WO2018074195A1 - Aqueous metal surface treatment agent, metal surface treatment method, and surface-treated metal sheet - Google Patents

Aqueous metal surface treatment agent, metal surface treatment method, and surface-treated metal sheet Download PDF

Info

Publication number
WO2018074195A1
WO2018074195A1 PCT/JP2017/035624 JP2017035624W WO2018074195A1 WO 2018074195 A1 WO2018074195 A1 WO 2018074195A1 JP 2017035624 W JP2017035624 W JP 2017035624W WO 2018074195 A1 WO2018074195 A1 WO 2018074195A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
treatment agent
metal surface
acid
aqueous
Prior art date
Application number
PCT/JP2017/035624
Other languages
French (fr)
Japanese (ja)
Inventor
多佳士 中野
後藤 淳
貴祐 樋口
雅一 田丸
藤井 毅
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2018546224A priority Critical patent/JP6943870B2/en
Publication of WO2018074195A1 publication Critical patent/WO2018074195A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides

Definitions

  • Patent Document 1 discloses that zinc treated steel is treated with an aqueous solution containing aluminum biphosphate and then heated at a temperature of 150 to 550 ° C.
  • a surface treatment method for a plated steel material is disclosed
  • Patent Document 2 discloses a method for treating a galvanized steel material with an aqueous solution containing tannic acid.
  • Patent Document 3 as a zinc-based plated steel sheet having a surface treatment film of a thin film with a film thickness of several ⁇ m or less, a zinc-based plated steel sheet is used as a base material, a chromate film is formed thereon, and an organic layer is formed thereon as an uppermost layer.
  • a rust-proof steel sheet for cationic electrodeposition coating having a composite silicate film is disclosed, and this rust-proof steel sheet has excellent workability and corrosion resistance.
  • Japanese Patent Publication No. 53-28857 Japanese Unexamined Patent Publication No. 51-71233 Japanese Unexamined Patent Publication No. 60-50180 Japanese Unexamined Patent Publication No. 2003-105562 Japanese Unexamined Patent Publication No. 2008-163462 Japanese Unexamined Patent Publication No. 11-106939 Japanese Laid-Open Patent Publication No. 9-25436
  • Patent Document 1 when a paint is applied on a galvanized steel material, the adhesion of the paint is not sufficient, and the method described in Patent Document 2 has a problem that the corrosion resistance is inferior.
  • the chromium-free surface-treated metal plates proposed so far are more resistant to corrosion than conventional surface-treated metal plates in which an organic resin is coated on the chromate film, in particular, after processing the surface-treated metal plate. Performance balance regarding required properties such as safety and chemical resistance was not sufficient.
  • An object of the present invention is to provide an aqueous metal surface treatment agent that can form a surface-treated metal plate that is excellent in water resistance, discoloration resistance, corrosion resistance, ethanol rubbing resistance, and abrasion resistance, and that can satisfy corrosion resistance after Erichsen processing. That is.
  • the present inventors have found that the above problems can be solved by using the amino group-containing acrylic resin particles (A) and the phosphoric acid compound (B), and have completed the present invention. It was. That is, the present invention relates to the following ⁇ 1> to ⁇ 11>.
  • ⁇ 4> The aqueous metal surface treatment agent according to any one of ⁇ 1> to ⁇ 3>, further containing at least one of a silane coupling agent and a hydrolysis-condensation product thereof (E).
  • ⁇ 5> The aqueous metal surface treatment agent according to any one of ⁇ 1> to ⁇ 4>, further comprising a polyolefin wax (F) having an average particle size of 0.1 to 3 ⁇ m.
  • the phosphoric acid compound (B) is at least one compound selected from the group consisting of orthophosphoric acid, hydroxymethane diphosphonic acid and 1-hydroxyethane-1,1-diphosphonic acid.
  • the aqueous metal surface treatment agent of the present invention is an aqueous metal surface treatment agent that does not contain a chromium compound, but is excellent in water resistance, discoloration resistance, corrosion resistance, ethanol rubbing resistance and abrasion resistance, and after Erichsen processing. It is possible to obtain a surface-treated metal sheet on which a surface-treated film that satisfies the above corrosion resistance is formed.
  • the core-shell structure is generally a layer structure in which the core part is completely covered by the shell part, but the shell part forms a layer structure depending on the mass ratio of the core part to the shell part, other conditions, and the like. It may be insufficient for this. In such a case, it is not necessary to have a complete layer structure as described above, and a structure in which a shell part covers a part of the core part may be used.
  • the corrosion resistance may decrease. Moreover, since dispersion stability will fall when a core part ratio exceeds 90 mass%, the dispersibility of an amino-group-containing acrylic resin particle (A) may fall.
  • Polymerizable unsaturated monomer having a silyl group such as perfluorobutylethyl (meth) acrylate and perfluorooctylethyl (meth) acrylate; fluoroolefin, etc.
  • an epoxy group-containing polymerizable unsaturated monomer such as acrylate and allyl glycidyl ether Unsaturated monomers
  • (meth) acrylic acid such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the number of carbon atoms
  • Monoesterified product of 2 to 8 dihydric alcohols ⁇ -caprolactone modified product of monoesterified product of (meth) acrylic acid and 2 to 8 carbon dihydric alcohols
  • Saturated monomer hydroxyl group at the end or alkyleneoxy having 1 to 3 carbon atoms
  • a polyoxyalkylene group-containing (meth) acrylic monomer such as an acrylic monomer having a silyl group and having a polyoxyethylene group or a polyoxypropylene group.
  • the above polymerizable unsaturated monomers can be used alone or in combination of two or more.
  • (meth) acrylate in each compound means “acrylate or methacrylate”.
  • (Meth) acryl means “acryl or methacryl”.
  • (Meth) acryloyl” means “acryloyl or methacryloyl”.
  • a hydroxyl group-containing polymerizable unsaturated monomer is preferably used from the viewpoint of adhesion, and a polymerizable unsaturated monomer having at least two polymerizable unsaturated groups in one molecule is used from the viewpoint of corrosion resistance. be able to.
  • the amount used thereof is 0.1% by mass or more, preferably 1% by mass or more, in the total amount of all monomer components constituting the amino group-containing acrylic resin particles (A). More preferably, it is in the range of 1 to 10% by mass.
  • the amount used is 0. of the total amount of all monomer components constituting the amino group-containing acrylic resin particles (A). It is suitable that the content is in the range of 05% by mass or more, preferably 0.1% by mass or more, more preferably 0.1 to 10% by mass.
  • the amino group-containing acrylic resin particles (A) are acrylic resin particles having a cationic core-shell structure containing an amino group. From the viewpoint of dispersion stability of the amino group-containing acrylic resin particles (A), the amino group is preferably present in the shell.
  • the amino group-containing acrylic resin particles (A) preferably have an amino group-containing shell part obtained by polymerizing a monomer mixture containing an amino group-containing monomer.
  • dimethylaminoethyl (meth) acrylate and diethylaminomethyl (meth) acrylate are preferred from the viewpoint of dispersion stability.
  • the amine value of the amino group-containing acrylic resin particles (A) is 14 to 72 mgKOH / g, preferably 20 to 72 mgKOH / g, more preferably 20 to 65 mgKOH / g.
  • the amine value means the number of mg of potassium hydroxide when the amount of amino group contained in 1 g of sample (solid content in the case of resin) is converted into potassium hydroxide. It is represented by.
  • the molecular weight of potassium hydroxide is 56.1.
  • the amino group-containing acrylic resin particles (A) for example, in the presence of a shell portion polymerized in advance, a monomer mixture for forming a core portion containing the aforementioned polymerizable unsaturated monomer using water as a main solvent.
  • the method of polymerizing can be mentioned.
  • the charge ratio of the monomer mixture for forming the shell part and the core part can be appropriately selected according to the desired solid mass ratio of the core part / shell part.
  • a shell part synthesized by solution polymerization in an organic solvent from the viewpoint of coating properties such as corrosion resistance and water resistance due to film forming properties.
  • the amount of emulsifier that is negative for water resistance can be reduced.
  • Any appropriate polymerization initiator can be adopted as a polymerization initiator used in the polymerization of the amino group-containing acrylic resin particles (A).
  • any of oil-soluble and water-soluble types can be used, but water-soluble types can be preferably used.
  • oil-soluble polymerization initiator examples include organic peroxides such as benzoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide; azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile) ) And the like.
  • water-soluble polymerization initiator examples include hydrogen peroxide water; cumene hydroperoxide, tert-butyl peroxide, tert-butyl peroxylaurate, tert-butyl peroxyisopropyl carbonate, tert-butyl peroxyacetate, Organic peroxides such as diisopropylbenzene hydroperoxide; azobis (2-methylpropiononitrile), azobis (2-methylbutyronitrile), 4,4′-azobis (4-cyanobutanoic acid), dimethylazobis (2- Methyl propionate), azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)]-propionamide ⁇ , etc.
  • Compound: potassium persulfate, ammonium persulfate Can be mentioned um, persulfate salts such as sodium persulfate.
  • a reducing agent such as sugar, sodium ascorbate, sodium formaldehyde sulfoxylate, or iron complex may be used in combination with the polymerization initiator to form a redox polymerization system.
  • the polymerization initiator is preferably used in a range of generally 0.1 to 5% by mass, particularly 0.2 to 3% by mass, based on the total mass of all monomers used.
  • the method for adding the polymerization initiator is not particularly limited, and can be appropriately selected according to the type and amount thereof.
  • the polymerization initiator may be preliminarily included in the monomer mixture or the aqueous medium, or at the time of polymerization. It may be added all at once or may be dropped.
  • an emulsifier can be used in the polymerization of the amino group-containing acrylic resin particles (A).
  • Any appropriate emulsifier can be adopted as the emulsifier.
  • cationic surfactants such as alkylamine salts and quaternary ammonium salts
  • polyoxyethylene alkyl ethers such as polyoxyethylene nonylphenyl ether, sorbitan fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene-polyoxypropylene
  • Nonionic surfactants such as block copolymers and reactive nonionic surfactants
  • (modified) polyvinyl alcohol and the like can be mentioned.
  • the above emulsifiers can be used alone or in combination of two or more.
  • the content of the emulsifier is preferably 0.01 to 10% by mass with respect to the total amount of monomers used in the polymerization of the amino group-containing acrylic resin particles (A).
  • chain transfer agents such as tert-dodecyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, mercaptoacetic acid, mercaptopropionic acid, 2-mercaptoethanol, ⁇ -methylstyrene dimer can be used as necessary. .
  • any appropriate solvent can be adopted as a solvent used when the shell portion is polymerized.
  • the solvent for example, alcohol solvents, cellosolve solvents, carbitol solvents and the like are preferable.
  • alcohol solvents such as n-butanol; ethylene glycol monobutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol mono n-butyl ether
  • cellosolve solvents such as dipropylene glycol monomethyl ether and dipropylene glycol mono n-butyl ether
  • carbitol solvents such as diethylene glycol monobutyl ether, diethylene glycol monoethyl ether and diethylene glycol monoethyl ether acetate.
  • organic solvents that are not mixed with water other than those described above can be used as long as they do not hinder the water dispersion stability of the amino group-containing acrylic resin particles (A).
  • organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, and ketone solvents such as methyl ethyl ketone and cyclohexanone.
  • any appropriate polymerization initiator can be adopted as the polymerization initiator used when the shell portion is polymerized.
  • the polymerization initiator include benzoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, cumene hydroperoxide, tert-butyl peroxide, di-tert-amyl peroxide, tert-butyl peroxide.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the polymerization temperature in the polymerization of the shell part is preferably 80 to 250 ° C., more preferably 100 to 210 ° C.
  • the polymerization time is preferably 1 to 12 hours, more preferably 2 to 8 hours.
  • the weight average molecular weight of the shell part is usually in the range of 5,000 to 400,000, particularly 10,000 to 200,000, and the water dispersibility and storage of the amino group-containing acrylic resin particles (A). Suitable from the viewpoint of stability and manufacturing.
  • the shell part may have a functional group such as an unsaturated group, an epoxy group, a hydroxyl group, a carboxyl group, or an isocyanate group, and these groups can be introduced into the shell part by a known method.
  • a functional group such as an unsaturated group, an epoxy group, a hydroxyl group, a carboxyl group, or an isocyanate group
  • a typical production method of the amino group-containing acrylic resin particles (A) is shown below, but the production method of the amino group-containing acrylic resin particles (A) is not limited to this method.
  • a shell polymer which is a dispersion stabilizer synthesized in advance, is added to an aqueous medium.
  • a neutralizing agent for shell part amino groups and deionized water are added to obtain an aqueous dispersion.
  • the neutralizing agent is not particularly limited as long as it can neutralize an amino group, and examples thereof include organic compounds such as acetic acid and formic acid, and acidic compounds such as inorganic acids.
  • neutralizing agents are usually used in an amount of 0.1 to 1.0 equivalent, preferably 0.3 to 1.0 equivalent, based on a basic group such as an amino group.
  • the aqueous dispersion can be obtained by dispersion with an ordinary stirrer, but a homomixer, a homogenizer, a disper, a line mixer, or the like can also be used to obtain a uniform aqueous dispersion having a finer particle size.
  • an aqueous dispersion of amino group-containing acrylic resin particles (A) can be produced.
  • the solid content concentration of the amino group-containing acrylic resin particles (A) in the aqueous dispersion is preferably 20 to 50% by mass, more preferably 30 to 40% by mass. When the solid content concentration exceeds 50% by mass, emulsification becomes difficult and an aqueous dispersion may be difficult to obtain. If the solid content concentration is less than 20% by mass, the concentration of the solvent (mainly water) increases because of the low concentration, and for example, it may be difficult to use as a component of the aqueous metal surface treatment agent.
  • the aqueous metal surface treatment agent of the present invention also contains a phosphoric acid compound (B).
  • the phosphoric acid compound (B) is a compound that contains a phosphate group, a phosphonic acid group, or a salt of these groups and has water solubility.
  • the phosphoric acid compound (B) can be phosphoric acid, organic phosphonic acid and salts thereof.
  • organic phosphonic acid examples include hydroxyl group-containing organic phosphonic acids such as hydroxymethane diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and 1-hydroxypropane-1,1-diphosphonic acid; Carboxyl group-containing organic phosphonic acids such as 2-hydroxyphosphonoacetic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC); nitrilotris (methylenephosphonic acid) (NTMP), nitrilotris (ethylenephosphonic acid), Alkylene having the same or different alkylene groups, such as nitrilotris (propylenephosphonic acid), nitrilobis (ethylenephosphonic acid) mono (methylenephosphonic acid), nitrilobis (methylenephosphonic acid) mono (propylenephosphonic acid), etc.
  • hydroxyl group-containing organic phosphonic acids such as hydroxymethane diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid (
  • the nitrilotri group (Alkylenephosphonic acid); ethylenediaminetetramethylenephosphonic acid, ethylenediaminetetraethylenephosphonic acid, ethylenediaminetetraalkylenephosphonic acid such as ethylenediaminetetraethylenephosphonic acid, ethylenediaminetetraalkylenephosphonic acid having an alkylene group of 1 to 4 carbon atoms; hexamethylenediaminetetramethylene Examples include phosphonic acid; diethylenetriaminepentamethylenephosphonic acid and the like.
  • Examples of the phosphoric acid and organic phosphonic acid salts include alkali metal salts (lithium salts, sodium salts, potassium salts, etc.), alkaline earth metal salts (calcium salts, magnesium salts, barium salts, etc.), ammonium salts, and the like. Can be mentioned. In consideration of solubility, salts such as zinc, manganese and nickel can also be used.
  • phosphoric acid groups or phosphonic acid groups in one molecule of the phosphoric acid compound (B), some of them may be a salt or all may be a salt.
  • active hydrogen atoms of the phosphate group or phosphonic acid group may be substituted with alkali metal ions or ammonium ions.
  • These phosphoric acid compounds (B) can be used alone or in combination of two or more.
  • the phosphoric acid compound (B) has the effect of improving the storage stability of the surface treatment agent of the present invention and improving the corrosion resistance of the surface treatment film, and in particular, orthophosphoric acid, hydroxymethane diphosphonic acid, 1- Hydroxyethane-1,1-diphosphonic acid is preferred.
  • the blending amount of the phosphoric acid compound (B) is 0.5 to 10% by mass, preferably 3 to 8% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). Suitable from the viewpoint of both corrosion resistance and water resistance.
  • Fluorometallic acid and / or its salt (C) The fluorometallic acid and / or salt thereof (C) blended in the aqueous metal surface treatment agent of the present invention as necessary improves the corrosion resistance of the surface treatment film obtained from the aqueous metal surface treatment agent of the present invention. Formulated for purpose.
  • the fluoro metal acid is an acid containing a fluorine atom and a metal.
  • the metal include titanium, zirconium, hafnium, vanadium, magnesium, manganese, zinc, tungsten, molybdenum, aluminum, nickel, cobalt, and calcium. It can be 1 type or 2 types or more of metals, such as. Among these, titanium or zirconium is particularly preferable because it is inexpensive and relatively easily available for industrial use.
  • fluorometal acid examples include hexafluorotitanic acid (H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), hexafluorohafnium acid (H 2 HfF 6 ), and hexafluoroaluminum acid. (H 3 AlF 6 ), tetrafluoroboric acid (HBF 4 ), and the like can be given.
  • Examples of the salt of the fluorometal acid include sodium salt, potassium salt, lithium salt, ammonium salt, amine salt and zinc salt of the fluorometal acid.
  • the above-mentioned fluorometallic acids and their salts can be used alone or in combination of two or more.
  • Fluorometal acids and / or salts thereof (C) include, among others, hexafluorotitanic acid (H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), ammonium salts of these fluorometal acids, amines A salt is preferred from the viewpoint of corrosion resistance.
  • Fluorometallic acid and / or its salt (C) generates ions in water, controls the corrosion potential and oxidation-reduction reaction of the metal surface in the corrosive environment, forms a very thin film on the metal surface, and film components It is thought that it has the effect of improving the corrosion resistance by, for example, improving the film density due to the crosslinking reaction with the functional group therein.
  • the blending amount of the fluorometal acid and / or salt thereof (C) is 1 to 5% by mass, preferably 2 to 4% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). It is suitable from the viewpoint of improved corrosion resistance and stability of the processing solution.
  • Vanadium compound (D) The vanadium compound (D) blended in the aqueous metal surface treatment agent of the present invention as necessary is blended for the purpose of improving the corrosion resistance of the surface treatment film obtained from the aqueous metal surface treatment agent of the present invention.
  • the vanadium compound (D) is preferably water-soluble or water-dispersible. Further, the vanadium compound (D) can be, for example, carbonate, phosphate, nitrate, sulfate, acetate, oxide, etc., and may be an anhydride or a hydrate.
  • Examples of the vanadium compound (D) include ammonium metavanadate, sodium metavanadate, potassium metavanadate, vanadyl sulfate, and vanadium oxide.
  • ammonium metavanadate is particularly preferable from the viewpoint of solubility in an acidic aqueous solution.
  • Sodium metavanadate, potassium metavanadate and vanadyl sulfate are preferred.
  • the amount of the vanadium compound (D) is 0.1 to 5% by mass, preferably 0.3 to 1% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). It is suitable from the viewpoint of stability.
  • silane coupling agent and / or hydrolysis condensate thereof (E)
  • the silane coupling agent and / or its hydrolysis condensate (E) which is blended as necessary with the aqueous metal surface treatment agent of the present invention, improves the adhesion of the resulting surface treatment film to the substrate surface, In some cases, the film can contribute to improving the corrosion resistance and water resistance of the film.
  • silane coupling agent examples include N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -methacryloyloxypropyltrimethoxysilane.
  • N- ⁇ (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyl Methyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, methyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -chloropropyltrimethoxysilane, Examples include oxamethyldisilazane, ⁇ -anilinopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, octadecyldimethyl [3- (tri
  • silane coupling agents may be used alone or in combination of two or more.
  • the hydrolysis condensate of the silane coupling agent means an oligomer of a silane coupling agent hydrolyzed and condensed from the silane coupling agent as a raw material.
  • the blending amount of the silane coupling agent and / or its hydrolysis condensate (E) is 0.1 to 20% by mass, preferably 2 to 15% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A).
  • Polyolefin wax (F) The polyolefin wax (F) blended in the aqueous metal surface treatment agent of the present invention as necessary is a component that imparts lubricity to the obtained surface treatment film.
  • polyolefin wax (F) examples include polyethylene, polypropylene, and microcrystalline.
  • the blending amount of the polyolefin wax (F) is 0.1 to 10% by mass, preferably 0.3% as a solid content with respect to the total solid content of the aqueous metal surface treatment agent from the viewpoint of molding processability and corrosion resistance. It is suitable to be in the range of ⁇ 8% by mass.
  • the average particle diameter of the polyolefin wax (F) is 0.1 to 3 ⁇ m, preferably 0.5 to 2 ⁇ m, from the viewpoint of maintaining a low dynamic friction coefficient.
  • the aqueous metal surface treatment agent of the present invention is aqueous.
  • Aqueous means that the solvent has water as a main component.
  • the solvent may be water alone, but for the purpose of adjusting the drying property of the film, the viscosity of the treatment agent, etc., one or two of various water-soluble organic solvents such as monovalent or polyhydric alcohols, ketones, ether alcohols, etc. Two or more species may be used in combination.
  • the aqueous metal surface treatment agent of the present invention preferably contains 70% by mass or more, and particularly preferably 80% by mass or more of water in the solvent.
  • the aqueous metal surface treatment agent of the present invention may be a pH adjuster (acid or base), titanium-containing aqueous liquid, filler, colloidal silica, colorant, interface, in addition to the solvent and the components described above.
  • An activator, an antifoaming agent, a leveling agent, an antibacterial agent and the like can be blended. These can be added in the range which does not impair the performance of the treatment film obtained and the stability of the surface treatment agent.
  • acetic acid for example, acetic acid, formic acid, lactic acid, aqueous ammonia and the like can be suitably used.
  • the aqueous metal surface treatment agent of the present invention preferably has a pH of 3 to 7, more preferably a pH of 3.5 to 6.5, from the viewpoint of liquid stability.
  • the solid content concentration of the aqueous metal surface treatment agent of the present invention is preferably 5 to 30% by mass, particularly preferably 10 to 25% by mass, from the viewpoint of coating workability and the stability of the treatment liquid.
  • the above-mentioned aqueous titanium-containing liquid may be effective in improving the corrosion resistance of the resulting treated film.
  • the titanium-containing aqueous liquid is obtained by reacting at least one titanium compound selected from hydrolyzable titanium, hydrolyzable titanium low condensate, titanium hydroxide and titanium hydroxide low condensate with hydrogen peroxide. (See, for example, Japanese Patent Application Laid-Open No. 2006-22370).
  • the blending amount is 5.0% by mass or less in terms of solid content with respect to the total solid content of the amino group-containing acrylic resin particles (A). It is preferable from the viewpoint.
  • Examples of the filler include fine powders such as silica, talc, barita, calcium carbonate, mica, and examples of those used as extender pigments.
  • Examples of the colorant include color pigments and dyes.
  • the metal surface treatment method of the present invention is a metal surface treatment method in which the aqueous metal surface treatment agent of the present invention is applied on a metal substrate and dried, and the surface of the metal substrate is treated with the aqueous metal surface treatment agent of the present invention.
  • This is a method of forming a treatment film.
  • the “treated film” includes not only a continuous treated film, but also a treated product that is not a continuous treated film due to a small amount of treated adhesion, but also becomes discontinuous.
  • the metal substrate is not limited as long as it is a metal material, and includes, for example, iron, copper, aluminum, tin, zinc and alloys containing these metals, and plated steel plates or vapor deposition products of these metals. It is done. Especially, the metal plate by the said metal can be used conveniently.
  • the metal plate used as the metal substrate examples include cold-rolled steel sheets, hot-dip galvanized steel sheets, electrogalvanized steel sheets, zinc alloy (alloys such as zinc-iron, zinc-aluminum, zinc-nickel) plated steel sheets, aluminum A plated steel plate, a stainless steel plate, a copper plated steel plate, a tin plated steel plate, an aluminum plate, a copper plate, etc. can be mentioned.
  • galvanized steel sheets including both hot dip galvanized steel sheets and electrogalvanized steel sheets
  • zinc alloy plated steel sheets are suitable.
  • the surface of the metal substrate Before applying the aqueous metal surface treatment agent of the present invention on the metal substrate, the surface of the metal substrate can be adjusted by one or more of degreasing, pickling, hot water washing, detergent washing, etc. Also in this case, it is preferable to thoroughly wash with water at the end. Further, the liquid temperature of the aqueous metal surface treatment agent of the present invention at the time of application may be room temperature, but may be cooled or heated as desired.
  • a first layer may be formed on the surface of the metal base material by other surface treatment.
  • the first layer is formed for the purpose of, for example, enhancing adhesion between the treatment film formed by the aqueous metal surface treatment agent of the present invention and the metal surface, and is preferably formed of a chromium-free surface treatment agent.
  • the aqueous metal of the present invention is formed by a known method such as a roll coating method, a spray coating method, a brush coating method, an electrostatic coating method, an immersion method, an electrodeposition coating method, a curtain coating method, or a roller coating method.
  • a surface treatment film can be formed by coating and drying the surface treatment agent.
  • formation of the surface treatment film mentioned above may be only one side or both sides of the metal substrate.
  • the coating amount of the treatment film by the aqueous metal surface treatment agent of the present invention is not particularly limited, but is usually 0.4 to 3.6 g / m 2 , preferably 0.5 to 2.5 g / m 2 . It is suitable from a viewpoint of corrosion resistance and workability that it is a range.
  • the drying conditions of the treated film may be set as appropriate. However, when continuously coating the material coated by the coil coating method or the like, the maximum material reaching temperature is usually 60 to 200 ° C, preferably 70 to 120 ° C. It can be performed by heating for 5 to 60 seconds under the following conditions. In the case of baking in a batch method, for example, it can be performed by heating at an atmospheric temperature of 100 to 180 ° C. for 1 to 30 minutes.
  • the surface-treated metal plate of the present invention is a surface-treated metal plate obtained by performing surface treatment with the aqueous metal surface treatment agent of the present invention on the surface of a metal substrate.
  • the surface-treated metal plate of the present invention has a plate-like metal base material, and can be obtained by the metal surface treatment method of the present invention.
  • the coating amount of the treated film by the aqueous metal surface treatment agent of the present invention is in the range of 0.4 to 3.6 g / m 2 , preferably 0.5 to 2.5 g / m 2 . It is preferable from the viewpoint of corrosion resistance and workability.
  • an upper film such as a colored coating or a clear coating can be further formed for the purpose of improving cosmetics, improving durability, and improving functionality.
  • the formation of the upper layer film can be performed before the surface-treated metal plate of the present invention is molded, but is preferably performed after the molding process.
  • part and % are based on mass unless otherwise specified. Further, the coating amount of the treatment coating is based on the dry coating amount.
  • the amino group-containing acrylic resin (S1) obtained had an amine value of 90 mgKOH / g, a hydroxyl value of 22 mgKOH / g, and a weight average molecular weight (Mw) of 45,000.
  • amino group-containing acrylic resins (S2) to (S14) were obtained according to the compositions shown in Tables 1 and 2 below.
  • the amine value of the obtained amino group-containing acrylic resin particles (A1) was 45 mgKOH / g, the hydroxyl value was 23 mgKOH / g, and the weight average molecular weight was 1,200,000.
  • amino group-containing acrylic resin particles (A16) aqueous dispersion An amino group-containing acrylic resin particle (A1) having an average particle diameter of 55 nm is solid, except that 111 parts of an amino group-containing acrylic resin (S13) solution having a solid content of 45% and 6 parts of acetic acid are used. An amino group-containing acrylic resin particle (A16) aqueous dispersion having a partial concentration of 30% was obtained. The amino group-containing acrylic resin particles (A16) thus obtained had an amine value of 90 mgKOH / g, a hydroxyl value of 23 mgKOH / g, and a weight average molecular weight of 1,200,000.
  • the average particle diameter is 240 nm in the same manner as the amino group-containing acrylic resin particle (A1) aqueous dispersion, except that 111 parts of an amino group-containing acrylic resin (S14) solution having a solid content concentration of 45% and 0.6 part of acetic acid are used.
  • An amino group-containing acrylic resin particle (A17) aqueous dispersion having a solid content concentration of 30% was obtained.
  • the amino group-containing acrylic resin particles (A17) thus obtained had an amine value of 9 mgKOH / g, a hydroxyl value of 23 mgKOH / g, and a weight average molecular weight of 1,200,000.
  • the amino group-containing acrylic resin particles (A18) thus obtained had an amine value of 10 mgKOH / g, a hydroxyl value of 16 mgKOH / g, and a number average molecular weight of about 65,000.
  • Monomer emulsion for shell part 20 parts of deionized water, 3.5 parts of “ADEKA rear soap ER-40”, 3 parts of styrene, 19 parts of methyl methacrylate, 3 parts of n-butyl methacrylate (nBMA), n-butyl acrylate 2 Monomer emulsion obtained by mixing 2 parts of 2-hydroxyethyl methacrylate and 1 part of 2- (N, N-dimethylamino) ethyl methacrylate.
  • Monomer emulsion for core part 40 parts of deionized water, 7 parts of “ADEKA rear soap ER-40”, 44 parts of methyl methacrylate, 17 parts of n-butyl methacrylate, 5 parts of n-butyl acrylate, 2 parts of 2-hydroxyethyl methacrylate And a monomer emulsion obtained by mixing 2 parts of 2- (N, N-dimethylamino) ethyl methacrylate.
  • the amino group-containing acrylic resin particles (A19) thus obtained had an amine value of 90 mgKOH / g, a hydroxyl value of 23 mgKOH / g, and a weight average molecular weight of 45,000.
  • Amino group-containing acrylic resin particles (A16) to (A19) are for comparative examples, and for convenience, amino group-containing acrylic resin particles (A16) to (A19) are used. It is a resin particle which does not correspond to an amino group-containing acrylic resin particle (A).
  • Examples and Comparative Examples Each component was blended according to the blending ratio shown in the following table, adjusted by adding deionized water so that the solid content concentration was 15% by mass, and sufficiently stirred to obtain each metal surface treatment agent.
  • the blending amount in the following table is based on the solid mass or the active ingredient mass.
  • amino group-containing acrylic resin particles A
  • phosphoric acid compounds B
  • fluorometal acids and / or their salts C
  • vanadium compounds D
  • silane coupling agents and / or their
  • the components of the hydrolysis condensate (E) and the polyolefin wax (F) are as follows.
  • amino group-containing acrylic resin particles (A) components A1 to A19 Amino group-containing acrylic resin particles (A1) to (A19) obtained in the above [Synthesis example of Core / Shell emulsion]
  • F1 Chemipearl W-700 manufactured by Mitsui Chemicals, Inc. Average particle size 1.5 ⁇ m
  • F2 HIDISPER AC-90 manufactured by Gifu Seratsuk Co., Ltd. Average particle size 1.3 ⁇ m
  • F3 HIDISPER A-206N manufactured by Gifu Seratsuk Manufacturing Co., Ltd. Average particle size 1 ⁇ m
  • F4 HIDISPER AG-73, average particle size 0.1 ⁇ m, manufactured by Gifu Seratsuk Manufacturing Co., Ltd.
  • F5 Chemipearl W-500 manufactured by Mitsui Chemicals, Inc. Average particle size 2.5 ⁇ m
  • the surface treatment agent obtained in the above [Examples and Comparative Examples] was applied to the obtained alkaline degreased metal plate with a bar coater so that the dry film weight was 0.9 g / m 2, and the metal plate reached the maximum.
  • Each surface-treated metal plate was obtained by heating and drying for 12 seconds so that the temperature was 60 ° C.
  • the surface treatment agent obtained in the above [Examples and Comparative Examples] was applied to the obtained alkaline degreased metal plate with a bar coater so that the dry film weight was 0.9 g / m 2, and the metal plate reached the maximum.
  • Each surface-treated metal plate was obtained by heating and drying for 12 seconds so that the temperature became 80 ° C.
  • SS The time until the rating number reached 9 was 96 hours or more.
  • S The time until the rating number reached 9 was 72 hours or more and less than 96 hours.
  • A The time until the rating number reached 9 was 48 hours or more and less than 72 hours.
  • B The time until the rating number reached 9 was 24 hours or more and less than 48 hours.
  • C The time until the rating number reached 9 was less than 24 hours.
  • the practical level was “SS”, “S”, “A” or “B”.
  • B The number of frictions until the value of the dynamic friction coefficient reached 0.4 was 5 or more and less than 10 times.
  • C The number of frictions until the value of the dynamic friction coefficient reached 0.4 was less than 5. The practical level was “S”, “A” or “B”.
  • the surface-treated metal plate coated with the surface treatment agent of the present invention has water resistance, corrosion resistance (particularly, corrosion resistance of the surface-treated metal plate after Erichsen processing) and ethanol rubbing resistance. It was excellent in performance and satisfied performances such as a copper sulfate discoloration test and a dynamic friction coefficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The present invention relates to an aqueous metal surface treatment agent containing amino group-containing acrylic resin particles (A), which have a core-shell structure and the amine value is 14–72 mg KOH/g, and a phosphate compound (B), wherein the aqueous metal surface treatment agent contains 0.5–1.0 mass% of the phosphate compound (B) with respect to the total amount of solids of the amino group-containing acrylic resin particles (A).

Description

水性金属表面処理剤、金属表面処理方法及び表面処理金属板Aqueous metal surface treatment agent, metal surface treatment method and surface treated metal plate
 本発明は、従来のクロム酸塩処理及びリン酸塩処理に替わる、クロム化合物を含まない水性金属表面処理剤、該水性金属表面処理組剤を用いた金属表面処理方法及び該水性金属表面処理組剤を用いた表面処理金属板に関する。 The present invention relates to an aqueous metal surface treatment agent not containing a chromium compound, a metal surface treatment method using the aqueous metal surface treatment composition, and the aqueous metal surface treatment assembly, which replaces the conventional chromate treatment and phosphate treatment. The present invention relates to a surface-treated metal plate using an agent.
 従来、金属表面の耐食性を向上させるためクロム酸塩処理及びリン酸塩処理が一般に行われている。しかしながら、近年クロムの毒性が社会問題になっている。クロム酸塩を使用する表面処理方法は、処理工程でのクロム酸塩ヒュームの飛散の問題、排水処理設備に多大な費用を要する問題、さらには、化成処理皮膜からクロム酸の溶出による問題等がある。 Conventionally, chromate treatment and phosphate treatment are generally performed to improve the corrosion resistance of metal surfaces. However, the toxicity of chromium has become a social problem in recent years. The surface treatment method using chromate has a problem of scattering of chromate fume in the treatment process, a problem that requires a large amount of cost for wastewater treatment equipment, and a problem due to elution of chromic acid from the chemical conversion treatment film. is there.
 また、リン酸塩処理では、リン酸亜鉛系、リン酸鉄系の表面処理が通常行われているが、耐食性を付与する目的でリン酸塩処理後、通常クロム酸によるリンス処理を行うため、クロム処理の問題がある。また、金属表面のエッチングを行うため、金属イオン等の排水処理、および被処理金属からの金属イオンの溶出によるスラッジ処理等の問題がある。 In addition, in phosphate treatment, zinc phosphate-based and iron phosphate-based surface treatments are usually performed, but for the purpose of imparting corrosion resistance, after phosphating, usually rinsing treatment with chromic acid, There is a problem with chrome treatment. In addition, since the metal surface is etched, there are problems such as wastewater treatment of metal ions and sludge treatment due to elution of metal ions from the metal to be treated.
 クロム酸塩処理やリン酸亜鉛処理以外の処理方法としては、例えば、特許文献1には、重燐酸アルミニウムを含有する水溶液で亜鉛メッキ鋼材を処理した後、150~550℃の温度で加熱する亜鉛メッキ鋼材の表面処理方法が開示されており、特許文献2には、タンニン酸を含有する水溶液で亜鉛メッキ鋼材を処理する方法等が開示されている。 As a treatment method other than the chromate treatment and the zinc phosphate treatment, for example, Patent Document 1 discloses that zinc treated steel is treated with an aqueous solution containing aluminum biphosphate and then heated at a temperature of 150 to 550 ° C. A surface treatment method for a plated steel material is disclosed, and Patent Document 2 discloses a method for treating a galvanized steel material with an aqueous solution containing tannic acid.
 特許文献3には、膜厚数μm以下の薄膜の表面処理被膜を有する亜鉛系メッキ鋼板として、亜鉛系メッキ鋼板を基材とし、これにクロメート被膜を形成し、さらにこの上に最上層として有機複合シリケート被膜を形成した、カチオン電着塗装用防錆鋼板が開示されており、この防錆鋼板は、加工性及び耐食性に優れた性能を有する。 In Patent Document 3, as a zinc-based plated steel sheet having a surface treatment film of a thin film with a film thickness of several μm or less, a zinc-based plated steel sheet is used as a base material, a chromate film is formed thereon, and an organic layer is formed thereon as an uppermost layer. A rust-proof steel sheet for cationic electrodeposition coating having a composite silicate film is disclosed, and this rust-proof steel sheet has excellent workability and corrosion resistance.
 特許文献4には、カチオン性ウレタン樹脂、特定のフェノール樹脂、シランカップリング剤、チタン化合物、ならびに特定の酸もしくはその塩を含む表面処理液を用いて亜鉛系又はアルミニウム系めっき鋼板を表面処理した表面処理鋼板が開示されている。 In Patent Document 4, a zinc-based or aluminum-based plated steel sheet is surface-treated using a surface treatment liquid containing a cationic urethane resin, a specific phenol resin, a silane coupling agent, a titanium compound, and a specific acid or salt thereof. A surface-treated steel sheet is disclosed.
 特許文献5には、カチオン性アクリル樹脂、特定式で表される樹脂化合物、及びZr、Ti、V、Mo、W、Mn又はCeの化合物を水に配合してなる金属表面処理剤であって、金属が鋼板、メッキ鋼板及びアルミニウム系金属材料から選ばれる金属表面処理剤が開示されている。 Patent Document 5 discloses a metal surface treatment agent comprising a cationic acrylic resin, a resin compound represented by a specific formula, and a compound of Zr, Ti, V, Mo, W, Mn, or Ce mixed in water. Further, a metal surface treating agent is disclosed in which the metal is selected from a steel plate, a plated steel plate, and an aluminum-based metal material.
 特許文献6には、水溶性、水分散性又はエマルション性のいずれかであって、少なくともアミノ基もしくはアンモニウム基のいずれか一方、水酸基及び疎水基を含むアクリル樹脂と、重金属又はその塩と、を含有することを特徴とするアクリル樹脂含有金属表面処理組成物が開示されている。 Patent Document 6 includes an acrylic resin that is water-soluble, water-dispersible, or emulsion-based, and includes at least one of an amino group or an ammonium group, a hydroxyl group, and a hydrophobic group, and a heavy metal or a salt thereof. An acrylic resin-containing metal surface treatment composition characterized by containing is disclosed.
 特許文献7には、水溶性、水分散性又はエマルション性のいずれかであって、少なくとも窒素原子を1原子以上含有する有機高分子化合物又はその塩と、重金属又はその塩と、を含有する金属表面処理組成物が開示されている。 Patent Document 7 discloses a metal that is water-soluble, water-dispersible, or emulsion-based, and contains an organic polymer compound or a salt thereof containing at least one nitrogen atom and a heavy metal or a salt thereof. A surface treatment composition is disclosed.
日本国特公昭53-28857号公報Japanese Patent Publication No. 53-28857 日本国特開昭51-71233号公報Japanese Unexamined Patent Publication No. 51-71233 日本国特開昭60-50180号公報Japanese Unexamined Patent Publication No. 60-50180 日本国特開2003-105562号公報Japanese Unexamined Patent Publication No. 2003-105562 日本国特開2008-163462号公報Japanese Unexamined Patent Publication No. 2008-163462 日本国特開平11-106939号公報Japanese Unexamined Patent Publication No. 11-106939 日本国特開平9-25436号公報Japanese Laid-Open Patent Publication No. 9-25436
 しかしながら、特許文献1に記載の方法では、亜鉛メッキ鋼材の上に塗料を塗装する場合、塗料の密着性が十分ではなく、特許文献2に記載の方法では、耐食性が劣るという問題があった。 However, in the method described in Patent Document 1, when a paint is applied on a galvanized steel material, the adhesion of the paint is not sufficient, and the method described in Patent Document 2 has a problem that the corrosion resistance is inferior.
 特許文献3に記載の防錆鋼板は、クロメート被膜を有するため、クロメートイオンによる安全衛生面の問題があった。また、この防錆鋼板からクロメート被膜を除いた鋼板では、耐食性が大幅に低下する。 Since the rust-proof steel sheet described in Patent Document 3 has a chromate film, there is a problem of health and safety due to chromate ions. Moreover, in the steel plate obtained by removing the chromate film from the rust-proof steel plate, the corrosion resistance is greatly reduced.
 特許文献4に記載の表面処理鋼板では、平面部耐食性、アルカリ脱脂後耐食性、加工部耐食性等の耐食性、耐水性、上塗密着性、耐酸性等の特性の性能バランスが必ずしも良好ではなかった。 In the surface-treated steel sheet described in Patent Document 4, the performance balance of characteristics such as corrosion resistance such as flat portion corrosion resistance, corrosion resistance after alkali degreasing, and processed portion corrosion resistance, water resistance, topcoat adhesion, and acid resistance was not always good.
 特許文献5に記載の金属表面処理剤、特許文献6及び7に記載の金属表面処理組成物では、耐食性、特に金属処理板の加工後の耐食性が不十分であるという問題があった。 The metal surface treatment agent described in Patent Document 5 and the metal surface treatment compositions described in Patent Documents 6 and 7 have a problem that the corrosion resistance, particularly the corrosion resistance after processing of the metal-treated plate is insufficient.
 すなわち、これまでに提案されたクロムフリーの表面処理金属板は、クロメート皮膜上に有機樹脂をコーティングした従来の表面処理金属板に比べて、耐食性、特に表面処理金属板の加工後の耐食性、耐水性、耐薬品性等の要求特性に関する性能バランスが十分ではなかった。 In other words, the chromium-free surface-treated metal plates proposed so far are more resistant to corrosion than conventional surface-treated metal plates in which an organic resin is coated on the chromate film, in particular, after processing the surface-treated metal plate. Performance balance regarding required properties such as safety and chemical resistance was not sufficient.
 本発明の目的は、耐水性、耐変色性、耐食性、耐エタノールラビング性及び耐摩耗性に優れ、かつエリクセン加工後の耐食性を満足できる表面処理金属板を形成できる水性金属表面処理剤を提供することである。 An object of the present invention is to provide an aqueous metal surface treatment agent that can form a surface-treated metal plate that is excellent in water resistance, discoloration resistance, corrosion resistance, ethanol rubbing resistance, and abrasion resistance, and that can satisfy corrosion resistance after Erichsen processing. That is.
 また、本発明は、該水性金属表面処理剤を用いた表面処理金属板、及び該水性金属表面処理剤を用いた金属表面処理方法を提供することを目的とする。 Another object of the present invention is to provide a surface-treated metal plate using the aqueous metal surface treatment agent and a metal surface treatment method using the aqueous metal surface treatment agent.
 本発明者らは、鋭意検討を重ねた結果、アミノ基含有アクリル樹脂粒子(A)、及びリン酸系化合物(B)を用いることで上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記<1>~<11>に関するものである。
As a result of intensive studies, the present inventors have found that the above problems can be solved by using the amino group-containing acrylic resin particles (A) and the phosphoric acid compound (B), and have completed the present invention. It was.
That is, the present invention relates to the following <1> to <11>.
<1>コアシェル構造を有し、アミン価が14~72mgKOH/gであるアミノ基含有アクリル樹脂粒子(A)、及びリン酸系化合物(B)を含有する水性金属表面処理剤であって、前記アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、前記リン酸系化合物(B)を0.5~10質量%含有する水性金属表面処理剤。
<2>さらに、フルオロ金属酸及びその塩の少なくとも一方(C)を含有する<1>に記載の水性金属表面処理剤。
<3>さらに、バナジウム化合物(D)を含有する<1>又は<2>に記載の水性金属表面処理剤。
<4>さらに、シランカップリング剤及びその加水分解縮合物の少なくとも一方(E)を含有する<1>~<3>のいずれか1つに記載の水性金属表面処理剤。
<5>さらに、平均粒子径が0.1~3μmのポリオレフィンワックス(F)を含有する<1>~<4>のいずれか1つに記載の水性金属表面処理剤。
<6>前記リン酸系化合物(B)が、オルトリン酸、ヒドロキシメタンジホスホン酸及び1-ヒドロキシエタン-1,1-ジホスホン酸からなる群から選ばれる少なくとも1種の化合物である<1>~<5>のいずれか1つに記載の水性金属表面処理剤。
<7>前記フルオロ金属酸及びその塩の少なくとも一方(C)の金属が、チタン又はジルコニウムである<2>~<6>のいずれか1つに記載の水性金属表面処理剤。
<8>前記バナジウム化合物(D)が、メタバナジン酸アンモウニム、メタバナジン酸ナトリウム、メタバナジン酸カリウム及び硫酸バナジルからなる群から選ばれる少なくとも1種の化合物である<3>~<7>のいずれか1つに記載の水性金属表面処理剤。
<9>pHが3~7で、固形分濃度が5~30質量%である<1>~<8>のいずれか1つに記載の水性金属表面処理剤。
<10><1>~<9>のいずれか1つに記載の水性金属表面処理剤を、金属基材上に塗布し、乾燥させる金属表面処理方法。
<11><1>~<9>のいずれか1つに記載の水性金属表面処理剤による表面処理が金属基材の表面になされてなる表面処理金属板。
<1> An aqueous metal surface treatment agent comprising an amino group-containing acrylic resin particle (A) having a core-shell structure and an amine value of 14 to 72 mgKOH / g, and a phosphoric acid compound (B), An aqueous metal surface treatment agent containing 0.5 to 10% by mass of the phosphoric acid compound (B) based on the total solid content of the amino group-containing acrylic resin particles (A).
<2> The aqueous metal surface treatment agent according to <1>, further comprising at least one of a fluorometal acid and a salt thereof (C).
<3> The aqueous metal surface treatment agent according to <1> or <2>, further containing a vanadium compound (D).
<4> The aqueous metal surface treatment agent according to any one of <1> to <3>, further containing at least one of a silane coupling agent and a hydrolysis-condensation product thereof (E).
<5> The aqueous metal surface treatment agent according to any one of <1> to <4>, further comprising a polyolefin wax (F) having an average particle size of 0.1 to 3 μm.
<6> The phosphoric acid compound (B) is at least one compound selected from the group consisting of orthophosphoric acid, hydroxymethane diphosphonic acid and 1-hydroxyethane-1,1-diphosphonic acid. The aqueous metal surface treating agent according to any one of <5>.
<7> The aqueous metal surface treatment agent according to any one of <2> to <6>, wherein the metal of at least one of the fluorometal acid and its salt (C) is titanium or zirconium.
<8> Any one of <3> to <7>, wherein the vanadium compound (D) is at least one compound selected from the group consisting of ammonium metavanadate, sodium metavanadate, potassium metavanadate, and vanadyl sulfate. The aqueous metal surface treatment agent according to 1.
<9> The aqueous metal surface treatment agent according to any one of <1> to <8>, wherein the pH is 3 to 7, and the solid content concentration is 5 to 30% by mass.
<10> A metal surface treatment method in which the aqueous metal surface treatment agent according to any one of <1> to <9> is applied onto a metal substrate and dried.
<11> A surface-treated metal sheet, wherein the surface of the metal substrate is subjected to a surface treatment with the aqueous metal surface treatment agent according to any one of <1> to <9>.
 本発明の水性金属表面処理剤によれば、クロム化合物を含有しない水性金属表面処理剤でありながら、耐水性、耐変色性、耐食性、耐エタノールラビング性及び耐摩耗性に優れ、かつエリクセン加工後の耐食性を満足できる表面処理皮膜が形成された表面処理金属板を得ることができる。 According to the aqueous metal surface treatment agent of the present invention, it is an aqueous metal surface treatment agent that does not contain a chromium compound, but is excellent in water resistance, discoloration resistance, corrosion resistance, ethanol rubbing resistance and abrasion resistance, and after Erichsen processing. It is possible to obtain a surface-treated metal sheet on which a surface-treated film that satisfies the above corrosion resistance is formed.
 したがって、本発明の水性金属表面処理剤、この処理剤による表面処理がなされた表面処理金属板は、環境上の問題を克服でき、かつ、前記各性能を満たすため、極めて大きな産業上の利用価値を有する。 Therefore, the aqueous metal surface treatment agent of the present invention and the surface-treated metal plate that has been surface-treated with this treatment agent can overcome environmental problems and satisfy the above-mentioned performances. Have
 本発明の水性金属表面処理剤における各成分について以下に述べるが、これらは望ましい実施態様の一例を示すものであり、これらの内容に特定されるものではない。
 なお、本明細書において、「質量」は「重量」と同義である。
 また、本明細書において、「X及び/又はY」とは、「X及びYの少なくとも一方」を意味する。
Each component in the aqueous metal surface treating agent of the present invention will be described below, but these are examples of desirable embodiments and are not limited to these contents.
In the present specification, “mass” is synonymous with “weight”.
In the present specification, “X and / or Y” means “at least one of X and Y”.
[アミノ基含有アクリル樹脂粒子(A)]
 本発明の水性金属表面処理剤は、アミノ基含有アクリル樹脂粒子(A)を含有する。アミノ基含有アクリル樹脂粒子(A)は、中心部としてのコア部、外殻部としてシェル部の、コアシェル構造を有し、コア部とシェル部はそれぞれ組成の異なるモノマー混合物から得られる。
 なお、コアシェル構造とは、具体的には同一ミセル中に異なる樹脂組成の成分が存在し、中心部分(コア)と外殻部分(シェル)とで異なる樹脂組成からなっている構造をいう。
[Amino group-containing acrylic resin particles (A)]
The aqueous metal surface treatment agent of the present invention contains amino group-containing acrylic resin particles (A). The amino group-containing acrylic resin particles (A) have a core-shell structure with a core portion as a central portion and a shell portion as an outer shell portion, and the core portion and the shell portion are obtained from monomer mixtures having different compositions.
The core-shell structure specifically refers to a structure in which components having different resin compositions exist in the same micelle and the resin composition is different between the central portion (core) and the outer shell portion (shell).
 上記コアシェル構造は、通常、コア部がシェル部によって完全に被覆された層構造が一般的であるが、コア部とシェル部の質量比率、その他の条件等により、シェル部が層構造を形成するのに不十分な場合もあり得る。そのような場合は、上記のような完全な層構造である必要はなく、コア部の一部をシェル部が被覆した構造であってもよい。 The core-shell structure is generally a layer structure in which the core part is completely covered by the shell part, but the shell part forms a layer structure depending on the mass ratio of the core part to the shell part, other conditions, and the like. It may be insufficient for this. In such a case, it is not necessary to have a complete layer structure as described above, and a structure in which a shell part covers a part of the core part may be used.
 コア部とシェル部との構成比率は、分散安定性の観点から、コア部:シェル部=90:10~10:90(質量比)とすることが好ましく、より好ましくは70:30~20:80、さらに好ましくは70:30~30:70である。 From the viewpoint of dispersion stability, the composition ratio of the core part to the shell part is preferably set to core part: shell part = 90: 10 to 10:90 (mass ratio), more preferably 70:30 to 20: 80, more preferably 70:30 to 30:70.
 アミノ基含有アクリル樹脂粒子(A)中のコア部比率が10質量%未満であると耐食性が低下する場合がある。また、コア部比率が90質量%を超えると分散安定性が低下するため、アミノ基含有アクリル樹脂粒子(A)の分散性が低下する場合がある。 If the core ratio in the amino group-containing acrylic resin particles (A) is less than 10% by mass, the corrosion resistance may decrease. Moreover, since dispersion stability will fall when a core part ratio exceeds 90 mass%, the dispersibility of an amino-group-containing acrylic resin particle (A) may fall.
 コア部およびシェル部の重合に用いるモノマー混合物はいずれも、重合性不飽和モノマーを含む。コア部およびシェル部は、重合性不飽和モノマーについて、その種類及び/又は配合比がそれぞれ異なるモノマー混合物を用いて重合することにより得ることが好ましい。 Both the monomer mixture used for the polymerization of the core part and the shell part contains a polymerizable unsaturated monomer. The core part and the shell part are preferably obtained by polymerizing polymerizable unsaturated monomers using monomer mixtures having different types and / or blending ratios.
 上記重合性不飽和モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等のアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート等のイソボルニル基を有する重合性不飽和モノマー;アダマンチル(メタ)アクリレート等のアダマンチル基を有する重合性不飽和モノマー;トリシクロデセニル(メタ)アクリレート等のトリシクロデセニル基を有する重合性不飽和モノマー;ベンジル(メタ)アクリレート、スチレン、α-メチルスチレン、ビニルトルエン等の芳香環含有重合性不飽和モノマー;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリイソプロポキシシラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシラン、γ-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリ-n-プロポキシシラン、γ-(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、ビニルトリアセトキシシラン、β-(メタ)アクリロイルオキシエチルトリメトキシシラン等の加水分解性シリル基を有する重合性不飽和モノマー;パーフルオロブチルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレート;フルオロオレフィン等のフッ素化アルキル基を有する重合性不飽和モノマー;N-ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル等のビニル化合物;(メタ)アクリロニトリル、(メタ)アクリルアミド、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、2-(メタクリロイルオキシ)エチルトリメチルアンモニウムクロライド、グリシジル(メタ)アクリレートとアミン類との付加物等の含窒素重合性不飽和モノマー;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有重合性不飽和モノマー;アリル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の重合性不飽和基を1分子中に少なくとも2個有する重合性不飽和モノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物;該(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体;アリルアルコール等の水酸基含有重合性不飽和モノマー;末端にヒドロキシル基、又は炭素数1~3のアルキレンオキシ基を有し、且つポリオキシエチレン基、又はポリオキシプロピレン基を有するアクリルモノマー等のポリオキシアルキレン基含有(メタ)アクリルモノマー;を挙げることができる。 Examples of the polymerizable unsaturated monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, and i-butyl. (Meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, tridecyl (meth) acrylate, lauryl (Meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, Alkyl or cycloalkyl (meth) acrylates such as clododecyl (meth) acrylate and tricyclodecanyl (meth) acrylate; polymerizable unsaturated monomers having an isobornyl group such as isobornyl (meth) acrylate; adamantyl such as adamantyl (meth) acrylate Polymerizable unsaturated monomer having a group; polymerizable unsaturated monomer having a tricyclodecenyl group such as tricyclodecenyl (meth) acrylate; benzyl (meth) acrylate, styrene, α-methylstyrene, vinyltoluene, etc. Aromatic ring-containing polymerizable unsaturated monomers: vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltris (2-methoxyethoxy) silane, vinyltriisopropoxy Silane, γ- (meth) acryloyloxypropyltrimethoxysilane, γ- (meth) acryloyloxypropylmethyldimethoxysilane, γ- (meth) acryloyloxypropyltriethoxysilane, γ- (meth) acryloyloxypropylmethyldiethoxysilane , Γ- (meth) acryloyloxypropyltri-n-propoxysilane, γ- (meth) acryloyloxypropyltriisopropoxysilane, vinyltriacetoxysilane, β- (meth) acryloyloxyethyltrimethoxysilane, etc. Polymerizable unsaturated monomer having a silyl group; perfluoroalkyl (meth) acrylate such as perfluorobutylethyl (meth) acrylate and perfluorooctylethyl (meth) acrylate; fluoroolefin, etc. Polymerizable unsaturated monomer having a fluorinated alkyl group; vinyl compounds such as N-vinylpyrrolidone, ethylene, butadiene, chloroprene, vinyl propionate and vinyl acetate; (meth) acrylonitrile, (meth) acrylamide, methylenebis (meth) acrylamide, Nitrogen-containing polymerizable unsaturated monomers such as ethylenebis (meth) acrylamide, 2- (methacryloyloxy) ethyltrimethylammonium chloride, adducts of glycidyl (meth) acrylate and amines; glycidyl (meth) acrylate, β-methylglycidyl (Meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, 3,4-epoxycyclohexylpropyl (meth) acrylate Polymerization having at least two polymerizable unsaturated groups such as allyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, etc. in an epoxy group-containing polymerizable unsaturated monomer such as acrylate and allyl glycidyl ether Unsaturated monomers; (meth) acrylic acid such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the number of carbon atoms Monoesterified product of 2 to 8 dihydric alcohols; ε-caprolactone modified product of monoesterified product of (meth) acrylic acid and 2 to 8 carbon dihydric alcohols; Saturated monomer; hydroxyl group at the end or alkyleneoxy having 1 to 3 carbon atoms And a polyoxyalkylene group-containing (meth) acrylic monomer such as an acrylic monomer having a silyl group and having a polyoxyethylene group or a polyoxypropylene group.
 上記重合性不飽和モノマーは、それぞれ単独で又は2種以上組み合わせて使用することができる。 The above polymerizable unsaturated monomers can be used alone or in combination of two or more.
 なお、本発明において、各化合物における「(メタ)アクリレート」は「アクリレート又はメタクリレート」を意味する。「(メタ)アクリル」は「アクリル又はメタクリル」を意味する。「(メタ)アクリロイル」は「アクリロイル又はメタクリロイル」を意味する。 In the present invention, “(meth) acrylate” in each compound means “acrylate or methacrylate”. “(Meth) acryl” means “acryl or methacryl”. “(Meth) acryloyl” means “acryloyl or methacryloyl”.
 上記重合性不飽和モノマーにおいて、付着性の観点から水酸基含有重合性不飽和モノマーを、耐食性の観点から重合性不飽和基を1分子中に少なくとも2個有する重合性不飽和モノマーを好適に使用することができる。 In the polymerizable unsaturated monomer, a hydroxyl group-containing polymerizable unsaturated monomer is preferably used from the viewpoint of adhesion, and a polymerizable unsaturated monomer having at least two polymerizable unsaturated groups in one molecule is used from the viewpoint of corrosion resistance. be able to.
 水酸基含有重合性不飽和モノマーを使用する場合、その使用量としてはアミノ基含有アクリル樹脂粒子(A)を構成する全モノマー成分の総量中、0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1~10質量%の範囲内にあることが適している。 When using a hydroxyl group-containing polymerizable unsaturated monomer, the amount used thereof is 0.1% by mass or more, preferably 1% by mass or more, in the total amount of all monomer components constituting the amino group-containing acrylic resin particles (A). More preferably, it is in the range of 1 to 10% by mass.
 重合性不飽和基を1分子中に少なくとも2個有する重合性不飽和モノマーを使用する場合、その使用量としてはアミノ基含有アクリル樹脂粒子(A)を構成する全モノマー成分の総量中、0.05質量%以上、好ましくは0.1質量%以上、さらに好ましくは0.1~10質量%の範囲内にあることが適している。 In the case of using a polymerizable unsaturated monomer having at least two polymerizable unsaturated groups in one molecule, the amount used is 0. of the total amount of all monomer components constituting the amino group-containing acrylic resin particles (A). It is suitable that the content is in the range of 05% by mass or more, preferably 0.1% by mass or more, more preferably 0.1 to 10% by mass.
 アミノ基含有アクリル樹脂粒子(A)は、アミノ基を含有するカチオン性のコアシェル構造を有するアクリル樹脂粒子である。
 アミノ基含有アクリル樹脂粒子(A)の分散安定性の観点から、アミノ基はシェルに存在することが好ましい。
 アミノ基含有アクリル樹脂粒子(A)は、アミノ基含有モノマーを含むモノマー混合物を重合して得られるアミノ基含有シェル部を有することが好ましい。
The amino group-containing acrylic resin particles (A) are acrylic resin particles having a cationic core-shell structure containing an amino group.
From the viewpoint of dispersion stability of the amino group-containing acrylic resin particles (A), the amino group is preferably present in the shell.
The amino group-containing acrylic resin particles (A) preferably have an amino group-containing shell part obtained by polymerizing a monomer mixture containing an amino group-containing monomer.
 上記アミノ基含有モノマーとしては、例えば、ジメチルアミノメチル(メタ)アクリレート、ジエチルアミノメチル(メタ)アクリレート、ジブチルアミノメチル(メタ)アクリレート、ジヘキシルアミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジイソヘキシルアミノエチルアクリレート、ジヘキシルアミノプロピル(メタ)アクリレート、ジ(tert-ブチル)アミノヘキシル(メタ)アクリレート等のモノマーを挙げることができる。 Examples of the amino group-containing monomer include dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, dibutylaminomethyl (meth) acrylate, dihexylaminomethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, and di Mention may be made of monomers such as isohexylaminoethyl acrylate, dihexylaminopropyl (meth) acrylate and di (tert-butyl) aminohexyl (meth) acrylate.
 上記のうち、分散安定性の観点から、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノメチル(メタ)アクリレートが好ましい。 Of these, dimethylaminoethyl (meth) acrylate and diethylaminomethyl (meth) acrylate are preferred from the viewpoint of dispersion stability.
 アミノ基含有アクリル樹脂粒子(A)のアミン価は14~72mgKOH/gであり、好ましくは20~72mgKOH/g、さらに好ましくは20~65mgKOH/gである。 The amine value of the amino group-containing acrylic resin particles (A) is 14 to 72 mgKOH / g, preferably 20 to 72 mgKOH / g, more preferably 20 to 65 mgKOH / g.
 なお、本明細書においてアミン価(mgKOH/g)とは、試料1g(樹脂の場合は固形分)中に含まれるアミノ基の量を、水酸化カリウムに換算したときの水酸化カリウムのmg数で表したものである。水酸化カリウムの分子量は56.1とする。 In the present specification, the amine value (mgKOH / g) means the number of mg of potassium hydroxide when the amount of amino group contained in 1 g of sample (solid content in the case of resin) is converted into potassium hydroxide. It is represented by. The molecular weight of potassium hydroxide is 56.1.
 また、本明細書において水酸基価(mgKOH/g)とは、試料1g(樹脂の場合は固形分)中に含まれる水酸基の量を、水酸化カリウムに換算したときの水酸化カリウムのmg数で表したものである。水酸化カリウムの分子量は56.1とする。 Moreover, in this specification, the hydroxyl value (mgKOH / g) is the number of mg of potassium hydroxide when the amount of hydroxyl group contained in 1 g of sample (solid content in the case of resin) is converted into potassium hydroxide. It is a representation. The molecular weight of potassium hydroxide is 56.1.
 アミノ基含有アクリル樹脂粒子(A)の製造方法としては、例えば、予め重合しておいたシェル部の存在下、水を主溶媒として前述の重合性不飽和モノマーを含むコア部形成用のモノマー混合物を重合する方法を挙げることができる。 As a method for producing the amino group-containing acrylic resin particles (A), for example, in the presence of a shell portion polymerized in advance, a monomer mixture for forming a core portion containing the aforementioned polymerizable unsaturated monomer using water as a main solvent. The method of polymerizing can be mentioned.
 シェル部、およびコア部形成用のモノマー混合物の仕込み量比は、所望のコア部/シェル部の固形分質量比に応じて、適宜、適切な仕込み比を採用することができる。 The charge ratio of the monomer mixture for forming the shell part and the core part can be appropriately selected according to the desired solid mass ratio of the core part / shell part.
 本発明の水性金属表面処理剤においては、造膜性に起因する耐食性、耐水性等の塗膜性能の観点から、シェル部は有機溶媒中で溶液重合により合成されたものを使用することが好ましい。溶液重合により合成されたシェル部を採用することにより、耐水性にはマイナスとなる乳化剤の使用量を低減することができる。 In the aqueous metal surface treatment agent of the present invention, it is preferable to use a shell part synthesized by solution polymerization in an organic solvent from the viewpoint of coating properties such as corrosion resistance and water resistance due to film forming properties. . By employing a shell portion synthesized by solution polymerization, the amount of emulsifier that is negative for water resistance can be reduced.
 アミノ基含有アクリル樹脂粒子(A)の重合の際に用いられる重合開始剤としては、任意の適切な重合開始剤を採用し得る。 Any appropriate polymerization initiator can be adopted as a polymerization initiator used in the polymerization of the amino group-containing acrylic resin particles (A).
 該重合開始剤としては、油溶性、水溶性のいずれのタイプのものも使用できるが、水溶性のものを好適に使用することができる。 As the polymerization initiator, any of oil-soluble and water-soluble types can be used, but water-soluble types can be preferably used.
 油溶性の重合開始剤としては、例えば、ベンゾイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物等を挙げることができる。 Examples of the oil-soluble polymerization initiator include organic peroxides such as benzoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide; azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile) ) And the like.
 水溶性の重合開始剤としては、例えば、過酸化水素水;クメンハイドロパーオキサイド、tert-ブチルパーオキサイド、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシイソプロピルカーボネート、tert-ブチルパーオキシアセテート、ジイソプロピルベンゼンハイドロパーオキサイド等の有機過酸化物;アゾビス(2-メチルプロピオンニトリル)、アゾビス(2-メチルブチロニトリル)、4,4´-アゾビス(4-シアノブタン酸)、ジメチルアゾビス(2-メチルプロピオネート)、アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]-プロピオンアミド}等のアゾ化合物;過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩等を挙げることができる。 Examples of the water-soluble polymerization initiator include hydrogen peroxide water; cumene hydroperoxide, tert-butyl peroxide, tert-butyl peroxylaurate, tert-butyl peroxyisopropyl carbonate, tert-butyl peroxyacetate, Organic peroxides such as diisopropylbenzene hydroperoxide; azobis (2-methylpropiononitrile), azobis (2-methylbutyronitrile), 4,4′-azobis (4-cyanobutanoic acid), dimethylazobis (2- Methyl propionate), azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], azobis {2-methyl-N- [2- (1-hydroxybutyl)]-propionamide}, etc. Compound: potassium persulfate, ammonium persulfate Can be mentioned um, persulfate salts such as sodium persulfate.
 これらはそれぞれ単独でもしくは2種以上組み合わせて用いることができる。 These can be used alone or in combination of two or more.
 さらに、上記重合開始剤に、必要に応じて、糖、アスコルビン酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、鉄錯体等の還元剤を併用し、レドックス重合系とすることもできる。 Furthermore, if necessary, a reducing agent such as sugar, sodium ascorbate, sodium formaldehyde sulfoxylate, or iron complex may be used in combination with the polymerization initiator to form a redox polymerization system.
 上記重合開始剤は、使用される全モノマーの合計質量を基準にして、一般に0.1~5質量%、特に0.2~3質量%の範囲内で使用することが好ましい。該重合開始剤の添加方法は、特に制限されるものではなく、その種類や量等に応じて適宜選択することができ、例えば、予めモノマー混合物又は水性媒体に含ませてもよく、或いは重合時に一括して添加してもよく又は滴下してもよい。 The polymerization initiator is preferably used in a range of generally 0.1 to 5% by mass, particularly 0.2 to 3% by mass, based on the total mass of all monomers used. The method for adding the polymerization initiator is not particularly limited, and can be appropriately selected according to the type and amount thereof. For example, the polymerization initiator may be preliminarily included in the monomer mixture or the aqueous medium, or at the time of polymerization. It may be added all at once or may be dropped.
 耐水性等の塗膜性能の観点から、乳化剤は使用しないことが好ましいが、アミノ基含有アクリル樹脂粒子(A)の重合の際に、乳化剤を用いることができる。該乳化剤としては任意の適切な乳化剤を採用することができる。例えば、アルキルアミン塩、第四級アンモニウム塩等のカチオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー、反応性ノニオン界面活性剤等のノニオン性界面活性剤;(変性)ポリビニルアルコール等を挙げることができる。 From the viewpoint of coating performance such as water resistance, it is preferable not to use an emulsifier, but an emulsifier can be used in the polymerization of the amino group-containing acrylic resin particles (A). Any appropriate emulsifier can be adopted as the emulsifier. For example, cationic surfactants such as alkylamine salts and quaternary ammonium salts; polyoxyethylene alkyl ethers such as polyoxyethylene nonylphenyl ether, sorbitan fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene-polyoxypropylene Nonionic surfactants such as block copolymers and reactive nonionic surfactants; (modified) polyvinyl alcohol and the like can be mentioned.
 上記乳化剤は、単独で、又は2種類以上を組合せて使用することもできる。 The above emulsifiers can be used alone or in combination of two or more.
 上記乳化剤の含有量は、アミノ基含有アクリル樹脂粒子(A)の重合の際に用いられるモノマーの全量に対して、好ましくは0.01~10質量%である。さらに、必要に応じて、tert-ドデシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、メルカプト酢酸、メルカプトプロピオン酸、2-メルカプトエタノール、α-メチルスチレンダイマー等の連鎖移動剤を使用することができる。 The content of the emulsifier is preferably 0.01 to 10% by mass with respect to the total amount of monomers used in the polymerization of the amino group-containing acrylic resin particles (A). Furthermore, chain transfer agents such as tert-dodecyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, mercaptoacetic acid, mercaptopropionic acid, 2-mercaptoethanol, α-methylstyrene dimer can be used as necessary. .
 アミノ基含有アクリル樹脂粒子(A)の重合における重合温度は、好ましくは40~110℃、さらに好ましくは40~90℃である。重合時間は、好ましくは1~12時間、さらに好ましくは1~6時間である。 The polymerization temperature in the polymerization of the amino group-containing acrylic resin particles (A) is preferably 40 to 110 ° C., more preferably 40 to 90 ° C. The polymerization time is preferably 1 to 12 hours, more preferably 1 to 6 hours.
 上記シェル部は、上述の重合性不飽和モノマー及びアミノ基含有モノマーを含むシェル部形成用のモノマー混合物を重合することにより得ることができる。 The shell part can be obtained by polymerizing a monomer mixture for forming a shell part containing the above-mentioned polymerizable unsaturated monomer and amino group-containing monomer.
 上記シェル部を重合する際に用いられる溶媒としては、任意の適切な溶媒を採用することができる。該溶媒としては、例えば、アルコール系溶剤、セロソルブ系溶剤、カルビトール系溶剤等が好ましい。具体的には、例えば、n-ブタノール等のアルコール系溶剤;エチレングリコールモノブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノn-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノn-ブチルエーテル等のセロソルブ系溶剤;ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート等のカルビトール系溶剤等を挙げることができる。 Any appropriate solvent can be adopted as a solvent used when the shell portion is polymerized. As the solvent, for example, alcohol solvents, cellosolve solvents, carbitol solvents and the like are preferable. Specifically, for example, alcohol solvents such as n-butanol; ethylene glycol monobutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol mono n-butyl ether, Examples thereof include cellosolve solvents such as dipropylene glycol monomethyl ether and dipropylene glycol mono n-butyl ether; carbitol solvents such as diethylene glycol monobutyl ether, diethylene glycol monoethyl ether and diethylene glycol monoethyl ether acetate.
 また、上記以外の水と混合しない有機溶剤も、アミノ基含有アクリル樹脂粒子(A)の水分散安定性に支障を来たさない範囲で使用可能である。このような有機溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤等を挙げることができる。 In addition, organic solvents that are not mixed with water other than those described above can be used as long as they do not hinder the water dispersion stability of the amino group-containing acrylic resin particles (A). Examples of such an organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, and ketone solvents such as methyl ethyl ketone and cyclohexanone.
 上記シェル部を重合する際に用いられる重合開始剤としては、任意の適切な重合開始剤を採用することができる。該重合開始剤としては、例えば、ベンゾイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、クメンハイドロパーオキサイド、tert-ブチルパーオキサイド、ジ-tert-アミルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシイソプロピルカーボネート、tert-ブチルパーオキシアセテート、ジイソプロピルベンゼンハイドロパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)、アゾビス(2-メチルプロピオンニトリル)、アゾビス(2-メチルブチロニトリル)、4、4’-アゾビス(4-シアノブタン酸)、ジメチルアゾビス(2-メチルプロピオネート)、アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]-プロピオンアミド}等のアゾ化合物;を挙げることができる。 Any appropriate polymerization initiator can be adopted as the polymerization initiator used when the shell portion is polymerized. Examples of the polymerization initiator include benzoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, cumene hydroperoxide, tert-butyl peroxide, di-tert-amyl peroxide, tert-butyl peroxide. Organic peroxides such as -2-ethylhexanoate, tert-butyl peroxylaurate, tert-butyl peroxyisopropyl carbonate, tert-butyl peroxyacetate, diisopropylbenzene hydroperoxide; azobisisobutyronitrile, Azobis (2,4-dimethylvaleronitrile), azobis (2-methylpropiononitrile), azobis (2-methylbutyronitrile), 4,4'-azobis (4-cyanobuta Acid), dimethylazobis (2-methylpropionate), azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], azobis {2-methyl-N- [2- (1-hydroxybutyl) )]-Propionamide} and the like.
 これら重合開始剤は単独で又は2種以上併用してもよい。 These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の配合量としては、使用される重合性不飽和モノマーの総量に基づいて、重合反応性等の観点から、通常、0.01~20質量%、好ましくは0.1~15質量%、さらに好ましくは0.3~10質量%の範囲内とすることができる。 The blending amount of the polymerization initiator is usually 0.01 to 20% by mass, preferably 0.1 to 15% by mass based on the total amount of the polymerizable unsaturated monomers used, from the viewpoint of polymerization reactivity and the like. More preferably, it can be in the range of 0.3 to 10% by mass.
 上記シェル部の重合における重合温度は、好ましくは80~250℃、さらに好ましくは100~210℃である。重合時間は、好ましくは1~12時間、さらに好ましくは2~8時間である。 The polymerization temperature in the polymerization of the shell part is preferably 80 to 250 ° C., more preferably 100 to 210 ° C. The polymerization time is preferably 1 to 12 hours, more preferably 2 to 8 hours.
 上記シェル部の重量平均分子量は、通常、5,000~400,000、特に10,000~200,000の範囲内にあることが、アミノ基含有アクリル樹脂粒子(A)の水分散性や貯蔵安定性及び製造の観点から適している。 The weight average molecular weight of the shell part is usually in the range of 5,000 to 400,000, particularly 10,000 to 200,000, and the water dispersibility and storage of the amino group-containing acrylic resin particles (A). Suitable from the viewpoint of stability and manufacturing.
 上記シェル部は、不飽和基、エポキシ基、水酸基、カルボキシル基、イソシアネート基等の官能基を有していてもよく、これらの基は公知の方法によりシェル部に導入することができる。 The shell part may have a functional group such as an unsaturated group, an epoxy group, a hydroxyl group, a carboxyl group, or an isocyanate group, and these groups can be introduced into the shell part by a known method.
 なお、本明細書における数平均分子量及び重量平均分子量は、ゲルパーミュエーションクロマトグラフ(東ソー株式会社製、商品名「HLC8120GPC」)で測定した数平均分子量及び重量平均分子量を、標準ポリスチレンの分子量を基準にして換算した値である。この測定において、カラムは、東ソー株式会社製「TSKgel Super-H3000」を1本、及び東ソー株式会社製「TSKge Super-H2500」を2本(いずれも商品名)の計3本を用い、移動相:テトラヒドロフラン(トリエタノールアミンを0.5質量%含む)、測定温度;25℃、流速:0.6mL/min、検出器:示差屈折率計の条件下で測定する。 In addition, the number average molecular weight and the weight average molecular weight in this specification are the number average molecular weight and the weight average molecular weight measured by gel permeation chromatograph (trade name “HLC8120GPC” manufactured by Tosoh Corporation), and the molecular weight of standard polystyrene. It is the value converted with reference. In this measurement, a total of three columns, “TSKgel Super-H3000” manufactured by Tosoh Corporation and two “TSKge Super-H2500” manufactured by Tosoh Corporation (both trade names), were used as mobile columns. : Tetrahydrofuran (containing 0.5% by mass of triethanolamine), measurement temperature: 25 ° C., flow rate: 0.6 mL / min, detector: measured under the conditions of a differential refractometer.
(アミノ基含有アクリル樹脂粒子(A)の製造方法)
 アミノ基含有アクリル樹脂粒子(A)は、上記シェル部を分散安定剤として、上記コア部が水系媒体中に分散された形態を有するアクリル樹脂粒子である。
(Method for producing amino group-containing acrylic resin particles (A))
The amino group-containing acrylic resin particles (A) are acrylic resin particles having a form in which the core portion is dispersed in an aqueous medium using the shell portion as a dispersion stabilizer.
 アミノ基含有アクリル樹脂粒子(A)の代表的な製造方法を以下に示すが、アミノ基含有アクリル樹脂粒子(A)の製造方法はこの方法に限定されるものではない。 A typical production method of the amino group-containing acrylic resin particles (A) is shown below, but the production method of the amino group-containing acrylic resin particles (A) is not limited to this method.
1.水系媒体中に予め合成された分散安定剤であるシェル部の重合体を添加する。 1. A shell polymer, which is a dispersion stabilizer synthesized in advance, is added to an aqueous medium.
2.次いで、シェル部アミノ基の中和剤及び脱イオン水を添加して、水分散液を得る。 2. Next, a neutralizing agent for shell part amino groups and deionized water are added to obtain an aqueous dispersion.
 該中和剤としては、アミノ基を中和できるものであれば特に制限はなく、例えば、酢酸、蟻酸等の有機酸又は無機酸等の酸性化合物を挙げることができる。 The neutralizing agent is not particularly limited as long as it can neutralize an amino group, and examples thereof include organic compounds such as acetic acid and formic acid, and acidic compounds such as inorganic acids.
 これらの中和剤は、最終的にアミノ基含有アクリル樹脂粒子(A)の水分散液のpHが4.0~8.0程度となるような量で用いることが望ましい。 These neutralizing agents are desirably used in such an amount that the pH of the aqueous dispersion of the amino group-containing acrylic resin particles (A) is finally about 4.0 to 8.0.
 これらの中和剤は、通常、アミノ基等の塩基性基に対して、0.1~1.0当量、好ましくは0.3~1.0当量用いることが適当である。 These neutralizing agents are usually used in an amount of 0.1 to 1.0 equivalent, preferably 0.3 to 1.0 equivalent, based on a basic group such as an amino group.
 該水分散液は、通常の撹拌機による分散によって得ることができるが、より粒子径の細かい均一な水分散液を得るためにホモミキサー、ホモジナイザー、ディスパー、ラインミキサー等を使用することもできる。 The aqueous dispersion can be obtained by dispersion with an ordinary stirrer, but a homomixer, a homogenizer, a disper, a line mixer, or the like can also be used to obtain a uniform aqueous dispersion having a finer particle size.
3.この水分散液にコア部を構成する重合性モノマー混合物及びラジカル重合開始剤を添加して、常法により、コア部を構成する重合性不飽和モノマーの重合反応を行う。 3. A polymerizable monomer mixture constituting the core part and a radical polymerization initiator are added to the aqueous dispersion, and a polymerization reaction of the polymerizable unsaturated monomer constituting the core part is performed by a conventional method.
 以上の工程を行うことにより、アミノ基含有アクリル樹脂粒子(A)の水分散体を製造することができる。 By performing the above steps, an aqueous dispersion of amino group-containing acrylic resin particles (A) can be produced.
 アミノ基含有アクリル樹脂粒子(A)は、分散性及び貯蔵安定性の観点から、一般に10~5,000nm、好ましくは10~1,000nm、より好ましくは20~500nm、さらに好ましくは50~300nmの範囲内の平均粒子径を有することができる。 The amino group-containing acrylic resin particles (A) are generally 10 to 5,000 nm, preferably 10 to 1,000 nm, more preferably 20 to 500 nm, and still more preferably 50 to 300 nm from the viewpoint of dispersibility and storage stability. It can have an average particle size within the range.
 本明細書において、アミノ基含有アクリル樹脂粒子(A)の平均粒子径は、サブミクロン粒度分布測定装置を用いて、常法により脱イオン水で希釈してから23℃で測定した値である。サブミクロン粒度分布測定装置としては、例えば、「COULTER N5型」(商品名、ベックマン・コールター社製)を用いることができる。 In the present specification, the average particle diameter of the amino group-containing acrylic resin particles (A) is a value measured at 23 ° C. after being diluted with deionized water by a conventional method using a submicron particle size distribution analyzer. As the submicron particle size distribution measuring device, for example, “COULTER N5 type” (trade name, manufactured by Beckman Coulter, Inc.) can be used.
 アミノ基含有アクリル樹脂粒子(A)の水分散体中の固形分濃度は20~50質量%が好ましく、より好ましくは30~40質量%である。固形分濃度が50質量%を超えると乳化が困難となり、水分散体が得難くなる場合がある。固形分濃度が20質量%未満であると、低濃度であるため溶媒(主として水)成分が多くなり、例えば、水性金属表面処理剤の構成成分として使用し難くなる場合がある。 The solid content concentration of the amino group-containing acrylic resin particles (A) in the aqueous dispersion is preferably 20 to 50% by mass, more preferably 30 to 40% by mass. When the solid content concentration exceeds 50% by mass, emulsification becomes difficult and an aqueous dispersion may be difficult to obtain. If the solid content concentration is less than 20% by mass, the concentration of the solvent (mainly water) increases because of the low concentration, and for example, it may be difficult to use as a component of the aqueous metal surface treatment agent.
[リン酸系化合物(B)]
 本発明の水性金属表面処理剤は、リン酸系化合物(B)をも含有する。リン酸系化合物(B)は、リン酸基、ホスホン酸基又はこれらの基の塩を含有し、水溶性を有する化合物である。リン酸系化合物(B)としては、リン酸及び有機ホスホン酸並びにそれらの塩であることができる。
[Phosphate compound (B)]
The aqueous metal surface treatment agent of the present invention also contains a phosphoric acid compound (B). The phosphoric acid compound (B) is a compound that contains a phosphate group, a phosphonic acid group, or a salt of these groups and has water solubility. The phosphoric acid compound (B) can be phosphoric acid, organic phosphonic acid and salts thereof.
 上記リン酸は、例えば、オルトリン酸、及び縮合リン酸を包含し、縮合リン酸はメタリン酸及びポリリン酸を包含する。メタリン酸は環状のリン酸縮合物であって、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸等を包含し、ポリリン酸は鎖状のリン酸縮合物であって、ピロリン酸、トリポリリン酸、テトラポリリン酸等を包含する。 The phosphoric acid includes, for example, orthophosphoric acid and condensed phosphoric acid, and the condensed phosphoric acid includes metaphosphoric acid and polyphosphoric acid. Metaphosphoric acid is a cyclic phosphoric acid condensate, including trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, etc., and polyphosphoric acid is a chain phosphoric acid condensate, pyrophosphoric acid, tripolyphosphoric acid, tetrapolyphosphoric acid Etc.
 上記有機ホスホン酸としては、例えば、ヒドロキシメタンジホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)、1-ヒドロキシプロパン-1,1-ジホスホン酸等のヒドロキシル基含有有機ホスホン酸;2-ヒドロキシホスホノ酢酸、2-ホスホノブタン-1,2,4-トリカルボン酸(PBTC)等のカルボキシル基含有有機ホスホン酸;ニトリロトリス(メチレンホスホン酸)(NTMP)、ニトリロトリス(エチレンホスホン酸)、ニトリロトリス(プロピレンホスホン酸)、ニトリロビス(エチレンホスホン酸)モノ(メチレンホスホン酸)、ニトリロビス(メチレンホスホン酸)モノ(プロピレンホスホン酸)等の、アルキレン基が同一のもしくは異なる炭素数1~4のアルキレン基であるニトリロトリス(アルキレンホスホン酸);エチレンジアミンテトラメチレンホスホン酸、エチレンジアミンテトラエチレンホスホン酸、エチレンジアミンテトラプロピレンホスホン酸等の、アルキレン基が炭素数1~4のアルキレン基であるエチレンジアミンテトラアルキレンホスホン酸;ヘキサメチレンジアミンテトラメチレンホスホン酸;ジエチレントリアミンペンタメチレンホスホン酸等が挙げられる。 Examples of the organic phosphonic acid include hydroxyl group-containing organic phosphonic acids such as hydroxymethane diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), and 1-hydroxypropane-1,1-diphosphonic acid; Carboxyl group-containing organic phosphonic acids such as 2-hydroxyphosphonoacetic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC); nitrilotris (methylenephosphonic acid) (NTMP), nitrilotris (ethylenephosphonic acid), Alkylene having the same or different alkylene groups, such as nitrilotris (propylenephosphonic acid), nitrilobis (ethylenephosphonic acid) mono (methylenephosphonic acid), nitrilobis (methylenephosphonic acid) mono (propylenephosphonic acid), etc. The nitrilotri group (Alkylenephosphonic acid); ethylenediaminetetramethylenephosphonic acid, ethylenediaminetetraethylenephosphonic acid, ethylenediaminetetraalkylenephosphonic acid such as ethylenediaminetetraethylenephosphonic acid, ethylenediaminetetraalkylenephosphonic acid having an alkylene group of 1 to 4 carbon atoms; hexamethylenediaminetetramethylene Examples include phosphonic acid; diethylenetriaminepentamethylenephosphonic acid and the like.
 上記リン酸及び有機ホスホン酸の塩としては、例えば、アルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩、バリウム塩等)、アンモニウム塩等を挙げることができる。また、溶解性を考慮して亜鉛、マンガン、ニッケル等の塩も使用し得る。 Examples of the phosphoric acid and organic phosphonic acid salts include alkali metal salts (lithium salts, sodium salts, potassium salts, etc.), alkaline earth metal salts (calcium salts, magnesium salts, barium salts, etc.), ammonium salts, and the like. Can be mentioned. In consideration of solubility, salts such as zinc, manganese and nickel can also be used.
 リン酸系化合物(B)1分子中にリン酸基やホスホン酸基が複数ある場合、それらの一部が塩になっていても、全部が塩になっていてもよい。また、リン酸基やホスホン酸基の活性水素原子の一部がアルカリ金属イオンやアンモニウムイオンに置換しても、全部が置換してもよい。 When there are a plurality of phosphoric acid groups or phosphonic acid groups in one molecule of the phosphoric acid compound (B), some of them may be a salt or all may be a salt. In addition, some or all of the active hydrogen atoms of the phosphate group or phosphonic acid group may be substituted with alkali metal ions or ammonium ions.
 これらのリン酸系化合物(B)は、各々単独で又は2種以上を組み合わせて用いることができる。 These phosphoric acid compounds (B) can be used alone or in combination of two or more.
 リン酸系化合物(B)は、本発明の表面処理剤の貯蔵安定性を向上させるとともに、表面処理皮膜の耐食性を向上させる効果があり、中でも特に、オルトリン酸、ヒドロキシメタンジホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸が好ましい。 The phosphoric acid compound (B) has the effect of improving the storage stability of the surface treatment agent of the present invention and improving the corrosion resistance of the surface treatment film, and in particular, orthophosphoric acid, hydroxymethane diphosphonic acid, 1- Hydroxyethane-1,1-diphosphonic acid is preferred.
 リン酸系化合物(B)の配合量は、アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、0.5~10質量%であり、好ましくは3~8質量%であることが、耐食性と耐水性の両立の観点から適している。 The blending amount of the phosphoric acid compound (B) is 0.5 to 10% by mass, preferably 3 to 8% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). Suitable from the viewpoint of both corrosion resistance and water resistance.
[フルオロ金属酸及び/又はその塩(C)]
 本発明の水性金属表面処理剤に必要に応じて配合される、フルオロ金属酸及び/又はその塩(C)は、本発明の水系金属表面処理剤から得られる表面処理皮膜の耐食性の向上等を目的に配合される。
[Fluorometallic acid and / or its salt (C)]
The fluorometallic acid and / or salt thereof (C) blended in the aqueous metal surface treatment agent of the present invention as necessary improves the corrosion resistance of the surface treatment film obtained from the aqueous metal surface treatment agent of the present invention. Formulated for purpose.
 上記フルオロ金属酸は、フッ素原子と、金属を含有する酸であり、該金属としては、例えば、チタン、ジルコニウム、ハフニウム、バナジウム、マグネシウム、マンガン、亜鉛、タングステン、モリブデン、アルミニウム、ニッケル、コバルト、カルシウム等の金属の1種又は2種以上であることができる。これらのなかでも、特に、チタン又はジルコニウムが、安価で工業用途として比較的入手しやすいので好ましい。 The fluoro metal acid is an acid containing a fluorine atom and a metal. Examples of the metal include titanium, zirconium, hafnium, vanadium, magnesium, manganese, zinc, tungsten, molybdenum, aluminum, nickel, cobalt, and calcium. It can be 1 type or 2 types or more of metals, such as. Among these, titanium or zirconium is particularly preferable because it is inexpensive and relatively easily available for industrial use.
 上記フルオロ金属酸としては、例えば、六フッ化チタン酸(HTiF)、六フッ化ジルコニウム酸(HZrF)、六フッ化ハフニウム酸(HHfF)、六フッ化アルミニウム酸(HAlF)、テトラフルオロホウ酸(HBF)等を挙げることができる。 Examples of the fluorometal acid include hexafluorotitanic acid (H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), hexafluorohafnium acid (H 2 HfF 6 ), and hexafluoroaluminum acid. (H 3 AlF 6 ), tetrafluoroboric acid (HBF 4 ), and the like can be given.
 上記フルオロ金属酸の塩としては、例えば、上記フルオロ金属酸のナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩、アミン塩、亜鉛塩等が挙げられる。 Examples of the salt of the fluorometal acid include sodium salt, potassium salt, lithium salt, ammonium salt, amine salt and zinc salt of the fluorometal acid.
 フルオロ金属酸及び/又はその塩(C)としては、上記各フルオロ金属酸及びその塩を単独で又は2種以上組み合わせて使用することができる。 As the fluorometallic acid and / or its salt (C), the above-mentioned fluorometallic acids and their salts can be used alone or in combination of two or more.
 フルオロ金属酸及び/又はその塩(C)としては、なかでも六フッ化チタン酸(HTiF)、六フッ化ジルコニウム酸(HZrF)、これらのフルオロ金属酸のアンモニウム塩、アミン塩が耐食性の点から好適である。 Fluorometal acids and / or salts thereof (C) include, among others, hexafluorotitanic acid (H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), ammonium salts of these fluorometal acids, amines A salt is preferred from the viewpoint of corrosion resistance.
 フルオロ金属酸及び/又はその塩(C)は、水中でイオンを発生し、腐食環境における金属表面の腐食電位のコントロールおよび酸化還元反応のコントロール、金属表面への極薄皮膜の成膜および皮膜成分中の官能基との架橋反応による皮膜密度の向上等により耐食性を向上させる効果を有すると考えられる。 Fluorometallic acid and / or its salt (C) generates ions in water, controls the corrosion potential and oxidation-reduction reaction of the metal surface in the corrosive environment, forms a very thin film on the metal surface, and film components It is thought that it has the effect of improving the corrosion resistance by, for example, improving the film density due to the crosslinking reaction with the functional group therein.
 フルオロ金属酸及び/又はその塩(C)の配合量は、アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、1~5質量%、好ましくは2~4質量%であることが、耐食性向上と処理液の安定性の観点から適している。 The blending amount of the fluorometal acid and / or salt thereof (C) is 1 to 5% by mass, preferably 2 to 4% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). It is suitable from the viewpoint of improved corrosion resistance and stability of the processing solution.
[バナジウム化合物(D)]
 本発明の水性金属表面処理剤に必要に応じて配合される、バナジウム化合物(D)は、本発明の水系金属表面処理剤から得られる表面処理皮膜の耐食性の向上等を目的に配合される。
[Vanadium compound (D)]
The vanadium compound (D) blended in the aqueous metal surface treatment agent of the present invention as necessary is blended for the purpose of improving the corrosion resistance of the surface treatment film obtained from the aqueous metal surface treatment agent of the present invention.
 バナジウム化合物(D)は、水溶性ないしは水分散性であることが好ましい。また、バナジウム化合物(D)は、例えば、炭酸塩、リン酸塩、硝酸塩、硫酸塩、酢酸塩、酸化物等であることができ、無水物であっても水和物であってもよい。 The vanadium compound (D) is preferably water-soluble or water-dispersible. Further, the vanadium compound (D) can be, for example, carbonate, phosphate, nitrate, sulfate, acetate, oxide, etc., and may be an anhydride or a hydrate.
 バナジウム化合物(D)としては、例えば、メタバナジン酸アンモウニム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、硫酸バナジル、酸化バナジウム等が挙げられ、その中でも、特に、酸性水溶液への溶解性の観点から、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム及び硫酸バナジルが好ましい。 Examples of the vanadium compound (D) include ammonium metavanadate, sodium metavanadate, potassium metavanadate, vanadyl sulfate, and vanadium oxide. Among them, ammonium metavanadate is particularly preferable from the viewpoint of solubility in an acidic aqueous solution. Sodium metavanadate, potassium metavanadate and vanadyl sulfate are preferred.
 バナジウム化合物(D)の配合量は、アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、0.1~5質量%、好ましくは0.3~1質量%であることが、処理液の安定性の観点から適している。 The amount of the vanadium compound (D) is 0.1 to 5% by mass, preferably 0.3 to 1% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). It is suitable from the viewpoint of stability.
[シランカップリング剤及び/又はその加水分解縮合物(E)]
 本発明の水性金属表面処理剤に必要に応じて配合される、シランカップリング剤及び/又はその加水分解縮合物(E)は、得られる表面処理皮膜の基材表面への密着性の向上や、皮膜の耐食性、耐水性向上等に寄与することができる場合がある。
[Silane coupling agent and / or hydrolysis condensate thereof (E)]
The silane coupling agent and / or its hydrolysis condensate (E), which is blended as necessary with the aqueous metal surface treatment agent of the present invention, improves the adhesion of the resulting surface treatment film to the substrate surface, In some cases, the film can contribute to improving the corrosion resistance and water resistance of the film.
 上記シランカップリング剤としては、例えば、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、N-β(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン-塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリメトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラザン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、トリメチルクロロシラン等を挙げることができる。
 なかでもγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシ基含有シランカップリング剤が好適である。
Examples of the silane coupling agent include N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, and γ-methacryloyloxypropyltrimethoxysilane. N-β (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyl Methyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrimethoxysilane, vinyltriacetoxysilane, γ-chloropropyltrimethoxysilane, Examples include oxamethyldisilazane, γ-anilinopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, and trimethylchlorosilane.
Of these, epoxy group-containing silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropyltriethoxysilane are preferred.
 これらシランカップリング剤は1種類を単独で使用してもよいし、又は2種類以上を併用してもよい。 These silane coupling agents may be used alone or in combination of two or more.
 上記シランカップリング剤の加水分解縮合物とは、シランカップリング剤を原料とし、加水分解縮合させたシランカップリング剤のオリゴマーを意味する。 The hydrolysis condensate of the silane coupling agent means an oligomer of a silane coupling agent hydrolyzed and condensed from the silane coupling agent as a raw material.
 シランカップリング剤及び/又はその加水分解縮合物(E)の配合量は、アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、0.1~20質量%、好ましくは2~15質量%であることが、表面処理剤の貯蔵安定性、得られる表面処理皮膜の耐食性及び上塗密着性等の観点から適している。 The blending amount of the silane coupling agent and / or its hydrolysis condensate (E) is 0.1 to 20% by mass, preferably 2 to 15% by mass, based on the total solid content of the amino group-containing acrylic resin particles (A). % Is suitable from the viewpoint of the storage stability of the surface treatment agent, the corrosion resistance of the resulting surface treatment film and the adhesion of the top coat.
[ポリオレフィンワックス(F)]
 本発明の水性金属表面処理剤に必要に応じて配合されるポリオレフィンワックス(F)は、得られる表面処理皮膜に潤滑性を付与する成分である。
[Polyolefin wax (F)]
The polyolefin wax (F) blended in the aqueous metal surface treatment agent of the present invention as necessary is a component that imparts lubricity to the obtained surface treatment film.
 ポリオレフィンワックス(F)としては、例えば、ポリエチレンやポリプロピレン、マイクロクリスタリン等が挙げられる。 Examples of the polyolefin wax (F) include polyethylene, polypropylene, and microcrystalline.
 ポリオレフィンワックス(F)の配合量は、成型加工性、耐食性等の点から、水性金属表面処理剤の全固形分に対して、固形分量として、0.1~10質量%、好ましくは0.3~8質量%の範囲内であることが適している。 The blending amount of the polyolefin wax (F) is 0.1 to 10% by mass, preferably 0.3% as a solid content with respect to the total solid content of the aqueous metal surface treatment agent from the viewpoint of molding processability and corrosion resistance. It is suitable to be in the range of ˜8% by mass.
 ポリオレフィンワックス(F)の平均粒子径としては、低動摩擦係数を維持する観点から、0.1~3μmであり、好ましくは0.5~2μmである。 The average particle diameter of the polyolefin wax (F) is 0.1 to 3 μm, preferably 0.5 to 2 μm, from the viewpoint of maintaining a low dynamic friction coefficient.
[溶媒、その他の成分]
 本発明の水性金属表面処理剤は水性である。水性とは、溶媒が水を主成分とすることを意味する。溶媒は水のみでもよいが、皮膜の乾燥性、処理剤の粘度等を調整する目的で、1価又は多価のアルコール、ケトン、エーテルアルコール系等の各種の水溶性有機溶剤を1種又は2種以上併用してもよい。本発明の水性金属表面処理剤は、溶媒中に水を70質量%以上含有することが好ましく、特に80質量%以上含有することが好ましい。
[Solvent and other ingredients]
The aqueous metal surface treatment agent of the present invention is aqueous. Aqueous means that the solvent has water as a main component. The solvent may be water alone, but for the purpose of adjusting the drying property of the film, the viscosity of the treatment agent, etc., one or two of various water-soluble organic solvents such as monovalent or polyhydric alcohols, ketones, ether alcohols, etc. Two or more species may be used in combination. The aqueous metal surface treatment agent of the present invention preferably contains 70% by mass or more, and particularly preferably 80% by mass or more of water in the solvent.
 本発明の水性金属表面処理剤は、所望により、溶媒及び上記した成分以外に、必要に応じて、pH調整剤(酸又は塩基)、チタン含有水性液、充填剤、コロイダルシリカ、着色剤、界面活性剤、消泡剤、レベリング剤、抗菌剤等を配合することができる。これらは、得られる処理皮膜の性能や表面処理剤の安定性を損なわない範囲で添加することができる。 If necessary, the aqueous metal surface treatment agent of the present invention may be a pH adjuster (acid or base), titanium-containing aqueous liquid, filler, colloidal silica, colorant, interface, in addition to the solvent and the components described above. An activator, an antifoaming agent, a leveling agent, an antibacterial agent and the like can be blended. These can be added in the range which does not impair the performance of the treatment film obtained and the stability of the surface treatment agent.
 上記pH調整剤としては、例えば、酢酸、ギ酸、乳酸、アンモニア水等を好適に用いることができる。 As the pH adjuster, for example, acetic acid, formic acid, lactic acid, aqueous ammonia and the like can be suitably used.
 本発明の水性金属表面処理剤は、液安定性の観点から、pH3~7が好ましく、pH3.5~6.5がより好ましい。
 また、本発明の水性金属表面処理剤の固形分濃度は、塗装作業性及び処理液の安定性の観点から、5~30質量%が好ましく、特に10~25質量%が好ましい。
The aqueous metal surface treatment agent of the present invention preferably has a pH of 3 to 7, more preferably a pH of 3.5 to 6.5, from the viewpoint of liquid stability.
The solid content concentration of the aqueous metal surface treatment agent of the present invention is preferably 5 to 30% by mass, particularly preferably 10 to 25% by mass, from the viewpoint of coating workability and the stability of the treatment liquid.
 上記チタン含有水性液は、得られる処理皮膜の耐食性の向上に効果がある場合がある。該チタン含有水性液は、加水分解性チタン、加水分解性チタン低縮合物、水酸化チタン及び水酸化チタン低縮合物から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを反応させて得られる(例えば、日本国特開2006-22370号公報参照)。チタン含有水性液を配合する場合、その配合量は、アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、固形分量で、5.0質量%以下であることが、貯蔵安定性等の観点から好適である。 The above-mentioned aqueous titanium-containing liquid may be effective in improving the corrosion resistance of the resulting treated film. The titanium-containing aqueous liquid is obtained by reacting at least one titanium compound selected from hydrolyzable titanium, hydrolyzable titanium low condensate, titanium hydroxide and titanium hydroxide low condensate with hydrogen peroxide. (See, for example, Japanese Patent Application Laid-Open No. 2006-22370). When the titanium-containing aqueous liquid is blended, the blending amount is 5.0% by mass or less in terms of solid content with respect to the total solid content of the amino group-containing acrylic resin particles (A). It is preferable from the viewpoint.
 上記充填剤としては、例えば、シリカ、タルク、バリタ、炭酸カルシウム、マイカ等の微粉末を挙げることができ、体質顔料として使用されるものが例示できる。上記着色剤としては、着色顔料、染料等を挙げることができる。 Examples of the filler include fine powders such as silica, talc, barita, calcium carbonate, mica, and examples of those used as extender pigments. Examples of the colorant include color pigments and dyes.
[金属表面処理方法]
 本発明の金属表面処理方法は、本発明の水性金属表面処理剤を、金属基材上に塗布し、乾燥させる金属表面処理方法であり、金属基材表面に本発明の水性金属表面処理剤による処理皮膜を形成する方法である。本発明において、「処理皮膜」とは、連続した処理皮膜のみならず、処理付着量が少ないため連続した処理皮膜とならず、不連続となった処理物をも包含する。
[Metal surface treatment method]
The metal surface treatment method of the present invention is a metal surface treatment method in which the aqueous metal surface treatment agent of the present invention is applied on a metal substrate and dried, and the surface of the metal substrate is treated with the aqueous metal surface treatment agent of the present invention. This is a method of forming a treatment film. In the present invention, the “treated film” includes not only a continuous treated film, but also a treated product that is not a continuous treated film due to a small amount of treated adhesion, but also becomes discontinuous.
 上記金属基材とは、金属素材であれば何ら制限を受けず、例えば、鉄、銅、アルミニウム、スズ、亜鉛ならびにこれらの金属を含む合金、及びこれらの金属によるメッキ鋼板もしくは蒸着製品等が挙げられる。なかでも、上記金属による金属板を好適に使用することができる。 The metal substrate is not limited as long as it is a metal material, and includes, for example, iron, copper, aluminum, tin, zinc and alloys containing these metals, and plated steel plates or vapor deposition products of these metals. It is done. Especially, the metal plate by the said metal can be used conveniently.
 上記金属基材として用いられる金属板としては、例えば、冷延鋼板、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板、亜鉛合金(亜鉛-鉄、亜鉛-アルミニウム、亜鉛-ニッケル等の合金)メッキ鋼板、アルミニウムメッキ鋼板、ステンレス鋼板、銅メッキ鋼板、錫メッキ鋼板、アルミニウム板、銅板等を挙げることができる。なかでも、亜鉛メッキ鋼板(溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板のいずれも包含する)、亜鉛合金メッキ鋼板が好適である。 Examples of the metal plate used as the metal substrate include cold-rolled steel sheets, hot-dip galvanized steel sheets, electrogalvanized steel sheets, zinc alloy (alloys such as zinc-iron, zinc-aluminum, zinc-nickel) plated steel sheets, aluminum A plated steel plate, a stainless steel plate, a copper plated steel plate, a tin plated steel plate, an aluminum plate, a copper plate, etc. can be mentioned. Among these, galvanized steel sheets (including both hot dip galvanized steel sheets and electrogalvanized steel sheets) and zinc alloy plated steel sheets are suitable.
 上記金属基材上に本発明の水性金属表面処理剤を塗布する前に、金属基材を、脱脂、酸洗、湯洗、洗剤洗浄等の1又は2以上により表面調整することができ、いずれの場合も、最後に十分に水洗することが好ましい。また、塗布時の本発明の水性金属表面処理剤の液温は常温でよいが、所望により冷却又は加温することも可能である。 Before applying the aqueous metal surface treatment agent of the present invention on the metal substrate, the surface of the metal substrate can be adjusted by one or more of degreasing, pickling, hot water washing, detergent washing, etc. Also in this case, it is preferable to thoroughly wash with water at the end. Further, the liquid temperature of the aqueous metal surface treatment agent of the present invention at the time of application may be room temperature, but may be cooled or heated as desired.
 また、上記金属基材表面には、他の表面処理による第1層を形成してもよい。該第1層は、本発明の水性金属表面処理剤による処理皮膜と金属表面との密着性強化等の目的で形成されるものであり、クロムフリーの表面処理剤によるものであることが好ましい。 Also, a first layer may be formed on the surface of the metal base material by other surface treatment. The first layer is formed for the purpose of, for example, enhancing adhesion between the treatment film formed by the aqueous metal surface treatment agent of the present invention and the metal surface, and is preferably formed of a chromium-free surface treatment agent.
 上記金属基材上に、ロールコート法、スプレー塗装法、刷毛塗り法、静電塗装法、浸漬法、電着塗装法、カーテン塗装法、ローラー塗装法等の公知の方法により本発明の水性金属表面処理剤を塗装し、乾燥させることにより表面処理皮膜を形成させることができる。なお、上述した表面処理皮膜の形成は、金属基材の片面のみ、両面のいずれであってもよい。 On the metal substrate, the aqueous metal of the present invention is formed by a known method such as a roll coating method, a spray coating method, a brush coating method, an electrostatic coating method, an immersion method, an electrodeposition coating method, a curtain coating method, or a roller coating method. A surface treatment film can be formed by coating and drying the surface treatment agent. In addition, formation of the surface treatment film mentioned above may be only one side or both sides of the metal substrate.
 本発明の水性金属表面処理剤による処理皮膜の皮膜量は、特に限定されるものではないが、通常0.4~3.6g/m、好ましくは0.5~2.5g/mの範囲であることが、耐食性、加工性の観点から好適である。処理皮膜の乾燥条件は、適宜設定すればよいが、コイルコーティング法等によって塗装したものを連続的に焼付ける場合には、通常、素材到達最高温度が60~200℃、好ましくは70~120℃となる条件で、5~60秒間加熱することにより行なうことができる。バッチ式で焼付ける場合には、例えば、雰囲気温度100~180℃で、1~30分間加熱することによっても行なうことができる。 The coating amount of the treatment film by the aqueous metal surface treatment agent of the present invention is not particularly limited, but is usually 0.4 to 3.6 g / m 2 , preferably 0.5 to 2.5 g / m 2 . It is suitable from a viewpoint of corrosion resistance and workability that it is a range. The drying conditions of the treated film may be set as appropriate. However, when continuously coating the material coated by the coil coating method or the like, the maximum material reaching temperature is usually 60 to 200 ° C, preferably 70 to 120 ° C. It can be performed by heating for 5 to 60 seconds under the following conditions. In the case of baking in a batch method, for example, it can be performed by heating at an atmospheric temperature of 100 to 180 ° C. for 1 to 30 minutes.
[表面処理金属板]
 本発明の表面処理金属板は、本発明の水性金属表面処理剤による表面処理が金属基材の表面になされてなる表面処理金属板である。本発明の表面処理金属板は、金属基材が板状形状であって、上記本発明の金属表面処理方法によって得ることができる。
[Surface-treated metal plate]
The surface-treated metal plate of the present invention is a surface-treated metal plate obtained by performing surface treatment with the aqueous metal surface treatment agent of the present invention on the surface of a metal substrate. The surface-treated metal plate of the present invention has a plate-like metal base material, and can be obtained by the metal surface treatment method of the present invention.
 本発明の表面処理金属板は、本発明の水性金属表面処理剤による処理皮膜の皮膜量が、0.4~3.6g/m、好ましくは0.5~2.5g/mの範囲であることが耐食性、加工性の観点から好適である。 In the surface-treated metal plate of the present invention, the coating amount of the treated film by the aqueous metal surface treatment agent of the present invention is in the range of 0.4 to 3.6 g / m 2 , preferably 0.5 to 2.5 g / m 2 . It is preferable from the viewpoint of corrosion resistance and workability.
 本発明の表面処理金属板の処理皮膜上には、さらに、美粧性向上、耐久性向上、その他機能性向上等の目的で、着色塗膜、クリヤ塗膜等の上層膜を形成することができる。この上層膜の形成は、本発明の表面処理金属板を成型加工する前に行うこともできるが、成型加工後に行うことが好ましい。 On the treated film of the surface-treated metal plate of the present invention, an upper film such as a colored coating or a clear coating can be further formed for the purpose of improving cosmetics, improving durability, and improving functionality. . The formation of the upper layer film can be performed before the surface-treated metal plate of the present invention is molded, but is preferably performed after the molding process.
 以下、製造例、実施例及び比較例を挙げて、本発明をより具体的に説明する。但し、本発明は、これらにより限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to production examples, examples and comparative examples. However, the present invention is not limited to these.
 各例において、「部」及び「%」は、特記しない限り、質量基準によるものとする。また、処理皮膜の皮膜量は、乾燥皮膜量に基づくものとする。 In each example, “part” and “%” are based on mass unless otherwise specified. Further, the coating amount of the treatment coating is based on the dry coating amount.
[アミノ基含有アクリル樹脂粒子のシェル部の製造例]
(アミノ基含有アクリル樹脂(S1)溶液の製造)
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素ガス導入管及び滴下装置を備えた反応容器に、プロピレングリコール(PG)モノメチルエーテル50部を仕込み、窒素気流中で撹拌混合し、105℃に昇温後、スチレン(St)20部、メチルメタクリレート(MMA)45部、n-ブチルアクリレート(nBA)5部、2-ヒドロキシエチルアクリレート(2-HEA)5部及び2-(N,N-ジメチルアミノ)エチルメタクリレート(DMAEMA)25部の混合物とtert-ブチルパーオキシ-2-エチルヘキサノエート(PBO)2部及びプロピレングリコール(PG)モノメチルエーテル15部の混合物を3時間かけて同時に滴下し、滴下終了後1時間熟成した。
[Example of production of shell portion of amino group-containing acrylic resin particles]
(Production of amino group-containing acrylic resin (S1) solution)
Into a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser, nitrogen gas inlet tube and dripping device, 50 parts of propylene glycol (PG) monomethyl ether was charged, stirred and mixed in a nitrogen stream, and heated to 105 ° C. After warming, 20 parts of styrene (St), 45 parts of methyl methacrylate (MMA), 5 parts of n-butyl acrylate (nBA), 5 parts of 2-hydroxyethyl acrylate (2-HEA) and 2- (N, N-dimethylamino) ) A mixture of 25 parts of ethyl methacrylate (DMAEMA) and 2 parts of tert-butylperoxy-2-ethylhexanoate (PBO) and 15 parts of propylene glycol (PG) monomethyl ether were dropped simultaneously over 3 hours. After completion, the mixture was aged for 1 hour.
 その後、プロピレングリコールモノメチルエーテルで希釈して30分間撹拌混合し、固形分濃度(NV値)45%のアミノ基含有アクリル樹脂(S1)溶液を得た。 Thereafter, the mixture was diluted with propylene glycol monomethyl ether and stirred for 30 minutes to obtain an amino group-containing acrylic resin (S1) solution having a solid content concentration (NV value) of 45%.
 得られたアミノ基含有アクリル樹脂(S1)のアミン価は90mgKOH/g、水酸基価は22mgKOH/g、重量平均分子量(Mw)は45,000であった。 The amino group-containing acrylic resin (S1) obtained had an amine value of 90 mgKOH / g, a hydroxyl value of 22 mgKOH / g, and a weight average molecular weight (Mw) of 45,000.
(アミノ基含有アクリル樹脂(S2)~(S14)溶液の製造)
 上記と同様の方法にて、下記表1及び表2に示す組成に従って、アミノ基含有アクリル樹脂(S2)~(S14)溶液を得た。
(Production of amino group-containing acrylic resins (S2) to (S14))
In the same manner as described above, amino group-containing acrylic resins (S2) to (S14) were obtained according to the compositions shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[Core/Shellエマルションの合成例]
(アミノ基含有アクリル樹脂粒子(A1)水分散液の製造)
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素ガス導入管及び滴下装置を備えた反応容器に、固形分濃度45%のアミノ基含有アクリル樹脂(S1)溶液111部を仕込んで撹拌混合し、80℃に昇温した後、固形分濃度69%になるまで減圧下で脱溶媒した。
[Synthesis example of Core / Shell emulsion]
(Production of amino group-containing acrylic resin particles (A1) aqueous dispersion)
In a reaction vessel equipped with a thermometer, thermostat, stirring device, reflux condenser, nitrogen gas inlet tube and dropping device, 111 parts of an amino group-containing acrylic resin (S1) solution having a solid content concentration of 45% was stirred and mixed. After the temperature was raised to 80 ° C., the solvent was removed under reduced pressure until the solid content concentration reached 69%.
 次に、60℃まで冷却し、スチレン20部、メチルメタクリレート20部、n-ブチルアクリレート7部、2-ヒドロキシエチルメタクリレート(2-HEMA)2.5部、アリルメタクリレート(AMA)0.5部、酢酸3部を反応容器に添加し、15分間撹拌混合した。 Next, it is cooled to 60 ° C., 20 parts of styrene, 20 parts of methyl methacrylate, 7 parts of n-butyl acrylate, 2.5 parts of 2-hydroxyethyl methacrylate (2-HEMA), 0.5 part of allyl methacrylate (AMA), 3 parts of acetic acid was added to the reaction vessel and mixed with stirring for 15 minutes.
 次いで、40℃まで冷却した後、脱イオン水(DIW)180部を1時間かけて滴下し、滴下終了後15分間熟成した。
 その後60℃に昇温し、アスコルビン酸ナトリウム0.3部と5%硫酸第一鉄水溶液0.3部を添加した後、30%過酸化水素水0.4部と脱イオン水30部との混合物を1時間かけて滴下し、次いで1時間熟成して、平均粒子径75nm[サブミクロン粒度分布測定装置「COULTER N5型」(ベックマン・コールター社製)を用いて、23℃の条件下で測定した平均粒子直径]を有する、固形分濃度30%のアミノ基含有アクリル樹脂粒子(A1)水分散液を得た。
Subsequently, after cooling to 40 degreeC, 180 parts of deionized water (DIW) was dripped over 1 hour, and it age | cure | ripened for 15 minutes after completion | finish of dripping.
Thereafter, the temperature was raised to 60 ° C., 0.3 parts of sodium ascorbate and 0.3 part of 5% ferrous sulfate aqueous solution were added, and then 0.4 part of 30% hydrogen peroxide water and 30 parts of deionized water The mixture was added dropwise over 1 hour, then aged for 1 hour, and measured at 23 ° C. using an average particle size of 75 nm [submicron particle size distribution analyzer “COULTER N5 type” (Beckman Coulter, Inc.). An amino group-containing acrylic resin particle (A1) aqueous dispersion having a solid content concentration of 30% was obtained.
 得られたアミノ基含有アクリル樹脂粒子(A1)のアミン価は45mgKOH/g、水酸基価は23mgKOH/g、重量平均分子量は1,200,000であった。 The amine value of the obtained amino group-containing acrylic resin particles (A1) was 45 mgKOH / g, the hydroxyl value was 23 mgKOH / g, and the weight average molecular weight was 1,200,000.
(A2~A15の製造)
 上記と同様の方法にて、下記表3及び表4に示す組成に従って、アミノ基含有アクリル樹脂粒子(A2)~(A15)水分散液を得た。
(Manufacture of A2 to A15)
In the same manner as described above, amino group-containing acrylic resin particles (A2) to (A15) in aqueous dispersion were obtained according to the compositions shown in Tables 3 and 4 below.
 なお、アミノ基含有アクリル樹脂粒子(A1)~(A15)において、コア部とシェル部との構成比率(質量比)は、下記のとおりである。
 (A1)~(A13)コア部:シェル部=50:50
 (A14)コア部:シェル部=90:10
 (A15)コア部:シェル部=10:90
In the amino group-containing acrylic resin particles (A1) to (A15), the constituent ratio (mass ratio) between the core part and the shell part is as follows.
(A1) to (A13) Core portion: shell portion = 50: 50
(A14) Core portion: Shell portion = 90: 10
(A15) Core portion: Shell portion = 10: 90
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(アミノ基含有アクリル樹脂粒子(A16)水分散液の製造)
 固形分濃度45%のアミノ基含有アクリル樹脂(S13)溶液111部、酢酸6部を用いること以外はアミノ基含有アクリル樹脂粒子(A1)水分散液と同様にして、平均粒子径55nmで、固形分濃度30%のアミノ基含有アクリル樹脂粒子(A16)水分散液を得た。
 得られたアミノ基含有アクリル樹脂粒子(A16)のアミン価は90mgKOH/g、水酸基価は23mgKOH/g、重量平均分子量は1,200,000であった。
(Production of amino group-containing acrylic resin particles (A16) aqueous dispersion)
An amino group-containing acrylic resin particle (A1) having an average particle diameter of 55 nm is solid, except that 111 parts of an amino group-containing acrylic resin (S13) solution having a solid content of 45% and 6 parts of acetic acid are used. An amino group-containing acrylic resin particle (A16) aqueous dispersion having a partial concentration of 30% was obtained.
The amino group-containing acrylic resin particles (A16) thus obtained had an amine value of 90 mgKOH / g, a hydroxyl value of 23 mgKOH / g, and a weight average molecular weight of 1,200,000.
(アミノ基含有アクリル樹脂粒子(A17)水分散液の製造)
 固形分濃度45%のアミノ基含有アクリル樹脂(S14)溶液111部、酢酸0.6部を用いること以外はアミノ基含有アクリル樹脂粒子(A1)水分散液と同様にして、平均粒子径240nmで、固形分濃度30%のアミノ基含有アクリル樹脂粒子(A17)水分散液を得た。
 得られたアミノ基含有アクリル樹脂粒子(A17)のアミン価は9mgKOH/g、水酸基価は23mgKOH/g、重量平均分子量は1,200,000であった。
(Production of amino group-containing acrylic resin particles (A17) aqueous dispersion)
The average particle diameter is 240 nm in the same manner as the amino group-containing acrylic resin particle (A1) aqueous dispersion, except that 111 parts of an amino group-containing acrylic resin (S14) solution having a solid content concentration of 45% and 0.6 part of acetic acid are used. An amino group-containing acrylic resin particle (A17) aqueous dispersion having a solid content concentration of 30% was obtained.
The amino group-containing acrylic resin particles (A17) thus obtained had an amine value of 9 mgKOH / g, a hydroxyl value of 23 mgKOH / g, and a weight average molecular weight of 1,200,000.
(アミノ基含有アクリル樹脂粒子(A18)水分散液の製造)
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素ガス導入管及び滴下装置を備えた反応容器に、脱イオン水110部、「アデカリアソープER-40」(商品名、株式会社ADEKA製、乳化剤、有効成分60%)8部を仕込み、窒素気流中で撹拌混合し、60℃に昇温した。
(Production of amino group-containing acrylic resin particles (A18) aqueous dispersion)
In a reaction vessel equipped with a thermometer, thermostat, stirring device, reflux condenser, nitrogen gas inlet tube and dropping device, 110 parts of deionized water, “ADEKA rear soap ER-40” (trade name, manufactured by ADEKA Corporation, emulsifier) , 60% active ingredient) was charged, and the mixture was stirred and mixed in a nitrogen stream and heated to 60 ° C.
 次いで、下記コア部用モノマー乳化物の全量のうちの5%量、10%「カヤブチルH-70」(商品名、化薬アクゾ株式会社製、重合開始剤、tert-ブチルハイドロパーオキサイド、有効成分70%)水溶液1部及び3%アスコルビン酸ナトリウム水溶液1部を反応容器内に添加し60℃で1時間保持した。 Next, 5% of the total amount of the following monomer emulsion for core part, 10% “Kayabutyl H-70” (trade name, manufactured by Kayaku Akzo Co., Ltd., polymerization initiator, tert-butyl hydroperoxide, active ingredient) 70%) 1 part aqueous solution and 1 part 3% aqueous sodium ascorbate solution were added to the reaction vessel and held at 60 ° C. for 1 hour.
 その後、下記コア部用モノマー乳化物の残部、10%「カヤブチルH-70」水溶液7部及び3%アスコルビン酸ナトリウム水溶液10部を2時間かけて、同温度に保持した反応容器内に滴下し、滴下終了後1時間熟成を行った。 Thereafter, the remainder of the following monomer emulsion for the core part, 7 parts of a 10% “Kayabutyl H-70” aqueous solution and 10 parts of a 3% aqueous sodium ascorbate solution were dropped into a reaction vessel maintained at the same temperature over 2 hours, After completion of dropping, aging was performed for 1 hour.
 次に、下記シェル部用モノマー乳化物、10%「カヤブチルH-70」水溶液5部及び3%アスコルビン酸ナトリウム水溶液10部を2時間かけて滴下し、1時間熟成した後、酢酸0.6部を反応容器内に添加し30分間保持した。 Next, 5 parts of a 10% “Kayabutyl H-70” aqueous emulsion and 10 parts of a 3% aqueous sodium ascorbate solution were added dropwise over 2 hours and aged for 1 hour, and then 0.6 parts of acetic acid. Was added to the reaction vessel and held for 30 minutes.
 次に、30℃まで冷却し、脱イオン水で希釈して、平均粒子径170nmを有する、固形分濃度30%のアミノ基含有アクリル樹脂粒子(A18)水分散液を得た。 Next, the mixture was cooled to 30 ° C. and diluted with deionized water to obtain an amino group-containing acrylic resin particle (A18) aqueous dispersion having an average particle diameter of 170 nm and a solid content concentration of 30%.
 得られたアミノ基含有アクリル樹脂粒子(A18)のアミン価は10mgKOH/g、水酸基価は16mgKOH/g、数平均分子量は約65,000であった。 The amino group-containing acrylic resin particles (A18) thus obtained had an amine value of 10 mgKOH / g, a hydroxyl value of 16 mgKOH / g, and a number average molecular weight of about 65,000.
 シェル部用モノマー乳化物:脱イオン水20部、「アデカリアソープER-40」3.5部、スチレン3部、メチルメタクリレート19部、n-ブチルメタクリレート(nBMA)3部、n-ブチルアクリレート2部、2-ヒドロキシエチルメタクリレート2部及び2-(N,N-ジメチルアミノ)エチルメタクリレート1部を混合してなるモノマー乳化物。 Monomer emulsion for shell part: 20 parts of deionized water, 3.5 parts of “ADEKA rear soap ER-40”, 3 parts of styrene, 19 parts of methyl methacrylate, 3 parts of n-butyl methacrylate (nBMA), n-butyl acrylate 2 Monomer emulsion obtained by mixing 2 parts of 2-hydroxyethyl methacrylate and 1 part of 2- (N, N-dimethylamino) ethyl methacrylate.
 コア部用モノマー乳化物:脱イオン水40部、「アデカリアソープER-40」7部、メチルメタクリレート44部、n-ブチルメタクリレート17部、n-ブチルアクリレート5部、2-ヒドロキシエチルメタクリレート2部及び2-(N,N-ジメチルアミノ)エチルメタクリレート2部を混合してなるモノマー乳化物。 Monomer emulsion for core part: 40 parts of deionized water, 7 parts of “ADEKA rear soap ER-40”, 44 parts of methyl methacrylate, 17 parts of n-butyl methacrylate, 5 parts of n-butyl acrylate, 2 parts of 2-hydroxyethyl methacrylate And a monomer emulsion obtained by mixing 2 parts of 2- (N, N-dimethylamino) ethyl methacrylate.
(アミノ基含有アクリル樹脂粒子(A19)水分散液の製造)
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素ガス導入管及び滴下装置を備えた反応容器に、プロピレングリコールモノメチルエーテル50部を仕込み、窒素気流中で撹拌混合し、105℃に昇温後、スチレン20部、メチルメタクリレート45部、n-ブチルアクリレート5部、2-ヒドロキシエチルアクリレート5部、2-(N,N-ジメチルアミノ)エチルメタクリレート25部及びtert-ブチルパーオキシ-2エチルヘキサノエート2部の混合物を3時間かけて滴下し、滴下終了後1時間熟成した。
(Production of amino group-containing acrylic resin particles (A19) aqueous dispersion)
In a reaction vessel equipped with a thermometer, thermostat, stirring device, reflux condenser, nitrogen gas inlet tube and dropping device, 50 parts of propylene glycol monomethyl ether was charged and stirred and mixed in a nitrogen stream. 20 parts of styrene, 45 parts of methyl methacrylate, 5 parts of n-butyl acrylate, 5 parts of 2-hydroxyethyl acrylate, 25 parts of 2- (N, N-dimethylamino) ethyl methacrylate and tert-butylperoxy-2-ethylhexanoate 2 parts of the mixture was added dropwise over 3 hours and aged for 1 hour after completion of the addition.
 その後60℃に冷却し、酢酸14部を反応容器内に添加し30分間保持した後、脱イオン水(DIW)で希釈して平均粒子径25nmを有する、固形分濃度20%のアミノ基含有アクリル樹脂粒子(A19)水分散液を得た。 Thereafter, the mixture was cooled to 60 ° C., 14 parts of acetic acid was added to the reaction vessel and held for 30 minutes, and then diluted with deionized water (DIW) to have an average particle size of 25 nm and an amino group-containing acrylic having an average particle size of 20%. A resin particle (A19) aqueous dispersion was obtained.
 得られたアミノ基含有アクリル樹脂粒子(A19)のアミン価は90mgKOH/g、水酸基価は23mgKOH/g、重量平均分子量は45,000であった。 The amino group-containing acrylic resin particles (A19) thus obtained had an amine value of 90 mgKOH / g, a hydroxyl value of 23 mgKOH / g, and a weight average molecular weight of 45,000.
 なお、アミノ基含有アクリル樹脂粒子(A16)~(A19)は比較例用であり、便宜上、アミノ基含有アクリル樹脂粒子(A16)~(A19)としているが、本発明の水性金属表面処理剤のアミノ基含有アクリル樹脂粒子(A)には該当しない樹脂粒子である。 Amino group-containing acrylic resin particles (A16) to (A19) are for comparative examples, and for convenience, amino group-containing acrylic resin particles (A16) to (A19) are used. It is a resin particle which does not correspond to an amino group-containing acrylic resin particle (A).
 また、アミノ基含有アクリル樹脂粒子(A16)~(A18)において、コア部とシェル部との構成比率(質量比)は、下記のとおりである。
 (A16)~(A17)コア部:シェル部=50:50
 (A18)コア部:シェル部=70:30
In the amino group-containing acrylic resin particles (A16) to (A18), the constituent ratio (mass ratio) between the core part and the shell part is as follows.
(A16) to (A17) Core portion: Shell portion = 50: 50
(A18) Core portion: Shell portion = 70: 30
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例及び比較例]
 下記表に示す配合割合に従って各成分を配合し、固形分濃度が15質量%となるように脱イオン水を加えて調整し、十分撹拌を行って各金属表面処理剤を得た。下記表の配合量は固形分質量又は有効成分質量による。
[Examples and Comparative Examples]
Each component was blended according to the blending ratio shown in the following table, adjusted by adding deionized water so that the solid content concentration was 15% by mass, and sufficiently stirred to obtain each metal surface treatment agent. The blending amount in the following table is based on the solid mass or the active ingredient mass.
 なお、下記表における、アミノ基含有アクリル樹脂粒子(A)、リン酸系化合物(B)、フルオロ金属酸及び/又はその塩(C)、バナジウム化合物(D)、シランカップリング剤及び/又はその加水分解縮合物(E)及びポリオレフィンワックス(F)の成分は下記のとおりである。 In the table below, amino group-containing acrylic resin particles (A), phosphoric acid compounds (B), fluorometal acids and / or their salts (C), vanadium compounds (D), silane coupling agents and / or their The components of the hydrolysis condensate (E) and the polyolefin wax (F) are as follows.
下記表における、アミノ基含有アクリル樹脂粒子(A)の成分
 A1~A19:上記[Core/Shellエマルションの合成例]で得た、アミノ基含有アクリル樹脂粒子(A1)~(A19)水分散液
In the following table, amino group-containing acrylic resin particles (A) components A1 to A19: Amino group-containing acrylic resin particles (A1) to (A19) obtained in the above [Synthesis example of Core / Shell emulsion]
下記表における、リン酸系化合物(B)の成分
 B1:正リン酸
 B2:1-ヒドロキシエチリデン-1,1-ジホスホン酸
 B3:ニトリロトリス(メチレンホスホン酸)
In the table below, component of phosphoric acid compound (B) B1: orthophosphoric acid B2: 1-hydroxyethylidene-1,1-diphosphonic acid B3: nitrilotris (methylenephosphonic acid)
下記表における、フルオロ金属酸及び/又はその塩(C)の成分
 C1:六フッ化チタン酸アンモニウム
 C2:六フッ化ジルコン酸アンモニウム
 C3:六フッ化チタン酸
 C4:六フッ化ジルコニウム酸
 C5:六フッ化ハフニウム酸
Components of fluorometallic acid and / or its salt (C) in the following table C1: Ammonium hexafluorotitanate C2: Ammonium hexafluorozirconate C3: Hexafluorotitanic acid C4: Hexafluorozirconic acid C5: Six Hafnium fluoride fluoride
下記表における、バナジウム化合物(D)の成分
 D1:メタバナジン酸アンモニウム
 D2:メタバナジン酸ナトリウム
 D3:硫酸バナジル
Components of vanadium compound (D) in the following table D1: ammonium metavanadate D2: sodium metavanadate D3: vanadyl sulfate
下記表における、シランカップリング剤及び/又はその加水分解縮合物(E)の成分
 E1:γ-メタクリロイルオキシプロピルトリメトキシシラン
 E2:3-グリシドキシプロピルトリメトキシシラン
 E3:3-メルカプトプロピルトリメトキシシラン
In the following table, the component of the silane coupling agent and / or its hydrolysis condensate (E) E1: γ-methacryloyloxypropyltrimethoxysilane E2: 3-glycidoxypropyltrimethoxysilane E3: 3-mercaptopropyltrimethoxy Silane
下記表における、ポリオレフィンワックス(F)の成分
 F1:三井化学株式会社製 ケミパール W-700 平均粒子径1.5μm
 F2:株式会社岐阜セラツク製造所製 HIDISPER AC-90 平均粒子径1.3μm
 F3:株式会社岐阜セラツク製造所製 HIDISPER A-206N 平均粒子径1μm
 F4:株式会社岐阜セラツク製造所製 HIDISPER AG-73 平均粒子径0.1μm
 F5:三井化学株式会社製 ケミパール W-500 平均粒子径2.5μm
Components of polyolefin wax (F) in the table below F1: Chemipearl W-700 manufactured by Mitsui Chemicals, Inc. Average particle size 1.5 μm
F2: HIDISPER AC-90 manufactured by Gifu Seratsuk Co., Ltd. Average particle size 1.3 μm
F3: HIDISPER A-206N manufactured by Gifu Seratsuk Manufacturing Co., Ltd. Average particle size 1 μm
F4: HIDISPER AG-73, average particle size 0.1 μm, manufactured by Gifu Seratsuk Manufacturing Co., Ltd.
F5: Chemipearl W-500 manufactured by Mitsui Chemicals, Inc. Average particle size 2.5 μm
[耐水性試験]
(表面処理金属板作製条件)
 メッキ付着量が片面20g/mで、板厚0.8mmの両面電気亜鉛メッキ鋼板を、濃度2%のアルカリ脱脂剤(日本シー・ビー・ケミカル株式会社製、商品名「ケミクリーナー561B」、珪酸3号相当品)溶液にて、液温65℃で60秒間スプレー脱脂し、ついで液温50℃、スプレー時間20秒間の条件にて湯洗を行い乾燥してアルカリ脱脂金属板を得た。得られたアルカリ脱脂金属板に、上記[実施例及び比較例]で得られた表面処理剤をバーコータにて乾燥皮膜重量が0.9g/mとなるように塗布し、金属板の最高到
達温度が60℃となるように12秒間加熱乾燥し、各表面処理金属板を得た。
[Water resistance test]
(Surface treatment metal plate production conditions)
A double-sided electrogalvanized steel sheet with a plating adhesion amount of 20 g / m 2 on one side and a thickness of 0.8 mm was added to an alkaline degreasing agent with a concentration of 2% (trade name “Chem Cleaner 561B”, manufactured by Nippon C.B. The solution was spray degreased with a solution at a liquid temperature of 65 ° C. for 60 seconds, then washed with hot water at a liquid temperature of 50 ° C. for a spray time of 20 seconds, and dried to obtain an alkali degreased metal plate. The surface treatment agent obtained in the above [Examples and Comparative Examples] was applied to the obtained alkaline degreased metal plate with a bar coater so that the dry film weight was 0.9 g / m 2, and the metal plate reached the maximum. Each surface-treated metal plate was obtained by heating and drying for 12 seconds so that the temperature was 60 ° C.
(評価基準)
 各表面処理金属板を室温にて5分間放置し、脱イオン水を直径3cm程度になるよう表面処理金属板に2分間乗せて、その後、ガーゼ等で水滴を除去し、処理面の外観変化を目視観察し下記基準にて評価し、結果を下記表に示した。
◎:全く変化が認められなかった。
○:わずかに白く変色した。
×:明らかに白く変色した。
 なお、実用レベルは「◎」又は「○」とした。
(Evaluation criteria)
Leave each surface-treated metal plate at room temperature for 5 minutes, place deionized water on the surface-treated metal plate for 2 minutes so that the diameter is about 3 cm, and then remove water drops with gauze etc. to change the appearance of the treated surface. The results were visually observed and evaluated according to the following criteria, and the results are shown in the following table.
A: No change was observed at all.
○: Discolored slightly white.
X: Discolored clearly white.
The practical level was “と し た” or “◯”.
[硫酸銅変色試験]
(表面処理金属板作製条件)
 メッキ付着量が片面20g/mで、板厚0.8mmの両面電気亜鉛メッキ鋼板を、濃度2%のアルカリ脱脂剤(日本シー・ビー・ケミカル株式会社製、商品名「ケミクリーナー561B」、珪酸3号相当品)溶液にて、液温65℃で60秒間スプレー脱脂し、ついで液温50℃、スプレー時間20秒間の条件にて湯洗を行い乾燥してアルカリ脱脂金属板を得た。得られたアルカリ脱脂金属板に、上記[実施例及び比較例]で得られた表面処理剤をバーコータにて乾燥皮膜重量が0.9g/mとなるように塗布し、金属板の最高到
達温度が80℃となるように12秒間加熱乾燥し、各表面処理金属板を得た。
[Copper sulfate discoloration test]
(Surface treatment metal plate production conditions)
A double-sided electrogalvanized steel sheet with a plating adhesion amount of 20 g / m 2 on one side and a thickness of 0.8 mm was added to an alkaline degreasing agent with a concentration of 2% (trade name “Chem Cleaner 561B”, manufactured by Nippon C.B. The solution was spray degreased with a solution at a liquid temperature of 65 ° C. for 60 seconds, then washed with hot water at a liquid temperature of 50 ° C. for a spray time of 20 seconds, and dried to obtain an alkali degreased metal plate. The surface treatment agent obtained in the above [Examples and Comparative Examples] was applied to the obtained alkaline degreased metal plate with a bar coater so that the dry film weight was 0.9 g / m 2, and the metal plate reached the maximum. Each surface-treated metal plate was obtained by heating and drying for 12 seconds so that the temperature became 80 ° C.
(評価基準)
 各表面処理金属板の処理面に濃度5%の硫酸銅水溶液を20μL乗せ、15秒間経過した後、ガーゼ等で硫酸銅水溶液を除去し、処理面の外観変化を目視観察し下記基準にて評価し、結果を下記表に示した。
◎:全く変色が認められなかった。
○:わずかな変色が認められた。
×:変色が明確に認められた。
 なお、実用レベルは「◎」又は「○」とした。
(Evaluation criteria)
Place 20 μL of 5% copper sulfate aqueous solution on the treated surface of each surface-treated metal plate, and after 15 seconds, remove the copper sulfate aqueous solution with gauze, etc., visually observe the appearance change of the treated surface and evaluate according to the following criteria The results are shown in the following table.
A: No discoloration was observed at all.
○: Slight discoloration was observed.
X: Discoloration was clearly recognized.
The practical level was “と し た” or “◯”.
[耐食性試験]
(表面処理金属板作製条件)
 上記硫酸銅変色試験と同様の条件及び方法で、各表面処理金属板を得た。
[Corrosion resistance test]
(Surface treatment metal plate production conditions)
Each surface-treated metal plate was obtained under the same conditions and method as the copper sulfate discoloration test.
(一般部評価基準)
 各表面処理金属板を幅7cm、長さ15cmに切断し、耐食性試験用表面処理金属試験板を得た。得られた試験板の端面部及び裏面部をシールし、JIS Z 2371による塩水噴霧試験(SST)により、処理面における錆の発生面積をレイティングナンバー法に従い、レイティングナンバーが9となるまでの時間を下記基準にて評価し、結果を下記表に示した。
SS:レイティングナンバーが9となるまでの時間が96時間以上であった。
S:レイティングナンバーが9となるまでの時間が72時間以上、96時間未満であった。
A:レイティングナンバーが9となるまでの時間が48時間以上、72時間未満であった。
B:レイティングナンバーが9となるまでの時間が24時間以上、48時間未満であった。
C:レイティングナンバーが9となるまでの時間が24時間未満であった。
 なお、実用レベルは「SS」、「S」、「A」又は「B」とした。
(General Department Evaluation Criteria)
Each surface-treated metal plate was cut into a width of 7 cm and a length of 15 cm to obtain a surface-treated metal test plate for corrosion resistance test. The end face part and the back face part of the obtained test plate are sealed, and by the salt spray test (SST) according to JIS Z 2371, the rust generation area on the treated surface is determined according to the rating number method, and the time until the rating number becomes 9 is determined. Evaluation was performed according to the following criteria, and the results are shown in the following table.
SS: The time until the rating number reached 9 was 96 hours or more.
S: The time until the rating number reached 9 was 72 hours or more and less than 96 hours.
A: The time until the rating number reached 9 was 48 hours or more and less than 72 hours.
B: The time until the rating number reached 9 was 24 hours or more and less than 48 hours.
C: The time until the rating number reached 9 was less than 24 hours.
The practical level was “SS”, “S”, “A” or “B”.
(加工部評価基準)
 各表面処理金属板を幅7cm、長さ15cmに切断し、エリクセン加工機にて押し出し、高さ7mmとなるまでドーム状の加工部を有する加工部耐食性試験用表面処理金属試験板を得た。得られた試験板の端面部及び裏面部をシールし、JIS Z 2371による塩水噴霧試験(SST)により、ドーム状加工部の天頂部に錆が発生するまでの時間を下記基準にて評価し、結果を下記表に示した。
S:錆が発生するまでの時間が72時間以上であった。
A:錆が発生するまでの時間が48時間以上、72時間未満であった。
B:錆が発生するまでの時間が24時間以上、48時間未満であった。
C:錆が発生するまでの時間が24時間未満であった。
 なお、実用レベルは「S」、「A」又は「B」とした。
(Processing part evaluation criteria)
Each surface-treated metal plate was cut into a width of 7 cm and a length of 15 cm, and extruded with an Erichsen machine to obtain a surface-treated metal test plate for a processed portion corrosion resistance test having a dome-shaped processed portion until the height reached 7 mm. The end face part and the back face part of the obtained test plate are sealed, and by the salt spray test (SST) according to JIS Z 2371, the time until rust is generated at the zenith part of the dome-shaped processed part is evaluated according to the following criteria. The results are shown in the table below.
S: The time until rust was generated was 72 hours or more.
A: The time until rust was generated was 48 hours or more and less than 72 hours.
B: Time until rust was generated was 24 hours or more and less than 48 hours.
C: Time until rust was generated was less than 24 hours.
The practical level was “S”, “A” or “B”.
[耐エタノールラビング性試験]
(表面処理金属板作製条件)
 上記硫酸銅変色試験と同様の条件及び方法で、各表面処理金属板を得た。
[Ethanol rubbing resistance test]
(Surface treatment metal plate production conditions)
Each surface-treated metal plate was obtained under the same conditions and method as the copper sulfate discoloration test.
(評価基準)
 4枚重ねのガーゼにエタノールをしみ込ませて、荷重1kgにて各表面処理金属板の処理面を10往復こすり、処理面の外観変化を目視観察し下記基準にて評価し、結果を下記表に示した。
◎:全く変化が認められなかった。
○:わずかにこすった跡が認められた。
×:こすった跡が明確に認められた。
 なお、実用レベルは「◎」又は「○」とした。
(Evaluation criteria)
Soak four layers of gauze with ethanol, rub the treated surface of each surface-treated metal plate 10 times with a load of 1 kg, visually observe the appearance change of the treated surface and evaluate it according to the following criteria, and the results are shown in the table below. Indicated.
A: No change was observed at all.
○: A trace of rubbing was observed.
X: The rubbing trace was clearly recognized.
The practical level was “と し た” or “◯”.
[動摩擦係数測定試験]
(表面処理金属板作製条件)
 上記硫酸銅変色試験と同様の条件及び方法で、各表面処理金属板を得た。
[Dynamic friction coefficient measurement test]
(Surface treatment metal plate production conditions)
Each surface-treated metal plate was obtained under the same conditions and method as the copper sulfate discoloration test.
(評価基準)
 各表面処理金属板に対して、バウデン磨耗試験機(神鋼造機株式会社製、曽田式付着滑り試験機、摩擦部ボール圧子3/16インチ鋼球、荷重200gf、摩擦速度7往復/分)にて摩擦試験を行い、動摩擦係数を測定した。得られた動摩擦係数の値が0.4になるまでの摩擦回数を下記基準にて評価し、結果を下記表に示した。
S:動摩擦係数の値が0.4になるまでの摩擦回数が20回以上であった。
A:動摩擦係数の値が0.4になるまでの摩擦回数が10回以上、20回未満であった。
B:動摩擦係数の値が0.4になるまでの摩擦回数が5回以上、10回未満であった。
C:動摩擦係数の値が0.4になるまでの摩擦回数が5回未満であった。
 なお、実用レベルは「S」、「A」又は「B」とした。
(Evaluation criteria)
For each surface-treated metal plate, with a Bowden abrasion tester (made by Shinko Engineering Co., Ltd., Iwata-type adhesion slip tester, friction part ball indenter 3/16 inch steel ball, load 200 gf, friction speed 7 reciprocations / min) A friction test was performed to measure the dynamic friction coefficient. The number of frictions until the value of the obtained dynamic friction coefficient reached 0.4 was evaluated according to the following criteria, and the results are shown in the following table.
S: The number of frictions until the value of the dynamic friction coefficient reached 0.4 was 20 or more.
A: The number of frictions until the value of the dynamic friction coefficient reached 0.4 was 10 times or more and less than 20 times.
B: The number of frictions until the value of the dynamic friction coefficient reached 0.4 was 5 or more and less than 10 times.
C: The number of frictions until the value of the dynamic friction coefficient reached 0.4 was less than 5.
The practical level was “S”, “A” or “B”.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記実施例及び比較例から明らかなように、本発明の表面処理剤が塗布された表面処理金属板は、耐水性、耐食性(特に、エリクセン加工後の表面処理金属板の耐食性)及び耐エタノールラビング性に優れ、かつ硫酸銅変色試験及び動摩擦係数等の性能を満足できるものであった。 As is clear from the above Examples and Comparative Examples, the surface-treated metal plate coated with the surface treatment agent of the present invention has water resistance, corrosion resistance (particularly, corrosion resistance of the surface-treated metal plate after Erichsen processing) and ethanol rubbing resistance. It was excellent in performance and satisfied performances such as a copper sulfate discoloration test and a dynamic friction coefficient.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年10月19日出願の日本特許出願(特願2016-205570)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on October 19, 2016 (Japanese Patent Application No. 2016-205570), the contents of which are incorporated herein by reference.

Claims (11)

  1.  コアシェル構造を有し、アミン価が14~72mgKOH/gであるアミノ基含有アクリル樹脂粒子(A)、及び
     リン酸系化合物(B)を含有する水性金属表面処理剤であって、
     前記アミノ基含有アクリル樹脂粒子(A)の固形分総量に対し、前記リン酸系化合物(B)を0.5~10質量%含有する水性金属表面処理剤。
    An aqueous metal surface treatment agent comprising an amino group-containing acrylic resin particle (A) having a core-shell structure and an amine value of 14 to 72 mgKOH / g, and a phosphoric acid compound (B),
    An aqueous metal surface treatment agent containing 0.5 to 10% by mass of the phosphoric acid compound (B) based on the total solid content of the amino group-containing acrylic resin particles (A).
  2.  さらに、フルオロ金属酸及びその塩の少なくとも一方(C)を含有する請求項1に記載の水性金属表面処理剤。 Furthermore, the aqueous metal surface treating agent of Claim 1 containing at least one (C) of a fluoro metal acid and its salt.
  3.  さらに、バナジウム化合物(D)を含有する請求項1又は2に記載の水性金属表面処理剤。 The aqueous metal surface treatment agent according to claim 1 or 2, further comprising a vanadium compound (D).
  4.  さらに、シランカップリング剤及びその加水分解縮合物の少なくとも一方(E)を含有する請求項1~3のいずれか1項に記載の水性金属表面処理剤。 The aqueous metal surface treatment agent according to any one of claims 1 to 3, further comprising at least one of a silane coupling agent and a hydrolysis condensate thereof (E).
  5.  さらに、平均粒子径が0.1~3μmのポリオレフィンワックス(F)を含有する請求項1~4のいずれか1項に記載の水性金属表面処理剤。 5. The aqueous metal surface treatment agent according to claim 1, further comprising a polyolefin wax (F) having an average particle diameter of 0.1 to 3 μm.
  6.  前記リン酸系化合物(B)が、オルトリン酸、ヒドロキシメタンジホスホン酸及び1-ヒドロキシエタン-1,1-ジホスホン酸からなる群から選ばれる少なくとも1種の化合物である請求項1~5のいずれか1項に記載の水性金属表面処理剤。 The phosphoric acid compound (B) is at least one compound selected from the group consisting of orthophosphoric acid, hydroxymethane diphosphonic acid and 1-hydroxyethane-1,1-diphosphonic acid. The aqueous metal surface treatment agent according to claim 1.
  7.  前記フルオロ金属酸及びその塩の少なくとも一方(C)の金属が、チタン又はジルコニウムである請求項2~6のいずれか1項に記載の水性金属表面処理剤。 The aqueous metal surface treating agent according to any one of claims 2 to 6, wherein the metal of at least one of the fluorometal acid and its salt (C) is titanium or zirconium.
  8.  前記バナジウム化合物(D)が、メタバナジン酸アンモウニム、メタバナジン酸ナトリウム、メタバナジン酸カリウム及び硫酸バナジルからなる群から選ばれる少なくとも1種の化合物である請求項3~7のいずれか1項に記載の水性金属表面処理剤。 The aqueous metal according to any one of claims 3 to 7, wherein the vanadium compound (D) is at least one compound selected from the group consisting of ammonium metavanadate, sodium metavanadate, potassium metavanadate, and vanadyl sulfate. Surface treatment agent.
  9.  pHが3~7で、固形分濃度が5~30質量%である請求項1~8のいずれか1項に記載の水性金属表面処理剤。 The aqueous metal surface treatment agent according to any one of claims 1 to 8, wherein the pH is 3 to 7 and the solid content concentration is 5 to 30% by mass.
  10.  請求項1~9のいずれか1項に記載の水性金属表面処理剤を、金属基材上に塗布し、乾燥させる金属表面処理方法。 A metal surface treatment method in which the aqueous metal surface treatment agent according to any one of claims 1 to 9 is applied onto a metal substrate and dried.
  11.  請求項1~9のいずれか1項に記載の水性金属表面処理剤による表面処理が金属基材の表面になされてなる表面処理金属板。
     
    A surface-treated metal sheet, wherein the surface of the metal substrate is subjected to a surface treatment with the aqueous metal surface treatment agent according to any one of claims 1 to 9.
PCT/JP2017/035624 2016-10-19 2017-09-29 Aqueous metal surface treatment agent, metal surface treatment method, and surface-treated metal sheet WO2018074195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546224A JP6943870B2 (en) 2016-10-19 2017-09-29 Aqueous metal surface treatment agent, metal surface treatment method and surface treatment metal plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-205570 2016-10-19
JP2016205570 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074195A1 true WO2018074195A1 (en) 2018-04-26

Family

ID=62018536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035624 WO2018074195A1 (en) 2016-10-19 2017-09-29 Aqueous metal surface treatment agent, metal surface treatment method, and surface-treated metal sheet

Country Status (3)

Country Link
JP (1) JP6943870B2 (en)
TW (1) TWI662152B (en)
WO (1) WO2018074195A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109486315A (en) * 2018-09-17 2019-03-19 上海威驭新材料科技有限公司 Pretreatment primer and the coil color coating method for using the pretreatment primer
CN114540820A (en) * 2022-02-15 2022-05-27 珠海谦信新材料有限公司 Natural plant extract modified compound corrosion inhibitor, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020522A (en) * 2014-07-14 2016-02-04 関西ペイント株式会社 Aqueous metal surface treatment composition
JP2016089232A (en) * 2014-11-06 2016-05-23 日新製鋼株式会社 Method for surface-treating zinc-aluminum magnesium alloy plated steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395834B (en) * 2006-01-06 2013-05-11 Nihon Parkerizing Aqueous metal surface treating agent, metal surface treating method and surface-treated metal material
MY178227A (en) * 2014-12-11 2020-10-07 Nihon Parkerizing Metal surface treatment solution, method for producing surface-treated metal material, and surface-treated metal material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020522A (en) * 2014-07-14 2016-02-04 関西ペイント株式会社 Aqueous metal surface treatment composition
JP2016089232A (en) * 2014-11-06 2016-05-23 日新製鋼株式会社 Method for surface-treating zinc-aluminum magnesium alloy plated steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109486315A (en) * 2018-09-17 2019-03-19 上海威驭新材料科技有限公司 Pretreatment primer and the coil color coating method for using the pretreatment primer
CN114540820A (en) * 2022-02-15 2022-05-27 珠海谦信新材料有限公司 Natural plant extract modified compound corrosion inhibitor, and preparation method and application thereof
CN114540820B (en) * 2022-02-15 2023-09-29 珠海谦信新材料有限公司 Natural plant extract modified compound corrosion inhibitor, and preparation method and application thereof

Also Published As

Publication number Publication date
TWI662152B (en) 2019-06-11
JP6943870B2 (en) 2021-10-06
TW201827646A (en) 2018-08-01
JPWO2018074195A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP5160866B2 (en) Surface-treated molten Zn-Al alloy-plated steel sheet
JP4709942B2 (en) Chromate-free surface-treated metal material
JP6455855B2 (en) Aqueous metal surface treatment agent
JP5509078B2 (en) Water-based metal surface treatment agent and surface-treated metal material
AU2009249174B2 (en) Midly alkaline thin inorganic corrosion protective coating for metal substrates
KR101728249B1 (en) Composition for rust prevention and aqueous dispersion containing same
JP6943870B2 (en) Aqueous metal surface treatment agent, metal surface treatment method and surface treatment metal plate
JP2014055319A (en) Aqueous metal surface treatment
JP5099732B2 (en) Water-based metal surface treatment agent
JP6367462B2 (en) Metal surface treatment agent for galvanized steel or zinc-base alloy plated steel, coating method and coated steel
JP2009174050A (en) Composition for metal surface treatment, and surface treated metallic material having metal surface treatment layer obtained from the composition for metal surface treatment
JP4042913B2 (en) Water-based coating composition for galvanized steel sheet or zinc alloy plated steel sheet and coated steel sheet
US6005029A (en) Organic composite-plated steel plate and resin composition for coating material used therein
JP2004231698A (en) Water-dispersible resin composition for anticorrosion paint
JPS60219265A (en) Method for treating metallic surface
KR100626417B1 (en) Water-based surface-treating agent for plated metal sheet, surface-treated metal sheet, and process for producing the same
JP2015166436A (en) Aqueous anti-rust paint, and alc anti-rust paint film
JP2005120164A (en) Water-dispersible resin composition for rust-preventive coating
JP3909016B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP2004197166A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet
JP2004197165A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet
JPH05287550A (en) Formation of black coating film on metallic surface
JP2004197180A (en) Method for manufacturing chromium-free surface-treated galvanized steel sheet
JPS6220229B2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546224

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861454

Country of ref document: EP

Kind code of ref document: A1