WO2018076477A1 - 电机 - Google Patents

电机 Download PDF

Info

Publication number
WO2018076477A1
WO2018076477A1 PCT/CN2016/109311 CN2016109311W WO2018076477A1 WO 2018076477 A1 WO2018076477 A1 WO 2018076477A1 CN 2016109311 W CN2016109311 W CN 2016109311W WO 2018076477 A1 WO2018076477 A1 WO 2018076477A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
rotor
motor
reluctance
stator
Prior art date
Application number
PCT/CN2016/109311
Other languages
English (en)
French (fr)
Inventor
吴迪
陈金涛
诸自强
王洪晓
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2018076477A1 publication Critical patent/WO2018076477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/042Windings on magnets for additional excitation ; Windings and magnets for additional excitation with permanent magnets and field winding both rotating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing

Definitions

  • the present invention relates to the field of motor technology, and more particularly to an electric machine.
  • the speed control function of the motor has gradually gained more attention.
  • the motor needs to perform special control or structural design in order to change the working speed in a wide range in consideration of the torque characteristics.
  • the more common method is to use weak magnetic control, but this method has certain limitations on the parameters of the motor, and can not balance the low-speed and large-torque working area and the high-speed and low-torque high-efficiency operation.
  • the present invention aims to solve at least one of the above technical problems in the related art to some extent.
  • the present invention proposes an electric motor which has the characteristics of high torque density and can be operated in a high efficiency range under different load conditions through switching of different operating states, and is suitable for frequent changes in load conditions. Application.
  • a motor includes: an excitation stator portion; an excitation rotor portion, the excitation rotor portion is spaced apart from the excitation stator portion in a radial direction of the motor, and the excitation rotor portion is at a diameter of the motor Arranging upward on the inner side of the field stator portion; a reluctance rotor portion spaced apart from the field stator portion and the field rotor portion in the axial direction of the motor; switching mechanism, the switching mechanism Selecting at least one of the field rotor portion and the reluctance rotor portion serves to selectively fix a relative position of the excitation stator portion, the field rotor portion, and the reluctance rotor portion a rotor that rotates relative to the field stator portion; an output shaft that is driven to rotate by the rotor.
  • the motor of the embodiment of the invention by setting the switching mechanism, various states of the motor can be switched, and the equivalent rotor pole number and the working electric frequency difference of the motor in different states are significantly different, without changing the connection of the motor windings. It expands the working range of the motor's speed.
  • the motor works in the low-speed and large-torque area, the operating state with higher equivalent pole pair is adopted, and the output torque is large; when the motor works in the high-speed running range, the operating state with smaller equivalent pole pair is used.
  • the high-speed operation requirement is naturally satisfied without the need for field weakening control, and the efficiency is greatly improved because the operating frequency is lowered.
  • the optimal efficiency range of the motor can be switched between the low speed large torque range and the high speed low torque interval, and is not limited to the high efficiency operation near the "torque-speed curve" inflection point of the conventional motor.
  • the high-efficiency operation of the motor's full working range is ideal for applications where the load changes frequently, such as electric vehicles, washing machines, and wind power.
  • the torque density of the motor is much higher than that of a conventional permanent magnet motor, and it can output more torque and power under the premise of the same motor volume. Therefore, the motor has the characteristics of high torque density, and at the same time, the motor can be operated in a high efficiency range under different load conditions through switching of different operating states, and is suitable for applications where load conditions are constantly changing.
  • the motor according to an embodiment of the present invention may further have the following additional technical features:
  • the switching mechanism is switchable between a first state and a second state, the output shaft is drivingly coupled to the reluctance rotor portion, and the switching mechanism is in the first state Fixing a relative position of the field stator portion and the field rotor portion, the reluctance rotor portion serving as a rotor to drive the output shaft to rotate, and the switching mechanism fixing the field rotor portion and the device when in the second state The relative position of the reluctance rotor portion, the reluctance rotor portion and the field rotor portion acting as a rotor to rotate the output shaft.
  • the switching mechanism includes: an excitation stator fixing ring, a fixed position of the field stator fixing ring and the field stator portion is fixed; a field rotor fixing ring, the field rotor fixing ring and the a relative position of the field rotor portion is fixed; a reluctance rotor fixing ring, a relative position of the reluctance rotor fixing ring and the reluctance rotor portion being fixed; and a synchronizer, when the switching mechanism is in the first state, a synchronizer is respectively engaged with the field stator fixing ring and the field rotor fixing ring, and when the switching mechanism is in the second state, the synchronizer is respectively fixed to the field rotor fixing ring and the reluctance rotor Ring fit.
  • the field stator fixing ring is drivingly connected to the field stator portion
  • the field rotor fixing ring is drivingly connected to the field rotor portion, the reluctance rotor fixing ring and the output shaft Drive connection.
  • the synchronizer, the field stator fixing ring, the field rotor fixing ring and the reluctance rotor fixing ring are respectively provided with latching teeth, and the switching mechanism is in the first a state, a latch on the synchronizer meshes with a latch on the field stator retaining ring and a latch on the field rotor retaining ring, respectively, when the switching mechanism is in the second state, The latches on the synchronizer mesh with the latches on the field rotor retaining ring and the latches on the reluctance rotor retaining ring, respectively.
  • the latches on the synchronizer are distributed on the outer circumferential surface and the inner circumferential surface of the synchronizer, and the latch teeth on the excitation stator fixing ring are distributed on the excitation stator fixing ring.
  • a latch on the inner rotor surface of the field rotor retaining ring is distributed on an inner peripheral surface of the field rotor retaining ring, and a latch on the reluctance rotor retaining ring is distributed on the reluctance rotor retaining ring On the outer peripheral surface.
  • an end of the output shaft remote from the reluctance rotor constitutes a shaft extension end, and the switching mechanism is disposed adjacent to an axial extension end of the output shaft.
  • the reluctance rotor is disposed opposite to the field stator portion and the field rotor portion in the axial direction of the motor.
  • the field rotor portion is disposed opposite to the field stator portion in a radial direction of the motor.
  • the central axis of the field stator portion, the central axis of the field rotor portion, the central axis of the reluctor rotor portion, and the central axis of the output shaft coincide with each other.
  • the field stator portion comprises: a winding core; a winding, the winding being wound on the winding core.
  • the winding core includes: a substrate; a plurality of the tooth blocks, the plurality of the tooth blocks being disposed on a surface of the substrate facing the reluctance rotor portion and along the motor The circumferential is equidistantly disposed, and the winding is wound on a plurality of the blocks.
  • the field rotor portion includes: a permanent magnet core; a plurality of permanent magnets, wherein the plurality of permanent magnets are disposed on a surface of the permanent magnet core facing the reluctance rotor portion and along the The circumferential spacing of the motors is set at equal intervals.
  • the reluctance rotor portion includes: a non-magnetically-conductive fixing plate; a plurality of magnetic-magnetic reluctance blocks, wherein the plurality of the magnetic-magnetic reluctance blocks are disposed on the non-magnetically-conductive fixing plate
  • the field portion of the field stator portion and the field rotor portion are disposed at equal intervals along the circumferential direction of the motor.
  • the magneto-magnetic resistance block is disposed opposite to a gap of the field stator portion and the field rotor portion in a radial direction of the motor in an axial direction of the motor.
  • the field stator portion is driven by an alternating current and the pole number of the generated rotating magnetic field is p s , and the pole pair number of the field magnetic field generated by the field rotor portion is p f , the guide
  • FIG. 1 is an exploded view of a motor in accordance with an embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of the winding core of the motor shown in Figure 1;
  • FIG. 3 is a schematic structural view of a motor when the switching mechanism is in a first state according to an embodiment of the present invention
  • Figure 4 is an enlarged view of a portion A shown in Figure 3;
  • FIG. 5 is a schematic structural view of a motor when the switching mechanism is in a second state according to an embodiment of the present invention
  • Fig. 6 is an enlarged view of a portion B shown in Fig. 5.
  • 51 field stator fixing ring
  • 52 field rotor fixing ring
  • the speed control function of the motor has gradually gained more attention.
  • the motor needs to perform special control or structural design in order to change the working speed in a wide range in consideration of the torque characteristics.
  • the more common method is to use weak magnetic control, but this method has certain limitations on the parameters of the motor, and can not balance the low-speed and large-torque working area and the high-speed and low-torque high-efficiency operation.
  • the pole-changing induction motor in the related art works at a fixed grid frequency, and by changing the connection mode of the stator windings, the number of rotor poles induced in the rotor cage is changed, thereby adjusting the motor speed.
  • this method is not suitable for synchronous motors, and it is necessary to change the connection of stator windings. It has been very outdated under the general trend of DC variable frequency motors.
  • some researchers have suggested that a memory motor can be constructed by using a low-coercive permanent magnet such as AlNiCo, and the magnetization direction of the rotor permanent magnet can be adjusted online by the winding to achieve the purpose of synchronous motor pole-changing.
  • the low coercive force of the method uses a low magnetic energy level, which is easy to cause the overall power density of the motor to be much lower than that of the conventional permanent magnet synchronous motor.
  • the present invention proposes an electric motor which has the characteristics of high torque density and can be operated in a high efficiency range under different load conditions through switching of different operating states, and is suitable for frequent changes in load conditions. Application.
  • the motor 100 according to an embodiment of the present invention will be specifically described below with reference to FIGS. 1 through 6.
  • the motor 100 includes an exciting stator portion 10, a field rotor portion 20, a reluctance rotor portion 30, a switching mechanism 50, and an output shaft 40.
  • the field rotor portion 20 is spaced apart from the field stator portion 10 in the radial direction of the motor 100 and the field rotor portion 20 is located inside the field stator portion 10 in the radial direction of the motor 100, and the reluctance rotor portion 30 is along the axis of the motor 100.
  • the switching mechanism 50 is spaced apart from the exciting stator portion 10 and the exciting rotor portion 20, and the switching mechanism 50 selects the exciting rotor portion 20 by selectively fixing the relative positions of the exciting stator portion 10, the exciting rotor portion 20, and the reluctance rotor portion 30. At least one of the reluctance rotor portion 30 serves as a rotor rotatable relative to the field stator portion 10, and the output shaft 40 is driven to rotate by the rotor.
  • the switching mechanism 50 can respectively fix the excitation stator portion 10 and the excitation rotor portion 20, or the fixed excitation stator portion 10, the excitation rotor portion 2 and the reluctance rotor portion 30, or the fixed excitation rotor portion in different operating states. 20 and the reluctance rotor portion 30, three operating states are realized, and since the stator and the rotor are different in each operating state, if the output speed of the motor 100 is the same under different operating states, the equivalent between the above three operating states The rotor pole logarithm and the operating point frequency ratio are different, so that the pole running is realized by switching the different operating states of the motor 100.
  • the motor 100 is mainly composed of the field stator portion 10, the field rotor portion 20, the reluctance rotor portion 30, the switching mechanism 50, and the output shaft 40, wherein the field stator portion 10 substantially forms a ring shape extending in the circumferential direction of the motor 100,
  • the middle portion of the field stator portion 10 has a stator mounting passage penetrating in the axial direction of the motor 100 (the left-right direction as shown in FIG. 1).
  • the field stator portion 10 serves as a stator of the motor 100 with respect to the casing of the motor 100. The body is still.
  • the field rotor portion 20 is formed substantially in a ring shape extending in the circumferential direction of the motor 100, and the middle portion of the field rotor portion 20 has a rotor mounting passage penetrating in the axial direction of the motor 100, and the field rotor portion 20 is provided in the stator mounting passage and excited The outer side wall of the rotor portion 20 is spaced apart from the inner wall surface of the field stator portion 10.
  • the reluctance rotor portion 30 is provided on one side of the field stator portion 10 and the field rotor portion 20 (on the left side as shown in FIG. 3), and is spaced apart from the field portion of the motor 100 by the field stator portion 10 and the field rotor portion 20.
  • the output shaft 40 passes through the rotor mounting passage of the field rotor portion 20 and one end of the output shaft 40 (left end as shown in FIG. 3) is fixedly coupled to the reluctance rotor portion 30 as a rotor of the motor 100 When the motor 100 is in operation, it moves relative to the housing of the motor 100.
  • the axial length of the motor 100 can be greatly reduced, and both are disposed on the same side of the reluctance rotor portion 30, so that The ones are located on the same side of the air gap and do not interfere with each other, which is advantageous for increasing the torque and power density of the motor 100.
  • the switching mechanism 50 interacts between the first position and the second position and is selectively coupled to two of the field stator portion 10, the field rotor portion 20, and the reluctance rotor portion 30 such that the two components connected thereto are relatively stationary.
  • the field rotor portion 20 is thus selected as the rotor or stator of the motor 100.
  • the switching mechanism 50 by setting the switching mechanism 50, the switching of various states of the motor 100 can be realized, and the equivalent rotor pole number and the operating electric frequency difference of the motor 100 in different states are significantly different.
  • the operating range of the rotational speed of the motor 100 is widened without changing the connection of the winding 12 of the motor 100.
  • the motor 100 When the motor 100 is operated in the low-speed and large-torque area, the operating state with a higher equivalent pole pair is used, and the output torque is large; when the motor 100 is operated in the high-speed running range, the operating state with a smaller equivalent pole pair is adopted.
  • the high-speed operation requirement is naturally satisfied without the need for field weakening control, and the efficiency is greatly improved because the operating frequency is lowered. Therefore, the optimum efficiency interval of the motor 100 can be switched between the low speed large torque interval and the high speed low torque interval, and is not limited to the high efficiency operation near the "torque-speed curve" inflection point where the conventional motor is located.
  • the high-efficiency operation of the full working range of the motor 100 is very suitable for occasions where the load is frequently changed, such as electric vehicles, washing machines, wind power generation, and the like.
  • the torque density of the motor 100 is much higher than that of the conventional permanent magnet motor 100, and more torque and power can be output under the premise of the same motor 100 volume. Therefore, the motor 100 has the characteristics of high torque density, and the motor 100 can always work in a high efficiency range under different load conditions through switching of different operating states, and is suitable for applications where the load conditions are constantly changing.
  • the switching mechanism 50 is switchable between the first state and the second state, and the output shaft 40 is drivingly connected to the reluctance rotor portion 30.
  • the switching mechanism 50 When the switching mechanism 50 is in the first state, the relative relationship between the field stator portion 10 and the field rotor portion 20 is fixed. Position, the reluctance rotor portion 30 acts as a rotor to drive the output shaft 40 to rotate.
  • the switching mechanism 50 when the switching mechanism 50 is in the first position, that is, in the first state, the switching mechanism 50 is respectively connected to the exciting stator portion 10 and the exciting rotor portion 20 to make the positions of the two.
  • Relatively fixed that is, in this state, when the motor 100 is operated, the exciting stator portion 10 and the exciting rotor portion 20 are two stators of the motor 100, and the reluctance rotor portion 30 is the rotor of the motor 100, and one end of the output shaft 40 passes through
  • the rotor mounting passage of the exciting rotor portion 20 is spaced apart from the exciting rotor portion 20, and the other end of the output shaft 40 (left end as shown in FIG. 3) is fixedly coupled to the reluctor rotor portion 30 to output torque.
  • the switching mechanism 50 when the switching mechanism 50 is in the second state, the relative position of the field rotor portion 20 and the reluctor rotor portion 30 is fixed, and the reluctance rotor portion 30 and the field rotor portion 20 serve as the rotor-driven output shaft 40 to rotate.
  • the switching mechanism 50 when the switching mechanism 50 is in the second position, that is, in the second state, the switching mechanism 50 is connected to the field rotor portion 20 and the reluctance rotor portion 30, respectively, so that the positions of the two are relatively fixed. That is, in this state, when the motor 100 is operated, the field stator portion 10 serves as the stator of the motor 100, and the field rotor portion 20 and the reluctance rotor portion 30 serve as the two rotors of the motor 100, and one end of the output shaft 40 passes through the field rotor portion.
  • the rotor mounting passage 20 is connected to the exciting rotor portion 20, and the other end of the output shaft 40 (left end as shown in Fig.
  • the switching mechanism 50 includes an exciting stator retaining ring 51, a field rotor retaining ring 52, a reluctance rotor retaining ring 53 and a synchronizer 54.
  • the relative positions of the field stator fixing ring 51 and the field stator portion 10 are fixed, the relative positions of the field rotor fixing ring 52 and the field rotor portion 20 are fixed, and the relative positions of the reluctance rotor fixing ring 53 and the reluctance rotor portion 30 are fixed.
  • the switching mechanism 50 is in the first state, the synchronizer 54 is respectively matched with the field stator fixing ring 51 and the field rotor fixing ring 52.
  • the switching mechanism 50 is in the second state, the synchronizer 54 is engaged with the field rotor fixing ring 52 and the reluctance rotor fixing ring 53, respectively.
  • the field stator fixing ring 51 is fixedly connected to the field stator portion 10.
  • the field stator fixing ring is activated. 51 is also stationary with respect to the housing of the motor 100; the field rotor retaining ring 52 is fixedly coupled to the field rotor portion 20 for movement with the field rotor portion 20.
  • the reluctance rotor retaining ring 53 is fixedly connected to the reluctance rotor portion 30.
  • the reluctance rotor portion 30 functions as a rotor of the motor 100 and moves relative to the housing of the motor 100, the reluctance rotor is fixed.
  • the ring 53 moves with the reluctance rotor portion 30; the synchronizer 54 selects the exciting rotor portion by optionally fixing the relative positions of the two of the field stator fixing ring 51, the field rotor fixing ring 52, and the reluctance rotor fixing ring 53 At least one of 20 and the reluctance rotor portion 30 serves as a rotor rotatable relative to the field stator portion 10, and the output shaft 40 is driven to rotate by the rotor.
  • the field stator fixing ring 51 is provided on the field stator portion 10
  • the field rotor fixing ring 52 is provided in the field rotor portion 20
  • the reluctance rotor fixing ring 53 is provided on the reluctance rotor portion 30 to facilitate cooperation with the synchronizer 54.
  • the synchronizer 54 as the movable member in the switching mechanism 50 can fix the two of the field stator fixing ring 51, the field rotor fixing ring 52, and the reluctance rotor fixing ring 53. Relative position, thus ensuring continuity and reliability of state switching.
  • the field stator fixing ring 51 is drivingly connected to the field stator portion 10
  • the field rotor fixing ring 52 is drivingly connected to the field rotor portion 20
  • the reluctance rotor fixing ring 53 is drivingly connected to the output shaft 40.
  • a gear transmission structure and a chain transmission structure may be adopted between the field stator fixing ring 51 and the field stator portion 10, between the field rotor fixing ring 52 and the field rotor portion 20, and between the reluctance rotor fixing ring 53 and the output shaft 40, respectively.
  • a gear transmission structure and a chain transmission structure may be adopted between the field stator fixing ring 51 and the field stator portion 10, between the field rotor fixing ring 52 and the field rotor portion 20, and between the reluctance rotor fixing ring 53 and the output shaft 40, respectively.
  • the belt transmission structure or the like realizes the relative fixation of the position, thereby facilitating the switching of the two states of the switching mechanism 50, thereby achieving the switching
  • the synchronizer 54, the field stator fixing ring 51, the field rotor fixing ring 52 and the reluctance rotor fixing ring 53 are respectively provided with latching teeth.
  • the latches on the synchronizer 54 are respectively The latches on the field stator retaining ring 51 engage with the latches on the field rotor retaining ring 52.
  • the switching mechanism 50 is in the second state, the latches on the synchronizer 54 and the latches and magnets on the field rotor retaining ring 52, respectively.
  • the latches on the rotor retaining ring 53 are engaged.
  • one end of the field stator fixing ring 51 is fixedly connected to the field stator portion 10
  • the other end of the field stator fixing ring 51 is provided with a latching tooth
  • the field rotor fixing ring 52 is fixed to the field rotor portion 20 .
  • the end portion of the field rotor portion 20 is also provided with a latch, and the latch on the field stator retaining ring 51 and the latch on the field rotor retaining ring 52 are aligned in the axial direction of the motor 100, and one end of the output shaft 40 is magnetic.
  • the damper portion 30 is fixedly connected, the outer side wall of the output shaft 40 is provided with a reluctance rotor fixing ring 53, and the side of the reluctance rotor fixing ring 53 facing the field rotor fixing ring 52 is also provided with a latching tooth, and the synchronizer 54 is disposed at Between the field rotor retaining ring 52 and the reluctance rotor retaining ring 53, and the direction of the synchronizer 54 toward the field rotor
  • the fixing ring 52 and the two sides of the reluctance rotor fixing ring 53 are respectively provided with cards which are engaged with the teeth on the exciting stator fixing ring 51, the latching teeth on the exciting rotor fixing ring 52, and the latches on the reluctance rotor fixing ring 53. tooth.
  • the teeth on the field stator fixing ring 51 and the teeth on the field rotor fixing ring 52 are flush in the axial direction of the motor 100, and the card teeth on the field fixing ring 52 and the card on the reluctance rotor fixing ring 53 are activated.
  • the teeth are arranged in the radial direction of the motor 100, and the teeth on the field stator fixing ring 51 and the teeth on the reluctor rotor fixing ring 53 are staggered in the radial direction of the motor 100.
  • the engaging teeth on the synchronizer 54 are respectively engaged with the engaging teeth on the exciting stator fixing ring 51 and the engaging teeth on the exciting rotor fixing ring 52, so that the exciting stator fixing ring 51 is provided.
  • the position of the field rotor fixing ring 52 is relatively fixed, and even if the positions of the field stator portion 10 and the field rotor portion 20 are relatively fixed, the field stator portion 10 and the field rotor portion 20 are both the stators of the motor 100 and the reluctance rotor portion 30. As the rotor of the motor 100.
  • the latches on the synchronizer 54 are respectively engaged with the latches on the exciting rotor retaining ring 52 and the latches on the reluctance rotor retaining ring 53, so that the exciting rotor retaining ring 52 and the position of the reluctance rotor retaining ring 53 are relatively fixed, and even if the positions of the output shaft 40, the reluctance rotor portion 30, and the exciting rotor portion 20 are relatively fixed, the exciting stator portion 10 serves as the stator of the motor 100 at this time, and the reluctance rotor The portion 30 and the field rotor portion 20 serve as rotors of the motor 100.
  • the motor 100 When the motor 100 is operated in the low-speed and large-torque area, the operating state with a higher equivalent pole pair is used, and the output torque is large; when the motor 100 is operated in the high-speed running range, the operating state with a smaller equivalent pole pair is adopted.
  • the high-speed operation requirement is naturally satisfied without the need for field weakening control, and the efficiency is greatly improved because the operating frequency is lowered. Therefore, the optimum efficiency interval of the motor 100 can be switched between the low speed large torque interval and the high speed low torque interval, and is not limited to the high efficiency operation near the "torque-speed curve" inflection point where the conventional motor is located.
  • the high-efficiency operation of the full working range of the motor 100 is very suitable for occasions where the load is frequently changed, such as electric vehicles, washing machines, wind power generation, and the like.
  • the latches on the synchronizer 54 are distributed on the outer peripheral surface and the inner peripheral surface of the synchronizer 54, the latches on the field stator retaining ring 51 are distributed on the inner peripheral surface of the field stator retaining ring 51, and the exciting rotor retaining ring
  • the latches on 52 are distributed on the inner peripheral surface of the field rotor retaining ring 52, and the latches on the reluctor rotor retaining ring 53 are distributed on the outer peripheral surface of the reluctance rotor retaining ring 53.
  • the synchronizer 54, the field stator fixing ring 51, the field rotor fixing ring 52, and the reluctor rotor fixing ring 53 respectively form an annular structure extending in the circumferential direction of the motor 100, and the four ring structures are coaxially arranged, wherein the magnetoresistance
  • the rotor fixing ring 53 is sleeved on the output shaft 40 of the motor 100 and fixedly connected to the output shaft 40.
  • the outer side wall of the reluctance rotor fixing ring 53 is provided with a plurality of teeth arranged along the circumferential direction thereof, and the field rotor fixing ring 52 is jacketed.
  • the inner side wall of the reluctance rotor retaining ring 53 and the field rotor retaining ring 52 is spaced apart from the outer side wall of the reluctance rotor retaining ring 53.
  • the synchronizer 54 is sleeved on the output shaft 40 of the motor 100 and located between the field rotor retaining ring 52 and the reluctance rotor retaining ring 53, wherein the outer side wall of the synchronizer 54 is provided with a plurality of circumferential arms arranged along the circumference thereof and the field rotor The latch of the retaining ring 52
  • the inner side wall of the synchronizer 54 is provided with a plurality of engaging teeth arranged along the circumferential direction thereof and engaging with the engaging teeth on the reluctance rotor fixing ring 53; the inner side wall of the exciting stator fixing ring 51 is provided with a plurality of edges
  • the circumferentially disposed latches are located on one side of the field rotor retaining ring 52 (on the right side as shown in FIG. 3).
  • the switching mechanism 50 when the switching mechanism 50 is in the first position, that is, in the first state, the switching mechanism 50 is respectively connected to the excitation stator portion 10 and the exciting rotor portion 20, so that the two The position is relatively fixed, that is, in this state, when the motor 100 is in operation, the field stator portion 10 and the field rotor portion 20 serve as two stators of the motor 100, and the reluctance rotor portion 30 serves as the rotor of the motor 100, and one end of the output shaft 40 is worn.
  • the rotor mounting passage of the overexcitation rotor portion 20 is spaced apart from the field rotor portion 20, and the other end of the output shaft 40 (left end as shown in FIG.
  • the motor 100 When the motor 100 is operated in the low-speed and large-torque area, the operating state with a higher equivalent pole pair is used, and the output torque is large; when the motor 100 is operated in the high-speed running range, the operating state with a smaller equivalent pole pair is adopted.
  • the high-speed operation requirement is naturally satisfied without the need for field weakening control, and the efficiency is greatly improved because the operating frequency is lowered. Therefore, the optimum efficiency interval of the motor 100 can be switched between the low speed large torque interval and the high speed low torque interval, and is not limited to the high efficiency operation near the "torque-speed curve" inflection point where the conventional motor is located.
  • the high-efficiency operation of the full working range of the motor 100 is very suitable for occasions where the load is frequently changed, such as electric vehicles, washing machines, wind power generation, and the like.
  • the end of the output shaft 40 remote from the reluctance rotor constitutes a shaft extension end, and the switching mechanism 50 is disposed adjacent to the shaft extension end of the output shaft 40.
  • the reluctance rotor fixing ring 53 of the switching mechanism 50 is fixedly connected to the output shaft 40, thereby achieving a fixed connection between the reluctance rotor fixing ring 53 and the reluctance rotor portion 30, thereby realizing the switching mechanism 50 to reluctance the rotor portion 30 and the excitation.
  • the purpose of the position of the rotor portion 20 is fixed, so that the motor 100 can be switched between two working states, and the operation is convenient.
  • the reluctance rotor portion 30 is disposed opposite to the exciting stator portion 10 and the exciting rotor portion 20 in the axial direction of the motor 100. That is, the exciting stator portion 10 and the exciting rotor portion 20 are coaxially arranged, and the reluctance rotor portion 30 is provided on one side of the exciting stator portion 10 and the exciting rotor portion 20, and in the exciting stator portion 10 and the exciting rotor portion 20 Either of the facing arrangements, that is, the central axis of the reluctance rotor portion 30 coincides with the central axes of the field stator portion 10 and the field rotor portion 20.
  • the reluctance rotor portion 30 is disposed opposite to the field stator portion 10 and the field rotor portion 20 in the axial direction of the motor 100, thereby making the structure of the motor 100 more compact and increasing the torque density.
  • the field rotor portion 20 is disposed opposite to the field stator portion 10 in the radial direction of the motor 100. 3 and 5, the field stator portion 10 is sleeved on the outer side of the field rotor portion 20, and the center cross section of the field stator portion 10 in the axial direction thereof coincides with the center cross section of the field rotor portion 20 in the axial direction thereof. .
  • the reluctance rotor portion 30 is disposed opposite to the exciting stator portion 10 and the exciting rotor portion 20 in the axial direction of the motor 100, It is advantageous to reduce the axial length of the motor 100, and the air gap between the two causes the excitation stator portion 10 and the field rotor portion 20 to interfere with each other, which is beneficial to increase the torque and power density of the motor 100, thereby improving the motor. 100 performance.
  • the center axis of the field stator portion 10, the center axis of the field rotor portion 20, the center axis of the reluctor rotor portion 30, and the center axis of the output shaft 40 coincide with each other.
  • the field stator portion 10 forms an annular structure extending in the horizontal direction (the horizontal direction shown in FIG. 3)
  • the field rotor portion 20 forms an annular structure extending in the horizontal direction
  • the reluctance rotor portion 30 forms a ring extending in the horizontal direction.
  • the axes coincide.
  • the motor 100 of this type has a simple and compact structure, generates a torque using a magnetoresistance effect, and has a high density of special documents.
  • the field stator portion 10 includes a winding core 11 and a winding 12 wound around the winding core 11.
  • the structure is simpler and more compact than the motor of the related art.
  • the winding core 11 includes a substrate 111 and a plurality of blocks 112 disposed on a surface of the substrate 111 facing the reluctance rotor portion 30 and equally spaced along the circumference of the motor 100, the winding 12 Winded on a plurality of teeth 112.
  • the winding core 11 is mainly composed of a substrate 111 and a plurality of blocks 112, wherein the substrate 111 of the winding core 11 forms an annular plate member, such as a circular plate member, and a central portion of the substrate 111 is formed along the edge.
  • a stator mounting passage penetrating in the thickness direction thereof, a plurality of the tooth blocks 112 are spaced apart along the circumferential direction of the substrate 111, and are disposed on the same side surface of the substrate 111 (the left side surface as shown in FIG.
  • a tooth groove is defined between the adjacent two tooth blocks 112, that is, the number of the tooth grooves is equal to the number of the tooth blocks 112, and the coils of the windings 12 of the field stator portion 10 are respectively wound around the plurality of tooth blocks. 112, thereby forming the field stator portion 10.
  • the winding core 11 has a simple structure, is easy to process and manufacture, and the winding 12 is more convenient and easy to implement in winding, and is advantageous for improving the production efficiency of the motor 100.
  • the plurality of tooth blocks 112 are evenly distributed on the substrate 111 in the circumferential direction of the motor 100.
  • the plurality of tooth blocks 112 are evenly and spacedly arranged along the circumferential direction of the motor 100, the center line of each of the tooth blocks 112 extends in the radial direction of the motor 100, and the center line of the tooth block 112 is an axis of symmetry, adjacent to two The center angles of the center lines of the teeth 112 are equal, that is, the center angles of the center lines of the adjacent two slots are equal.
  • the block 112 serves as a support structure for the coil of the winding 12, the plurality of blocks 112 are evenly arranged on the substrate 111 along the circumferential direction of the motor 100, which is easy to process and manufacture, and is advantageous for achieving uniform arrangement of the coils of the winding 12. Thereby, the magnetic field generated by the field stator portion 10 is made more uniform, and the performance of the motor 100 is improved.
  • the plurality of tooth blocks 112 and the substrate 111 are integrally formed, and the integrally formed structure is not only simple and convenient to form, but also makes the structure more compact and stable, and can eliminate redundant connecting parts, reduce the number of components, and thereby reduce the production cost. It is also beneficial to improve the production efficiency of the motor 100.
  • the field rotor portion 20 includes a permanent magnet core 21 and a plurality of permanent magnets 22 disposed on a surface of the permanent magnet core 21 facing the reluctance rotor portion 30 and along the motor The circumferential spacing of 100 is set.
  • the exciting rotor portion 20 is mainly composed of a permanent magnet core 21 and a plurality of permanent magnets 22, and the permanent magnet core 21 forms an annular plate member extending in the circumferential direction of the motor 100, and the middle portion of the permanent magnet core 21 has a motor along the motor 100.
  • An axially extending rotor mounting passage, the output shaft 40 is fixedly coupled to the reluctance rotor portion 30 or the field rotor portion 20 through the rotor mounting passage to transmit torque, and the plurality of permanent magnets 22 are spaced apart in the circumferential direction of the permanent magnet core 21.
  • Arranged and located on the same side surface of the permanent magnet core 21 (the left side surface as shown in FIG. 3).
  • the structure of the field rotor portion 20 is simple, the permanent magnet core 21 and the plurality of permanent magnets 22 are easily assembled, and the field rotor portion 20 and the field stator portion 10 are disposed on the same side of the reluctance rotor portion 30 so that the two are located in the same air gap. The sides do not interfere with each other, which is advantageous for increasing the torque and power density of the motor 100.
  • the plurality of permanent magnets 22 are evenly distributed on the permanent magnet core 21 in the circumferential direction of the motor 100.
  • the plurality of permanent magnets 22 are evenly and spacedly arranged along the circumferential direction of the motor 100, the center line of each permanent magnet 22 extends in the radial direction of the motor 100, and the center line of the permanent magnet 22 is an axis of symmetry, adjacent to two The central angles of the center lines of the permanent magnets 22 are equal, and it is possible to ensure that the exciting rotor portion 20 generates a uniform magnetic field, thereby improving the performance of the motor 100.
  • the reluctance rotor portion 30 includes a non-magnetic conductive fixing plate 31 and a plurality of magnetic conductive magnetoresistive blocks 32, and the plurality of magnetic conductive magnetic resistance blocks 32 are disposed on the non-magnetic conductive fixing plate 31 toward the exciting stator portion 10 and the exciting rotor
  • the surfaces of the portions 20 are disposed at equal intervals along the circumferential direction of the motor 100.
  • the reluctance rotor portion 30 is mainly composed of a non-magnetic conductive fixing plate 31 and a plurality of magnetic conductive magnetoresistive blocks 31, and the non-magnetic conductive fixing plate 31 forms a plate member extending in the radial direction of the motor 100.
  • a circular plate member a plurality of magnetically permeable magnetoresistive blocks 32 are circumferentially spaced apart along the non-magnetically permeable fixing plate 31, each of the magnetic permeable magnetic resistance blocks 32 extending in the radial direction of the motor 100, the reluctance rotor portion
  • the structure of 30 is simple and compact, and the magnetism is used to generate torque, which has the characteristics of high torque density, thereby improving the performance of the motor 100.
  • the plurality of magnetically permeable magnetoresistive blocks 32 are evenly distributed on the non-magnetically permeable fixing plate 31 in the circumferential direction of the motor 100. That is, the plurality of magnetically permeable magnetoresistive blocks 32 are evenly and spacedly arranged along the circumferential direction of the motor 100, and the center line of each of the magnetoresistive magnetoresistive blocks 32 extends in the radial direction of the motor 100, and each of the magnetic reluctances
  • the center line of the block 32 is an axis of symmetry, and the center angles of the center lines of the adjacent two magnetoresistive magnet blocks 32 are equal, which is favorable for generating a uniform magnetic field, thereby improving the performance of the motor 100 and improving the quality of the motor 100.
  • the magnetoresistive magnet block 32 is disposed opposite the gap of the field stator portion 10 and the field rotor portion 20 in the radial direction of the motor 100 along the axial direction of the motor 100.
  • the motor 100 is mainly composed of an exciting stator portion 10, an exciting rotor portion 20, a reluctance rotor portion 30, and an output shaft 40, wherein the exciting stator portion 10 includes a winding core 11 and a winding 12, and a winding core 11 includes a substrate 111, a plurality of blocks 112, the substrate 111 forms an annular plate extending in the radial direction of the motor 100, and a plurality of blocks 112 are provided on the surface of the substrate 111 facing the reluctance rotor portion 30 (the left side surface as shown in FIG.
  • the winding 12 is wound on a plurality of tooth blocks 112;
  • the field rotor portion 20 includes a permanent magnet core 21 and a plurality of permanent magnets 22 formed in the radial direction of the motor 100
  • An extended annular structure, and the permanent magnet core 21 is disposed inside the substrate 111 of the winding core 11, and a plurality of permanent magnets 22 are disposed on the surface of the permanent magnet core 21 facing the reluctance rotor portion 30 (left as shown in FIG. 3)
  • the side surfaces are disposed on and spaced apart in the circumferential direction of the motor 100.
  • the reluctance rotor portion 30 includes a non-magnetic conductive fixing plate 31 and a plurality of magnetic conductive magnetic resistance blocks 32, and the non-magnetic magnetic fixing plate 31 forms a circular plate member extending in the radial direction of the motor 100, and a plurality of magnetic conductive magnetic plates.
  • the block 32 is provided on the surface of the non-magnetic fixed plate 31 facing the field stator portion 10 and the field rotor portion 20 (the right side surface as shown in FIG.
  • the reluctance rotor portion 30 is disposed opposite to the field stator portion 10 and the field rotor portion 20 in the axial direction of the motor 100, which is advantageous for reducing the axial length of the motor 100, and the air gap between the two causes the field stator
  • the portion 10 and the field rotor portion 20 do not interfere with each other, which is advantageous for improving the torque and power density of the motor 100, thereby improving the performance of the motor 100.
  • the field stator portion 10 is driven by an alternating current and the number of pole pairs of the generated rotating magnetic field is p s , and the number of pole pairs of the exciting magnetic field generated by the exciting rotor portion 20 is p f , and the magnetic field is magnetic
  • the number of the teeth 112 is 12, and the winding 12 is a three-phase symmetrical winding.
  • the field rotor portion 20 is composed of a permanent magnet core 21 composed of a high magnetic permeability material, and a permanent magnet core 21 which is axially magnetized and uniformly mounted on the permanent magnet core of the field rotor portion 20 circumferentially.
  • the reluctance rotor portion 30 is composed of a magnetically permeable magnetoresistive block 32 made of a high magnetic permeability material and a non-magnetically permeable fixing plate 31 made of a non-magnetic permeable material, and the plurality of magnetic permeable magnetoresistive blocks 32 are uniformly mounted on the circumference in a non-conductive manner.
  • the magnetic fixing plate 31 is opposed to the air gap which is fixedly spaced apart from the field stator portion 10 and the field rotor portion 20.
  • the high magnetic permeability material used for the winding core 11 of the field stator portion 10, the permanent magnet core 21 of the field rotor portion 20, and the magneto-magnetic resistance block 32 of the reluctance rotor portion 30 may include, but is not limited to, silicon steel sheets.
  • a high magnetic permeability material such as a cobalt steel sheet, a permalloy, or a SMC;
  • the permanent magnet 22 of the excitation rotor portion 20 described above may include permanent magnets including, but not limited to, neodymium iron boron, ferrite, aluminum nickel cobalt, samarium cobalt, and the like.
  • the material 12; the winding 12 of the field stator portion 10 may be a single-phase or multi-phase winding, which may be a fractional or integer slot winding; the permanent magnet 22 of the field rotor portion 20 may be built-in or surface-mounted. It is composed of a single layer or a plurality of permanent magnets 22, and the magnetization direction of the permanent magnets 22 may be parallel, radial, reverse radial, etc.; the switching mechanism 50 may be electromagnetic or mechanical.
  • the motor 100 has a high torque density characteristic, the number of rotor poles and the operating frequency can be controlledly converted, and the winding 12 of the motor 100 does not need any change in the process of changing the number of poles.
  • the motor 100 fully combines the high efficiency of the pole-changing motor 100.
  • the characteristics of large-scale adjustment of the operating range, featuring high torque and high power density, are suitable for a wide range of applications from household appliances, electric vehicles, and wind power generation.
  • the motor 100 of the embodiment of the present invention is composed of three main parts, that is, the field stator portion 10, the field rotor portion 20, and the reluctance rotor portion 30, and the field stator portion 10 is highly guided.
  • a winding core 11 made of a magnetic material and a winding 12 wound thereon the winding core 11 of the field stator portion 10 is composed of a substrate 111 made of a high magnetic permeability material and a tooth block 112 uniformly distributed thereon.
  • the number of the teeth 112 is 12, and the winding 12 is a three-phase symmetrical winding.
  • the exciting rotor portion 20 is coaxial with the field stator portion 10 and is radially inward. Maintain a similar axial position.
  • the reluctance rotor portion 30 is composed of a magnetically permeable magnetoresistive block 32 made of a high magnetic permeability material and a non-magnetically permeable fixing plate 31 made of a non-magnetic permeable material, and the plurality of magnetic permeable magnetoresistive blocks 32 are uniformly mounted on the circumference in a non-conductive manner.
  • the magnetic fixing plate 31 is opposed to the air gap which is fixedly spaced apart from the field stator portion 10 and the field rotor portion 20.
  • the switching mechanism 50 is located on the shaft extension side, and includes a reluctance rotor fixing ring 53, a synchronizer 54, an exciting stator fixing ring 51, and an exciting rotor fixing ring 52.
  • the reluctance rotor retaining ring 53 is a radially outer ring-shaped ring gear that is directly connected to the output shaft 40.
  • the synchronizer 54 is a ring gear having a radially inner side and an outer side with a latching tooth, an exciting stator fixing ring 51 and an exciting rotor.
  • the fixing ring 52 is a ring gear having teeth on the radially inner side and is fixed to the winding core 11 and the permanent magnet core 21, respectively.
  • 3 and 4 are schematic views of the motor 100 in the first operating state of the embodiment, the synchronizer 54 is moved to the illustrated position, and the field stator fixing ring 51 and the field rotor fixing ring 52 are engaged, and in this state, the field rotor is excited.
  • the portion 20 and the field stator portion 10 are fixed and not rotated, and the reluctance rotor portion 30 drives the output shaft 40 to rotate.
  • FIG. 5 and FIG. 6 are schematic views of the motor 100 in the second operating state of the embodiment, the synchronizer 54 is moved to the illustrated position, and the reluctance rotor retaining ring 53 and the field rotor retaining ring 52 are engaged, and in this state, the excitation is performed.
  • the stator portion 10 is fixed and does not rotate, the field rotor portion 20 and the reluctance rotor portion 30 are relatively fixed, and the synchronous drive output shaft 40 is rotated.
  • the motor 100 has a high torque density characteristic, the number of rotor poles and the operating frequency can be controlledly converted, and the winding 12 of the motor 100 does not need any change in the process of changing the number of poles, and the motor 100 fully integrates the pole-changing motor.
  • the characteristics of high-efficiency operation range and large-scale adjustment, featuring high torque and high power density, are suitable for a wide range of applications from household appliances, electric vehicles, and wind power generation.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

一种电机(100),包括:励磁定子部(10);励磁转子部(20),励磁转子部(20)沿电机(100)的径向与励磁定子部(10)间隔设置且在电机(100)的径向上位于励磁定子部(10)的内侧;磁阻转子部(30),磁阻转子部(30)沿电机的轴向与励磁定子部(10)和励磁转子部(20)间隔设置;切换机构(50),切换机构(50)通过可选地固定励磁定子部(10)、励磁转子部(20)和磁阻转子部(30)中的两个的相对位置以选取励磁转子部(20)和磁阻转子部(30)中的至少一个充当转子;输出轴(40),输出轴(40)由转子驱动旋转。

Description

电机 技术领域
本发明涉及电机技术领域,更具体地,涉及一种电机。
背景技术
随着科技的发展,电机的调速功能也逐渐得到了更多的重视。通常,由于电网或者驱动系统母线电压的限制,电机要想兼顾转矩特性的情况下大范围改变工作转速,就需要进行特殊的控制或者结构设计。目前比较常用的方法是采用弱磁控制,但这种方式对电机的参数有着一定的限制,无法兼顾低速大转矩工作区和高速低转矩的高效率运行。
发明内容
本发明旨在至少在一定程度上解决相关技术中的上述技术问题之一。
为此,本发明提出一种电机,该电机具有高转矩密度的特点,同时能够通过不同运行状态的切换使得电机在不同负载工况下始终工作在高效率区间,适用于负载工况经常变化的应用场合。
根据本发明实施例的电机,包括:励磁定子部;励磁转子部,所述励磁转子部沿所述电机的径向与所述励磁定子部间隔设置且所述励磁转子部在所述电机的径向上位于所述励磁定子部的内侧;磁阻转子部,所述磁阻转子部沿所述电机的轴向与所述励磁定子部和所述励磁转子部间隔设置;切换机构,所述切换机构通过可选地固定所述励磁定子部、所述励磁转子部和所述磁阻转子部中的两个的相对位置以选取所述励磁转子部和所述磁阻转子部中的至少一个充当可相对所述励磁定子部旋转的转子;输出轴,所述输出轴由所述转子驱动旋转。
根据本发明实施例的电机,通过设置切换机构,可以实现电机的多种状态的切换,电机在不同状态下的等效转子极对数和工作电频率差异显著,在不改变电机绕组连接前提下、实拓宽了电机的转速工作范围。当电机工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大;当电机工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升。因此,该电机的最佳效率区间可以在低速大转矩区间和高速低转矩区间之间切换,而不仅仅局限于传统电机所在的“转矩-转速曲线”拐点附近的高效率运行,实现电机的全工作范围高效率运行,十分适用于负载频繁变化的场合,如电动汽车、洗衣机、风力发电等。再者,该电机的转矩密度远高于常规永磁电机,在相同电机体积的前提下、可以输出更大的转矩和功率。 因此,该电机具有高转矩密度的特点,同时能够通过不同运行状态的切换使得电机在不同负载工况下始终工作在高效率区间,适用于负载工况经常变化的应用场合。
另外,根据本发明实施例的电机,还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述切换机构在第一状态和第二状态之间可切换,所述输出轴与所述磁阻转子部传动连接,所述切换机构处于所述第一状态时固定所述励磁定子部与所述励磁转子部的相对位置,所述磁阻转子部充当转子带动所述输出轴旋转,所述切换机构处于所述第二状态时固定所述励磁转子部与所述磁阻转子部的相对位置,所述磁阻转子部和所述励磁转子部充当转子带动所述输出轴旋转。
根据本发明的一个实施例,所述切换机构包括:励磁定子固定环,所述励磁定子固定环与所述励磁定子部的相对位置固定;励磁转子固定环,所述励磁转子固定环与所述励磁转子部的相对位置固定;磁阻转子固定环,所述磁阻转子固定环与所述磁阻转子部的相对位置固定;同步器,所述切换机构处于所述第一状态时,所述同步器分别与所述励磁定子固定环和所述励磁转子固定环配合,所述切换机构处于所述第二状态时,所述同步器分别与所述励磁转子固定环和所述磁阻转子固定环配合。
根据本发明的一个实施例,所述励磁定子固定环与所述励磁定子部传动连接,所述励磁转子固定环与所述励磁转子部传动连接,所述磁阻转子固定环与所述输出轴传动连接。
根据本发明的一个实施例,所述同步器、所述励磁定子固定环、所述励磁转子固定环和所述磁阻转子固定环上分别设有卡齿,所述切换机构处于所述第一状态时,所述同步器上的卡齿分别与所述励磁定子固定环上的卡齿和所述励磁转子固定环上的卡齿啮合,所述切换机构处于所述第二状态时,所述同步器上的卡齿分别与所述励磁转子固定环上的卡齿和所述磁阻转子固定环上的卡齿啮合。
根据本发明的一个实施例,所述同步器上的卡齿分布在所述同步器的外周面和内周面上,所述励磁定子固定环上的卡齿分布在所述励磁定子固定环的内周面上,所述励磁转子固定环上的卡齿分布在所述励磁转子固定环的内周面上,所述磁阻转子固定环上的卡齿分布在所述磁阻转子固定环的外周面上。
根据本发明的一个实施例,所述输出轴的远离所述磁阻转子的一端构成轴伸端,所述切换机构临近所述输出轴的轴伸端设置。
根据本发明的一个实施例,所述磁阻转子沿所述电机的轴向与所述励磁定子部和所述励磁转子部相对设置。
根据本发明的一个实施例,所述励磁转子部沿所述电机的径向与所述励磁定子部相对设置。
根据本发明的一个实施例,所述励磁定子部的中心轴线、所述励磁转子部的中心轴线、所述磁阻转子部的中心轴线和所述输出轴的中心轴线彼此重合。
根据本发明的一个实施例,所述励磁定子部包括:绕组铁芯;绕组,所述绕组绕制在所述绕组铁芯上。
根据本发明的一个实施例,所述绕组铁芯包括:基板;多个齿块,多个所述齿块设在所述基板的朝向所述磁阻转子部的表面上且沿所述电机的周向等间距设置,所述绕组绕制在多个所述齿块上。
根据本发明的一个实施例,所述励磁转子部包括:永磁铁芯;多个永磁体,多个所述永磁体设在所述永磁铁芯的朝向磁阻转子部的表面上且沿所述电机的周向等间距设置。
根据本发明的一个实施例,磁阻转子部包括:非导磁固定板;多个导磁磁阻块,多个所述导磁磁阻块设在所述非导磁固定板的朝向所述励磁定子部和所述励磁转子部的表面上且沿所述电机的周向等间距设置。
根据本发明的一个实施例,所述导磁磁阻块沿所述电机的轴向与所述励磁定子部和所述励磁转子部在所述电机的径向上的间隙相对设置。
根据本发明的一个实施例,所述励磁定子部由交流电流驱动且产生的旋转磁场的极对数为ps,所述励磁转子部产生的励磁磁场的极对数为pf,所述导磁磁阻块的数量为pr,其中,pr=|ps±pf|。
附图说明
图1是根据本发明实施例的电机的爆炸图;
图2是图1中所示的电机的绕组铁芯的结构示意图;
图3是根据本发明实施例的电机在切换机构处于第一状态时的结构示意图;
图4是图3中所示的A部的放大图;
图5是根据本发明实施例的电机在切换机构处于第二状态时的结构示意图;
图6是图5中所示的B部的放大图。
附图标记:
100:电机;
10:励磁定子部;11:绕组铁芯;111:基板;112:齿块;12:绕组;
20:励磁转子部;21:永磁铁芯;22:永磁体;
30:磁阻转子部;31:非导磁固定板;32:导磁磁阻块;
40:输出轴;
50:切换机构;
51:励磁定子固定环;52:励磁转子固定环;
53:磁阻转子固定环;54:同步器。
具体实施方式
随着科技的发展,电机的调速功能也逐渐得到了更多的重视。通常,由于电网或者驱动系统母线电压的限制,电机要想兼顾转矩特性的情况下大范围改变工作转速,就需要进行特殊的控制或者结构设计。目前比较常用的方法是采用弱磁控制,但这种方式对电机的参数有着一定的限制,无法兼顾低速大转矩工作区和高速低转矩的高效率运行。
一方面,相关技术中的变极感应电机工作在固定的电网频率下,通过改变定子绕组的连接方式,达到转子鼠笼中感应出的转子极数变化,从而调整电机转速。但该种方法不适用于同步电机,并且需要改变定子绕组的连接,在直流变频电机发展的大趋势下已经十分落伍。而另一方面,有学者提出可以通过采用AlNiCo等低矫顽力永磁体构成记忆电机,通过绕组对转子永磁体的充磁方向度进行在线调整,以达到同步电机变极的目的,然而该种方法采用的低矫顽力永磁体磁能级较低,容易造成电机的整体功率密度远低于传统永磁同步电机的问题。
为此,本发明提出一种电机,该电机具有高转矩密度的特点,同时能够通过不同运行状态的切换使得电机在不同负载工况下始终工作在高效率区间,适用于负载工况经常变化的应用场合。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图1至图6具体描述根据本发明实施例的电机100。
根据本发明实施例的电机100包括励磁定子部10、励磁转子部20、磁阻转子部30、切换机构50和输出轴40。具体而言,励磁转子部20沿电机100的径向与励磁定子部10间隔设置且励磁转子部20在电机100的径向上位于励磁定子部10的内侧,磁阻转子部30沿电机100的轴向与励磁定子部10和励磁转子部20间隔设置,切换机构50通过可选地固定励磁定子部10、励磁转子部20和磁阻转子部30中的两个的相对位置以选取励磁转子部20和磁阻转子部30中的至少一个充当可相对励磁定子部10旋转的转子,输出轴40由转子驱动旋转。
可以理解的是,切换机构50可以在不同的工作状态下分别固定励磁定子部10和励磁转子部20,或者固定励磁定子部10、励磁转子部2和磁阻转子部30,或者固定励磁转子部20和磁阻转子部30,实现三种运行状态,并且由于每一种运行状态的定子和转子不同,不同运行状态下,若电机100输出转速相同时,以上三种运行状态之间的等效转子极对数和工作点频率比值不同,从而通过切换电机100的不同运行状态实现变极运行。
换言之,该电机100主要由励磁定子部10、励磁转子部20、磁阻转子部30、切换机构50和输出轴40组成,其中,励磁定子部10大致形成沿电机100的周向延伸的环形,励磁定子部10的中部具有沿电机100的轴向(如图1所示的左右方向)贯通的定子安装通道,电机100在工作时,励磁定子部10作为电机100的定子相对于电机100的壳体静止不动。
进一步地,励磁转子部20大致形成沿电机100的周向延伸的环形,励磁转子部20的中部具有沿电机100的轴向贯通的转子安装通道,励磁转子部20设在定子安装通道内且励磁转子部20的外侧壁与励磁定子部10的内壁面间隔开布置。
磁阻转子部30设在励磁定子部10和励磁转子部20的一侧(如图3所示的左侧),且与励磁定子部10和励磁转子部20在电机100的轴向上间隔开布置以形成气隙,输出轴40穿过励磁转子部20的转子安装通道且输出轴40的一端(如图3所示的左端)与磁阻转子部30固定相连,使其作为电机100的转子,在电机100工作时,相对于电机100的壳体运动。
因此,通过将励磁转子部20沿电机100的径向与励磁定子部10间隔设置,可以大幅减小电机100的轴向长度,并将二者布置在磁阻转子部30的同一侧,使二者位于气隙的同一侧且不互相干涉,有利于提高电机100的转矩和功率密度。
切换机构50在第一位置和第二位置之间互动,并可选择地与励磁定子部10、励磁转子部20、磁阻转子部30中的两个相连使与其相连的两个部件相对静止,从而选取励磁转子部20作为电机100的转子或者定子。
由此,根据本发明实施例的电机100,通过设置切换机构50,可以实现电机100的多种状态的切换,电机100在不同状态下的等效转子极对数和工作电频率差异显著,在不改变电机100的绕组12连接前提下、实拓宽了电机100的转速工作范围。
当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大;当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升。因此,该电机100的最佳效率区间可以在低速大转矩区间和高速低转矩区间之间切换,而不仅仅局限于传统电机所在的“转矩-转速曲线”拐点附近的高效率运行,实现电机100的全工作范围高效率运行,十分适用于负载频繁变化的场合,如电动汽车、洗衣机、风力发电等。
再者,该电机100的转矩密度远高于常规永磁电机100,在相同电机100体积的前提下、可以输出更大的转矩和功率。因此,该电机100具有高转矩密度的特点,同时能够通过不同运行状态的切换使得电机100在不同负载工况下始终工作在高效率区间,适用于负载工况经常变化的应用场合。
其中,切换机构50在第一状态和第二状态之间可切换,输出轴40与磁阻转子部30传动连接,切换机构50处于第一状态时固定励磁定子部10与励磁转子部20的相对位置,磁阻转子部30充当转子带动输出轴40旋转。
具体地如图1和图3所示,当切换机构50位于第一位置时,即处于第一状态,此时切换机构50分别与励磁定子部10与励磁转子部20相连,使二者的位置相对固定,即在此状态下、电机100工作时,励磁定子部10与励磁转子部20作为电机100的两个定子,而磁阻转子部30作为电机100的转子,输出轴40的一端穿过励磁转子部20的转子安装通道且与励磁转子部20间隔开,输出轴40的另一端(如图3所示的左端)与磁阻转子部30固定连接以输出转矩。
因此,通过设置切换机构50,可以实现电机100的多种状态的切换,电机100在不同状态下的等效转子极对数和工作电频率差异显著,在不改变电机100绕组的12连接前提下、实拓宽了电机100的转速工作范围。
进一步地,切换机构50处于第二状态时固定励磁转子部20与磁阻转子部30的相对位置,磁阻转子部30和励磁转子部20充当转子带动输出轴40旋转。
参照图1和图5,当切换机构50位于第二位置时,即处于第二状态,此时切换机构50分别与励磁转子部20与磁阻转子部30相连,使二者的位置相对固定,即在此状态下、电机100工作时,励磁定子部10作为电机100的定子,而励磁转子部20与磁阻转子部30作为电机100的两个转子,输出轴40的一端穿过励磁转子部20的转子安装通道且与励磁转子部20相连,输出轴40的另一端(如图3所示的左端)与磁阻转子部30固定连接以输出转矩。通过设置切换机构50,可以实现电机100的多种状态的切换,电机100在两种状态下的等效转子极对数和工作电频率差异显著,在不改变电机100的绕组12连接前提下、实拓宽了电机100的转速工作范围。
在本发明的一些具体实施方式中,切换机构50包括励磁定子固定环51、励磁转子固定环52、磁阻转子固定环53和同步器54。
具体而言,励磁定子固定环51与励磁定子部10的相对位置固定,励磁转子固定环52与励磁转子部20的相对位置固定,磁阻转子固定环53与磁阻转子部30的相对位置固定,切换机构50处于第一状态时,同步器54分别与励磁定子固定环51和励磁转子固定环52配 合,切换机构50处于第二状态时,同步器54分别与励磁转子固定环52和磁阻转子固定环53配合。
也就是说,励磁定子固定环51与励磁定子部10固定相连,电机100在工作时,由于励磁定子部10作为电机100的定子、相对于电机100的壳体静止不动,因此励磁定子固定环51也相对于电机100的壳体静止不动;励磁转子固定环52与励磁转子部20固定相连以随励磁转子部20一起运动。
进一步地,磁阻转子固定环53与磁阻转子部30固定相连,电机100在工作时,由于磁阻转子部30作为电机100的转子、相对于电机100的壳体运动,因此磁阻转子固定环53随着磁阻转子部30一起运动;同步器54通过可选地固定励磁定子固定环51、励磁转子固定环52、磁阻转子固定环53中的两个的相对位置以选取励磁转子部20和磁阻转子部30中的至少一个充当可相对励磁定子部10旋转的转子,输出轴40由转子驱动旋转。
由此,通过在励磁定子部10上设置励磁定子固定环51,在励磁转子部20设置励磁转子固定环52,在磁阻转子部30上设置磁阻转子固定环53,便于与同步器54配合,从而实现电机100的两种工作状态的切换,同步器54作为切换机构50中的活动件,可以固定励磁定子固定环51、励磁转子固定环52、磁阻转子固定环53中的两个的相对位置,从而保证状态切换的连续性和可靠性。
可选地,励磁定子固定环51与励磁定子部10传动连接,励磁转子固定环52与励磁转子部20传动连接,磁阻转子固定环53与输出轴40传动连接。例如,励磁定子固定环51与励磁定子部10之间、励磁转子固定环52与励磁转子部20之间、磁阻转子固定环53与输出轴40之间可以分别通过齿轮传动结构、链传动结构或者带传动结构等实现位置的相对固定,从而利于实现切换机构50的两种状态的切换,进而实现电机100的两种工作状态的切换。
优选地,同步器54、励磁定子固定环51、励磁转子固定环52和磁阻转子固定环53上分别设有卡齿,切换机构50处于第一状态时,同步器54上的卡齿分别与励磁定子固定环51上的卡齿和励磁转子固定环52上的卡齿啮合,切换机构50处于第二状态时,同步器54上的卡齿分别与励磁转子固定环52上的卡齿和磁阻转子固定环53上的卡齿啮合。
具体地,如图1所示,励磁定子固定环51的一端与励磁定子部10固定连接,励磁定子固定环51的另一端设有卡齿,励磁转子固定环52固设在励磁转子部20上且励磁转子部20的端部也设有卡齿,并且励磁定子固定环51上的卡齿与励磁转子固定环52上的卡齿在电机100的轴向上对齐,输出轴40的一端与磁阻转子部30固定相连,输出轴40的外侧壁设有磁阻转子固定环53,且磁阻转子固定环53的朝向励磁转子固定环52的一侧也设有卡齿,同步器54设在励磁转子固定环52与磁阻转子固定环53之间,且同步器54的朝向励磁转子 固定环52与磁阻转子固定环53的两侧分别设有与励磁定子固定环51上的卡齿、励磁转子固定环52上的卡齿以及磁阻转子固定环53上的卡齿配合的卡齿。
并且,励磁定子固定环51上的卡齿与励磁转子固定环52上的卡齿在电机100的轴向上平齐,励磁转子固定环52上的卡齿与磁阻转子固定环53上的卡齿在电机100的径向上、正对布置,励磁定子固定环51上的卡齿与磁阻转子固定环53上的卡齿在电机100的径向上错开布置。
如图3和图4所示,在此状态下,同步器54上的卡齿分别与励磁定子固定环51上的卡齿和励磁转子固定环52上的卡齿啮合,使励磁定子固定环51和励磁转子固定环52的位置相对固定,即使励磁定子部10、励磁转子部20的位置相对固定,此时励磁定子部10、励磁转子部20均作为电机100的定子,而磁阻转子部30作为电机100的转子。
如图5和图6所示,在此状态下,同步器54上的卡齿分别与励磁转子固定环52上的卡齿和磁阻转子固定环53上的卡齿啮合,使励磁转子固定环52和磁阻转子固定环53的位置相对固定,即使输出轴40、磁阻转子部30、励磁转子部20的位置相对固定,此时励磁定子部10均作为电机100的定子,而磁阻转子部30、励磁转子部20作为电机100的转子。
当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大;当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升。因此,该电机100的最佳效率区间可以在低速大转矩区间和高速低转矩区间之间切换,而不仅仅局限于传统电机所在的“转矩-转速曲线”拐点附近的高效率运行,实现电机100的全工作范围高效率运行,十分适用于负载频繁变化的场合,如电动汽车、洗衣机、风力发电等。
有利地,同步器54上的卡齿分布在同步器54的外周面和内周面上,励磁定子固定环51上的卡齿分布在励磁定子固定环51的内周面上,励磁转子固定环52上的卡齿分布在励磁转子固定环52的内周面上,磁阻转子固定环53上的卡齿分布在磁阻转子固定环53的外周面上。
换言之,同步器54、励磁定子固定环51、励磁转子固定环52和磁阻转子固定环53分别形成沿电机100的周向延伸的环形结构,且四个环形结构同轴布置,其中,磁阻转子固定环53外套在电机100的输出轴40上且与输出轴40固定相连,磁阻转子固定环53的外侧壁设有多个沿其周向布置的卡齿,励磁转子固定环52外套在磁阻转子固定环53上且励磁转子固定环52的内侧壁与磁阻转子固定环53的外侧壁间隔开布置。
同步器54套设在电机100的输出轴40上且位于励磁转子固定环52和磁阻转子固定环53之间,其中同步器54的外侧壁设有多个沿其周向布置且与励磁转子固定环52的的卡齿 配合的卡齿,同步器54的内侧壁设有多个沿其周向布置且与磁阻转子固定环53上的卡齿配合的卡齿;励磁定子固定环51的内侧壁设有多个沿其周向布置的卡齿且位于励磁转子固定环52的一侧(如图3所示的右侧)。
具体地,如图1和图3所示,当切换机构50位于第一位置时,即处于第一状态,此时切换机构50分别与励磁定子部10与励磁转子部20相连,使二者的位置相对固定,即在此状态下、电机100工作时,励磁定子部10与励磁转子部20作为电机100的两个定子,而磁阻转子部30作为电机100的转子,输出轴40的一端穿过励磁转子部20的转子安装通道且与励磁转子部20间隔开,输出轴40的另一端(如图3所示的左端)与磁阻转子部30固定连接以输出转矩。通过设置切换机构50,可以实现电机100的多种状态的切换,电机100在不同状态下的等效转子极对数和工作电频率差异显著,在不改变电机100的绕组12连接前提下、实拓宽了电机100的转速工作范围。
当电机100工作在低速大转矩区时,采用等效极对数较高的运行状态,输出转矩大;当电机100工作在高速运行区间时,采用等效极对数较小的运行状态,在无需进行弱磁控制的状态下自然满足高速工作需求,且因为工作频率降低,效率大幅提升。因此,该电机100的最佳效率区间可以在低速大转矩区间和高速低转矩区间之间切换,而不仅仅局限于传统电机所在的“转矩-转速曲线”拐点附近的高效率运行,实现电机100的全工作范围高效率运行,十分适用于负载频繁变化的场合,如电动汽车、洗衣机、风力发电等。
其中,输出轴40的远离磁阻转子的一端构成轴伸端,切换机构50临近输出轴40的轴伸端设置。这样方便切换机构50的磁阻转子固定环53与输出轴40固定连接,从而实现磁阻转子固定环53与磁阻转子部30的固定连接,进而实现切换机构50将磁阻转子部30和励磁转子部20的位置固定的目的,使电机100可以在两个工作状态之间切换,操作方便。
可选地,磁阻转子部30沿电机100的轴向与励磁定子部10和励磁转子部20相对设置。也就是说,励磁定子部10和励磁转子部20同轴布置,磁阻转子部30设在励磁定子部10和励磁转子部20的一侧,且与励磁定子部10和励磁转子部20中的任一个正对布置,即磁阻转子部30的中心轴线与励磁定子部10和励磁转子部20的中心轴线重合。将磁阻转子部30在电机100的轴向上、与励磁定子部10和励磁转子部20相对布置,使电机100的结构更加紧凑,提升转矩密度。
励磁转子部20沿电机100的径向与励磁定子部10相对设置。参照图3和图5,励磁定子部10套设在励磁转子部20的外侧,且励磁定子部10的位于其轴向的中心横截面与励磁转子部20的位于其轴向的中心横截面重合。
由此,将磁阻转子部30沿电机100的轴向与励磁定子部10和励磁转子部20相对设置, 有利于减小电机100的轴向长度,且二者之间的气隙使励磁定子部10与励磁转子部20之间互不干涉,有利于提高电机100的转矩和功率密度,从而提升电机100的性能。
优选地,励磁定子部10的中心轴线、励磁转子部20的中心轴线、磁阻转子部30的中心轴线和输出轴40的中心轴线彼此重合。换言之,励磁定子部10形成沿水平方向(如图3所示的左右方向)延伸的环形结构,励磁转子部20形成沿水平方向延伸的环形结构,磁阻转子部30形成沿水平方向延伸的环形结构,其中,励磁定子部10外套在励磁转子部20的外侧且励磁定子部10的中心轴线与励磁转子部20的中心轴线重合,磁阻转子部30设在励磁定子部10的一侧(如图3所示的左侧),且与励磁定子部10沿电机100的轴向(如图3所示的左右方向)间隔开布置,励磁定子部10的中心轴线与磁阻转子部30的中心轴线重合。该种形式的电机100的结构简单、紧凑,利用磁阻效应产生转矩,具有高专据密度的特点。
其中,根据本发明的一个实施例,励磁定子部10包括绕组铁芯11和绕组12,绕组12绕制在绕组铁芯11上。与相关技术中的电机相比,结构更加简单、紧凑。
可选地,绕组铁芯11包括基板111和多个齿块112,多个齿块112设在基板111的朝向磁阻转子部30的表面上且沿电机100的周向等间距设置,绕组12绕制在多个齿块112上。
参照图1和图2,绕组铁芯11主要由基板111和多个齿块112组成,其中,绕组铁芯11的基板111形成环形板件,例如圆环形板件,基板111的中部形成沿其厚度方向贯通的定子安装通道,多个齿块112沿基板111的周向间隔开布置,且设在基板111的同一侧表面(如图1所示的左侧表面)上,在多个齿块112的周向上、相邻两个齿块112之间限定出齿槽,即齿槽的数量与齿块112的数量相等,励磁定子部10的绕组12的线圈分别绕制在多个齿块112上,从而形成励磁定子部10。该绕组铁芯11的结构简单,加工、制造容易,且绕组12在绕制时更加方便,容易实现,有利于提高电机100的生产效率。
优选地,多个齿块112沿电机100的周向均匀分布在基板111上。换言之,多个齿块112沿电机100的周向均匀、间隔开布置,每个齿块112的中心线沿电机100的径向延伸,且齿块112的中心线为对称轴线,相邻两个齿块112的中心线的圆心角相等,即相邻两个齿槽的中心线的圆心角相等。
由此,由于齿块112作为绕组12的线圈的支撑结构,将多个齿块112沿电机100的周向均匀布置在基板111上,加工、制造容易,有利于实现绕组12的线圈的均匀布置,从而使励磁定子部10产生的磁场更加均匀,提升电机100的性能。
有利地,多个齿块112和基板111一体成型,一体成型的结构不仅成型简单、方便,使结构更加紧凑、稳定,而且可以省去多余的连接件,减少部件数量,从而降低生产成本,再者,还有利于提高电机100的生产效率。
其中,根据本发明的一个实施例,励磁转子部20包括永磁铁芯21和多个永磁体22,多个永磁体22设在永磁铁芯21的朝向磁阻转子部30的表面上且沿电机100的周向等间距设置。
也就是说,励磁转子部20主要由永磁铁芯21和多个永磁体22组成,永磁铁芯21形成沿电机100的周向延伸的环形板件,永磁铁芯21的中部具有沿电机100的轴向延伸的转子安装通道,输出轴40穿过转子安装通道与磁阻转子部30或者励磁转子部20固定连接以输转转矩,多个永磁体22沿永磁铁芯21的周向间隔开布置,且位于永磁铁芯21的同一侧表面(如图3所示的左侧表面)上。该励磁转子部20的结构简单,永磁铁芯21和多个永磁体22组装方便,励磁转子部20和励磁定子部10布置在磁阻转子部30的同一侧,使二者位于气隙的同一侧且不互相干涉,有利于提高电机100的转矩和功率密度。
优选地,多个永磁体22沿电机100的周向均匀分布在永磁铁芯21上。换言之,多个永磁体22沿电机100的周向均匀、间隔开布置,每个永磁体22的中心线沿电机100的径向延伸,且永磁体22的中心线为对称轴线,相邻两个永磁体22的中心线的圆心角相等,可以保证励磁转子部20产生均匀的磁场,从而提升电机100的性能。
进一步地,磁阻转子部30包括非导磁固定板31和多个导磁磁阻块32,多个导磁磁阻块32设在非导磁固定板31的朝向励磁定子部10和励磁转子部20的表面上且沿电机100的周向等间距设置。
具体地,如图1所示,磁阻转子部30主要由非导磁固定板31和多个导磁磁阻块32组成,非导磁固定板31形成沿电机100的径向延伸的板件,例如圆形板件,多个导磁磁阻块32沿非导磁固定板31的周向间隔开布置,每个导磁磁阻块32沿电机100的径向延伸,该磁阻转子部30的结构简单、紧凑,利用磁阻效应产生转矩,具有高转矩密度的特点,从而提升电机100的性能。
可选地,多个导磁磁阻块32沿电机100的周向均匀分布在非导磁固定板31上。也就是说,多个导磁磁阻块32沿电机100的周向均匀、间隔开布置,每个导磁磁阻块32的中心线沿电机100的径向延伸,且每个导磁磁阻块32的中心线为对称轴线,相邻两个导磁磁阻块32的中心线的圆心角相等,有利于产生均匀的磁场,从而提高电机100的性能,提升电机100的品质。
有利地,根据本发明的一个实施例,导磁磁阻块32沿电机100的轴向与励磁定子部10和励磁转子部20在电机100的径向上的间隙相对设置。
参照图3和图5,电机100主要由励磁定子部10、励磁转子部20、磁阻转子部30和输出轴40组成,其中,励磁定子部10包括绕组铁芯11和绕组12,绕组铁芯11包括基板111、 多个齿块112,基板111形成沿电机100的径向延伸的环形板件,多个齿块112设在基板111的朝向磁阻转子部30的表面(如图3所示的左侧表面)上且沿电机100的周向间隔排列,绕组12绕制在多个齿块112上;励磁转子部20包括永磁铁芯21和多个永磁体22,永磁铁芯21形成沿电机100的径向延伸的环形结构,且永磁铁芯21设在绕组铁芯11的基板111的内侧,多个永磁体22设在永磁铁芯21的朝向磁阻转子部30的表面(如图3所示的左侧表面)上且沿电机100的周向间隔设置。
进一步地,磁阻转子部30包括非导磁固定板31和多个导磁磁阻块32,非导磁固定板31形成沿电机100的径向延伸的圆形板件,多个导磁磁阻块32设在非导磁固定板31的朝向励磁定子部10和励磁转子部20的表面(如图3所示的右侧表面)上且沿电机100的周向间隔设置,且磁阻转子部30的多个导磁磁阻块32的背向非导磁固定板31的一侧表面与励磁定子部10、励磁转子部20间隔开、正对布置。
由此,将磁阻转子部30沿电机100的轴向与励磁定子部10和励磁转子部20相对设置,有利于减小电机100的轴向长度,且二者之间的气隙使励磁定子部10与励磁转子部20之间互不干涉,有利于提高电机100的转矩和功率密度,从而提升电机100的性能。
此外,根据本发明的一个实施例,励磁定子部10由交流电流驱动且产生的旋转磁场的极对数为ps,励磁转子部20产生的励磁磁场的极对数为pf,导磁磁阻块32的数量为pr,其中,pr=|ps±pf|。
例如,本实施例中齿块112的个数为12,绕组12为三相对称绕组,当注入三相对称电流时产生旋转磁场极对数为ps=4。励磁转子部20由永磁铁芯21和永磁体22构成,永磁铁芯21由高磁导率材料构成,永磁体22采用轴向充磁,沿圆周均匀的安装在励磁转子部20的永磁铁芯21上,并极性交替布置,与绕组12处于轴向同侧,产生极对数pf=6的永磁磁场,励磁转子部20与励磁定子部10共轴线,并在电机100的径向上、处于内侧,两者保持相近的轴向位置。磁阻转子部30由高磁导率材料构成的导磁磁阻块32和非导磁材料构成的非导磁固定板31构成,多个导磁磁阻块32沿圆周均匀的安装在非导磁固定板31上,与励磁定子部10和励磁转子部20间隔固定的气隙相对,导磁磁阻块32的数量为pr=10,满足优选公式,磁阻转子部30与输出轴40直接相连接。
这里需要说明的是,励磁定子部10的绕组铁芯11、励磁转子部20的永磁铁芯21、磁阻转子部30的导磁磁阻块32所用高导磁材料可由包含但不限于硅钢片、钴钢片、坡莫合金、SMC等高导磁材料构成;以上所述励磁转子部20的永磁体22可由包含但不限于钕铁硼、铁氧体、铝镍钴、钐钴等永磁材料构成;励磁定子部10的绕组12可以为单相或多相绕组,可以为分数槽或整数槽绕组;励磁转子部20的永磁体22安放形式可以为内置式或表贴式,可 由单层或多层永磁体22构成,永磁体22的充磁方向可以为平行、径向、逆径向等;切换机构50可以为电磁式或机械式。
该电机100具备高转矩密度特点,转子极数和运行频率可受控转化,且电机100的绕组12在极数变化的过程中无需任何改变,该电机100充分结合了变极电机100高效率运行区间大范围调整的特点,具备高转矩、高功率密度的特点是,适用于从家用电器、电动汽车、风力发电等广泛应用场合。
下面结合具体实施例对本发明实施例的电机100进行详细描述。
如图1、图2和图3所示,本发明实施例的电机100由三个主要部分构成,即励磁定子部10、励磁转子部20、磁阻转子部30,励磁定子部10由高导磁材料构成的绕组铁芯11和绕制在其上的绕组12构成,励磁定子部10的绕组铁芯11由高磁导率材料构成的基板111和其上均匀分布的齿块112构成,本实施例中齿块112的个数为12,绕组12为三相对称绕组,当注入三相对称电流时产生旋转磁场极对数为ps=4。励磁转子部20由永磁铁芯21和永磁体22构成,永磁铁芯21由高磁导率材料构成,永磁体22采用轴向充磁,沿圆周均匀的安装在励磁转子部20的永磁铁芯21上,并极性交替布置,与绕组12处于轴向同侧,产生极对数pf=6的永磁磁场,励磁转子部20与励磁定子部10共轴线,并处于径向内侧,两者保持相近的轴向位置。磁阻转子部30由高磁导率材料构成的导磁磁阻块32和非导磁材料构成的非导磁固定板31构成,多个导磁磁阻块32沿圆周均匀的安装在非导磁固定板31上,与励磁定子部10和励磁转子部20间隔固定的气隙相对,导磁磁阻块32的数量为pr=10,满足优选公式,磁阻转子部30与输出轴40直接相连接。
在本实施例中,切换机构50位于轴伸侧,包括磁阻转子固定环53、同步器54、励磁定子固定环51、励磁转子固定环52。磁阻转子固定环53为径向外侧有卡齿的齿圈,与输出轴40直接相连接,同步器54为径向内侧和外侧均有卡齿的齿圈,励磁定子固定环51和励磁转子固定环52为径向内侧有卡齿的齿圈,且分别固定在绕组铁芯11和永磁铁芯21上。
图3和图4为本实施例的电机100在第一运行状态下的示意图,同步器54移动到图示位置,啮合励磁定子固定环51和励磁转子固定环52,在此状态下,励磁转子部20和励磁定子部10固定不旋转,磁阻转子部30带动输出轴40旋转,电机100的等效运行极对数为pr=10,电机100在600rpm下的运行频率为100Hz。
图5和图6为本实施例的电机100在第二运行状态下的示意图,同步器54移动到图示位置,啮合磁阻转子固定环53和励磁转子固定环52,在此状态下,励磁定子部10固定不旋转,励磁转子部20和磁阻转子部30相对保持固定,同步驱动输出轴40旋转,电机100的等效运行极对数为ps=4,电机100在600rpm下的运行频率为仅40Hz。且本实施例的电机 100在第一、第二运行状态下的等效极对数和运行频率的比值为5:2。
因此,该电机100具备高转矩密度特点,转子极数和运行频率可受控转化,且电机100的绕组12在极数变化的过程中无需任何改变,该电机100充分结合了变极电机的高效率运行区间大范围调整的特点,具备高转矩、高功率密度的特点是,适用于从家用电器、电动汽车、风力发电等广泛应用场合。
根据本发明实施例的电机100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种电机,其特征在于,包括:
    励磁定子部;
    励磁转子部,所述励磁转子部沿所述电机的径向与所述励磁定子部间隔设置且所述励磁转子部在所述电机的径向上位于所述励磁定子部的内侧;
    磁阻转子部,所述磁阻转子部沿所述电机的轴向与所述励磁定子部和所述励磁转子部间隔设置;
    切换机构,所述切换机构通过可选地固定所述励磁定子部、所述励磁转子部和所述磁阻转子部中的两个的相对位置以选取所述励磁转子部和所述磁阻转子部中的至少一个充当可相对所述励磁定子部旋转的转子;
    输出轴,所述输出轴由所述转子驱动旋转。
  2. 根据权利要求1所述的电机,其特征在于,所述切换机构在第一状态和第二状态之间可切换,所述输出轴与所述磁阻转子部传动连接,
    所述切换机构处于所述第一状态时固定所述励磁定子部与所述励磁转子部的相对位置,所述磁阻转子部充当转子带动所述输出轴旋转,
    所述切换机构处于所述第二状态时固定所述励磁转子部与所述磁阻转子部的相对位置,所述磁阻转子部和所述励磁转子部充当转子带动所述输出轴旋转。
  3. 根据权利要求2所述的电机,其特征在于,所述切换机构包括:
    励磁定子固定环,所述励磁定子固定环与所述励磁定子部的相对位置固定;
    励磁转子固定环,所述励磁转子固定环与所述励磁转子部的相对位置固定;
    磁阻转子固定环,所述磁阻转子固定环与所述磁阻转子部的相对位置固定;
    同步器,所述切换机构处于所述第一状态时,所述同步器分别与所述励磁定子固定环和所述励磁转子固定环配合,
    所述切换机构处于所述第二状态时,所述同步器分别与所述励磁转子固定环和所述磁阻转子固定环配合。
  4. 根据权利要3所述的电机,其特征在于,所述励磁定子固定环与所述励磁定子部传动连接,所述励磁转子固定环与所述励磁转子部传动连接,所述磁阻转子固定环与所述输出轴传动连接。
  5. 根据权利要求3所述的电机,其特征在于,所述同步器、所述励磁定子固定环、所述励磁转子固定环和所述磁阻转子固定环上分别设有卡齿,
    所述切换机构处于所述第一状态时,所述同步器上的卡齿分别与所述励磁定子固定环上的卡齿和所述励磁转子固定环上的卡齿啮合,
    所述切换机构处于所述第二状态时,所述同步器上的卡齿分别与所述励磁转子固定环上的卡齿和所述磁阻转子固定环上的卡齿啮合。
  6. 根据权利要求5所述的电机,其特征在于,所述同步器上的卡齿分布在所述同步器的外周面和内周面上,所述励磁定子固定环上的卡齿分布在所述励磁定子固定环的内周面上,所述励磁转子固定环上的卡齿分布在所述励磁转子固定环的内周面上,所述磁阻转子固定环上的卡齿分布在所述磁阻转子固定环的外周面上。
  7. 根据权利要求1-6中任一项所述的电机,其特征在于,所述输出轴的远离所述磁阻转子的一端构成轴伸端,所述切换机构临近所述输出轴的轴伸端设置。
  8. 根据权利要求1-7中任一项所述的电机,其特征在于,所述磁阻转子沿所述电机的轴向与所述励磁定子部和所述励磁转子部相对设置。
  9. 根据权利要求1-8中任一项所述的电机,其特征在于,所述励磁转子部沿所述电机的径向与所述励磁定子部相对设置。
  10. 根据权利要求1-9中任一项所述的电机,其特征在于,所述励磁定子部的中心轴线、所述励磁转子部的中心轴线、所述磁阻转子部的中心轴线和所述输出轴的中心轴线彼此重合。
  11. 根据权利要求1-10中任一项所述的电机,其特征在于,所述励磁定子部包括:
    绕组铁芯;
    绕组,所述绕组绕制在所述绕组铁芯上。
  12. 根据权利要求11所述的电机,其特征在于,所述绕组铁芯包括:
    基板;
    多个齿块,多个所述齿块设在所述基板的朝向所述磁阻转子部的表面上且沿所述电机的周向等间距设置,所述绕组绕制在多个所述齿块上。
  13. 根据权利要求1-12中任一项所述的电机,其特征在于,所述励磁转子部包括:
    永磁铁芯;
    多个永磁体,多个所述永磁体设在所述永磁铁芯的朝向磁阻转子部的表面上且沿所述电机的周向等间距设置。
  14. 根据权利要求1-13中任一项所述的电机,其特征在于,磁阻转子部包括:
    非导磁固定板;
    多个导磁磁阻块,多个所述导磁磁阻块设在所述非导磁固定板的朝向所述励磁定子部和 所述励磁转子部的表面上且沿所述电机的周向等间距设置。
  15. 根据权利要求14所述的电机,其特征在于,所述导磁磁阻块沿所述电机的轴向与所述励磁定子部和所述励磁转子部在所述电机的径向上的间隙相对设置。
  16. 根据权利要求14所述的电机,其特征在于,所述励磁定子部由交流电流驱动且产生的旋转磁场的极对数为ps,所述励磁转子部产生的励磁磁场的极对数为pf,所述导磁磁阻块的数量为pr,其中,pr=|ps±pf|。
PCT/CN2016/109311 2016-10-31 2016-12-09 电机 WO2018076477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610942970.2A CN106374709B (zh) 2016-10-31 2016-10-31 电机
CN201610942970.2 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076477A1 true WO2018076477A1 (zh) 2018-05-03

Family

ID=57892825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109311 WO2018076477A1 (zh) 2016-10-31 2016-12-09 电机

Country Status (2)

Country Link
CN (1) CN106374709B (zh)
WO (1) WO2018076477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113102096A (zh) * 2021-04-15 2021-07-13 孚能科技(赣州)股份有限公司 一种除磁组件、除磁装置以及锂离子电池生产系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277094B (zh) * 2020-03-10 2022-06-10 奇瑞汽车股份有限公司 复合盘式驱动电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079116A (ja) * 2001-09-03 2003-03-14 Nidec Shibaura Corp モータ
CN103490583A (zh) * 2013-09-13 2014-01-01 江西理工大学 定子分割式轴向磁通切换型混合励磁同步电机
CN103715848A (zh) * 2013-09-30 2014-04-09 东南大学 一种轴向磁场定子分割式磁通切换型记忆电机
CN104348334A (zh) * 2013-07-23 2015-02-11 杨玉岗 集成盘式开关磁阻型电磁调速电动机
CN105048740A (zh) * 2015-07-08 2015-11-11 南京航空航天大学 一种永磁和变磁阻并列式混合励磁无刷电机
CN206226249U (zh) * 2016-11-25 2017-06-06 广东威灵电机制造有限公司 电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662193A (zh) * 2009-09-30 2010-03-03 江西理工大学 双转子轴向磁通切换型混合励磁同步发电机
CN102184809B (zh) * 2011-03-30 2015-11-25 戴珊珊 电激励永磁开关和电激励永磁开关磁阻电动机及电激励方法
KR20130031006A (ko) * 2011-09-20 2013-03-28 삼성전기주식회사 스위치드 릴럭턴스 모터
CN204334257U (zh) * 2015-01-05 2015-05-13 上海朗汉传动科技有限公司 一种异步电机
CN104682641A (zh) * 2015-03-04 2015-06-03 广东威灵电机制造有限公司 双定子轴向磁场电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079116A (ja) * 2001-09-03 2003-03-14 Nidec Shibaura Corp モータ
CN104348334A (zh) * 2013-07-23 2015-02-11 杨玉岗 集成盘式开关磁阻型电磁调速电动机
CN103490583A (zh) * 2013-09-13 2014-01-01 江西理工大学 定子分割式轴向磁通切换型混合励磁同步电机
CN103715848A (zh) * 2013-09-30 2014-04-09 东南大学 一种轴向磁场定子分割式磁通切换型记忆电机
CN105048740A (zh) * 2015-07-08 2015-11-11 南京航空航天大学 一种永磁和变磁阻并列式混合励磁无刷电机
CN206226249U (zh) * 2016-11-25 2017-06-06 广东威灵电机制造有限公司 电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113102096A (zh) * 2021-04-15 2021-07-13 孚能科技(赣州)股份有限公司 一种除磁组件、除磁装置以及锂离子电池生产系统

Also Published As

Publication number Publication date
CN106374709A (zh) 2017-02-01
CN106374709B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108011484B (zh) 一种磁齿轮复合电机
CN105958763B (zh) 一种分区定子式混合励磁电机
CN206226245U (zh) 电机
CN103051133B (zh) 并联磁路混合励磁永磁电机
CN106451967B (zh) 电机
CN103312066A (zh) 具有永磁激励的电枢的电机和附属的永磁激励的电枢
CN106787562A (zh) 交替极混合励磁直驱游标电机
CN108631531B (zh) 一种电动汽车用混合励磁开关磁阻轮毂电机
CN113489274B (zh) 双边交替极型混合励磁无刷电机
CN106374707B (zh) 电机
CN108336837A (zh) 一种混合励磁直驱电机
CN103997174A (zh) 基于磁齿轮的转子凸极式混合励磁电机
CN217882984U (zh) 一种磁通反向横向磁通永磁电机
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
CN207134963U (zh) 稀土永磁电机和压缩机
WO2018076477A1 (zh) 电机
CN207977873U (zh) 一种永磁电机
CN204465161U (zh) 一种单相横向磁通发电机
CN201018373Y (zh) 混合励磁同步电动机
CN101447724A (zh) 一种单相双绕组定向运转永磁同步电动机
CN206226249U (zh) 电机
KR101209631B1 (ko) 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
WO2018133559A1 (zh) 无机械差速共轴反转动力装置
CN209250523U (zh) 一种气隙单极性磁悬浮自轴承电机
CN106505815A (zh) 电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16920171

Country of ref document: EP

Kind code of ref document: A1