WO2018074366A1 - 火災発生を検出するための赤外線カメラを備えたレーザ加工装置、およびレーザ加工装置用の火災発生検出カメラ - Google Patents

火災発生を検出するための赤外線カメラを備えたレーザ加工装置、およびレーザ加工装置用の火災発生検出カメラ Download PDF

Info

Publication number
WO2018074366A1
WO2018074366A1 PCT/JP2017/037228 JP2017037228W WO2018074366A1 WO 2018074366 A1 WO2018074366 A1 WO 2018074366A1 JP 2017037228 W JP2017037228 W JP 2017037228W WO 2018074366 A1 WO2018074366 A1 WO 2018074366A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser processing
camera
fire
axis direction
infrared camera
Prior art date
Application number
PCT/JP2017/037228
Other languages
English (en)
French (fr)
Inventor
田中 裕介
秀二朗 平井
佐藤 和隆
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016205675A external-priority patent/JP6371358B2/ja
Priority claimed from JP2016205677A external-priority patent/JP6401764B2/ja
Priority claimed from JP2016205676A external-priority patent/JP6259886B1/ja
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2018074366A1 publication Critical patent/WO2018074366A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions

Definitions

  • the present invention is a laser processing apparatus having a laser processing head that is relatively movable in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction with respect to a workpiece located in a laser processing region,
  • the present invention relates to a laser processing apparatus having a function of detecting a fire occurrence in a space above the laser processing region.
  • the present invention is a laser processing apparatus having a laser processing head that is relatively movable in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction with respect to a workpiece located in the laser processing region.
  • the present invention also relates to a laser processing apparatus including an infrared camera for detecting a fire around the laser processing head.
  • the present invention is a fire detection camera that is installed in a laser processing apparatus and is suitable for detecting a fire occurrence around a laser processing head, and is a camera that detects laser light reflected from a laser processing position, scattered spatter, etc.
  • the present invention relates to a fire occurrence detection camera having a function of protecting a main body.
  • a sensor is arranged at a place where a fire is likely to occur in the laser processing apparatus, and the occurrence of the fire is detected by this sensor (for example, see Patent Documents 1 and 2).
  • Patent Document 1 is a configuration in which a machining head cover surrounding a laser machining head is provided so as to be movable up and down. When a fire occurs in the processing head cover, the fire is detected by a fire detection sensor provided in the processing head cover.
  • the configuration described in Patent Document 2 is a configuration that detects the occurrence of a fire in a dust collector in a laser processing apparatus, and includes a fire detection sensor in a portion through which hot air passes when a fire occurs.
  • the fire detection sensors in Patent Documents 1 and 2 are temperature sensors, and are configured to detect a fire as a fire occurrence when the temperature around the temperature sensor installation portion rises above a predetermined temperature due to the occurrence of a fire. Therefore, there is a large time difference from the beginning of the fire until the fire is detected. In other words, the occurrence of a fire is not detected until the fire has occurred and the ambient temperature has risen to some extent. Therefore, there is a problem that the occurrence of a fire is not detected until the fire has progressed to a certain size.
  • Patent Document 1 The configuration described in Patent Document 1 is a configuration in which a machining head cover surrounding a laser machining head in a laser machining apparatus is provided so as to be movable up and down with respect to the laser machining head. In this configuration, the lower end of the machining head cover is lowered so as to contact the workpiece and laser machining of the workpiece is performed. On the other hand, when spatter or the like is scattered during laser machining and a fire occurs in the machining head cover, A fire detection sensor in the head cover detects a fire.
  • the processing head cover it is possible to prevent the processing head cover from scattering spatter and the like from the laser processing position to the surroundings.
  • the processing head cover is in a lowered state. Therefore, for example, if a protrusion is formed on the workpiece, the machining head cover may interfere with the protrusion. Therefore, there is a problem that it is difficult to perform laser processing at a position close to the protruding portion.
  • the laser processing position is also imaged by the infrared camera, the high temperature at the laser processing position is detected, and it may be erroneously detected as a fire occurrence. Therefore, it is necessary to exclude the laser processing position from the fire detection area by the infrared camera.
  • the laser processing apparatus is provided with means for detecting the occurrence of a fire.
  • Patent Document 1 includes a processing head cover that surrounds the laser processing head so as to be movable up and down with respect to the laser processing head, and a fire detection sensor that detects a temperature rise in the processing head cover.
  • This is a configuration provided in the head cover.
  • the structure of patent document 2 is a structure which detects the hot air discharged
  • Patent Documents 1 and 2 are configured to detect the occurrence of a fire with a temperature sensor, it is considered effective for detecting the occurrence of a fire in a specific narrow region in a laser processing apparatus.
  • a fire may occur around the laser processing head due to sputtering or the like scattered from the laser processing position. Therefore, an infrared camera can be used to detect a relatively wide range of fires. In this case, it is necessary to protect the infrared camera from scattered spatter and laser light reflected from the laser processing position.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a laser processing apparatus including an infrared camera for detecting the occurrence of a fire. It is another object of the present invention to provide a laser processing apparatus capable of performing fire detection without erroneously detecting the laser processing position as a fire occurrence location. It is another object of the present invention to provide a fire occurrence detection camera that is installed in a laser processing apparatus and is suitable for detecting the occurrence of a fire. According to one aspect of the present invention, a laser processing head that performs laser processing of a workpiece by moving relative to the workpiece located in the laser processing region, and a fire occurrence in the space above the laser processing region is detected. An infrared camera and a laser processing apparatus are provided.
  • the infrared camera is provided at a position higher than the laser processing position of the workpiece.
  • the laser processing head is provided so as to be capable of reciprocating in at least one direction of the X axis direction or the Y axis direction relative to the workpiece. It is provided outside the moving area of the laser processing head.
  • the infrared camera is provided at a position where the periphery of the laser processing head is imaged from the X-axis direction.
  • the infrared camera is provided on an end portion side of the guide beam.
  • a guide beam that is long in the Y-axis direction and is movable in the X-axis direction at a position above a laser processing region in which laser processing of a workpiece is performed, and the guide beam has a Y-axis direction.
  • a laser processing head for performing laser processing of a workpiece which is provided on a slider supported movably on the workpiece, and which is provided at a position away from a reference position in the X-axis direction of the guide beam.
  • a first infrared camera for detecting the occurrence of a fire around the machining head, and a second infrared ray detecting device for detecting the occurrence of a fire around the laser machining head provided on the Y-axis end of the guide beam.
  • a laser processing apparatus comprising an infrared camera is provided.
  • the first infrared camera is provided on one end side in the X axis direction and one end side in the Y axis direction with the optical axis directed in the X axis direction, and the second infrared camera. Is provided on one end side of the guide beam in the Y-axis direction with the optical axis directed in the Y-axis direction.
  • the imaging directions of the first infrared camera and the second infrared camera intersect with each other, and have a relationship of complementing the blind spot.
  • the first infrared camera is oriented horizontally in the X-axis direction at a height position between the highest and lowest positions of a laser nozzle provided in the laser processing head. Are provided.
  • the first infrared camera is located at a position away from an end in the X-axis direction of a plate-like sputter guard that is long in the X-axis direction in the laser processing region.
  • a plate-like sputter guard that is long in the X-axis direction in the laser processing region.
  • the infrared camera is a camera including an infrared detection unit, and a camera body including the infrared detection unit on a front surface is provided in a box-shaped casing body, and the casing body is provided.
  • a detection window provided in a portion corresponding to the infrared detection unit, a fluid supply port for supplying a cooling fluid to the inside for cooling the camera body, and a casing body, and the camera body
  • the detection window is closed by a protective plate that can transmit infrared rays.
  • the infrared camera for detecting the occurrence of fire in the space above the laser processing region in the laser processing apparatus is provided at a position higher than the laser processing position of the workpiece, For example, when a fire occurs around the laser processing head, a gathered portion having a predetermined temperature or more is obtained in the pixels of the infrared camera. Therefore, it is possible to detect the occurrence of a fire in the initial stage before the fire spreads.
  • a laser processing head provided so as to be relatively movable in at least one of the X, Y, and Z axis directions with respect to a workpiece located in a laser processing region, and the laser processing
  • An infrared camera provided at a position separated from the head in the X-axis direction and / or Y-axis direction for detecting the occurrence of a fire around the laser processing head, and a screen partition function for partitioning the display screen up and down;
  • a laser processing apparatus comprising: a laser processing position set by a processing head so as to be excluded from the upper screen.
  • the display unit is set to a non-detection area in which a lower screen in the display screen divided vertically is not subjected to fire detection.
  • the infrared camera has a vertical center position of a viewing angle in the infrared camera that moves integrally with the laser processing head in the X-axis direction or the Y-axis direction.
  • the position is set higher than the position.
  • the display unit is set such that a lower portion including a laser nozzle provided in the laser processing head is excluded from the upper screen.
  • the infrared camera is provided in a horizontal direction.
  • the upper screen of the imaging screen captured by the infrared camera is set as a detection area for detecting the occurrence of a fire.
  • the laser machining position by the laser machining head is set to be excluded regardless of the movement of the laser machining head. Therefore, the laser processing position is not included in the detection area, and a fire detection is not erroneously detected.
  • a fire detection unit a box-shaped casing body, a camera body provided in the casing body, the fire detection unit provided on a front surface, and the fire in the casing body
  • a fire occurrence detection comprising: a detection window provided in a portion corresponding to the detection unit; and a protection plate that is transparent to infrared rays and is closed to protect the fire detection unit of the camera body.
  • a camera is provided.
  • the casing body includes a fluid supply unit for supplying a cooling fluid to the inside in order to cool the camera body.
  • the camera body has a fluid passage through which the cooling fluid flows, which is continuous over the front surface, the lower surface or the side surface, and the rear surface of the camera body.
  • a fire detection unit, a camera main body provided with the fire detection unit on a front surface, and a fluid passage are formed across three surfaces of the front surface, the lower surface, the side surface, and the rear surface of the camera main body. Therefore, a front cover having a fluid path forming member disposed over the front surface, lower surface or side surface and rear surface of the camera body, and a detection window at a position corresponding to the fire detection unit provided on the front surface of the camera body A front portion of the fluid path forming member that is freely sandwiched between the front cover and the front surface of the camera body, and a casing body that is internally mounted on the camera body and can be attached to the front cover.
  • a portion corresponding to the rear surface of the fluid path forming member is freely sandwiched between the casing main body and the rear surface of the camera main body, and the casing main body and the camera book A fire comprising: a corresponding portion of the fluid path forming member that can be freely sandwiched between a lower surface or a side surface of the fluid; and a fluid supply port provided in the casing body for supplying a cooling fluid into the casing body.
  • An outbreak detection camera is provided.
  • the detection window of the front cover has a protective plate that can transmit infrared rays.
  • the camera body of the infrared camera is provided in the casing body. Therefore, the optical system of the camera body can be protected from reflected light from the laser processing position and scattered spatter. Further, the camera body can be easily cooled by flowing the cooling fluid into the casing body.
  • FIG. 1 is a side view conceptually and schematically showing the overall configuration of a laser processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the overall configuration of the laser processing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a schematic perspective view showing that the first and second infrared cameras are arranged in the intersecting direction in the laser processing apparatus according to the embodiment of the present invention.
  • FIG. 4 is a schematic view showing a positional relationship among the first infrared camera, the sputter guard, and the laser processing head in the laser processing apparatus according to the embodiment of the present invention.
  • FIG. 5 is a front view showing the overall configuration of the infrared camera in the laser processing apparatus according to the embodiment of the present invention.
  • FIG. 6 is a perspective view showing a state in which the infrared camera in the laser processing apparatus according to the embodiment of the present invention is housed in the casing body.
  • FIG. 7 is an exploded perspective view of the laser processing apparatus according to the embodiment of the present invention with the casing body disassembled.
  • a laser processing apparatus 1 includes a machine base 3. As shown schematically in FIG. 2, the overall structure of the machine base 3 has a rectangular parallelepiped shape that is long in the X-axis direction.
  • a work table 5 is provided on the upper surface of the machine base 3.
  • the work table 5 is provided with a dust collection chamber 7 partitioned into a plurality of parts in the X-axis direction.
  • a pallet or a sword mountain table (not shown) supporting a plate-like workpiece W is carried in and out in the X-axis direction.
  • the upper side of the dust collection chamber 7 is a laser processing area where the workpiece W is laser processed.
  • a laser processing head 9 is provided so as to be relatively movable in the X, Y, and Z axis directions. That is, guide rails 11 in the X-axis direction are provided on both sides of the machine base 3 in the Y-axis direction.
  • the guide rail 11 supports both ends of the guide beam 13 that is long in the Y-axis direction in the Y-axis direction so as to be movable.
  • the guide beam 13 is provided with a slider 15 that can be moved and positioned in the Y-axis direction.
  • the slider 15 is provided with the laser processing head 9 so as to be movable up and down. That is, the laser processing head 9 is provided so as to be relatively movable with respect to the workpiece W in the X, Y, and Z axis directions.
  • the guide beam 13 is moved and positioned in the X-axis direction under the control of a control device (not shown). Further, by moving and positioning the slider 15 in the Y-axis direction and positioning the laser machining head 9 vertically, laser machining can be performed on the workpiece W positioned at the pass line height position in the laser machining area. it can.
  • laser processing is performed on the workpiece W
  • spatter is scattered from the laser processing position of the workpiece W to the periphery. Therefore, in order to prevent spatter scattering, the upper side of the machine base 3 on both sides in the Y-axis direction is in the X-axis direction.
  • a long plate-like spatter guard 17 (see FIG. 1) is vertically provided.
  • a hose connected to the laser processing head 9 or a joint thereof is sputtered from the laser processing position or reflected light of the laser beam from the laser processing position.
  • a fire may occur. Therefore, in the present embodiment, a fire detection means for detecting the occurrence of a fire in a space above the upper surface of the workpiece W (not including the upper surface of the workpiece W) is provided in the laser processing region.
  • a first infrared camera 19 as a fire occurrence detection camera is provided in a horizontal direction (in a direction in which the intensity of light incident on the camera at a horizontal angle is maximized). More specifically, the first infrared camera 19 is located at one end side in the X-axis direction away from the reference position in the X-axis direction of the guide beam 13 and away from the reference position in the Y-axis direction. It is provided at a position on one end side in the Y-axis direction (position shown in FIG. 3).
  • the first infrared camera 19 is provided at a height position where the periphery of the laser processing head 9 is imaged while avoiding spatter scattered from the laser processing position during laser processing of the workpiece W. More specifically, as shown in FIG. 4, the X-axis of the sputter guard 17 is higher than the height position (the position of the solid line shown in FIG. 4) when the laser nozzle 22 is lowered during laser processing. It is arranged at a position away from the end of the direction.
  • the sputter guard 17 is in the same plane as the plane (vertical plane) on which the sputter guard 17 is disposed so that the sputter guard 17 does not adversely affect the photographing by the first infrared camera 19, and the sputter guard 17 has a Y-axis direction. Both sides of the camera are arranged at positions where photographing is possible at the same time. Therefore, the infrared camera 19 can detect the occurrence of fire on both sides of the sputter guard 17 in the Y-axis direction.
  • the first infrared camera 19 is provided so as to be horizontally oriented in the X-axis direction at a height position between the highest position and the lowest position of the laser nozzle 22 provided in the laser processing head 9. Yes.
  • the viewing angle of the visual field 19A in the first infrared camera 19 is small as shown in FIG. 3 as a characteristic of the infrared camera 19, so that when the guide beam 13 is far away from the infrared camera 19, The entire guide beam 13 can be imaged.
  • the guide beam 13 moves to one end side in the X-axis direction so as to be away from the reference position and the guide beam 13 comes close to the infrared camera 19, as is understood from FIG. That is, since the reference position side in the Y-axis direction deviates from the viewing angle 19A, it is difficult to capture the entire image.
  • the reference position side in the Y-axis direction of the guide beam 13 may deviate from the viewing angle due to the installation position of the infrared camera 19, resulting in a blind spot.
  • a second infrared camera 21 as a fire occurrence detection camera is oriented in the horizontal direction on the reference side (right side in FIG. 1) of the guide beam 13 in the Y-axis direction. Yes. As shown in FIG. 1, the second infrared camera 21 images the periphery of the laser processing head 9 from one end side in the Y-axis direction, and the highest rising position of the laser nozzle 22 provided in the laser processing head 9. It is provided at a high position between the lowest position.
  • the periphery of the laser processing head 9 in the laser processing apparatus 1 is imaged from the X-axis direction by the first infrared camera 19 (the optical axis of the first infrared camera 19 is parallel to the X-axis direction), and the second An image is taken from one end side in the Y-axis direction by the infrared camera 21 (the optical axis of the second infrared camera is parallel to the Y-axis direction).
  • the first infrared camera 19 can image both sides of the laser machining head 9 in the Y-axis direction.
  • the reference position side in the Y-axis direction of the guide beam 13 becomes a blind spot, and imaging becomes difficult.
  • the second infrared camera 21 is provided on the reference position side (one end side) of the guide beam 13 in the Y-axis direction. Therefore, the blind spot of the first infrared camera 19 is covered by the second infrared camera 21.
  • the opposite side provided with the laser processing head 9 and the other end side in the Y-axis direction which is a shadow of the second infrared camera 21 on the side provided with the second infrared camera 21.
  • the opposite side of the Y-axis direction is a blind spot.
  • this range of blind spots is covered by the first infrared camera 19.
  • the periphery of the laser processing head 9 can be monitored by the first and second infrared cameras 19 and 21 without a blind spot.
  • the first and second infrared cameras 19 and 21 can immediately detect the fire.
  • the first and second infrared cameras 19 and 21 can be provided so as to be horizontally rotatable.
  • the first and second infrared cameras 19 and 21 have a structure in which an infrared camera 25 and a visible light digital camera 27 are provided in a rectangular parallelepiped housing 23 as shown in FIG.
  • the configurations of the infrared cameras 19 and 21 are already known, but have the following functions. That is, the infrared cameras 19 and 21 have a function of switching and displaying an infrared image from the infrared camera 25, a visible light image from the visible light digital camera 27, and an image obtained by combining both images on a monitor of a personal computer (not shown), for example. . In addition, it has a function of automatically operating an alarm when the detected temperature exceeds a preset temperature threshold. Furthermore, the display screen of the monitor is divided into a plurality of detection areas so as to easily detect a fire occurrence location.
  • the periphery of the laser processing head 9 is constantly monitored by the infrared cameras 19 and 21 and it is detected that a certain region is at a temperature equal to or higher than a preset temperature threshold, it can be detected as a fire occurrence. Then, by looking at a plurality of detection areas, it is possible to immediately know the location of the fire occurrence.
  • the laser processing position of the workpiece W by the laser processing head 9 as well as the laser nozzle 22 in the laser processing head 9 is extremely high when the workpiece W is laser processed. Accordingly, if the laser processing position and the laser nozzle 22 are imaged by the infrared cameras 19 and 21 during laser processing of the workpiece W, a malfunction of fire detection occurs. Therefore, the display screen of the monitor is divided vertically and the upper screen is set as a detection area. In other words, the lower screen is set as a non-detection area.
  • the screen partition means for partitioning the display screen of the monitor up and down is set using, for example, a mouse. That is, each of the visible light screens imaged by the first and second infrared cameras 19 and 21 provided in advance in the horizontal direction is displayed on a display screen of a monitor, for example. Then, the laser processing head 9 is moved toward and away from the infrared cameras 19 and 21, and the position where the laser nozzle 22 is displayed on the display screen is marked with a mouse or the like. The display screen is partitioned vertically by writing a horizontal line at this marking position.
  • the first and second infrared cameras 19 and 21 have the highest intensity of light incident on the camera at a horizontal angle so that the position of the horizontal line dividing the display screen up and down is always held at a fixed position. It is provided in the horizontal direction, which is a direction.
  • the vertical center positions of the viewing angles in the first and second infrared cameras 19 and 21 are set higher than the laser processing position by the laser processing head 9.
  • the laser nozzle 22 is not displayed on the upper display screen regardless of the movement position of the laser processing head 9.
  • the upper screen divided vertically in the display screen is a detection area for detecting a fire, and is set to a screen that always excludes the laser processing position regardless of the movement position of the laser processing head 9. Therefore, at the time of laser processing of the workpiece W, the temperature of the laser processing position of the workpiece W, the temperature of the laser nozzle 22 of the laser processing head 9 and the like are not detected, and a fire detection malfunction does not occur.
  • the first and second infrared cameras 19 and 21 image the periphery of the laser processing head 9 during laser processing of the workpiece W, so that the infrared cameras 19 and 21 from spatter scattered during laser processing. Need to protect. Therefore, in the present embodiment, the infrared camera 19 is provided in a box-shaped casing body. Since the infrared camera 21 has the same configuration, the case of the infrared camera 19 will be described, and the description of the infrared camera 21 will be omitted.
  • the infrared camera 19 includes a camera body 29 (synonymous with the casing 23), and a fire detection unit 31 is provided on the front surface of the camera body 29.
  • the fire detection unit 31 includes the infrared camera 25 and the visible light digital camera 27.
  • a box-shaped casing main body 33 that houses the camera body 29 includes a lower wall portion 33A corresponding to the lower surface of the camera body 29, a pair of side wall portions 33B corresponding to the side surfaces, a rear wall portion 33C corresponding to the rear surface, and It is the structure provided with upper surface wall part 33D corresponding to an upper surface.
  • an auxiliary plate 37 that can be attached to the rear surface of the camera body 29 via a plurality of tapping bolts 35 is provided.
  • the auxiliary plate 37 is attached to the inner surface of the rear wall portion 33 ⁇ / b> C in the casing body 33 by a plurality of mounting bolts 39.
  • the camera body 29 is attached to the inner surface of the rear wall portion 33 ⁇ / b> C of the casing body 33 via the auxiliary plate 37.
  • the front cover 41 disposed on the front side of the casing body 33 after the camera body 29 is mounted in the casing body 33 is provided.
  • the front cover 41 is provided with a detection window 43 at a position corresponding to the fire detection unit 31 of the camera body 29.
  • the front cover 41 is attached to the casing body 33 via a plurality of attachments 45 (see FIG. 6) such as bolts.
  • the detection window 43 of the front cover 41 is closed by a protective plate 47.
  • the protective plate 47 is pressed and fixed to the front surface of the front cover 41 by a plate pressing member 49 so as to be detachable and replaceable.
  • the protective plate 47 shields a laser beam of a YAG laser or a fiber laser, for example, a wavelength of 900 to 1200 nm, and an infrared wavelength band (for example, 4.3 to 4.8 ⁇ m) emitted by a fire flame. ).
  • the fire detection unit 31 of the camera body 29 can protect against spatter scattered from the laser processing position of the workpiece W and reflected light from the laser processing position.
  • a filter that blocks the wavelength band of the CO 2 laser and transmits the infrared wavelength band emitted by the flame may be used as the protective plate 47.
  • the rear wall 33 of the casing body 33 is provided with a fluid supply section 51 (see FIG. 6) for supplying a cooling fluid such as air to the inside. ing.
  • a fluid path forming member 53 (see FIG. 7) is provided to guide the cooling fluid supplied to the inside from the fluid supply unit 51 from the rear surface of the camera body 29 to the front surface through the lower surface or the side surface.
  • the fluid path forming member 53 is made of an elastic member such as ethylene rubber.
  • the fluid path forming member 53 includes a rear rising portion 53A that is sandwiched between the auxiliary plate 37 and the rear surface of the camera body 29.
  • the rear rising portion 53A includes an opening portion of the auxiliary plate 37.
  • An opening 53B corresponding to 37A is provided.
  • the fluid path forming member 53 is provided with a front rising portion 53 ⁇ / b> C that is sandwiched between the front cover 41 and the front surface of the camera body 29.
  • the front rising portion 53C is provided with an opening 53D communicating with the opening 53B.
  • the fluid path forming member 53 is provided with a connecting portion 53E that is sandwiched between the lower surface of the camera body 29 and the lower wall portion 33A of the casing body 33.
  • the connecting portion 53E connects the rear rising portion 53A and the front rising portion 53C, and the connecting portion 53E includes an opening 53F that connects the opening 53B and the opening 53D. Yes.
  • the fluid passage forming member 53 passes through the openings 53B, 53F, and 53D, and reaches the rear surface, the lower surface, and the front surface of the camera main body 29.
  • the camera body 29 is cooled. Therefore, the camera body 29 can be effectively cooled.
  • the structure for guiding the cooling fluid from the rear surface to the front surface of the camera body 29 is not limited to the lower surface of the camera body 29 and may be a structure that guides the cooling fluid through the side surface. It is also possible to adopt a configuration in which the camera body 29 is guided to the front surface through the lower surface and side surfaces. Furthermore, a cooling flow can be guided to the entire outer surface of the camera body 2 by providing a fan.
  • the laser processing apparatus 1 of the present invention detects the occurrence of a fire near the laser processing position in the laser processing apparatus 1 with an infrared camera, Can detect fire. Therefore, the infrared camera is not damaged by the occurrence of a fire and can be used repeatedly for detecting the occurrence of a fire.
  • the laser processing apparatus 1 of the present invention detects the occurrence of a fire with an infrared camera, for example, even when a fire occurs simultaneously at positions separated from each other, it is possible to simultaneously detect the occurrence of a fire at a plurality of locations. it can.
  • the laser processing apparatus 1 of the present invention detects the occurrence of a fire with an infrared camera, for example, when there is a cluster (aggregation) of pixels that have detected a predetermined temperature or higher, it can be detected as a fire occurrence. Therefore, the occurrence of a fire can be detected at the early stage of the occurrence of the fire, and a fire extinguishing process or the like can be performed quickly.
  • the laser processing apparatus 1 of the present invention can detect the occurrence of a fire in a state where the laser processing position of the workpiece is excluded, there is no possibility that the laser processing position is erroneously detected as a fire occurrence location.
  • the laser processing apparatus 1 can protect the infrared camera from the reflected light from the sputter and the laser processing position and can cool the infrared camera, so that the life of the infrared camera can be extended. .
  • the present invention is not limited to the above-described embodiment, and can be implemented in other forms by making appropriate changes. That is, in the above-described embodiment, the case of performing laser processing of a plate material as a workpiece has been described. However, as the workpiece, for example, laser processing of a long material such as a pipe material may be performed.
  • the installation position of the infrared camera can be set above the laser processing head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Laser Beam Processing (AREA)

Abstract

火災発生を検出するための赤外線カメラを備えたレーザ加工装置は、レーザ加工領域内に位置するワークWに対して相対的に移動してワークのレーザ加工を行うレーザ加工ヘッド9を有し、前記レーザ加工領域の上方空間における火災発生を検知するための赤外線カメラ19を、前記ワークの加工位置よりも高位置に備えている。前記レーザ加工ヘッド9は、前記ワークWに対して相対的にX軸方向又はY軸方向の少なくとも一方向に往復動自在に備えられており、前記赤外線カメラ19は、前記レーザ加工ヘッド9の移動領域の外部において固定位置に備えられている。

Description

火災発生を検出するための赤外線カメラを備えたレーザ加工装置、およびレーザ加工装置用の火災発生検出カメラ
 本発明は、レーザ加工領域内に位置するワークに対して、X軸方向、Y軸方向及びZ軸方向の少なくとも一方向へ相対的に移動自在なレーザ加工ヘッドを有するレーザ加工装置であって、前記レーザ加工領域の上方空間における火災発生を検知する機能を備えたレーザ加工装置に関する。
 また、本発明は、レーザ加工領域内に位置するワークに対して、X軸方向、Y軸方向及びZ軸方向の少なくとも一方向へ相対的に移動自在なレーザ加工ヘッドを有するレーザ加工装置であって、前記レーザ加工ヘッド周辺の火災を検出する赤外線カメラを備えたレーザ加工装置に関する。
 また、本発明は、レーザ加工装置に設置され、レーザ加工ヘッド周辺の火災発生を検出するのに適した火災発生検出カメラであって、レーザ加工位置から反射したレーザ光、飛散したスパッタ等からカメラ本体を保護する機能を備えた火災発生検出カメラに関する。
 レーザ加工装置によって、例えば板状のワークのレーザ加工を行うとき、ワークに貼り付けた保護シートに火災が発生することや、レーザ加工位置から飛散したスパッタや反射されたレーザ光によって、例えばレーザ加工ヘッド周辺の可燃物に火災が発生することがある。したがって、レーザ加工装置において火災が発生し易い箇所にセンサを配置し、このセンサによって火災発生の検出が行われている(例えば、特許文献1,2参照)。
特開平11-123581号公報 特開2004-202005号公報
 特許文献1に記載の構成は、レーザ加工ヘッドを囲繞した加工ヘッドカバーを上下動自在に備えた構成である。そして、前記加工ヘッドカバー内において火災が発生したときに、加工ヘッドカバー内に備えた火災検知センサによって火災を検知する構成である。また、特許文献2に記載の構成は、レーザ加工装置における集塵機内の火災発生を検出する構成であって、火災発生時の熱風が通過する部分に、火災検知センサを備えた構成である。
 特許文献1,2における火災検知センサは、温度センサであって、火災発生によって温度センサの設置部周囲の温度が所定温度以上に上昇したときに、火災発生として火災を検知する構成である。したがって、火災発生初期から火災発生が検知されるまで大きな時間差がある。換言すれば、火災が発生して、周囲の温度がある程度上昇するまでは火災の発生は検知されない。したがって、火災がある程度の大きさに進行するまでは火災の発生が検知されない、という問題がある。
 また、特許文献1に記載の構成は、レーザ加工装置におけるレーザ加工ヘッドを囲繞した加工ヘッドカバーを、レーザ加工ヘッドに対して上下動自在に備えた構成である。この構成では、前記加工ヘッドカバーの下端部がワークに当接するように下降してワークのレーザ加工を行う一方で、レーザ加工時にスパッタ等が飛散して、前記加工ヘッドカバー内において火災が発生すると、加工ヘッドカバー内に備えた火災検知センサによって火災発生を検知する。
 この構成によれば、レーザ加工位置からの周囲へのスパッタ等の飛散を、加工ヘッドカバーによって防止することができる。しかし、レーザ加工時には、加工ヘッドカバーが下降した状態にある。したがって、例えばワークに突出部が形成してあると、加工ヘッドカバーが前記突出部と干渉することがある。したがって、突出部に近接した位置のレーザ加工を行うことが難しい、という問題がある。
 そこで、前記加工ヘッドカバーを取り外すことにより、例えば突出部に近接した位置のレーザ加工が可能になる。しかし、レーザ加工位置から周辺へのスパッタ等の飛散を防止することが難しく、例えばレーザ加工ヘッド周辺に火災を発生し易くなる。
 この場合、レーザ加工ヘッドの周辺を、赤外線カメラによって撮像し、火災の発生を検知することも可能である。しかし、赤外線カメラによってレーザ加工位置をも撮像すると、レーザ加工位置の高温度を検出し、火災発生として誤検出することがある。したがって、赤外線カメラによる火災検出エリアからレーザ加工位置を除外する必要がある。
 レーザ加工ヘッド周囲の火災発生を検出するには、赤外線カメラをレーザ加工ヘッドから離隔した位置に設置する必要がある。ところが、レーザ加工ヘッドがX軸方向、Y軸方向に移動する全範囲(全領域)において、レーザ加工位置を包含することなく、レーザ加工ヘッド周辺の火災発生を、赤外線カメラによって検出することは難しい。
 また、レーザ加工装置によって、例えば金属板等のレーザ加工を行うと、レーザ加工位置から反射された反射光や、レーザ加工位置から飛散したスパッタ等によって、例えばレーザ加工ヘッドの周辺等に火災が発生することがある。したがって、レーザ加工装置には、火災の発生を検知する手段が設けられている。
 ここで、特許文献1に記載の構成は、レーザ加工ヘッドを囲繞した加工ヘッドカバーをレーザ加工ヘッドに対して上下動自在に備えるとともに、前記加工ヘッドカバー内の温度上昇を検出する火災検知センサを、加工ヘッドカバー内に備えた構成である。また、特許文献2の構成は、レーザ加工装置における集塵機内で火災が発生したときに、ファンダクトから排出される熱風を温度センサによって検出する構成である。
 すなわち、特許文献1,2に記載の構成は、温度センサによって火災発生を検知する構成であるから、レーザ加工装置における特定の狭い領域における火災発生の検出には有効であると思われる。しかし、レーザ加工装置においては、レーザ加工位置から飛散したスパッタ等によって、レーザ加工ヘッドの周辺に火災が発生することがある。そこで、比較的広範囲の火災発生を検出すべく、赤外線カメラを使用することも可能である。この場合、飛散するスパッタや、レーザ加工位置から反射するレーザ光から赤外線カメラを保護する必要がある。
 本発明は、前述の問題に鑑みてなされたもので、火災発生を検出するための赤外線カメラを備えたレーザ加工装置を提供することを目的とする。
 また、本発明は、レーザ加工位置を火災発生箇所と誤検出することなく火災検出を行うことができるレーザ加工装置を提供することを目的とする。
 また、本発明は、レーザ加工装置に設置して火災発生を検出するに適した火災発生検出カメラを提供することを目的とする。
 本発明の一側面によると、レーザ加工領域内に位置するワークに対して相対的に移動してワークのレーザ加工を行うレーザ加工ヘッドと、前記レーザ加工領域の上方空間における火災発生を検知するための赤外線カメラと、からなるレーザ加工装置が提供される。
 好ましくは、前記レーザ加工装置において、前記赤外線カメラは、ワークのレーザ加工位置よりも高位置に備えられている。
 好ましくは、前記レーザ加工装置において、前記レーザ加工ヘッドは、前記ワークに対して相対的にX軸方向又はY軸方向の少なくとも一方向に往復動自在に備えられており、前記赤外線カメラは、前記レーザ加工ヘッドの移動領域の外部に備えられている。
 好ましくは、前記レーザ加工装置において、前記赤外線カメラは、前記レーザ加工ヘッド周辺をX軸方向から撮像する位置に備えられている。
 好ましくは、前記レーザ加工装置において、前記赤外線カメラは、前記ガイドビームの端部側に備えられている。
 本発明の他の側面によると、ワークのレーザ加工を行うレーザ加工領域の上方位置に、X軸方向に移動自在に設けられた、Y軸方向に長いガイドビームと、前記ガイドビームにY軸方向に移動自在に支持されたスライダ上に上下動自在に設けられた、ワークのレーザ加工を行うレーザ加工ヘッドと、前記ガイドビームのX軸方向の基準位置から離れた位置に設けられた、前記レーザ加工ヘッド周辺の火災発生を検出するための第1の赤外線カメラと、前記ガイドビームのY軸方向の端部側に設けられた、前記レーザ加工ヘッド周辺の火災発生を検出するための第2の赤外線カメラと、からなるレーザ加工装置が提供される。
 好ましくは、前記レーザ加工装置において、前記第1の赤外線カメラは、光軸をX軸方向に向けてX軸方向の一端側でかつY軸方向の一端側に備えられ、前記第2の赤外線カメラは、光軸をY軸方向に向けて、前記ガイドビームのY軸方向の一端側に備えられている。
 好ましくは、前記レーザ加工装置において、前記第1の赤外線カメラと前記第2の赤外線カメラとの撮影方向は互いに交差する方向であって、死角を補完する関係にある。
 好ましくは、前記レーザ加工装置において、前記第1の赤外線カメラは、前記レーザ加工ヘッドに備えたレーザノズルの最上昇位置と最下降位置との間の高さ位置においてX軸方向に水平に指向して備えられている。
 好ましくは、前記レーザ加工装置において、前記第1の赤外線カメラは、前記レーザ加工領域にX軸方向に長く備えた板状のスパッタガードのX軸方向の端部から離れた位置で、前記スパッタガードを配置した垂直な平面と同一平面内に配置してある。
 好ましくは、前記レーザ加工装置において、前記赤外線カメラは、赤外線検出部を備えたカメラであって、前記赤外線検出部を前面に備えたカメラ本体を、箱状のケーシング本体内に備え、前記ケーシング本体において前記赤外線検出部に対応する部分に検出窓を備え、前記カメラ本体を冷却するために、冷却流体を内部へ供給するための流体供給口を、前記ケーシング本体に備え、かつ前記カメラ本体の前記赤外線検出部を保護するために、赤外線を透過自在な保護プレートによって前記検出窓を閉鎖してある。
 本発明の一側面および他の側面によれば、レーザ加工装置におけるレーザ加工領域の上方空間における火災発生を検出するための赤外線カメラを、ワークのレーザ加工位置よりも高位置に備えているので、例えばレーザ加工ヘッド周辺に火災が発生すると、赤外線カメラにおける画素に所定温度以上の集合部分が得られる。したがって、火災が拡大する前の初期段階において火災の発生を検知できる。
 本発明の別の側面によると、レーザ加工領域内に位置するワークに対して、X,Y,Z軸方向の少なくとも一方向へ相対的に移動自在に設けられたレーザ加工ヘッドと、前記レーザ加工ヘッドからX軸方向及び/又はY軸方向に離隔した位置に設けられた、前記レーザ加工ヘッド周辺の火災発生を検出するための赤外線カメラと、表示画面を上下に区画する画面区画機能を有する、前記赤外線カメラによって撮像した撮像画面の表示部であって、該表示部は、上下に区画された前記表示画面における上側画面が検出エリアに設定され、かつ前記レーザ加工ヘッドの移動に拘わりなく前記レーザ加工ヘッドによるレーザ加工位置が前記上側画面から排除されるように設定されているものと、からなるレーザ加工装置が提供される。
 好ましくは、前記レーザ加工装置において、前記表示部は、上下に区画された前記表示画面における下側画面が火災検出を行わない非検出エリアに設定されている。
 好ましくは、前記レーザ加工装置において、前記赤外線カメラは、前記レーザ加工ヘッドとX軸方向又はY軸方向に一体的に移動する前記赤外線カメラにおける視野角の上下中心位置が前記レーザ加工ヘッドによるレーザ加工位置よりも高い位置に設定されている。
 好ましくは、前記レーザ加工装置において、前記表示部は、前記レーザ加工ヘッドに備えたレーザノズルを含む下側部分が前記上側画面から排除されるように設定されている。
 好ましくは、前記レーザ加工装置において、前記赤外線カメラは、水平方向を指向して設けられている。
 本発明の別の側面によれば、赤外線カメラによって撮像した撮像画面の上側画面が、火災発生を検出する検出エリアに設定されている。そして、レーザ加工ヘッドの移動に拘わりなく、レーザ加工ヘッドによるレーザ加工位置が排除されるように設定されている。したがって、前記検出エリアにレーザ加工位置が包含されることがなくなり、火災発生の誤検出をすることがなくなる。
 本発明の更に別の側面によると、火災検出部と、箱状のケーシング本体と、前記ケーシング本体内に設けられ、前記火災検出部が前面に設けられたカメラ本体と、前記ケーシング本体において前記火災検出部に対応する部分に設けられた検出窓と、前記カメラ本体の前記火災検出部を保護するために前記検出窓を閉鎖している、赤外線を透過自在な保護プレートと、からなる火災発生検出カメラが提供される。
 好ましくは、前記火災発生検出カメラにおいて、前記ケーシング本体は、前記カメラ本体を冷却するために、冷却流体を内部へ供給するための流体供給部を有する。
 好ましくは、前記火災発生検出カメラにおいて、前記カメラ本体は、前記カメラ本体の前面、下面又は側面及び後面の三面に亘って連続する、前記冷却流体が流れる流体通路を有する。
 本発明の更に他の側面によると、火災検出部と、前記火災検出部が前面に設けられたカメラ本体と、前記カメラ本体の前面、下面又は側面及び後面の三面に亘って流体通路を形成するために、前記カメラ本体の前面、下面又は側面及び後面に亘って配置された流体路形成部材と、前記カメラ本体の前面に設けられた前記火災検出部に対応した位置に検出窓を有するフロントカバーであって、該フロントカバーと前記カメラ本体の前面との間に前記流体路形成部材の前面対応部分を挟み込み自在なものと、前記カメラ本体を内装して前記フロントカバーに取付自在なケーシング本体であって、該ケーシング本体と前記カメラ本体の後面との間に前記流体路形成部材の後面対応部分を挟み込み自在であり、かつ該ケーシング本体と前記カメラ本体の下面又は側面との間に前記流体路形成部材の対応部分を挟み込み自在なものと、前記ケーシング本体内へ冷却流体を供給するために前記ケーシング本体に設けられた流体供給口と、からなる火災発生検出カメラが提供される。
 好ましくは、前記火災発生検出カメラにおいて、前記フロントカバーの検出窓は、赤外線を透過自在な保護プレートを有する。 
 本発明の更に別の側面および更に他の側面によれば、ケーシング本体内に赤外線カメラのカメラ本体を備えた構成である。したがって、カメラ本体の光学系を、レーザ加工位置からの反射光や、飛散するスパッタから保護することができる。また、冷却流体をケーシング本体内に流入することにより、カメラ本体を容易に冷却することができる。
図1は、本発明の実施形態に係るレーザ加工装置の全体的構成を概念的、概略的に示した側面図である。 図2は、本発明の実施形態に係るレーザ加工装置の全体的構成を概略的に示した斜視図である。 図3は、本発明の実施形態に係るレーザ加工装置において、第1,第2の赤外線カメラが交差する方向を指向して配置してあることを示す概略斜視図である。 図4は、本発明の実施形態に係るレーザ加工装置において、第1の赤外線カメラとスパッタガードとレーザ加工ヘッドとの位置的関係を示す概略図である。 図5は、本発明の実施形態に係るレーザ加工装置における赤外線カメラの全体的構成を示す正面図である。 図6は、本発明の実施形態に係るレーザ加工装置における赤外線カメラをケーシング本体内に内装した状態を示す斜視図である。 図7は、本発明の実施形態に係るレーザ加工装置におけるケーシング本体を分解した状態の分解斜視図である。
 以下、図面を用いて本発明の実施形態に係るレーザ加工装置について説明する。レーザ加工装置の全体的構成は公知であるが、理解を容易にするために、レーザ加工装置の全体的構成について概略的に説明する。
 図1を参照すると、本発明の実施形態に係るレーザ加工装置1は、機台3を備えている。この機台3の全体的構成は、図2に概略的に示すように、X軸方向に長い直方体の形状をしている。そして、機台3の上面にはワークテーブル5が備えられている。このワークテーブル5には、X軸方向に複数に区画した集塵室7が備えられている。前記集塵室7の上側には、板状のワークWを支持したパレット又は剣山テーブル(図示省略)がX軸方向に搬出入される。
 前記集塵室7の上側は、ワークWのレーザ加工を行うレーザ加工領域である。このレーザ加工領域に搬入されたワークWのレーザ加工を行うために、レーザ加工ヘッド9がX,Y,Z軸方向へ相対的に移動位置決め自在に備えられている。すなわち、前記機台3のY軸方向の両側には、X軸方向のガイドレール11が備えられている。そして、上記ガイドレール11には、Y軸方向に長いガイドビーム13のY軸方向の両端部が移動自在に支持されている。このガイドビーム13には、スライダ15がY軸方向へ移動位置決め自在に備えられている。そして、このスライダ15に、前記レーザ加工ヘッド9が上下動自在に備えられている。すなわち、レーザ加工ヘッド9は、ワークWに対してX,Y,Z軸方向へ相対的に移動自在に備えられている。
 したがって、制御装置(図示省略)の制御の下に、前記ガイドビーム13をX軸方向に移動位置決めする。また、スライダ15をY軸方向に移動位置決めし、かつレーザ加工ヘッド9を上下に位置決めすることにより、レーザ加工領域内のパスライン高さ位置に位置するワークWに対してレーザ加工を行うことができる。ワークWにレーザ加工を行うと、ワークWのレーザ加工位置から周囲にスパッタが飛散するので、スパッタの飛散を防止するために、前記機台3におけるY軸方向の両側上部には、X軸方向に長い板状のスパッタガード17(図1参照)が垂直状に備えられている。
 なお、ワークWのレーザ加工を行うと、レーザ加工位置から飛散するスパッタや、レーザ加工位置からのレーザ光の反射光によって、例えばレーザ加工ヘッド9に接続したホースやその継手等(図示省略)に火災が発生することがある。したがって、本実施形態においては、前記レーザ加工領域において、ワークWの上面よりも上方の空間(ワークWの上面を含まない)における火災発生を検知する火災検知手段が設けられている。
 すなわち、図3に概略的に示すように、前記ガイドビーム13がX軸方向の基準位置(図3に示す状態の位置)に位置するときに、前記ガイドビーム13の全体を撮像するように、火災発生検出カメラとしての第1の赤外線カメラ19が水平方向に指向して(水平角度でカメラに入射する光線の強度が最も大きくなる方向に)備えられている。より詳細には、前記第1の赤外線カメラ19は、前記ガイドビーム13のX軸方向の基準位置から離れたX軸方向の一端側の位置であって、かつY軸方向の基準位置から離れたY軸方向の一端側の位置(図3に示す位置)に備えられている。
 前記第1の赤外線カメラ19は、ワークWのレーザ加工時に、レーザ加工位置から飛散するスパッタを回避してレーザ加工ヘッド9の周辺を撮像する高さ位置に備えられている。より詳細には、図4に示すように、レーザ加工時にレーザノズル22が下降したときの高さ位置(図4に示す実線の位置)よりも高位置であって、前記スパッタガード17のX軸方向の端部から離れた位置に配置してある。そして、前記スパッタガード17が、第1の赤外線カメラ19による撮影時に悪影響を与えないように、スパッタガード17を配置した平面(垂直平面)と同一平面内であって、スパッタガード17のY軸方向の両側を同時に撮影可能な位置に配置してある。したがって、前記赤外線カメラ19は、前記スパッタガード17のY軸方向の両側における火災発生を検知できる。
 すなわち、第1の赤外線カメラ19は、前記レーザ加工ヘッド9に備えたレーザノズル22の最上昇位置と最下降位置との間の高さ位置において、X軸方向に水平に指向して備えられている。
 なお、前記第1の赤外線カメラ19における視野19Aの視野角は、赤外線カメラ19の特性として、図3に示すように小さいので、この赤外線カメラ19から前記ガイドビーム13が遠く離れている場合には、ガイドビーム13全体を撮像することはできる。しかし、ガイドビーム13が基準位置から離れるようにX軸方向の一端側に移動し、前記赤外線カメラ19にガイドビーム13が近接すると、図3から理解されるように、ガイドビーム13の一部、すなわちY軸方向の基準位置側が視野角19Aから外れるので、全体の撮像が難しくなる。すなわち、赤外線カメラ19にガイドビーム13が近接すると、赤外線カメラ19の設置位置の関係で、ガイドビーム13におけるY軸方向の基準位置側が視野角から外れて、死角になることがある。
 そこで、本実施形態においては、前記ガイドビーム13におけるY軸方向の基準側(図1において右側)には、火災発生検出カメラとしての第2の赤外線カメラ21が水平方向に指向して備えられている。この第2の赤外線カメラ21は、図1に示すように、前記レーザ加工ヘッド9周辺をY軸方向の一端側から撮像するもので、レーザ加工ヘッド9に備えたレーザノズル22の最上昇位置と最下降位置との間の高位置に備えられている。
 理解されるように、レーザ加工装置1におけるレーザ加工ヘッド9の周辺は、第1赤外線カメラ19によってX軸方向から撮像され(第1赤外線カメラ19の光軸はX軸方向に平行)、第2赤外線カメラ21によってY軸方向の一端側から撮像されるものである(第2赤外線カメラの光軸はY軸方向に平行)。この場合、第1赤外線カメラ19によって、レーザ加工ヘッド9におけるY軸方向の両側方を撮像することができる。
 しかし、ガイドビーム13が第1赤外線カメラ19に近接すると、ガイドビーム13のY軸方向の基準位置側が死角となり、撮像が難しくなる。ところが、第2の赤外線カメラ21がガイドビーム13のY軸方向の基準位置側(一端側)に備えられている。したがって、第1の赤外線カメラ19の死角は、第2赤外線カメラ21によってカバーされる。前記第2の赤外線カメラ21においては、レーザ加工ヘッド9を備えた反対側であって、第2赤外線カメラ21の影となるY軸方向の他端側(第2赤外線カメラ21を備えた側のY軸方向の反対側)は死角になる。しかし、この死角の範囲は第1赤外線カメラ19によってカバーされる。
 理解されるように、第1,第2の赤外線カメラ19,21によって、レーザ加工ヘッド9の周辺を、死角のない状態でもって監視できる。換言すれば、レーザ加工ヘッド9の周辺に火災が発生すると、第1,第2の赤外線カメラ19,21によって直ちに火災発生を検知できる。なお、前記構成において、前記第1,第2の赤外線カメラ19,21を、水平に回動可能に備えることも可能である。
 なお、前記第1,第2の赤外線カメラ19,21は、図5に示すように、直方体形状の框体23に赤外線カメラ25と可視光デジタルカメラ27を備えた構成である。この赤外線カメラ19,21の構成は、既に公知であるが、次の機能を有する。すなわち、赤外線カメラ19,21は、例えばパソコン(図示省略)のモニタに、赤外線カメラ25による赤外線画像、可視光デジタルカメラ27による可視光画像及び両方の画像を組合せた画像を切り替え表示する機能を有する。また、検知温度が予め設定した温度閾値を超えると、アラームを自動的に作動させる機能を有する。さらに、火災発生箇所を検知し易いように、前記モニタの表示画面を複数の検出エリアに区画して表示する機能を有する。
 したがって、赤外線カメラ19,21によってレーザ加工ヘッド9の周辺を常に監視し、ある領域が予め設定した温度閾値以上の温度であることを検知したときに、火災発生として検知できる。そして、複数に区画した検出エリアを見ることによって、火災発生箇所を直ちに知ることができる。
 なお、レーザ加工ヘッド9によるワークWのレーザ加工位置は勿論のこと、レーザ加工ヘッド9におけるレーザノズル22は、ワークWのレーザ加工時には極めて高温になっている。したがって、ワークWのレーザ加工時に、レーザ加工位置及びレーザノズル22を、前記赤外線カメラ19,21によって撮像すると、火災検知の誤作動を起こす。そこで、前記モニタの表示画面を上下に区画して、上側画面を検出エリアに設定してある。換言すれば、下側画面は非検出エリアに設定してある。
 前記モニタの表示画面を上下に区画する画面区画手段としては、例えばマウス等を使用して設定する。すなわち、予め水平方向を指向して備えた第1,第2の赤外線カメラ19,21によって撮像した可視光画面のそれぞれを、例えばモニタの表示画面に表示する。そして、各赤外線カメラ19,21に対してレーザ加工ヘッド9を接近離反するように移動して、表示画面上において、レーザノズル22が表示された位置を、マウス等によってマーキングする。このマーキング位置に水平線を記入することによって表示画面を上下に区画する。換言すれば、前記第1,第2の赤外線カメラ19,21は、表示画面を上下に区画した水平線の位置を常に定位置に保持すべく、水平角度でカメラに入射する光線の強度が最も大きくなる方向である水平方向を指向して備えられている。そして、第1,第2の赤外線カメラ19,21における視野角の上下中心位置は、前記レーザ加工ヘッド9によるレーザ加工位置よりも高い位置に設定してある。
 したがって、レーザ加工ヘッド9の移動位置に拘わりなく、区画した上側の表示画面にはレーザノズル22が表示されることはない。換言すれば、表示画面において上下に区画した上側の画面は、火災を検出する検出エリアであり、レーザ加工ヘッド9の移動位置に拘わりなくレーザ加工位置を常に排除した画面に設定してある。よって、ワークWのレーザ加工時に、ワークWのレーザ加工位置やレーザ加工ヘッド9のレーザノズル22等の温度を検出するようなことがなく、火災検知の誤作動を生じるようなことがない。
 理解されるように、前記第1,第2の赤外線カメラ19,21は、ワークWのレーザ加工時におけるレーザ加工ヘッド9の周辺を撮像するから、レーザ加工時に飛散するスパッタから赤外線カメラ19,21を保護する必要がある。そこで、本実施形態においては、前記赤外線カメラ19は、箱状のケーシング本体内に備えられている。なお、赤外線カメラ21も同一構成であるから、赤外線カメラ19の場合について説明し、赤外線カメラ21についての説明は省略する。
 図6,図7に示すように、赤外線カメラ19はカメラ本体29(前記框体23と同義)を備えており、このカメラ本体29の前面には火災検出部31が備えられている。この火災検出部31に前記赤外線カメラ25、可視光デジタルカメラ27が備えられている。前記カメラ本体29を内装する箱状のケーシング本外33は、前記カメラ本体29の下面に対応する下面壁部33A、側面に対応する一対の側面壁部33B、後面に対応する後面壁部33C及び上面に対応した上面壁部33Dを備えた構成である。
 前記カメラ本体29をケーシング本体33内に装着するために、複数のタッピングボルト35を介してカメラ本体29の後面に取付自在な補助プレート37が備えられている。この補助プレート37は、複数の取付けボルト39によってケーシング本体33における後面壁部33Cの内面に取付けられる。この補助プレート37の中央部には、エア等の冷却流体が通過自在な開口部37Aが備えられている。
 理解されるように、前記カメラ本体29は、前記補助プレート37を介して、ケーシング本体33における後面壁部33Cの内面に取付けられる。
 前述のように、ケーシング本体33内にカメラ本体29を装着した後に、ケーシング本体33の前側に配置されるフロントカバー41が備えられている。このフロントカバー41は、前記カメラ本体29の火災検出部31に対応した位置に検出窓43が備えられている。なお、フロントカバー41は、複数のボルト等の取付具45(図6参照)を介して前記ケーシング本体33に取付けられる。
 前記フロントカバー41の前記検出窓43は、保護プレート47によって閉鎖されている。すなわち、前記保護プレート47は、プレート押え部材49によって前記フロントカバー41の前面に着脱交換可能に押圧固定してある。前記保護プレート47は、YAGレーザやファイバーレーザのレーザ光を遮光すべく、例えば900~1200nmの波長を遮光し、火災時の炎が放射する赤外線の波長帯(例えば、4.3~4.8μm)を透過するフィルタから構成してある。
 したがって、カメラ本体29の火災検出部31は、ワークWのレーザ加工位置から飛散するスパッタや、レーザ加工位置からの反射光から保護することができる。なお、レーザ光としてCO2レーザを使用する場合には、CO2レーザの波長帯を遮光し、炎が放射する赤外線の波長帯を透過するフィルタを、保護プレート47として使用すればよい。
 前記ケーシング本体33内の前記カメラ本体29を冷却するために、前記ケーシング本体33の後面壁部33には、エア等の冷却流体を内部へ供給する流体供給部51(図6参照)が備えられている。前記流体供給部51から内部へ供給された冷却流体を、カメラ本体29の後面から下面又は側面を経て前面に導くために、流体路形成部材53(図7参照)が備えられている。
 上記流体路形成部材53は、例えばエチレンゴムなどの弾性部材から構成してある。この流体路形成部材53は、前記補助プレート37と前記カメラ本体29の後面との間に挟持される後部立上り部53Aを備えており、この後部立上り部53Aには、前記補助プレート37の開口部37Aに対応した開口部53Bが備えられている。
 また、前記流体路形成部材53には、前記フロントカバー41とカメラ本体29の前面との間に挟持される前部立上り部53Cが備えられている。そして、この前部立上り部53Cには、前記開口部53Bに連通した開口部53Dが備えられている。さらに、前記流体路形成部材53には、前記カメラ本体29の下面と前記ケーシング本体33の下面壁部33Aとの間に挟持される連結部53Eが備えられている。この連結部53Eは、前記後部立上り部53Aと前部立上り部53Cとを連結するもので、この連結部53Eには、前記開口部53Bと開口部53Dとを連通した開口部53Fが備えられている。
 上記構成により、前記流体供給部51からケーシング本体33内へ冷却流体を供給すると、前記流体路形成部材53における開口部53B,53F,53Dを経て、カメラ本体29の後面,下面,前面に至り、カメラ本体29を冷却する。したがって、カメラ本体29を効果的に冷却することができる。
 なお、カメラ本体29の後面から前面へ冷却流体を導く構成としては、カメラ本体29の下面に限ることなく側面を経て導く構成とすることも可能である。また、カメラ本体29の下面及び側面を経て前面に導く構成とすることも可能である。さらに、ファンを備えて、カメラ本体2の全外表面に冷却流を導くことも可能である。
 以上の説明から理解されるように、本発明のレーザ加工装置1は、レーザ加工装置1におけるレーザ加工位置付近における火災の発生を、赤外線カメラによって検知するから、火災発生箇所から離隔した位置において、火災発生を検知できる。したがって、火災発生によって赤外線カメラに損傷を生じるようなことがなく、火災発生の検知に繰り返し使用することができる。
 また、本発明のレーザ加工装置1は、赤外線カメラによって火災発生を検知するから、例えば互に離隔した位置において同時に火災が発生した場合であっても、複数箇所の火災発生を同時に検出することができる。
 さらに、本発明のレーザ加工装置1は、赤外線カメラによって火災発生を検知するから、例えば、予め設定した所定温度以上を検出した画素のかたまり(集合)がある場合に、火災発生として検知できる。したがって、火災発生の初期において火災発生を検知でき、消火等の処置を迅速に行うことができる。
 また、本発明のレーザ加工装置1は、ワークのレーザ加工位置を除外した状態で火災発生を検知することができるので、レーザ加工位置を火災発生箇所として誤検出するようなことがない。
 さらに、本発明のレーザ加工装置1は、赤外線カメラを、スパッタやレーザ加工位置からの反射光から保護することができると共に、冷却することができるので、赤外線カメラの長寿命化を図ることができる。
 なお、本発明は、前述した実施形態のみに限ることなく、適宜の変更を行うことにより、その他の形態でもって実施可能である。すなわち、前述した実施形態においては、ワークとして板材のレーザ加工を行う場合について説明したが、ワークとしては、例えばパイプ材等の長尺材のレーザ加工を行う実施形態とすることも可能である。また、赤外線カメラの設置位置としては、レーザ加工ヘッドの上方位置とすることも可能である。

Claims (21)

  1.  レーザ加工領域内に位置するワークに対して相対的に移動してワークのレーザ加工を行うレーザ加工ヘッドと、
     前記レーザ加工領域の上方空間における火災発生を検知するための赤外線カメラと、
    からなるレーザ加工装置。
  2.  前記赤外線カメラは、ワークのレーザ加工位置よりも高位置に備えられている、請求項1に記載のレーザ加工装置。
  3.  前記レーザ加工ヘッドは、前記ワークに対して相対的にX軸方向又はY軸方向の少なくとも一方向に往復動自在に備えられており、前記赤外線カメラは、前記レーザ加工ヘッドの移動領域の外部に備えられている、請求項1又は2に記載のレーザ加工装置。
  4.  前記赤外線カメラは、前記レーザ加工ヘッド周辺をX軸方向から撮像する位置に備えられている、請求項3に記載のレーザ加工装置。
  5.  前記赤外線カメラは、前記ガイドビームの端部側に備えられている、請求項3又は4に記載のレーザ加工装置。
  6.  ワークのレーザ加工を行うレーザ加工領域の上方位置に、X軸方向に移動自在に設けられた、Y軸方向に長いガイドビームと、
     前記ガイドビームにY軸方向に移動自在に支持されたスライダ上に上下動自在に設けられた、ワークのレーザ加工を行うレーザ加工ヘッドと、
     前記ガイドビームのX軸方向の基準位置から離れた位置に設けられた、前記レーザ加工ヘッド周辺の火災発生を検出するための第1の赤外線カメラと、
     前記ガイドビームのY軸方向の端部側に設けられた、前記レーザ加工ヘッド周辺の火災発生を検出するための第2の赤外線カメラと、
    からなるレーザ加工装置。
  7.  前記第1の赤外線カメラは、光軸をX軸方向に向けてX軸方向の一端側でかつY軸方向の一端側に備えられ、前記第2の赤外線カメラは、光軸をY軸方向に向けて、前記ガイドビームのY軸方向の一端側に備えられている、請求項6に記載のレーザ加工装置。
  8.  前記第1の赤外線カメラと前記第2の赤外線カメラとの撮影方向は互いに交差する方向であって、死角を補完する関係にある、請求項6又は7に記載のレーザ加工装置。
  9.  前記第1の赤外線カメラは、前記レーザ加工ヘッドに備えたレーザノズルの最上昇位置と最下降位置との間の高さ位置においてX軸方向に水平に指向して備えられている、請求項6,7又は8に記載のレーザ加工装置。
  10.  前記第1の赤外線カメラは、前記レーザ加工領域にX軸方向に長く備えた板状のスパッタガードのX軸方向の端部から離れた位置で、前記スパッタガードを配置した垂直な平面と同一平面内に配置してある、請求項9に記載のレーザ加工装置。
  11.  前記赤外線カメラは、赤外線検出部を備えたカメラであって、前記赤外線検出部を前面に備えたカメラ本体を、箱状のケーシング本体内に備え、前記ケーシング本体において前記赤外線検出部に対応する部分に検出窓を備え、前記カメラ本体を冷却するために、冷却流体を内部へ供給するための流体供給口を、前記ケーシング本体に備え、かつ前記カメラ本体の前記赤外線検出部を保護するために、赤外線を透過自在な保護プレートによって前記検出窓を閉鎖してある、請求項1~10のいずれかに記載のレーザ加工装置。
  12.  レーザ加工領域内に位置するワークに対して、X,Y,Z軸方向の少なくとも一方向へ相対的に移動自在に設けられたレーザ加工ヘッドと、
     前記レーザ加工ヘッドからX軸方向及び/又はY軸方向に離隔した位置に設けられた、前記レーザ加工ヘッド周辺の火災発生を検出するための赤外線カメラと、
     表示画面を上下に区画する画面区画機能を有する、前記赤外線カメラによって撮像した撮像画面の表示部であって、該表示部は、上下に区画された前記表示画面における上側画面が検出エリアに設定され、かつ前記レーザ加工ヘッドの移動に拘わりなく前記レーザ加工ヘッドによるレーザ加工位置が前記上側画面から排除されるように設定されているものと、
    からなる、レーザ加工装置。
  13.  前記表示部は、上下に区画された前記表示画面における下側画面が火災検出を行わない非検出エリアに設定されている、請求項12に記載のレーザ加工装置。
  14.  前記赤外線カメラは、前記レーザ加工ヘッドとX軸方向又はY軸方向に一体的に移動する前記赤外線カメラにおける視野角の上下中心位置が前記レーザ加工ヘッドによるレーザ加工位置よりも高い位置に設定されている、請求項12又は13に記載のレーザ加工装置。
  15.  前記表示部は、前記レーザ加工ヘッドに備えたレーザノズルを含む下側部分が前記上側画面から排除されるように設定されている、請求項12~14のいずれかに記載のレーザ加工装置。
  16.  前記赤外線カメラは、水平方向を指向して設けられている、請求項12~15のいずれかに記載のレーザ加工装置。
  17.  火災検出部と、
     箱状のケーシング本体と、
     前記ケーシング本体内に設けられ、前記火災検出部が前面に設けられたカメラ本体と、
     前記ケーシング本体において前記火災検出部に対応する部分に設けられた検出窓と、
     前記カメラ本体の前記火災検出部を保護するために前記検出窓を閉鎖している、赤外線を透過自在な保護プレートと、
    からなる火災発生検出カメラ。
  18.  前記ケーシング本体は、前記カメラ本体を冷却するために、冷却流体を内部へ供給するための流体供給部を有する、請求項17に記載の火災発生検出カメラ。
  19.  前記カメラ本体は、前記カメラ本体の前面、下面又は側面及び後面の三面に亘って連続する、前記冷却流体が流れる流体通路を有する、請求項17又は18に記載の火災発生検出カメラ。
  20.  火災検出部と、
     前記火災検出部が前面に設けられたカメラ本体と、
     前記カメラ本体の前面、下面又は側面及び後面の三面に亘って流体通路を形成するために、前記カメラ本体の前面、下面又は側面及び後面に亘って配置された流体路形成部材と、
     前記カメラ本体の前面に設けられた前記火災検出部に対応した位置に検出窓を有するフロントカバーであって、該フロントカバーと前記カメラ本体の前面との間に前記流体路形成部材の前面対応部分を挟み込み自在なものと、
     前記カメラ本体を内装して前記フロントカバーに取付自在なケーシング本体であって、該ケーシング本体と前記カメラ本体の後面との間に前記流体路形成部材の後面対応部分を挟み込み自在であり、かつ該ケーシング本体と前記カメラ本体の下面又は側面との間に前記流体路形成部材の対応部分を挟み込み自在なものと、
     前記ケーシング本体内へ冷却流体を供給するために前記ケーシング本体に設けられた流体供給口と、
    からなる火災発生検出カメラ。
  21.  前記フロントカバーの検出窓は、赤外線を透過自在な保護プレートを有する、請求項20に記載の火災発生検出カメラ。 
PCT/JP2017/037228 2016-10-20 2017-10-13 火災発生を検出するための赤外線カメラを備えたレーザ加工装置、およびレーザ加工装置用の火災発生検出カメラ WO2018074366A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-205676 2016-10-20
JP2016205675A JP6371358B2 (ja) 2016-10-20 2016-10-20 レーザ加工装置
JP2016205677A JP6401764B2 (ja) 2016-10-20 2016-10-20 火災発生検出カメラ
JP2016-205675 2016-10-20
JP2016205676A JP6259886B1 (ja) 2016-10-20 2016-10-20 レーザ加工装置
JP2016-205677 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018074366A1 true WO2018074366A1 (ja) 2018-04-26

Family

ID=62018412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037228 WO2018074366A1 (ja) 2016-10-20 2017-10-13 火災発生を検出するための赤外線カメラを備えたレーザ加工装置、およびレーザ加工装置用の火災発生検出カメラ

Country Status (1)

Country Link
WO (1) WO2018074366A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4292751A1 (de) 2022-06-15 2023-12-20 Bystronic Laser AG Laserbearbeitungsmaschine, insbesondere laserschneidmaschine, mit einer funkenschutzvorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08154193A (ja) * 1994-11-25 1996-06-11 Nippon Avionics Co Ltd カメラヘッドの空冷ハウジング
JPH10325975A (ja) * 1997-03-27 1998-12-08 Mitsubishi Electric Corp 防爆形監視カメラ装置
JP2000259966A (ja) * 1999-03-11 2000-09-22 Nittetsu Elex Co Ltd 火災監視方法
JP2002040554A (ja) * 2000-07-25 2002-02-06 Fuji Photo Optical Co Ltd カメラハウジングの空気調和装置
JP2004130324A (ja) * 2002-10-08 2004-04-30 Amada Co Ltd レーザ発振器
JP2007050490A (ja) * 2005-08-19 2007-03-01 Hitachi Ltd 遠隔操作ロボットシステム
JP2014093002A (ja) * 2012-11-05 2014-05-19 Hochiki Corp 炎検知装置及び炎検知方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08154193A (ja) * 1994-11-25 1996-06-11 Nippon Avionics Co Ltd カメラヘッドの空冷ハウジング
JPH10325975A (ja) * 1997-03-27 1998-12-08 Mitsubishi Electric Corp 防爆形監視カメラ装置
JP2000259966A (ja) * 1999-03-11 2000-09-22 Nittetsu Elex Co Ltd 火災監視方法
JP2002040554A (ja) * 2000-07-25 2002-02-06 Fuji Photo Optical Co Ltd カメラハウジングの空気調和装置
JP2004130324A (ja) * 2002-10-08 2004-04-30 Amada Co Ltd レーザ発振器
JP2007050490A (ja) * 2005-08-19 2007-03-01 Hitachi Ltd 遠隔操作ロボットシステム
JP2014093002A (ja) * 2012-11-05 2014-05-19 Hochiki Corp 炎検知装置及び炎検知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4292751A1 (de) 2022-06-15 2023-12-20 Bystronic Laser AG Laserbearbeitungsmaschine, insbesondere laserschneidmaschine, mit einer funkenschutzvorrichtung

Similar Documents

Publication Publication Date Title
CN102573720B (zh) 具有一体的用户界面的焊接头盔
JP2002219593A (ja) レーザ加工ヘッド
US9298109B2 (en) EUV lithography apparatus and method for detecting particles in an EUV lithography apparatus
US20210291573A1 (en) Laser marking system
US20100024887A1 (en) Air purge collar
JP4599181B2 (ja) 粉塵濃度検出装置
WO2018074366A1 (ja) 火災発生を検出するための赤外線カメラを備えたレーザ加工装置、およびレーザ加工装置用の火災発生検出カメラ
JPWO2003076117A1 (ja) レーザ加工機における光学部品への付着汚れ防止方法及び装置
JP6401764B2 (ja) 火災発生検出カメラ
JPWO2018169049A1 (ja) 溶接用センサ装置
JP6259886B1 (ja) レーザ加工装置
WO2013067651A1 (es) Sistema y método de monitoreo visual directo para sensar el interior de un molino rotatorio de minerales
JP2002515341A (ja) レーザー機械加工に関連して保護ガラスの状態をチェックするための方法と装置
CN210038413U (zh) 镜头保护装置
JP6371358B2 (ja) レーザ加工装置
WO2018142966A1 (ja) レーザ加工機の火災検出方法及びレーザ加工機
KR101346318B1 (ko) 머시닝 센터의 자동 소화 시스템
JP2004195502A (ja) 溶接用レーザセンサ
HU212855B (en) Method and apparatus for ceramic welding
US6108072A (en) Protection for optical sensors in industrial applications
CN115647584A (zh) 激光寻缝装置和方法
US20230294193A1 (en) Sensor protecting case, imaging device, welding system, cooling method for sensor, and cooling control method for sensor
US20210381860A1 (en) Measurement apparatus and method
KR102074149B1 (ko) 화재 방지 기능을 갖는 그라인더용 집진장치
RU2556553C2 (ru) Устройство наблюдения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862126

Country of ref document: EP

Kind code of ref document: A1