside of the stator casing 63 and disposed coaxially, thereby protecting the internal components of the motor 100 through the stator casing 63 to avoid accidental damage.
  • the field stator fixing ring 51 is disposed at the upper end of the middle portion of the stator casing 63 and integrally formed with the stator casing 63.
  • the switching mechanism 50 When the switching mechanism 50 is in the first state (the position shown in FIG. 6), the slide ring 542 is driven by the driving portion 541, one end is engaged with the field stator fixing ring 51, and the other end is engaged with the salient rotor fixing ring 52, thereby Excitation stator 10
  • the relative position of the salient pole rotor portion 20 is fixed (i.e., the two are in synchronization with each other).
  • the exciting rotor portion 30 is formed as a rotor that rotates relative to the exciting stator 10.
  • the slide ring 542 is driven by the driving portion 541, one end is engaged with the salient rotor fixing ring 52, and the other end is engaged with the exciting rotor fixing ring 53, thereby
  • the relative positions of the salient pole rotor portion 20 and the exciting rotor portion 30 are fixed (that is, the two are in synchronous motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the switching between the first state and the second state of the motor 100 is realized by the switching mechanism 50, thereby realizing the adjustment of the equivalent rotor pole number and the operating point frequency, thereby realizing the pole-changing operation of the motor 100.
  • the switching mechanism 50 is provided outside the field rotor portion 30 and adjacent to one end of the field rotor portion 30.
  • the switching mechanism 50 is provided outside the field rotor portion 30 and adjacent to one end of the field rotor portion 30, so that the circuit wiring of the switching mechanism 50 can be simplified, and the reliability of the switching mechanism 50 can be enhanced. It should be noted that the switching mechanism 50 can be electromagnetic or mechanical, and can be selected by those skilled in the art according to actual design requirements.
  • stator casing 63 and the motor shaft 41, and the end cover 64 and the motor shaft 41 are respectively engaged by bearings 70.
  • the end cover 64 and the motor shaft 41 are cooperatively held by bearings 70 to maintain mutual distance and rotational independence.
  • the field stator 10 includes a stator core 11 and a stator winding 12, and the stator winding 12 is wound on the stator core 11 of the stator.
  • the field stator 10 is mainly composed of a stator core 11 and a stator winding 12.
  • the stator core 11 is made of a highly magnetic material, and the high magnetic material may be a silicon steel sheet, a cobalt steel sheet, or a moiré. Alloy, SMC and other materials.
  • the stator winding 12 is wound on the stator core 11 of the stator.
  • the stator winding 12 may be a concentrated winding (as shown in FIG. 1) or a distributed winding (as shown in FIG. 5), that is, a span of the stator winding 12.
  • stator windings 12 may be 1 or other integers, while the number of phases of the stator windings 12 may be single or multi-phase such that the stator windings 12 pass an AC current to generate a magnetic field. It is worth noting that the specific material of the stator core 14 and the winding form of the stator winding 12 and the number of phases of the stator winding 12 can be adaptively selected according to actual design requirements to ensure the torque and power density of the motor 100. .
  • the field rotor portion 30 includes a rotor core 51 and a permanent magnet 32, and the permanent magnet 32 is disposed on the rotor core 31.
  • the exciting rotor portion 30 is mainly composed of a rotor core 51 and a permanent magnet 32, and the permanent magnet 32 is provided on the rotor core 31 and uniformly arranged in the circumferential direction of the rotor core 31.
  • the rotor core 51 is made of a highly magnetic material, which may be a silicon steel sheet, a cobalt steel sheet, a permalloy, an SMC or the like.
  • the permanent magnet 32 is mainly composed of a permanent magnet material, and the permanent magnet material may be a material such as neodymium iron boron, ferrite, aluminum nickel cobalt, samarium cobalt or the like.
  • the permanent magnet 32 may be combined with the rotor core 51 by surface mount (SPM), built-in (IPM), surface mount (Inset PM), etc., for example, in one example of the present invention, the permanent magnet 32 Embedding the rotor guide in the same polarity
  • the magnetic core 31 ensures the structure of the exciting rotor portion 30 to be stabilized, thereby generating an exciting magnetic field.
  • the permanent magnets 32 are formed substantially in an elongated structure, and the number of the permanent magnets 32 is 24.
  • the plurality of elongated permanent magnets 32 are circumferentially spaced apart from each other in the same polarity to be embedded in the rotor core. 31, and the long sides of the elongated permanent magnets 32 are arranged in the radial direction (as shown in FIGS. 1 and 5).
  • the number of permanent magnets 32 may also be 8, and the long sides of the elongated permanent magnets 32 are arranged in the circumferential direction (as shown in FIG. 9).
  • the shape of the permanent magnets 32 may also be an arc shape, and multiple arcs.
  • the permanent magnets 32 of the shape are interposed in the circumferential direction in the circumferential direction so as to be embedded in the rotor core 51, and the arc edges of the arc-shaped permanent magnets 32 are arranged in the circumferential direction (as shown in FIGS. 8 and 10). ). It should be noted that those skilled in the art can change the number, shape and arrangement of the permanent magnets 32 according to actual design requirements, so as to adjust the equivalent rotor pole number and the working electric frequency, so that when the output mechanical speed is the same, it can be switched. Different operating states of the motor 100, such as the first state and the second state, enable a pole-changing operation.
  • the salient pole rotor portion 20 includes a plurality of cores 21 and a plurality of non-magnetic spacers 22, and the plurality of cores 21 and the plurality of non-magnetic spacers 22 are alternately arranged along the circumferential direction of the motor 100.
  • the salient pole rotor portion 20 is mainly composed of a plurality of cores 21 and a plurality of non-magnetic spacers 22, and a plurality of cores 21 and a plurality of non-magnetic spacers 22 are alternated along the circumference of the motor 100.
  • the magnetic core 21 is made of a highly magnetic material, which may be a silicon steel sheet, a cobalt steel sheet, a permalloy, an SMC or the like.
  • the non-magnetic spacing block 22 is made of a non-magnetic material, and the non-magnetic material may be air, plastic, polymer, non-magnetic metal or the like.
  • the field stator 10 is driven by an alternating current and generates a rotating magnetic field having a pole pair number p s
  • the exciting rotor portion 30 generates an exciting magnetic field having a pole pair number p f
  • the number of the magnetic conductive cores 21 is p r
  • the number of the conductive cores 21 is equal to the sum of the number of pole pairs of the rotating magnetic field and the number of pole pairs of the exciting magnetic field or the difference between the two, thereby ensuring that the motor 100 can operate normally under different operating conditions.
  • the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are sequentially spaced from the inside to the outside in the radial direction of the motor 100, and any two of the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are provided. Each of the two can be relatively rotated, and the switching mechanism 50 selects at least two of the salient rotor portion 20 and the exciting rotor portion 30 by selectively fixing the relative positions of the exciting stator 10, the salient rotor portion 20, and the exciting rotor portion 30.
  • One acts as a rotor that is rotatable relative to the field stator 10.
  • the motor 100 is mainly composed of the exciting stator 10, the salient pole rotor portion 20, the exciting rotor portion 30, and the switching mechanism 50.
  • the field stator 10, the salient pole rotor portion 20, and the field rotor portion 30 are formed substantially in a cylindrical structure extending in the axial direction of the motor 100 (in the left-right direction as shown in FIG. 12), and in the radial direction of the motor 100, the salient pole portion 20 is located outside the excitation stator 10 and inside the excitation rotor portion 30.
  • the excitation stator 10, the salient pole rotor portion 20, and the excitation rotor portion 30 are coaxially arranged, and the three are spaced apart to avoid any relative relationship between the two.
  • any two of the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are The rotary rotor portion 20 can be rotated relative to the field stator 10 or the field rotor portion 30, and the field rotor portion 30 can also be rotated relative to the salient rotor portion 20 or the field stator 10. .
  • the switching mechanism 50 can fix the relative position between the field stator 10 and the field rotor portion 30 such that the salient pole rotor portion 20 rotates relative to the field stator 10 and the field rotor portion 30 to be rotatable relative to the field stator 10.
  • the rotor; the switching mechanism 50 may also fix the relative position between the field rotor portion 30 and the salient pole rotor portion 20 such that the salient pole rotor portion 20 and the field rotor portion 30 rotate relative to the field stator 10 to form a relatively excitable stator 10
  • the rotating rotor; or the switching mechanism 50 can fix the relative position between the field stator 10 and the salient pole rotor portion 20, so that the field rotor portion 30 can be rotated relative to the field stator 10 and the salient pole rotor portion 20, respectively, so as to be opposite
  • the rotor of the rotating stator 10 rotates, and the rotor of the motor 100 in three states can respectively output torque, thereby switching the three working states of the motor 100, thereby realizing the change of the motor 100 without changing the winding connection of the motor 100.
  • Extremely variable pressure operation that is, control adjustment of the number of rotor poles and the operating frequency of the motor 100.
  • the motor 100 when the motor 100 operates in the low-speed and large-torque region, the operating state with a higher equivalent pole pair is used, and the output torque is large.
  • the equivalent pole pair When the motor 100 operates in the high-speed running interval, the equivalent pole pair is used.
  • the running state naturally satisfies the high-speed working requirement without the weak magnetic control, and because the operating frequency is lowered, the efficiency is greatly improved, and the equivalent rotor pole number and the working electric frequency of the three operating states of the motor 100 are significantly different.
  • the variable pole pressure swing operation without changing the winding connection of the motor 100 is realized, and the working range of the speed of the motor 100 is broadened, thereby effectively increasing the torque density and high power density of the motor 100, and increasing the application range of the motor 100.
  • the motor 100 can be relatively rotated by arranging the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 to any two, and optionally fixing two of them by the switching mechanism 50, thereby making At least one of the salient pole rotor portion 20 and the exciting rotor portion 30 is formed as a rotor rotatable relative to the exciting stator 10, thereby realizing control adjustment of the number of rotor poles and the operating frequency of the motor 100 without changing the winding connection of the motor 100, Thereby, the optimal efficiency interval of the motor 100 is switched between the low speed large torque interval and the high speed low torque interval, the torque density and the high power density of the motor 100 are effectively improved, and the application range of the motor 100 is increased.
  • the motor 100 has a compact structure, small occupied space, wide working range, and can realize controlled adjustment of the number of rotor poles and the operating frequency without changing the winding connection of the motor 100, and the motor 100 of the same overall volume in the related art. In comparison, it can output more torque and power, and has the advantages of high torque and high power density.
  • the switching mechanism 50 is switchable between a first state and a second state, one of the salient rotor portion 20 and the field rotor portion 30 being adapted to be coupled to a load drive, the switching mechanism 50 being in the In one state, the relative positions of the field stator 10 and the other of the salient pole rotor portion 20 and the field rotor portion 30 are fixed, and when the switching mechanism 50 is in the second state, the relative positions of the field rotor portion 30 and the salient pole rotor portion 20 are fixed.
  • the load is drivingly coupled to the salient pole rotor portion 20, that is, the load and the salient pole rotor portion 20 can be synchronized or synchronized without moving, and the switching mechanism 50 can fix the excitation stator
  • the relative position of the field rotor portion 30 and the field rotor portion 30 may be fixed to the position of the salient rotor portion 20 and the field rotor portion 30.
  • the switching mechanism 50 when the switching mechanism 50 is in the first state, the switching mechanism 50 fixedly connects the relative positions of the field stator 10 and the field rotor portion 30, so that the field stator 10 and the field rotor portion 30 do not move in synchronization, and the salient pole portion 20 forms a rotor rotatable relative to the field stator 10; as shown in FIG. 12,
  • the switching mechanism 50 when the switching mechanism 50 is in the second state, the switching mechanism 50 fixedly connects the relative positions of the salient rotor portion 20 and the field rotor portion 30 such that the salient pole
  • the rotor portion 20 and the field rotor portion 30 may or may not move in synchronization, and the salient rotor portion 20 and the field rotor portion 30 form a rotor rotatable relative to the field stator 10, thereby realizing the first state and the second state of the motor 100 through the switching mechanism 50.
  • the switching between the states thereby achieving the adjustment of the equivalent rotor pole logarithm and the operating point frequency, thereby realizing the pole-changing operation of the motor 100.
  • the present invention is not limited thereto.
  • the load is drivingly coupled to the exciting rotor portion 30, that is, the load and the exciting rotor portion 30 may be synchronized or synchronized without moving, and the switching mechanism 50 may
  • the relative positions of the fixed field stator 10 and the salient pole rotor portion 20 may be fixed to the relative positions of the field rotor portion 30 and the salient pole rotor portion 20.
  • the switching mechanism 50 when the switching mechanism 50 is in the first state, the switching mechanism 50 fixedly connects the relative positions of the exciting stator 10 and the salient pole rotor portion 20, so that the exciting stator 10 and the salient pole rotor portion 20 do not move synchronously, and the exciting rotor
  • the portion 30 forms a rotor rotatable relative to the field stator 10; as shown in FIG.
  • the switching mechanism 50 fixedly connects the relative positions of the salient rotor portion 20 and the field rotor portion 30 so that the convex portion
  • the pole rotor portion 20 and the field rotor portion 30 can drive the load synchronously or not, and the salient rotor portion 20 and the field rotor portion 30 form a rotor rotatable relative to the field stator 10, thereby realizing the first state of the motor 100 through the switching mechanism 50.
  • the switching between the second state and the second state further realizes the adjustment of the equivalent rotor pole logarithm and the operating point frequency, thereby realizing the pole-changing operation of the motor 100.
  • the motor 100 when the motor 100 operates in the low-speed and large-torque region, the operating state with a higher equivalent pole pair is used, and the output torque is large.
  • the equivalent pole pair When the motor 100 operates in the high-speed running interval, the equivalent pole pair is used.
  • the running state naturally satisfies the high-speed working requirement without the weak magnetic control, and because the operating frequency is lowered, the efficiency is greatly improved, and the equivalent rotor pole number and the working electric frequency of the two operating states of the motor 100 are significantly different.
  • the variable pole pressure swing operation without changing the winding connection of the motor 100 is realized, and the working range of the speed of the motor 100 is broadened, thereby effectively increasing the torque density and high power density of the motor 100, and increasing the application range of the motor 100.
  • the switching mechanism 50 includes an exciting stator fixing ring 51, a salient rotor fixing ring 52, a field rotor fixing ring 53, a driving portion 541, and a slip ring 542.
  • the relative positions of the field stator fixing ring 51 and the field stator 10 are fixed
  • the relative positions of the salient rotor fixing ring 52 and the salient pole rotor portion 20 are fixed
  • the relative positions of the field rotor fixing ring 53 and the field rotor portion 30 are fixed.
  • One of the salient rotor retaining ring 52 and the exciting rotor retaining ring 53 is adapted to be coupled to a load drive
  • the slip ring 542 is driven to slide by the driving portion 541.
  • the sliding ring 542 When the switching mechanism 50 is in the first state, the sliding ring 542 is driven at the driving portion 541. The lower part cooperates with the other of the field stator fixing ring 51 and the salient rotor fixing ring 52 and the field rotor fixing ring 53 respectively.
  • the sliding ring 542 When the switching mechanism 50 is in the second state, the sliding ring 542 is respectively driven by the driving portion 541 and the salient pole Rotor
  • the retaining ring 52 is mated with the field rotor retaining ring 53.
  • the switching mechanism 50 is mainly composed of an exciting stator fixing ring 51, a salient rotor fixing ring 52, an exciting rotor fixing ring 53, a driving portion 541, and a slip ring 542.
  • the field stator fixing ring 51 is formed substantially in a cylindrical structure, and the relative positions of the field stator fixing ring 51 and the field stator 10 are fixed, that is, the field stator fixing ring 51 and the field stator 10 are not synchronized, and the salient rotor fixing ring 52 is The relative position of the salient pole rotor portion 20 is fixed, and the salient pole rotor retaining ring 52 and the salient pole rotor portion 20 can move synchronously or synchronously; the relative positions of the exciting rotor retaining ring 53 and the exciting rotor portion 30 are fixed, that is, the exciting rotor The fixed ring 53 and the exciting rotor portion 30 can move synchronously or simultaneously.
  • the salient pole rotor portion 20 is connected to the load transmission.
  • the sliding ring 542 is driven by the driving portion 541, and one end is engaged with the exciting stator fixing ring 51, and the other One end is engaged with the field rotor fixing ring 53, so that the relative positions of the field stator 10 and the field rotor portion 30 are fixed (i.e., synchronized without moving), and at this time, the salient pole rotor portion 20 is formed as a rotor that rotates relative to the field stator 10.
  • the sliding ring 542 is driven by the driving portion 541, one end is engaged with the salient rotor fixing ring 52, and the other end is engaged with the exciting rotor fixing ring 53, so that the salient pole
  • the relative positions of the rotor portion 20 and the exciting rotor portion 30 are fixed (i.e., synchronized motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the exciting rotor portion 30 is connected to the load transmission.
  • the sliding ring 542 is driven by the driving portion 541, and one end is engaged with the exciting stator fixing ring 51, and the other end is engaged.
  • the salient rotor fixing ring 52 is engaged so that the relative positions of the exciting stator 10 and the salient pole rotor portion 20 are fixed (i.e., synchronized without moving).
  • the exciting rotor portion 30 is formed as a rotor that rotates relative to the exciting stator 10. As shown in FIG.
  • the sliding ring 542 is driven by the driving portion 541, one end is engaged with the salient rotor fixing ring 52, and the other end is engaged with the exciting rotor fixing ring 53, so that the salient pole
  • the relative positions of the rotor portion 20 and the exciting rotor portion 30 are fixed (i.e., synchronized motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the motor 100 according to the present invention can quickly achieve switching between the first state and the second state by the switching mechanism 50, thereby realizing the number of rotor poles and the operation of the motor 100 without changing the winding connection of the motor 100.
  • the frequency control adjustment increases the torque and power output by the motor 100, increasing the application range of the motor 100.
  • the driving portion 541 is a control coil that slides the sliding ring 542 by electromagnetic induction.
  • the driving portion 541 a control coil that can slide the sliding ring 542 by electromagnetic induction, the wiring inside the motor 100 can be simplified, making the overall structure of the motor 100 simpler.
  • the sliding ring 542, the field stator fixing ring 51, the salient rotor fixing ring 52 and the field rotor fixing ring 53 are respectively provided with latching teeth.
  • the latching teeth on the sliding ring 542 are respectively The latches on the field stator retaining ring 51 and the latches on the other of the salient rotor retaining ring 52 and the field rotor retaining ring 53 are switched
  • the latches on the slip ring 542 mesh with the latches on the salient rotor retaining ring 52 and the latches on the field rotor retaining ring 53, respectively.
  • the sliding ring 542 is formed substantially in a cylindrical shape.
  • the inner wall and the outer wall of the sliding ring 542 of the cylindrical structure are respectively provided with engaging teeth, and the outer wall of the salient rotor fixing ring 52 is provided.
  • the latching teeth are provided with engaging teeth on the inner wall of the exciting rotor fixing ring 53, and the engaging teeth on the inner wall of the sliding ring 542 can be engaged with the engaging teeth on the outer walls of the salient rotor fixing ring 52 and the exciting stator fixing ring 51, and the sliding ring 542
  • the latches on the outer wall can be engaged with the latches on the inner wall of the field rotor retaining ring 53 to enhance the slip ring 542 and the field stator retaining ring 51, the salient rotor retaining ring 52 and the field rotor retaining ring by the cooperation of the teeth.
  • the connection reliability between 53 ensures the normal operation of the motor 100.
  • the latches on the outer wall of the slip ring 542 mesh with the latches on the inner wall of the field rotor retaining ring 53, and the teeth and excitation on the inner wall of the slip ring 542
  • the engaging teeth on the outer wall of the stator fixing ring 51 are engaged to ensure the transmission connection between the exciting stator 10 and the exciting rotor portion 30, and the exciting stator 10 and the exciting rotor portion 30 are not rotated synchronously; as shown in FIG.
  • the latches on the inner wall of the slip ring 542 are disengaged from the latches on the outer wall of the field stator fixing ring 51, and the latches on the outer wall of the slip ring 542 and the latches and the field rotor retaining ring on the inner wall of the salient rotor retaining ring 52, respectively.
  • the engaging teeth on the inner wall of the mesh 53 are engaged to secure the transmission connection between the salient pole rotor portion 20 and the exciting rotor portion 30, and the salient pole rotor portion 20 and the exciting rotor portion 30 rotate in synchronization.
  • the switching mechanism 50 is disposed outside of the field stator 10 and adjacent one end of the field stator 10. Specifically, as shown in FIG. 12, the switching mechanism 50 is disposed on the right side of the field stator 10 and spaced apart from the field stator 10, which is convenient for controlling the field connection between the field rotor portion 30 and the field stator 10 to realize the motor 100. Exchange of different working conditions.
  • the motor 100 further includes an outer rotor casing 61, an inner rotor casing 62, and a stator casing 63.
  • the exciting stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are both disposed in the outer rotor casing 61, and the exciting rotor portion 30 is drivingly connected to the outer rotor casing 61, the salient pole rotor portion 20 is drivingly connected to the inner rotor casing 62, and the inner rotor casing 62 is drivingly connected with a motor shaft 41 adapted to be connected to the load, and the excitation stator 10 and the stator machine are connected.
  • the case 63 is drivingly connected, the field stator fixing ring 51 is drivingly connected to the stator case 63, the salient pole rotor fixing ring 52 is drivingly connected to the salient pole rotor portion 20, and the field rotor fixing ring 53 is drivingly connected to the outer rotor case 61.
  • the outer rotor casing 61 is formed substantially in a cylindrical structure in which one end (right end as shown in Fig. 12) is open, and the field stator 10, the salient pole rotor portion 20, and the field stator 10 are along the stator casing.
  • the radial direction of the 63 is sequentially disposed in the outer rotor casing 61 from the inside to the outside and coaxially disposed, thereby protecting the internal components of the motor 100 through the outer rotor casing 61 to avoid accidental damage.
  • the field rotor retaining ring 53 is provided at one end of the outer rotor casing 61 (right end as shown in FIG. 12) and integrally formed with the outer rotor casing 61.
  • the stator casing 63 forms an annular structure extending in the axial direction of the motor 100, and the stator casing 63 is disposed in the outer rotor casing 61 and the outer side wall of one end of the stator casing 63 (the right end as shown in FIG. 12) is provided with an exciting stator.
  • Fixed ring 51 can be selected
  • the ground rotor is coupled to the drive ring.
  • the inner rotor casing 62 forms an annular structure extending in the axial direction of the motor 100 and is located between the outer rotor casing 61 and the stator casing 63 in the radial direction of the motor 100.
  • the inner rotor casing 62 One end (right end as shown in FIG. 12) is connected to the salient rotor fixing ring 52.
  • the slide ring 542 is driven by the driving portion 541, one end is engaged with the field stator fixing ring 51, and the other end is engaged with the field rotor fixing ring 53, so that the field stator 10 is caused.
  • the relative position of the exciting rotor portion 30 is fixed (i.e., the two are in synchronization with each other).
  • the salient pole rotor portion 20 is formed as a rotor that rotates relative to the exciting stator 10. As shown in FIG.
  • the slide ring 542 is driven by the driving portion 541 to respectively engage the salient rotor fixing ring 52 and the exciting rotor fixing ring 53, so that the salient pole portion 20 and The relative positions of the exciting rotor portions 30 are fixed (that is, the two are in synchronous motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • the motor shaft 41 passes through the stator housing 63 and is spaced apart from the stator housing 63.
  • the inner rotor housing 62 is coupled to the load via a motor shaft 41, and the switching mechanism 50 is disposed in the stator housing 63.
  • the inner rotor casing 62 is adjacent to one end of the exciting rotor portion 30, so that the circuit wiring of the switching mechanism 50 can be simplified, and the reliability of the switching mechanism 50 can be enhanced.
  • the switching mechanism 50 can be electromagnetic or mechanical, and can be selected by those skilled in the art according to actual design requirements.
  • the outer rotor casing 61 and the motor shaft 41 and between the stator casing 63 and the motor shaft 41 are respectively engaged by bearings 70.
  • the distance between the stator casing 63 and the motor shaft 41, between the outer rotor casing 61 and the motor shaft 41 is maintained by the bearing 70 to maintain mutual distance and rotation independence. Simple, no motion interference.
  • the motor 100 further includes an outer rotor casing 61 and an inner rotor casing 62.
  • the excitation stator 10, the salient pole rotor portion 20, and the exciting rotor portion 30 are all disposed in the stator casing 63.
  • the excitation rotor portion 30 is drivingly connected to the outer rotor casing 61.
  • the excitation stator 10 is connected to the fixed support shaft 42.
  • the salient pole rotor portion 20 and the fixed support shaft 42 are respectively connected to the inner rotor casing 62, and the excitation stator fixing ring is respectively connected.
  • 51 is drivingly coupled to the fixed support shaft 42.
  • the salient rotor retaining ring 52 is drivingly coupled to the inner rotor casing 62, and the exciting rotor retaining ring 53 is drivingly coupled to the outer rotor casing 61.
  • the outer rotor casing 61 is formed substantially in a cylindrical structure in which one end (left end as shown in FIG. 16) is open, and the exciting stator 10, the salient pole rotor portion 20, and the exciting stator 10 are integrally formed.
  • the portions are sequentially spaced apart from each other in the radial direction of the stator casing 63 in the outer rotor casing 61 and coaxially disposed so as to pass through the outer rotor casing 61 to the motor 100 internal components are protected from accidental damage.
  • the field rotor retaining ring 53 is provided at one end of the outer rotor casing 61 (left end as shown in FIG. 16) and integrally formed with the outer rotor casing 61.
  • the fixed support shaft 42 forms an annular structure extending in the axial direction of the motor 100, and the fixed support shaft 42 is disposed in the outer rotor casing 61 and the outer side wall of one end of the fixed support shaft 42 (the left end as shown in FIG. 16) is provided.
  • the field stator fixing ring 51 is selectively connected to the driving ring, and the field stator 10 is fixed on the fixed supporting shaft 42;
  • the inner rotor casing 62 forms an annular structure extending in the axial direction of the motor 100 and is in the diameter of the motor 100.
  • one end of the inner rotor casing 62 (right end as shown in FIG. 12) is connected to the salient rotor retaining ring 52.
  • the sliding ring 542 is driven by the driving portion 541, one end is engaged with the field stator fixing ring 51, and the other end is engaged with the salient rotor fixing ring 52, thereby making the field stator
  • the relative position of the 10 and the salient pole rotor portions 20 is fixed (i.e., the two are in synchronization with each other).
  • the exciting rotor portion 30 is formed as a rotor that rotates relative to the exciting stator 10. As shown in FIG.
  • the slide ring 542 is driven by the driving portion 541 to respectively engage the salient rotor fixing ring 52 and the exciting rotor fixing ring 53, so that the salient pole portion 20 and The relative positions of the exciting rotor portions 30 are fixed (that is, the two are in synchronous motion).
  • the salient pole rotor portion 20 and the exciting rotor portion 30 are formed as a rotor that rotates relative to the exciting stator 10.
  • outer rotor casing 61 and the fixed support shaft 42 and between the inner rotor casing 62 and the fixed support shaft 42 are respectively engaged by bearings 70 to maintain between the outer rotor casing 61 and the fixed support shaft 42 and The distance and rotational independence between the inner rotor casing 62 and the fixed support shaft 42.
  • the fixed support shaft 42 is a hollow shaft having a circular cross section. That is, the fixed support shaft 42 forms a hollow shaft extending along the axial direction of the motor 100, and when the motor 100 is in operation, the fixed support shaft 42 is relatively stationary, and only functions to support the excitation stator 10, and the fixed support shaft 42 is made.
  • the hollow shaft can reduce the weight of the motor 100, facilitate the weight reduction of the motor 100, and reduce the material cost, thereby improving the cost performance of the motor 100.
  • the exciting rotor portion 30 serves as the rotor of the motor 100, and the outer rotor casing 61 rotates together with the exciting rotor portion 30 to output torque, load and outer rotor machine.
  • the shells 61 are connected.
  • the field stator 10 includes a stator core 11 and a stator winding 12 wound on a stator core 11 of the stator.
  • the field stator 10 is mainly composed of a stator core 11 and a stator winding 12.
  • the stator core 11 is made of a highly magnetic material, and the high magnetic material may be a silicon steel sheet, a cobalt steel sheet, or a moiré. Alloy, SMC and other materials.
  • the stator winding 12 is wound on the stator core 11 and the stator winding 12 may be a concentrated winding (as shown in FIG. 11) or a distributed winding (as shown in FIG. 16), that is, a span of the stator winding 12.
  • stator windings 12 may be 1 or other integers, while the number of phases of the stator windings 12 may be single or multi-phase such that the stator windings 12 pass an AC current to generate a magnetic field. It is worth noting that the specific material of the stator core 14 and the winding form of the stator winding 12 and the number of phases of the stator winding 12 can be adaptively selected according to actual design requirements to ensure the torque and power density of the motor 100. .
  • the field rotor portion 30 includes a rotor core 51 and a permanent magnet 32, and the permanent magnet 32 is disposed on the rotor core 31.
  • the exciting rotor portion 30 is mainly composed of the rotor core 51 and the permanent magnet 32, and the permanent magnet 32 is provided on the rotor core 31 and uniformly arranged in the circumferential direction of the rotor core 31.
  • the rotor core 51 is made of a highly magnetic material, which may be a silicon steel sheet, a cobalt steel sheet, a permalloy, an SMC or the like.
  • the permanent magnet 32 is mainly composed of a permanent magnet material, and the permanent magnet material may be a material such as neodymium iron boron, ferrite, aluminum nickel cobalt, samarium cobalt or the like.
  • the permanent magnet 32 may be combined with the rotor core 51 by surface mount (SPM), built-in (IPM), surface mount (Inset PM), etc., for example, in one example of the present invention, the permanent magnet 32
  • SPM surface mount
  • IPM built-in
  • Iset PM surface mount
  • the rotor core group 31 is embedded in the same polarity, so that the structure of the field rotor portion 30 is stabilized, and an exciting magnetic field is generated.
  • each of the permanent magnets 32 is formed substantially in an elongated structure, and the plurality of elongated permanent magnets 32 are interspersed in the circumferential direction in the same polarity to be embedded in the rotor core.
  • the rotor core 51 is formed in a circular shape extending in the circumferential direction of the motor 100, and the rotor core 31 is provided with a plurality of spaced apart permanent magnets 32, each of which is provided.
  • the permanent magnets 32 are embedded in the rotor core core 31, and each of the permanent magnets 32 is formed in an elongated shape and the long sides of the permanent magnets 32 are perpendicular to the radial direction of the rotor cores 31.
  • the rotor core group 31 is formed in a circular shape extending in the circumferential direction of the motor 100, and the rotor core 31 is provided with a plurality of spaced apart permanent magnets 32, each of which is provided.
  • the length direction of the permanent magnets 32 extends in the radial direction of the motor 100, and the length dimension of each of the permanent magnets 32 is equal to the thickness of the rotor core group 31 in the radial direction of the motor 100.
  • the rotor core group 31 is formed in a circular shape extending in the circumferential direction of the motor 100, and the rotor core 31 is provided with a plurality of spaced apart permanent magnets 32, each of which is provided.
  • the permanent magnets 32 form arcuate blocks extending in the circumferential direction of the rotor core magnet 31, and each of the permanent magnets 32 is disposed adjacent to the inner side wall of the rotor core group 31. It should be noted that those skilled in the art can change the number, shape and arrangement of the permanent magnets 32 according to actual design requirements, so as to adjust the equivalent rotor pole number and the working electric frequency, so that when the output mechanical speed is the same, it can be switched. Different operating states of the motor 100, such as the first state and the second state, enable a pole-changing operation.
  • the salient pole rotor portion 20 includes a plurality of cores 21 and a plurality of non-magnetic spacers 22, and the plurality of cores 21 and the plurality of non-magnetic spacers 22 are alternately arranged along the circumferential direction of the motor 100.
  • the salient pole rotor portion 20 is mainly composed of a plurality of cores 21 and a plurality of non-magnetic spacers 22, and a plurality of cores 21 and a plurality of non-magnetic spacers 22 are alternated in the circumferential direction of the motor 100.
  • the magnetic core 21 is made of a highly magnetic material, which may be a silicon steel sheet, a cobalt steel sheet, a permalloy, an SMC or the like.
  • the non-magnetic spacing block 22 is made of a non-magnetic material, and the non-magnetic material may be air, plastic, polymer, non-magnetic metal or the like.
  • the field stator 10 is driven by an alternating current and generates a rotating magnetic field having a pole pair number ps
  • the exciting rotor portion 30 generates an exciting magnetic field having a pole pair number pf
  • the number of the magnetic conductive cores 21 is pr
  • the magnetic core The number of 21 is equal to the sum of the pole pair of the rotating magnetic field and the pole pair of the exciting magnetic field or the difference between the two, thereby ensuring that the motor 100 can operate normally under different operating conditions.
  • a motor according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1 through 20 through various embodiments.
  • the pole-changing outer rotor motor 100 mainly comprises a three-layer main structure and a switching mechanism 50.
  • the three-layer main structure comprises a fixed excitation stator 10, a salient rotor portion 20 with a variable rotation state, and a field rotor with a variable rotation state.
  • the portion 30, the field stator 10 and the field rotor portion 30 respectively reside in the innermost layer and the outermost layer of the main structure of the three layers of the entire motor 100, and the salient pole portion 20 is located in the middle layer of the main structure of the three layers of the entire motor 100, and the salient pole rotor
  • the portion 20 is isolated from the field stator 10 and the field rotor portion 30 by an air gap.
  • the field stator 10 comprises a stator magnetic core 11 composed of a high magnetic material (including but not limited to silicon steel sheets, cobalt steel sheets, permalloys, SMC, etc.) and a wound stator winding 12 thereon.
  • the stator windings 12 may be It is a concentrated winding or a distributed winding, that is, the span of the stator winding 12 may be 1 or other integer, the number of phases of the stator winding 12 may be single-phase or multi-phase, the number of slots of the stator-guided magnet core 11 is Ns, and the stator winding 12 may be Driven by a multi-phase AC current corresponding to the number of winding phases, the resulting pole pair is the magnetic field of ps.
  • the excitation form of the field rotor portion 30 is a permanent magnet form, and the field rotor portion 30 in the form of a permanent magnet includes a rotor core of a high magnetic permeability material (including but not limited to silicon steel sheets, cobalt steel sheets, permalloy, SMC, etc.). 31 and a permanent magnet 32 composed of a permanent magnet material (including but not limited to neodymium iron boron, ferrite, aluminium nickel cobalt, samarium cobalt, etc.), the rotor magnetic core 31 and the permanent magnet 32 may be combined with all permanent magnet motors.
  • the rotor form of 100 mainly includes but is not limited to surface mount (SPM), built-in type (IPM), surface mount (Inset PM), etc., and the generated pole pair is the excitation magnetic field of pf.
  • a high magnetic permeability material including but not limited to a silicon steel sheet, a cobalt steel sheet, a permalloy, an SMC, etc.
  • a non-magnetic conductive material including but not limited to air, plastic
  • the switching mechanism 50 may be of an electromagnetic or mechanical type, and functions to switch the composition of the rotating component of the motor 100 between three operating states.
  • the exciting stator 10 and the exciting rotor portion 30 are fixed to act as a motor.
  • the stator of the 100, the salient pole rotor portion 20 is a rotating member to serve as a rotor of the motor 100, the equivalent rotor pole number of the motor 100 in the first operating state is pr, the operating electric frequency of the motor 100 is ⁇ npr, and ⁇ n is the output of the motor 100
  • Equivalent rotor pole number of motor 100 For ps, the operating electric frequency of the motor 100 is ⁇ nps; in the third operating state, the exciting stator 10 and the salient rotor portion 20 are fixed, acting as a stator of the motor 100, and the exciting rotor portion 30 is a rotating member serving as a rotor of the motor 100.
  • the equivalent rotor pole number of the motor 100 in the third operating state is pf, and the operating electric frequency of the motor 100 is ⁇ npf.
  • the ratio of the equivalent number of rotor poles to the operating electric frequency between the above three operating states is ps: pr:pf, and the pole change can be realized by switching the different operating states of the motor 100. Press to run.
  • the motor 100 of the present embodiment has a three-layer structure in which the field stator 10 is disposed at the outermost layer and is a fixed non-rotating component, and the field stator 10 includes a stator core of the stator 11.
  • the stator winding 12 is a three-phase concentrated winding
  • the field rotor portion 30 includes a rotor core group 31 and permanent magnets 32.
  • the distance between the field stator 10, the field rotor portion 30, the salient pole rotor portion 20, and the motor shaft 41 is maintained by the bearing 70 and the rotation independence.
  • the switching mechanism 50 is located inside the field rotor portion 30 and includes a control coil 541, a slip ring 542, an exciting stator fixing ring 51, a salient rotor fixing ring 52, and an exciting rotor fixing ring 53.
  • the sliding ring 542 has teeth both radially inside and outside.
  • the ring gear, the field rotor fixing ring 53 is a radially inner toothed ring gear, and the field stator fixing ring 51 and the salient rotor fixing ring 52 are radially inner toothed ring gears.
  • FIG. 2 shows a first operational state of the motor 100 of the present embodiment, in which the drive of the slip ring 542 at the control coil 541 slides down toward the non-shaft extension side of the motor, and the field stator retaining ring 51 and the field rotor retaining ring are attached. 53 is meshed together, and in this state, the exciting rotor portion 30 becomes a relative position in which the fixed member and the exciting stator 10 are fixed, and the salient rotor portion serves as the only rotating member of the motor in this state.
  • FIG 3 shows a second operational state of the motor 100 of the present embodiment, in which the control coil 541 drives the slide ring 542 to slide toward the shaft end of the motor, and the exciting rotor retaining ring 53 and the salient rotor retaining ring 52 are meshed. Together, in this state, the exciting rotor portion 30 and the salient pole rotor portion 20 maintain a relative fixed position, which becomes a rotating component of the motor.
  • the back-EMF comparison of the no-load winding of the motor 100 of the present embodiment in the first and second operating states at a rotational speed of the motor shaft 41 of 600 rpm is as shown in FIG. 4, and it is apparent from the figure that the motor 100 is The difference between the pole pair and the terminal voltage in the two operating states, the ratio of the equivalent pole pair and the operating frequency of the motor in the two operating states is 5:2.
  • the motor 100 of the present embodiment has a three-layer annular structure, and the excitation stator 10 is disposed at the outermost layer to be a fixed non-rotating component, and the excitation stator 10 includes a stator core 51 and a stator winding 12 .
  • the stator winding 12 is a three-phase distributed winding
  • the field rotor portion 30 includes a rotor core group 31 and permanent magnets 32.
  • the rotor portion 30 is directly connected to the motor shaft 41.
  • the distance between the field stator 10, the field rotor portion 30, the salient pole rotor portion 20, and the motor shaft 41 is maintained by the bearing 40 and the rotation independence.
  • the switching mechanism 50 is located at the end of the motor in this embodiment, and includes a control coil 541, a slip ring 542, an excitation stator fixing ring 51, a salient rotor fixing ring 52, an excitation rotor fixing ring 53, and the sliding ring 542 is radially inward and outward.
  • the toothed ring gear, the field stator fixing ring 51 and the field rotor fixing ring 53 are radially outer toothed ring gears
  • the salient pole rotor fixing ring 52 is a radially inner toothed ring gear.
  • Fig. 6 shows a third operational state of the motor 100 of the present embodiment, in which the drive of the slip ring 542 at the control coil 541 slides down toward the non-shaft extension side of the motor, and the field stator retaining ring 51 and the salient pole rotor are fixed.
  • the ring 52 is meshed together, and in this state, the salient pole rotor portion 20 becomes a relative position in which the fixed member and the field stator 10 are held fixed, and the field rotor portion 30 serves as the only rotating member of the motor in this state.
  • Fig. 7 shows a second operational state of the motor 100 of the present embodiment, in which the control coil 541 drives the slide ring 542 to slide toward the shaft end of the motor, and the exciting rotor retaining ring 53 and the salient rotor retaining ring 52 are engaged. Together, in this state, the exciting rotor portion 30 and the salient pole rotor portion 20 maintain a relative fixed position, which becomes a rotating component of the motor.
  • the ratio of the equivalent pole pair to the operating frequency in the third and second operating states of the present invention is 3:1.
  • the motors 100 of the above two embodiments all have two working states, which can realize free switching of the two working states, and the operation is convenient.
  • the switching mechanism 50 of the motor 100 of the embodiment of the present invention realizes the control adjustment of the number of rotor poles and the operating frequency of the motor 100 without changing the winding connection of the motor 100, thereby realizing the optimal efficiency interval of the motor 100 in the low speed and large torque interval. Switching between the high speed and low torque intervals effectively increases the torque density and high power density of the motor 100 and increases the application range of the motor 100.
  • the motor 100 has a compact structure, a small footprint, a wide working range, and can be used without changing the motor 100. Controlled adjustment of the number of rotor poles and operating frequency in the case of winding connections, with high torque, high power density and so on.
  • the field stator 10 is a fixed non-rotating component in the innermost layer of the main structure of the three layers of the entire motor 100, and the field stator 10 includes a stator core 19 and a stator winding. 12 and stator housing 63.
  • the stator winding 12 is a three-phase concentrated winding
  • the stator 10 rotates a magnetic field.
  • the salient pole rotor portion 20 includes a magnet core 21, a non-magnetic spacer block 22, and an inner rotor casing 62.
  • the field rotor portion 30 includes a rotor core group 31, a permanent magnet 32, and an outer rotor casing 61.
  • the permanent magnets 32 are mounted on the inner side of the rotor core 31 in such a manner that the permanent magnets 32 are arranged at the same polarity, so that the field rotor portion 30 generates poles.
  • the excitation magnetic field with logarithm pf 16.
  • the distance between the field stator 10, the field rotor portion 30, the salient pole rotor portion 20, and the motor shaft 41 is maintained by the bearing 70 and the rotation independence.
  • the switching mechanism 50 includes a control coil, a slip ring 542, an excitation stator fixing ring 51, a salient rotor fixing ring 52, and an exciting rotor fixing ring 53, and the sliding ring 542 is a ring gear having teeth in the radial direction and the outside, and the stator fixing ring 51 is excited.
  • the ring gear having the teeth on the radially outer side, the salient rotor fixing ring 52 and the field rotor fixing ring 53 are ring gear teeth having a radially inner side.
  • the slip ring 542 is meshed with the field rotor fixing ring 53 and the field stator fixing ring 51 under the control of the control coil, and the field rotor portion 30 and the field are excited in this state.
  • the stator 10 maintains a fixed relative position as the stator of the motor 100, and the salient pole rotor portion 20 serves as the rotor of the motor 100.
  • the electrical frequency is 200 Hz.
  • the control coil drives the slip ring 542 to release the connection to the field rotor retaining ring 53 and the field stator retaining ring 51, while the slip ring 542 engages the field rotor retaining ring 53 and the salient pole rotor.
  • the salient pole rotor portion 20 is held at a position relatively fixed to the field rotor portion 30 as a rotor of the motor 100, and the field stator 10 is used as a stator of the motor 100, and the motor 100 in this state is equivalent.
  • FIG. 14 The back-EMF comparison of the no-load winding of the motor 100 of the present embodiment in the first and second operating states and the rotating shaft speed of 600 rpm is as shown in FIG. 14. It is apparent from FIG. 14 that the motor 100 is in two types. The difference between the pole pair and the terminal voltage in the working state, the ratio of the equivalent pole pair and the operating frequency of the motor 100 in the two operating states is 5:1.
  • the third embodiment of the present invention does not include the third operational state of the present invention.
  • the field stator 10 is a fixed non-rotating component in the innermost layer of the main structure of the three layers of the entire motor 100, and the field stator 10 includes a stator core 19 and a stator winding. 12. Fix the support shaft 42.
  • the stator winding 12 is a three-phase distributed winding
  • the coil span is 3
  • Excitation stator 10 rotating magnetic field, excitation stator 10 is directly coupled to the fixed support shaft 42 and the fixed support shaft 42 serves as a fixed support member for the motor 100.
  • the field rotor portion 30 includes a rotor core group 31, a permanent magnet 32, and an outer rotor casing 61.
  • the permanent magnets 32 are mounted on the radially inner side of the rotor core 31 in such a manner as to be arranged at the same polarity, so that the field rotor portion 30 is generated.
  • the excitation field of the pole pair pf 16.
  • the rotor core magnet 31 is directly connected to the load to serve as a drive output member.
  • the distance between the excitation stator 10, the field rotor portion 30, the salient pole rotor portion 20, and the fixed support shaft 42 for supporting the motor 100 is maintained by the bearing 70 and the rotational independence.
  • the switching mechanism 50 includes a control coil, a slip ring 542, an exciting stator fixing ring 51, a salient rotor fixing ring 52, and a field rotor fixing ring 53.
  • the sliding ring 542 is a ring gear having a toothed tooth on the radially inner side and an exciting stator fixing ring.
  • 51 is a ring gear having a serration on the outer side in the radial direction
  • the salient rotor fixing ring 52 and the field rotor fixing ring 53 are ring gear teeth having a radially inner side.
  • the slip ring 542 is translated to the right by the drive generated by the control coil, and the field stator fixed ring 51 and the salient rotor retaining ring 52 are meshed together, so that the field stator 10 is excited.
  • the salient pole rotor portion 20 is integrally connected as the stator of the motor 100, and the exciting rotor portion 30 serves as a rotating component of the motor 100.
  • the electrical frequency at 600 rpm is 160 Hz.
  • the slip ring 542 is translated to the left under the drive generated by the control coil, and the field rotor retaining ring 53 and the salient rotor retaining ring 52 are meshed together so that the exciting rotor portion 30 and the salient pole rotor portion 20 are integrally connected as the rotor of the motor 100, and the exciting stator 10 is used as the stator of the motor 100.
  • This embodiment does not include the first operating state of the first embodiment of the present invention.
  • the ratio of the equivalent pole pair to the operating frequency in the third and second operating states is 8:1.
  • the motor 100 when the motor 100 operates in the low-speed and large-torque region, the operating state with a higher equivalent pole pair is used, and the output torque is large.
  • the equivalent pole pair When the motor 100 operates in the high-speed running interval, the equivalent pole pair is used.
  • the running state naturally satisfies the high-speed working requirement without the weak magnetic control, and because the operating frequency is lowered, the efficiency is greatly improved, and the equivalent rotor pole number and the working electric frequency of the two operating states of the motor 100 are significantly different.
  • the variable pole pressure swing operation without changing the winding connection of the motor 100 is realized, and the working range of the speed of the motor 100 is broadened, thereby effectively increasing the torque density and high power density of the motor 100, and increasing the application range of the motor 100.
  • the motor 100 has a compact structure, small occupied space, wide working range, and can realize controlled adjustment of the number of rotor poles and the operating frequency without changing the winding connection of the motor 100, and the motor 100 of the same overall volume in the related art. In comparison, it can output more torque and power, and has the advantages of high torque and high power density.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电机(100),包括:励磁定子(10)、凸极转子部(20)和励磁转子部(30),励磁定子(10)、凸极转子部(20)和励磁转子部(30)中的任意两个均可相对旋转;切换机构(50),切换机构(50)通过可选地固定励磁定子(10)、凸极转子部(20)和励磁转子部(30)中的两个的相对位置以选取凸极转子部(20)和励磁转子部(30)中的至少一个充当可相对励磁定子(10)旋转的转子。

Description

电机 技术领域
本发明涉及电机技术领域,更具体地,涉及一种电机。
背景技术
随着科技的发展,电机的调速功能也逐渐得到了更多的重视。通常由于电网或者驱动系统母线电压的限制,电机要想兼顾转矩特性的情况下大范围改变工作转速,就需要进行特殊的控制或者结构设计。相关技术中的电机采用弱磁控制以实现上述目的,然而这种方式对电机的参数有着一定的限制,无法兼顾低速大转矩工作区和高速低转矩的高效率运行。
发明内容
本发明旨在至少在一定程度上解决相关技术中的上述技术问题之一。
为此,本发明提出一种电机,该电机充分结合了变极电机高效率运行区间大范围调整的特点,具备高转矩、高功率密度的特点,适用于从家用电器、电动汽车、风力发电等需要高转矩直接驱动的场合。
根据本发明实施例的电机,包括:励磁定子、凸极转子部和励磁转子部,所述励磁定子、所述凸极转子部和所述励磁转子部中的任意两个均可相对旋转;切换机构,所述切换机构通过可选地固定所述励磁定子、所述凸极转子部和所述励磁转子部中的两个的相对位置以选取所述凸极转子部和所述励磁转子部中的至少一个充当可相对所述励磁定子旋转的转子。
根据本发明实施例的电机,当电机工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大,当电机工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升,电机的三种运行状态的等效转子极对数和工作电频率差异显著,实现了不改变电机绕组连接前提下的变极变压运行,拓宽了电机的转速工作范围,从而有效地提高电机的转矩密度和高功率密度,增大电机的应用范围。通过将励磁定子、凸极转子部和励磁转子部设置为任意两个均可相对旋转,并且利用切换机构可选地固定其中两个,从而使得凸极转子部和励磁转子部中至少一个形成为可以相对与励磁定子转动的转子,进而在不改变电机绕组连接的情况下,实现转子极数和电机运行频率的控制调节,从而实现电机的最佳效率区间在低速大转矩区间和高速低转矩区间之间的切换,有效地提高电机的转矩密度和高功率密度,增大电机的应用范围。该电机的结构紧凑,占用空间小、工作范围广,可以在不改变电机绕组连接的情况下实现转子极数和运行频率的受控调整,与相关技术中的相同整机体积的电机相比,可以输出 更大的转矩和功率,具有高转矩、高功率密度等优点。
另外,根据本发明实施例的电机,还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述励磁定子、所述凸极转子部和所述励磁转子部沿所述电机的径向由外至内依次间隔设置。
根据本发明的一个实施例,所述励磁定子、所述凸极转子部和所述励磁转子部沿所述电机的径向由内至外依次间隔设置。
根据本发明的一个实施例,所述切换机构在第一状态和第二状态之间可切换,所述凸极转子部和所述励磁转子部中的一个适于与负载传动连接,所述切换机构处于所述第一状态时固定所述励磁定子与所述凸极转子部和所述励磁转子部中的另一个的相对位置,所述切换机构处于所述第二状态时固定所述凸极转子部和所述励磁转子部。
根据本发明的一个实施例,所述切换机构包括:励磁定子固定环,所述励磁定子固定环与所述励磁定子的相对位置固定;凸极转子固定环,所述凸极转子固定环与所述凸极转子部的相对位置固定;励磁转子固定环,所述励磁转子固定环与所述励磁转子部的相对位置固定,所述凸极转子固定环和所述励磁转子固定环中的一个适于与所述负载传动连接;驱动部和滑动环,所述滑动环由所述驱动部驱动滑动,所述切换机构处于所述第一状态时,所述滑动环在所述驱动部的驱动下分别与所述励磁定子固定环以及所述凸极转子固定环和所述励磁转子固定环中的另一个配合,所述切换机构处于所述第二状态时,所述滑动环在所述驱动部的驱动下分别与所述凸极转子固定环和所述励磁转子固定环配合。
根据本发明的一个实施例,所述驱动部为通过电磁感应驱动所述滑动环滑动的控制线圈。
根据本发明的一个实施例,所述滑动环、所述励磁定子固定环、所述凸极转子固定环和所述励磁转子固定环上分别设有卡齿,所述切换机构处于所述第一状态时,所述滑动环上的卡齿分别与所述励磁定子固定环上的卡齿以及所述凸极转子固定环和所述励磁转子固定环中的所述另一个上的卡齿啮合,所述切换机构处于所述第二状态时,所述滑动环上的卡齿分别与所述凸极转子固定环上的卡齿和所述励磁转子固定环上的卡齿啮合。
根据本发明的一个实施例,还包括:适于与所述负载传动连接的电机轴,所述电机轴由所述转子驱动旋转。
根据本发明的一个实施例,还包括:定子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述定子机壳内,所述励磁定子与所述定子机壳传动连接;端盖,所述凸极转子部和所述电机轴分别与所述端盖传动连接,所述励磁定子固定环与所述定子机壳传动连接,所述凸极转子固定环与所述电机轴传动连接,所述励磁转子固定环与所述励磁转子部传动连接。
根据本发明的一个实施例,所述切换机构设在所述励磁转子部内。
根据本发明的一个实施例,所述定子机壳与所述电机轴之间、所述端盖与所述励磁转子部之间以及所述励磁转子部与所述定子机壳之间分别通过轴承配合。
根据本发明的一个实施例,还包括:定子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述定子机壳内,所述励磁定子与所述定子机壳传动连接;端盖,所述凸极转子部与所述端盖传动连接,所述电机轴与所述励磁转子部传动连接,所述励磁定子固定环与所述定子机壳传动连接,所述凸极转子固定环与所述凸极转子部传动连接,所述励磁转子固定环与所述电机轴传动连接。
根据本发明的一个实施例,所述切换机构设在所述励磁转子部外且临近所述励磁转子部的一端。
根据本发明的一个实施例,所述定子机壳与所述电机轴之间以及所述端盖与所述电机轴之间分别通过轴承配合。
根据本发明的一个实施例,所述切换机构设在所述励磁定子外且临近所述励磁定子的一端。
根据本发明的一个实施例,还包括:外转子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述外转子机壳内,所述励磁转子部与所述外转子机壳传动连接;内转子机壳,所述凸极转子部与所述内转子机壳传动连接且所述内转子机壳上传动连接有适于与所述负载传动连接的电机轴;定子机壳,所述励磁定子与所述定子机壳传动连接,所述励磁定子固定环与所述定子机壳传动连接,所述凸极转子固定环与所述凸极转子部传动连接,所述励磁转子固定环与所述外转子机壳传动连接。
根据本发明的一个实施例,所述外转子机壳与所述电机轴之间以及所述定子机壳与所述电机轴之间分别通过轴承配合。
根据本发明的一个实施例,还包括:外转子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述定子机壳内,所述励磁转子部与所述外转子机壳传动连接;内转子机壳,所述励磁定子上传动连接有固定支撑轴,所述凸极转子部和所述固定支撑轴分别与所述内转子机壳传动连接,所述励磁定子固定环与所固定支撑轴传动连接,所述凸极转子固定环与所述内转子机壳传动连接,所述励磁转子固定环与所述外转子机壳传动连接。
根据本发明的一个实施例,所述外转子机壳与所述固定支撑轴之间以及所述内转子机壳与所述固定支撑轴之间分别通过轴承配合。
根据本发明的一个实施例,所述固定支撑轴为横截面为环形的中空轴。
根据本发明的一个实施例,所述励磁定子包括:定子导磁铁芯;定子绕组,所述定子绕组绕制在所述定子导磁铁芯上。
根据本发明的一个实施例,所述励磁转子部包括:转子导磁铁芯;永磁体,所述永磁体设在所述转子导磁铁芯上。
根据本发明的一个实施例,所述凸极转子部包括:多个导磁铁芯;多个非导磁间隔块,多个所述导磁铁芯和多个所述非导磁间隔块沿所述电机的周向交替排列。
根据本发明的一个实施例,所述励磁定子由交流电流驱动且产生的旋转磁场的极对数为ps,所述励磁转子部产生的励磁磁场的极对数为pf,所述导磁铁芯的数量为pr,其中,pr=|ps±pf|。
附图说明
图1是根据本发明一个实施例的电机的局部结构示意图;
图2是图1中所示的电机的切换机构处于第一状态时的剖视图;
图3是图1中所示的电机的切换机构处于第二状态时的剖视图;
图4是图1中所示的的电机在不同状态下的反电动势比较图;
图5是根据本发明另一个实施例的电机的局部结构示意图;
图6是图5中所示的电机的切换机构处于第一状态时的剖视图;
图7是图5中所示的电机的切换机构处于第二状态时的剖视图;
图8是根据本发明一个实施例的励磁转子部的极对数为4的电机的局部结构示意图;
图9是根据本发明又一个实施例的励磁转子部的极对数为4的电机的局部结构示意图;
图10是根据本发明另一个实施例的励磁转子部的极对数为4的电机的局部结构示意图。
图11是根据本发明一个实施例的电机的半剖图;
图12是图11中所示的电机在切换机构处于第一状态时的结构示意图;
图13是图11中所示的电机在切换机构处于第二状态时的结构示意图;
图14是根据本发明实施例的电机在两种工作状态下的极对数和端电压的对比曲线图;
图15是根据本发明另一个实施例的电机的半剖图;
图16是图15中所示的电机在切换机构处于第一状态时的结构示意图;
图17是图15中所示的电机在切换机构处于第二状态时的结构示意图;
图18是根据本发明一个实施例的电机的励磁转子部的结构示意图;
图19是根据本发明又一个实施例的电机的励磁转子部的结构示意图;
图20是根据本发明另一个实施例的电机的励磁转子部的结构示意图。
附图标记:
100:电机;
10:励磁定子;11:定子导磁铁芯;12:定子绕组;
20:凸极转子部;21:导磁铁芯;22:非导磁间隔块;
30:励磁转子部;31:转子导磁铁芯;32:永磁体;
41:电机轴;42:固定支撑轴;
50:切换机构;
51:励磁定子固定环;52:凸极转子固定环;53:励磁转子固定环;
541:驱动部(控制线圈);542:滑动环;
61:外转子机壳;62:内转子机壳;63:定子机壳;64:端盖;
70:轴承。
具体实施方式
相关技术中的电机采用弱磁控制以实现上述目的,然而这种方式对电机的参数有着一定的限制,无法兼顾低速大转矩工作区和高速低转矩的高效率运行。
针对上述问题,一方面再有相关技术中的变极感应电机工作在固定的电网频率下,通过改变定子绕组的连接方式,达到转子鼠笼中感应出的转子极数变化从而调整电机转速,但以上方法受限于感应电机应用不适用于同步电机,并且需要变更定子绕组连接,在直流变频电机发展的大趋势下已经十分落伍。
而另一方面,有学者提出可以通过采用AlNiCo等低矫顽力永磁体构成记忆电机,通过绕组对转子永磁体的充磁方向度进行在线调整,以达到同步电机变极的目的,但上述方法采用的低矫顽力永磁体磁能级较低,容易造成电机的整体功率密度远低于传统永磁同步电机的问题。
为此,本发明提出一种电机,该电机充分结合了变极电机高效率运行区间大范围调整的特点,电机绕组在极数变化的过程中无需任何改变,具备高转矩、高功率密度的特点,适用于从家用电器、电动汽车、风力发电等需要高转矩直接驱动的场合。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图1至图20具体描述根据本发明实施例的电机100。
根据本发明实施例的电机100包括励磁定子10、凸极转子部20、励磁转子部30、切换机构50。具体而言,励磁定子10、凸极转子部20和励磁转子部30中的任意两个均可相对旋转,切换机构50通过可选地固定励磁定子10、凸极转子部20和励磁转子部30中的两个的相对位置以选取凸极转子部20和励磁转子部30中的至少一个充当可相对励磁定子10旋 转的转子。
换言之,电机100主要由励磁定子10、凸极转子部20、励磁转子部30、切换机构50组成。励磁定子10、凸极转子部20和励磁转子部30大致形成为圆筒形结构,且沿轴向方向(如图2所示上下方向)同轴设置,并且励磁定子10、凸极转子部20、励磁转子部30三者之间任意两个都可以相对旋转,也就是说,凸极转子部20可以相对于励磁定子10或励磁转子部30做旋转运动,同时,励磁转子部30也可以相对于凸极转子部20或励磁定子10做旋转运动。
进一步地,切换机构50可以固定励磁定子10与励磁转子部30(如图2所示)之间的相对位置,也可以固定励磁转子部30与凸极转子部20(如图3和图7所示)之间的相对位置,或者固定励磁定子10与凸极转子部20(如图6所示)之间的相对位置,从而使得凸极转子部20、凸极转子部20和励磁转子部30或者励磁转子部30可以分别相对于励磁定子10旋转,形成为可相对励磁定子10旋转的转子,电机100在三同状态下的转子将动力传给负载,进而在不改变电机100绕组连接的情况下,实现电机100的变极变压运行,即实现对转子极数和电机100运行频率的控制调节。
由此,当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大,当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升,从而有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。
根据本发明实施例的电机100,通过将励磁定子10、凸极转子部20和励磁转子部30设置为任意两个均可相对旋转,并且利用切换机构50可选地固定其中两个,从而使得凸极转子部20和励磁转子部30中至少一个形成为可以相对与励磁定子10转动的转子,进而在不改变电机100绕组连接的情况下,实现转子极数和电机100运行频率的控制调节,从而实现电机100的最佳效率区间在低速大转矩区间和高速低转矩区间之间的切换,有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。该电机100的结构紧凑,占用空间小、工作范围广,可以在不改变电机100绕组连接的情况下实现转子极数和运行频率的受控调整,具有高转矩、高功率密度等优点。
可选地,励磁定子10、凸极转子部20和励磁转子部30沿电机100的径向由外至内依次间隔设置。
具体地,如图1和图2所示,励磁定子10、凸极转子部20和励磁转子部30的截面大致形成为圆环形,并且励磁定子10、凸极转子部20和励磁转子部30沿电机100的径向方向由外向内依次间隔开设置。
也就是说,励磁定子10、凸极转子部20和励磁转子部30分别形成同轴布置的三层圆环 形结构,且凸极转子部20位于励磁定子10的内侧并位于励磁转子部30的外侧,三者之间间隔开设置,从而避免任意两者之间相对旋转时产生干涉,进而影响电机100的正常工作。
其中,切换机构50可以固定励磁定子10与励磁转子部30(如图2所示)之间的相对位置,从而使得凸极转子部20相对于励磁定子10与励磁转子部30旋转,形成为可相对励磁定子10旋转的转子;切换机构50也可以固定励磁转子部30与凸极转子部20(如图3和图7所示)之间的相对位置,从而使得凸极转子部20和励磁转子部30相对于励磁定子10旋转,形成为可相对励磁定子10旋转的转子;或者切换机构50可以固定励磁定子10与凸极转子部20(如图6所示)之间的相对位置,从而使得励磁转子部30可以分别相对于励磁定子10与凸极转子部20旋转,形成为可相对励磁定子10旋转的转子,电机100在三种状态下的转子可以分别向负载输出转矩,实现电机100的三种工作状态的切换。
在本发明的一些实施例中,切换机构50在第一状态和第二状态之间可切换,凸极转子部20和励磁转子部30中的一个适于与负载传动连接,切换机构50处于第一状态时固定励磁定子10与凸极转子部20和励磁转子部30中的另一个的相对位置,切换机构50处于第二状态时固定凸极转子部20和励磁转子部30的相对位置。
具体地,如图2和图3所示,在本实施例中,负载与凸极转子部20传动连接,也就是说,负载与凸极转子部20可以同步运动或同步不运动,而切换机构50可以固定励磁定子10与励磁转子部30的相对位置,也可以固定负载与励磁转子部30的相对位置,即固定负载、凸极转子部20与励磁转子部30的相对位置。
当切换机构50处于第一状态(如图2所示位置)时,切换机构50固定连接励磁定子10与励磁转子部30的相对位置,使得励磁定子10与励磁转子部30同步不运动,凸极转子部20形成可相对于励磁定子10旋转的转子;当切换机构50处于第二状态(如图3所示位置)时,切换机构50固定连接凸极转子部20与励磁转子部30的相对位置,使得凸极转子部20与励磁转子部30可以随负载同步运动或者不运动,实现向负载传递动力和运动的目的,凸极转子部20和励磁转子部30形成可相对于励磁定子10旋转的转子,从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
当然,本发明并不限于此,在本发明的另一些示例中,负载与励磁转子部30传动连接,也就是说,负载与励磁转子部30可以同步运动或同步不运动,而切换机构50可以固定励磁定子10与凸极转子部20的相对位置,也可以固定负载与凸极转子部20的相对位置,即固定负载、凸极转子部20与励磁转子部30的相对位置。
如图6和图7所示,负载与励磁转子部30传动连接,也就是说,负载与励磁转子部30可以同步运动或同步不运动,当切换机构50处于第一状态(如图6所示位置)时,切换机 构50固定连接励磁定子10与凸极转子部20的相对位置,使得励磁定子10与凸极转子部20同步不运动,励磁转子部30形成可相对于励磁定子10旋转的转子;当切换机构50处于第二状态(如图7所示位置)时,切换机构50固定连接凸极转子部20与励磁转子部30的相对位置,使得凸极转子部20与励磁转子部30可以随负载同步运动或者不运动,凸极转子部20和励磁转子部30形成可相对于励磁定子10旋转的转子,从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
其中,切换机构50包括励磁定子固定环51、凸极转子固定环52、励磁转子固定环53驱动部541和滑动环542,励磁定子固定环51与励磁定子10的相对位置固定,凸极转子固定环52与凸极转子部20的相对位置固定,励磁转子固定环53与励磁转子部30的相对位置固定,凸极转子固定环52和励磁转子固定环53中的一个适于与负载传动连接,滑动环542由驱动部541驱动滑动,切换机构50处于第一状态时,滑动环542在驱动部541的驱动下分别与励磁定子固定环51以及凸极转子固定环52和励磁转子固定环53中的另一个配合,切换机构50处于第二状态时,滑动环542在驱动部541的驱动下分别与凸极转子固定环52和励磁转子固定环53配合。
参照图2、图3、图6和图7,切换机构50主要由励磁定子固定环51、凸极转子固定环52、励磁转子固定环53、驱动部541和滑动环542组成。励磁定子固定环51大致形成为圆筒形结构,励磁定子固定环51的下端与负载可活动连接,励磁定子固定环51与励磁定子10的相对位置固定,即励磁定子固定环51与励磁定子10之间同步不运动,凸极转子固定环52与凸极转子部20的相对位置固定,凸极转子固定环52与凸极转子部20可以同步运动(如图2、图3和图6所示),也可以同步不运动(如图6所示),励磁转子固定环53与励磁转子部30的相对位置固定,即励磁转子固定环53与励磁转子部30可以同步运动(如图3、图6和图7所示),也可同步不运动(如图2所示)。
进一步地,负载可以与凸极转子固定环52传动连接(如图2和图3所示,二者之间同步运动),也可以与励磁转子固定环53传动连接(如图6和图7所示,二者之间同步运动)。滑动环542邻近励磁定子固定环51、凸极转子固定环52、励磁转子固定环53设置,并且可以通过驱动部541驱动沿轴向方向(如图2所示上下方向)移动,从而实现电机100的不同状态之间的切换,进而实现电机100的变极变压运行。
可选地,凸极转子部20与负载传动连接,当切换机构50处于第一状态(如图2所示位置)时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与励磁转子固定环53配合,从而使得励磁定子10和励磁转子部30的相对位置固定(即同步不运动),此时,凸极转子部20形成为相对励磁定子10旋转的转子。当切换机构50处于第二状 态(如图3所示位置)时,滑动环542在驱动部541驱动下,一端与凸极转子固定环52配合,另一端与励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。
在本发明的另一些示例中,励磁转子部30与负载传动连接,当切换机构50处于第一状态(如图6所示位置)时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与凸极转子固定环52配合,从而使得励磁定子10和凸极转子部20的相对位置固定(即同步不运动),此时,励磁转子部30形成为相对励磁定子10旋转的转子。当切换机构50处于第二状态(如图7所示位置)时,滑动环542在驱动部541驱动下,一端与凸极转子固定环52配合,另一端与励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。
由此,根据本发明的电机100可以通过切换机构50快速地可以实现第一状态和第二状态之间的切换,从而在不改变电机100绕组连接的情况下,实现转子极数和电机100运行频率的控制调节,提高电机100输出的转矩和功率,增大电机100的应用范围。
其中,驱动部541为通过电磁感应驱动滑动环542滑动的控制线圈。通过将驱动部541设为可以通过电磁感应控制滑动环542滑动的控制线圈,从而可以简化电机100内部的布线,使得电机100整体结构更加简单。
优选地,滑动环542、励磁定子固定环51、凸极转子固定环52和励磁转子固定环53上分别设有卡齿,切换机构50处于第一状态时,滑动环542上的卡齿分别与励磁定子固定环51上的卡齿以及凸极转子固定环52和励磁转子固定环53中的另一个上的卡齿啮合,切换机构50处于第二状态时,滑动环542上的卡齿分别与凸极转子固定环52上的卡齿和励磁转子固定环53上的卡齿啮合。
如图2和图3所示,滑动环542大致形成为圆筒形结构,圆筒形结构的滑动环542的内壁和外壁上分别设有卡齿,凸极转子固定环52的外壁上设有卡齿,励磁转子固定环53的内壁上设有卡齿,滑动环542内壁上的卡齿能够与凸极转子固定环52和励磁定子固定环51的外壁上的卡齿啮合配合,滑动环542外壁上的卡齿能够与励磁转子固定环53内壁上的卡齿配合,从而利用卡齿间的配合作用,增强滑动环542与励磁定子固定环51、凸极转子固定环52和励磁转子固定环53之间的连接可靠性,保证电机100的正常运转。
具体地,当切换机构50处于第一状态(如图2所示位置)时,滑动环542外壁上的卡齿与励磁转子固定环53内壁上的卡齿啮合,滑动环542内壁上的卡齿与励磁定子固定环51外壁上的卡齿啮合,从而保证励磁定子10与励磁转子部30的传动连接,励磁定子10与励 磁转子部30同步不转动;当切换机构50处于第二状态(如图3所示位置)时,滑动环542内壁上的卡齿与凸极转子固定环52外壁上的卡齿啮合,滑动环542外壁上的卡齿与励磁转子固定环53内壁上的卡齿啮合,从而保证凸极转子部20与励磁转子部30的传动连接,凸极转子部20与励磁转子部30同步转动。
在本发明的另一些示例中,如图6和图7所示,滑动环542内壁上的卡齿能够与励磁转子固定环53和励磁定子固定环51的外壁上的卡齿啮合配合,滑动环542外壁上的卡齿能够与凸极转子固定环52内壁上的卡齿配合,从而利用卡齿间的配合作用,增强滑动环542与励磁定子固定环51、凸极转子固定环52和励磁转子固定环53之间的连接可靠性,保证电机100的正常运转。
具体地,当切换机构50处于第一状态(如图6所示位置)时,滑动环542外壁上的卡齿与凸极转子固定环52内壁上的卡齿啮合,滑动环542内壁上的卡齿与励磁定子固定环51外壁上的卡齿啮合,从而保证励磁定子10与凸极转子部20的传动连接,励磁定子10与凸极转子部20同步不转动;当切换机构50处于第二状态(如图7所示位置)时,滑动环542内壁上的卡齿与励磁转子固定环53外壁上的卡齿啮合,滑动环542外壁上的卡齿与凸极转子固定环52内壁上的卡齿啮合,从而保证凸极转子部20与励磁转子部30的传动连接,凸极转子部20与励磁转子部30同步转动。
其中,电机100还包括适于与负载传动连接的电机轴41,电机轴41由转子驱动旋转。
具体地,电机100主要由励磁定子10、凸极转子部20、励磁转子部30、切换机构50和电机轴41组成。励磁定子10、凸极转子部20和励磁转子部30大致形成为圆筒形结构,且沿轴向方向(如图2所示上下方向)同轴设置,并且励磁定子10、凸极转子部20、励磁转子部30三者之间任意两个都可以相对旋转,也就是说,凸极转子部20可以相对于励磁定子10或励磁转子部30做旋转运动,同时,励磁转子部30也可以相对于凸极转子部20或励磁定子10做旋转运动。
进一步地,切换机构50可以固定励磁定子10与励磁转子部30(如图2所示)之间的相对位置,也可以固定励磁转子部30与凸极转子部20(如图3和图7所示)之间的相对位置,或者固定励磁定子10与凸极转子部20(如图6所示)之间的相对位置,从而使得凸极转子部20、凸极转子部20和励磁转子部30或者励磁转子部30可以分别相对于励磁定子10旋转,形成为可相对励磁定子10旋转并且驱动电机轴41的转子,电机100在三同状态下的转子可以驱动电机轴41旋转,进而在不改变电机100绕组连接的情况下,实现电机100的变极变压运行,即实现对转子极数和电机100运行频率的控制调节。
由此,当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大,当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁 控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升,从而有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。
根据本发明实施例的电机100,通过将励磁定子10、凸极转子部20和励磁转子部30设置为任意两个均可相对旋转,并且利用切换机构50可选地固定其中两个,从而使得凸极转子部20和励磁转子部30中至少一个形成为可以相对与励磁定子10转动的转子,进而在不改变电机100绕组连接的情况下,实现转子极数和电机100运行频率的控制调节,从而实现电机100的最佳效率区间在低速大转矩区间和高速低转矩区间之间的切换,有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。该电机100的结构紧凑,占用空间小、工作范围广,可以在不改变电机100绕组连接的情况下实现转子极数和运行频率的受控调整,具有高转矩、高功率密度等优点。
在本发明的一些实施例中,电机100还包括定子机壳63和端盖64,具体而言,励磁定子10、凸极转子部20和励磁转子部30均设在定子机壳63内,励磁定子10与定子机壳63传动连接,凸极转子部20和电机轴41分别与端盖64传动连接,励磁定子固定环51与定子机壳63传动连接,凸极转子固定环52与电机轴41传动连接,励磁转子固定环53与励磁转子部30传动连接。
参照图2和图3,定子机壳63大致形成为一端(如上端)敞开的圆筒状结构,励磁定子10、凸极转子部20和励磁定子10部沿定子机壳63的径向方向由外向内依次间隔开设在定子机壳63内且同轴设置,从而通过定子机壳63对电机100内部元件进行保护,避免意外损伤。其中,励磁定子固定环51设在定子机壳63中部上端且与定子机壳63一体成型。同时,励磁定子10与定子机壳63之间、凸极转子部20和电机轴41分别与端盖64之间、励磁定子固定环51与定子机壳63传动之间、凸极转子固定环52与电机轴41之间以及励磁转子固定环53与励磁转子部30之间均采用传动连接,也就是说,励磁定子10与定子机壳63之间、凸极转子部20和电机轴41分别与端盖64之间、励磁定子固定环51与定子机壳63传动之间、凸极转子固定环52与电机轴41之间以及励磁转子固定环53与励磁转子部30之间分别同步运动或同步不运动,例如,在本实施例中,励磁定子10与定子机壳63之间无相对运动,定子机壳63处于固定状态,则励磁定子10也处于固定状态。
当切换机构50处于第一状态(如图2所示位置)时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与励磁转子固定环53配合,从而使得励磁定子10和励磁转子部30的相对位置固定(即二者处于同步不运动),此时,凸极转子部20形成为相对励磁定子10旋转的转子。当切换机构50处于第二状态(如图3所示位置)时,滑动环542在驱动部541驱动下,一端与凸极转子固定环52配合,另一端与励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即二者处于同步运动),此 时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
进一步地,切换机构50设在励磁转子部30内。
参照图2和图3,切换机构50设在励磁转子部30与电机轴41之间,且邻近励磁转子部30的一端(内壁),从而可以简化切换机构50的电路布线,增强切换机构50控制的可靠性。值得说明的是,切换机构50可以是电磁式的,也可以是机械式的,本领域技术人员可以根据实际的设计需求进行选择。
其中,定子机壳63与电机轴41之间、端盖64与励磁转子部30之间以及励磁转子部30与定子机壳63之间分别通过轴承70配合。
具体地,如图2和图3所示,定子机壳63与电机轴41之间、定子机壳63的励磁定子固定环51与励磁转子部30之间、端盖64与励磁转子部30之间通过轴承70配合保持相互之间的距离和旋转独立性。
在本发明的另一些实施例中,电机100还包括定子机壳63和端盖64,励磁定子10、凸极转子部20和励磁转子部30均设在定子机壳63内,励磁定子10与定子机壳63传动连接,凸极转子部20与端盖64传动连接,电机轴41与励磁转子部30传动连接,励磁定子固定环51与定子机壳63传动连接,凸极转子固定环52与凸极转子部20传动连接,励磁转子固定环53与电机轴41传动连接。
具体地,如图6和图7所示,定子机壳63大致形成为一端(如上端)敞开的圆筒状结构,励磁定子10、凸极转子部20和励磁定子10部沿定子机壳63的径向方向由外向内依次间隔开设在定子机壳63内且同轴设置,从而通过定子机壳63对电机100内部元件进行保护,避免意外损伤。其中,励磁定子固定环51设在定子机壳63中部上端且与定子机壳63一体成型。
同时,励磁定子10与定子机壳63之间、凸极转子部20与端盖64之间、电机轴41与励磁转子部30之间、励磁定子固定环51与定子机壳63之间、凸极转子固定环52与凸极转子部20之间以及励磁转子固定环53与电机轴41之间均采用传动连接,也就是说,励磁定子10与定子机壳63之间、凸极转子部20与端盖64之间、电机轴41与励磁转子部30之间、励磁定子固定环51与定子机壳63之间、凸极转子固定环52与凸极转子部20之间以及励磁转子固定环53与电机轴41之间分别同步运动或同步不运动,例如,在本实施例中,凸极转子固定环52与凸极转子部20之间无相对运动。
当切换机构50处于第一状态(如图6所示位置)时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与凸极转子固定环52配合,从而使得励磁定子10 和凸极转子部20的相对位置固定(即二者处于同步不运动),此时,励磁转子部30形成为相对励磁定子10旋转的转子。当切换机构50处于第二状态(如图7所示位置)时,滑动环542在驱动部541驱动下,一端与凸极转子固定环52配合,另一端与励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即二者处于同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
进一步地,切换机构50设在励磁转子部30外且临近励磁转子部30的一端。
参照图6和图7,切换机构50设在励磁转子部30外且邻近励磁转子部30的一端,从而可以简化切换机构50的电路布线,增强切换机构50控制的可靠性。值得说明的是,切换机构50可以是电磁式的,也可以是机械式的,本领域技术人员可以根据实际的设计需求进行选择。
其中,定子机壳63与电机轴41之间、端盖64与电机轴41之间分别通过轴承70配合。具体地,如图6和图7所示,定子机壳63与电机轴41之间、端盖64与电机轴41之间通过轴承70配合保持相互之间的距离和旋转独立性。
其中,励磁定子10包括定子导磁铁芯11和定子绕组12,定子绕组12绕制在定子导磁铁芯11上。
参照图1和图2,励磁定子10主要由定子导磁铁芯11和定子绕组12组成,定子导磁铁芯11由高导磁材料构成,高导磁材料可以是硅钢片、钴钢片、坡莫合金、SMC等材料。定子绕组12绕制在定子导磁铁芯11上,定子绕组12可以是集中绕组(如图1所示),也可以是分布绕组(如图5所示),也就是说定子绕组12的跨距可以是1或者其他整数,同时,定子绕组12的相数可以单相或多相,从而使得定子绕组12通过AC电流,产生磁场。值得说明的是,定子导磁铁芯11的具体材料、定子绕组12绕组形式,以及定子绕组12的相数可以根据实际的设计需求做出适应性的选择,以保证电机100的转矩和功率密度。
其中,励磁转子部30包括转子导磁铁芯31和永磁体32,永磁体32设在转子导磁铁芯31上。
具体地,如图1所示,励磁转子部30主要由转子导磁铁芯31和永磁体32组成,永磁体32设在转子导磁铁芯31上且沿转子导磁铁芯31的周向方向均匀布置。转子导磁铁芯31由高导磁材料构成,高导磁材料可以是硅钢片、钴钢片、坡莫合金、SMC等材料。永磁体32主要由永磁材料构成,永磁材料可以是钕铁硼、铁氧体、铝镍钴、钐钴等材料。永磁体32可以通过表面贴装(SPM)、内置式(IPM)、表面嵌装(Inset PM)等方式实现与转子导磁铁芯31的结合,例如,在本发明的一个示例中,永磁体32以相同极性相对的方式嵌入转子导 磁铁芯31,从而保证励磁转子部30的结构稳定,进而产生励磁磁场。
可选地,永磁体32大致形成为长条状结构,永磁体32的数量是24,多个长条状的永磁体32以相同极性相对的方式沿周向方向间隔开嵌入转子导磁铁芯31,且长条状的永磁体32的长条边沿径向方向布置(如图1和图5所示)。当然,永磁体32的数量也可以是8,长条状永磁体32的长条边沿周向方向布置(如图9所示),同时,永磁体32的形状也可以是弧形状,多个弧形结构的永磁体32以相同极性相对的方式沿周向方向间隔开嵌入转子导磁铁芯31,且弧形状的永磁体32的弧形边沿周向方向布置(如图8和图10所示)。值得说明的是,本领域技术人员可以根据实际设计需求改变永磁体32的数量、形状以及布置方式,以调整等效转子极对数和工作电频率,使得在输出机械转速相同时,可以通过切换电机100的不同运行状态(如第一状态和第二状态)实现变极变压运行。
凸极转子部20包括多个导磁铁芯21和多个非导磁间隔块22,多个导磁铁芯21和多个非导磁间隔块22沿电机100的周向交替排列。
参照图1,凸极转子部20主要由多个导磁铁芯21和多个非导磁间隔块22组成,多个导磁铁芯21和多个非导磁间隔块22沿电机100的周向交替间隔布置,导磁铁芯21由高导磁材料构成,高导磁材料可以是硅钢片、钴钢片、坡莫合金、SMC等材料。非导磁间隔块22由非导磁材料构成,非导磁材料可以是空气、塑料、高分子聚合物、非导磁金属等材料。
优选地,励磁定子10由交流电流驱动且产生的旋转磁场的极对数为ps,励磁转子部30产生的励磁磁场的极对数为pf,导磁铁芯21的数量为pr,其中,pr=|ps±pf|。
具体地,励磁定子10通过交流电流驱动,并产生极对数为ps的旋转磁场,励磁转子部30产生极对数为pf的励磁磁场,导磁铁芯21的数量为pr,同时,导磁铁芯21的数量等于旋转磁场的极对数和励磁磁场的极对数之和或者二者之差,从而保证电机100在不同运行状态下能够正常运行。
可选地,励磁定子10、凸极转子部20和励磁转子部30沿电机100的径向由内至外依次间隔设置,励磁定子10、凸极转子部20和励磁转子部30中的任意两个均可相对旋转,切换机构50通过可选地固定励磁定子10、凸极转子部20和励磁转子部30中的两个的相对位置以选取凸极转子部20和励磁转子部30中的至少一个充当可相对励磁定子10旋转的转子。
换言之,电机100主要由励磁定子10、凸极转子部20、励磁转子部30、切换机构50组成。励磁定子10、凸极转子部20和励磁转子部30大致形成为沿电机100的轴向(如图12所示左右方向)延伸的圆筒形结构,在电机100的径向上、凸极转子部20位于励磁定子10的外侧且位于励磁转子部30的内侧,励磁定子10、凸极转子部20、励磁转子部30同轴布置,三者之间间隔开设置,从而避免任意两者之间相对旋转时产生干涉,进而影响电机100的正常工作。再者,励磁定子10、凸极转子部20、励磁转子部30三者之间任意两个都 可以相对旋转,也就是说,凸极转子部20可以相对于励磁定子10或励磁转子部30做旋转运动,同时,励磁转子部30也可以相对于凸极转子部20或励磁定子10做旋转运动。
进一步地,切换机构50可以固定励磁定子10与励磁转子部30之间的相对位置,从而使得凸极转子部20相对于励磁定子10与励磁转子部30旋转,形成为可相对励磁定子10旋转的转子;切换机构50也可以固定励磁转子部30与凸极转子部20之间的相对位置,从而使得凸极转子部20和励磁转子部30相对于励磁定子10旋转,形成为可相对励磁定子10旋转的转子;或者切换机构50可以固定励磁定子10与凸极转子部20之间的相对位置,从而使得励磁转子部30可以分别相对于励磁定子10与凸极转子部20旋转,形成为可相对励磁定子10旋转的转子,电机100在三种状态下的转子可以分别输出转矩,实现电机100的三种工作状态的切换,进而在不改变电机100绕组连接的情况下,实现电机100的变极变压运行,即实现对转子极数和电机100运行频率的控制调节。
由此,当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大,当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升,电机100的三种运行状态的等效转子极对数和工作电频率差异显著,实现了不改变电机100绕组连接前提下的变极变压运行,拓宽了电机100的转速工作范围,从而有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。
根据本发明实施例的电机100,通过将励磁定子10、凸极转子部20和励磁转子部30设置为任意两个均可相对旋转,并且利用切换机构50可选地固定其中两个,从而使得凸极转子部20和励磁转子部30中至少一个形成为可以相对于励磁定子10转动的转子,进而在不改变电机100绕组连接的情况下,实现转子极数和电机100运行频率的控制调节,从而实现电机100的最佳效率区间在低速大转矩区间和高速低转矩区间之间的切换,有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。该电机100的结构紧凑,占用空间小、工作范围广,可以在不改变电机100绕组连接的情况下实现转子极数和运行频率的受控调整,与相关技术中的相同整机体积的电机100相比,可以输出更大的转矩和功率,具有高转矩、高功率密度等优点。
在本发明的一些实施例中,切换机构50在第一状态和第二状态之间可切换,凸极转子部20和励磁转子部30中的一个适于与负载传动连接,切换机构50处于第一状态时固定励磁定子10与凸极转子部20和励磁转子部30中的另一个的相对位置,切换机构50处于第二状态时固定励磁转子部30与凸极转子部20的相对位置。
具体地,如图12和图13所示,在本实施例中,负载与凸极转子部20传动连接,也就是说,负载与凸极转子部20可以同步运动或同步不运动,而切换机构50可以固定励磁定子 10与励磁转子部30的相对位置,也可以固定凸极转子部20与励磁转子部30的相对位置。
如图12所示,当切换机构50处于第一状态时,切换机构50固定连接励磁定子10与励磁转子部30的相对位置,使得励磁定子10与励磁转子部30同步不运动,凸极转子部20形成可相对于励磁定子10旋转的转子;如图13所示,当切换机构50处于第二状态时,切换机构50固定连接凸极转子部20与励磁转子部30的相对位置,使得凸极转子部20与励磁转子部30可以同步运动或者不运动,凸极转子部20和励磁转子部30形成可相对于励磁定子10旋转的转子,从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
当然,本发明并不限于此,在本发明的另一些示例中,负载与励磁转子部30传动连接,也就是说,负载与励磁转子部30可以同步运动或同步不运动,而切换机构50可以固定励磁定子10与凸极转子部20的相对位置,也可以固定励磁转子部30与凸极转子部20的相对位置。
如图16所示,当切换机构50处于第一状态时,切换机构50固定连接励磁定子10与凸极转子部20的相对位置,使得励磁定子10与凸极转子部20同步不运动,励磁转子部30形成可相对于励磁定子10旋转的转子;如图17所示,当切换机构50处于第二状态时,切换机构50固定连接凸极转子部20与励磁转子部30的相对位置,使得凸极转子部20与励磁转子部30可以带动负载同步运动或者不运动,凸极转子部20和励磁转子部30形成可相对于励磁定子10旋转的转子,从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
由此,当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大,当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升,电机100的两种运行状态的等效转子极对数和工作电频率差异显著,实现了不改变电机100绕组连接前提下的变极变压运行,拓宽了电机100的转速工作范围,从而有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。
其中,切换机构50包括励磁定子固定环51、凸极转子固定环52、励磁转子固定环53、驱动部541和滑动环542。具体而言,励磁定子固定环51与励磁定子10的相对位置固定,凸极转子固定环52与凸极转子部20的相对位置固定,励磁转子固定环53与励磁转子部30的相对位置固定,凸极转子固定环52和励磁转子固定环53中的一个适于与负载传动连接,滑动环542由驱动部541驱动滑动,切换机构50处于第一状态时,滑动环542在驱动部541的驱动下分别与励磁定子固定环51以及凸极转子固定环52和励磁转子固定环53中的另一个配合,切换机构50处于第二状态时,滑动环542在驱动部541的驱动下分别与凸极转子 固定环52和励磁转子固定环53配合。
参照图12、图13、图16和图17,切换机构50主要由励磁定子固定环51、凸极转子固定环52、励磁转子固定环53、驱动部541和滑动环542组成。励磁定子固定环51大致形成为圆筒形结构,励磁定子固定环51与励磁定子10的相对位置固定,即励磁定子固定环51与励磁定子10之间同步不运动,凸极转子固定环52与凸极转子部20的相对位置固定,凸极转子固定环52与凸极转子部20可以同步运动,也可以同步不运动;励磁转子固定环53与励磁转子部30的相对位置固定,即励磁转子固定环53与励磁转子部30可以同步运动,也可同步不运动。
可选地,如图12所示,凸极转子部20与负载传动连接,当切换机构50处于第一状态时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与励磁转子固定环53配合,从而使得励磁定子10和励磁转子部30的相对位置固定(即同步不运动),此时,凸极转子部20形成为相对励磁定子10旋转的转子。
如图13所示,当切换机构50处于第二状态时,滑动环542在驱动部541驱动下,一端与凸极转子固定环52配合,另一端与励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。
可选地,如图16所示,励磁转子部30与负载传动连接,当切换机构50处于第一状态时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与凸极转子固定环52配合,从而使得励磁定子10和凸极转子部20的相对位置固定(即同步不运动),此时,励磁转子部30形成为相对励磁定子10旋转的转子。如图17所示,当切换机构50处于第二状态时,滑动环542在驱动部541驱动下,一端与凸极转子固定环52配合,另一端与励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。
由此,根据本发明的电机100可以通过切换机构50快速地可以实现第一状态和第二状态之间的切换,从而在不改变电机100绕组连接的情况下,实现转子极数和电机100运行频率的控制调节,提高电机100输出的转矩和功率,增大电机100的应用范围。
可选地,驱动部541为通过电磁感应驱动滑动环542滑动的控制线圈。通过将驱动部541设为可以通过电磁感应控制滑动环542滑动的控制线圈,从而可以简化电机100内部的布线,使得电机100整体结构更加简单。
优选地,滑动环542、励磁定子固定环51、凸极转子固定环52和励磁转子固定环53上分别设有卡齿,切换机构50处于第一状态时,滑动环542上的卡齿分别与励磁定子固定环51上的卡齿以及凸极转子固定环52和励磁转子固定环53中的另一个上的卡齿啮合,切换 机构50处于第二状态时,滑动环542上的卡齿分别与凸极转子固定环52上的卡齿和励磁转子固定环53上的卡齿啮合。
如图12和图13所示,滑动环542大致形成为圆筒形结构,圆筒形结构的滑动环542的内壁和外壁上分别设有卡齿,凸极转子固定环52的外壁上设有卡齿,励磁转子固定环53的内壁上设有卡齿,滑动环542内壁上的卡齿能够与凸极转子固定环52和励磁定子固定环51的外壁上的卡齿啮合配合,滑动环542外壁上的卡齿能够与励磁转子固定环53内壁上的卡齿配合,从而利用卡齿间的配合作用,增强滑动环542与励磁定子固定环51、凸极转子固定环52和励磁转子固定环53之间的连接可靠性,保证电机100的正常运转。
具体地,如图12所示,当切换机构50处于第一状态时,滑动环542外壁上的卡齿与励磁转子固定环53内壁上的卡齿啮合,滑动环542内壁上的卡齿与励磁定子固定环51外壁上的卡齿啮合,从而保证励磁定子10与励磁转子部30的传动连接,励磁定子10与励磁转子部30同步不转动;如图13所示,当切换机构50处于第二状态时,滑动环542内壁上的卡齿与励磁定子固定环51外壁上的卡齿脱离,滑动环542外壁上的卡齿分别与凸极转子固定环52内壁上的卡齿和励磁转子固定环53内壁上的卡齿啮合,从而保证凸极转子部20与励磁转子部30的传动连接,凸极转子部20与励磁转子部30同步转动。
有利地,根据本发明的一个实施例,切换机构50设在励磁定子10外且邻近励磁定子10的一端。具体地,如图12所示,切换机构50设在励磁定子10的右侧,且与励磁定子10间隔开布置,有利于控制励磁转子部30与励磁定子10可选择地连接,实现电机100的不同工作状态的调换。
此外,电机100还包括:外转子机壳61、内转子机壳62和定子机壳63,励磁定子10、凸极转子部20和励磁转子部30均设在外转子机壳61内,励磁转子部30与外转子机壳61传动连接,凸极转子部20与内转子机壳62传动连接且内转子机壳62上传动连接有适于与负载传动连接的电机轴41,励磁定子10与定子机壳63传动连接,励磁定子固定环51与定子机壳63传动连接,凸极转子固定环52与凸极转子部20传动连接,励磁转子固定环53与外转子机壳61传动连接。
参照图12和图13,外转子机壳61大致形成为一端(如图12所示的右端)敞开的圆筒状结构,励磁定子10、凸极转子部20和励磁定子10部沿定子机壳63的径向方向由内向外依次间隔开设在外转子机壳61内且同轴设置,从而通过外转子机壳61对电机100内部元件进行保护,避免意外损伤。其中,励磁转子固定环53设在外转子机壳61的一端(如图12所示的右端)且与外转子机壳61一体成型。
定子机壳63形成沿电机100的轴向延伸的环形结构,定子机壳63设在外转子机壳61内且定子机壳63的一端(如图12所示的右端)的外侧壁设有励磁定子固定环51以可选择 地与驱动环传动连接,内转子机壳62形成沿电机100的轴向延伸的环形结构且在电机100的径向上、位于外转子机壳61与定子机壳63之间,内转子机壳62的一端(如图12所示的右端)与凸极转子固定环52相连。
在本实施例中,励磁定子10与定子机壳63之间无相对运动,定子机壳63处于固定状态,则励磁定子10也处于固定状态。
如图12所示,当切换机构50处于第一状态时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与励磁转子固定环53配合,从而使得励磁定子10和励磁转子部30的相对位置固定(即二者处于同步不运动),此时,凸极转子部20形成为相对励磁定子10旋转的转子。如图13所示,当切换机构50处于第二状态时,滑动环542在驱动部541驱动下、分别与凸极转子固定环52和励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即二者处于同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
参照图12和图13,电机轴41穿过定子机壳63内且与定子机壳63间隔开布置,内转子机壳62通过电机轴41与负载连接,切换机构50设在定子机壳63与内转子机壳62之间且邻近励磁转子部30的一端,从而可以简化切换机构50的电路布线,增强切换机构50控制的可靠性。值得说明的是,切换机构50可以是电磁式的,也可以是机械式的,本领域技术人员可以根据实际的设计需求进行选择。
优选地,外转子机壳61与电机轴41之间以及定子机壳63与电机轴41之间分别通过轴承70配合。具体地,如图12和图13所示,定子机壳63与电机轴41之间、外转子机壳61与电机轴41之间通过轴承70配合保持相互之间的距离和旋转独立性,结构简单,不会形成运动干涉。
在本发明的另一些具体实施方式中,电机100还包括:外转子机壳61、内转子机壳62,励磁定子10、凸极转子部20和励磁转子部30均设在定子机壳63内,励磁转子部30与外转子机壳61传动连接,励磁定子10上传动连接有固定支撑轴42,凸极转子部20和固定支撑轴42分别与内转子机壳62传动连接,励磁定子固定环51与所固定支撑轴42传动连接,凸极转子固定环52与内转子机壳62传动连接,励磁转子固定环53与外转子机壳61传动连接。
具体地,如图16和图17所示,外转子机壳61大致形成为一端(如图16所示的左端)敞开的圆筒状结构,励磁定子10、凸极转子部20和励磁定子10部沿定子机壳63的径向方向由内向外依次间隔开设在外转子机壳61内且同轴设置,从而通过外转子机壳61对电机 100内部元件进行保护,避免意外损伤。其中,励磁转子固定环53设在外转子机壳61的一端(如图16所示的左端)且与外转子机壳61一体成型。
同时,固定支撑轴42形成沿电机100的轴向延伸的环形结构,固定支撑轴42设在外转子机壳61内且固定支撑轴42的一端(如图16所示的左端)的外侧壁设有励磁定子固定环51以可选择地与驱动环传动连接,励磁定子10固设在在固定支撑轴42上;内转子机壳62形成沿电机100的轴向延伸的环形结构且在电机100的径向上、位于外转子机壳61与固定支撑轴42之间,内转子机壳62的一端(如图12所示的右端)与凸极转子固定环52相连。
如图16所示,当切换机构50处于第一状态时,滑动环542在驱动部541驱动下,一端与励磁定子固定环51配合,另一端与凸极转子固定环52配合,从而使得励磁定子10和凸极转子部20的相对位置固定(即二者处于同步不运动),此时,励磁转子部30形成为相对励磁定子10旋转的转子。如图17所示,当切换机构50处于第二状态时,滑动环542在驱动部541驱动下、分别与凸极转子固定环52和励磁转子固定环53配合,从而使得凸极转子部20和励磁转子部30的相对位置固定(即二者处于同步运动),此时,凸极转子部20和励磁转子部30形成为相对励磁定子10旋转的转子。从而通过切换机构50实现电机100第一状态和第二状态之间的切换,进而实现对等效转子极对数和工作点频率的调节,从而实现电机100的变极变压运行。
可选地,外转子机壳61与固定支撑轴42之间以及内转子机壳62与固定支撑轴42之间分别通过轴承70配合,从而保持外转子机壳61与固定支撑轴42之间以及内转子机壳62与固定支撑轴42之间的距离和旋转独立性。
其中,根据本发明的一个实施例,固定支撑轴42为横截面为环形的中空轴。即固定支撑轴42形成沿电机100的轴向延伸的空心轴,且电机100在工作时,固定支撑轴42相对静止不动,只起到支撑励磁定子10的作用,将固定支撑轴42做成空心轴,既可以减小电机100的重量,有利于实现电机100的轻量化,又可以降低材料成本,从而提升电机100的性价比。而在本实施例中,电机100在两种工作状态切换时,励磁转子部30均作为电机100的转子,外转子机壳61随励磁转子部30一起转动以输出转矩,负载与外转子机壳61相连。
可选地,励磁定子10包括定子导磁铁芯11和定子绕组12,定子绕组12绕制在定子导磁铁芯11上。
参照图11和图12,励磁定子10主要由定子导磁铁芯11和定子绕组12组成,定子导磁铁芯11由高导磁材料构成,高导磁材料可以是硅钢片、钴钢片、坡莫合金、SMC等材料。定子绕组12绕制在定子导磁铁芯11上,定子绕组12可以是集中绕组(如图11所示),也可以是分布绕组(如图16所示),也就是说定子绕组12的跨距可以是1或者其他整数,同时,定子绕组12的相数可以单相或多相,从而使得定子绕组12通过AC电流,产生磁场。 值得说明的是,定子导磁铁芯11的具体材料、定子绕组12绕组形式,以及定子绕组12的相数可以根据实际的设计需求做出适应性的选择,以保证电机100的转矩和功率密度。
其中,励磁转子部30包括转子导磁铁芯31和永磁体32,永磁体32设在转子导磁铁芯31上。
换言之,励磁转子部30主要由转子导磁铁芯31和永磁体32组成,永磁体32设在转子导磁铁芯31上且沿转子导磁铁芯31的周向方向均匀布置。转子导磁铁芯31由高导磁材料构成,高导磁材料可以是硅钢片、钴钢片、坡莫合金、SMC等材料。永磁体32主要由永磁材料构成,永磁材料可以是钕铁硼、铁氧体、铝镍钴、钐钴等材料。永磁体32可以通过表面贴装(SPM)、内置式(IPM)、表面嵌装(Inset PM)等方式实现与转子导磁铁芯31的结合,例如,在本发明的一个示例中,永磁体32以相同极性相对的方式嵌入转子导磁铁芯31,从而保证励磁转子部30的结构稳定,进而产生励磁磁场。
可选地,每个永磁体32大致形成为长条状结构,多个长条状的永磁体32以相同极性相对的方式沿周向方向间隔开嵌入转子导磁铁芯31。
如图18所示,在本实施例中,转子导磁铁芯31形成沿电机100的周向延伸的圆环形,转子导磁铁芯31上设有多个间隔开布置的永磁体32,每个永磁体32嵌设在转子导磁铁芯31内,每个永磁体32形成长条状且永磁体32的长条边与转子导磁铁芯31的径向相互垂直。
如图19所示,在本实施例中,转子导磁铁芯31形成沿电机100的周向延伸的圆环形,转子导磁铁芯31上设有多个间隔开布置的永磁体32,每个永磁体32的长度方向沿电机100的径向延伸,且每个永磁体32的长度尺寸等于转子导磁铁芯31在电机100的径向上的厚度。
如图20所示,在本实施例中,转子导磁铁芯31形成沿电机100的周向延伸的圆环形,转子导磁铁芯31上设有多个间隔开布置的永磁体32,每个永磁体32形成沿转子导磁铁芯31的周向延伸的弧形块,且每个永磁体32邻近转子导磁铁芯31的内侧壁设置。值得说明的是,本领域技术人员可以根据实际设计需求改变永磁体32的数量、形状以及布置方式,以调整等效转子极对数和工作电频率,使得在输出机械转速相同时,可以通过切换电机100的不同运行状态(如第一状态和第二状态)实现变极变压运行。
凸极转子部20包括多个导磁铁芯21和多个非导磁间隔块22,多个导磁铁芯21和多个非导磁间隔块22沿电机100的周向交替排列。
参照图11,凸极转子部20主要由多个导磁铁芯21和多个非导磁间隔块22组成,多个导磁铁芯21和多个非导磁间隔块22沿电机100的周向交替间隔布置,导磁铁芯21由高导磁材料构成,高导磁材料可以是硅钢片、钴钢片、坡莫合金、SMC等材料。非导磁间隔块22由非导磁材料构成,非导磁材料可以是空气、塑料、高分子聚合物、非导磁金属等材料。
有利地,根据本发明的一个实施例,励磁定子10由交流电流驱动且产生的旋转磁场的 极对数为ps,励磁转子部30产生的励磁磁场的极对数为pf,导磁铁芯21的数量为pr,其中,pr=|ps±pf|。
具体地,励磁定子10通过交流电流驱动,并产生极对数为ps的旋转磁场,励磁转子部30产生极对数为pf的励磁磁场,导磁铁芯21的数量为pr,同时,导磁铁芯21的数量等于旋转磁场的极对数和励磁磁场的极对数之和或者二者之差,从而保证电机100在不同运行状态下能够正常运行。
下面参考图1-图20通过多个具体实施例对根据本发明实施例的电机进行详细描述。
该变极变压外转子电机100主要包含三层主要结构以及一个切换机构50,三层主要结构包含固定的励磁定子10、旋转状态可变的凸极转子部20、旋转状态可变的励磁转子部30,励磁定子10和励磁转子部30分别居于整个电机100三层主要结构的最内层和最外层,凸极转子部20位于整个电机100三层主要结构的中间层,且凸极转子部20分别与励磁定子10和励磁转子部30之间以空气间隙相隔离。
励磁定子10包含高导磁材料(包含但不限于硅钢片、钴钢片、坡莫合金、SMC等)构成的定子导磁铁芯11以及在其上的绕制的定子绕组12,定子绕组12可以是集中绕组或者分布绕组,即定子绕组12的跨距可以是1或者其他整数,定子绕组12的相数可以为单相或多相,定子导磁铁芯11的槽数为Ns,定子绕组12可由与绕组相数对应的多相AC电流驱动,产生的极对为ps的磁场。
励磁转子部30的励磁形式为永磁形式,永磁形式的励磁转子部30包含高导磁材料(包含但不限于硅钢片、钴钢片、坡莫合金、SMC等)构成的转子导磁铁芯31以及永磁材料(包含但不限于钕铁硼、铁氧体、铝镍钴、钐钴等)构成的永磁体32,转子导磁铁芯31和永磁体32的结合方式可以采用所有永磁电机100的转子形式,主要包含但不限于表面贴装(SPM)、内置式(IPM)、表面嵌装(Inset PM)等,产生的极对为pf的励磁磁场。
凸极转子部20包含高导磁材料(包含但不限于硅钢片、钴钢片、坡莫合金、SMC等)构成的导磁铁芯21以及非导磁材料(包含但不限于空气、塑料、高分子聚合物、非导磁金属等)构成的非导磁间隔块22,导磁铁芯21和间隔块交替间隔布置形成凸极转子部20,导磁铁芯21的数量为pr,其与ps以及pf的关系满足pr=|ps±pf|。
切换机构50可以为电磁式或机械式,其作用在于切换电机100旋转部件的组成形式于三种运行状态之间,第一运行状态下,励磁定子10和励磁转子部30固定不动以充当电机100的定子,凸极转子部20为旋转部件以充当电机100的转子,第一运行状态下的电机100的等效转子极数为pr,电机100的工作电频率为ωnpr,ωn为电机100输出轴的机械转速;第二运行状态下,励磁定子10固定不动,充当电机100的定子,励磁转子部30和凸极转子部20相连作为转动部件,充当电机100的转子,第二运行状态下电机100的等效转子极数 为ps,电机100的工作电频率为ωnps;第三运行状态下,励磁定子10和凸极转子部20固定不动,充当电机100的定子,励磁转子部30为旋转部件,充当电机100的转子,第三运行状态下电机100的等效转子极数为pf,电机100的工作电频率为ωnpf。当电机100输出机械转速相同时,以上三种运行状态之间的等效转子极对数和工作电频率之比为ps:pr:pf,进而可以通过切换电机100的不同运行状态实现变极变压运行。
实施例一
具体地,如图1至图3所示,本实施例的电机100为三层结构,其中,励磁定子10设在最外层,为固定不旋转的部件,励磁定子10包含定子导磁铁芯11、定子绕组12,定子机壳63。定子导磁铁芯槽数Ns=24,定子绕组12为三相集中绕组,线圈跨距为1,定子绕组12通入三相对称电流时,产生极对数ps=8的励磁定子旋转磁场。凸极转子部20包含导磁铁芯21、非导磁间隔块22,并通过端盖64与电机轴41直接相连,导磁铁芯21的数量pr=20。励磁转子部30包含转子导磁铁芯31、永磁体32,永磁体32以相同极性相对的方式嵌入转子导磁铁芯31中,使得励磁转子部30产生极对数pf=12的励磁磁场。励磁定子10、励磁转子部30、凸极转子部20以及电机轴41之间通过轴承70保持相互之间的距离和旋转独立性。
切换机构50位于励磁转子部30的内部,且包含控制线圈541、滑动环542、励磁定子固定环51、凸极转子固定环52,励磁转子固定环53,滑动环542为径向内外均有齿的齿圈,励磁转子固定环53为径向内侧有齿的齿圈,励磁定子固定环51和凸极转子固定环52为径向内侧有齿的齿圈。
图2显示了本实施例的电机100的第一运行状态,在该状态下,滑动环542在控制线圈541产生的驱动下滑向电机非轴伸侧,将励磁定子固定环51以及励磁转子固定环53啮合在一起,在此状态下励磁转子部30成为固定部件与励磁定子10保持固定的相对位置,凸极转子部在此状态下作为该电机的唯一转动部件。本实施例在第一运行状态下电机等效运行转子极对数为凸极转子部20的个数pr=20,电机在600rpm转速下的电频率为200Hz。
图3显示了本实施例的电机100的第二运行状态,在该状态下,控制线圈541驱动滑动环542滑向电机的轴伸端,将励磁转子固定环53以及凸极转子固定环52啮合在一起,在此状态下励磁转子部30与凸极转子部20保持相对的固定位置,成为电机的转动部件,本实施例在的第二运行状态下,电机等效运行转子极对数为ps=8,电机在600rpm转速下的电频率仅为80Hz。
本实施例的电机100在第一、第二运行状态下,电机轴41的转速为600rpm时的空载绕组反电动势(back-EMF)对比如图4,从图中可以明显看出电机100在两种工作状态下的极对数和端电压差异,电机在两种运行状态下的等效极对数和运行频率的比值为5:2。
实施例二
如图5至图7所示,本实施例的电机100为三层环形结构,励磁定子10设在最外层,为固定不旋转的部件,励磁定子10包含定子导磁铁芯11、定子绕组12、定子机壳63。定子导磁铁芯槽数Ns=24,定子绕组12为三相分布绕组,线圈跨距为5,定子绕组12通入三相对称电流时,产生极对数ps=4的励磁定子旋转磁场。凸极转子部20包含导磁铁芯21、非导磁间隔块22,导磁铁芯21的数量pr=16。励磁转子部30包含转子导磁铁芯31、永磁体32,永磁体32以相同极性相对的方式嵌入转子导磁铁芯31中,使得励磁转子部30产生极对数pf=12的励磁磁场,励磁转子部30直接与电机轴41相连。励磁定子10、励磁转子部30、凸极转子部20以及电机轴41之间通过轴承40保持相互之间的距离和旋转独立性。
切换机构50在本实施例中位于电机端部,包含控制线圈541、滑动环542、励磁定子固定环51、凸极转子固定环52,励磁转子固定环53,滑动环542为径向内侧和外侧都有齿的齿圈,励磁定子固定环51和励磁转子固定环53为径向外侧有齿的齿圈,凸极转子固定环52为径向内侧有齿的齿圈。
图6显示了本实施例的电机100的第三运行状态,在该状态下,滑动环542在控制线圈541产生的驱动下滑向电机非轴伸侧,将励磁定子固定环51以及凸极转子固定环52啮合在一起,在此状态下凸极转子部20成为固定部件与励磁定子10保持固定的相对位置,励磁转子部30在此状态下作为该电机的唯一转动部件。本实施例在第三运行状态下电机等效运行转子极对数为pf=12,电机在600rpm转速下的电频率为120Hz。
图7显示了本实施例的电机100的第二运行状态,在该状态下,控制线圈541驱动滑动环542滑向电机的轴伸端,将励磁转子固定环53以及凸极转子固定环52啮合在一起,在此状态下励磁转子部30与凸极转子部20保持相对的固定位置,成为电机的转动部件,本实施例在的第二运行状态下,电机等效运行转子极对数为ps=4,电机在600rpm转速下的电频率仅为40Hz。
本实施例在本发明第三、第二运行状态下的等效极对数和运行频率的比值为3:1。上述的两个实施例的电机100均具有两种工作状态,可以实现两种工作状态的自由切换,操作方便。
另,以pf=4为例,本发明励磁转子部30除前述实施例描述外的一些其他典型实现形式如图8和图10所示,即励磁转子部30的永磁体32形成弧形。
本发明实施例的电机100的切换机构50在不改变电机100绕组连接的情况下,实现转子极数和电机100运行频率的控制调节,从而实现电机100的最佳效率区间在低速大转矩区间和高速低转矩区间之间的切换,有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。该电机100的结构紧凑,占用空间小、工作范围广,可以在不改变电机100 绕组连接的情况下实现转子极数和运行频率的受控调整,具有高转矩、高功率密度等优点。
实施例三
如图11至图13所示,在本实施例中,励磁定子10在整个电机100三层主要结构的最内层,为固定不旋转的部件,励磁定子10包含定子导磁铁芯11、定子绕组12和定子机壳63。定子导磁铁芯11的齿槽的槽数Ns=12,定子绕组12为三相集中绕组,线圈跨距为1,定子绕组12通入三相对称电流时,产生极对数ps=4的励磁定子10旋转磁场。
凸极转子部20包含导磁铁芯21、非导磁间隔块22、内转子机壳62,内转子机壳62与电机轴41直接相连接,导磁铁芯21的数量pr=20。励磁转子部30包含转子导磁铁芯31、永磁体32和外转子机壳61,永磁体32以相同极性间隔排布的方式安装在转子导磁铁芯31的内侧,使得励磁转子部30产生极对数pf=16的励磁磁场。励磁定子10、励磁转子部30、凸极转子部20以及电机轴41之间通过轴承70保持相互之间的距离和旋转独立性。
切换机构50包含控制线圈、滑动环542,励磁定子固定环51、凸极转子固定环52、励磁转子固定环53,滑动环542为径向内外都有卡齿的齿圈,励磁定子固定环51为径向外侧有卡齿的齿圈,凸极转子固定环52和励磁转子固定环53为径向内侧有卡齿的齿圈。
如图12所示,电机100在第一运行状态下,滑动环542在控制线圈控制下、将励磁转子固定环53以及励磁定子固定环51啮合在一起,在此状态下励磁转子部30与励磁定子10保持固定的相对位置,作为电机100的定子,凸极转子部20作为电机100的转子,此状态下的电机100等效运行转子极对数为ps=20,电机100在600rpm转速下的电频率为200Hz。
如图13所示,电机100在第二运行状态,控制线圈驱动滑动环542解除对励磁转子固定环53以及励磁定子固定环51的连接,同时滑动环542啮合励磁转子固定环53和凸极转子固定环52,在此状态下、凸极转子部20将与励磁转子部30保持相对固定的位置,作为电机100的转子,而励磁定子10作为电机100的定子,此状态下的电机100等效运行转子极对数为ps=4,电机100在600rpm转速下的电频率为40Hz。
本实施例的电机100在第一、第二运行状态下、转轴转速为600rpm时的空载绕组反电动势(back-EMF)对比如图14,从图14中可以明显看出电机100在两种工作状态下的极对数和端电压差异,电机100在两种运行状态下的等效极对数和运行频率的比值为5:1。
本发明的第三实施例不包含本发明的第三运行状态。
实施例四
如图15至图17所示,在本实施例中,励磁定子10在整个电机100三层主要结构的最内层,为固定不旋转的部件,励磁定子10包含定子导磁铁芯11、定子绕组12、固定支撑轴42。定子导磁铁芯11的齿槽的槽数Ns=12,定子绕组12为三相分布绕组,线圈跨距为3,定子绕组12通入三相对称电流时,以产生极对数ps=2的励磁定子10旋转磁场,励磁定子 10直接与固定支撑轴42连接,固定支撑轴42作为电机100的固定支撑部件。
凸极转子部20包含导磁铁芯21、非导磁间隔块22、内转子机壳62,导磁铁芯21的数量pr=18。励磁转子部30包含转子导磁铁芯31、永磁体32、外转子机壳61,永磁体32以相同极性间隔布置的方式安装在转子导磁铁芯31的径向内侧,使得励磁转子部30产生极对数pf=16的励磁磁场。转子导磁铁芯31与负载直接相连接,充当驱动输出部件。励磁定子10、励磁转子部30、凸极转子部20以及用于支撑电机100的固定支撑轴42之间通过轴承70保持相互之间的距离和旋转独立性。
切换机构50包含控制线圈、滑动环542、励磁定子固定环51、凸极转子固定环52、励磁转子固定环53,滑动环542为径向内侧外侧都有卡齿的齿圈,励磁定子固定环51为径向外侧有卡齿的齿圈,凸极转子固定环52和励磁转子固定环53为径向内侧有卡齿的齿圈。
如图16所示,电机100在第三运行状态下,滑动环542在控制线圈产生的驱动下向右平移,将励磁定子固定环51和凸极转子固定环52啮合在一起,使得励磁定子10和凸极转子部20连接成一体,作为电机100的定子,而励磁转子部30作为电机100的旋转部件,在此状态下的电机100的等效运行转子极对数为pf=16,电机100在600rpm转速下的电频率为160Hz。
如图17所示,电机100在第二运行状态下,滑动环542在控制线圈产生的驱动下向左平移,将励磁转子固定环53和凸极转子固定环52啮合在一起,使得励磁转子部30和凸极转子部20连接成一体,作为电机100的转子,而励磁定子10作为电机100的定子,在此状态下的电机100的等效运行转子极对数为ps=2,电机100在600rpm转速下的电频率为20Hz。
本实施例不包含本发明实施例一的第一运行状态,本实施例在第三、第二运行状态下的等效极对数和运行频率的比值为8:1。
由此,当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大,当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升,电机100的两种运行状态的等效转子极对数和工作电频率差异显著,实现了不改变电机100绕组连接前提下的变极变压运行,拓宽了电机100的转速工作范围,从而有效地提高电机100的转矩密度和高功率密度,增大电机100的应用范围。该电机100的结构紧凑,占用空间小、工作范围广,可以在不改变电机100绕组连接的情况下实现转子极数和运行频率的受控调整,与相关技术中的相同整机体积的电机100相比,可以输出更大的转矩和功率,具有高转矩、高功率密度等优点。
根据本发明实施例的电机100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (24)

  1. 一种电机,其特征在于,包括:
    励磁定子、凸极转子部和励磁转子部,所述励磁定子、所述凸极转子部和所述励磁转子部中的任意两个均可相对旋转;
    切换机构,所述切换机构通过可选地固定所述励磁定子、所述凸极转子部和所述励磁转子部中的两个的相对位置以选取所述凸极转子部和所述励磁转子部中的至少一个充当可相对所述励磁定子旋转的转子。
  2. 根据权利要求1所述的电机,其特征在于,所述励磁定子、所述凸极转子部和所述励磁转子部沿所述电机的径向由外至内依次间隔设置。
  3. 根据权利要求1所述的电机,其特征在于,所述励磁定子、所述凸极转子部和所述励磁转子部沿所述电机的径向由内至外依次间隔设置。
  4. 根据权利要求1-3中任一项所述的电机,其特征在于,所述切换机构在第一状态和第二状态之间可切换,所述凸极转子部和所述励磁转子部中的一个适于与负载传动连接,
    所述切换机构处于所述第一状态时固定所述励磁定子与所述凸极转子部和所述励磁转子部中的另一个的相对位置,
    所述切换机构处于所述第二状态时固定所述凸极转子部和所述励磁转子部。
  5. 根据权利要求4所述的电机,其特征在于,所述切换机构包括:
    励磁定子固定环,所述励磁定子固定环与所述励磁定子的相对位置固定;
    凸极转子固定环,所述凸极转子固定环与所述凸极转子部的相对位置固定;
    励磁转子固定环,所述励磁转子固定环与所述励磁转子部的相对位置固定,所述凸极转子固定环和所述励磁转子固定环中的一个适于与所述负载传动连接;
    驱动部和滑动环,所述滑动环由所述驱动部驱动滑动,
    所述切换机构处于所述第一状态时,所述滑动环在所述驱动部的驱动下分别与所述励磁定子固定环以及所述凸极转子固定环和所述励磁转子固定环中的另一个配合,
    所述切换机构处于所述第二状态时,所述滑动环在所述驱动部的驱动下分别与所述凸极转子固定环和所述励磁转子固定环配合。
  6. 根据权利要求5所述的电机,其特征在于,所述驱动部为通过电磁感应驱动所述滑动环滑动的控制线圈。
  7. 根据权利要求5所述的电机,其特征在于,所述滑动环、所述励磁定子固定环、所述凸极转子固定环和所述励磁转子固定环上分别设有卡齿,
    所述切换机构处于所述第一状态时,所述滑动环上的卡齿分别与所述励磁定子固定环上 的卡齿以及所述凸极转子固定环和所述励磁转子固定环中的所述另一个上的卡齿啮合,
    所述切换机构处于所述第二状态时,所述滑动环上的卡齿分别与所述凸极转子固定环上的卡齿和所述励磁转子固定环上的卡齿啮合。
  8. 根据权利要求5-7中任一项所述的电机,其特征在于,还包括:适于与所述负载传动连接的电机轴,所述电机轴由所述转子驱动旋转。
  9. 根据权利要求8所述的电机,其特征在于,还包括:
    定子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述定子机壳内,所述励磁定子与所述定子机壳传动连接;
    端盖,所述凸极转子部和所述电机轴分别与所述端盖传动连接,
    所述励磁定子固定环与所述定子机壳传动连接,所述凸极转子固定环与所述电机轴传动连接,所述励磁转子固定环与所述励磁转子部传动连接。
  10. 根据权利要求9所述的电机,其特征在于,所述切换机构设在所述励磁转子部内。
  11. 根据权利要求9所述的电机,其特征在于,所述定子机壳与所述电机轴之间、所述端盖与所述励磁转子部之间以及所述励磁转子部与所述定子机壳之间分别通过轴承配合。
  12. 根据权利要求8所述的电机,其特征在于,还包括:
    定子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述定子机壳内,所述励磁定子与所述定子机壳传动连接;
    端盖,所述凸极转子部与所述端盖传动连接,所述电机轴与所述励磁转子部传动连接,
    所述励磁定子固定环与所述定子机壳传动连接,所述凸极转子固定环与所述凸极转子部传动连接,所述励磁转子固定环与所述电机轴传动连接。
  13. 根据权利要求12所述的电机,其特征在于,所述切换机构设在所述励磁转子部外且临近所述励磁转子部的一端。
  14. 根据权利要求12所述的电机,其特征在于,所述定子机壳与所述电机轴之间以及所述端盖与所述电机轴之间分别通过轴承配合。
  15. 根据权利要求4所述的电机,其特征在于,所述切换机构设在所述励磁定子外且临近所述励磁定子的一端。
  16. 根据权利要求5-7、15中任一项所述的电机,其特征在于,还包括:
    外转子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述外转子机壳内,所述励磁转子部与所述外转子机壳传动连接;
    内转子机壳,所述凸极转子部与所述内转子机壳传动连接且所述内转子机壳上传动连接有适于与所述负载传动连接的电机轴;
    定子机壳,所述励磁定子与所述定子机壳传动连接,
    所述励磁定子固定环与所述定子机壳传动连接,所述凸极转子固定环与所述凸极转子部传动连接,所述励磁转子固定环与所述外转子机壳传动连接。
  17. 根据权利要求16所述的电机,其特征在于,所述外转子机壳与所述电机轴之间以及所述定子机壳与所述电机轴之间分别通过轴承配合。
  18. 根据权利要求5-7、15中任一项所述的电机,其特征在于,还包括:
    外转子机壳,所述励磁定子、所述凸极转子部和所述励磁转子部均设在所述定子机壳内,所述励磁转子部与所述外转子机壳传动连接;
    内转子机壳,所述励磁定子上传动连接有固定支撑轴,所述凸极转子部和所述固定支撑轴分别与所述内转子机壳传动连接,
    所述励磁定子固定环与所固定支撑轴传动连接,所述凸极转子固定环与所述内转子机壳传动连接,所述励磁转子固定环与所述外转子机壳传动连接。
  19. 根据权利要求18所述的电机,其特征在于,所述外转子机壳与所述固定支撑轴之间以及所述内转子机壳与所述固定支撑轴之间分别通过轴承配合。
  20. 根据权利要求18所述的电机,其特征在于,所述固定支撑轴为横截面为环形的中空轴。
  21. 根据权利要求1-20中任一项所述的电机,其特征在于,所述励磁定子包括:
    定子导磁铁芯;
    定子绕组,所述定子绕组绕制在所述定子导磁铁芯上。
  22. 根据权利要求21所述的电机,其特征在于,所述励磁转子部包括:
    转子导磁铁芯;
    永磁体,所述永磁体设在所述转子导磁铁芯上。
  23. 根据权利要求22所述的电机,其特征在于,所述凸极转子部包括:
    多个导磁铁芯;
    多个非导磁间隔块,多个所述导磁铁芯和多个所述非导磁间隔块沿所述电机的周向交替排列。
  24. 根据权利要求23所述的电机,其特征在于,所述励磁定子由交流电流驱动且产生的旋转磁场的极对数为ps,所述励磁转子部产生的励磁磁场的极对数为pf,所述导磁铁芯的数量为pr,其中,pr=|ps±pf|。
PCT/CN2016/109545 2016-10-31 2016-12-12 电机 WO2018076482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/346,168 US11177727B2 (en) 2016-10-31 2016-12-12 Motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610952007.2A CN106505815B (zh) 2016-10-31 2016-10-31 电机
CN201610952007.2 2016-10-31
CN201610971208.7 2016-10-31
CN201610971208.7A CN106451968B (zh) 2016-10-31 2016-10-31 电机

Publications (1)

Publication Number Publication Date
WO2018076482A1 true WO2018076482A1 (zh) 2018-05-03

Family

ID=62024242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109545 WO2018076482A1 (zh) 2016-10-31 2016-12-12 电机

Country Status (2)

Country Link
US (1) US11177727B2 (zh)
WO (1) WO2018076482A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541369B (zh) * 2021-07-13 2023-05-23 齐齐哈尔赛石精工机械制造有限公司 一种高效节能直联抛丸器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2133981A2 (en) * 2008-06-12 2009-12-16 General Electric Company High torque density electrical machine
CN103490583A (zh) * 2013-09-13 2014-01-01 江西理工大学 定子分割式轴向磁通切换型混合励磁同步电机
CN103715848A (zh) * 2013-09-30 2014-04-09 东南大学 一种轴向磁场定子分割式磁通切换型记忆电机
CN104348334A (zh) * 2013-07-23 2015-02-11 杨玉岗 集成盘式开关磁阻型电磁调速电动机
CN204517560U (zh) * 2015-04-25 2015-07-29 兰州交通大学 一种组合结构的旋转电机
CN105048740A (zh) * 2015-07-08 2015-11-11 南京航空航天大学 一种永磁和变磁阻并列式混合励磁无刷电机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077317A (zh) 1992-04-08 1993-10-13 罗初东 笼型自身恒转矩无级调速电动机
DE4408719C1 (de) 1994-03-15 1995-07-06 Volkswagen Ag Generator-Motor-Kombination
JPH09275673A (ja) * 1996-03-28 1997-10-21 Tai-Haa Yan 共通構造を有する三層電気機械構造を備えた組合せ 電力駆動装置
US6848165B1 (en) 1999-10-04 2005-02-01 Nissan Motor Co., Ltd. Electric rotating machine and manufacturing method thereof
WO2007072622A1 (ja) * 2005-12-21 2007-06-28 Honda Motor Co., Ltd. 電動機
JP2007181305A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd 永久磁石式同期電動機及びこれを用いた圧縮機
CN201323515Y (zh) 2008-12-09 2009-10-07 华中科技大学 一种径向磁场的无刷双馈双机械端口电机
NL1038151C2 (en) 2010-08-05 2012-02-07 Martin Jacobus Hoeijmakers Rotating electromechanical converter.
US9080279B2 (en) 2011-10-24 2015-07-14 Lg Electronics Inc. Washing machine to produce three-dimensional motion
JP2014054153A (ja) 2012-09-10 2014-03-20 Nsk Ltd 電動機及び電動パワーステアリング装置
CN103219816A (zh) 2013-05-07 2013-07-24 哈尔滨工业大学 变极调速永磁同步电机
CN103346655B (zh) 2013-07-03 2016-01-20 浙江大学 双转子永磁电机及洗衣机
JP2015198558A (ja) 2014-04-03 2015-11-09 株式会社豊田自動織機 回転電機
CN105429407A (zh) 2015-12-04 2016-03-23 东南大学 一种速比连续可调的磁齿轮电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2133981A2 (en) * 2008-06-12 2009-12-16 General Electric Company High torque density electrical machine
CN104348334A (zh) * 2013-07-23 2015-02-11 杨玉岗 集成盘式开关磁阻型电磁调速电动机
CN103490583A (zh) * 2013-09-13 2014-01-01 江西理工大学 定子分割式轴向磁通切换型混合励磁同步电机
CN103715848A (zh) * 2013-09-30 2014-04-09 东南大学 一种轴向磁场定子分割式磁通切换型记忆电机
CN204517560U (zh) * 2015-04-25 2015-07-29 兰州交通大学 一种组合结构的旋转电机
CN105048740A (zh) * 2015-07-08 2015-11-11 南京航空航天大学 一种永磁和变磁阻并列式混合励磁无刷电机

Also Published As

Publication number Publication date
US20200044523A1 (en) 2020-02-06
US11177727B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP4926107B2 (ja) 回転電機
KR100652596B1 (ko) 이중자석 하이브리드 유도 전동기
KR20140022747A (ko) 회전 전자기계식 콘버터
US20050077801A1 (en) Line start reluctance synchronous motor
CN206219842U (zh) 洗衣机
CN107294325A (zh) 一种分区定子盘式双凸极电机
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
JP2014533086A (ja) 厚さが異なる永久磁石を有する回転子及びそれを含むモータ
CN204465161U (zh) 一种单相横向磁通发电机
JP6044077B2 (ja) 電動回転機および電動回転システム
JP2005045877A (ja) 誘導同期モータ
CN104767336A (zh) 一种单相他励磁阻式发电机
WO2018076482A1 (zh) 电机
CN106505815B (zh) 电机
KR101209631B1 (ko) 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
CN108631530B (zh) 一种模块化混合励磁开关磁阻电机
WO2018076477A1 (zh) 电机
KR101265825B1 (ko) 이중 고정자 rfpm 발전기
Wang et al. Design of a multi-power-terminals permanent magnet machine with magnetic field modulation
CN106451968B (zh) 电机
EP4329160A1 (en) Magnetic geared rotary machine, power generation system, and drive system
WO2018076485A1 (zh) 电机
KR101260689B1 (ko) 회전자 및 그를 포함하는 동기형 모터
US20240235360A1 (en) Magnetic geared rotating machine, power generation system, and drive system
KR101209623B1 (ko) 회전자 및 그를 갖는 lspm 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16919813

Country of ref document: EP

Kind code of ref document: A1