WO2018074049A1 - 膜付き基材および膜付き基材を製造する方法 - Google Patents

膜付き基材および膜付き基材を製造する方法 Download PDF

Info

Publication number
WO2018074049A1
WO2018074049A1 PCT/JP2017/029968 JP2017029968W WO2018074049A1 WO 2018074049 A1 WO2018074049 A1 WO 2018074049A1 JP 2017029968 W JP2017029968 W JP 2017029968W WO 2018074049 A1 WO2018074049 A1 WO 2018074049A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
base material
tin
concentration
Prior art date
Application number
PCT/JP2017/029968
Other languages
English (en)
French (fr)
Inventor
啓明 岩岡
利通 加藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2018074049A1 publication Critical patent/WO2018074049A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present invention relates to a substrate with a film and a method for producing a substrate with a film.
  • a substrate with a film constituted by forming a thin film of titanium oxide (TiO 2 ) on the substrate is expected to be applied to various applications because of the significant characteristics of the TiO 2 thin film.
  • TiO 2 titanium oxide
  • the substrate is a glass substrate
  • such a substrate with a film is expected to be applied to heat reflecting glass, antifouling glass, and the like.
  • a base material with a TiO 2 thin film can be manufactured, for example, by forming a thin TiO 2 film on the base material by a CVD process.
  • Patent Document 1 proposes that the deposition rate of the TiO 2 thin film can be increased by using a specific source gas in the atmospheric pressure CVD process.
  • a substrate with a film having a TiO 2 thin film is expected to be applied to various uses.
  • the conventional substrate with a TiO 2 thin film as described in Patent Document 1 has a problem that the ablation resistance is relatively inferior because the thickness of the TiO 2 thin film is thin.
  • the advantage that the TiO 2 is a thin film is impaired, and problems such as an increase in reflectivity and / or an increase in haze ratio may occur.
  • film-substrate can exhibit excellent resistance to abrasion resistance are desired.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a film-coated substrate having a titanium oxide-containing film, which has improved ablation resistance as compared with the prior art. To do. Moreover, it aims at providing the method of manufacturing such a base material with a film
  • a substrate with a film having a substrate and a film disposed on the substrate is a titanium oxide-containing film, further containing tin oxide,
  • the tin oxide contained in the film is the most on the outermost surface,
  • the tin concentration at the outermost surface obtained by X-ray photoelectron spectroscopy (XPS) is P s (Sn) and the titanium concentration is P s (Ti)
  • the ratio P s (Sn) / P s (Ti ) Is 0.1 or more and 2.4 or less
  • membrane is 0.8% or less is provided.
  • a method for producing a film-coated substrate having a titanium oxide-containing film on the substrate by an atmospheric pressure CVD process In the CVD process, a mixed gas of titanium tetraisopropoxide (TTIP) and tin chloride is used as a raw material gas, The concentration ratio of the tin chloride to the TTIP is in the range of 0.18 mol% to 0.5 mol%, A method is provided in which the haze ratio measured from the film side of the manufactured substrate with film is 0.8% or less.
  • TTIP titanium tetraisopropoxide
  • the present invention it is possible to provide a film-coated substrate having a titanium oxide-containing film with improved ablation resistance as compared with the prior art. Moreover, in this invention, the method of manufacturing such a base material with a film
  • FIG. 1 the cross section of the base material with a film
  • the first substrate with film 100 has a substrate 110 and a film 120.
  • the substrate 110 has a first surface 112 and a second surface 114 facing each other, and the film 120 is disposed on the first surface 112 of the substrate 110.
  • the substrate 110 is not particularly limited as long as it is transparent.
  • the substrate 110 may be a glass substrate, for example.
  • the thickness of the film 120 is, for example, in the range of 10 nm to 100 nm.
  • the first substrate 100 with a film has a feature that a haze ratio measured from the film 120 side is 0.8% or less.
  • the film 120 is a titanium oxide-containing film and further contains tin oxide. Further, the tin oxide contained in the film 120 is the most on the outermost surface 122. Further, the film 120 is composed of a single layer, obtained by X-ray photoelectron spectroscopy (XPS), and the concentration of tin (Sn) on the outermost surface 122 is P s (Sn), and the concentration of titanium (Ti) is When P s (Ti) is used, the ratio P s (Sn) / P s (Ti) is 0.1 to 2.4.
  • XPS X-ray photoelectron spectroscopy
  • the conventional substrate with a TiO 2 thin film has a problem in terms of ablation resistance. Moreover, when the TiO 2 thin film is thickened, problems such as an increase in reflectivity and / or an increase in haze ratio may occur.
  • the film 120 is mainly composed of titanium oxide, but the tin oxide contained in the film 120 is the most on the outermost surface 122, and the ratio P s described above. (Sn) / P s (Ti) is characterized by being 0.1 or more.
  • the ablation resistance of the film 120 can be significantly improved.
  • the tin oxide contained in the film 120 is the most on the outermost surface 122 and gradually decreases toward the inside of the film. Since the tin oxide contained in the film 120 gradually decreases toward the inside of the film, the composition of the film 120 changes continuously, so that the abrasion resistance of the film 120 can be improved.
  • the aforementioned ratio P s at the outermost surface 122 of the membrane 120 (Sn) / P s ( Ti) is controlled to 2.4 or less. For this reason, in the base material 100 with a 1st film
  • a film-coated substrate with improved ablation resistance compared to the prior art can be obtained without excessively increasing the thickness of the film 120 containing titanium oxide. Can do.
  • the base material 110 is not particularly limited as long as it is a transparent material, and the base material 110 may be, for example, a ceramic substrate, a plastic substrate, or a glass substrate.
  • the glass substrate include soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, and alkali-free glass.
  • the substrate 110 when the substrate 110 is a glass substrate, the glass substrate may be transparent or colored.
  • a first substrate 100 with a film can be used for, for example, a window glass for a house.
  • the first surface 112 of substrate 110 can, for example, silica (SiO 2) alkali barrier layer composed of such may be installed. Thereby, durability can be improved.
  • the alkali barrier layer is provided, the thickness of the alkali barrier layer is, for example, in the range of 10 nm to 100 nm.
  • the alkali barrier layer is an arbitrarily installed layer and may be omitted. That is, the film 120 may be installed on the first surface 112 of the substrate 110 via the alkali barrier layer, or the film 120 may be installed directly.
  • the thickness of the substrate 110 is not particularly limited.
  • the film 120 is mainly composed of titanium oxide, but the tin oxide contained in the film 120 is the most on the outermost surface 122.
  • the thickness of the film 120 is, for example, in the range of 10 nm to 50 nm.
  • the film 120 is preferably less than 30 nm.
  • FIG. 2 schematically shows an example of an element concentration profile in the depth direction of the film 120 in the case where the base material 110 is formed of a glass substrate in the first base material 100 with a film.
  • FIG. 2 shows concentration profiles of titanium (Ti), tin (Sn), and silicon (Si).
  • the index on the horizontal axis is equivalent to the sputtering time of the sample surface by the XPS method.
  • the vertical axis represents the concentration of each element obtained by the XPS method.
  • each element is schematically drawn so that the maximum height (maximum concentration) of each concentration is equal to each other.
  • the maximum concentration of each element is different (see, for example, FIG. 4 below).
  • the Ti concentration profile gradually increases from the outermost surface 122, becomes substantially constant, and then gradually decreases. Further, Sn exhibits a maximum value on the outermost surface 122, and thereafter shows a behavior that gradually decreases.
  • Si is an element derived from a glass substrate, it is almost zero in a region close to the outermost surface 122 where Ti and Sn are present, and shows a behavior of gradually increasing from a depth region where Ti starts to decrease. . Note that Si also behaves similarly when the substrate 110 is formed of a glass substrate having an alkali barrier layer on the first surface 112.
  • the ratio P s (Sn) / P s (Ti) is not less than 0.1 and not more than 2.4.
  • the Ti profile and the Si profile intersect at a certain distance d.
  • the depth position L at which this intersection occurs is defined as the film thickness of the film 120.
  • the film 120 preferably has a ratio ⁇ P s (Sn) / P s (Ti) ⁇ / ⁇ P ave (Sn) / P ave (Ti) ⁇ of 4 or more.
  • the tin oxide contained in the film 120 is the largest on the outermost surface 122, the abrasion resistance of the film 120 can be significantly improved.
  • the first substrate with film 100 has a haze ratio of 0.8% or less.
  • the first substrate with film 100 has a visible light reflectance R 1 (%) measured from the side of the film 120 before the ablation test, and visible light measured from the side of the film 120 after the ablation test.
  • R 1 the visible light reflectance
  • the ablation test is performed as follows: First, a substrate with a film having a size of 100 mm ⁇ 100 mm (also referred to as “sample”) is placed horizontally on a table so that the film faces upward. Next, 1 ml of the test solution is dropped on the sample film. The test solution is prepared by adding 1.0 g of powder defined in JIS Z8901 and 2 drops of neutral detergent to 1 liter of tap water. Next, using a polishing cloth (wool buff) having a contact surface of 30 mm ⁇ 11 mm, the polishing cloth is reciprocated linearly 420 times with a load of 1100 g / cm 2 applied to the sample.
  • a polishing cloth wool buff
  • the measurement of the visible light reflectance R 1 and R 2 of the sample which is performed after the ablation test is performed in conformity with JIS Z 8722.
  • the first substrate 100 with a film has good ablation resistance, it is possible to significantly suppress the decrease in the reflectance difference ⁇ R. Moreover, in the base material 100 with a 1st film
  • FIG. 3 schematically shows a flow of a method for manufacturing a film-coated substrate according to an embodiment of the present invention (hereinafter referred to as “first manufacturing method”).
  • the first manufacturing method is: (1) a step of preparing a substrate having a first surface (step S110); (2) forming a film on the first surface (step S120); Have
  • the first manufacturing method will be described by taking the first substrate 100 with a film as shown in FIG. 1 as an example. Therefore, the reference numerals shown in FIG. 1 are used to represent each member.
  • the base material 110 is prepared.
  • the base material 110 may be a transparent substrate, for example, a glass substrate.
  • the substrate 110 has a first surface 112 on which the film 120 is installed in a later step.
  • an alkali barrier layer (SiO 2 layer) may be provided on the first surface 112 of the base material 110.
  • the film 120 is formed on the first surface 112 of the substrate 110.
  • membrane 120 may be installed directly on an alkali barrier layer.
  • the film 120 is formed by an atmospheric pressure CVD process. More specifically, the following processing is performed.
  • the substrate 110 is heated to a predetermined temperature.
  • the reaction gas includes a raw material gas and oxygen.
  • the source gas includes a titanium source gas and a tin source gas.
  • the titanium source gas contains titanium tetraisopropoxide (TTIP).
  • TTIP titanium tetraisopropoxide
  • the tin source gas also contains tin chloride, such as tin tetrachloride and / or monobutyltin trichloride (MBTC).
  • the film formation temperature is, for example, in the range of 500 ° C. to 700 ° C., and preferably in the range of 550 ° C. to 600 ° C.
  • the film 120 is formed while the substrate 110 is conveyed.
  • the conveyance speed of the substrate 110 is, for example, in the range of 1 m / min to 20 m / min.
  • the supply rate of the reaction gas is adjusted so that the film 120 has a thickness in the range of 10 nm to 50 nm.
  • the supply amount of TTIP may be in the range of 0.05 mol% to 1.2 mol%.
  • the concentration ratio of tin chloride to TTIP contained in the reaction gas is adjusted to a range of 0.18 mol% to 0.5 mol%.
  • the tin oxide contained in the film 120 can be maximized on the outermost surface 122. Furthermore, it becomes possible to form the film 120 having the above-described ratio P s (Sn) / P s (Ti) of 0.1 or more. Moreover, the base material with a film
  • the first substrate with film 100 can be manufactured through such an atmospheric pressure CVD process.
  • the base material 110 prepared in advance was used to perform the film forming step (step S120), thereby manufacturing the base material 100 with a film (so-called “batch processing”).
  • the film-forming base material 110 may be manufactured by performing a film forming step (step S120) during the manufacturing process of the glass substrate (so-called “continuous processing”).
  • the film 120 may be formed on the upper surface of the glass ribbon (corresponding to the first surface 112) by a normal pressure CVD process. If necessary, an alkali barrier layer (SiO 2 ) may be formed on the upper surface of the glass ribbon by an atmospheric pressure CVD process before the film 120 is formed.
  • Examples 1 to 3 are examples, and Examples 4 to 6 are comparative examples.
  • Example 1 By the following method, a titanium oxide-containing film was formed on the base material using an atmospheric pressure CVD method to produce a base material with a film.
  • a glass substrate transparent soda lime glass was used as the base material.
  • the atmospheric pressure CVD process was performed by spraying a source gas and oxygen on one surface (first surface) of the substrate.
  • the raw material gas was a mixed gas of titanium tetraisopropoxide (TTIP) and monobutyltin trichloride (MBTC), and the MBTC concentration ratio (MBTC / TTIP) to TTIP was 0.25 mol%.
  • the substrate temperature was set to 560 ° C.
  • the target film thickness was 20 nm.
  • sample 1 a substrate with a film (hereinafter referred to as “sample 1”) was manufactured.
  • Example 2 A substrate with a film (hereinafter referred to as “sample 2”) was produced in the same manner as in Example 1.
  • Example 2 in the atmospheric pressure CVD process, the MBTC concentration ratio (MBTC / TTIP) to TTIP was 0.50 mol%.
  • Example 3 A substrate with a film (hereinafter referred to as “sample 3”) was produced in the same manner as in Example 1.
  • the target film thickness was 30 nm.
  • Example 4 A substrate with a film (hereinafter referred to as “sample 4”) was produced in the same manner as in Example 1.
  • Example 4 in the atmospheric pressure CVD process, the MBTC concentration ratio (MBTC / TTIP) to TTIP was set to 0.05 mol%.
  • Example 5 A substrate with a film (hereinafter referred to as “sample 5”) was produced in the same manner as in Example 1.
  • Example 5 in the atmospheric pressure CVD process, the MBTC concentration ratio (MBTC / TTIP) to TTIP was 0.05 mol%.
  • the target film thickness was 30 nm.
  • Example 6 A substrate with a film (hereinafter referred to as “sample 6”) was produced in the same manner as in Example 1.
  • Example 6 in the atmospheric pressure CVD process, the MBTC concentration ratio (MBTC / TTIP) to TTIP was 0.50 mol%.
  • the target film thickness was 35 nm.
  • FIG. 4 shows an example of the measurement result obtained in Sample 1.
  • the horizontal axis represents the sputtering time t (minutes), and the vertical axis represents the concentrations (atomic%) of tin, titanium, and silicon.
  • the total amount of tin, titanium, silicon, calcium, sodium, carbon, and oxygen is 100 atomic%.
  • the tin concentration in the film showed a maximum value at the position where the sputtering time t was 0, and then showed a profile that gradually decreased.
  • the titanium concentration showed a profile in which the sputtering time t gradually increased from 0 to 5 minutes, and then became substantially constant in the range of 5 to 15 minutes, and t gradually decreased after 15 minutes.
  • the silicon concentration showed a behavior in which the sputtering time t gradually increased from the position of about 15 minutes, and reversed to the titanium concentration when t was about 20 minutes.
  • the film thickness L the ratio P s (Sn) / P s (Ti), and the ratio ⁇ P s (Sn) / P s (Ti) ⁇ / ⁇ P ave (Sn) / P ave (Sn) ⁇ was determined.
  • Table 2 summarizes the values of haze ratio and reflectance difference ⁇ R obtained in each sample.
  • the reflectance difference ⁇ R is 3% or less, whereas in samples 4 and 5, the reflectance difference ⁇ R is both greater than 3%. .
  • FIG. 5 summarizes the results of the haze ratio obtained for each sample.
  • the horizontal axis represents the ratio Ps (Sn) / Ps (Ti) in the film of each sample, and the vertical axis represents the haze ratio.
  • Each plot in FIG. 5 shows the sample number (1 to 6).
  • FIG. 6 collectively shows the value of the reflectance difference ⁇ R obtained in each sample.
  • the horizontal axis represents the ratio Ps (Sn) / Ps (Ti) in the film of each sample, and the vertical axis represents the reflectance difference ⁇ R.
  • Each plot in FIG. 6 shows a sample number (1 to 6).
  • FIG. 5 shows that the haze ratio tends to increase as the ratio Ps (Sn) / Ps (Ti) increases, and when the ratio Ps (Sn) / Ps (Ti) exceeds about 2.4, the haze ratio is 0. It can be seen that it exceeds 8%.
  • the reflectance difference ⁇ R shows a tendency to decrease as the ratio Ps (Sn) / Ps (Ti) increases, and when the ratio Ps (Sn) / Ps (Ti) is less than about 0.1, It can be seen that the reflectance difference ⁇ R exceeds 3%.
  • the tin oxide contained in the film could be increased most on the outermost surface by appropriately adjusting the MBTC concentration ratio (MBTC / TTIP) and the film thickness L in the CVD process. Moreover, when such CVD process conditions were employ
  • Substrate with a film according to one embodiment of the present invention 110 Substrate 112 First surface 114 Second surface 120 Film 122 Outermost surface

Abstract

基材と、該基材の上に配置された膜とを有する膜付き基材であって、前記膜は、チタン酸化物含有膜であり、さらにスズ酸化物を含み、前記膜に含まれる前記スズ酸化物は、最表面に最も多く、X線光電子分光分析(XPS)法により得られる、前記最表面におけるスズ濃度をP(Sn)とし、チタン濃度をP(Ti)としたとき、比P(Sn)/P(Ti)は、0.1以上、2.4以下であり、当該膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、膜付き基材。

Description

膜付き基材および膜付き基材を製造する方法
 本発明は、膜付き基材および膜付き基材を製造する方法に関する。
 基材の上に酸化チタン(TiO)の薄膜を形成することにより構成される膜付き基材は、TiO薄膜の有意な特性のため、様々な用途への適用が期待されている。例えば、基材がガラス基板の場合、そのような膜付き基材は、熱反射ガラスおよび防汚ガラスなどに適用することが期待される。
 TiO薄膜付き基材は、例えば、CVDプロセスにより、基材上に薄いTiOを成膜することにより製造することができる。なお、特許文献1には、常圧CVDプロセスにおいて、特定の原料ガスを使用することにより、TiO薄膜の成膜速度を高め得ることが提案されている。
特開2005-235552号公報
 前述のように、TiO薄膜を有する膜付き基材は、様々な用途への適用が期待されている。
 しかしながら、特許文献1に記載されているような、従来のTiO薄膜付き基材は、TiO薄膜の厚さが薄いため、耐アブレーション性が比較的劣るという問題がある。ただしその一方で、TiO薄膜の厚さを厚くすると、今度はTiOが薄膜であることの利点が損なわれ、例えば、反射率の上昇および/またはヘイズ率の上昇などの問題が生じ得る。
 このため、TiO薄膜の厚さを過度に厚くすることなく、良好な耐アブレーション性を発揮できる膜付き基材が要望されている。
 本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて耐アブレーション性が改善された、チタン酸化物含有膜を有する膜付き基材を提供することを目的とする。また、本発明では、そのような膜付き基材を製造する方法を提供することを目的とする。
 本発明では、基材と、該基材の上に配置された膜とを有する膜付き基材であって、
 前記膜は、チタン酸化物含有膜であり、さらにスズ酸化物を含み、
 前記膜に含まれる前記スズ酸化物は、最表面に最も多く、
 X線光電子分光分析(XPS)法により得られる、前記最表面におけるスズ濃度をP(Sn)とし、チタン濃度をP(Ti)としたとき、比P(Sn)/P(Ti)は、0.1以上、2.4以下であり、
 当該膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、膜付き基材が提供される。
 また、本発明では、常圧CVDプロセスにより、基材の上にチタン酸化物含有膜を有する膜付き基材を製造する方法であって、
 前記CVDプロセスでは、原料ガスとして、チタンテトライソプロピオキシド(TTIP)とスズ塩化物との混合ガスが使用され、
 前記TTIPに対する前記スズ塩化物の濃度比は、0.18mol%~0.5mol%の範囲であり、
 製造された前記膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、方法が提供される。
 本発明では、従来に比べて耐アブレーション性が改善された、チタン酸化物含有膜を有する膜付き基材を提供することができる。また、本発明では、そのような膜付き基材を製造する方法を提供することができる。
本発明の一実施形態による膜付き基材の断面を模式的に示した図である。 基材がガラス基板で構成される場合の膜の深さ方向における元素濃度プロファイルの一例を模式的に示した図である。 本発明の一実施形態による膜付き基材の製造方法のフローを模式的に示した図である。 X線光電子分光分析(XPS)法により得られた、サンプル1における膜中の各元素濃度の深さ方向プロファイルである。 各サンプルの膜における比P(Sn)/P(Ti)に対するヘイズ率の関係を示したプロットである。 各サンプルの膜における比P(Sn)/P(Ti)に対する反射率差ΔRの関係を示したプロットである。
 以下、図面を参照して、本発明の一実施形態について説明する。
 (本発明の一実施形態による膜付き基材)
 図1には、本発明の一実施形態による膜付き基材(以下、「第1の膜付き基材」と称する)の断面を模式的に示す。
 図1に示すように、第1の膜付き基材100は、基材110と、膜120とを有する。
 基材110は、相互に対向する第1の表面112および第2の表面114を有し、膜120は、基材110の第1の表面112に配置される。
 基材110は、透明なものであれば、特に限られない。基材110は、例えば、ガラス基板であっても良い。膜120の厚さは、例えば、10nm~100nmの範囲である。
 ここで、第1の膜付き基材100は、膜120の側から測定されるヘイズ率が0.8%以下であるという特徴を有する。
 また、第1の膜付き基材100において、膜120は、チタン酸化物含有膜であり、さらにスズ酸化物を含む。また、膜120に含まれるスズ酸化物は最表面122に最も多い。さらに、膜120は、単一層で構成され、X線光電子分光分析(XPS)法により得られる、最表面122におけるスズ(Sn)の濃度をP(Sn)とし、チタン(Ti)の濃度をP(Ti)としたとき、比P(Sn)/P(Ti)が0.1以上、2.4以下であるという特徴を有する。
 前述のように、従来のTiO薄膜付き基材は、耐アブレーション性の点で問題がある。また、TiO薄膜を厚くした場合、反射率の上昇および/またはヘイズ率の上昇などの問題が生じ得る。
 これに対して、第1の膜付き基材100では、膜120は、チタン酸化物を主体とするものの、膜120に含まれるスズ酸化物は、最表面122に最も多く、前述の比P(Sn)/P(Ti)は、0.1以上であるという特徴を有する。
 膜120がこのように構成された場合、膜120の耐アブレーション性を有意に改善することができる。
 膜120に含まれるスズ酸化物は、最表面122に最も多く、膜の内部に向かって徐々に少なくなることが好ましい。膜120に含まれるスズ酸化物が膜の内部に向かって徐々に少なくなることで、膜120の組成が連続的に変化するため、膜120の耐アブレージョン性を高めることができる。
 また、第1の膜付き基材100では、膜120の最表面122における前述の比P(Sn)/P(Ti)は、2.4以下に制御されている。このため、第1の膜付き基材100では、ヘイズ率を0.8%以下とすることができる。
 以上の効果により、本発明の一実施形態では、チタン酸化物を含む膜120の厚さを過度に厚くすることなく、従来に比べて、耐アブレーション性が改善された膜付き基材を得ることができる。
 次に、第1の膜付き基材100を構成する各部材について、詳しく説明する。
 (基材110)
 前述のように、基材110は、透明な材質であれば特に限られず、基材110は、例えば、セラミックス基板、プラスチック基板、またはガラス基板であっても良い。ガラス基板としては、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス、および無アルカリガラス等が挙げられる。
 また、基材110がガラス基板の場合、該ガラス基板は、透明であっても、着色されていても良い。そのような第1の膜付き基材100は、例えば、住宅用の窓ガラス等に利用することができる。
 また、基材110がガラス基板で構成される場合、基材110の第1の表面112には、例えば、シリカ(SiO)などで構成されたアルカリバリア層が設置されていても良い。これにより、耐久性を高めることができる。アルカリバリア層を設ける場合、アルカリバリア層の厚さは、例えば、10nm~100nmの範囲である。
 ただし、アルカリバリア層は、任意に設置される層であって、省略されても良い。すなわち、基材110の第1の表面112には、アルカリバリア層を介して膜120が設置されても、直接膜120が設置されても良い。
 なお、基材110の厚さは、特に限られない。
 (膜120)
 前述のように、第1の膜付き基材100において、膜120は、主としてチタン酸化物で構成されるが、膜120に含まれるスズ酸化物は最表面122に最も多い。
 膜120の厚さは、例えば、10nm~50nmの範囲である。膜120は、30nm未満であることが好ましい。
 図2には、第1の膜付き基材100において、基材110がガラス基板で構成される場合の膜120の深さ方向における元素濃度プロファイルの一例を模式的に示す。図2には、チタン(Ti)、スズ(Sn)、およびシリコン(Si)の濃度プロファイルが示されている。
 図2において、横軸は、膜120の最表面122からの深さ方向の距離d(nm)であり、d=0は、膜120の最表面122に対応する。なお、横軸の指標は、XPS法によるサンプル表面のスパッタ時間と等価である。
 一方、縦軸は、XPS法により得られるそれぞれの元素の濃度である。なお、図2では、明確化のため、各元素は、それぞれの濃度の最大高さ(最高濃度)が相互に等しくとなるように、模式的に描かれている。しかしながら、実際には、各元素の最高濃度は異なる(例えば、以降の図4参照)。
 図2に示すように、Tiの濃度プロファイルは、最表面122から徐々に増加して、ほぼ一定となり、その後徐々に低下する挙動を示す。また、Snは、最表面122において最大値を示し、その後、徐々に低下する挙動を示す。一方、Siは、ガラス基板に由来する元素であるため、TiおよびSnが存在する最表面122に近い領域では、ほぼゼロであり、Tiの低下が始まる深さ領域から徐々に上昇する挙動を示す。なお、基材110が第1の表面112にアルカリバリア層を有するガラス基板で構成される場合も、Siは、同様の挙動となる。
 ここで、前述の記載に従えば、最表面122におけるスズ(Sn)の濃度は、P(Sn)で表され、チタン(Ti)の濃度は、P(Ti)で表される。従って、理想的には、P(Sn)およびP(Ti)は、距離d=0でのそれぞれの元素濃度に対応する。
 しかしながら、XPS法による分析の精度上、距離d=0の位置における各元素の濃度は、相応のエラーを含む場合がある。そのため、本願では、「最表面におけるSnの濃度」、すなわちP(Sn)を、距離d=0~5nmの範囲におけるSn濃度の最大値として規定し、「最表面におけるTiの濃度」、すなわちP(Ti)を、距離d=0~5nmの範囲におけるTi濃度の最小値として規定することにする。
 なお、前述のように、比P(Sn)/P(Ti)は、0.1以上、2.4以下である。
 再度図2を参照すると、TiのプロファイルとSiのプロファイルは、ある距離dで交差する。本願では、この交差が生じる深さ位置Lを、膜120の膜厚として規定する。
 また、図2には、2本の水平線FおよびFが描かれている。
 このうち、水平線Fは、距離d=0~Lの範囲(すなわち膜厚内)における、Ti濃度の平均値を表しており、以降これをPave(Ti)と表記する。また、直線Fは、距離d=0~Lの範囲(すなわち膜厚内)における、Sn濃度の平均値を表しており、以降これをPave(Sn)と表記する。
 このように表した場合、膜120は、比{P(Sn)/P(Ti)}/{Pave(Sn)/Pave(Ti)}が4以上であることが好ましい。この場合、膜120に含まれるスズ酸化物はが最表面122で最も多くなるため、膜120の耐アブレージョン性をより顕著に高めることができる。
 (第1の膜付き基材100)
 前述のように、第1の膜付き基材100は、ヘイズ率が0.8%以下である。
 また、第1の膜付き基材100は、アブレーション試験前の膜120の側から測定される可視光反射率をR(%)とし、アブレーション試験後の膜120の側から測定される可視光反射率をR(%)としたとき、反射率差ΔR=R-Rが3%以下であるという特徴を有する。
 ここで、アブレーション試験は、以下のように実施される:
まず、寸法100mm×100mmの膜付き基材(「サンプル」とも称する)を、膜が上向きとなるように台上に水平に設置する。
次に、サンプルの膜上に、試験液を1ml滴下する。試験液は、1リットルの水道水に、JIS Z8901で規定される粉体1.0gと、中性洗剤2滴を加えて調製する。
次に、30mm×11mmの接触面を有する研磨布(羊毛バフ)を用いて、サンプルに1100g/cmの荷重を加えた状態で、研磨布を420回直線状に往復させる。
 なお、アブレーション試験後に行われるサンプルの可視光反射率RおよびRの測定は、JIS Z 8722に準拠して実施される。
 第1の膜付き基材100は、良好な耐アブレーション性を有するため、反射率差ΔRの低下を有意に抑制することができる。また、第1の膜付き基材100では、膜厚をあまり厚くしなくても、ヘイズ率を有意に抑制することができる。
 (本発明の一実施形態による膜付き基材の製造方法)
 次に、図3を参照して、本発明の一実施形態による膜付き基材の製造方法の一例について説明する。
 図3には、本発明の一実施形態による膜付き基材の製造方法(以下、「第1の製造方法」と称する)のフローを模式的に示す。
 図3に示すように、第1の製造方法は、
(1)第1の表面を有する基材を準備する工程(工程S110)と、
(2)前記第1の表面に、膜を成膜する工程(工程S120)と、
 を有する。
 以下、各工程について説明する。
 なお、ここでは明確化のため、図1に示したような第1の膜付き基材100を例に、第1の製造方法について説明する。従って、各部材を表す際には、図1に示した参照符号を使用する。
 (工程S110)
 まず、基材110が準備される。前述のように、基材110は、透明な基板、例えばガラス基板であっても良い。
 基材110は、後の工程で膜120が設置される第1の表面112を有する。
 また、基材110がガラス基板の場合、基材110の第1の表面112には、アルカリバリア層(SiO層)が設置されても良い。
 なお、アルカリバリア層の設置方法は、当業者には良く知られている。従って、ここではこれ以上説明しない。
 (工程S120)
 次に、基材110の第1の表面112上に、膜120が成膜される。なお、基材110がガラス基板であって、アルカリバリア層を有する場合、膜120は、アルカリバリア層の直上に設置されても良い。
 膜120は、常圧CVDプロセスにより成膜される。より具体的には、以下の処理が実施される。
 まず、基材110が所定の温度に加熱される。
 次に、基材110の第1の表面112に、反応ガスが供給される。反応ガスは、原料ガスおよび酸素を含む。原料ガスは、チタン原料ガスおよびスズ原料ガスを含む。このうち、チタン原料ガスは、チタンテトライソプロピオキシド(TTIP)を含む。また、スズ原料ガスは、スズ塩化物、例えば四塩化スズおよび/またはモノブチルスズトリクロライド(MBTC)を含む。
 成膜温度は、例えば、500℃~700℃の範囲であり、550℃~600℃の範囲であることが好ましい。
 なお、本工程では、基材110を搬送した状態で、膜120の成膜が行われる。基材110の搬送速度は、例えば、1m/min~20m/minの範囲である。また、反応ガスの供給速度は、膜120の膜厚が10nm~50nmの範囲となるように調整される。例えば、TTIPの供給量は、0.05mol%~1.2mol%の範囲であっても良い。
 ここで、反応ガス中に含まれるTTIPに対するスズ塩化物の濃度比は、0.18mol%~0.5mol%の範囲に調整される。
 このような条件で成膜を行うことにより、膜120に含まれるスズ酸化物を最表面122で最も多くすることができる。さらに、前述の比P(Sn)/P(Ti)が0.1以上の膜120を形成することが可能になる。また、ヘイズ率が0.8%以下の膜付き基材を得ることができる。
 このような常圧CVDプロセスを経て、第1の膜付き基材100を製造することができる。
 なお、前述の記載では、予め準備された基材110を用いて、成膜工程(工程S120)が実施され、これにより膜付き基材100が製造された(いわゆる「バッチ処理」)。
 しかしながら、基材110がガラス基板の場合、ガラス基板の製造過程中に成膜工程(工程S120)を実施して、膜付き基材110を製造しても良い(いわゆる「連続処理」)。
 例えば、ガラス基板を製造する際には、ガラスリボンが溶融スズ浴の上を移動した後、徐冷され、その後所定の寸法に切断される。このガラスリボンの移動中に、ガラスリボンの上面(第1の表面112に相当する)に、常圧のCVDプロセスで膜120を成膜しても良い。また、必要な場合、膜120を成膜する前に、ガラスリボンの上面に、常圧CVDプロセスでアルカリバリア層(SiO)を成膜しても良い。
 このような製造方法では、成膜の際に、既に基材110(ガラスリボン)の温度が上昇しているため、基材110の加熱プロセスを省略することができる。また、多数の膜付き基材110を連続的に製造することができる。
 次に、本発明の実施例について説明する。ただし、本発明は、これらに限定されるものではない。
 以下の説明において、例1~例3は、実施例であり、例4~例6は、比較例である。
 (例1)
 以下の方法により、常圧CVD法を用いて基材上にチタン酸化物含有膜を成膜し、膜付き基材を製造した。
 基材には、ガラス基板(透明なソーダライムガラス)を使用した。
 常圧CVDプロセスは、基材の一方の表面(第1の表面)に、原料ガスおよび酸素を吹き付けることにより実施した。原料ガスは、チタンテトライソプロピオキシド(TTIP)とモノブチルスズトリクロライド(MBTC)の混合ガスとし、TTIPに対するMBTCの濃度比(MBTC/TTIP)は、0.25mol%とした。
 基材の温度は560℃とした。目標膜厚は、20nmとした。
 これにより、膜付き基材(以下、「サンプル1」と称する)が製造された。
 (例2)
 例1と同様の方法により、膜付き基材(以下、「サンプル2」と称する)を製造した。
 ただし、この例2では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.50mol%とした。
 (例3)
 例1と同様の方法により、膜付き基材(以下、「サンプル3」と称する)を製造した。
 ただし、この例3では、目標膜厚は30nmとした。
 (例4)
 例1と同様の方法により、膜付き基材(以下、「サンプル4」と称する)を製造した。
 ただし、この例4では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.05mol%とした。
 (例5)
 例1と同様の方法により、膜付き基材(以下、「サンプル5」と称する)を製造した。
 ただし、この例5では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.05mol%とした。また、目標膜厚は30nmとした。
 (例6)
 例1と同様の方法により、膜付き基材(以下、「サンプル6」と称する)を製造した。
 ただし、この例6では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.50mol%とした。また、目標膜厚は35nmとした。
 (評価)
 前述のように製造された各サンプルを用いて、以下の評価を行った。
 (膜内の元素プロファイルの測定)
 XPS法を用いて、各サンプルにおける膜の膜厚方向におけるスズ、チタン、およびシリコンの濃度プロファイルを測定した。測定には、走査型X線光電子分光装置(PHI 5000 VersaProbe・アルバック・ファイ株式会社製)を用い、ビーム径は100μmとした。
 図4には、サンプル1において得られた測定結果の一例を示す。
 図4において、横軸は、スパッタ時間t(分)であり、縦軸は、スズ、チタン、およびシリコンの濃度(原子%)である。なお、ここでは、スズ、チタン、シリコン、カルシウム、ナトリウム、炭素、および酸素の量の総和を100原子%としている。
 図4に示すように、サンプル1では、膜中のスズ濃度は、スパッタ時間tが0の位置において最大値を示し、その後徐々に減少するプロファイルを示した。また、チタン濃度は、スパッタ時間tが0~5分までは徐々に増加し、その後tが5分~15分の範囲でほぼ一定となり、tが15分以降、徐々に減少するプロファイルを示した。一方、シリコン濃度は、スパッタ時間tが約15分の位置から徐々に増加し、tが約20分の位置で、チタンの濃度と逆転する挙動を示した。
 このことから、サンプル1の膜は、チタン(酸化物)を主成分とし、さらにスズ(酸化物)を含むことがわかった。また、膜に含まれるスズ酸化物は、最表面に最も多いことがわかった。また、前述の定義から、膜の膜厚Lは、約18.3nm(スパッタ時間t=20分に相当する)であることがわかった。
 サンプル2およびサンプル3においても、ほぼ同様のプロファイルが得られた。これに対して、サンプル4および5では、膜の最表面におけるスズ酸化物の濃縮は、認められなかった。
 各サンプルにおいて得られた結果から、膜厚L、比P(Sn)/P(Ti)、および比{P(Sn)/P(Ti)}/{Pave(Sn)/Pave(Sn)}を求めた。
 各サンプルにおいて得られた結果を、成膜条件とともに以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (ヘイズ率の測定)
 各サンプルに対して、ヘイズメータを用いてヘイズ率の測定を行った。
 (アブレーション試験)
 各サンプルに対して、前述のような方法でアブレーション試験を実施した。また、アブレーション試験前の膜の側から測定される可視光反射率R(%)、およびアブレーション試験後の膜の側から測定される可視光反射率R(%)の測定結果から、反射率差ΔR=R-Rを求めた。
 以下の表2には、各サンプルにおいて得られたヘイズ率および反射率差ΔRの値をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、サンプル1~5では、いずれもヘイズ率は、0.4以下となっており、ヘイズ率が低く抑えられていることがわかる。一方、サンプル6では、約1%の高いヘイズ率を示した。
 また、サンプル1~3では、反射率差ΔRがいずれも3%以下となっているのに対して、サンプル4および5では、反射率差ΔRがいずれも3%を超えていることがわかった。
 図5には、各サンプルにおいて得られたヘイズ率の結果をまとめて示す。図5において、横軸は、各サンプルの膜における比Ps(Sn)/Ps(Ti)であり、縦軸は、ヘイズ率である。なお、図5中の各プロットには、サンプルの番号(1~6)が示されている。
 さらに、図6には、各サンプルにおいて得られた反射率差ΔRの値をまとめて示す。図6において、横軸は、各サンプルの膜における比Ps(Sn)/Ps(Ti)であり、縦軸は、反射率差ΔRである。なお、図6中の各プロットには、サンプルの番号(1~6)が示されている。
 図5から、ヘイズ率は、比Ps(Sn)/Ps(Ti)の上昇とともに増加する傾向を示し、比Ps(Sn)/Ps(Ti)が約2.4を超えると、ヘイズ率が0.8%を超えることがわかる。
 また、図6から、反射率差ΔRは、比Ps(Sn)/Ps(Ti)の上昇とともに低下する傾向を示し、比Ps(Sn)/Ps(Ti)が約0.1を下回ると、反射率差ΔRが3%を超えることがわかる。
 このように、CVDプロセスにおけるTTIPに対するMBTCの濃度比(MBTC/TTIP)および膜厚Lを適正に調整することにより、膜に含まれるスズ酸化物を最表面で最も多くできることが確認された。また、そのようなCVDプロセス条件を採用した場合、ヘイズ率が低く、耐アブレーション性に優れる膜付き基材が得られることが確認された。
 本願は、2016年10月19日に出願した日本国特許出願2016-205070号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 100   本発明の一実施形態による膜付き基材
 110   基材
 112   第1の表面
 114   第2の表面
 120   膜
 122   最表面

Claims (13)

  1.  基材と、該基材の上に配置された膜とを有する膜付き基材であって、
     前記膜は、チタン酸化物含有膜であり、さらにスズ酸化物を含み、
     前記膜に含まれる前記スズ酸化物は、最表面に最も多く、
     X線光電子分光分析(XPS)法により得られる、前記最表面におけるスズ濃度をP(Sn)とし、チタン濃度をP(Ti)としたとき、比P(Sn)/P(Ti)は、0.1以上、2.4以下であり、
     当該膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、膜付き基材。
  2.  前記基材は、ガラス基板である、請求項1に記載の膜付き基材。
  3.  前記ガラス基板は、前記膜の側に、アルカリバリア層を有する、請求項2に記載の膜付き基材。
  4.  前記膜は、10nm~50nmの範囲の厚さを有する、請求項1乃至3のいずれか一つに記載の膜付き基材。
  5.  前記膜において、前記X線光電子分光分析(XPS)法により得られる、前記膜の厚さLにわたるスズ濃度の平均値をPave(Sn)とし、前記膜の厚さLにわたるチタン濃度の平均値をPave(Ti)としたとき、比{P(Sn)/P(Ti)}/{Pave(Sn)/Pave(Ti)}は、4以上である、請求項1乃至4のいずれか一つに記載の膜付き基材。
  6.  常圧CVDプロセスにより、基材の上にチタン酸化物含有膜を有する膜付き基材を製造する方法であって、
     前記CVDプロセスでは、原料ガスとして、チタンテトライソプロピオキシド(TTIP)とスズ塩化物との混合ガスが使用され、
     前記TTIPに対する前記スズ塩化物の濃度比は、0.18mol%~0.5mol%の範囲であり、
     製造された前記膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、方法。
  7.  前記スズ塩化物は、四塩化スズ(SnCl)および/またはモノブチルスズトリクロライド(MBTC)である、請求項6に記載の方法。
  8.  前記チタン酸化物含有膜は、10nm~50nmの範囲の厚さを有する、請求項6または7に記載の方法。
  9.  前記基材は、ガラス基板である、請求項6乃至8のいずれか一つに記載の方法。
  10.  前記チタン酸化物含有膜を成膜する前に、前記基材の上にアルカリバリア層を形成する工程を有する、請求項9に記載の方法。
  11.  前記常圧CVDプロセスは、前記ガラス基板の製造過程中に実施され、前記チタン酸化物含有膜は、ガラスリボンの上に成膜される、請求項9または10に記載の方法。
  12.  前記チタン酸化物含有膜の成膜の際の前記基材の温度は、500℃~700℃の範囲である、請求項6乃至11のいずれか一つに記載の方法。
  13.  前記チタン酸化物含有膜の成膜の際の前記基材の温度は、550℃~600℃の範囲である、請求項6乃至11のいずれか一つに記載の方法。
PCT/JP2017/029968 2016-10-19 2017-08-22 膜付き基材および膜付き基材を製造する方法 WO2018074049A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-205070 2016-10-19
JP2016205070A JP2019214479A (ja) 2016-10-19 2016-10-19 膜付き基材および膜付き基材を製造する方法

Publications (1)

Publication Number Publication Date
WO2018074049A1 true WO2018074049A1 (ja) 2018-04-26

Family

ID=62018318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029968 WO2018074049A1 (ja) 2016-10-19 2017-08-22 膜付き基材および膜付き基材を製造する方法

Country Status (2)

Country Link
JP (1) JP2019214479A (ja)
WO (1) WO2018074049A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509516A (ja) * 1998-03-20 2002-03-26 グラヴルベル 高い反射率を有する被覆基体
JP2004507430A (ja) * 2000-09-01 2004-03-11 ピルキントン パブリック リミテッド カンパニー ガラスコーティング法
WO2015076210A1 (ja) * 2013-11-19 2015-05-28 旭硝子株式会社 薄膜形成方法およびコーティングガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509516A (ja) * 1998-03-20 2002-03-26 グラヴルベル 高い反射率を有する被覆基体
JP2004507430A (ja) * 2000-09-01 2004-03-11 ピルキントン パブリック リミテッド カンパニー ガラスコーティング法
WO2015076210A1 (ja) * 2013-11-19 2015-05-28 旭硝子株式会社 薄膜形成方法およびコーティングガラス
WO2015076207A1 (ja) * 2013-11-19 2015-05-28 旭硝子株式会社 薄膜形成方法、薄膜および薄膜付きガラス板

Also Published As

Publication number Publication date
JP2019214479A (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
US10358383B2 (en) Wear-resistant liquid-based coatings for glass
EP0583871B2 (en) Method for preparing reflecting coatings on glass
US8153265B2 (en) Coated substrate and process for the production of a coated substrate
KR100735763B1 (ko) 규소 유도체 층을 구비한 투명 기판과 상기 기판을 사용하는 방법
CN106348579A (zh) 不对称构成的在两个表面侧上化学强化的薄玻璃板、其制备方法及其用途
US9023480B2 (en) Glass substrate for chemical strengthening, and method for producing same
TW201331142A (zh) 降低由化學強化處理引起之玻璃基板之彎曲之方法、及化學強化玻璃基板之製造方法
EP0579706B1 (en) Window coating with low haze
TW201504165A (zh) 減低由化學強化處理所導致之玻璃基板翹曲之方法、化學強化玻璃及其製造方法
EP1040963B1 (en) Hydrophilic mirror and method of producing the same
US10287676B2 (en) Thin film formation method, thin film, and glass plate having thin film attached thereto
WO2018074049A1 (ja) 膜付き基材および膜付き基材を製造する方法
GB2355273A (en) Coating glass
JP7224347B2 (ja) 反射コーティングされたガラス物品の製造方法
US20220153635A1 (en) Glass article having an anti-reflective coating
JP2002348145A (ja) 近赤外線遮断ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP