WO2018074368A1 - エンジンの排気浄化制御装置 - Google Patents

エンジンの排気浄化制御装置 Download PDF

Info

Publication number
WO2018074368A1
WO2018074368A1 PCT/JP2017/037231 JP2017037231W WO2018074368A1 WO 2018074368 A1 WO2018074368 A1 WO 2018074368A1 JP 2017037231 W JP2017037231 W JP 2017037231W WO 2018074368 A1 WO2018074368 A1 WO 2018074368A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
amount
flow rate
control
Prior art date
Application number
PCT/JP2017/037231
Other languages
English (en)
French (fr)
Inventor
吾朗 坪井
能将 山口
大志 池田
吉昭 富田
力 石原
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US16/343,001 priority Critical patent/US10858976B2/en
Priority to EP17862507.5A priority patent/EP3524788B1/en
Publication of WO2018074368A1 publication Critical patent/WO2018074368A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification controller of an engine, in particular, relates to an exhaust purification control device for an engine provided with the NO x catalyst for purifying NO X in the exhaust gas on the exhaust path.
  • air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio occluding NO X in the exhaust gas in a large lean state even ( ⁇ > 1), the occluded NO x, the air-fuel ratio of the exhaust gas is near the stoichiometric air-fuel ratio state ( ⁇ ⁇ 1) or the stoichiometric air-fuel ratio 2.
  • an engine exhaust purification device that includes an NO x storage reduction type NO x catalyst that reduces in a rich state ( ⁇ ⁇ 1) that is smaller than that.
  • Japanese Patent No. 4347076 describes that the higher the temperature of the NO x catalyst, the higher the NH 3 generation rate. Japanese Patent No. 4347076, as NO X catalyst temperature is high, believed to NH 3 is in consideration to become easier to reactions occurring.
  • an object of the present invention is to provide an engine exhaust purification control apparatus that can suppress the release of ammonia into the exhaust passage downstream of the SCR catalyst and realize efficient NO x purification.
  • the present invention is provided in the exhaust passage of an engine, and when the air-fuel ratio of the inflowing exhaust gas is leaner than the stoichiometric air-fuel ratio, it stores NO x in the exhaust gas and the air-fuel ratio of the inflowing exhaust gas Is richer than the stoichiometric air-fuel ratio, so that the NO x catalyst that reduces the stored NO x to N 2 and the air-fuel ratio of the exhaust gas flowing into the NO x catalyst become rich.
  • An NO x catalyst regeneration unit that controls a fuel injection valve in the engine, an SCR catalyst that is provided in an exhaust passage downstream of the NO x catalyst and purifies the NO x by reaction with NH 3, and an NH 3 to the NH 3 supply unit to adsorb the NH 3 and NH 3 are supplied to the raw material, to NH 3 not to the SCR catalyst by the NH 3 supply unit and the NH 3 supply amount control section for controlling the supply amount of the NH 3 feed
  • the exhaust And a exhaust gas flow rate detection unit that detects or estimates the flow rate of gas, the NH 3 supply amount control unit, when executing the NO X catalyst regeneration by the NO X catalyst regeneration unit, the NO X catalyst regeneration than without running, the NH 3 to NH 3 not to the SCR catalyst by supplying unit is adapted to decrease the supply amount of the NH 3 feed, to the NH 3 not by the NH 3 supply amount control section NH 3 feed
  • the engine exhaust purification control device is characterized in that the supply amount of the engine is set so
  • the present invention to no NH 3 by NH 3 supply amount control unit supply amount of the NH 3 feed, the more the exhaust gas flow, by being set to be less, the NH 3 in the NO X catalyst Efficient NO x purification can be realized considering the generation amount.
  • NH 3 to NH to the SCR catalyst by the NH 3 supply unit 3 is adapted to supply amount reduction correction of the raw materials
  • reduction of the NH 3 to the NH 3 not by the supply amount control section NH 3 raw material supply amount is detected or estimated by said exhaust gas flow rate detection unit
  • the larger the flow rate of the exhaust gas the larger the amount.
  • reduction of from NH 3 by NH 3 supply amount control section NH 3 raw material supply amount the more the exhaust gas flow rate is high, by being set to a large amount, NH 3 in the NO X catalyst Efficient NO x purification can be realized in consideration of the generated amount of NOx.
  • the supply of the NH 3 or NH 3 raw material by the NH 3 supply amount control unit is compared with the range less than the first threshold value.
  • the amount of reduction is preferably set so that the change is smaller than the change in the exhaust gas flow rate detected or estimated by the exhaust gas flow rate detection unit. In this case, it is possible to realize efficient NO x purification in consideration of the amount of NH 3 generated in the NO x catalyst with higher accuracy.
  • the NH 3 supply amount control unit includes a first reduction amount determination unit that determines a reduction amount corresponding to purify process of the NO X that the has been occluded in the NO X catalyst, corresponding to purify process of the RawNO X
  • a second reduction amount determination unit for determining a reduction amount, and the NH 3 or NH 3 raw material by the second reduction amount determination unit within a range where the flow rate of the exhaust gas is less than a predetermined second threshold value
  • the reduction amount of the supply amount of the exhaust gas flow rate detected or estimated by the exhaust gas flow rate detection unit is smaller than the reduction amount of the NH 3 or NH 3 raw material supply amount by the first reduction amount determination unit. It is preferable to set so that the change is larger than the change.
  • the amount of NH 3 generated by the NH 3 amount and RawNO X purification process generated by NO X purification process that has been occluded in the NO X catalyst can be considered independently of each other, a higher It is possible to achieve efficient NO x purification that accurately considers the amount of NH 3 generated in the NO x catalyst.
  • the reduction amount of the supply amount of the NH 3 or NH 3 raw material by the second reduction amount determination unit in the range where the flow rate of the exhaust gas is greater than or equal to the second threshold is determined by the first reduction amount determination.
  • the change is set to be smaller with respect to the change in the flow rate of the exhaust gas detected or estimated by the exhaust gas flow rate detection unit than the reduction amount of the supply amount of the NH 3 or NH 3 raw material by the unit. More preferably.
  • the reduction amount of the supply amount of the NH 3 or NH 3 raw material by the second reduction amount determination unit is within the range of the exhaust gas flow rate not less than the second threshold value. Regardless of the change in the flow rate of the exhaust gas detected or estimated by the above, it may be set substantially constant.
  • the NO X catalyst further comprising a NO X catalyst temperature detecting unit for detecting or estimating a temperature of a range the flow rate is less than the second threshold value of the exhaust gas, to the NH 3 not according to the second reduction amount determination unit
  • the reduction amount of the supply amount of the NH 3 raw material is the exhaust gas detected or estimated by the exhaust gas flow rate detection unit as the temperature of the NO X catalyst detected or estimated by the NO X catalyst temperature detection unit is higher. It is preferable to set so that the change is larger with respect to the change in the gas flow rate.
  • the NH 3 supply amount control section to the NH 3 not in the NH 3 to NH 3 supply amount of reduction and the second reduction amount determination portion of the raw material in the first reduction amount determining unit supply of NH 3 raw material It is preferable that the supply amount of the NH 3 or NH 3 raw material to the SCR catalyst by the NH 3 supply unit is reduced and corrected based on the reduction amount of the amount, for example, based on the sum of both.
  • a SCR catalyst temperature detector for detecting or estimating the temperature of the SCR catalyst, wherein the exhaust gas flow rate detected or estimated by the exhaust gas flow rate detector is less than a predetermined threshold, and when the temperature of the SCR catalyst detected or estimated by the SCR catalyst temperature detection unit is less than the predetermined threshold value, primarily the nO X catalyst only purification of the nO X is performed by, to not detected by the exhaust gas flow detecting section
  • the SCR catalyst is mainly used.
  • the purification of the NO X is performed only by the threshold flow rate of a predetermined exhaust gas detected or estimated by said exhaust gas flow rate detection unit Or in which the time, the NO X catalyst according to the purification of the NO X the SCR catalyst preferably is a purification of the NO X in combination by.
  • efficient NO x purification can be realized according to the flow rate of the exhaust gas and according to the temperature of the SCR catalyst.
  • the NH 3 supply amount control unit is configured to supply the NH 3 or NH 3 raw material to the SCR catalyst by the NH 3 supply unit. adapted to limit the supply amount, when the purification of the NO X is carried out mainly only by the SCR catalyst, it is preferable that operation of the NO X catalyst regeneration unit is adapted to be limited.
  • the present invention by reducing the amount of from NH 3 by NH 3 supply amount control section NH 3 raw material supply amount, the more the exhaust gas flow rate is high, it is set to be a large amount, with NO X catalyst Efficient NO x purification considering the amount of NH 3 generated can be realized.
  • the range rate is above a predetermined first threshold value of the exhaust gas, the compared with a range of less than the first threshold value, the reduction of from NH 3 by NH 3 supply amount control section NH 3 raw material supply, By setting the change to be smaller with respect to the change in the flow rate of the exhaust gas, it is possible to realize an efficient NO x purification in consideration of the amount of NH 3 generated in the NO x catalyst with higher accuracy. .
  • FIG. 1 is a schematic configuration diagram of an engine system to which an engine exhaust gas purification control apparatus according to an embodiment of the present invention is applied.
  • 1 is a block diagram illustrating an electrical configuration of an engine exhaust gas purification control apparatus according to an embodiment.
  • FIG. In this embodiment is an explanatory view of the operation range of the engine to perform each of the passive DeNO X control and active DeNO X control.
  • In this embodiment is an explanatory view of the relationship between the NO X purification action and temperature range for each catalyst. It is explanatory drawing about the setting method of the target air fuel ratio by one Embodiment of this invention.
  • 3 is a flowchart showing active DeNO x control and passive DeNO x control according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing active DeNO x control and passive DeNO x control according to an embodiment of the present invention. It is the schematic which shows the calculation flow of the reduction amount of the supply amount of urea by one Embodiment of this invention.
  • FIG. 8A is data of the amount of NH 3 (ammonia) generated in the purification process of NO x stored in the NO x catalyst with respect to changes in the NO x catalyst temperature.
  • FIG. 8B is data of the amount of NH 3 (ammonia) generated in the purification process of RawNO x exhausted from the engine with respect to changes in the NO x catalyst temperature.
  • FIG. 9A is data of the amount of NH 3 (ammonia) generated in the NO x purification process stored in the NO x catalyst with respect to the change in the exhaust gas flow rate.
  • FIG. 9B is data of the amount of NH 3 (ammonia) generated in the purification process of RawNO x discharged from the engine with respect to the change in the flow rate of the exhaust gas.
  • FIG. 10A is data of the amount of NH 3 (ammonia) generated in the purification process of NO x stored in the NO x catalyst with respect to the change in the target air-fuel ratio.
  • FIG. 10B is data of the amount of NH 3 (ammonia) generated in the purification process of RawNO x discharged from the engine with respect to a change in the target air-fuel ratio.
  • 11B is against thermal degradation and changes of the NO X catalyst temperature of the NO X catalyst is data of the amount of NH 3 generated in the purification process of RawNO X discharged from the engine (ammonia).
  • FIG. 1 is a schematic configuration diagram of an engine system to which an engine exhaust gas purification control apparatus according to an embodiment of the present invention is applied.
  • the engine system 200 mainly includes an engine E as a diesel engine, an intake system IN that supplies intake air to the engine E, a fuel supply system FS that supplies fuel to the engine E, An exhaust system EX that exhausts exhaust gas from the engine E, sensors 100 to 119 that detect various states relating to the engine system 200, a PCM (Power-train Control Module) 60 that controls the engine system 200, and an SCR catalyst 47 And a DCU (Dosing Control Unit) 70 for performing control related to the above.
  • an engine E as a diesel engine
  • an intake system IN that supplies intake air to the engine E
  • FS that supplies fuel to the engine E
  • An exhaust system EX that exhausts exhaust gas from the engine E
  • sensors 100 to 119 that detect various states relating to the engine system 200
  • a PCM (Power-train Control Module) 60 that controls the engine system 200
  • SCR catalyst 47 And a DCU (Dosing Control Unit) 70 for performing control related to the above.
  • the intake system IN has an intake passage 1 through which intake air passes, and an air cleaner 3 that purifies air introduced from the outside in order from the upstream side, and intake air that passes through the intake passage 1.
  • the compressor of the turbocharger 5 that compresses and raises the intake pressure
  • the intercooler 8 that cools the intake air by outside air or cooling water
  • the intake shutter valve 7 that adjusts the intake air flow rate (corresponding to a throttle valve)
  • a surge tank 12 for temporarily storing the intake air supplied to the engine E.
  • An air flow sensor 101 for detecting the intake air amount and a temperature sensor 102 for detecting the intake air temperature are provided on the intake passage 1 immediately downstream of the air cleaner 3.
  • the turbocharger 5 detects the intake air pressure.
  • a pressure sensor 103 is provided, a temperature sensor 106 for detecting the intake air temperature is provided on the intake passage 1 immediately downstream of the intercooler 8, and the intake shutter valve 7 has an opening degree of the intake shutter valve 7.
  • a position sensor 105 for detecting is provided, and the surge tank 12 is provided with a pressure sensor 108 for detecting the pressure of intake air in the intake manifold.
  • the engine E includes an intake valve 15 for introducing the intake air supplied from the intake passage 1 (specifically, an intake manifold) into the combustion chamber 17, a fuel injection valve 20 for injecting fuel toward the combustion chamber 17, A glow plug 21 provided with a heat generating portion in the combustion chamber 17 that generates heat when energized, a piston 23 that reciprocates by combustion of the air-fuel mixture in the combustion chamber 17, and a crankshaft 25 that is rotated by the reciprocating motion of the piston 23 And an exhaust valve 27 that exhausts exhaust gas generated by combustion of the air-fuel mixture in the combustion chamber 17 to the exhaust passage 41.
  • the engine E is provided with a crank angle sensor 100 that detects a crank angle as a rotation angle based on a top dead center in the crankshaft 25 or the like.
  • the crank angle sensor 100 outputs a detection signal S100 corresponding to the detected crank angle to the PCM 60, and the PCM 60 acquires the engine speed based on the detection signal S100.
  • the fuel supply system FS includes a fuel tank 30 for storing fuel, and a fuel supply passage 38 for supplying fuel from the fuel tank 30 to the fuel injection valve 20.
  • the fuel supply passage 38 is provided with a low-pressure fuel pump 31, a high-pressure fuel pump 33, and a common rail 35 in order from the upstream side.
  • the exhaust system EX has an exhaust passage 41 through which exhaust gas passes, and a turbocharger that is rotated by the exhaust gas and drives the compressor as described above by the rotation on the exhaust passage 41.
  • a turbocharger that is rotated by the exhaust gas and drives the compressor as described above by the rotation on the exhaust passage 41.
  • Five turbines are provided.
  • the NO x catalyst 45 has a tendency to occlude NO x in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is leaner than the stoichiometric air-fuel ratio ( ⁇ > 1).
  • fuel ratio has a tendency to reduce NO X that has been occluded in the N 2 in the rich state (lambda ⁇ 1) than the stoichiometric air-fuel ratio in the vicinity state ( ⁇ ⁇ 1) or stoichiometric air-fuel ratio, NO X
  • NSC NOx storage catalyst
  • the NO X catalyst 45 generates and releases NH 3 (ammonia) when reducing the stored NO X.
  • NO X catalyst 45 when the NO X reduction, NO X catalyst 45 is in NO X which has been occluded as "N", such as unburned fuel that is supplied as a reducing agent to the NO X catalyst 45 in the "HC", " NH 3 (ammonia) is generated by combining “H” or “H” in “H 2 O” generated by in-cylinder combustion. Details of the reaction will be described later in paragraph 0142.
  • NO X catalyst 45 NO X amount occluded in the NO X catalyst 45 when (hereinafter, referred to as the NO X storage amount.)
  • the NO X catalyst 45 As the air-fuel ratio of the inflowing exhaust gas becomes rich state, by controlling the fuel injection valve 20 in the engine E, it is purified by reducing NOx stored NOx (NO X catalyst regeneration unit).
  • PCM60 to be described later (also has the function of the NO X catalyst regeneration section) in which the NO X catalyst also serves as a playback unit.
  • the NO X amount in the exhaust gas is estimated based on the operating state of the engine E, the exhaust gas flow rate, the exhaust gas temperature, etc., and this NO X amount is integrated. To estimate. Alternatively, it may be detected directly by the NO x storage amount detection sensor 45n.
  • the NO x catalyst 45 of this embodiment not only functions as an NSC, but also oxidizes hydrocarbons (HC), carbon monoxide (CO), etc. using oxygen in the exhaust gas to water and carbon dioxide. It also has a function as a diesel oxidation catalyst (DOC: Diesel Oxidation Catalyst) 45a (oxidation catalyst) to be changed.
  • DOC Diesel Oxidation Catalyst
  • the NO x catalyst 45 of this embodiment is made by coating the surface of the catalyst material layer of the diesel oxidation catalyst 45a with an NSC catalyst material.
  • NO X catalyst 45 forms a composite catalyst which has been complexed with a diesel oxidation catalyst 45a. That is, the NO x catalyst 45 is arranged (configured) in combination with the diesel oxidation catalyst 45a.
  • the reaction heat is a temperature rise caused by the oxidation reaction in the diesel oxidation catalyst 45a
  • the heat of reaction is transmitted to the NO X catalyst 45, so that the temperature rise of the NO X catalyst 45 occurs.
  • the temperature sensor 112 is provided immediately upstream of the NO x catalyst 45. Based on the temperature detected by the temperature sensor 112, the NO x catalyst temperature is estimated. For example, the temperature sensor 113 provided between the NO X catalyst 45 and the DPF 46 may detect the NO X catalyst temperature. Further, the NO X catalyst 45 may be detected by providing a NO X catalyst temperature sensor 45t for detecting the temperature of the NO X catalyst 45.
  • the flow rate of the exhaust gas flowing into the NO x catalyst 45 is estimated from the operating state of the engine, specifically the engine speed and the engine load, but the exhaust gas flowing into the NO x catalyst 45 is estimated.
  • An exhaust gas flow rate detection sensor 45f for detecting the flow rate may be provided.
  • NO X NH 3 produced in the catalyst 45 is reacted with NO X in the exhaust gas (reduction) to purify the NO X by SCR (Selective Catalytic Reduction)
  • a catalyst 47 is arranged.
  • the SCR catalyst 47 also hydrolyzes the urea injected from the urea injector 51 to generate NH 3 (ammonia) (CO (NH 2 ) 2 + H 2 O ⁇ CO 2 + 2NH 3 ), and exhausts this NH 3 .
  • react with NO X in the gas (reduction) is not also has a function to purify the NO X.
  • the urea injector 51 is controlled to inject urea into the exhaust passage 41 by a control signal S51 supplied from the DCU 70.
  • the SCR catalyst 47 is NH 3 (ammonia) generated by the purification (reduction) of NO x in the NO x catalyst 45 and / or NH produced from urea injected from the urea injector 51. 3 is adsorbed by itself, and the adsorbed NH 3 is reacted with NO x in the exhaust gas to purify (reduce) NO x .
  • NH 3 ammonia
  • a catalyst metal having a function of reducing NO x by NH 3 (ammonia) is supported on a zeolite having a function of trapping NH 3 as a catalyst component, and the catalyst component is used as a cell of the honeycomb carrier. It can be made by carrying it on a wall.
  • the catalyst metal for NO X reduction Fe, Ti, Ce, W and may be used.
  • a slip catalyst 48 for oxidizing and purifying NH 3 (ammonia) released from the SCR catalyst 47 is provided further downstream of the SCR catalyst 47.
  • the SCR catalyst 47 is provided with an SCR catalyst temperature detection sensor 47t that detects the temperature of the SCR catalyst.
  • the SCR catalyst temperature detection sensor 47t is a sensor that directly detects the temperature of the SCR catalyst 47. Instead, an indirect parameter related to the temperature of the SCR catalyst 47 is measured, and the SCR catalyst temperature detection sensor 47t is calculated from the parameter.
  • Means for estimating the temperature of the catalyst 47 may be provided. For example, it may be estimated based on the temperature detected by the temperature sensor 117 provided immediately upstream of the SCR catalyst 47.
  • the urea injector 51 has a NH 3 supplying unit to adsorb the NH 3 by supplying urea is NH 3 feed the SCR catalyst 47.
  • the urea injector 51 is connected to a urea supply path 53, and the urea supply path 53 is connected to a urea tank 55 via a urea delivery pump 54.
  • the urea supply path 53 is formed by a pipe capable of sending urea (urea water).
  • a urea supply path pressure sensor 56 that measures a change in pressure when urea passes is disposed on the urea supply path 53.
  • a urea path heater 57 for preventing urea from freezing on the urea supply path 53 is disposed on the urea supply path 53.
  • the urea delivery pump 54 is configured to deliver urea from the urea tank 55 toward the urea injector 51 in response to a control command from the DCU 70.
  • the DCU 70 is an NH 3 supply amount control unit that controls the supply amount of urea (NH 3 raw material) to the SCR catalyst 47 by the urea injector 51 (NH 3 supply unit).
  • the DCU 70 adsorbs an appropriate amount of NH 3 to the SCR catalyst 47 from the viewpoint of ensuring the NO x purification performance by the SCR catalyst 47 and suppressing the release (slip) of NH 3 (ammonia) from the SCR catalyst 47.
  • the amount of urea injected from the urea injector 51 is controlled.
  • the DCU 70 is electrically connected to a urea supply path pressure sensor 56, a urea level sensor 58, and a urea temperature sensor 59.
  • the urea supply path pressure sensor 56, the urea level sensor 58, and the urea temperature sensor 59 output detection signals S52 to S54 corresponding to the detected parameters to the DCU 70, respectively.
  • the DCU 70 is electrically connected to the urea path heater 57, the urea delivery pump 54, and the urea tank heater 61.
  • the operating states of the urea path heater 57, the urea delivery pump 54, and the urea tank heater 61 can be controlled by control signals S55 to S57 supplied from the DCU 70, respectively.
  • the DCU 70 stores a CPU, various programs that are interpreted and executed on the CPU (including basic control programs such as an OS and application programs that are activated on the OS to realize specific functions), and programs and various data.
  • a computer having an internal memory such as a ROM or RAM is used.
  • the DCU 70 is connected to the PCM 60 so as to be capable of bidirectional communication, and is controlled in response to a control command from the PCM 60.
  • a control signal that supplies various information acquired by the DCU 70 to the PCM 60 is shown as a control signal S58, for example.
  • a pressure sensor 109 for detecting the pressure of the exhaust gas and a temperature sensor 110 for detecting the temperature of the exhaust gas are disposed on the exhaust passage 41 on the upstream side of the turbine of the turbocharger 5. It may be provided.
  • An O 2 sensor 111 that detects the oxygen concentration may be provided on the exhaust passage 41 on the downstream side of the turbine of the turbocharger 5.
  • the exhaust system EX a temperature sensor 112 for detecting the temperature of exhaust gas immediately upstream of the NO X catalyst 45, a temperature sensor 113 for detecting the temperature of the exhaust gas between the NO X catalyst 45 and DPF46 , A differential pressure sensor 114 that detects the pressure difference between the exhaust gas immediately upstream and downstream of the DPF 46, a temperature sensor 115 that detects the temperature of exhaust gas immediately downstream of the DPF 46, and a downstream of the DPF 46.
  • These sensors 109 to 119 output detection signals S109 to S119 corresponding to the detected parameters to the PCM 60, respectively.
  • the turbocharger 5 is configured as a two-stage supercharging system that can efficiently obtain high supercharging throughout the entire region from a low rotation range to a high rotation range where the exhaust energy is low. That is, the turbocharger 5 includes a large turbocharger 5a for supercharging a large amount of air in a high rotation range, a small turbocharger 5b capable of efficiently supercharging with low exhaust energy, and a compressor of the small turbocharger 5b.
  • the engine system 200 further includes an EGR device 43.
  • the EGR device 43 connects the exhaust passage 41 upstream of the turbine of the turbocharger 5 and the intake passage 1 downstream of the compressor of the turbocharger 5 (specifically, downstream of the intercooler 8).
  • the passage 43a, the EGR cooler 43b that cools the exhaust gas that passes through the EGR passage 43a, the first EGR valve 43c that adjusts the flow rate of the exhaust gas that passes through the EGR passage 43a, and the EGR cooler 43b are bypassed to flow the exhaust gas.
  • the EGR cooler bypass passage 43d and the second EGR valve 43e for adjusting the flow rate of the exhaust gas passing through the EGR cooler bypass passage 43d are provided.
  • FIG. 2 is a block diagram showing an electrical configuration of the engine exhaust gas purification control apparatus according to the present embodiment.
  • the PCM 60 includes an accelerator opening sensor 150 that detects the opening of the accelerator pedal (accelerator opening) and a vehicle speed sensor 151 that detects the vehicle speed.
  • the control signal S20 is output to control the fuel injection valve 20, and the control signal S7 is output to control the intake shutter valve 7. ing.
  • the PCM 60 communicates with the DCU 70 in both directions, and outputs a control signal S8 that causes the DCU 70 to perform control such as supplying a desired amount of urea from the urea injector 51, for example.
  • PCM60 of this embodiment when the storage amount of the NO X in the NO X catalyst 45 is equal to or greater than a predetermined threshold value, so that the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 45 becomes rich state,
  • the fuel injection valve 20 in the engine E is controlled (functions as a NO x catalyst regeneration unit). More specifically, the PCM 60 of the present embodiment performs fuel injection so as to set the air-fuel ratio of the exhaust gas to the target air-fuel ratio (specifically, the vicinity of the stoichiometric air-fuel ratio or a predetermined air-fuel ratio smaller than the stoichiometric air-fuel ratio).
  • the valve 20 performs “post injection”. Thus, it is possible to reduce the NO X that was stored in the NO X catalyst 45 (NO X reduction control).
  • the PCM 60 of the present embodiment adds to the main injection that injects fuel into the cylinder to output engine torque in accordance with the driver's accelerator operation (basically, the air-fuel ratio of the exhaust gas in the main injection).
  • post-injection is performed at a timing that does not contribute to engine torque output (specifically, an expansion stroke), and exhaust gas empty ratio is in the small-rich ( ⁇ ⁇ 1) than the stoichiometric air-fuel ratio in the vicinity state ( ⁇ ⁇ 1) or the stoichiometric air-fuel ratio, so it is possible to reduce the NO X occluded in the NO X catalyst 45 It has become.
  • Control for reducing NO X stored in the NO X catalyst 45 is conventionally referred to as “DeNO X control”.
  • the PCM 60 includes a CPU, various programs that are interpreted and executed on the CPU (including basic control programs such as an OS and application programs that are activated on the OS to realize specific functions), programs, and various data.
  • a CPU various programs that are interpreted and executed on the CPU (including basic control programs such as an OS and application programs that are activated on the OS to realize specific functions), programs, and various data.
  • the fuel injection control flow is started when the vehicle ignition is turned on and the PCM 60 is powered on, and is repeatedly executed at a predetermined cycle.
  • the PCM 60 acquires the driving state of the vehicle. Specifically, the PCM 60 is currently set to at least the accelerator opening detected by the accelerator opening sensor 150, the vehicle speed detected by the vehicle speed sensor 151, the crank angle detected by the crank angle sensor 100, and the transmission of the vehicle. Get the gear stage.
  • the PCM 60 sets a target acceleration based on the acquired driving state of the vehicle. Specifically, the PCM 60 determines the acceleration corresponding to the current vehicle speed and gear stage from acceleration characteristic maps (created in advance and stored in a memory or the like) defined for various vehicle speeds and various gear stages. A characteristic map is selected, and a target acceleration corresponding to the current accelerator opening is determined with reference to the acceleration characteristic map.
  • acceleration characteristic maps created in advance and stored in a memory or the like
  • the PCM 60 determines a target torque of the engine E for realizing the target acceleration.
  • the PCM 60 determines a target torque within the range of torque that can be output by the engine E based on the current vehicle speed, gear stage, road surface gradient, road surface ⁇ , and the like.
  • the PCM 60 calculates the fuel injection amount to be injected from the fuel injection valve 20 based on the target torque and the current engine speed.
  • This fuel injection amount is a fuel injection amount (main injection amount) applied in main injection.
  • the PCM 60 sets a fuel injection pattern according to the operating state of the engine E. Specifically, PCM60 sets the fuel injection pattern of performing post injection in the case of performing the DeNO X control.
  • the PCM 60 determines the fuel injection amount (post injection amount) applied in the post injection and the timing (post injection timing etc.) for performing the post injection. Details will be explained in the next section ⁇ DeNO X Control>.
  • the PCM 60 controls the fuel injection valve 20 based on the calculated main injection amount and the set fuel injection pattern (including post injection amount and post injection timing when post injection is performed). That is, the PCM 60 controls the fuel injection valve 20 so that a desired amount of fuel is injected in a desired fuel injection pattern.
  • DeNO X control (hereinafter, referred to as “deNO X control”) is performed such that the fuel injection valve 20 performs post-injection so that the air-fuel ratio of the exhaust gas is continuously set to the target air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio or less. This is called “active DeNO x control” as appropriate. In this way, by forcibly reducing the NO X that has been heavily occluded in the NO X catalyst 45, so as to reliably secure the NO X purification performance of the NO X catalyst 45.
  • PCM60 of this embodiment also the NO X storage amount of the NO X catalyst 45 is less than the predetermined amount, when the air-fuel ratio of the exhaust gas during acceleration of the vehicle changes to the rich side, the NO X catalyst 45
  • DeNO X control (hereinafter referred to as “passive DeNO X control” as appropriate) is performed by post-injecting from the fuel injection valve 20 so as to temporarily set the air-fuel ratio of the exhaust gas to the target air-fuel ratio. )).
  • the passive DeNO X control the main injection amount as during acceleration is increased by multiplying the situation where the air-fuel ratio of the exhaust gas decreases, the theoretical air-fuel ratio an air-fuel ratio near or stoichiometric air-fuel ratio below the target air-fuel ratio since the post-injection so as to set, than the case of performing the DeNO X control in situations where the air-fuel ratio of the exhaust gas does not decrease (i.e. when the non-accelerated), the post injection amount for setting the air-fuel ratio to the target air-fuel ratio Less. Furthermore, passive DeNO X control, since is performed by multiplying the acceleration of the vehicle, it is expected to be performed at a relatively high frequency.
  • the PCM 60 of the present embodiment sets the air-fuel ratio of the exhaust gas to the target air-fuel ratio by burning the post-injected fuel in the cylinder of the engine E. I have to.
  • the PCM 60 performs the post-injection at the timing when the post-injected fuel is combusted in the cylinder.
  • the PCM 60 sets a predetermined timing in the first half of the expansion stroke of the engine E as the post injection timing in the active DeNO x control.
  • the injection timing is, for example, ATDC 45 ° CA.
  • Such post-injection timing by applying the active DeNO X control, post-injected fuel as unburned fuel is the fact and discharged as a (i.e. HC), oil dilution by fuel that has been post-injection, is suppressed It has become so.
  • the PCM 60 of the present embodiment allows the post-injected fuel to be discharged into the exhaust passage 41 as unburned fuel without burning in the cylinder of the engine E.
  • the air-fuel ratio of the exhaust gas is set to the target air-fuel ratio.
  • the PCM 60 performs the post-injection at the timing when the post-injected fuel is discharged into the exhaust passage 41 as unburned fuel without being burned in the cylinder.
  • PCM60 may a predetermined timing in the second half the expansion stroke of the engine E, is set as the post injection timing of the passive DeNO X control.
  • the injection timing is, for example, ATDC 110 ° CA.
  • the post-injection timing in the passive DeNO x control is set to be retarded from the post-injection timing in the active DeNO x control.
  • Such a post-injection timing by applying the passive DeNO X control so that the smoke fuel post injection burns in the cylinder (soot) is prevented from occurring.
  • FIG. 3 shows the engine speed on the horizontal axis and the engine load on the vertical axis.
  • a curve L1 indicates the maximum torque line of the engine E.
  • the PCM 60 of the present embodiment is in an intermediate load region where the engine load is equal to or higher than the first predetermined load Lo1 and lower than the second predetermined load Lo2 (> first predetermined load Lo1), and the engine speed
  • the engine speed is in the middle rotational speed range that is equal to or higher than the first predetermined rotational speed N1 and lower than the second predetermined rotational speed N2 (> the first predetermined rotational speed N1), that is, the engine load and the engine rotational speed are indicated by reference sign R12.
  • active DeNO x execution region R12 the active DeNO x control is executed.
  • the reason why such an active DeNO x execution region R12 is adopted is as follows.
  • the post-injected fuel is used from the viewpoint of suppressing the generation of HC due to the post-injected fuel being discharged as it is or the oil dilution by the post-injected fuel.
  • Post-injection is performed at the timing when is burned in the cylinder.
  • the generation of smoke is suppressed and the generation of HC (that is, the discharge of unburned fuel due to incomplete combustion) is suppressed.
  • the generation of smoke and HC is suppressed by maximizing the time until the post-injected fuel burns as much as possible, that is, ignition occurs in a state where air and fuel are properly mixed. Yes. Therefore, when the active DeNO X control, by introducing a suitable amount of EGR gas, so that delays the ignition of fuel post-injection effectively.
  • the reason for suppressing the generation of HC during active DeNO x control is that when EGR gas is introduced as described above, HC is also recirculated to the intake system IN as EGR gas, and this HC serves as a binder and is combined with soot. This is to prevent the gas passage from being blocked.
  • the active HC purification is performed when active DeNO x control is executed. This is to prevent being discharged without being discharged.
  • the active DeNO x execution region R12 may also include a region where the temperature of the NO x catalyst 45 is relatively low so that such HC purification performance is not ensured.
  • the reason for suppressing the generation of smoke during active DeNO x control is that PM corresponding to the smoke is collected in the DPF 46, but DPF regeneration (DeNO X control for burning and removing the PM collected in the DPF 46). This is because the post-injection control) is performed at a high frequency in the same manner as described above, and the fuel consumption and the like are prevented from deteriorating.
  • the air introduced into the engine E in order to achieve the target air-fuel ratio is reduced, so that there is not enough oxygen necessary to properly burn the post-injected fuel, so that smoke and HC It tends to occur easily.
  • the in-cylinder temperature increases, and the time until the post-injected fuel is ignited cannot be ensured properly, that is, combustion occurs in a state where air and fuel are not properly mixed. May occur, and smoke and HC may be generated.
  • the engine load is quite low area, low temperature of the NO X catalyst 45 is, NO X reduction capacity of the NO X catalyst 45 is not sufficiently exhibited.
  • the post-injected fuel does not burn properly, that is, misfire occurs.
  • the operation region of the engine E corresponding to the medium load region and the medium rotation region is employed as the active DeNO X execution region R12 for executing the active DeNO X control.
  • the active DeNO X execution region R12 only the active DeNO X execution region R12, and executes the active DeNO X control, in the operating region other than the active DeNO X execution region R12, prohibits the execution of the active DeNO X Control .
  • the high load side region further than the region R13 to purify NO X in the SCR catalyst 47 (a region indicated by symbol R11, is hereinafter referred to as "passive DeNO X execution region R11".) Then, since the exhaust gas amount becomes large and the SCR catalyst 47 cannot completely purify NO x , passive DeNO x control is executed.
  • This passive DeNO X control performs the post-injection at the timing which the fuel that is post-injection is discharged to the exhaust passage 41 as unburned fuel without being combusted in the cylinder.
  • the temperature of the NO x catalyst 45 is sufficiently high, and the HC purification performance (HC purification performance by the DOC 45a in the NO x catalyst 45) is ensured. Unburned fuel can be appropriately purified by the NO x catalyst 45.
  • active DeNO x control when the operating state of the engine changes as indicated by an arrow A11 in FIG. 3 will be described.
  • the PCM 60 executes active DeNO X control.
  • the PCM 60 temporarily stops the active DeNO X control. In this case, so that the SCR catalyst 47 to purify the NO X.
  • the PCM 60 resumes active DeNO X control. By doing so, the active DeNO x control is not terminated until the NO x occluded in the NO x catalyst 45 drops to almost zero.
  • the NO x catalyst 45 exhibits NO x purification performance in a relatively low temperature region (region indicated by reference numeral R24), and the SCR catalyst 47 is in a relatively high temperature region. exhibits NO X purification performance in a temperature range higher than the temperature range where the NO X purification performance of the NO X catalyst 45 is exerted (region indicated by reference numeral R25) to.
  • a temperature in the vicinity of the lower boundary value of the temperature range in which the SCR catalyst 47 obtains a NO x purification rate equal to or higher than a predetermined value is used as a determination temperature (hereinafter referred to as “SCR determination temperature”).
  • DeNO X post injection amount a post injection amount (hereinafter referred to as “DeNO X post injection amount”) applied during DeNO X control in the present embodiment.
  • the DeNO x post-injection amount calculation flow is repeatedly executed by the PCM 60 at a predetermined cycle, and is executed in parallel with the above-described fuel injection control flow. That is, while the fuel injection control is being performed, the DeNO x post injection amount is calculated as needed.
  • the PCM 60 acquires the operating state of the engine E. Specifically, the PCM 60 calculates at least the intake air amount (fresh air amount) detected by the air flow sensor 101, the oxygen concentration of the exhaust gas detected by the O 2 sensor 111, and the above-described fuel injection control flow. Obtained main injection amount. Further, the PCM 60 also acquires an exhaust gas amount (EGR gas amount) recirculated to the intake system IN by the EGR device 43, which is obtained by a predetermined model or the like. In addition, the amount of NH 3 adsorption that is the amount of NH 3 (ammonia) adsorbed on the SCR catalyst 47 is acquired.
  • EGR gas amount exhaust gas amount
  • the NH 3 adsorption amount is calculated based on the SCR catalyst estimated based on the urea injection amount injected from the urea injection valve, the NH 3 generation amount generated at the time of DeNO X control, the operating state of the engine and the purification efficiency of the NO X catalyst.
  • An estimated value of NH 3 that is sequentially estimated based on the estimated value of the supplied amount of NO x is used.
  • the NH 3 adsorption amount detection sensor 47n may be provided in the SCR catalyst 47 to acquire the NH 3 adsorption amount.
  • the PCM 60 sets a target air-fuel ratio to be applied to reduce NO X stored in the NO X catalyst 45 based on the estimated NH 3 adsorption amount of the SCR catalyst 47. Specifically, the PCM 60 determines the target air-fuel ratio applied when executing the active DeNO X control and the target air-fuel ratio applied when executing the passive DeNO X control as NH 3 of the SCR catalyst 47. Set based on the amount of adsorption. A method for setting the target air-fuel ratio will be described later with reference to FIG.
  • the PCM 60 calculates a post injection amount (DeNO x post injection amount) necessary to realize the set target air-fuel ratio. That is, the PCM 60 determines how much post injection amount should be applied in addition to the main injection amount in order to set the air-fuel ratio of the exhaust gas to the target air-fuel ratio. In this case, the PCM 60 performs the post injection amount for realizing the target air-fuel ratio when performing the set active DeNO X control, and the post-injection amount for realizing the target air-fuel ratio when performing the set passive DeNO X control. And are calculated respectively.
  • FIG. 5 is an explanatory diagram of a target air-fuel ratio setting method according to this embodiment.
  • FIG. 5 shows the NH 3 adsorption amount of the SCR catalyst 47 on the horizontal axis and the target air-fuel ratio on the vertical axis.
  • “ ⁇ 1” indicates the stoichiometric air-fuel ratio
  • the air-fuel ratio region R21 on the richer side than the stoichiometric air-fuel ratio ⁇ 1 is an air-fuel ratio range in which the NO x stored in the NO x catalyst 45 can be reduced.
  • An air-fuel ratio region R22 leaner than the theoretical air-fuel ratio ⁇ 1 indicates an air-fuel ratio range in which NO X stored in the NO X catalyst 45 cannot be reduced.
  • the region R23 of the air-fuel ratio richer than the limit air-fuel ratio ⁇ 2 there is a problem that the reliability of the EGR device 43 is lowered due to the unburned fuel being supplied to the EGR device 43.
  • Graph G11 shows the target air-fuel ratio that should be set according to the NH 3 adsorption amount of the SCR catalyst 47 when the passive DeNO X control is executed
  • graph G12 shows the SCR catalyst when the active DeNO X control is executed.
  • the target air-fuel ratio to be set according to the NH 3 adsorption amount of 47 is shown.
  • the amount of HC and H 2 O supplied to the NO x catalyst 45 that is, the total amount of “H” component is increased, and the amount of NH 3 from the NO x catalyst 45 is increased.
  • the amount of generation increases.
  • the target air-fuel ratio increases the total amount of “H” components in the exhaust gas and generates NH 3 from the NO x catalyst 45.
  • the value is set in the vicinity of the limit air-fuel ratio ⁇ 2 so that the amount increases.
  • the active DeNO x control execution flag setting flow is repeatedly executed by the PCM 60 at a predetermined cycle, and is executed in parallel with the fuel injection control flow described above.
  • the PCM 60 acquires various information on the vehicle. Specifically, the PCM 60 acquires at least the temperature of the NO x catalyst 45, the temperature of the SCR catalyst 47, and the NO x storage amount of the NO x catalyst 45.
  • the temperature of the NO X catalyst is estimated based on the temperature detected by the temperature sensor 112 provided immediately upstream side of the NO X catalyst 45.
  • the temperature of the SCR catalyst 47 is estimated based on the temperature detected by the temperature sensor 117 provided immediately upstream of the SCR catalyst 47.
  • the NO X storage amount is estimated by estimating the NO X amount in the exhaust gas based on the operating state of the engine E, the flow rate of the exhaust gas, the temperature of the exhaust gas, and the like, and integrating this NO X amount. Presumed.
  • the PCM 60 determines whether or not the acquired SCR temperature is lower than an SCR determination temperature (for example, 300 ° C.). If the determination result is NO, whether or not the exhaust gas flow rate is lower than a predetermined value. Determine whether.
  • an SCR determination temperature for example, 300 ° C.
  • the SCR temperature is lower than the SCR determination temperature, or when the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is equal to or higher than a predetermined value, it is determined whether or not a predetermined time has elapsed after the engine E is started. If this determination is YES, PCM60, in order to allow execution of the active DeNO X control, to set the active DeNO X control execution flag to "1". Further, when the predetermined time has not elapsed after the engine E is started, it is determined whether or not the NO x storage amount is equal to or greater than a first threshold (for example, 4 g). , in order to allow execution of the active DeNO X control, to set the active DeNO X control execution flag to "1". Then, the process ends.
  • a first threshold for example, 4 g
  • the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is lower than the predetermined value (in this case, DeNO X control is mainly performed only by the SCR catalyst 47), and the SCR temperature is lower than the SCR determination temperature. If, however, the predetermined time has not elapsed since the engine E was started and the NO x storage amount is less than the first threshold value (in this case, it can be determined that DeNO x of the NO x catalyst 45 is still unnecessary), the PCM 60 , in order to prohibit the execution of the active DeNO X control, to set the active DeNO X control execution flag to "0". Then, the process ends.
  • the predetermined time has not elapsed since the engine E was started and the NO x storage amount is less than the first threshold value (in this case, it can be determined that DeNO x of the NO x catalyst 45 is still unnecessary
  • the PCM 60 in order to prohibit the execution of the active DeNO X control, to set the active DeNO X control execution flag
  • the passive DeNO X control execution flag setting flow is also repeatedly executed by the PCM 60 at a predetermined cycle, and is executed in parallel with the above-described fuel injection control flow, active DeNO X control execution flag setting flow, and the like.
  • the PCM 60 acquires various information on the vehicle. Specifically, the PCM 60 uses at least the temperature of the NO X catalyst 45, the temperature of the SCR catalyst 47, the target torque determined by the fuel injection control flow, and the DeNO X post injection amount calculation flow.
  • calculated DeNO X for the post-injection amount (specifically DeNO X for the post-injection amount calculated as being applied during passive DeNO X control), obtains the the NO X storage amount of the NO X catalyst 45.
  • the method of obtaining the temperature of the NO x catalyst 45, the temperature of the SCR catalyst 47, and the NO x storage amount is as described above for the active DeNO x control.
  • the PCM 60 determines whether or not the acquired SCR temperature is lower than an SCR determination temperature (for example, 300 ° C.). If the determination result is NO, whether or not the exhaust gas flow rate is lower than a predetermined value. Determine whether.
  • an SCR determination temperature for example, 300 ° C.
  • the SCR temperature is lower than the SCR determination temperature, or if the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is equal to or higher than a predetermined value, whether or not the NO x storage amount is equal to or higher than a second threshold (for example, 2 g) determine, if the second threshold value (e.g., g) or more, PCM60, in order to allow execution of the active DeNO X control, to set the active DeNO X control execution flag to "1". Then, the process ends.
  • a second threshold for example, 2 g
  • the SCR temperature is equal to or higher than the SCR determination temperature and the exhaust gas flow rate is lower than the predetermined value (in this case, DeNO X control is mainly performed only by the SCR catalyst 47), and the SCR temperature is lower than the SCR determination temperature.
  • the NO X storage amount is smaller than the second threshold value (in this case, DeNO X of the NO X catalyst 45 can be determined to be still necessary) there, PCM60, in order to prohibit the execution of the active DeNO X control, The active DeNO X control execution flag is set to “0”. Then, the process ends.
  • FIG. 6A is a flowchart (active DeNO X control flow) showing active DeNO X control according to the present embodiment.
  • the active DeNO X control flow is repeatedly executed by the PCM 60 at a predetermined period, and is executed in parallel with the above-described fuel injection control flow, the above-described active DeNO X control execution flag setting flow, and the like.
  • the PCM 60 acquires various information on the vehicle. Specifically, PCM60 is at least, and the engine load, engine speed and, NO and temperature X catalyst 45, DeNO X for the post-injection amount calculated in DeNO X for the post-injection amount calculation flow described above (specifically obtaining active DeNO X control during DeNO X for the post-injection amount calculated as being applied to), and the value of the active DeNO X control execution flag set in the active DeNO X control execution flag setting flow, the.
  • step S402 the PCM 60 determines whether or not the active DeNO X control execution flag acquired in step S401 is “1”. That is, the PCM 60 determines whether or not the active DeNO x control is to be executed. The result of this determination, if the active DeNO X control execution flag is "1" (step S402: Yes), the process proceeds to step S403. On the other hand, when the active DeNO x control execution flag is “0” (step S402: No), the process proceeds to FIG. 6B.
  • step S403 the PCM 60 determines whether or not the engine operating state (engine load and engine speed) is included in the active DeNO X execution region R12 (see FIG. 3). As a result of the determination in step S403, when the operating state of the engine is included in the active DeNO x execution region R12 (step S403: Yes), the process proceeds to step S405. On the other hand, when the operating state of the engine is not included in the active DeNO x execution region R12 (step S403: No), the process proceeds to step S404.
  • step S405 the PCM 60 sets a post injection timing (post injection timing) to be applied in the active DeNO x control.
  • the post-injection may be performed at a relatively advanced timing in the expansion stroke. However, if the post injection timing is advanced too much, ignition occurs in a state where air and fuel are not properly mixed, and smoke is generated.
  • step S404 the PCM 60 does not include the post injection without performing the active DeNO x control, that is, without performing the fuel injection control including the post injection for setting the air-fuel ratio of the exhaust gas to the target air-fuel ratio.
  • Normal fuel injection control is performed (step S404).
  • the PCM 60 performs only control for main injection of the fuel injection amount corresponding to the target torque.
  • the PCM 60 executes the process of step S404 in the above-described fuel injection control flow. Then, the process returns to step S403, and the above-described determination in step S403 is performed again.
  • the PCM 60 performs normal fuel injection control while the engine operating state is not included in the active DeNO X execution region R12.
  • the normal fuel injection control is switched to the fuel injection control in the active DeNO x control.
  • the PCM 60 interrupts the fuel injection control and performs normal fuel injection control.
  • the fuel injection control in the active DeNO x control is resumed.
  • PCM60 may, DeNO X for the post-injection amount obtained in step S401, it is determined whether it is less than a predetermined post injection amount determination value.
  • step S406 if the post injection amount for DeNO X is less than the post-injection amount determination value (step S406: Yes), the process proceeds to step S407.
  • step S407 PCM60 may the DeNO X for the post-injection amount obtained in step S401 and controls the fuel injection valve 20 so that post-injection. Actually, the PCM 60 executes the process of step S407 in the above-described fuel injection control flow. Then, the process proceeds to step S410.
  • step S406 the post injection amount for DeNO X is the post injection amount determination value or more (step S406: No).
  • the process proceeds to step S408.
  • step S408 the PCM 60 sets the air-fuel ratio of the exhaust gas to the target air-fuel ratio by the post-injection amount that does not exceed the post-injection amount determination value (specifically, the post-injection amount determination value itself is applied as the DeNO x post-injection amount). Therefore, control is performed to reduce the oxygen concentration of the air introduced into the engine E.
  • the PCM 60 controls the drive of the intake shutter valve 7 in the valve closing direction (described in FIG. 6), the control of increasing the EGR gas amount, and the supercharging pressure by the turbocharger 5.
  • At least one of the control is executed to reduce the oxygen concentration of the air introduced into the engine E, that is, reduce the filling amount.
  • the PCM 60 obtains the supercharging pressure required to bring the air-fuel ratio of the exhaust gas to the target air-fuel ratio based on the DeNO x post-injection amount to which the post-injection amount determination value is applied, and realizes this supercharging pressure.
  • the intake shutter valve 7 is controlled to a desired opening on the closing side. Then, the process proceeds to step S409.
  • the intake shutter valve 7 is set to be fully open in the normal operation state of the engine E.
  • DeNO X in such as during the DPF regeneration and during idle operation, basically, the intake shutter valve 7 is set to a predetermined base opening degree. In the operation state where EGR gas is not introduced, the intake shutter valve 7 is feedback-controlled based on the supercharging pressure.
  • step S409 the PCM 60 applies the post injection amount determination value to the DeNO X post injection amount, that is, sets the DeNO X post injection amount to the post injection amount determination value, and uses this DeNO X post injection amount.
  • the fuel injection valve 20 is controlled to perform post injection.
  • the PCM 60 executes the process of step S409 in the above-described fuel injection control flow. Then, the process proceeds to step S410.
  • the NO x catalyst 45 when performing active DeNO x control, the NO x catalyst 45 generates NH 3 when reducing the stored NO x and releases the generated NH 3 as described above.
  • step S410 the PCM 60 determines whether or not the NO x storage amount of the NO x catalyst 45 has become substantially zero. When the NO X storage amount of the NO X catalyst 45 becomes almost zero (step S410: Yes), the process ends. In this case, the PCM 60 ends the active DeNO x control.
  • step S410 when the NO X storage amount of the NO X catalyst 45 is not substantially zero (step S410: No), the process returns to step S403.
  • PCM60 continues active DeNO X control. That is, the PCM 60 continues the active DeNO x control until the NO x storage amount of the NO x catalyst 45 becomes substantially zero.
  • PCM60 is active DeNO (specifically condition of step S403) active DeNO X control execution condition to the X control during longer satisfied, even discontinued active DeNO X control, subsequent to the active DeNO X Control When the execution condition is satisfied, the active DeNO x control is promptly resumed so that the NO x occlusion amount of the NO x catalyst 45 becomes substantially zero.
  • FIG. 6B is a flowchart (passive DeNO X control flow) showing the passive DeNO X control according to the present embodiment.
  • This passive DeNO X control flow is repeatedly executed by the PCM 60 at a predetermined cycle, and is executed in parallel with the above-described fuel injection control flow and the above-described passive DeNO X control execution flag setting flow.
  • the PCM 60 acquires various information on the vehicle. Specifically, PCM60 is at least, for DeNO X calculated as being applied during passive DeNO X control is DeNO X for the post-injection amount (specifically calculated in DeNO X for the post-injection amount calculation flow described above and post injection amount), it acquires the value of the passive DeNO X control execution flag is set in the aforementioned passive DeNO X control execution flag setting flow.
  • step S502 the PCM 60 determines whether or not the passive DeNO X control execution flag acquired in step S501 is “1”. That is, the PCM 60 determines whether or not it is a situation in which passive DeNO x control should be executed. If the result of this determination is that the passive DeNO x control execution flag is “1” (step S502: Yes), the processing proceeds to step S503. On the other hand, if the passive DeNO X control execution flag is “0” (step S502: No), the process ends without executing the passive DeNO X control.
  • step S503 the PCM 60 controls the fuel injection valve 20 so as to post-inject the post injection amount for DeNO X acquired in step S501. That is, passive DeNO x control is executed. Actually, the PCM 60 executes the process of step S503 in the above-described fuel injection control flow. Then, the process proceeds to step S504.
  • NO X catalyst 45 When performing passive DeNO X control, NO X catalyst 45, as described above, the NH 3 occurs when reducing the occluded NO X, releasing NH 3 generated.
  • step S504 the PCM 60 determines whether or not the passive DeNO X control execution flag has become “0”. As a result, when the passive DeNO x control execution flag becomes “0” (step S504: Yes), the process ends. In this case, PCM60 ends the passive DeNO X control. On the other hand, when the passive DeNO X control execution flag is not “0” (step S504: No), that is, when the passive DeNO X control execution flag is maintained at “1”, the process proceeds to step S503. Return. In this case, PCM60 continues the passive DeNO X control. That, PCM60 until passive DeNO X control execution flag is switched from "1" to "0", to continue the passive DeNO X control.
  • the injection control is performed when NO X purification (reduction) by the SCR catalyst 47 is performed.
  • the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f is less than a predetermined threshold value, and is detected by the SCR catalyst temperature detection sensor 47t.
  • a predetermined threshold value for example, 300 ° C.
  • NO x purification is mainly performed only by the SCR catalyst 47.
  • Exhaust gas flow rate detection sensor when the flow rate of the exhaust gas detected by 45f is above a predetermined threshold value, and the purification of the NO X by the NO X purification and the SCR catalyst 47 with the NO X catalyst 45 is adapted to be used together.
  • the NH 3 adsorption amount of the SCR catalyst 47 at that time point is compared with the target NH 3 adsorption amount, and the difference between the two is obtained. Accordingly, the injection control of the urea injector 51 is performed.
  • NH 3 supply amount from the NO X catalyst 45 to the SCR catalyst 47 Is estimated, and the amount of urea supplied from the urea injector 51 is corrected for reduction based on the result. That is, reflecting the characteristics shown in FIGS. 8 to 12 described in detail later, the temperature of the NO x catalyst 45, the flow rate of the exhaust gas, the air-fuel ratio (for example, A / F) of the exhaust gas, and the thermal degradation of the NO x catalyst.
  • the amount of NH 3 supplied from the NO X catalyst 45 to the SCR catalyst 47, and hence a preferable reduction amount of urea supply, is calculated using the degree and the like as input values.
  • DCU 70 includes a first reduction amount determination unit 71 that determines a reduction amount corresponding to purify process of the NO X that was stored in the NO X catalyst, corresponding to the cleaning process RawNO X It is preferable to include a second reduction amount determination unit 72 that determines the amount of reduction to be performed. In this case, it is possible to consider a reduction amount corresponding to purify process of the NO X that was stored in the NO X catalyst 45, and reduce the amount that corresponds to the purification process RawNO X, independently of each other.
  • the DCU 70 of the present embodiment reduces the amount of urea supplied to the SCR catalyst 47 based on the sum of the reduction amount determined by the first reduction amount determination unit 71 and the reduction amount determined by the second reduction amount determination unit 72. It is to be corrected.
  • the injection amount of urea injection valve is corrected.
  • NO X purification if you are primarily used only NO X catalyst, when the urea injection becomes the NO X purification area in the SCR catalyst is started, the injection amount of urea injection valve is corrected.
  • the NH 3 introduced by DeNO X control if the target adsorbed NH 3 amount or more of NH 3 in the SCR is adsorbed, until the target NH 3 below, corrected to limit the urea injection.
  • the urea injection amount is corrected so as to reduce the NH 3 amount introduced by the DeNO X control.
  • DCU 70 of this embodiment when the NO X when the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 45 is the NO X catalyst 45 a rich state had been occluded is reduced to N 2
  • the urea supply amount to the SCR catalyst 47 by the urea injector 51 is reduced and corrected.
  • the reduction amount of the urea supply amount by the DCU 70 is set to be smaller as the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t is higher.
  • the amount of urea supplied by the DCU 70 is reduced by the NO x detected by the NO x catalyst temperature detection sensor 45t as the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f increases. It is set so that the change is smaller with respect to the temperature change of the catalyst 45.
  • DCU 70 includes a first reduction amount determination unit 71 that determines a reduction amount corresponding to purify process of the NO X that was stored in the NO X catalyst 45, corresponding to the cleaning process RawNO X A second reduction amount determination unit 72 that determines a reduction amount.
  • Both the reduction amount of the urea supply amount by the first reduction amount determination unit 71 and the reduction amount of the urea supply amount by the second reduction amount determination unit 72 are both exhaust gas detected by the exhaust gas flow rate detection sensor 45f.
  • the reduction amount of the urea supply amount by the first reduction amount determination unit 71 is greater than the reduction amount of the urea supply amount by the second reduction amount determination unit 72, and the amount of exhaust gas detected by the exhaust gas flow rate detection sensor 45 f. It is set to change more greatly with changes in flow rate.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is set to be substantially constant regardless of the change in the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t. ing.
  • the DCU 70 is configured to supply urea to the SCR catalyst 47.
  • the supply amount is reduced and corrected.
  • the method of determining the reduction amount of the urea supply amount by the DCU 70 as described above is based on the experimental data shown in FIGS. 8A and 8B.
  • NH 3 reaction for example, BaNO 3 + CO + H 2 ⁇ NH 3 , NO + CO + H 2 ⁇ NH 3
  • the first reduction amount determination unit 71 reflects the characteristics shown in FIG. 8A, and (by the air / fuel ratio) the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t and the exhaust gas flow rate detection sensor 45f.
  • a correspondence table (or function) is prepared in advance with the detected exhaust gas flow rate as an input value and the urea supply reduction amount as an output value. It matches the contents described in paragraphs 0134 to 0137.
  • the second reduction amount determination unit 72 reflects the characteristics as shown in FIG. 8B, and (by the air / fuel ratio) the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t and the exhaust gas flow rate detection sensor 45f. While the detected exhaust gas flow rate is used as an input value, a correspondence table (or function) in which the reduction amount of urea supply amount is a substantially constant output value is prepared in advance. It matches the contents described in paragraphs 0134 to 0137.
  • DCU70 was the ⁇ (1) NO control in consideration of the temperature of the X catalyst>
  • urea to the SCR catalyst 47 due to urea injector 51 mainly considering the exhaust gas flow rate The supply amount can be reduced and corrected. Specifically, the reduction amount of the urea supply amount by the DCU 70 is set so as to increase as the flow rate of the exhaust gas detected by the exhaust gas flow rate detection sensor 45f increases.
  • the urea supply by the DCU 70 is compared with the range less than the first threshold value.
  • the amount of reduction is set so that the change is smaller than the change in the flow rate of the exhaust gas detected by the exhaust gas flow rate detection sensor 45f.
  • the DCU 70 of the present embodiment includes the first reduction amount determination unit 71 that determines the reduction amount corresponding to the NO X purification process stored in the NO X catalyst 45, and the Raw NO X purification process. And a second reduction amount determination unit 72 that determines a reduction amount corresponding to.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is: The change is set to be larger than the change in the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f than the reduction amount of the urea supply amount by the first reduction amount determination unit 71.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is the first reduction amount determination unit.
  • the change is set to be smaller than the change in the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f than the reduction amount of the urea supply amount by 71.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is the exhaust gas flow rate detection. Regardless of the change in the flow rate of the exhaust gas detected by the sensor 45f, it is set substantially constant.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is NO X in a range where the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f is less than the second threshold value.
  • the DCU 70 is configured to supply urea to the SCR catalyst 47.
  • the supply amount is reduced and corrected.
  • the method of determining the reduction amount of the urea supply amount by the DCU 70 as described above is based on the experimental data shown in FIGS. 9A and 9B.
  • the degree of increase in the amount of NH 3 generated due to the increase in the exhaust gas flow rate is relaxed (the inclination becomes smaller).
  • the NH 3 generation amount is increased with respect to the increase in the flow rate of the exhaust gas as compared with the range less than the first threshold value.
  • the degree of increase is small. This causes, present inventors believe that the flow rate of the exhaust gas is smaller than the first threshold value diffusion of the exhaust gas in order to influence the direction of suppressing the NH 3 generating reaction, and.
  • the first reduction amount determination unit 71 reflects the characteristics shown in FIG. 9A, and (by the air / fuel ratio) the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t and the exhaust gas flow rate detection sensor 45f.
  • a correspondence table (or function) is prepared in advance with the detected exhaust gas flow rate as an input value and the urea supply reduction amount as an output value. It matches the contents described in paragraphs 0148 to 0154.
  • a predetermined second threshold for example, 25 g / s
  • the change in the amount of NH 3 generated in the RawNO x purification process relative to the exhaust gas flow rate change is the storage NO with respect to the exhaust gas flow rate change.
  • the degree is larger than the change in the amount of NH 3 generated in the purification process of X (see FIG. 9A).
  • the higher the temperature of the NO x catalyst 45 the larger the gradient of the change in the NH 3 generation amount in the raw NO x purification process with respect to the change in the exhaust gas flow rate.
  • the second reduction amount determination unit 72 reflects the characteristics as shown in FIG. 9B, and (by the air / fuel ratio) the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t and the exhaust gas flow rate detection sensor 45f.
  • a correspondence table (or function) is prepared in advance with the detected exhaust gas flow rate as an input value and the urea supply reduction amount as an output value. It matches the contents described in paragraphs 0148 to 0154.
  • the amount of urea supplied to the SCR catalyst 47 by the urea injector 51 can be reduced and corrected in consideration of the amount of reducing agent (HC, CO).
  • the amount of reducing agent is determined by the target air-fuel ratio set by the PCM 60.
  • the reduction amount of the urea supply amount by the DCU 70 is set to be a large amount because it is determined that the amount of the reducing agent is larger as the target air-fuel ratio set by the PCU 60 is smaller.
  • the PCU 60 functions as a reducing agent amount detection unit.
  • the PCU 60 of the present embodiment includes the first reduction amount determination unit 71 that determines the reduction amount corresponding to the NO X purification process stored in the NO X catalyst 45, and the Raw NO X purification process. And a second reduction amount determination unit 72 that determines a reduction amount corresponding to.
  • the reduction amount of the urea supply amount by the first reduction amount determination unit 71 is a reduction estimated by the PCU 60 (reducing agent amount detection unit) rather than the reduction amount of the urea supply amount by the second reduction amount determination unit 72.
  • the change is set to be larger with respect to the change in the amount of the agent.
  • the reduction amount of the urea supply amount by the first reduction amount determination unit 71 is set so as to increase as the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f increases.
  • the supply of urea by the second reduction amount determination unit is compared with a range less than the threshold.
  • the amount of reduction is set such that the change is smaller than the estimated change in the amount of reducing agent.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is: Regardless of the change in the amount of reducing agent estimated by the PCU 60 (reducing agent amount detection unit), it is set substantially constant.
  • the reduction amount of the urea supply amount by the first reduction amount determination unit 71 is substantially constant with respect to the change in the amount of the reducing agent estimated by the PCU 60 (reducing agent amount detection unit). Is set to change.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is detected by the exhaust gas flow rate detection sensor 45f in the range less than the threshold value compared to the range equal to or greater than the threshold value.
  • the change is set to be larger with respect to the change in the flow rate of the exhaust gas.
  • the PCU 60 determines the amount of urea supplied to the SCR catalyst 47 based on the sum of the reduction amount of the urea supply amount by the first reduction amount determination unit 71 and the reduction amount of the urea supply amount by the second reduction amount determination unit 72. The supply amount is reduced and corrected.
  • the method of determining the reduction amount of the urea supply amount by the DCU 70 as described above is based on the experimental data shown in FIGS. 10A and 10B.
  • FIG. 10A shows the purification of NO x stored in the NO x catalyst 45 with respect to the target air-fuel ratio when the temperature of the NO x catalyst 45 is 250 ° C. and the exhaust gas flow rate is 30 g / s to 50 g / s.
  • This is data on the amount of NH 3 (ammonia) generated in the process, and the target air-fuel ratio is approximately proportional to the amount of the corresponding reducing agent (approximately proportional to the decrease in the target air-fuel ratio), and the amount of NH 3 generated increases. The tendency to do is recognized. Further, it can be seen that as the flow rate of the exhaust gas increases, the NH 3 generation amount tends to increase. (The cause of the latter is as described in ⁇ (2) Control mainly considering exhaust gas flow rate>.)
  • the first reduction amount determination unit 71 to reflect the characteristics shown in FIG. 10A, (NO X catalyst temperature sensor 45t of the NO X catalyst 45 detected by the temperature) and the target air-fuel ratio exhaust gas flow rate detection sensor 45f
  • a correspondence table (or function) is prepared in advance, in which the flow rate of the exhaust gas detected by the above is used as an input value, and the reduction amount of urea supply amount is used as an output value. It matches the contents described in paragraphs 0166 to 0172.
  • FIG. 10B occurs in the purification process of RawNO x exhausted from the engine with respect to the target air-fuel ratio when the temperature of the NO x catalyst 45 is 250 ° C. and the exhaust gas flow rate is 30 g / s to 50 g / s. It is data of the amount of NH 3 (ammonia). NH 3 generation amount of change in purification process RawNO X to changes in the amount of the reducing agent (change of the target air-fuel ratio), the change in NH 3 emission under purification process occluded NO X with respect to the change in the amount of the reducing agent From FIG. 10A, it is recognized that the degree is small.
  • the NH 3 generation amount is reduced as compared with the range less than the threshold. It is recognized that the change is smaller and substantially constant with respect to the change in the amount of the agent.
  • the NH 3 generation amount is a change in the flow rate of the exhaust gas detected by the exhaust gas flow rate detection sensor 45f as compared with the range above the threshold value. It can be seen that the change is larger.
  • the second reduction amount determination unit 72 to reflect the characteristics shown in FIG. 10B, (NO X catalyst temperature sensor 45t of the NO X catalyst 45 detected by the temperature) and the target air-fuel ratio exhaust gas flow rate detection sensor 45f
  • a correspondence table (or function) is prepared in advance, in which the flow rate of the exhaust gas detected by the above is used as an input value, and the reduction amount of urea supply amount is used as an output value. It matches the contents described in paragraphs 0166 to 0172.
  • the reduction amount of the urea supply amount by the DCU 70 is set so as to increase as the degree of thermal deterioration of the NO x catalyst 45 estimated by the PCU 60 increases.
  • PCU 60 is adapted to function as a NO X catalyst heat deterioration detecting section.
  • the degree of thermal deterioration of the NO x catalyst 45 can be estimated based on, for example, a travel distance that is one of various types of information in the vehicle.
  • information on the travel distance and / or information on the degree of thermal degradation that can be derived as a function thereof can be stored in the internal memory of the PCU 60.
  • the degree of thermal deterioration of the NO X catalyst 45 may be estimated based on the elapsed time after the production of the NO X catalyst 45.
  • information regarding the production time of the NO x catalyst 45 is stored in the internal memory of the PCM 60 or DCU 70 as one of various types of information in the vehicle, and the PCM 60 or DCU 70 calculates the elapsed time up to the current time at an appropriate timing. By doing so, information on the degree of thermal degradation of the NO x catalyst 45 may be obtained.
  • the PCU 60 of the present embodiment corresponds to the first reduction amount determination unit 71 that determines the reduction amount corresponding to the NO x purification process occluded in the NO x catalyst 45 and the raw NO x purification process. And a second reduction amount determining unit 72 that determines the amount of reduction to be performed.
  • the reduction of the supply amount of urea according to the first reduction amount determination unit 71, than reduction of the supply amount of urea according to the second reduction amount determination unit 72, is estimated by the PCU 60 (NO X catalyst heat deterioration detecting unit)
  • the change is set to be larger with respect to the change in the degree of thermal deterioration of the NO x catalyst 45.
  • the reduction amount of the urea supply amount by the second reduction amount determination unit 72 is substantially irrespective of the change in the degree of thermal deterioration of the NO X catalyst 45 estimated by the PCU 60 (NO X catalyst thermal deterioration detection unit). It is set constant.
  • the amount of reduction in the urea supply amount by the first reduction amount determination unit 71 is smaller as the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t is higher. Is set to (The reduction amount of the urea supply amount by the second reduction amount determination unit 72 is maintained at a substantially constant setting even with respect to a change in the temperature of the NO x catalyst 45 detected by the NO x catalyst temperature detection sensor 45t. Yes.)
  • the DCU 70 is configured to supply urea to the SCR catalyst 47.
  • the supply amount is reduced and corrected.
  • the method of determining the reduction amount of the urea supply amount by the DCU 70 as described above is based on the experimental data shown in FIGS. 11A and 11B.
  • This is data on the amount of NH 3 (ammonia).
  • the cause of the former are as described in ⁇ Control Considering temperature (1) NO X catalyst>.
  • the first reduction amount determination unit 71 reflects the characteristics as shown in FIG. 11A and is detected by the NO x catalyst temperature detection sensor 45t (the air-fuel ratio and the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f).
  • a correspondence table (or function) is prepared in advance, in which the temperature of the NO x catalyst 45 and the degree of thermal deterioration information of the NO x catalyst are input values, and the reduction amount of urea supply amount is the output value. It matches the content described in paragraphs 0180 to 0187.
  • the cause of the former are as described in ⁇ Control Considering temperature (1) NO X catalyst>.
  • NO X catalyst> The cause of the latter, the present inventors have, NO X in the RawNO X purification process in the catalyst 45 does not occur only a slight reaction to consume NH 3 originally, is not obvious impact of the reaction inhibiting effect increases I think that is because.
  • the second reduction amount determination unit 72 reflects the characteristics as shown in FIG. 11B and is detected by the NO x catalyst temperature detection sensor 45t (the air-fuel ratio and the exhaust gas flow rate detected by the exhaust gas flow rate detection sensor 45f). while the input value and the degree information of the thermal degradation temperature and NO X catalyst of the NO X catalyst 45 that, the correspondence table (or function) that is substantially constant output value reduction of the supply amount of urea is prepared in advance The It matches the content described in paragraphs 0180 to 0187.
  • NH 3 is generated by DeNO x control.
  • (F) is an estimated value of NH 3 generation amount.
  • decreases with the start of DeNO X control, RawHC and RawCO increase, while oxygen stored in NSC (stored oxygen) reacts with RawHC and RawCO to cause NH 3 generation. Since HC and CO in the NSC to be oxidized are lost due to oxidation, NH 3 is not generated.
  • the stored oxygen of the NO x catalyst 45 is consumed by reacting with NH 3 generated by the reduction reaction of NO x and eventually becomes zero.
  • the control for reducing and correcting the urea supply amount to the SCR catalyst 47 by the urea injector 51 is such that the NH 3 generation amount in the NO X catalyst 45 is zero for a predetermined time after the DeNO X control is started. It is considered.
  • the delay time is preferably set to be shorter as the flow rate of the exhaust gas detected by the exhaust gas flow rate detection sensor 45f is higher and / or as the air-fuel ratio is richer.
  • NO X catalyst oxygen storage amount detection unit for example, estimate the oxygen supplied to the NSC from information such as the airflow sensor or the fuel injection quantity, the feed while estimating the stored oxygen amount based on the oxygen, by estimating the occluded amount of oxygen consumed by the reaction between HC and CO, to estimate the current stored oxygen amount
  • NO X catalyst oxygen storage amount Until the amount of occluded oxygen detected or estimated by the detection unit becomes zero, it may be determined that the NH 3 generation amount is zero.
  • the state in which the correction for reducing the urea supply amount is not started basically means that the reduction amount of the urea supply amount is zero, but the reduction amount of the urea supply amount. Should be understood to include the case where is very small.
  • Urea injector injection control during DeSO X control is also applicable to the injection control Deso X control when the urea injector 51.
  • the DeSO X control is performed when the S poison amount in the NO X catalyst 45 becomes a predetermined threshold value or more, for example, when the PM of the NO X catalyst 45 is regenerated or when the predetermined travel distance of the vehicle is reached.
  • NO X catalyst 45 is heated to a high temperature for Deso X control (600 °C ⁇ 650 °C), intermittent lean operation to maintain the high temperature state (For example, 30 sec rich ⁇ 30 sec lean ⁇ 30 sec rich ⁇ 30 sec lean ⁇ ).
  • the NO X catalyst 45 is brought to a high temperature state of 600 ° C. to 650 ° C., so that the occluded NO X is desorbed without being reduced (supplied to the SCR catalyst 47 as it is NO X. Phenomenon). Further, during DeSO X control, an intermittent lean operation is performed, so that the substantial air-fuel ratio shifts to the lean side. Both of these two phenomena affect the direction in which the amount of NH 3 generated in the NO x catalyst 45 is reduced.
  • DeNO x control for example, the characteristics shown in FIGS. 8 to 12 are reflected, the temperature of the NO x catalyst 45, the flow rate of the exhaust gas, the air-fuel ratio of the exhaust gas, the degree of thermal deterioration of the NO x catalyst, etc. Is used as an input value, the NH 3 supply amount from the NO X catalyst 45 to the SCR catalyst 47, and hence a preferable reduction amount of urea supply amount, is calculated. In order to apply to DeSO X control as well, it is necessary to modify the amount of reduction (make it smaller) (see FIG. 7).
  • NO X catalyst 45 may also be useful to consider the S poisoning amount of the NO X catalyst 45.
  • NO X catalyst 45 S are poisoned, correspondingly, is because should occlusion amount of the NO X is low.
  • the S poisoning amount of the NO x catalyst 45 may be estimated based on an S generation map corresponding to the operating state of the engine (engine load, engine rotation) measured in advance through experiments.

Abstract

NH3 供給量制御部が、NOX 触媒に流入する排気ガスの空燃比がリッチな状態であって当該NOX 触媒が吸蔵していたNOX がN2 に還元されている際には、NH3 供給部によるSCR触媒へのNH3 の供給量を削減補正する。NH3 供給量制御部によるNH3 の供給量の削減量は、排気ガス流量検出部によって検出ないし推定される排気ガスの流量が多い程、多量であるように設定されている。

Description

エンジンの排気浄化制御装置
 本発明は、エンジンの排気浄化制御装置に係り、特に、排気ガス中のNOX を浄化するNOx 触媒を排気通路上に備えるエンジンの排気浄化制御装置に関する。
 従来から、特許第3518398号に示すように、エンジンの排気通路上に設けられ、NH3 との反応によって排気ガス中のNOX を浄化するSCR触媒と、排気ガスの空燃比が理論空燃比よりも大きいリーンな状態(λ>1)において排気ガス中のNOX を吸蔵し、この吸蔵したNOx を、排気ガスの空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)において還元する、NOX 吸蔵還元型のNOX 触媒と、を備えたエンジンの排気浄化装置が知られている。このエンジンの排気浄化装置においては、エンジンが高回転数且つ高負荷域である場合、すなわちSCR触媒の温度が高くなるエンジンの運転領域である場合においては、SCR触媒によるNOX の浄化が行われ、それ以外の場合には、NOX 触媒によるNOX の浄化が行われている。
 また、特開2010-112345号公報に示すように、尿素をSCR触媒に噴射する尿素噴射弁を備える代わりに、NOX 触媒におけるNOX 還元制御において発生したNH3 をSCR触媒に吸着させることでSCR触媒によるNOX の浄化を行うものが知られている。すなわち、NOX 還元制御でNH3 が発生することが知られている。また、特許第4347076号に示すように、NOX 触媒の温度を検出することによって、当該NOX 触媒においてNOX がNH3 に変換される変換率を算出できることが知られている。さらに、NOX 還元制御におけるNH3 の発生量がNOX 触媒温度によって変化することが知られている。詳細には、NOX 触媒の温度が高いほど、NH3 の発生率が高くなることが開示されている。
 前記した特許第3518398号のように、尿素噴射弁によりSCR触媒にNH3 を供給する一方で、NOX 触媒におけるNOX 還元制御を行うと、NOX 還元制御において発生したNH3 により、SCRへのNH3 供給が過剰になる恐れがある。その結果、SCR触媒の吸着能力を超える量のNH3 がSCR触媒に供給されて、SCR触媒下流の排気通路にアンモニアが放出されてしまう恐れがある。
 そこで、NOX 触媒還元制御時に発生するNH3 を考慮し、SCR触媒への過剰なアンモニア供給を抑制して、SCR触媒下流の排気通路にアンモニアが放出されてしまうことを抑制することが考えられる。
 ところが、NOX 還元制御時に発生するNH3 量はNOX 触媒の温度によって変化するため、これを加味しなければ、SCR触媒下流の排気通路へのアンモニア放出を十分に抑制できない。あるいは、SCR触媒へのアンモニア供給抑制が過剰になり、SCRで吸着されたNH3 が不足して、SCRでのNOX 浄化性能が低下する恐れがある。
 特許第4347076号には、NOX 触媒の温度が高いほど、NH3 の発生率が高くなることが記載されている。特許第4347076号では、NOX 触媒温度が高いほど、NH3 が発生する反応がしやすくなることを加味していると考えられる。
 しかしながら、本件発明者の知見によれば、排気ガス流量の影響を受けてNH3 の発生量が変化する。特許第4347076号では、この現象(傾向)が加味されていないため、NOX 触媒還元制御時に発生するNH3 を正確に把握できていない。
 本発明は、以上のような状況に鑑みてなされたものであり、NOX 触媒還元制御時に発生するNH3 を正確に把握して、SCR触媒への過剰なアンモニア供給の抑制を適切に実行できるようにすることによって、SCR触媒下流の排気通路へのアンモニア放出を抑制するとともに効率的なNOX の浄化を実現できるエンジンの排気浄化制御装置を提供することを目的とする。
 本発明は、エンジンの排気通路に設けられ、流入する排気ガスの空燃比が理論空燃比よりもリーンな状態である時には当該排気ガス中のNOX を吸蔵すると共に、流入する排気ガスの空燃比が理論空燃比よりもリッチな状態である時には吸蔵していたNOX をN2 に還元するNOX 触媒と、前記NOX 触媒に流入する排気ガスの空燃比がリッチな状態となるように、前記エンジンにおける燃料噴射弁を制御するNOX 触媒再生部と、前記NOX 触媒の下流の排気通路に設けられ、NH3 との反応によって当該NOX を浄化するSCR触媒と、前記SCR触媒にNH3 ないしNH3 原料を供給してNH3 を吸着させるNH3 供給部と、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制御するNH3 供給量制御部と、前記排気ガスの流量を検出ないし推定する排気ガス流量検出部と、を備え、前記NH3 供給量制御部は、前記NOX 触媒再生部によるNOX 触媒再生を実行した場合には、NOX 触媒再生を実行しない場合と比べ、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を少なくするようになっており、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が多い程、少なくなるように設定されていることを特徴とするエンジンの排気浄化制御装置である。
 本発明によれば、NH3 供給量制御部によるNH3 ないしNH3 原料の供給量が、排気ガス流量が多い程、少なくなるように設定されていることにより、NOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
 より具体的には、例えば、前記NH3 供給量制御部は、前記NOX 触媒再生部によるNOX 触媒再生を実行した場合には、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を削減補正するようになっており、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が多い程、多量であるように設定されている。
 この場合、NH3 供給量制御部によるNH3 ないしNH3 原料の供給量の削減量が、排気ガス流量が多い程、多量であるように設定されていることにより、NOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
 また、この場合、前記排気ガスの流量が所定の第1閾値以上の範囲では、当該第1閾値未満の範囲と比較して、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が小さいように設定されていることが好ましい。この場合、より高精度にNOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
 また、前記NH3 供給量制御部は、前記NOX 触媒に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部と、前記RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部と、を有しており、前記排気ガスの流量が所定の第2閾値未満の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記第1削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量よりも、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が大きいように設定されていることが好ましい。
 この場合、NOX 触媒に吸蔵されていたNOX の浄化プロセスによって発生するNH3 の量とRawNOX の浄化プロセスによって発生するNH3 の量とを、互いに独立に考慮することができ、より高精度にNOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
 また、この場合において、前記排気ガスの流量が前記第2閾値以上の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記第1削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量よりも、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が小さいように設定されていることが更に好ましい。
 この場合、より高精度にNOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
 例えば、この場合において、前記排気ガスの流量が前記第2閾値以上の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に関わらず、略一定に設定されていてもよい。
 また、前記NOX 触媒の温度を検出ないし推定するNOX 触媒温度検出部を更に備え、前記排気ガスの流量が前記第2閾値未満の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記NOX 触媒温度検出部によって検出ないし推定される前記NOX 触媒の温度が高温である程、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が大きいように設定されていることが好ましい。
 この場合も、より高精度にNOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
 また、前記NH3 供給量制御部は、前記第1削減量決定部における前記NH3 ないしNH3 原料の供給量の削減量と前記第2削減量決定部における前記NH3 ないしNH3 原料の供給量の削減量とに基づいて、例えば両者の和に基づいて、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を削減補正するようになっていることが好ましい。
 また、前記SCR触媒の温度を検出ないし推定するSCR触媒温度検出部を更に備え、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度検出部によって検出ないし推定される前記SCR触媒の温度が所定の閾値未満である時には、主に前記NOX 触媒のみによってNOX の浄化が実施され、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度検出部によって検出ないし推定される前記SCR触媒の温度が所定の閾値以上である時には、主に前記SCR触媒のみによってNOX の浄化が実施され、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が所定の閾値以上である時には、前記NOX 触媒によるNOX の浄化と前記SCR触媒によるNOX の浄化とが併用されることが好ましい。
 この場合、排気ガスの流量に応じて、且つ、SCR触媒の温度に応じて、効率的なNOX の浄化を実現できる。
 また、この場合において、主に前記NOX 触媒のみによってNOX の浄化が実施される際、前記NH3 供給量制御部は、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制限するようになっており、主に前記SCR触媒のみによってNOX の浄化が実施される際、前記NOX 触媒再生部の作動が制限されるようになっていることが好ましい。
 本発明によれば、NH3 供給量制御部によるNH3 ないしNH3 原料の供給量の削減量が、排気ガス流量が多い程、多量であるように設定されていることにより、NOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。特に、排気ガスの流量が所定の第1閾値以上の範囲では、当該第1閾値未満の範囲と比較して、NH3 供給量制御部によるNH3 ないしNH3 原料の供給量の削減量が、排気ガスの流量の変化に対して、より変化が小さいように設定されていることにより、より高精度にNOX 触媒でのNH3 の発生量を考慮した効率的なNOX の浄化を実現できる。
本発明の一実施形態によるエンジンの排気浄化制御装置が適用されたエンジンシステムの概略構成図である。 本実施形態によるエンジンの排気浄化制御装置の電気的構成を示すブロック図である。 本実施形態においてパッシブDeNOX 制御及びアクティブDeNOX 制御のそれぞれを実行するエンジンの運転領域についての説明図である。 本実施形態において各触媒のNOX 浄化作用と温度範囲との関係についての説明図である。 本発明の一実施形態による目標空燃比の設定方法についての説明図である。 本発明の一実施形態によるアクティブDeNOX 制御及びパッシブDeNOX 制御を示すフローチャートである。 本発明の一実施形態によるアクティブDeNOX 制御及びパッシブDeNOX 制御を示すフローチャートである。 本発明の一実施形態による尿素の供給量の削減量の算出フローを示す概略図である。 図8Aは、NOX 触媒温度の変化に対する、NOX 触媒に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図8Bは、NOX 触媒温度の変化に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図9Aは、排気ガスの流量の変化に対する、NOX 触媒に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図9Bは、排気ガスの流量の変化に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図10Aは、目標空燃比の変化に対する、NOX 触媒に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図10Bは、目標空燃比の変化に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図11Aは、NOX 触媒の熱劣化及びNOX 触媒温度の変化に対する、NOX 触媒に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 図11Bは、NOX 触媒の熱劣化及びNOX 触媒温度の変化に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。 本実施形態によるDeNOX 制御のタイムチャートの一例を示す図である。
 以下、添付図面を参照して、本発明の一実施形態によるエンジンの排気浄化制御装置について説明する。
 <システム構成>
 最初に、図1を参照して、本発明の一実施形態によるエンジンの排気浄化制御装置が適用されたエンジンシステムについて説明する。図1は、本発明の一実施形態によるエンジンの排気浄化制御装置が適用されたエンジンシステムの概略構成図である。
 図1に示すように、エンジンシステム200は、主に、ディーゼルエンジンとしてのエンジンEと、エンジンEに吸気を供給する吸気系INと、エンジンEに燃料を供給するための燃料供給系FSと、エンジンEの排気ガスを排出する排気系EXと、エンジンシステム200に関する各種の状態を検出するセンサ100~119と、エンジンシステム200の制御を行うPCM(Power-train Control Module)60と、SCR触媒47に関する制御を行うDCU(Dosing Control Unit)70と、を有する。
 まず、吸気系INは、吸気が通過する吸気通路1を有しており、この吸気通路1上には、上流側から順に、外部から導入された空気を浄化するエアクリーナ3と、通過する吸気を圧縮して吸気圧を上昇させる、ターボ過給機5のコンプレッサと、外気や冷却水により吸気を冷却するインタークーラ8と、通過する吸気流量を調整する吸気シャッター弁7(スロットルバルブに相当する)と、エンジンEに供給する吸気を一時的に蓄えるサージタンク12と、が設けられている。
 エアクリーナ3の直下流側の吸気通路1上には、吸入空気量を検出するエアフローセンサ101及び吸気温度を検出する温度センサ102が設けられ、ターボ過給機5には、吸気の圧力を検出する圧力センサ103が設けられ、インタークーラ8の直下流側の吸気通路1上には、吸気温度を検出する温度センサ106が設けられ、吸気シャッター弁7には、当該吸気シャッター弁7の開度を検出するポジションセンサ105が設けられ、サージタンク12には、吸気マニホールドにおける吸気の圧力を検出する圧力センサ108が設けられている。これらのセンサ101~108は、それぞれ、検出したパラメータに対応する検出信号S101~S108をPCM60に出力するようになっている。
 次に、エンジンEは、吸気通路1(詳しくは吸気マニホールド)から供給された吸気を燃焼室17内に導入する吸気バルブ15と、燃焼室17に向けて燃料を噴射する燃料噴射弁20と、通電により発熱する発熱部を燃焼室17内に備えたグロープラグ21と、燃焼室17内での混合気の燃焼により往復運動するピストン23と、ピストン23の往復運動により回転されるクランクシャフト25と、燃焼室17内での混合気の燃焼により発生した排気ガスを排気通路41へ排出する排気バルブ27と、を有する。また、エンジンEには、クランクシャフト25における上死点などを基準とした回転角としてのクランク角を検出するクランク角センサ100が設けられている。クランク角センサ100は、検出したクランク角に対応する検出信号S100をPCM60に出力し、PCM60は、この検出信号S100に基づきエンジン回転数を取得するようになっている。
 燃料供給系FSは、燃料を貯蔵する燃料タンク30と、燃料タンク30から燃料噴射弁20に燃料を供給するための燃料供給通路38と、を有する。燃料供給通路38には、上流側から順に、低圧燃料ポンプ31と、高圧燃料ポンプ33と、コモンレール35と、が設けられている。
 次に、排気系EXは、排気ガスが通過する排気通路41を有しており、この排気通路41上に、当該排気ガスによって回転され当該回転によって前記したようにコンプレッサを駆動するターボ過給機5のタービンが設けられている。更に、このタービンの下流側の排気通路41上に、上流側から順に、排気ガス中のNOX (RawNOX )を浄化するNOX 触媒45と、排気ガス中の粒子状物質(PM:Particulate Matter)を捕集するディーゼルパティキュレートフィルタ(DPF:Diesel particulate filter)46と、DPF46の下流側の排気通路41中に尿素(典型的には尿素水)を噴射する尿素インジェクタ51と、が設けられている。
 NOX 触媒45は、流入する排気ガスの空燃比が理論空燃比よりもリーンな状態(λ>1)において排気ガス中のNOX を吸蔵する傾向を有しており、流入する排気ガスの空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりもリッチな状態(λ<1)において吸蔵していたNOX をN2 に還元する傾向を有しており、NOX 吸蔵還元型触媒(NSC:NOx Storage Catalyst)と呼ばれるものである。NOX 触媒45は、吸蔵していたNOX を還元する際に、NH3 (アンモニア)を発生して放出するようになっている。具体的には、NOX 還元時に、NOX 触媒45が吸蔵していたNOX 中の「N」と、NOX 触媒45に還元剤として供給された未燃燃料などの「HC」中の「H」あるいは筒内燃焼により生じる「H2O」中の「H」と、が結合することで、NH3 (アンモニア)が生成されるようになっている。反応の詳細については、後に段落0142にて詳述する。
 なお、詳細は後述するが、NOX 触媒45は、NOX 触媒45に吸蔵されたNOX 量(以下、NOX 吸蔵量という。)が所定の閾値以上になったとき、NOX 触媒45に流入する排気ガスの空燃比がリッチな状態となるように、エンジンEにおける燃料噴射弁20を制御することにより、吸蔵されたNOxを還元して浄化される(NOX 触媒再生部)。本実施形態では、後述するPCM60が、当該NOX 触媒再生部を兼ねている(NOX 触媒再生部の機能をも有している)。
 NOX 触媒45におけるNOX の吸蔵量については、エンジンEの運転状態や排気ガスの流量や排気ガスの温度などに基づいて、排気ガス中のNOX 量を推定し、このNOX 量を積算していくことで推定する。あるいは、NOX 吸蔵量検出センサ45nによって、直接検出しても良い。
 また、本実施形態のNOX 触媒45は、NSCとしての機能だけでなく、排出ガス中の酸素を用いて炭化水素(HC)や一酸化炭素(CO)などを酸化して水と二酸化炭素に変化させるディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)45a(酸化触媒)としての機能をも有している。
 より具体的には、本実施形態のNOX 触媒45は、ディーゼル酸化触媒45aの触媒材層の表面をNSCの触媒材によってコーティングすることで作られている。これにより、NOX 触媒45は、ディーゼル酸化触媒45aと複合された複合触媒を形成している。すなわち、NOX 触媒45は、ディーゼル酸化触媒45aと組み合わせて配置(構成)されている。これにより、ディーゼル酸化触媒45aにおいて酸化反応により反応熱が生じて温度上昇する場合、当該反応熱はNOX 触媒45に伝達されて、NOX 触媒45の温度上昇が生じるようになっている。
 本実施形態では、NOX 触媒45の直上流側に温度センサ112を設けている。この温度センサ112によって検出された温度に基づいてNOX 触媒温度を推定する。このNOX 触媒温度の把握に対して、例えば、NOX 触媒45とDPF46との間に設けられた温度センサ113によって検出してもよい。また、NOX 触媒45に、当該NOX 触媒45の温度を検出するNOX 触媒温度検出センサ45tを設けて検出してもよい。
 また、本実施形態では、エンジンの運転状態、具体的にはエンジン回転数とエンジン負荷とからNOX 触媒45に流入する排気ガスの流量を推定するが、NOX 触媒45に流入する排気ガスの流量を検出する排気ガス流量検出センサ45fを設けてもよい。
 そして、尿素インジェクタ51の更に下流側に、NOX 触媒45において生成されたNH3 (アンモニア)を排気ガス中のNOX と反応(還元)させて当該NOX を浄化するSCR(Selective Catalytic Reduction)触媒47が配置されている。SCR触媒47は、また、尿素インジェクタ51から噴射された尿素を加水分解してNH3 (アンモニア)を生成し(CO(NH22+H2O→CO2+2NH3)、このNH3 を排気ガス中のNOX と反応(還元)させて当該NOX を浄化する機能をも有している。尿素インジェクタ51は、DCU70から供給される制御信号S51によって、排気通路41中に尿素を噴射するよう制御されるようになっている。
 より具体的には、SCR触媒47は、NOX 触媒45におけるNOX の浄化(還元)により生成されたNH3 (アンモニア)、及び/または、尿素インジェクタ51から噴射された尿素から生成されるNH3 、を自身に吸着して、当該吸着したNH3 を排気ガス中のNOX と反応させてNOX を浄化(還元)するようになっている。
 例えば、SCR触媒47は、NH3 (アンモニア)によってNOX を還元する機能を有する触媒金属を、NH3 をトラップする機能を有するゼオライトに担持させて触媒成分とし、当該触媒成分をハニカム担体のセル壁に担持させることで作られ得る。NOX 還元用の触媒金属としては、Fe、Ti、Ce、Wなどが用いられ得る。
 その他、SCR触媒47の更に下流側に、SCR触媒47から放出されたNH3 (アンモニア)を酸化させて浄化するスリップ触媒48が設けられている。また、SCR触媒47には、当該SCR触媒の温度を検出するSCR触媒温度検出センサ47tが設けられている。SCR触媒温度検出センサ47tは、SCR触媒47の温度を直接的に検出するセンサであるが、これに代えて、SCR触媒47の温度に関連する間接的なパラメータを測定して、当該パラメータからSCR触媒47の温度を推定する手段が設けられてもよい。例えば、SCR触媒47の直上流側に設けられた温度センサ117によって検出された温度に基づいて推定されてもよい。
 本実施形態では、尿素インジェクタ51が、SCR触媒47にNH3 原料である尿素を供給してNH3 を吸着させるNH3 供給部となっている。図1に示すように、尿素インジェクタ51は、尿素供給経路53に接続され、尿素供給経路53は、尿素送出ポンプ54を介して尿素タンク55に接続されている。
 尿素供給経路53は、尿素(尿素水)を送出できる配管により形成されている。尿素供給経路53上には、尿素が通過した場合の圧力の変化を測定する尿素供給経路圧力センサ56が配置されている。尿素供給経路53上には、尿素が尿素供給経路53上で凍結することを防止するための尿素経路ヒータ57が配置されている。尿素送出ポンプ54は、DCU70からの制御指令を受けて、尿素を尿素タンク55から尿素インジェクタ51に向けて送出するようになっている。
 本実施形態では、DCU70が、尿素インジェクタ51(NH3 供給部)によるSCR触媒47への尿素(NH3 原料)の供給量を制御するNH3 供給量制御部となっている。
 DCU70は、SCR触媒47によるNOX 浄化性能の確保と、SCR触媒47からのNH3 (アンモニア)の放出(スリップ)の抑制と、を両立する観点から、SCR触媒47に適量のNH3 が吸着されるように、尿素インジェクタ51から噴射される尿素の量を制御する。
 その他、DCU70は、尿素供給経路圧力センサ56と、尿素レベルセンサ58と、尿素温度センサ59とに、電気的に接続されている。尿素供給経路圧力センサ56と、尿素レベルセンサ58と、尿素温度センサ59とは、それぞれ、検出したパラメータに対応する検出信号S52~S54をDCU70に出力する。また、DCU70は、尿素経路ヒータ57と、尿素送出ポンプ54と、尿素タンクヒータ61とに、電気的に接続されている。尿素経路ヒータ57、尿素送出ポンプ54、尿素タンクヒータ61の作動状態は、それぞれ、DCU70から供給される制御信号S55~S57によって制御することができる。 
 DCU70は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及び、プログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリ、を備えるコンピュータにより構成される。DCU70は、PCM60と双方向に通信可能に接続されており、PCM60の制御指令を受けて制御される。例えば、DCU70が取得している各種情報をPCM60に供給する制御信号を、例えば制御信号S58として示す。
 また、図1に示すように、ターボ過給機5のタービンの上流側の排気通路41上に、排気ガスの圧力を検出する圧力センサ109、及び、排気ガスの温度を検出する温度センサ110が設けられていてもよい。また、ターボ過給機5のタービンの直下流側の排気通路41上に、酸素濃度を検出するO2センサ111が設けられていてもよい。
 更に、排気系EXには、NOX 触媒45の直上流側の排気ガスの温度を検出する温度センサ112と、NOX 触媒45とDPF46との間の排気ガスの温度を検出する温度センサ113と、DPF46の直上流側と直下流側との排気ガスの圧力差を検出する差圧センサ114と、DPF46の直下流側の排気ガスの温度を検出する温度センサ115と、DPF46の直下流側の排気ガス中のNOX の濃度を検出するNOX センサ116と、SCR触媒47の直上流側の排気ガスの温度を検出する温度センサ117と、SCR触媒47の直下流側の排気ガス中のNOX の濃度を検出するNOX センサ118と、スリップ触媒48の直上流側の排気ガス中のPMを検出するPMセンサ119と、が設けられている。これらのセンサ109~119は、それぞれ、検出したパラメータに対応する検出信号S109~S119をPCM60に出力するようになっている。
 更に、本実施形態では、ターボ過給機5は、排気エネルギーが低い低回転域から高回転域まで全域で効率よく高過給を得られる2段過給システムとして構成されている。即ち、ターボ過給機5は、高回転域において多量の空気を過給するための大型ターボチャージャー5aと、低い排気エネルギーでも効率よく過給を行える小型ターボチャージャー5bと、小型ターボチャージャー5bのコンプレッサへの吸気の流れを制御するコンプレッサバイパスバルブ5cと、小型ターボチャージャー5bのタービンへの排気の流れを制御するレギュレートバルブ5dと、大型ターボチャージャー5aのタービンへの排気の流れを制御するウェイストゲートバルブ5eと、を備えており、エンジンEの運転状態(エンジン回転数及び負荷)に応じて各バルブを駆動することにより、大型ターボチャージャー5aと小型ターボチャージャー5bによる過給を切り替えるようになっている。
 また、本実施形態によるエンジンシステム200は、EGR装置43を更に有する。このEGR装置43は、ターボ過給機5のタービンの上流側の排気通路41とターボ過給機5のコンプレッサの下流側(詳しくはインタークーラ8の下流側)の吸気通路1とを接続するEGR通路43aと、EGR通路43aを通過する排気ガスを冷却するEGRクーラ43bと、EGR通路43aを通過させる排気ガスの流量を調整する第1EGRバルブ43cと、EGRクーラ43bをバイパスさせて排気ガスを流すためのEGRクーラバイパス通路43dと、EGRクーラバイパス通路43dを通過させる排気ガスの流量を調整する第2EGRバルブ43eと、を有する。
 <PCMの電気的構成と機能>
 次に、図2を参照して、本実施形態によるエンジンの排気浄化制御装置の電気的構成について説明する。図2は、本実施形態によるエンジンの排気浄化制御装置の電気的構成を示すブロック図である。
 本実施形態によるPCM60は、前述した各種センサ100~119の検出信号S100~S119に加えて、アクセルペダルの開度(アクセル開度)を検出するアクセル開度センサ150や車速を検出する車速センサ151が出力した検出信号S150、S151に基づいて、燃料噴射弁20に対する制御を行うべく、制御信号S20を出力し、また、吸気シャッター弁7に対する制御を行うべく、制御信号S7を出力するようになっている。
 また、PCM60は、DCU70と双方向に通信を行い、例えば所望量の尿素を尿素インジェクタ51から供給するような制御をDCU70に実施させる制御信号S8を出力するようになっている。
 特に、本実施形態のPCM60は、NOX 触媒45におけるNOX の吸蔵量が所定の閾値以上になったとき、NOX 触媒45に流入する排気ガスの空燃比がリッチな状態となるように、エンジンEにおける燃料噴射弁20を制御するようになっている(NOX 触媒再生部として機能するようになっている)。より具体的には、本実施形態のPCM60は、排気ガスの空燃比を目標空燃比(具体的には理論空燃比近傍あるいは理論空燃比よりも小さい所定の空燃比)に設定するべく、燃料噴射弁20から「ポスト噴射」を実施させるようになっている。これにより、NOX 触媒45に吸蔵されていたNOX を還元させることができる(NOX 還元制御)。
 すなわち、本実施形態のPCM60は、運転者のアクセル操作に応じてエンジントルクを出力させるべく気筒内に燃料を噴射するメイン噴射に加えて(基本的には当該メイン噴射においては排気ガスの空燃比がリーンになるように燃料噴射量等が設定される)、このメイン噴射の後に、エンジントルクの出力に寄与しないタイミング(具体的には膨張行程)で、ポスト噴射を行って、排気ガスの空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)にして、NOX 触媒45に吸蔵されたNOX を還元させることができるようになっている。(NOX 触媒45に吸蔵されていたNOX を還元させるための制御は、従来から「DeNOX 制御」と呼ばれている。)
 なお、PCM60は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及び、プログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリ、を備えるコンピュータにより構成され得る。
 <燃料噴射制御>
 次に、本実施形態による燃料噴射制御フローについて説明する。燃料噴射制御フローは、車両のイグニッションがオンにされてPCM60に電源が投入された場合に開始され、所定の周期で繰り返し実行される。
 まず、PCM60は、車両の運転状態を取得する。具体的には、PCM60は、少なくとも、アクセル開度センサ150が検出したアクセル開度、車速センサ151が検出した車速、クランク角センサ100が検出したクランク角、及び、車両の変速機に現在設定されているギヤ段、を取得する。
 次いで、PCM60は、取得された車両の運転状態に基づいて、目標加速度を設定する。具体的には、PCM60は、種々の車速及び種々のギヤ段について規定された加速度特性マップ(予め作成されてメモリなどに記憶されている)の中から、現在の車速及びギヤ段に対応する加速度特性マップを選択し、当該加速度特性マップを参照して現在のアクセル開度に対応する目標加速度を決定する。
 次いで、PCM60は、前記目標加速度を実現するためのエンジンEの目標トルクを決定する。この場合、PCM60は、現在の車速、ギヤ段、路面勾配、路面μなどに基づいて、エンジンEが出力可能なトルクの範囲内で、目標トルクを決定する。
 次いで、PCM60は、前記目標トルクをエンジンEから出力させるべく、当該目標トルク及び現在のエンジン回転数に基づいて、燃料噴射弁20から噴射させるべき燃料噴射量を算出する。この燃料噴射量は、メイン噴射において適用する燃料噴射量(メイン噴射量)である。
 一方、目標加速度を設定する工程から燃料噴射量を算出する工程までのフローと並行して、PCM60は、エンジンEの運転状態に応じた燃料の噴射パターンを設定する。具体的には、PCM60は、DeNOX 制御を行う場合のポスト噴射を行う燃料噴射パターンを設定する。
 この場合、PCM60は、ポスト噴射において適用する燃料噴射量(ポスト噴射量)や、ポスト噴射を行うタイミング(ポスト噴射タイミングなど)を決定する。詳細については、次の<DeNOX 制御>の項において説明する。
 PCM60は、算出されたメイン噴射量、及び、設定された燃料噴射パターンに基づいて(ポスト噴射を行う場合にはポスト噴射量やポスト噴射タイミングも含む)、燃料噴射弁20を制御する。すなわち、PCM60は、所望の燃料噴射パターンにおいて所望の量の燃料が噴射されるように燃料噴射弁20を制御する。
 <DeNOX 制御>
 本実施形態のPCM60は、NOX 触媒45のNOX 吸蔵量が所定量以上である場合、典型的にはNOX 吸蔵量が限界付近にある場合に、NOX 触媒45に吸蔵されたNOX をほぼ0にまで低下させるべく、排気ガスの空燃比を理論空燃比近傍あるいは理論空燃比以下の目標空燃比に継続的に設定するように燃料噴射弁20からポスト噴射させるDeNOX 制御(以下では適宜「アクティブDeNOX 制御」と呼ぶ。)を実行するようになっている。こうすることで、NOX 触媒45に多量に吸蔵されていたNOX を強制的に還元して、NOX 触媒45のNOX 浄化性能を確実に確保するようになっている。
 また、本実施形態のPCM60は、NOX 触媒45のNOX 吸蔵量が所定量未満であっても、車両の加速時に排気ガスの空燃比がリッチ側に変化するときに、NOX 触媒45に吸蔵されたNOX を還元させるべく、排気ガスの空燃比を目標空燃比に一時的に設定するように燃料噴射弁20からポスト噴射させるDeNOX 制御(以下では適宜「パッシブDeNOX 制御」と呼ぶ。)を実行するようになっている。このパッシブDeNOX 制御は、加速時のようにメイン噴射量が増加して排気ガスの空燃比が低下するような状況に乗じて、空燃比を理論空燃比近傍あるいは理論空燃比以下の目標空燃比に設定するようにポスト噴射を行うので、排気ガスの空燃比が低下しない状況(つまり非加速時)においてDeNOX 制御を行う場合よりも、空燃比を目標空燃比に設定するためのポスト噴射量が少なくなる。また、パッシブDeNOX 制御は、車両の加速に乗じて行われるので、比較的高頻度で行われることが期待される。
 本実施形態では、このようなパッシブDeNOX 制御を適用することで、DeNOX による燃費悪化などを抑制しつつ、DeNOX を高頻度で行うことができるようになっている。パッシブDeNOX 制御は比較的短い期間しか行われないが、高頻度で行われるので、NOX 触媒45のNOX 吸蔵量を効率的に低下させることができる。その結果、NOX 触媒45のNOX 吸蔵量が所定量以上になりにくくなるので、パッシブDeNOX 制御よりも多量のポスト噴射量を要するアクティブDeNOX 制御の実行頻度を低下させることができ、DeNOX による燃費悪化を効果的に改善することが可能となる。
 更に、本実施形態のPCM60は、前記のアクティブDeNOX 制御を実行する場合、ポスト噴射させた燃料をエンジンEの筒内において燃焼させることで、排気ガスの空燃比を目標空燃比に設定するようにしている。この場合、PCM60は、ポスト噴射された燃料が筒内において燃焼されるタイミングにおいてポスト噴射を行う。具体的には、PCM60は、エンジンEの膨張行程前半における所定のタイミングを、アクティブDeNOX 制御でのポスト噴射タイミングとして設定する。噴射のタイミングは、例えば、ATDC45°CAである。このようなポスト噴射タイミングをアクティブDeNOX 制御において適用することで、ポスト噴射された燃料がそのまま未燃燃料(つまりHC)として排出されることや、ポスト噴射された燃料によるオイル希釈が、抑制されるようになっている。
 他方で、本実施形態のPCM60は、前記のパッシブDeNOX 制御を実行する場合、ポスト噴射させた燃料をエンジンEの筒内において燃焼させずに未燃燃料として排気通路41に排出させることで、排気ガスの空燃比を目標空燃比に設定するようにしている。この場合、PCM60は、ポスト噴射された燃料が筒内において燃焼されずに未燃燃料として排気通路41に排出されるタイミングにおいてポスト噴射を行う。具体的には、PCM60は、エンジンEの膨張行程後半における所定のタイミングを、パッシブDeNOX 制御でのポスト噴射タイミングとして設定する。噴射のタイミングは、例えば、ATDC110°CAである。原則、このパッシブDeNOX 制御でのポスト噴射タイミングは、前記したアクティブDeNOX 制御でのポスト噴射タイミングよりも遅角側に設定される。このようなポスト噴射タイミングをパッシブDeNOX 制御において適用することで、ポスト噴射された燃料が筒内において燃焼してスモーク(煤)が発生することが抑制されるようになっている。
 <パッシブDeNOX 制御及びアクティブDeNOX 制御を実行する運転領域>
 ここで、図3を参照して、本実施形態においてパッシブDeNOX 制御及びアクティブDeNOX 制御のそれぞれを実行するエンジンEの運転領域について説明する。図3は、横軸にエンジン回転数を示し、縦軸にエンジン負荷を示している。また、図3において、曲線L1は、エンジンEの最大トルク線を示している。
 図3に示すように、本実施形態のPCM60は、エンジン負荷が第1所定負荷Lo1以上で第2所定負荷Lo2(>第1所定負荷Lo1)未満である中負荷域にあり、且つ、エンジン回転数が第1所定回転数N1以上で第2所定回転数N2(>第1所定回転数N1)未満である中回転域にある場合に、つまりエンジン負荷及びエンジン回転数が符号R12に示す運転領域(以下では「アクティブDeNOX 実行領域R12」と呼ぶ。)に含まれる場合に、アクティブDeNOX 制御を実行する。このようなアクティブDeNOX 実行領域R12を採用する理由は以下の通りである。
 前述したように、アクティブDeNOX 制御を実行する場合、ポスト噴射された燃料がそのまま排出されることによるHCの発生やポスト噴射された燃料によるオイル希釈などを抑制する観点から、ポスト噴射された燃料が筒内において燃焼されるタイミングにおいてポスト噴射を行う。本実施形態では、ポスト噴射された燃料を燃焼させたときに、スモークの発生を抑制すると共に、HCの発生(つまり不完全燃焼による未燃燃料の排出)を抑制している。具体的には、ポスト噴射された燃料が燃焼するまでの時間をできるだけかせぐようにし、つまり空気と燃料が適切に混合された状態で着火が生じるようにして、スモーク及びHCの発生を抑制している。このため、アクティブDeNOX 制御時には、適量のEGRガスを導入することで、ポスト噴射された燃料の着火を効果的に遅延させるようにしている。
 アクティブDeNOX 制御時にHCの発生を抑制する理由は、前記のようにEGRガスを導入する場合に、HCもEGRガスとして吸気系INに還流されて、このHCがバインダとなって煤と結合してガスの通路が閉塞してしまうことを防止するためである。加えて、NOX 触媒45の温度が低く、HCの浄化性能(NOX 触媒45中のDOC45aによるHCの浄化性能)が確保されないような領域においてアクティブDeNOX 制御を実行したときに、HCが浄化されずに排出されてしまうことを防止するためである。(アクティブDeNOX 実行領域R12には、そのようなHCの浄化性能が確保されないようなNOX 触媒45の温度が比較的低い領域も含まれ得る。)
 また、アクティブDeNOX 制御時にスモークの発生を抑制する理由は、スモークに対応するPMはDPF46に捕集されるが、このDPF46に捕集されたPMを燃焼除去するためのDPF再生(DeNOX 制御と同様にポスト噴射させる制御)が高頻度で行われて、燃費などが悪化してしまうことを抑制するためである。
 ところで、エンジン負荷が高くなると、目標空燃比を実現するためにエンジンEに導入する空気を絞ることで、ポスト噴射された燃料を適切に燃焼させるのに必要な酸素が足りなくなってスモークやHCが発生しやすくなる傾向が生じる。特に、エンジン負荷が高くなると、筒内温度が高くなり、ポスト噴射された燃料が着火するまでの時間を適切に確保することができず、つまり空気と燃料が適切に混合されていない状態で燃焼が生じ、スモークやHCが発生してしまう場合がある。他方で、エンジン負荷がかなり低い領域では、NOX 触媒45の温度が低く、NOX 触媒45のNOX 還元機能が十分に発揮されなくなる。加えて、この領域では、ポスト噴射された燃料が適切に燃焼しなくなる、つまり失火が発生してしまう。
 なお、以上ではエンジン負荷に関する現象を述べたが、エンジン回転数についても同様の現象が生じる。
 以上のことから、本実施形態では、中負荷域且つ中回転域に対応するエンジンEの運転領域を、アクティブDeNOX 制御を実行するアクティブDeNOX 実行領域R12として採用している。換言すると、本実施形態では、アクティブDeNOX 実行領域R12でのみ、アクティブDeNOX 制御を実行することとし、アクティブDeNOX 実行領域R12以外の運転領域では、アクティブDeNOX 制御の実行を禁止している。このようにアクティブDeNOX 制御の実行を禁止することとしたエンジンEの運転領域では、特にアクティブDeNOX 実行領域R12よりも高負荷側又は高回転側の領域では(符号R13を付した領域)では、SCR触媒47のNOX 浄化性能が十分に確保されているので、SCR触媒47がNOX を浄化することとなり、DeNOX 制御を実行しなくても車両からのNOX の排出を防止することができる。
 また、本実施形態では、SCR触媒47でNOX を浄化させる領域R13よりも更に高負荷側の領域(符号R11を付した領域であり、以下では「パッシブDeNOX 実行領域R11」と呼ぶ。)では、排気ガス量が大きくなり、SCR触媒47でNOX を浄化しきれなくなるので、パッシブDeNOX 制御を実行するようになっている。このパッシブDeNOX 制御では、前記したように、ポスト噴射された燃料が筒内において燃焼されずに未燃燃料として排気通路41に排出されるタイミングにおいてポスト噴射を行う。パッシブDeNOX 実行領域R11では、NOX 触媒45の温度が十分に高く、HCの浄化性能(NOX 触媒45中のDOC45aによるHCの浄化性能)が確保されているので、このように排出された未燃燃料をNOX 触媒45で適切に浄化することができる。
 なお、パッシブDeNOX 制御において、アクティブDeNOX 制御のようにポスト噴射された燃料を筒内において燃焼させると、スモークが発生してしまう。その理由は、エンジン負荷が高い時にアクティブDeNOX 制御の実行を禁止することとした理由と同様である。
 ここで、図3中の矢印A11に示すようにエンジンの運転状態が変化したときのアクティブDeNOX 制御の具体例について説明する。まず、エンジンの運転状態がアクティブDeNOX 実行領域R12に入ると(符号A12参照)、PCM60は、アクティブDeNOX 制御を実行する。そして、エンジンの運転状態がアクティブDeNOX 実行領域R12を外れると(符号A13参照)、PCM60は、アクティブDeNOX 制御を一旦中止する。このときには、SCR触媒47がNOX を浄化することとなる。そして、エンジンの運転状態がアクティブDeNOX 実行領域R12に再度入ると(符号A14参照)、PCM60は、アクティブDeNOX 制御を再開する。こうすることで、NOX 触媒45に吸蔵されたNOX がほぼ0に低下するまで、アクティブDeNOX 制御を終了させないようにする。
 <各触媒の浄化性能と温度範囲との関係>
 図4に示すように、基本的には、NOX 触媒45は、比較的低温域(符号R24により示す領域)においてNOX 浄化性能を発揮し、SCR触媒47は、比較的高温域、具体的にはNOX 触媒45のNOX 浄化性能が発揮される温度域よりも高い温度域(符号R25により示す領域)においてNOX 浄化性能を発揮する。本実施形態では、SCR触媒47により所定値以上のNOX 浄化率が得られる温度範囲の下側の境界値付近の温度を、判定温度(以下では「SCR判定温度」と呼ぶ。)として用いる。
 <ポスト噴射量>
 次に、本実施形態においてDeNOX 制御時に適用するポスト噴射量(以下では「DeNOX 用ポスト噴射量」と呼ぶ。)の算出フローについて説明する。DeNOX 用ポスト噴射量算出フローは、PCM60によって所定の周期で繰り返し実行され、前述の燃料噴射制御フローと並行して実行される。すなわち、燃料噴射制御が行われている最中に、DeNOX 用ポスト噴射量が随時算出される。
 まず、PCM60は、エンジンEの運転状態を取得する。具体的には、PCM60は、少なくとも、エアフローセンサ101によって検出された吸入空気量(新気量)、O2センサ111によって検出された排気ガスの酸素濃度、及び、前述の燃料噴射制御フローにおいて算出されたメイン噴射量、を取得する。また、PCM60は、所定のモデルなどにより求められた、EGR装置43によって吸気系INに還流される排気ガス量(EGRガス量)も取得する。加えて、SCR触媒47に吸着されたNH3 (アンモニア)の量であるNH3 吸着量を取得する。NH3 吸着量は、尿素噴射弁から噴射された尿素噴射量と、DeNOX 制御時に発生するNH3 発生量と、エンジンの運転状態とNOX 触媒の浄化効率とに基づいて推定したSCR触媒に供給されるNOX 量の推定値と、に基づいて逐次推定したNH3 推定値を用いる。しかしながら、別の方法、例えば、SCR触媒47にNH3 吸着量検出センサ47nを設けてNH3 吸着量を取得してもよい。
 次いで、PCM60は、推定したSCR触媒47のNH3 吸着量に基づいて、NOX 触媒45に吸蔵されたNOX を還元するために適用する目標空燃比を設定する。具体的には、PCM60は、アクティブDeNOX 制御を実行する場合に適用する目標空燃比と、パッシブDeNOX 制御を実行する場合に適用する目標空燃比と、のそれぞれを、SCR触媒47のNH3 吸着量に基づいて設定する。この目標空燃比の設定方法については、図5を参照して後述する。
 次いで、PCM60は、設定した目標空燃比を実現するのに必要なポスト噴射量(DeNOX 用ポスト噴射量)を算出する。つまり、PCM60は、排気ガスの空燃比を目標空燃比にするためにメイン噴射量に加えてどれだけのポスト噴射量を適用すればよいかを決定する。この場合、PCM60は、設定したアクティブDeNOX 制御を行う場合の目標空燃比を実現するためのポスト噴射量と、設定したパッシブDeNOX 制御を行う場合の目標空燃比を実現するためのポスト噴射量と、をそれぞれ算出する。
 <目標空燃比の設定>
 図5は、本実施形態による目標空燃比の設定方法についての説明図である。図5は、横軸にSCR触媒47のNH3 吸着量を示し、縦軸に目標空燃比を示している。
 図5において、「λ1」は理論空燃比を示し、この理論空燃比λ1よりもリッチ側の空燃比の領域R21は、NOX 触媒45に吸蔵されていたNOX を還元可能な空燃比の範囲を示し、理論空燃比λ1よりもリーン側の空燃比の領域R22は、NOX 触媒45に吸蔵されていたNOX を還元不可能な空燃比の範囲を示している。また、限度空燃比λ2よりもリッチ側の空燃比の領域R23では、未燃燃料がEGR装置43に供給されてしまうことによるEGR装置43の信頼性の低下の問題が生じる。
 グラフG11は、パッシブDeNOX 制御を実行する場合にSCR触媒47のNH3 吸着量に応じて設定すべき目標空燃比を示しており、グラフG12は、アクティブDeNOX 制御を実行する場合にSCR触媒47のNH3 吸着量に応じて設定すべき目標空燃比を示している。
 目標空燃比を領域R21内においてリッチ側に設定すると、NOX 触媒45に供給されるHC、H2Oの量、すなわち「H」成分の総量が増大され、NOX 触媒45からのNH3 の発生量が増大する。
 グラフG11、G12において、SCR触媒47のNH3 吸着量が比較的少ない場合には、目標空燃比は、排気ガス中の「H」成分の総量が増大され且つNOX 触媒45からのNH3 発生量が増大するように、限度空燃比λ2近傍の値に設定されている。
 これに対し、グラフG11、G12において、SCR触媒47のNH3 吸着量が比較的多い場合には、目標空燃比は、SCR触媒47のNH3 吸着量に応じて、比較的理論空燃比に近い値に設定されている。これにより、DeNOX 制御によりNOX 触媒45から発生されたNH3 がSCR触媒47で吸着しきれずに放出されてしまうことを抑制することができる。
 <アクティブDeNOX 制御実行フラグ設定の具体例>
 次に、アクティブDeNOX 制御実行フラグ設定の具体例について説明する。アクティブDeNOX 制御実行フラグ設定フローは、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローなどと並行して実行される。
 最初に、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、NOX 触媒45の温度と、SCR触媒47温度と、NOX 触媒45のNOX 吸蔵量と、を取得する。この場合、NOX 触媒の温度は、NOX 触媒45の直上流側に設けられた温度センサ112によって検出された温度に基づいて推定される。SCR触媒47の温度は、SCR触媒47の直上流側に設けられた温度センサ117によって検出された温度に基づいて推定される。また、NOX 吸蔵量は、エンジンEの運転状態や排気ガスの流量や排気ガスの温度などに基づいて、排気ガス中のNOX 量を推定し、このNOX 量を積算していくことで推定される。
 次いで、PCM60は、取得されたSCR温度がSCR判定温度(例えば300℃)未満であるか否かを判定し、当該判定の結果がNOであれば、排気ガス流量が所定値未満であるか否かを判定する。
 SCR温度がSCR判定温度未満であるか、SCR温度がSCR判定温度以上であって排気ガス流量が所定値以上である場合、エンジンEの始動後に所定時間が経過しているか否かを判定する。この判定の結果がYESである場合、PCM60は、アクティブDeNOX 制御の実行を許可すべく、アクティブDeNOX 制御実行フラグを「1」に設定する。また、エンジンEの始動後に所定時間が経過していない場合には、NOX 吸蔵量が第1閾値(例えば4g)以上であるか否かを判定し、第1閾値以上であれば、PCM60は、アクティブDeNOX 制御の実行を許可すべく、アクティブDeNOX 制御実行フラグを「1」に設定する。そして、処理は終了する。
 SCR温度がSCR判定温度以上であって排気ガス流量が所定値未満である場合(この場合は、主にSCR触媒47のみによってDeNOX 制御が行われる)、及び、SCR温度がSCR判定温度未満であるがエンジンEの始動後に所定時間が経過していなくてNOX 吸蔵量が第1閾値未満である場合(この場合は、NOX 触媒45のDeNOX が未だ不要であると判断できる)、PCM60は、アクティブDeNOX 制御の実行を禁止すべく、アクティブDeNOX 制御実行フラグを「0」に設定する。そして、処理は終了する。
 <パッシブDeNOX 制御実行フラグ設定の具体例>
 次に、パッシブDeNOX 制御実行フラグ設定の具体例について説明する。パッシブDeNOX 制御実行フラグ設定フローも、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローやアクティブDeNOX  制御実行フラグ設定フローなどと並行して実行される。
 最初に、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、NOX 触媒45の温度と、SCR触媒47の温度と、前述の燃料噴射制御フローで決定された目標トルクと、前述のDeNOX  用ポスト噴射量算出フローで算出されたDeNOX  用ポスト噴射量(具体的にはパッシブDeNOX  制御時に適用するものとして算出されたDeNOX  用ポスト噴射量)と、NOX  触媒45のNOX  吸蔵量と、を取得する。NOX  触媒45の温度、SCR触媒47の温度及びNOX  吸蔵量の求め方は、アクティブDeNOX  制御について前述した通りである。
 次いで、PCM60は、取得されたSCR温度がSCR判定温度(例えば300℃)未満であるか否かを判定し、当該判定の結果がNOであれば、排気ガス流量が所定値未満であるか否かを判定する。
 SCR温度がSCR判定温度未満であるか、SCR温度がSCR判定温度以上であって排気ガス流量が所定値以上である場合、NOX 吸蔵量が第2閾値(例えば2g)以上であるか否かを判定し、第2閾値(例えばg)以上であれば、PCM60は、アクティブDeNOX 制御の実行を許可すべく、アクティブDeNOX 制御実行フラグを「1」に設定する。そして、処理は終了する。
 SCR温度がSCR判定温度以上であって排気ガス流量が所定値未満である場合(この場合は、主にSCR触媒47のみによってDeNOX 制御が行われる)、及び、SCR温度がSCR判定温度未満であってNOX 吸蔵量が第2閾値未満である場合(この場合は、NOX 触媒45のDeNOX が未だ不要であると判断できる)、PCM60は、アクティブDeNOX 制御の実行を禁止すべく、アクティブDeNOX 制御実行フラグを「0」に設定する。そして、処理は終了する。
 <本実施形態によるアクティブDeNOX  制御>
 次に、図6Aを参照して、前記したように設定されたアクティブDeNOX  制御実行フラグに基づき実行される、本実施形態によるアクティブDeNOX  制御について説明する。図6Aは、本実施形態によるアクティブDeNOX  制御を示すフローチャート(アクティブDeNOX  制御フロー)である。このアクティブDeNOX  制御フローは、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローや前述のアクティブDeNOX  制御実行フラグ設定フローなどと並行して実行される。
 まず、ステップS401で、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、エンジン負荷と、エンジン回転数と、NOX  触媒45の温度と、前述のDeNOX  用ポスト噴射量算出フローで算出されたDeNOX  用ポスト噴射量(具体的にはアクティブDeNOX  制御時に適用するものとして算出されたDeNOX  用ポスト噴射量)と、アクティブDeNOX  制御実行フラグ設定フローで設定されたアクティブDeNOX  制御実行フラグの値と、を取得する。
 次いで、ステップS402で、PCM60は、ステップS401で取得されたアクティブDeNOX  制御実行フラグが「1」であるか否かを判定する。つまり、PCM60は、アクティブDeNOX  制御を実行すべき状況であるか否かを判定する。この判定の結果、アクティブDeNOX  制御実行フラグが「1」である場合(ステップS402:Yes)、処理はステップS403に進む。これに対して、アクティブDeNOX  制御実行フラグが「0」である場合(ステップS402:No)、図6Bへ進む。
 ステップS403では、PCM60は、エンジンの運転状態(エンジン負荷及びエンジン回転数)がアクティブDeNOX  実行領域R12(図3参照)に含まれているか否かを判定する。ステップS403の判定の結果、エンジンの運転状態がアクティブDeNOX  実行領域R12に含まれている場合(ステップS403:Yes)、処理はステップS405に進む。これに対して、エンジンの運転状態がアクティブDeNOX  実行領域R12に含まれていない場合(ステップS403:No)、処理はステップS404に進む。
 次いで、ステップS405では、PCM60は、アクティブDeNOX  制御において適用するポスト噴射タイミング(ポスト噴射時期)を設定する。
 本実施形態では、アクティブDeNOX  制御を実行する場合、ポスト噴射させた燃料を筒内において燃焼させることで、排気ガスの空燃比を目標空燃比に設定するようにする。そのようにポスト噴射させた燃料を筒内で燃焼させるためには、膨張行程における比較的進角側のタイミングでポスト噴射を行えばよい。しかしながら、ポスト噴射タイミングを進角させ過ぎると、空気と燃料が適切に混合されていない状態で着火が生じて、スモークが発生してしまう。したがって、本実施形態では、ポスト噴射タイミングを適度に進角側に設定し、具体的には膨張行程前半における適当なタイミングをアクティブDeNOX  制御におけるポスト噴射タイミングとして採用し、また、アクティブDeNOX  制御時に適量のEGRガスを導入することで、ポスト噴射された燃料の着火を遅延させてスモークなどの発生を抑制している。
 再び、図6Aに戻って説明する。ステップS404では、PCM60は、アクティブDeNOX  制御を実行せずに、つまり排気ガスの空燃比を目標空燃比に設定するためのポスト噴射を含む燃料噴射制御を行わずに、当該ポスト噴射を含まない通常の燃料噴射制御を行う(ステップS404)。基本的には、PCM60は、目標トルクに応じた燃料噴射量をメイン噴射させる制御のみを行う。実際には、PCM60は、このステップS404の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS403に戻って、前記したステップS403の判定を再度行う。つまり、PCM60は、アクティブDeNOX  制御実行フラグが「1」である場合、エンジンの運転状態がアクティブDeNOX  実行領域R12に含まれていない間は、通常の燃料噴射制御を行うようにし、エンジンの運転状態がアクティブDeNOX  実行領域R12に含まれるようになると、通常の燃料噴射制御からアクティブDeNOX  制御における燃料噴射制御に切り替えるようにする。例えば、PCM60は、アクティブDeNOX  制御における燃料噴射制御中にエンジンの運転状態がアクティブDeNOX  実行領域R12から外れると、当該燃料噴射制御を中断して通常の燃料噴射制御を行い、この後に、エンジンの運転状態がアクティブDeNOX  実行領域R12に入ると、アクティブDeNOX  制御における燃料噴射制御を再開する。
 次いで、ステップS406では、PCM60は、ステップS401で取得されたDeNOX  用ポスト噴射量が所定のポスト噴射量判定値未満であるか否かを判定する。
 ステップS406の判定の結果、DeNOX  用ポスト噴射量がポスト噴射量判定値未満である場合(ステップS406:Yes)、処理はステップS407に進む。ステップS407では、PCM60は、ステップS401で取得されたDeNOX  用ポスト噴射量をポスト噴射するように燃料噴射弁20を制御する。実際には、PCM60は、このステップS407の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS410に進む。
 他方で、DeNOX  用ポスト噴射量がポスト噴射量判定値以上である場合(ステップS406:No)、処理はステップS408に進む。ステップS408では、PCM60は、ポスト噴射量判定値を超えないポスト噴射量(具体的にはポスト噴射量判定値そのものをDeNOX  用ポスト噴射量として適用する)によって排気ガスの空燃比を目標空燃比に設定すべく、エンジンEに導入される空気の酸素濃度を低下させる制御を行う。この場合、PCM60は、吸気シャッター弁7を閉弁方向に駆動する制御(図6にはこれを記載)、EGRガス量を増加させる制御、及び、ターボ過給機5による過給圧を低下させる制御、のうちの少なくともいずれかを実行して、エンジンEに導入される空気の酸素濃度を低下させる、つまり充填量を低下させる。例えば、PCM60は、ポスト噴射量判定値を適用したDeNOX  用ポスト噴射量によって排気ガスの空燃比を目標空燃比にするのに必要な過給圧を求め、この過給圧を実現するように、実際の過給圧(圧力センサ108によって検出された圧力)とEGRガス量に基づき、吸気シャッター弁7を閉側の所望の開度に制御する。そして、処理はステップS409に進む。
 なお、吸気シャッター弁7は、通常のエンジンEの運転状態においては全開に設定される。他方で、DeNOX  時、DPF再生時及びアイドル運転時などにおいては、基本的には、吸気シャッター弁7は予め定められたベース開度に設定される。また、EGRガスを導入しない運転状態においては、吸気シャッター弁7は過給圧に基づきフィードバック制御される。
 ステップS409では、PCM60は、ポスト噴射量判定値をDeNOX  用ポスト噴射量に適用して、つまりDeNOX  用ポスト噴射量をポスト噴射量判定値に設定して、このDeNOX  用ポスト噴射量をポスト噴射するように燃料噴射弁20を制御する。実際には、PCM60は、このステップS409の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS410に進む。
 アクティブDeNOX  制御を行う際にも、NOX  触媒45は、上述したように、吸蔵したNOX  を還元する際にNH3 を発生し、発生したNH3 を放出する。
 ステップS410では、PCM60は、NOX  触媒45のNOX  吸蔵量がほぼ0になったか否かを判定する。NOX  触媒45のNOX  吸蔵量がほぼ0になった場合(ステップS410:Yes)、処理は終了する。この場合、PCM60は、アクティブDeNOX  制御を終了する。
 これに対して、NOX  触媒45のNOX  吸蔵量がほぼ0になっていない場合(ステップS410:No)、処理はステップS403に戻る。この場合には、PCM60は、アクティブDeNOX  制御を継続する。つまり、PCM60は、NOX  触媒45のNOX  吸蔵量がほぼ0になるまで、アクティブDeNOX  制御を継続する。特に、PCM60は、アクティブDeNOX  制御中にアクティブDeNOX  制御の実行条件(具体的にはステップS403の条件)が成立しなくなり、アクティブDeNOX  制御を中止したとしても、その後にアクティブDeNOX  制御の実行条件が成立したときにアクティブDeNOX  制御を速やかに再開して、NOX  触媒45のNOX  吸蔵量がほぼ0になるようにする。
 <本実施形態によるパッシブDeNOX  制御>
 次に、図6Bを参照して、前記したように設定されたパッシブDeNOX  制御実行フラグに基づき実行される、本実施形態によるパッシブDeNOX  制御について説明する。図6Bは、本実施形態によるパッシブDeNOX  制御を示すフローチャート(パッシブDeNOX  制御フロー)である。このパッシブDeNOX  制御フローは、PCM60によって所定の周期で繰り返し実行されると共に、前述の燃料噴射制御フローや前述のパッシブDeNOX  制御実行フラグ設定フローと並行して実行される。
 まず、ステップS501で、PCM60は、車両における各種情報を取得する。具体的には、PCM60は、少なくとも、前述のDeNOX  用ポスト噴射量算出フローで算出されたDeNOX  用ポスト噴射量(具体的にはパッシブDeNOX  制御時に適用するものとして算出されたDeNOX  用ポスト噴射量)と、前述のパッシブDeNOX  制御実行フラグ設定フローで設定されたパッシブDeNOX  制御実行フラグの値と、を取得する。
 次いで、ステップS502で、PCM60は、ステップS501で取得されたパッシブDeNOX  制御実行フラグが「1」であるか否かを判定する。つまり、PCM60は、パッシブDeNOX  制御を実行すべき状況であるか否かを判定する。この判定の結果、パッシブDeNOX  制御実行フラグが「1」である場合(ステップS502:Yes)、処理はステップS503に進む。これに対して、パッシブDeNOX  制御実行フラグが「0」である場合(ステップS502:No)、パッシブDeNOX  制御を実行せずに、処理は終了する。
 ステップS503では、PCM60は、ステップS501で取得されたDeNOX  用ポスト噴射量をポスト噴射するように燃料噴射弁20を制御する。つまり、パッシブDeNOX  制御を実行する。実際には、PCM60は、このステップS503の処理を、前述の燃料噴射制御フローにおいて実行する。そして、処理はステップS504に進む。
 パッシブDeNOX  制御を行う際、NOX  触媒45は、前述したように、吸蔵したNOX  を還元する際にNH3 を発生し、発生したNH3 を放出する。
 ステップS504では、PCM60は、パッシブDeNOX  制御実行フラグが「0」になったか否かを判定する。その結果、パッシブDeNOX  制御実行フラグが「0」になった場合(ステップS504:Yes)、処理は終了する。この場合、PCM60は、パッシブDeNOX  制御を終了する。これに対して、パッシブDeNOX  制御実行フラグが「0」になっていない場合(ステップS504:No)、即ちパッシブDeNOX  制御実行フラグが「1」に維持されている場合、処理はステップS503に戻る。この場合には、PCM60は、パッシブDeNOX  制御を継続する。つまり、PCM60は、パッシブDeNOX  制御実行フラグが「1」から「0」に切り替わるまで、パッシブDeNOX  制御を継続する。
 <尿素インジェクタの噴射制御>
 次に、本実施形態による尿素インジェクタ51の噴射制御について説明する。当該噴射制御は、SCR触媒47によるNOX  浄化(還元)が行われる際に、実施される。
 具体的には、本実施形態によるエンジンシステム200は、(1)排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の閾値未満であって、且つ、SCR触媒温度検出センサ47tによって検出されるSCR触媒47の温度が所定の閾値(例えば300℃)以上である時、主にSCR触媒47のみによってNOX の浄化が実施されるようになっており、(2)排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の閾値以上である時には、NOX 触媒45によるNOX の浄化と当該SCR触媒47によるNOX の浄化とが併用されるようになっている。
 主にSCR触媒47のみによってNOX の浄化が実施される場合には、例えば、当該時点のSCR触媒47のNH3 吸着量と、目標のNH3 吸着量とを比較して、両者の差分に応じて、尿素インジェクタ51の噴射制御が実施される。
 NOX 触媒45によるNOX の浄化とSCR触媒47によるNOX の浄化とが併用される場合には、図7に示すフローに基づいて、NOX 触媒45からSCR触媒47へのNH3 供給量が推定され、その結果に基づいて尿素インジェクタ51からの尿素の供給量が削減補正される。すなわち、後に詳述される図8乃至図12に示す特性を反映させて、NOX  触媒45の温度、排気ガスの流量、排気ガスの空燃比(例えばA/F)、NOX  触媒の熱劣化度合い、等を入力値として、NOX 触媒45からSCR触媒47へのNH3 供給量、ひいては、好適な尿素の供給量の削減量が算出される。
 ここで、図7に示すように、DCU70は、NOX 触媒に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有していることが好ましい。この場合、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量と、RawNOX の浄化プロセスに対応する削減量と、を互いに独立に考慮することができる。
 本実施形態のDCU70は、第1削減量決定部71が決定した削減量と第2削減量決定部72が決定した削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
 例えば、SCR触媒とNOX 触媒とを併用している場合には、NOX 触媒のDeNOX 制御と合わせて、逐次、尿素噴射弁の噴射量が補正される。NOX 浄化に対し、主にNOX 触媒のみを使用している場合は、SCR触媒でのNOX 浄化領域になり尿素噴射が開始されるときに、尿素噴射弁の噴射量が補正される。例えば、DeNOX 制御によるNH3 導入により、SCRでの目標NH3 吸着量以上のNH3 が吸着されている場合は、目標NH3 以下となるまで、尿素噴射を制限するよう補正する。また、目標NH3 吸着量未満である場合にも、DeNOX 制御により導入されたNH3 分を減量補正した尿素噴射量となるよう補正される。
 <(1)NOX 触媒の温度を考慮した制御>
 さて、本実施形態のDCU70は、NOX 触媒45に流入する排気ガスの空燃比がリッチな状態であって当該NOX 触媒45が吸蔵していたNOX がN2 に還元されている際に、尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正するようになっている。具体的には、DCU70による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度が高温である程、少量であるように設定されている。
 また、本実施形態においては、DCU70による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が大きい程、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対して、より変化が小さいように設定されている。
 また、本実施形態においては、DCU70は、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
 そして、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対してより大きく変化するように設定されている。
 また、第1削減量決定部71による尿素の供給量の削減量及び第2削減量決定部72による尿素の供給量の削減量は、いずれも、排気ガス流量検出センサ45fによって検出される排気ガスの流量が大きい程、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対して、より変化が小さいように設定されている。
 また、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対してより大きく変化するように設定されている。本実施形態では、第2削減量決定部72による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に関わらず、略一定に設定されている。
 そして、DCU70は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
 以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図8A及び図8Bに示す実験データに基づいている。
 図8Aは、λ=0.94の場合において、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高い程、NH3 発生量が減少する傾向が認められる。この原因について、本件発明者は、NOX 触媒45においては、NH3 が発生する反応(例えば、BaNO3+CO+H2→NH3 ,NO+CO+H2→NH3 )(概念的な式)とNH3 を消費する反応(BaNO3+NH3→N2 ,NO+NH3→N2)(概念的な式)との両方が生じているものの、NOX 触媒45の温度が高い場合には前者の反応が後者の反応よりも増えるからである、と考えている。
 また、排気ガスの流量が20g/sから50g/sに増大するにつれて、NOX 触媒45の温度上昇によるNH3 発生量減少の程度が緩和される(傾きが小さくなる)傾向が認められる。
 第1削減量決定部71には、図8Aのような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0134乃至0137に記載した内容に合致するものである。
 図8Bは、λ=0.94の場合において、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高くても、NH3 発生量は、僅かにしか減少していない(グラフから視認することは難しい)。この原因について、本件発明者は、RawNOX は排気ガスとして流れているものであるため、NOX 触媒45に吸蔵されていたNOX (NH3 を発生する反応が生じた直後に、NH3 を消費する反応も生じ得る)とは異なり、NOX 触媒45の温度が高くても、NH3 を消費する反応を生じにくいからである、と考えている。
 また、排気ガスの流量が20g/sから50g/sに増大しても、NH3 発生量はほとんど変化していない(グラフから視認することは難しい)。
 第2削減量決定部72には、図8Bのような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値としながらも、尿素の供給量の削減量を略一定の出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0134乃至0137に記載した内容に合致するものである。
 <(2)排気ガス流量を主に考慮した制御>
 本実施形態のDCU70は、前記した<(1)NOX 触媒の温度を考慮した制御>に対して代替的に、排気ガス流量を主に考慮して尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正できるようになっている。具体的には、DCU70による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が大きい程、多量であるように設定されている。
 更に、排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の第1閾値(例えば25g/s)以上の範囲では、当該第1閾値未満の範囲と比較して、DCU70による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が小さいように設定されている。
 また、本実施形態のDCU70は、前述のように、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
 そして、排気ガス流量検出センサ45fによって検出される排気ガスの流量が所定の第2閾値(例えば25g/s)未満の範囲で、第2削減量決定部72による尿素の供給量の削減量は、第1削減量決定部71による尿素の供給量の削減量よりも、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が大きいように設定されている。
 逆に、排気ガス流量検出センサ45fによって検出される排気ガスの流量が前記第2閾値以上の範囲では、第2削減量決定部72による尿素の供給量の削減量は、第1削減量決定部71による尿素の供給量の削減量よりも、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が小さいように設定されている。
 本実施形態では、排気ガス流量検出センサ45fによって検出される排気ガスの流量が前記第2閾値以上の範囲では、第2削減量決定部72による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に関わらず、略一定に設定されている。
 また、本実施形態では、排気ガス流量検出センサ45fによって検出される排気ガスの流量が前記第2閾値未満の範囲で、第2削減量決定部72による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度が高温である程、排気ガス流量検出部45fによって検出される排気ガスの流量の変化に対して、より変化が大きいように設定されている。
 そして、DCU70は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
 以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図9A及び図9Bに示す実験データに基づいている。
 図9Aは、λ=0.96であってNOX 触媒45の温度が300~350℃である場合の、排気ガス流量に対する、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、排気ガスの流量が多い程、NH3 発生量が増大する傾向が認められる。この原因について、本件発明者は、排気ガスの流量が多い場合、還元剤として作用する成分(「HC」中の「H」や「H2O」中の「H」)の供給量が多くなるためである、と考えている。
 また、NOX 触媒45の温度が高い程、NH3 発生量が減少する傾向が認められる。この原因について、本件発明者は、<(1)NOX 触媒の温度を考慮した制御>で述べた通り、NOX 触媒45においては、NH3 が発生する反応(BaNO3+CO+H2→NH3 ,NO+CO+H2→NH3 )とNH3 を消費する反応(BaNO3+NH3→N2,NO+NH3→N2)との両方が生じているものの、NOX 触媒45の温度が高い場合には前者の反応が後者の反応よりも増えるからである、と考えている。
 また、排気ガスの流量が25g/sから50g/sに増大するにつれて、排気ガスの流量の増大によるNH3 発生量増大の程度が緩和される(傾きが小さくなる)傾向が認められる。特に、排気ガスの流量が所定の第1閾値(例えば25g/s)以上の範囲では、当該第1閾値未満の範囲と比較して、排気ガスの流量の増大に対して、NH3 発生量の増大の程度が小さい。この原因について、本件発明者は、排気ガスの流量が第1閾値以上であると排気ガスの拡散がNH3 発生反応を抑制する方向に影響するためである、と考えている。
 第1削減量決定部71には、図9Aのような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0148乃至0154に記載した内容に合致するものである。
 図9Bは、λ=0.96であってNOX 触媒45の温度が300~350℃である場合の、排気ガス流量に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。排気ガスの流量が所定の第2閾値(例えば25g/s)未満の範囲では、排気ガスの流量変化に対するRawNOX の浄化プロセスでのNH3 発生量の変化は、排気ガスの流量変化に対する吸蔵NOX の浄化プロセスでのNH3 発生量の変化(図9A参照)より、程度が大きいことが認められる。更に、当該範囲においては、NOX 触媒45の温度が高温である程、排気ガスの流量変化に対するRawNOX の浄化プロセスでのNH3 発生量の変化の勾配が大きいことが認められる。
 逆に、排気ガスの流量が前記第2閾値以上の範囲では、排気ガスの流量変化に対するRawNOX の浄化プロセスでのNH3 発生量の変化は、排気ガスの流量変化に対する吸蔵NOX の浄化プロセスでのNH3 発生量の変化(図9A参照)より程度が小さく、略一定であることが認められる。
 第2削減量決定部72には、図9Bのような特性を反映させ、(空燃比と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0148乃至0154に記載した内容に合致するものである。
 <(3)還元剤の量を考慮した制御>
 本実施形態のPCU60は、前記した<(1)NOX 触媒の温度を考慮した制御>または<(2)排気ガス流量を主に考慮した制御>に加えて(組み合わせて)、あるいは当該制御のいずれかに対して代替的に、還元剤(HC、CO)の量を考慮して尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正できるようになっている。具体的には、還元剤の量はPCM60によって設定される目標空燃比によって把握される。DCU70による尿素の供給量の削減量は、PCU60によって設定される目標空燃比が小さい程、還元剤の量が多いと判断して、多量であるように設定されている。(本実施形態では、PCU60が、還元剤量検出部として機能するようになっている。)
 また、本実施形態のPCU60は、前述のように、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
 そして、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、PCU60(還元剤量検出部)によって推定される還元剤の量の変化に対して、より変化が大きいように設定されている。
 また、第1削減量決定部71による尿素の供給量の削減量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が多い程、多量であるように設定されている。
 また、推定される還元剤の量が所定の閾値(例えば空燃比0.97に対応する閾値)以上の範囲では、当該閾値未満の範囲と比較して、第2削減量決定部による尿素の供給量の削減量は、推定される還元剤の量の変化に対して、より変化が小さいように設定されている。
 本実施形態では、推定される還元剤の量が所定の閾値(例えば空燃比0.97に対応する閾値)以上の範囲では、第2削減量決定部72による尿素の供給量の削減量は、PCU60(還元剤量検出部)によって推定される還元剤の量の変化に関わらず、略一定に設定されている。
 また、本実施形態では、第1削減量決定部71による尿素の供給量の削減量は、PCU60(還元剤量検出部)によって推定される還元剤の量の変化に対して、略一定の勾配で変化するように設定されている。
 また、本実施形態では、第2削減量決定部72による尿素の供給量の削減量は、前記閾値未満の範囲において、前記閾値以上の範囲と比較して、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が大きいように設定されている。
 そして、PCU60は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
 以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図10A及び図10Bに示す実験データに基づいている。
 図10Aは、NOX 触媒45の温度が250℃であって排気ガス流量が30g/s~50g/sである場合の、目標空燃比に対する、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、目標空燃比が対応する還元剤の量に略比例して(目標空燃比の減少に略比例して)、NH3 発生量が増大する傾向が認められる。また、排気ガスの流量が多い程、NH3 発生量が増大する傾向が認められる。(後者の原因については、<(2)排気ガス流量を主に考慮した制御>で説明した通りである。)
 第1削減量決定部71には、図10Aのような特性を反映させ、(NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と)目標空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0166乃至0172に記載した内容に合致するものである。
 図10Bは、NOX 触媒45の温度が250℃であって排気ガス流量が30g/s~50g/sである場合の、目標空燃比に対する、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータである。還元剤の量の変化(目標空燃比の変化)に対するRawNOX の浄化プロセスでのNH3 発生量の変化は、還元剤の量の変化に対する吸蔵NOX の浄化プロセスでのNH3 発生量の変化(図10A参照)より、程度が小さいことが認められる。
 また、推定される還元剤の量が所定の閾値(例えば空燃比0.97に対応する閾値)以上の範囲では、当該閾値未満の範囲と比較して、NH3 発生量は、推定される還元剤の量の変化に対して、より変化が小さく、略一定であることが認められる。
 また、推定される還元剤の量が前記閾値未満の範囲においては、前記閾値以上の範囲と比較して、NH3 発生量は、排気ガス流量検出センサ45fによって検出される排気ガスの流量の変化に対して、より変化が大きいことが認められる。
 第2削減量決定部72には、図10Bのような特性を反映させ、(NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度と)目標空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0166乃至0172に記載した内容に合致するものである。
 <(4)NOX 触媒の熱劣化を考慮した制御>
 本実施形態のDCU70は、前記した<(1)NOX 触媒の温度を考慮した制御>、<(2)排気ガス流量を主に考慮した制御>または<(3)還元剤の量を考慮した制御>のいずれかに加えて(組み合わせて)、あるいは当該制御群のいずれかに対して代替的に、あるいは<(1)NOX 触媒の温度を考慮した制御>または<(2)排気ガス流量を主に考慮した制御>と<(3)還元剤の量を考慮した制御>とを組み合わせた制御に更に加えて(組み合わせて)、NOX 触媒45の熱劣化を考慮して尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正できるようになっている。具体的には、DCU70による尿素の供給量の削減量は、PCU60によって推定されるNOX 触媒45の熱劣化の程度が大きい程、多量であるように設定されている。(本実施形態では、PCU60が、NOX 触媒熱劣化検出部として機能するようになっている。)
 NOX 触媒45の熱劣化の程度は、例えば、車両における各種情報の一つである走行距離に基づいて推定され得る。この場合、当該走行距離の情報、及び/または、その関数として導出され得る熱劣化の程度情報(例えばランク付けされた情報等)が、PCU60の内部メモリに記憶され得る。
 あるいは、NOX 触媒45の熱劣化の程度は、NOX 触媒45の製造後の経過時間に基づいて推定されてもよい。例えば、NOX 触媒45の製造時点に関する情報が、車両における各種情報の一つとしてPCM60またはDCU70の内部メモリに記憶されていて、PCM60またはDCU70が、適宜のタイミングで現在時点までの経過時間を算出することで、NOX 触媒45の熱劣化の程度情報を得てもよい。
 本実施形態のPCU60は、前述のように、NOX 触媒45に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部71と、RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部72と、を有している。
 そして、第1削減量決定部71による尿素の供給量の削減量は、第2削減量決定部72による尿素の供給量の削減量よりも、PCU60(NOX 触媒熱劣化検出部)によって推定されるNOX 触媒45の熱劣化の程度の変化に対して、より変化が大きいように設定されている。
 更には、第2削減量決定部72による尿素の供給量の削減量は、PCU60(NOX 触媒熱劣化検出部)によって推定されるNOX 触媒45の熱劣化の程度の変化に関わらず、略一定に設定されている。
 また、本実施形態では、第1削減量決定部71による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度が高温である程、少量であるように設定されている。(第2削減量決定部72による尿素の供給量の削減量は、NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度の変化に対しても、略一定の設定が維持されている。)
 そして、DCU70は、第1削減量決定部71による尿素の供給量の削減量と第2削減量決定部72による尿素の供給量の削減量との和に基づいて、SCR触媒47への尿素の供給量を削減補正するようになっている。
 以上のようなDCU70による尿素の供給量の削減量の決定の仕方は、図11A及び図11Bに示す実験データに基づいている。
 図11Aは、図8Aに対応していて、λ=0.94であって排気ガスの流量が30g/sである場合において、NOX 触媒45に吸蔵されていたNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高い程、NH3 発生量が減少する傾向が認められ、また、NOX 触媒45の熱劣化の程度が高い程、NH3 発生量が増大する傾向が認められる。前者の原因については、<(1)NOX 触媒の温度を考慮した制御>で説明した通りである。後者の原因について、本件発明者は、NOX 触媒45の熱劣化の程度が大きいと、NOX 触媒45においてNH3 を消費する反応(段落0142参照)の方に反応抑制効果が大きく現れ、結果的にNOX 触媒におけるNH3 発生量が増大する、と考えている。
 第1削減量決定部71には、図11Aのような特性を反映させ、(空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度とNOX 触媒の熱劣化の程度情報とを入力値とし、尿素の供給量の削減量を出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0180乃至0187に記載した内容に合致するものである。
 図11Bは、図8Bに対応していて、λ=0.94であって排気ガスの流量が30g/sである場合において、エンジンから排出されるRawNOX の浄化プロセスにおいて発生するNH3 (アンモニア)の量のデータであり、NOX 触媒45の温度が高くても、NH3 発生量はほとんど変化していないし、NOX 触媒45の熱劣化の程度が高くても、NH3 発生量はほとんど変化していない。前者の原因については、<(1)NOX 触媒の温度を考慮した制御>で説明した通りである。後者の原因について、本件発明者は、NOX 触媒45においてRawNOX の浄化プロセスではNH3 を消費する反応が元々僅かしか生じておらず、その反応抑制効果が増大することの影響が顕在化しないためである、と考えている。
 第2削減量決定部72には、図11Bのような特性を反映させ、(空燃比と排気ガス流量検出センサ45fによって検出される排気ガスの流量と)NOX 触媒温度検出センサ45tによって検出されるNOX 触媒45の温度とNOX 触媒の熱劣化の程度情報とを入力値としながらも、尿素の供給量の削減量を略一定の出力値とした対応テーブル(ないし関数)が予め用意される。それは、段落0180乃至0187に記載した内容に合致するものである。
 <(5)NOX 触媒の吸蔵酸素量を更に考慮した制御>
 ここで、図12に、本実施形態によるDeNOX 制御(20秒間実施:NOX 触媒45の温度220℃、排気ガス流量44g/s)のタイムチャートの一例を示す。上から、(a)排気ガスの空燃比(目標空燃比λ=0.96)、(b)排気ガスの温度、(c)排気ガス中のHCの量(g/s)、(d)排気ガス中のCOの量(g/s)、及び、(e)排気ガス中のNOX の量(g/s)、の各々について、NOX 触媒45(NSC)の上流側(前)と下流側(後)との測定値を示している。
 図12のタイムチャートについて説明すれば、時刻T=1130でDeNOX 制御開始要求が出されると、λが徐々に目標とする0.98未満に向かって低下され始める。λを低下させることにより、NSC上流のHC、CO、NOX (RawHC、RawCO、RawNOX )が増加する。λが十分低下する(0.98未満)まではNSCでのNOX 還元反応が起きにくいため、RawNOX とNSCから離脱したNOX とが還元されにくく、NSC下流のNOX が増加する。
 λが十分に低下する(T=1137)と、NOX が還元され易くなるため、NSC下流のNOX は低下し、最終的にほとんどのNOX が還元されるようになる(T=1142)。その後、DeNOX 制御終了要求が出される(T=1155)までの間、λが0.98未満に制御されて、NSCで吸蔵したNOX を離脱させるとともに還元して、吸蔵されたNOX を還元浄化するDeNOX 制御が継続される(RawNOX も浄化される)。
 一方で、前述したように、DeNOX 制御によりNH3 が発生する。(f)はNH3 発生量の推定値である。DeNOX 制御開始に伴いλが低下されると、RawHC、RawCOが増加する一方で、NSCに吸蔵されている酸素(吸蔵酸素)と、RawHC、RawCOと、が反応して、NH3 発生の要因となるNSC内のHC、COが酸化されて消失するため、NH3 は発生しない。このNOX 触媒45の吸蔵酸素は、NOX の還元反応によって発生するNH3 と反応することで消費されていき、やがてゼロとなる。
 吸蔵酸素がゼロになると、NSC内でHC、COが存在するようになるため、NH3 が発生し始める。そこで、T=1140以前は、NH3 発生ゼロとし、T=1140以降で、後述する図12の制御ロジックでのNH3 量の推定を開始するようにしている。つまり、DeNOX 制御開始から、T=1140までの間、ディレーが設けられている。
 このディレーにより、尿素インジェクタ51によるSCR触媒47への尿素の供給量を削減補正する制御は、DeNOX 制御が開始された後、所定時間はNOX 触媒45でのNH3 発生量がゼロであることが考慮される。
 ここで、本件発明者の知見によれば、排気ガスの流量が多い程、及び/または、空燃比がよりリッチである程、NOX 触媒45においてNH3 が発生する反応が促されるため、NOX 触媒45から解放された酸素がより短い時間で消費される。
 従って、前記ディレー時間は、排気ガス流量検出センサ45fによって検出される排気ガスの流量が多い程、及び/または、前記空燃比がよりリッチである程、短く設定されることが好ましい。
 前記ではディレーで吸蔵酸素の影響を反映したが、別の方法として、NOX 触媒吸蔵酸素量検出部(例えばエアフロセンサや燃料噴射量等の情報からNSCに供給される酸素を推定し、この供給酸素に基づいて吸蔵酸素量を推定する一方で、HCとCOとの反応により消費された吸蔵酸素量を推定することで、現在の吸蔵酸素量を推定する)を設け、NOX 触媒吸蔵酸素量検出部によって検出ないし推定される吸蔵酸素量がゼロになるまでの間、NH3 発生量がゼロであると判断してもよい。
 なお、以上の説明において、尿素の供給量の削減補正が開始されない状態というのは、基本的には尿素の供給量の削減量がゼロであることを意味するが、尿素の供給量の削減量が極めて僅かである場合をも含むものと理解されるべきである。
 更に広く当該制御態様を規定するならば、尿素の供給量の削減量が、NOX 触媒吸蔵酸素量検出部によって検出ないし推定される吸蔵酸素量が多い程、少量であるように設定される態様である、と表現することもできる。
 <(6)DeSOX 制御時の尿素インジェクタの噴射制御>
 以上に説明したDeNOX 制御時の尿素インジェクタ51の噴射制御は、DeSOX 制御時の尿素インジェクタ51の噴射制御にも応用できる。DeSOX 制御は、NOX 触媒45におけるS被毒量が所定の閾値以上になった時、例えば、NOX 触媒45のPM再生時や、当該車両の所定の走行距離到達時など、に実施される。
 但し、DeNOX 制御時とは異なり、DeSOX 制御時には、NOX 触媒45がDeSOX 制御用の高温状態(600℃~650℃)とされ、当該高温状態を維持するために間欠的なリーン運転が実施される(例えば、30secリッチ→30secリーン→30secリッチ→30secリーン→ ・・・)。
 従って、DeSOX 制御時の尿素インジェクタ51の噴射制御のために、DeNOX 制御時の尿素インジェクタ51の噴射制御の内容を修正することが必要である。
 具体的には、DeSOX 制御時には、NOX 触媒45が600℃~650℃という高温状態とされることにより、吸蔵NOX が還元されないまま脱離する(NOX のままSCR触媒47へと供給されてしまう)という現象が生じる。また、DeSOX 制御時には、間欠的なリーン運転が実施されることにより、実質的な空燃比がリーン側にシフトする。これらの2つの現象は、いずれも、NOX 触媒45でのNH3 発生量を低減する方向に影響する。
 従って、DeNOX 制御のために、例えば図8乃至図12に示す特性を反映させて、NOX  触媒45の温度、排気ガスの流量、排気ガスの空燃比、NOX  触媒の熱劣化度合い、等を入力値として、NOX 触媒45からSCR触媒47へのNH3 供給量、ひいては好適な尿素の供給量の削減量、が算出されるようになっている場合に、当該削減量の算出方法をDeSOX 制御にも適用するためには、当該削減量を低減する(より少量にする)修正が必要である(図7参照)。
 この修正に際しては、NOX 触媒45の吸蔵NOX の脱離の影響をより正確に反映するべく、NOX 触媒45のNOX の吸蔵量を加味することが好ましい。NOX 触媒45のNOX の吸蔵量が相対的に少なければ、NOX 触媒45での吸蔵NOX の脱離の影響も相対的に小さくなるからである。
 更に、NOX 触媒45のNOX の吸蔵量を判断するにあたっては、NOX 触媒45のS被毒量を考慮することも有効であり得る。S被毒しているNOX 触媒45は、その分だけ、NOX の吸蔵量が少なくなっている筈だからである。NOX 触媒45のS被毒量は、予め実験で測定したエンジンの運転状態(エンジン負荷、エンジン回転)に応じたS発生マップに基づいて推定すればよい。
20  燃料噴射弁
41  排気通路
45  NOX 触媒
45a 酸化触媒
45t NOX 触媒温度検出センサ
45f 排気ガス流量検出センサ
45n NOX 吸蔵量検出センサ
45o 酸素センサ(吸蔵酸素量検出センサ)
47  SCR触媒
47t SCR触媒温度検出センサ
47n NH3 吸着量検出センサ
51  尿素インジェクタ(NH3 供給手段)
53  尿素供給経路
54  尿素送出ポンプ
55  尿素タンク
60  PCM
70  DCU(NH3 供給量制御手段)
71  第1削減量決定部
72  第2削減量決定部
200 エンジンシステム
E   エンジン
EX  排気系
FS  燃料供給系
IN  吸気系
λ1  理論空燃比
λ2  限度空燃比

Claims (10)

  1.  エンジンの排気通路に設けられ、流入する排気ガスの空燃比が理論空燃比よりもリーンな状態である時には当該排気ガス中のNOX を吸蔵すると共に、流入する排気ガスの空燃比が理論空燃比よりもリッチな状態である時には吸蔵していたNOX をN2 に還元するNOX 触媒と、
     前記NOX 触媒に流入する排気ガスの空燃比がリッチな状態となるように、前記エンジンにおける燃料噴射弁を制御するNOX 触媒再生部と、
     前記NOX 触媒の下流の排気通路に設けられ、NH3 との反応によって当該NOX を浄化するSCR触媒と、
     前記SCR触媒にNH3 ないしNH3 原料を供給してNH3 を吸着させるNH3 供給部と、
     前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制御するNH3 供給量制御部と、
     前記排気ガスの流量を検出ないし推定する排気ガス流量検出部と、
    を備え、
     前記NH3 供給量制御部は、前記NOX 触媒再生部によるNOX 触媒再生を実行した場合には、NOX 触媒再生を実行しない場合と比べ、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を少なくするようになっており、
     前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が多い程、少なくなるように設定されている
    ことを特徴とするエンジンの排気浄化制御装置。
  2.  前記NH3 供給量制御部は、前記NOX 触媒再生部によるNOX 触媒再生を実行した場合には、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を削減補正するようになっており、
     前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が多い程、多量であるように設定されている
    ことを特徴とする請求項1に記載のエンジンの排気浄化制御装置。
  3.  前記排気ガスの流量が所定の第1閾値以上の範囲では、当該第1閾値未満の範囲と比較して、前記NH3 供給量制御部による前記NH3 ないしNH3 原料の供給量の削減量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が小さいように設定されている
    ことを特徴とする請求項2に記載のエンジンの排気浄化制御装置。
  4.  前記NH3 供給量制御部は、
     前記NOX 触媒に吸蔵されていたNOX の浄化プロセスに対応する削減量を決定する第1削減量決定部と、
     前記RawNOX の浄化プロセスに対応する削減量を決定する第2削減量決定部と、を有しており、
     前記排気ガスの流量が所定の第2閾値未満の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記第1削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量よりも、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が大きいように設定されている
    ことを特徴とする請求項3に記載のエンジンの排気浄化制御装置。
  5.  前記排気ガスの流量が前記第2閾値以上の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記第1削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量よりも、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が小さいように設定されている
    ことを特徴とする請求項4に記載のエンジンの排気浄化制御装置。
  6.  前記排気ガスの流量が前記第2閾値以上の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に関わらず、略一定に設定されている
    ことを特徴とする請求項5に記載のエンジンの排気浄化制御装置。
  7.  前記NOX 触媒の温度を検出ないし推定するNOX 触媒温度検出部を更に備え、
     前記排気ガスの流量が前記第2閾値未満の範囲で、前記第2削減量決定部による前記NH3 ないしNH3 原料の供給量の削減量は、前記NOX 触媒温度検出部によって検出ないし推定される前記NOX 触媒の温度が高温である程、前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量の変化に対して、より変化が大きいように設定されている
    ことを特徴とする請求項4乃至6のいずれかに記載のエンジンの排気浄化制御装置。
  8.  前記NH3 供給量制御部は、前記第1削減量決定部における前記NH3 ないしNH3 原料の供給量の削減量と前記第2削減量決定部における前記NH3 ないしNH3 原料の供給量の削減量とに基づいて、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を削減補正するようになっている
    ことを特徴とする請求項4乃至7のいずれかに記載のエンジンの排気浄化制御装置。
  9.  前記SCR触媒の温度を検出ないし推定するSCR触媒温度検出部を更に備え、
     前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度検出部によって検出ないし推定される前記SCR触媒の温度が所定の閾値未満である時には、主に前記NOX 触媒のみによってNOX の浄化が実施され、
     前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が所定の閾値未満であって、且つ、前記SCR触媒温度検出部によって検出ないし推定される前記SCR触媒の温度が所定の閾値以上である時には、主に前記SCR触媒のみによってNOX の浄化が実施され、
     前記排気ガス流量検出部によって検出ないし推定される前記排気ガスの流量が所定の閾値以上である時には、前記NOX 触媒によるNOX の浄化と前記SCR触媒によるNOX の浄化とが併用される
    ことを特徴とする請求項1乃至8のいずれかに記載のエンジンの排気浄化制御装置。
  10.  主に前記NOX 触媒のみによってNOX の浄化が実施される際、前記NH3 供給量制御部は、前記NH3 供給部による前記SCR触媒へのNH3 ないしNH3 原料の供給量を制限するようになっており、
     主に前記SCR触媒のみによってNOX の浄化が実施される際、前記NOX 触媒再生部の作動が制限されるようになっている
    ことを特徴とする請求項9に記載のエンジンの排気浄化制御装置。
PCT/JP2017/037231 2016-10-19 2017-10-13 エンジンの排気浄化制御装置 WO2018074368A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/343,001 US10858976B2 (en) 2016-10-19 2017-10-13 Exhaust gas purification controller for engine
EP17862507.5A EP3524788B1 (en) 2016-10-19 2017-10-13 Engine exhaust purification control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205445A JP6268685B1 (ja) 2016-10-19 2016-10-19 エンジンの排気浄化制御装置
JP2016-205445 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074368A1 true WO2018074368A1 (ja) 2018-04-26

Family

ID=61074667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037231 WO2018074368A1 (ja) 2016-10-19 2017-10-13 エンジンの排気浄化制御装置

Country Status (4)

Country Link
US (1) US10858976B2 (ja)
EP (1) EP3524788B1 (ja)
JP (1) JP6268685B1 (ja)
WO (1) WO2018074368A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102231930B1 (ko) * 2019-10-15 2021-03-25 한국화학연구원 선택적 촉매 환원 방법 및 선택적 촉매 환원 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518398B1 (ja) 1971-05-13 1976-03-16
JP2008190461A (ja) * 2007-02-06 2008-08-21 Mitsubishi Motors Corp 排ガス浄化装置及び排ガス浄化装置の脱硫方法
JP4347076B2 (ja) 2004-01-30 2009-10-21 本田技研工業株式会社 内燃機関の排気浄化装置
JP2010112345A (ja) 2008-11-10 2010-05-20 Mitsubishi Motors Corp 排気浄化装置
JP2010116784A (ja) * 2008-11-11 2010-05-27 Mitsubishi Motors Corp 内燃機関の排気浄化装置
WO2014115303A1 (ja) * 2013-01-25 2014-07-31 トヨタ自動車株式会社 内燃機関の排気浄化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518398B2 (ja) 1999-03-11 2004-04-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7213395B2 (en) 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
DE102008043706B4 (de) 2008-11-13 2013-09-05 Ford Global Technologies, Llc Verfahren zur Reduktion von Stickoxiden in Abgasen
US9517437B2 (en) * 2015-03-02 2016-12-13 General Electric Company Systems and methods for controlling aftertreatment systems
KR101683512B1 (ko) 2015-03-30 2016-12-07 현대자동차 주식회사 린 녹스 트랩의 재생 시 환원되는 질소산화물의 양을 계산하는 방법 및 배기 가스 정화 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518398B1 (ja) 1971-05-13 1976-03-16
JP4347076B2 (ja) 2004-01-30 2009-10-21 本田技研工業株式会社 内燃機関の排気浄化装置
JP2008190461A (ja) * 2007-02-06 2008-08-21 Mitsubishi Motors Corp 排ガス浄化装置及び排ガス浄化装置の脱硫方法
JP2010112345A (ja) 2008-11-10 2010-05-20 Mitsubishi Motors Corp 排気浄化装置
JP2010116784A (ja) * 2008-11-11 2010-05-27 Mitsubishi Motors Corp 内燃機関の排気浄化装置
WO2014115303A1 (ja) * 2013-01-25 2014-07-31 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
US20200056521A1 (en) 2020-02-20
EP3524788A4 (en) 2019-08-14
JP2018066321A (ja) 2018-04-26
JP6268685B1 (ja) 2018-01-31
EP3524788B1 (en) 2020-12-09
US10858976B2 (en) 2020-12-08
EP3524788A1 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6268688B1 (ja) エンジンの排気浄化制御装置
US20180038301A1 (en) Exhaust emission control system of engine
JP6230006B1 (ja) エンジンの排気浄化装置
JP6268685B1 (ja) エンジンの排気浄化制御装置
JP6270253B1 (ja) エンジンの排気浄化制御装置
JP6270247B1 (ja) エンジンの排気浄化装置
JP6268686B1 (ja) エンジンの排気浄化制御装置
JP6268687B1 (ja) エンジンの排気浄化制御装置
JP6230008B1 (ja) エンジンの排気浄化装置
JP6230011B1 (ja) エンジンの排気浄化制御装置
JP6230007B1 (ja) エンジンの排気浄化装置
JP6230009B1 (ja) エンジンの排気浄化装置
JP6270246B1 (ja) エンジンの排気浄化装置
JP6270245B1 (ja) エンジンの排気浄化装置
JP7147214B2 (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP7106923B2 (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP6649634B2 (ja) エンジンの排気浄化制御装置
US10329980B2 (en) Exhaust emission control system of engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017862507

Country of ref document: EP

Effective date: 20190507