WO2018076339A1 - 光学元件六自由度微位移调节装置、投影物镜和光刻机 - Google Patents

光学元件六自由度微位移调节装置、投影物镜和光刻机 Download PDF

Info

Publication number
WO2018076339A1
WO2018076339A1 PCT/CN2016/104017 CN2016104017W WO2018076339A1 WO 2018076339 A1 WO2018076339 A1 WO 2018076339A1 CN 2016104017 W CN2016104017 W CN 2016104017W WO 2018076339 A1 WO2018076339 A1 WO 2018076339A1
Authority
WO
WIPO (PCT)
Prior art keywords
freedom
degree
adjustment
displacement
axis
Prior art date
Application number
PCT/CN2016/104017
Other languages
English (en)
French (fr)
Inventor
张德福
李显凌
倪明阳
隋永新
杨怀江
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Priority to PCT/CN2016/104017 priority Critical patent/WO2018076339A1/zh
Publication of WO2018076339A1 publication Critical patent/WO2018076339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the invention belongs to the technical field of lithographic projection objective lenses, and in particular relates to an optical component six-degree-of-freedom micro-displacement adjusting device, a projection objective lens and a lithography machine.
  • a lithographic projection objective is one of the core components of a lithography machine for use in very large scale integrated circuit fabrication processes.
  • the projection objective lens is required to have a higher numerical aperture and a smaller system wave aberration.
  • the adjustment device for index compensation such as magnification, field curvature, astigmatism, and spherical aberration is the main tool for optical system performance compensation.
  • the adjustment accuracy of the adjustment mechanism is often less than 100 nm, while adjusting the introduced surface shape RMS to be less than 5 nm. Therefore, the adjustment precision of the conventional gear rack, the screw nut, the cam, the worm and the like is up to the order of micrometers, which cannot meet the requirements for use.
  • the commonly used positioning mechanism includes an eccentric adjustment mechanism, an axial adjustment mechanism, and a tilt adjustment mechanism.
  • the positioning tolerance of the optical components is more strict, and some components are sensitive to multiple degrees of freedom, so a multi-degree of freedom adjustment mechanism is required, and the prior art optical component adjustment device exists.
  • the problem is high cost, large nonlinear error, and difficult processing.
  • a six-degree-of-freedom micro-displacement adjusting device for an optical element includes: a lens barrel; three adjustment branches respectively mounted on the lens barrel in a circumferential direction of the lens barrel, each adjustment The branch provides two degrees of freedom of displacement adjustment; and a support frame mounted on the three adjustment branches, the support frame being displaceable in two degrees of freedom driven by each adjustment branch; Wherein, the optical component is fixed in the supporting frame, and the supporting frame drives the optical component to realize six-degree-of-freedom displacement adjustment under the driving of the three adjusting branches.
  • the local coordinate system of the adjustment branch includes an X-axis, a Y-axis, and a Z-axis orthogonal to each other, wherein the Z-axis is parallel to an axial direction of the lens barrel, and the X-axis is perpendicular to the a Z axis and parallel to a radial direction of the lens barrel, the Y axis being perpendicular to the X axis and the Z axis; the displacement adjustment of the two degrees of freedom includes: translation along the Z axis direction and along the Translation in the Y-axis direction.
  • the adjustment branch includes: a fixed end, the bottom end of which is mounted on the upper surface of the lens barrel a link assembly that supports the support frame; and a flexible hinge mechanism between the fixed end and the link assembly, the top end of the fixed end being connected to the link assembly by the flexible hinge mechanism;
  • the link assembly is displaced in two degrees of freedom with respect to the fixed end, thereby causing the support frame to be displaced in two degrees of freedom.
  • the adjustment branch further comprises: two drive connecting rods on both sides of the fixed end and the link assembly, and connecting the flexible hinge mechanism; and two drivers respectively mounted on the two Driving the connecting rod to push the driving connecting rod to move, and the driving connecting rod drives the connecting rod assembly to displace in two degrees of freedom by the flexible hinge mechanism.
  • the flexible hinge mechanism comprises: a symmetric flexible four-bar mechanism that provides a degree of freedom of displacement adjustment such that the linkage assembly can be displaced in one of two degrees of freedom; and two folded flexible hinges Connecting the ends of the symmetric flexible four-bar mechanism, which provides two degrees of freedom of displacement adjustment, such that the linkage assembly can be displaced in two degrees of freedom.
  • the link assembly includes: a lower link through which the top end of the fixed end is connected; a first flexible leaf spring and an intermediate link, and the lower link is supported by the first flexible leaf spring Said intermediate link, said intermediate link being rotatable about a first direction; and an upper link and a second flexible leaf spring, said intermediate link supporting said upper link by said second flexible leaf spring
  • the link supports the support frame such that the upper link is rotatable about the second direction to provide passive displacement adjustment of the support frame in the first direction and the second direction.
  • the distribution angle between the two of the three adjustment branches is equal.
  • the distribution angles between the two of the three adjustment branches are not equal.
  • the lens barrel is coaxially fixed to the inner wall of the projection objective, and the optical element six-degree-of-freedom micro-displacement adjusting device is mounted on the projection objective lens to realize six-degree-of-freedom displacement adjustment of the optical element in the projection objective lens.
  • a projection objective comprising a plurality of optical elements and a plurality of the above-described optical element six-degree-of-freedom micro-displacement adjusting devices, wherein at least a portion of the optical elements are fixed at the optical element with six degrees of freedom micro-displacement Adjust the device.
  • a lithography machine comprising the projection objective described above.
  • the invention can simultaneously realize six-degree-of-freedom displacement adjustment, and is particularly suitable for adjusting optical components sensitive to six degrees of freedom, thereby effectively improving the displacement adjustment precision of the optical components.
  • FIG. 1 is a schematic structural view of a lithography machine according to an embodiment of the present invention.
  • FIG. 2 is an assembled view of a six-degree-of-freedom micro-displacement adjusting device for an optical component according to an embodiment of the present invention
  • FIG. 3 is a schematic view of a lens barrel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an adjustment branch according to an embodiment of the present invention.
  • Figure 6 is a partial view of a flexible hinge mechanism for adjusting a branch according to an embodiment of the present invention.
  • FIG. 7 is a schematic view of an L-shaped flexible connecting plate according to an embodiment of the present invention.
  • FIG. 8 is a schematic view of an L-shaped flexible connecting plate according to an embodiment of the present invention.
  • Figure 9 is a schematic view of a support frame according to an embodiment of the present invention.
  • the optical component six-degree-of-freedom micro-displacement adjusting device of the present invention is applied to a projection objective of a lithography machine.
  • a schematic structural diagram of a lithography machine which includes: an illumination system 1, a mask table 3, Projection objective 4 and wafer stage 8, optical axis 11 is the optical axis of the projection objective.
  • the projection objective 4 includes an optical system composed of a series of optical elements 5, an optical element adjustment mechanism 6, a flange support 9, and a flange 10.
  • the mask table 3 functions to support and precisely position the mask 2
  • the wafer stage 8 functions to support and precisely position the silicon wafer 7.
  • the main function of the projection objective 4 is when the illumination system 1 is exposed, The reduction ratio is used to transfer the pattern on the mask 2 to a predetermined position of the silicon wafer 7 by optical exposure.
  • the projection objective 4 has a large number of optical elements 5, wherein the displacement of a part of the optical elements 5 needs to be precisely adjusted to achieve the function of the system.
  • the optical element 5 is adjusted in its displacement by the adjustment mechanism 6, and is mounted to the side wall of the projection of the projection objective 4.
  • the six-degree-of-freedom micro-displacement adjusting device of the optical element proposed by the present invention can realize the six-degree-of-freedom adjustment of the optical element, and the overall structure thereof is as shown in FIG. 2, including the lens barrel 12 and three adjusting branches 13 And the supporting frame 14, the optical element 5 is adhered to the supporting frame 14, the lower surface of the supporting frame 14 is connected with three adjusting branches 13, and the lower surface of the adjusting branch 13 is fixedly connected with the upper surface of the lens barrel 12, three adjustments The branch 13 is mounted on the mounting reference surface of the lens barrel 12.
  • the lens barrel 12 has a rotationally symmetrical structure, and the upper surface thereof is a mounting reference surface 12-1, and three adjustment branches 13 are fixedly connected through three sets of mounting screw holes 12-2, three groups.
  • the distribution angles between the two of the mounting screw holes 12-2 are ⁇ , ⁇ , and ⁇ , respectively, and the three distribution angles may be equal or unequal.
  • each set of mounting screw holes has four screw holes, but the present invention Not limited to this, the number of mounting screw holes can be adjusted according to the condition of the fixed connection.
  • the lens barrel 12 has its outer cylindrical surface as a coaxial mounting reference 12-3 integrated into the projection objective 4, that is, the outer cylindrical surface is a mounting reference surface, and the lens barrel 12 can be coaxially mounted and fixed to the inner wall of the projection objective lens, thereby the optical element.
  • the six-degree-of-freedom micro-displacement adjusting device is integrally fixedly mounted on the inner wall of the projection objective, and the optical element six-degree-of-freedom micro-displacement adjusting device is used to adjust the position of the optical element 5 thereon in the optical system of the projection objective 4.
  • the adjustment branch 13 includes: an adjustment branch main body 13-1, Two drivers 13-2 and two L-shaped flexible connecting plates 13-3.
  • a local coordinate system for adjusting the branch can be established, and the direction parallel to the optical axis 11 of the projection objective (the optical component six-degree-of-freedom micro-displacement adjusting device, or the lens barrel 12) can be regarded as
  • the Z-axis direction is perpendicular to the Z-axis and parallel to the projection objective (optical element six-degree-of-freedom micro-displacement adjustment device, or barrel 12) in the radial direction as the X-axis direction, and the vertical X-axis and Z-axis directions as Y
  • the axial direction constitutes a three-dimensional Cartesian coordinate system as a local coordinate system for adjusting the branches.
  • the adjustment branch main body 13-1 includes: a fixed end 13-1-7, a lower link 13-1-11, an intermediate link 13-1-4, an upper link 13-1-2, and two drive connecting rods 13 -1-13; among them,
  • the bottom end of the fixed end 13-1-7 has a set of mounting screw holes 13-1-6, the number and size of the set of mounting screw holes matching the number and size of a set of mounting screw holes on the upper surface of the lens barrel 12,
  • the adjustment branch 13 is mounted and fixed to the upper surface of the lens barrel 12.
  • the top end of the fixed end 13-1-7 passes through two flexible hinge mechanisms, namely a symmetric flexible four-bar mechanism 13-1-9 and a folded flexible hinge 13-1-10, with a lower link 13-1-11 and two drives
  • the connecting rods 13-1-13 are connected, and the two driving connecting rods 13-1-13 are located on both sides of the fixed end 13-1-7 and the lower link 13-1-11 and are arranged symmetrically about the X-axis of the local coordinate system.
  • the intermediate link 13-1-4 and the lower link 13-1-11 are connected by X to the flexible leaf spring 13-1-12, and the X-direction flexible leaf spring can realize the intermediate link 13-1-4 around the X
  • the rotation function of the shaft, the upper link 13-1-2 and the intermediate link 13-1-4 are connected by a Y-directional flexible leaf spring 13-1-3, and the Y-directional flexible leaf spring can realize the upper link 13- 1-2 rotation about the Y axis and translation function along the X axis
  • the upper link 13-1-2 serves as an output end of the adjustment branch main body 13-1, and is provided with a mounting screw hole 13-1-1 for connecting the support frame 14.
  • the lower link 13-1-11, the intermediate link 13-1-4, and the upper link 13-1-2 constitute a link assembly as an adjustment target of the driver.
  • the adjustment branch of the invention is a split structure, which has low processing difficulty and can be processed by using conventional turning, milling and wire electric discharge cutting, and the manufacturing process is simple and easy to implement.
  • the X-direction flexible leaf spring 13-1-12 and the Y-direction flexible leaf spring 13-1-3 are used not only to support the intermediate link 13-1-4 and the upper link 13-1-2, but also serve as a support.
  • the displacement passive adjustment function when actively adjusting the optical element, the X-direction flexible leaf spring 13-1-12 and the Y-direction flexible leaf spring 13-1-3 provide a certain margin of passiveness in these three degrees of freedom. The adjustment improves the accuracy of the six-degree-of-freedom translational displacement adjustment of the optical component.
  • FIG. 6 is a front elevational view of the flexible hinge mechanism.
  • Symmetrical flexible four-bar mechanism 13-1-9 on adjustment branch The local coordinate system of the chain main body 13-1 is X-axis symmetrical, and the rotation of the link assembly about the X axis and the translation along the Z axis can be realized, wherein the translation along the Z axis serves as a displacement adjustment for adjusting one degree of freedom provided by the branch 13.
  • the symmetrical flexible four-bar mechanism 13-1-9 includes a first leaf spring 13-1-9-1, a second leaf spring 13-1-9-2, a connecting rod 13-1-9-3, and a third leaf spring 13 -1-9-4 and fourth leaf spring 13-1-9-5.
  • Two folding flexible hinges 13-1-10 are connected to the symmetric flexible four-bar mechanism 13-1-9, which is arranged symmetrically about the local coordinate system of the adjustment branch main body 13-1, and can realize the rotation of the link assembly around the X-axis. Translation along the Y-axis and translation along the Z-axis, wherein translation along the Y-axis and translation along the Z-axis serve as adjustments to the displacement of the two degrees of freedom provided by the adjustment branch 13.
  • the folded flexible hinge 13-1-10 includes a fifth leaf spring 13-1-10-1 and a sixth leaf spring 13-1-10-2.
  • the above flexible hinge mechanism adopted by the invention has a small adjustment stroke, can obtain an adjustment stroke of 100 ⁇ m level, and has a large carrying capacity, and can support a large weight optical element.
  • the two drivers 13-2 are arranged symmetrically about the X-axis of the local coordinate system of the adjustment branch 13, and the two drivers 13-2 are mounted at the mounting faces 13-1-5 of the two drive connecting rods, and the drive connecting rod 13 can be pushed and pulled. 1-13 movement, the driving connecting rod 13-1-13 drives the link assembly to move in two degrees of freedom of translation along the Y axis and translation along the Z axis, and outputs the motion through the upper link 13-1-2, The support frame 14 and the optical element 5 are translated along the Y-axis and the Z-axis to achieve two-degree-of-freedom micro-displacement adjustment.
  • the invention adopts the driver to improve the displacement adjustment precision, and can accurately control the XYZ displacement amount of the optical component by simultaneously controlling the feed amount of the six drivers, and simultaneously compensate the tilt and rotation errors of the optical component, thereby ensuring the six degrees of freedom of the optical component.
  • Dynamic displacement adjustment accuracy, and real-time displacement adjustment capability can meet the six-degree-of-freedom displacement adjustment requirements of lithography objective lens adjustment and maintenance.
  • FIGS 7 and 8 they are a front view and a rear view, respectively, of an L-shaped flexible web.
  • the two L-shaped flexible connecting plates 13-3 are symmetrically arranged about the local coordinate system of the adjusting branch 13, and the L-shaped flexible connecting plate 13-3 has a substantially rectangular parallelepiped shape, wherein the two L-shaped leaf springs 13-3- 2 Regarding the X-axis symmetry, the two ends along the Z-axis are used to connect the lower link 13-1-11 and the fixed end 13-1-7, respectively.
  • the movable end connection screw hole 13-3-1 is located on the movable end mounting reference surface 13-3-5, corresponding to the mounting screw hole 13-1-8 on the lower link 13-1-11, and can be passed by using a screw
  • the movable end is connected to the screw hole 13-3-1 and the mounting screw hole 13-1-8, and the L-shaped flexible connecting plate 13-3 is fixed to the lower link 13-1-11;
  • the fixed end is connected to the screw hole 13-3 -3 is located on the fixed end mounting reference surface 13-3-4, corresponding to the fixed end Mounting screw holes 13-1-8 on 13-1-7, the L-shaped flexible connecting plate 13-3 can be fixed by screwing the screw hole 13-3-3 and the mounting screw hole 13-1-8 through the fixed end.
  • the L-shaped flexible web 13-3 allows the linkage assembly to rotate about the X-axis, translate along the Y-axis and the Z-axis, and limit the rotation of the linkage assembly along the X-axis, about the Y-axis and the Z-axis.
  • the L-shaped flexible connecting plate of the present invention allows translation along the Y-axis and the Z-axis, restricts translation along the X-axis, rotation about the Y-axis and the Z-axis, and can further improve the two freedoms of translation along the Y-axis and the Z-axis.
  • the accuracy of the displacement adjustment eliminates the error caused by the movement of other degrees of freedom, and improves the accuracy of the six-degree-of-freedom translational displacement adjustment of the optical component.
  • the support frame 14 is a rotationally symmetrical structure, the upper surface and the lower surface of which are the mounting reference surface 14-1, and the three sets of mounting screw holes 14-2 and the three adjustment branches through the mounting reference surface 14-1.
  • the mounting screw hole 13-1-1 of the connecting rod 13-1-2 of the chain 13 fixes the supporting frame 14 to the three adjusting branches 13.
  • the distribution angles between the two sets of mounting screw holes 14-2 are ⁇ , ⁇ , and ⁇ , respectively, and the distribution angles may be equal or unequal, corresponding to the three sets of mounting screw holes 12-2 on the upper surface of the lens barrel 12.
  • the distribution angle between the two is ⁇ , ⁇ , ⁇ .
  • the support frame 14 has its outer cylindrical surface as the coaxial mounting reference 14-3 of the optical element 5, and the optical element 5 is adhesively fixed by the inner peripheral optical element supporting leg 14-4.
  • the driver 13-2 can be driven by a piezoelectric or magnetostrictive type to achieve nano-level driving.
  • the piezoelectric actuator of the present invention preferably has a driving stroke of 3 mm and an accuracy of less than 30 nm, which satisfies the use requirements.
  • the working process of the six-degree-of-freedom micro-displacement adjusting device of the optical component of the invention is:
  • the driver 13-2 of each adjustment branch 13 outputs a certain displacement, and drives the folding flexible hinge 13-1-10 and the symmetric flexible four-bar mechanism 13-1-1 by driving one end of the connecting rod 13-1-13.
  • 9 movement, thereby driving the lower link 13-1-11 to translate along the Y axis or to translate along the Z axis, and via the X to the flexible leaf spring 13-1-12, the intermediate link 13-1-4, the Y flexible flexible leaf spring 13-1-3 is transmitted to the upper end of the connecting rod 13-1-2, which drives the connecting rod assembly to translate along the Y axis as a whole or along the Z axis, and is brought to the supporting frame 14 and the optical element through the upper connecting rod 13-1-2.
  • the six-degree-of-freedom micro-displacement adjusting device of the invention can simultaneously realize six-degree-of-freedom displacement adjustment, and is particularly suitable for adjusting optical components that are sensitive to six degrees of freedom.
  • the invention also provides a projection objective lens suitable for a lithography machine, comprising a plurality of optical elements 5 and a plurality of optical element six-degree-of-freedom micro-displacement adjusting devices, wherein at least part of the optical elements 5 are fixedly mounted on the optical element with six degrees of freedom On the displacement adjustment device.
  • the present invention also provides a lithography machine comprising the above-described projection objective lens, and other components such as an illumination system 1, a mask table 3, a silicon wafer 7, a wafer stage 8, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

一种光学元件六自由度微位移调节装置,包括镜筒(12),三个调节支链(13)安装于镜筒(12)的上表面,每个调节支链(13)提供两个自由度的位移调节;支撑镜框(14)安装于三个调节支链(13)的上表面,在每个调节支链(13)的驱动下,支撑镜框(15)可在两个自由度产生位移;光学元件(5)固定于支撑镜框(15)内,在三个调节支链(13)的驱动下,实现光学元件(5)的六自由度位移调节,有效提高了光学元件(5)位移调节精度。

Description

光学元件六自由度微位移调节装置、投影物镜和光刻机 技术领域
本发明属于光刻投影物镜技术领域,具体涉及一种光学元件六自由度微位移调节装置、投影物镜和光刻机。
背景技术
光刻投影物镜是光刻机的核心部件之一,用于极大规模集成电路制造工艺。目前,随着集成电路特征线宽的减小,要求投影物镜具有更高的数值孔径和更小的系统波像差。用于倍率、场曲、像散、球差等指标补偿的调整装置是光学系统性能补偿的主要工具。调节机构的调节精度往往小于100nm,同时调节引入的面形RMS小于5nm。因此,传统的齿轮齿条、丝杠螺母、凸轮、涡轮蜗杆等调节机构的调节精度最高达到微米量级,不能满足使用要求。为了达到近乎苛刻的成像效果,需要设计专用的精密位移调节装置。根据光学元件的定位公差敏感度要求,常用的定位机构包括偏心调节机构、轴向调节机构和倾斜调节机构等。对于38nm或者更小节点的投影物镜,光学元件的定位公差更加严格,有的元件对多个自由度都很敏感,因此需要多自由度调节机构,而现有技术的光学元件调节装置,存在制造成本高、非线性误差大、加工难度大的问题。
发明内容
根据本发明的一个方面,提供了一种光学元件六自由度微位移调节装置,包括:镜筒;三个调节支链,沿镜筒的圆周方向分别安装于所述镜筒上,每个调节支链提供两个自由度的位移调节;以及支撑镜框,其安装于所述三个调节支链上,在每个调节支链的驱动下,所述支撑镜框可在两个自由度产生位移;其中,光学元件固定于所述支撑镜框内,在所述三个调节支链的驱动下,所述支撑镜框带动所述光学元件实现六自由度位移调节。
优选地,所述调节支链的局部坐标系包括相互正交的X轴、Y轴和Z轴,其中,所述Z轴平行于所述镜筒的轴向,所述X轴垂直于所述Z轴且平行于所述镜筒的径向,所述Y轴垂直于所述X轴和Z轴;所述两个自由度的位移调节包括:沿所述Z轴方向的平移和沿所述Y轴方向的平移。
优选地,所述调节支链包括:固定端,其底端安装于所述镜筒的上表 面;连杆组件,其支撑所述支撑镜框;以及柔性铰链机构,位于所述固定端和连杆组件之间,所述固定端的顶端通过所述柔性铰链机构连接所述连杆组件;其中,通过所述柔性铰链机构,使得所述连杆组件相对于所述固定端在两个自由度产生位移,从而带动所述支撑镜框在两个自由度产生位移。
优选地,所述调节支链还包括:两个驱动连接杆,位于所述固定端和连杆组件的两侧,并且连接所述柔性铰链机构;以及两个驱动器,分别安装在所述两个驱动连接杆上,推动所述驱动连接杆运动,所述驱动连接杆通过所述柔性铰链机构带动所述连杆组件在两个自由度产生位移。
优选地,所述柔性铰链机构包括:对称柔性四杆机构,提供一个自由度的位移调节,使得所述连杆组件可在两个自由度中的一个自由度产生位移;以及两个折叠柔性铰链,连接所述对称柔性四杆机构的两端,其提供两个自由度的位移调节,使得所述连杆组件可在两个自由度产生位移。
优选地,还包括:两个L形柔性连接板,所述L形柔性连接板将所述固定端和连杆组件固定在一起,允许所述连杆组件在两个自由度产生位移,限制所述连杆组件在其他自由度产生位移。
优选地,所述连杆组件包括:下连杆,通过所述柔性铰链机构连接固定端的顶端;第一柔性板簧和中间连杆,所述下连杆通过所述第一柔性板簧支撑所述中间连杆,使得所述中间连杆可绕第一方向旋转;以及上连杆和第二柔性板簧,所述中间连杆通过所述第二柔性板簧支撑所述上连杆,所述上连杆支撑所述支撑镜框,使得所述上连杆可绕第二方向旋转,为所述支撑镜框提供第一方向和第二方向的被动位移调节。
优选地,所述三个调节支链的两两之间的分布角度相等。
优选地,所述三个调节支链的两两之间的分布角度不相等。
优选地,镜筒同轴固定于投影物镜内壁,光学元件六自由度微位移调节装置安装在所述投影物镜,实现所述投影物镜内的光学元件的六自由度位移调节。
根据本发明的另一个方面,提出了一种投影物镜,包括多个光学元件以及多个上述光学元件六自由度微位移调节装置,其中至少部分光学元件固定在所述光学元件六自由度微位移调节装置上。
根据本发明的再一个方面,提出了一种光刻机,包括上述投影物镜。
本发明可以同时实现六个自由度位移调节,特别适用于对六个自由度都很敏感的光学元件调节,有效提高了光学元件位移调节精度。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明实施例的光刻机结构示意图;
图2为本发明实施例的光学元件六自由度微位移调节装置装配图;
图3为本发明实施例的镜筒的示意图;
图4为本发明实施例的一个调节支链的装配图;
图5为本发明实施例的调节支链的示意图;
图6为本发明实施例的调节支链的柔性铰链机构局部视图;
图7为本发明实施例的L形柔性连接板示意图;
图8为本发明实施例的L形柔性连接板示意图;
图9为本发明实施例的支撑镜框示意图。
符号说明
1照明系统;2掩模板;3掩模台;4投影物镜;5光学元件;6调节机构;7硅片;8硅片台;9法兰支撑;10法兰;11光轴;12镜筒;12-1安装基准面;12-2安装螺钉孔;12-3同轴安装基准;13调节支链;13-1调节支链主体;13-1-1安装螺钉孔;13-1-2上连杆;13-1-3Y向柔性板簧;13-1-4中间连杆;13-1-5安装面;13-1-6安装螺钉孔;13-1-7固定端;13-1-8安装螺钉孔;13-1-9对称柔性四杆机构;13-1-9-1第一板簧;13-1-9-2第二板簧;13-1-9-3连杆;13-1-9-4第三板簧;13-1-9-5第四板簧;13-1-10-1第五板簧;13-1-10-2第六板簧;13-1-10折叠柔性铰链;13-1-11下连杆;13-1-12X向柔性板簧;13-1-13驱动连接杆;13-2驱动器;13-3L形柔性连接板;13-3-1可动端连接螺钉孔;13-3-2L形板簧;13-3-3固定端连接螺钉孔;13-3-4固定端安装基准面;13-3-5可动端安装基准面;14支撑镜框;14-1安装基准面;14-2安装螺钉孔;14-3同轴安装基准;14-4光学元 件支撑脚。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明的光学元件六自由度微位移调节装置,适用于光刻机的投影物镜,如图1所示,给出了光刻机的结构示意图,其包括:照明系统1、掩模台3、投影物镜4和硅片台8,光轴11为投影物镜的光轴。其中,投影物镜4包括:由一系列光学元件5组成的光学系统、光学元件调节机构6、法兰支撑9和法兰10。掩模台3起到支撑和精密定位掩模2位置的作用,硅片台8起到支撑和精密定位硅片7位置的作用,投影物镜4的主要功能是,当照明系统1曝光时,以缩小倍率将掩模2上的图案通过光学曝光的方式转印到硅片7的预定位置上。投影物镜4具有大量的光学元件5,其中部分光学元件5的位移需要精确调节,以实现系统的功能。光学元件5通过调节机构6调节其位移,并安装到投影物镜4的镜筒侧壁上。
本发明提出的光学元件六自由度微位移调节装置,即调节结构6,可以实现对光学元件的六自由度调节,其整体结构如图2所示,包括镜筒12、三个调节支链13、和支撑镜框14,光学元件5粘接于支撑镜框14内,支撑镜框14的下表面连接三个调节支链13,调节支链13的下表面和镜筒12上表面固定连接,三个调节支链13安装在镜筒12的安装基准面上。
如图3所示,所述的镜筒12为回转对称形结构,其上表面为安装基准面12-1,通过三组安装螺钉孔12-2分别固定连接三个调节支链13,三组安装螺钉孔12-2中两两之间的分布角度分别为α、β、δ,三个分布角度可以相等也可以不相等,图中每组安装螺钉孔均有四个螺钉孔,但本发明不限于此,安装螺钉孔的数量可以根据固定连接的情况进行调节。
镜筒12以其外圆柱面作为集成到投影物镜4的同轴安装基准12-3,即以外圆柱面为安装基准面,镜筒12可以同轴安装固定到投影物镜的内壁,从而将光学元件六自由度微位移调节装置整体固定安装在投影物镜的内壁,并利用光学元件六自由度微位移调节装置来调节其上的光学元件5在投影物镜4光学系统中的位置。
如图4、图5和图6所示,调节支链13包括:一个调节支链主体13-1, 两个驱动器13-2和两个L形柔性连接板13-3。参见图2、以及图4至图6所示,可以建立调节支链的局部坐标系,将平行于投影物镜(光学元件六自由度微位移调节装置,或者镜筒12)光轴11的方向作为Z轴方向,将垂直于Z轴且平行于投影物镜(光学元件六自由度微位移调节装置,或者镜筒12)径向的方向作为X轴方向,将垂直X轴和Z轴的方向作为Y轴方向,构成三维直角坐标系作为调节支链的局部坐标系。
调节支链主体13-1包括:固定端13-1-7、下连杆13-1-11、中间连杆13-1-4、上连杆13-1-2以及两个驱动连接杆13-1-13;其中,
固定端13-1-7的底端具有一组安装螺钉孔13-1-6,该组安装螺钉孔的数量和尺寸与镜筒12上表面的一组安装螺钉孔的数量和尺寸匹配,以将调节支链13安装固定在镜筒12的上表面。
固定端13-1-7的顶端通过两个柔性铰链机构,即对称柔性四杆机构13-1-9和折叠柔性铰链13-1-10,与下连杆13-1-11和两个驱动连接杆13-1-13连接,两个驱动连接杆13-1-13位于固定端13-1-7和下连杆13-1-11的两侧且关于局部坐标系X轴对称布置。
中间连杆13-1-4和下连杆13-1-11之间通过X向柔性板簧13-1-12连接,该X向柔性板簧可以实现中间连杆13-1-4绕X轴的转动功能,上连杆13-1-2和中间连杆13-1-4之间通过Y向柔性板簧13-1-3连接,该Y向柔性板簧可以实现上连杆13-1-2绕Y轴的转动和沿X轴的平移功能,上连杆13-1-2作为调节支链主体13-1的输出端,设置有连接支撑镜框14的安装螺钉孔13-1-1。下连杆13-1-11、中间连杆13-1-4和上连杆13-1-2组成连杆组件,作为驱动器的调节对象。
由此可见,本发明的调节支链为分体式结构,其加工难度低,使用常规的车削、铣削和电火花线切割即可加工,制作工艺简单,易于实现。
并且X向柔性板簧13-1-12和Y向柔性板簧13-1-3不仅用于支撑中间连杆13-1-4和上连杆13-1-2,起到支撑作用,还起到位移被动调节功能,当对光学元件进行主动调节时,X向柔性板簧13-1-12和Y向柔性板簧13-1-3还在这三个自由度提供一定裕量的被动调节,提高了光学元件的六自由度平动位移调节精度。
图6为柔性铰链机构的主视图。对称柔性四杆机构13-1-9关于调节支 链主体13-1的局部坐标系X轴对称,可以实现连杆组件绕X轴的转动和沿Z轴的平移,其中沿Z轴的平移作为调节支链13提供的一个自由度的位移调节。对称柔性四杆机构13-1-9包括第一板簧13-1-9-1、第二板簧13-1-9-2、连杆13-1-9-3、第三板簧13-1-9-4和第四板簧13-1-9-5。
两个折叠柔性铰链13-1-10连接对称柔性四杆机构13-1-9,其关于调节支链主体13-1的局部坐标系X轴对称设置,可以实现连杆组件绕X轴的转动和沿Y轴的平移和沿Z轴的平移,其中沿Y轴的平移和沿Z轴的平移作为调节支链13提供的两个自由度的位移调节。折叠柔性铰链13-1-10包括第五板簧13-1-10-1和第六板簧13-1-10-2。
本发明采用的上述柔性铰链机构,调节行程微小,可以获得100μm级的调节行程,并且具有较大的承载能力,可以支撑大重量的光学元件。
两个驱动器13-2关于调节支链13的局部坐标系X轴对称布置,两个驱动器13-2安装在两个驱动连接杆的安装面13-1-5处,可以推拉驱动连接杆13-1-13运动,驱动连接杆13-1-13带动连杆组件在沿Y轴的平移和沿Z轴的平移这两个自由度运动,并通过上连杆13-1-2将运动输出,带动支撑镜框14和光学元件5沿Y轴和Z轴平移,实现两个自由度的微位移调节。
本发明采用驱动器提高了位移调节精度,其可以通过同时控制六个驱动器的进给量,精确控制光学元件的XYZ位移量,同时补偿光学元件的倾斜和旋转误差,保证光学元件的六自由度平动位移调节精度,并且具有实时位移调节能力,可以满足光刻物镜装调和维护时的六自由度位移调节需求。
如图7和图8所示,分别为L形柔性连接板的主视图和后视图。两个L形柔性连接板13-3关于调节支链13的局部坐标系Y轴对称布置,L形柔性连接板13-3轮廓大致为长方体,其中,其两个L形板簧13-3-2关于X轴对称,其沿Z轴的两端分别用于连接下连杆13-1-11和固定端13-1-7。可动端连接螺钉孔13-3-1位于可动端安装基准面13-3-5上,对应于下连杆13-1-11上的安装螺钉孔13-1-8,可利用螺钉通过可动端连接螺钉孔13-3-1和安装螺钉孔13-1-8,将L形柔性连接板13-3固定于下连杆13-1-11上;固定端连接螺钉孔13-3-3位于固定端安装基准面13-3-4上,对应于固定端 13-1-7上的安装螺钉孔13-1-8,可利用螺钉通过固定端连接螺钉孔13-3-3和安装螺钉孔13-1-8,将L形柔性连接板13-3固定于固定端。L形柔性连接板13-3允许连杆组件绕着X轴转动、沿着Y轴和Z轴平移,限制连杆组件沿着X轴平移,绕着Y轴和Z轴的转动。
本发明的L形柔性连接板,允许沿着Y轴和Z轴平移,限制沿着X轴平移、绕着Y轴和Z轴的转动,可以进一步提高沿着Y轴和Z轴平移的二自由度位移调节精度,消除了其他自由度的运动带来的误差,提高了光学元件的六自由度平动位移调节精度。
如图9所示,支撑镜框14为回转对称形结构,其上表面和下表面为安装基准面14-1,通过安装基准面14-1的三组安装螺钉孔14-2与三个调节支链13上连杆13-1-2的安装螺钉孔13-1-1,将支撑镜框14固定安装三个调节支链13上。在三组安装螺钉孔14-2两两之间的分布角度分别为α、β、δ,分布角度之间可以相等也可以不相等,对应于镜筒12上表面三组安装螺钉孔12-2两两之间的分布角度α、β、δ。支撑镜框14以其外圆柱面作为光学元件5的同轴安装基准14-3,并通过其内周的光学元件支撑脚14-4以粘接的方式固定光学元件5。
驱动器13-2可以采用压电式、磁致伸缩式等驱动方式,以实现纳米级驱动。本发明优选压电驱动器,其驱动行程为3mm,精度小于30nm,满足使用要求。
本发明光学元件六自由度微位移调节装置的工作过程为:
根据控制系统指令,每个调节支链13的驱动器13-2输出一定的位移,通过驱动连接杆13-1-13一端带动折叠柔性铰链13-1-10和对称柔性四杆机构13-1-9运动,从而带动下连杆13-1-11沿Y轴平移或沿Z轴平移,并经由X向柔性板簧13-1-12、中间连杆13-1-4、Y向柔性板簧13-1-3传递到输出端上连杆13-1-2,带动连杆组件整体沿Y轴平移或沿Z轴平移,通过上连杆13-1-2带到支撑镜框14和光学元件5沿Y轴平移或沿Z轴平移,从而实现光学元件两自由度微位移调节,通过上述方式控制三个调节支链13,即可实现光学元件六自由度微位移调节,补偿光学元件5的位置误差,直到到达目标位置,保证光学元件的位移调节精度同时达到小于100nm,同时调节引入的面形RMS小于5nm。
本发明的六自由度微位移调节装置,可以同时实现六个自由度位移调节,特别适用于对六个自由度都很敏感的光学元件调节。
本发明还提供了一种适用于光刻机的投影物镜,包括多个光学元件5以及若干光学元件六自由度微位移调节装置,其中至少部分光学元件5固定安装在上述光学元件六自由度微位移调节装置上。
本发明还提供了一种光刻机,其包括上述投影物镜,以及照明系统1、掩模台3、硅片7、硅片台8等其他部件。
至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明的光学元件六自由度微位移调节装置、投影物镜和光刻机有了清楚的认识。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件的定义并不仅限于实施例中提到的各种具体结构和形状,本领域普通技术人员可对其进行简单地更改或替换,例如,固定端与连杆组件之间还可以通过其他类型的连接结构连接,只要可以使连杆组件相对于固定端产生位移即可;上连杆、中间连杆和下连杆之间也采用其他支撑结构连接,只要可以稳定支撑被调节的光学元件即可。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种光学元件六自由度微位移调节装置,其特征在于,包括:
    镜筒;
    三个调节支链,沿镜筒的圆周方向分别安装于所述镜筒上,每个调节支链提供两个自由度的位移调节;以及
    支撑镜框,其安装于所述三个调节支链上,在每个调节支链的驱动下,所述支撑镜框可在两个自由度产生位移;
    其中,光学元件固定于所述支撑镜框内,在所述三个调节支链的驱动下,所述支撑镜框带动所述光学元件实现六自由度位移调节。
  2. 如权利要求1所述的光学元件六自由度微位移调节装置,其特征在于,所述调节支链的局部坐标系包括相互正交的X轴、Y轴和Z轴,其中,所述Z轴平行于所述镜筒的轴向,所述X轴垂直于所述Z轴且平行于所述镜筒的径向,所述Y轴垂直于所述X轴和Z轴;
    所述两个自由度的位移调节包括:沿所述Z轴方向的平移和沿所述Y轴方向的平移。
  3. 如权利要求1所述的光学元件六自由度微位移调节装置,其特征在于,所述调节支链包括:
    固定端,其底端安装于所述镜筒的上表面;
    连杆组件,其支撑所述支撑镜框;以及
    柔性铰链机构,位于所述固定端和连杆组件之间,所述固定端的顶端通过所述柔性铰链机构连接所述连杆组件;
    其中,通过所述柔性铰链机构,使得所述连杆组件相对于所述固定端在两个自由度产生位移,从而带动所述支撑镜框在两个自由度产生位移。
  4. 如权利要求3所述的光学元件六自由度微位移调节装置,其特征在于,所述调节支链还包括:
    两个驱动连接杆,位于所述固定端和连杆组件的两侧,并且连接所述柔性铰链机构;以及
    两个驱动器,分别安装在所述两个驱动连接杆上,推动所述驱动连接杆运动,所述驱动连接杆通过所述柔性铰链机构带动所述连杆组件在两个 自由度产生位移。
  5. 如权利要求3所述的光学元件六自由度微位移调节装置,其特征在于,所述柔性铰链机构包括:
    对称柔性四杆机构,提供一个自由度的位移调节,使得所述连杆组件可在两个自由度中的一个自由度产生位移;以及
    两个折叠柔性铰链,连接所述对称柔性四杆机构的两端,其提供两个自由度的位移调节,使得所述连杆组件可在两个自由度产生位移。
  6. 如权利要求3所述的光学元件六自由度微位移调节装置,其特征在于,还包括:
    两个L形柔性连接板,所述L形柔性连接板将所述固定端和连杆组件固定在一起,允许所述连杆组件在两个自由度产生位移,限制所述连杆组件在其他自由度产生位移。
  7. 如权利要求3所述的光学元件六自由度微位移调节装置,其特征在于,所述连杆组件包括:
    下连杆,通过所述柔性铰链机构连接固定端的顶端;
    第一柔性板簧和中间连杆,所述下连杆通过所述第一柔性板簧支撑所述中间连杆,使得所述中间连杆可绕第一方向旋转;以及
    上连杆和第二柔性板簧,所述中间连杆通过所述第二柔性板簧支撑所述上连杆,所述上连杆支撑所述支撑镜框,使得所述上连杆可绕第二方向旋转,为所述支撑镜框提供第一方向和第二方向的被动位移调节。
  8. 如权利要求1所述的光学元件六自由度微位移调节装置,其特征在于,所述三个调节支链的两两之间的分布角度相等。
  9. 如权利要求1所述的光学元件六自由度微位移调节装置,其特征在于,所述三个调节支链的两两之间的分布角度不相等。
  10. 如权利要求1所述的光学元件六自由度微位移调节装置,其特征在于,
    镜筒同轴固定于投影物镜内壁,光学元件六自由度微位移调节装置安装在所述投影物镜,实现所述投影物镜内的光学元件的六自由度位移调节。
  11. 一种投影物镜,其特征在于,包括多个光学元件以及多个如权利要求1所述的光学元件六自由度微位移调节装置,其中至少部分光学元件 固定在所述光学元件六自由度微位移调节装置上。
  12. 一种光刻机,其特征在于,包括权利要求11所述的投影物镜。
PCT/CN2016/104017 2016-10-31 2016-10-31 光学元件六自由度微位移调节装置、投影物镜和光刻机 WO2018076339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104017 WO2018076339A1 (zh) 2016-10-31 2016-10-31 光学元件六自由度微位移调节装置、投影物镜和光刻机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104017 WO2018076339A1 (zh) 2016-10-31 2016-10-31 光学元件六自由度微位移调节装置、投影物镜和光刻机

Publications (1)

Publication Number Publication Date
WO2018076339A1 true WO2018076339A1 (zh) 2018-05-03

Family

ID=62024210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104017 WO2018076339A1 (zh) 2016-10-31 2016-10-31 光学元件六自由度微位移调节装置、投影物镜和光刻机

Country Status (1)

Country Link
WO (1) WO2018076339A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562992A (zh) * 2018-06-20 2018-09-21 中国人民解放军国防科技大学 一种基于柔性铰链的精密反射镜架
CN109531546A (zh) * 2018-12-25 2019-03-29 西交利物浦大学 一种法向二自由度微动平台
CN109946806A (zh) * 2019-04-12 2019-06-28 中国科学院长春光学精密机械与物理研究所 光学元件面形精准集成组件的支撑装置,光学元件面形精准集成组件及其制作方法
CN110187491A (zh) * 2019-05-17 2019-08-30 中国科学院西安光学精密机械研究所 一种精度调节机构及用于空间光学望远镜的调焦装置
CN110246537A (zh) * 2019-04-03 2019-09-17 浙江工业大学 用于空间三自由度纳米定位平台的传动机构
CN110646907A (zh) * 2019-11-18 2020-01-03 大连齐维科技发展有限公司 一种光学镜架
CN111983768A (zh) * 2020-08-21 2020-11-24 中国科学院国家天文台南京天文光学技术研究所 用于天文光谱仪的精密调节兼高稳定的镜筒结构
CN113031176A (zh) * 2019-12-24 2021-06-25 长春长光华大智造测序设备有限公司 一种光纤调整机构
CN114198389A (zh) * 2021-11-15 2022-03-18 哈尔滨工业大学 一种用于工件台微转动的柔性铰链组件
CN114264448A (zh) * 2021-12-16 2022-04-01 哈尔滨工业大学 一种复眼单元工作环境模拟及性能评估系统及其使用方法
CN114545581A (zh) * 2022-02-21 2022-05-27 上海精测半导体技术有限公司 一种光束孔调节装置
CN116343901A (zh) * 2023-02-20 2023-06-27 山东大学 一种三自由度微动平台及工作方法
CN116719140A (zh) * 2023-08-03 2023-09-08 浙江荷湖科技有限公司 一种微米级光学狭缝多轴调节装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040632A1 (en) * 2005-03-18 2009-02-12 Canon Kabushiki Kaisha Driving System and Optical-Element Driving System
CN101488371A (zh) * 2009-03-04 2009-07-22 上海微电子装备有限公司 六自由度精密定位平台
CN101900862A (zh) * 2010-08-02 2010-12-01 中国科学院长春光学精密机械与物理研究所 一种投影物镜系统中光学元件轴向微动调整装置
CN102722016A (zh) * 2012-06-21 2012-10-10 中国科学院长春光学精密机械与物理研究所 光学元件Z、tip、tilt三自由度微动调整装置
CN105137562A (zh) * 2015-10-15 2015-12-09 中国科学院长春光学精密机械与物理研究所 一种光学元件三自由度微位移调节装置
CN106338805A (zh) * 2016-10-31 2017-01-18 中国科学院长春光学精密机械与物理研究所 光学元件六自由度微位移调节装置、投影物镜和光刻机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040632A1 (en) * 2005-03-18 2009-02-12 Canon Kabushiki Kaisha Driving System and Optical-Element Driving System
CN101488371A (zh) * 2009-03-04 2009-07-22 上海微电子装备有限公司 六自由度精密定位平台
CN101900862A (zh) * 2010-08-02 2010-12-01 中国科学院长春光学精密机械与物理研究所 一种投影物镜系统中光学元件轴向微动调整装置
CN102722016A (zh) * 2012-06-21 2012-10-10 中国科学院长春光学精密机械与物理研究所 光学元件Z、tip、tilt三自由度微动调整装置
CN105137562A (zh) * 2015-10-15 2015-12-09 中国科学院长春光学精密机械与物理研究所 一种光学元件三自由度微位移调节装置
CN106338805A (zh) * 2016-10-31 2017-01-18 中国科学院长春光学精密机械与物理研究所 光学元件六自由度微位移调节装置、投影物镜和光刻机

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562992B (zh) * 2018-06-20 2024-01-19 中国人民解放军国防科技大学 一种基于柔性铰链的精密反射镜架
CN108562992A (zh) * 2018-06-20 2018-09-21 中国人民解放军国防科技大学 一种基于柔性铰链的精密反射镜架
CN109531546A (zh) * 2018-12-25 2019-03-29 西交利物浦大学 一种法向二自由度微动平台
CN109531546B (zh) * 2018-12-25 2024-05-31 西交利物浦大学 一种法向二自由度微动平台
CN110246537A (zh) * 2019-04-03 2019-09-17 浙江工业大学 用于空间三自由度纳米定位平台的传动机构
CN109946806A (zh) * 2019-04-12 2019-06-28 中国科学院长春光学精密机械与物理研究所 光学元件面形精准集成组件的支撑装置,光学元件面形精准集成组件及其制作方法
CN110187491A (zh) * 2019-05-17 2019-08-30 中国科学院西安光学精密机械研究所 一种精度调节机构及用于空间光学望远镜的调焦装置
CN110187491B (zh) * 2019-05-17 2024-04-09 中国科学院西安光学精密机械研究所 一种精度调节机构及用于空间光学望远镜的调焦装置
CN110646907B (zh) * 2019-11-18 2024-04-26 大连齐维科技发展有限公司 一种光学镜架
CN110646907A (zh) * 2019-11-18 2020-01-03 大连齐维科技发展有限公司 一种光学镜架
CN113031176A (zh) * 2019-12-24 2021-06-25 长春长光华大智造测序设备有限公司 一种光纤调整机构
CN113031176B (zh) * 2019-12-24 2023-01-03 长春长光华大智造测序设备有限公司 一种光纤调整机构
CN111983768B (zh) * 2020-08-21 2022-03-01 中国科学院国家天文台南京天文光学技术研究所 用于天文光谱仪的精密调节兼高稳定的镜筒结构
CN111983768A (zh) * 2020-08-21 2020-11-24 中国科学院国家天文台南京天文光学技术研究所 用于天文光谱仪的精密调节兼高稳定的镜筒结构
CN114198389B (zh) * 2021-11-15 2022-07-05 哈尔滨工业大学 一种用于工件台微转动的柔性铰链组件
CN114198389A (zh) * 2021-11-15 2022-03-18 哈尔滨工业大学 一种用于工件台微转动的柔性铰链组件
CN114264448A (zh) * 2021-12-16 2022-04-01 哈尔滨工业大学 一种复眼单元工作环境模拟及性能评估系统及其使用方法
CN114264448B (zh) * 2021-12-16 2022-10-04 哈尔滨工业大学 一种复眼单元工作环境模拟及性能评估系统及其使用方法
CN114545581A (zh) * 2022-02-21 2022-05-27 上海精测半导体技术有限公司 一种光束孔调节装置
CN116343901A (zh) * 2023-02-20 2023-06-27 山东大学 一种三自由度微动平台及工作方法
CN116719140B (zh) * 2023-08-03 2023-11-24 浙江荷湖科技有限公司 一种微米级光学狭缝多轴调节装置
CN116719140A (zh) * 2023-08-03 2023-09-08 浙江荷湖科技有限公司 一种微米级光学狭缝多轴调节装置

Similar Documents

Publication Publication Date Title
WO2018076339A1 (zh) 光学元件六自由度微位移调节装置、投影物镜和光刻机
CN106338805B (zh) 光学元件六自由度微位移调节装置、投影物镜和光刻机
US8199315B2 (en) Projection objective for semiconductor lithography
JP5917526B2 (ja) 光学素子を位置合わせするシステム及びその方法
KR101607724B1 (ko) X-y 방향의 병진운동을 조정가능한 광 장착부
US7515359B2 (en) Support device for positioning an optical element
DE10344178B4 (de) Halte- und Positioniervorrichtung für ein optisches Element
EP2067076A2 (en) Projection objective for a microlithography apparatus with improved imaging properties and method for improving the imaging properties of the projection objective
JP6501793B2 (ja) 変形装置を備えた光学モジュール及び光学素子を変形させる方法
CN107145041B (zh) 光学元件六自由度定位调节装置、投影物镜及光刻机
US11422477B2 (en) Vibration isolation system and lithographic apparatus
JP2015180945A (ja) リソグラフィック結像システムの倍率制御
US20180284626A1 (en) Device for aligning a component
JP2013511843A5 (zh)
DE102018207454A1 (de) Aktuatoranordnung, Projektionsbelichtungsanlage und Waferinspektionsanlage für die Halbleiterlithographie
WO2017089085A1 (en) Vibration isolation device, lithographic apparatus and method to tune a vibration isolation device
CN105739248B (zh) 光学元件支撑结构、单元镜组、曝光光学系统及光刻机
TWI738112B (zh) 用於半導體微影的具有半主動間隔件的投影曝光設備的模組以及使用該半主動間隔件的方法
CN103901576A (zh) 可动镜片微调机构
US11947264B2 (en) Guiding device
WO2014139787A1 (en) Arrangement for the actuation of at least one element in an optical system
CN102169219B (zh) 光学系统的径向调节装置
JP6008468B2 (ja) 調整可能な光学素子を有する光学モジュール
DE102023205570A1 (de) Optisches system und projektionsbelichtungsanlage
KR20240055798A (ko) 변형 가능 렌즈 플레이트를 사용한 배율 조정 가능 투사 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920417

Country of ref document: EP

Kind code of ref document: A1