WO2018073881A1 - Refrigeration cycle system - Google Patents

Refrigeration cycle system Download PDF

Info

Publication number
WO2018073881A1
WO2018073881A1 PCT/JP2016/080769 JP2016080769W WO2018073881A1 WO 2018073881 A1 WO2018073881 A1 WO 2018073881A1 JP 2016080769 W JP2016080769 W JP 2016080769W WO 2018073881 A1 WO2018073881 A1 WO 2018073881A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
condenser
fluid
refrigeration cycle
refrigerating machine
Prior art date
Application number
PCT/JP2016/080769
Other languages
French (fr)
Japanese (ja)
Inventor
千歳 田中
拓也 松田
野本 宗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/080769 priority Critical patent/WO2018073881A1/en
Priority to JP2018545738A priority patent/JP6644160B2/en
Publication of WO2018073881A1 publication Critical patent/WO2018073881A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to control of a refrigeration cycle apparatus performed in a low outdoor air cooling operation.
  • the cooling operation by the refrigeration cycle apparatus may be continuously performed for a certain period regardless of the outside temperature. For example, in a server room where the server computer is operating almost all year long, if the temperature rise in the server room due to the heat generated from the server computer is left unattended, the processing capacity of the server computer will drop and the server computer will fail and stop. It is also envisaged. In order to prevent such a situation, the cooling operation by the refrigeration cycle apparatus is usually performed throughout the year in the server room.
  • a cooling operation (hereinafter also referred to as “low outdoor air cooling operation”) performed when the outside air temperature is lower than a reference temperature (for example, 0 ° C.), condensation of the gas refrigerant by the outdoor heat exchanger functioning as a condenser is performed. If performed excessively, the gas refrigerant in the outdoor heat exchanger may be reduced as compared with the normal cooling operation.
  • the condensation pressure is reduced by stopping the inflow of gas refrigerant to some of the outdoor heat exchangers and suppressing the condensation of the gas refrigerant during low outdoor air cooling operation. Can be suppressed.
  • Patent Document 1 Japanese Utility Model Publication No. 61-116975
  • a check valve or a solenoid valve is used to prevent gas refrigerant from flowing into some outdoor heat exchangers during low outdoor air cooling operation.
  • the valve closing capability is not perfect, the refrigerant may not be completely stopped even if the valve is closed. Therefore, in a configuration in which a valve is used to stop the inflow of the gas refrigerant to the outdoor heat exchanger as disclosed in Japanese Utility Model Publication No. 61-116975 (Patent Document 1), the gas refrigerant gradually begins to flow from the valve. Leaks and flows into the outdoor heat exchanger, and the condensed liquid refrigerant accumulates in the outdoor heat exchanger. Therefore, the amount of refrigerant that circulates through the refrigeration cycle apparatus and repeats the phase change in the low outside air cooling operation (hereinafter also referred to as “circulating refrigerant amount”) decreases. As a result, the condensing pressure and the evaporating pressure are lowered from appropriate values, and it may be difficult to continue the low outside air cooling operation.
  • the present invention has been made to solve the above-described problems, and an object thereof is to stably perform a low outdoor air cooling operation.
  • the refrigerant is a compressor, a first valve, a first condenser installed in the first space, a second valve, an expansion valve, and an evaporator installed in the second space. It cycles in order.
  • the refrigeration cycle apparatus includes a second condenser, a fluid storage unit, a liquid moving mechanism, and a control device.
  • the second condenser is installed in the first space.
  • the fluid reservoir stores a fluid different from the refrigerant.
  • the liquid moving mechanism moves the fluid from the fluid reservoir to the first condenser.
  • the control device controls the first valve, the second valve, and the liquid moving mechanism.
  • the second condenser is connected in parallel to the first valve, the first condenser, and the second valve connected in series.
  • the fluid reservoir is connected to the first condenser. When the temperature of the first space is lower than the reference temperature, the control device moves the fluid from the fluid reservoir to the first condenser after closing the first valve and the second valve.
  • the first valve and the second valve are closed during the low outdoor air cooling operation, and a fluid different from the refrigerant is moved from the fluid reservoir to the first condenser.
  • the first condenser is filled with the fluid, the amount of refrigerant that leaks from the first valve and the second valve and accumulates in the first condenser is suppressed, and thus the decrease in the amount of circulating refrigerant is suppressed.
  • the low outside air cooling operation can be stably performed.
  • FIG. 2 is a functional block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. It is a figure for demonstrating the filling connection state of the refrigerator oil moving mechanism of FIG. It is a figure for demonstrating the collection
  • FIG. 6 is a functional block diagram showing a configuration in a cooling operation of a refrigeration cycle apparatus according to a modification of the first embodiment.
  • FIG. It is a functional block diagram which shows the structure in the heating operation of the refrigeration cycle apparatus which concerns on the modification of Embodiment 1.
  • 6 is a functional block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a flowchart for explaining a flow of processing of a refrigerating machine oil filling operation in a second embodiment.
  • 6 is a flowchart for explaining a flow of processing of a refrigeration oil recovery operation in the second embodiment.
  • 6 is a functional block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 3.
  • FIG. 10 is a flowchart for illustrating a flow of processing of refrigerating machine oil filling operation in a third embodiment.
  • FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle apparatus 100 according to the first embodiment.
  • the refrigeration cycle apparatus 100 includes an outdoor unit 50 installed outdoors and an indoor unit 60 installed indoors.
  • the outdoor unit 50 includes the compressor 1, the condensers 3a and 3b, the shut-off valves 6a and 6b, the refrigerating machine oil tank 10, the refrigerating machine oil moving mechanism 41, the control device 15, and the temperature sensor TS1.
  • the indoor unit 60 includes the expansion valve 4 and the evaporator 5.
  • the refrigeration cycle apparatus 100 includes a refrigeration cycle in which refrigerant circulates in the order of the compressor 1, the condensers 3 a and 3 b, the expansion valve 4, and the evaporator 5.
  • the refrigerating machine oil tank 10 is compressed when the side connected to the compressor 1 is the upstream side of the condenser 3a and the side connected to the expansion valve 4 is the downstream side of the condenser 3a in the condenser 3a.
  • the discharge port of the machine 1 and the downstream side of the condenser 3a, and the downstream side of the condenser 3a and the suction port of the compressor 1 are connected.
  • the control device 15 may be included in the indoor unit 60, or may be disposed outside the outdoor unit 50 and the indoor unit 60.
  • the compressor 1 compresses the low-pressure gas refrigerant received from the evaporator 5 and outputs the high-pressure gas refrigerant to the condensers 3a and 3b.
  • the condenser 3a and the condenser 3b are connected in parallel, and close valves 6a and 6b are connected to the upstream and downstream of the condenser 3a, respectively.
  • the closing valve 6a is a valve for closing the flow of refrigerant flowing from the compressor 1 to the condenser 3a
  • the closing valve 6b is a valve for stopping the flow of refrigerant flowing from the condenser 3a to the expansion valve 4.
  • the condenser 3a is connected between the shut-off valves 6a and 6b.
  • the condenser 3b is connected in parallel to the shutoff valve 6a, the condenser 3a, and the shutoff valve 6b connected in series.
  • the high-temperature and high-pressure gas refrigerant from the compressor 1 is condensed in the condensers 3a and 3b and flows out into the expansion valve 4 as liquid refrigerant. From the condensers 3a and 3b, heat (condensation heat) when the gas refrigerant is condensed to become a liquid refrigerant is released.
  • the liquid refrigerant from the condensers 3a and 3b is adiabatically expanded and decompressed in the expansion valve 4, and flows out to the evaporator 5 as wet steam.
  • the expansion valve 4 for example, an electronically controlled expansion valve (LEV: Linear Expansion Valve) can be used.
  • the wet steam from the expansion valve 4 evaporates in the evaporator 5 and flows out into the compressor 1 as a gas refrigerant.
  • the liquid refrigerant takes heat (vaporization heat) from the room air and evaporates.
  • the refrigerating machine oil tank 10 stores refrigerating machine oil RO for filling the condenser 3a.
  • the lubricating oil of the compressor 1 is used as the refrigerating machine oil RO.
  • the refrigerator oil tank 10 is connected to the condenser 3a. It is desirable that the solubility of the refrigerant in the refrigerating machine oil RO is smaller than 20%. More preferably, the refrigerant and the refrigerating machine oil RO are incompatible with each other (the solubility of the refrigerant in the refrigerating machine oil RO is less than 1%).
  • the refrigerating machine oil moving mechanism 41 moves the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a.
  • the refrigerator oil moving mechanism 41 includes a four-way valve 11 and closing valves 12 and 13.
  • the four-way valve 11 is a valve that switches connection between the refrigerator oil tank 10 and the discharge port of the compressor 1 or connection between the refrigerator oil tank 10 and the suction port of the compressor 1.
  • the stop valve 12 is connected between the discharge port of the compressor 1 and the four-way valve 11.
  • the stop valve 13 is connected between the suction port of the compressor 1 and the four-way valve 11.
  • the four-way valve 11 switches the connection state between the compressor 1, the refrigerating machine oil tank 10, and the condenser 3a between the filling connection state and the recovery connection state.
  • the filling connection state the discharge port of the compressor 1 and the refrigerating machine oil tank 10 are connected, and the suction port of the compressor 1 and the condenser 3 a are connected, so that the refrigerating machine oil RO is condensed from the refrigerating machine oil tank 10.
  • the container 3a is filled.
  • the control device 15 controls the driving frequency of the compressor 1 to control the amount of refrigerant discharged from the compressor 1 per unit time.
  • the control device 15 controls the degree of superheat of the gas refrigerant flowing out of the evaporator 5 so as to approach the optimum value by controlling the opening degree of the expansion valve 4.
  • the control device 15 acquires the outside air temperature T0 from the temperature sensor TS1.
  • the control device 15 controls the refrigerating machine oil moving mechanism 41 to perform a refrigerating machine oil filling operation for moving the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a.
  • the control device 15 controls the refrigerating machine oil moving mechanism 41 to perform a refrigerating machine oil recovery operation for recovering the refrigerating machine oil RO from the condenser 3a to the refrigerating machine oil tank 10.
  • the control device 15 includes a processor such as a CPU (Central Processing Unit).
  • the control device 15 includes a non-volatile memory such as a flash memory.
  • the memory stores, for example, an OS (Operating System) read out and executed by the CPU, various application programs (for example, a program for controlling the refrigerator oil transfer mechanism 41), and various data used by the programs. Can be saved.
  • OS Operating System
  • application programs for example, a program for controlling the refrigerator oil transfer mechanism 41
  • various data used by the programs Can be saved.
  • the gas refrigerant In the low outside air cooling operation, the gas refrigerant is excessively condensed by the condenser 3a, and the gas refrigerant in the condenser 3a may be reduced as compared with the normal cooling operation.
  • the condensation pressure decreases, so the compression ratio decreases.
  • the shutoff valves 6a and 6b are closed.
  • the closing ability of the closing valves 6a and 6b is not perfect, even if the closing valves 6a and 6b are closed, the passage of the refrigerant may not be completely stopped. Therefore, the gas refrigerant gradually leaks from the shutoff valves 6a and 6b and flows into the condenser 3a, and the condensed liquid refrigerant accumulates in the condenser 3a. Therefore, the amount of circulating refrigerant in the low outside air cooling operation is reduced. As a result, the condensing pressure and the evaporating pressure are lowered from appropriate values, and it may be difficult to continue the low outside air cooling operation.
  • the shutoff valves 6a and 6b are closed to prevent the refrigerant from flowing into the condenser 3a during the low outside air cooling operation, and the refrigeration machine oil moving mechanism 41
  • the refrigerating machine oil RO is moved from the refrigerating machine oil tank 10 to the condenser 3a.
  • FIG. 2 is a diagram for explaining a filling connection state of the refrigerating machine oil moving mechanism 41 of FIG.
  • the closing valves 6a and 6b are closed, and the closing valves 12 and 13 are opened.
  • the discharge port of the compressor 1 and the refrigerating machine oil tank 10 are connected, and the suction port of the compressor 1 and the condenser 3a are connected.
  • Part of the gas refrigerant flowing out of the compressor 1 passes through the shut-off valve 12 and flows into the refrigerator oil tank 10.
  • the refrigerator oil RO is filled from the refrigerator oil tank 10 into the condenser 3a.
  • the refrigerant is returned from the condenser 3a to the suction port of the compressor 1.
  • the connection state of the refrigerating machine oil moving mechanism 41 shown in FIG. 2 is maintained for a certain period of time, filling of the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a is completed.
  • FIG. 3 is a view for explaining a recovery connection state of the refrigerator oil moving mechanism 41 in FIG.
  • the closing valves 6a and 6b are closed, and the closing valves 12 and 13 are opened.
  • the discharge port of the compressor 1 and the condenser 3a are connected, and the suction port of the compressor 1 and the refrigerator oil tank 10 are connected.
  • a part of the gas refrigerant flowing out of the compressor 1 passes through the closing valve 12 and flows into the condenser 3a.
  • the refrigeration oil RO is recovered from the condenser 3a to the refrigeration oil tank 10.
  • the refrigerant is returned from the compressor 1 to the condenser 3a.
  • the connection state of the refrigerating machine oil moving mechanism 41 shown in FIG. 3 is maintained for a predetermined time, the collection of the refrigerating machine oil RO from the condenser 3a to the refrigerating machine oil tank 10 is completed.
  • FIG. 4 is a flowchart for explaining the flow of processing for moving the refrigeration oil RO between the refrigeration oil tank 10 and the condenser 3a.
  • the process shown in FIG. 4 is performed at regular time intervals in a main routine (not shown) that controls the refrigeration cycle operation.
  • the step is simply referred to as S.
  • control device 15 determines whether or not the outside air temperature T0 is lower than the reference temperature T1 in S11. When outside temperature T0 is smaller than reference temperature T1 (YES in S11), control device 15 advances the process to S12. The control device 15 determines whether or not the condenser 3a is filled with the refrigerating machine oil RO in S12. In the first embodiment, the control device 15 completes the charging of the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a when the closing valves 6a and 6b are closed, and the refrigerating machine oil RO is supplied to the condenser 3a. Is determined to be filled (YES).
  • control device 15 completes the recovery of the refrigerating machine oil RO from the condenser 3a to the refrigerating machine oil tank 10 when the closing valves 6a and 6b are not closed, and the refrigerating machine oil RO is not filled in the condenser 3a. (NO) is determined. If the condenser 3a is not filled with the refrigerating machine oil RO (NO in S12), the control device 15 advances the process to S120. After performing the refrigerating machine oil filling operation in S120, the control device 15 returns the process to the main routine. When condenser oil RO is filled in condenser 3a (YES in S12), control device 15 returns the process to the main routine.
  • the control device 15 determines whether or not the refrigerator oil RO is filled in the condenser 3a in S13.
  • the controller 15 collects the refrigerator oil RO in the refrigerator oil tank 10 before switching the cooling operation from the low outside air cooling operation to the normal cooling operation. Advances the process to S130.
  • the control device 15 returns the processing to the main routine after performing the refrigerating machine oil recovery operation in S130.
  • the control device 15 returns the process to the main routine.
  • FIG. 5 is a flowchart for explaining the processing flow of the refrigerating machine oil filling operation (S120) of FIG.
  • the control device 15 closes the closing valve 6a and the closing valve 6b in S121, and advances the process to S122.
  • the control device 15 switches the four-way valve 11 in S122 to set the connection state of the refrigerator oil movement mechanism 41 to the filling connection state, and advances the process to S123.
  • the control device 15 opens the closing valve 12 and the closing valve 13 in S123, and advances the processing to S124.
  • the control device 15 determines whether or not the condenser 3a is filled with the reference amount of the refrigerating machine oil RO.
  • the control device 15 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the refrigerating machine oil tank 10 to the condenser 3a has elapsed in S124.
  • the control device 15 advances the process to S125.
  • the control device 15 returns the processing to the main routine after closing the closing valve 12 and the closing valve 13 in S125.
  • the control device 15 returns the process to S124.
  • the control device 15 determines whether or not the reference amount of the refrigerating machine oil RO has moved from the refrigerating machine oil tank 10 to the condenser 3a. In S124 of FIG. Is determined based on whether or not the time required to move from the compressor to the condenser 3a has elapsed. For example, the determination may be made based on whether or not the liquid amount in the refrigerator oil tank 10 is smaller than the threshold value by the liquid amount sensor. Good.
  • the position of the refrigerating machine oil tank 10 is such that the position of the bottom surface of the space where the refrigerating machine oil RO in the refrigerating machine oil tank 10 is stored is higher than the liquid level when the refrigerating machine oil RO is filled in the condenser 3a with a reference amount. High is preferred.
  • FIG. 6 is a flowchart for explaining the processing flow of the refrigerating machine oil recovery operation (S130) of FIG.
  • the control device 15 switches the four-way valve 11 in S131 to set the connection state of the refrigerator oil moving mechanism 41 to the recovery connection state, and advances the process to S132.
  • the control device 15 opens the closing valve 12 and the closing valve 13 in S132 and advances the process to S133.
  • the control device 15 determines whether or not the reference amount of the refrigerating machine oil RO has been collected in the refrigerating machine oil tank 10.
  • the control device 15 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the condenser 3a to the refrigerating machine oil tank 10 has elapsed in S133.
  • the control device 15 advances the process to S134.
  • the control device 15 advances the process to S135.
  • the control device 15 returns the processing to the main routine after opening the closing valve 6a and the closing valve 6b in S135.
  • the control device 15 returns the process to S133.
  • the control device 15 determines whether or not the reference amount of the refrigerating machine oil RO has moved from the condenser 3a to the refrigerating machine oil tank 10, and in S133 of FIG. The determination is made based on whether or not the time required to move from 3a to the refrigerating machine oil tank 10 has elapsed. For example, the determination is made based on whether or not the amount of liquid in the refrigerating machine oil tank 10 has become larger than the threshold by the liquid amount sensor. May be.
  • the condenser 3a is not filled with the refrigeration oil RO. Therefore, in the first embodiment, the refrigerating machine oil recovery operation shown in FIG. 6 is performed even when the user performs a stop operation of the refrigerating cycle apparatus 100 and the condenser 3a is filled with the refrigerating machine oil RO.
  • FIG. 7 is a flowchart for explaining the flow of processing performed in accordance with whether or not the refrigeration cycle apparatus 100 is stopped by the user.
  • the control device 15 determines whether or not a stop operation of the refrigeration cycle apparatus 100 has been performed by the user in S ⁇ b> 21.
  • control device 15 advances the process to S22.
  • the controller 15 determines whether or not the condenser 3a is filled with the refrigerating machine oil RO. If the condenser 3a is filled with the refrigerating machine oil RO (YES in S22), the control device 15 advances the process to S130 and performs the refrigerating machine oil recovery operation.
  • control device 15 stops the refrigeration cycle apparatus 100 in S23.
  • the control device 15 advances the process to S23 and stops the refrigeration cycle apparatus.
  • the shutoff valve is closed to prevent the refrigerant from flowing into the condenser during the low outside air cooling operation, and the refrigeration oil is refrigerated by the refrigeration oil moving mechanism. Moved from machine oil tank to condenser. By filling the inside of the condenser with refrigerating machine oil in which the refrigerant is difficult to dissolve, the amount of refrigerant that leaks from the shut-off valve and accumulates in the condenser is suppressed, and the decrease in the amount of circulating refrigerant is suppressed. As a result, the low outside air cooling operation can be stably performed.
  • an oil separator is connected between the refrigerator oil tank 10 and the compressor 1, and the refrigerant and the refrigerator oil are separated and recovered. Needless to say, you can take it.
  • Modification of the first embodiment. 8 and 9 are functional block diagrams showing a configuration of a refrigeration cycle apparatus 100A according to a modification of the first embodiment. 8 and 9, the same reference numerals as those in FIG. 1 are the same as those in FIG. 1. Therefore, the description of the configurations will not be repeated below.
  • the refrigeration cycle apparatus 100A can perform both a cooling operation (FIG. 8) and a heating operation (FIG. 9).
  • FIG. 8 the configuration of the refrigeration cycle apparatus 100A will be described mainly with reference to FIG. 8, and FIG. 9 will be referred to as needed.
  • the refrigeration cycle apparatus 100A includes an outdoor unit 50A installed outdoors and an indoor unit 60A installed indoors.
  • the outdoor unit 50A includes a compressor 1, a four-way valve 2, heat exchangers 31a and 31b, fans 14a and 14b, stop valves 6a and 6b, a refrigerator oil tank 10, a refrigerator oil moving mechanism 41, and a control.
  • Device 15A and temperature sensor TS1 are included.
  • the outdoor unit 50A may include three or more heat exchangers.
  • Indoor unit 60A includes heat exchangers 5a and 5b and expansion valves 4a and 4b.
  • the indoor unit 60A may include three or more heat exchangers.
  • the refrigeration cycle apparatus 100A includes a refrigeration cycle in which refrigerant circulates in the order of the compressor 1, the four-way valve 2, the condensers 3a and 3b, the expansion valves 4a and 4b, and the heat exchangers 5a and 5b.
  • the heat exchanger 31a is connected between the shut-off valves 6a and 6b.
  • the heat exchanger 31b is connected in parallel to the shutoff valve 6a, the heat exchanger 31a, and the shutoff valve 6b connected in series.
  • the heat exchangers 31a and 31b function as a condenser in the cooling operation, and function as an evaporator in the heating operation.
  • the expansion valve 4a and the heat exchanger 5a are connected in series between the heat exchanger 31a and the four-way valve 2 in this order.
  • the expansion valve 4b and the heat exchanger 5b are connected in series in this order between the heat exchanger 31a and the four-way valve 2, and with respect to the expansion valve 4a and the heat exchanger 5a connected in series. Connected in parallel.
  • the heat exchangers 5a and 5b function as an evaporator in the cooling operation and function as a condenser in the heating operation.
  • the four-way valve 2 is controlled by the control device 15A to switch the circulation direction of the refrigerant between the circulation direction in the cooling operation and the circulation direction in the heating operation.
  • the four-way valve 2 connects the discharge port of the compressor 1 and the heat exchangers 31a and 31b, and connects the intake port of the compressor 1 and the heat exchangers 5a and 5b.
  • the four-way valve 2 connects the discharge port of the compressor 1 and the heat exchangers 5a and 5b as shown in FIG. 9, and connects the suction port of the compressor 1 and the heat exchangers 31a and 31b. To do.
  • the fans 14a and 14b are controlled by the control device 15A and send air to the heat exchangers 31a and 31b, respectively.
  • the amount of air blown per unit time (the number of rotations) of the fans 14a and 14b is controlled by the control device 15A.
  • the control device 15A controls the opening degree of the expansion valves 4a and 4b, and performs superheat degree control that brings the superheat degree of the gas refrigerant sucked into the compressor 1 close to the optimum value.
  • the control device 15A controls the four-way valve 2 to switch the circulation direction of the refrigerant between the circulation direction in the cooling operation and the circulation direction in the heating operation.
  • the control device 15A controls the air volume per unit time of the fans 14a and 14b.
  • the control device 15A controls the refrigerating machine oil moving mechanism 41 to fill the refrigerating machine oil to move the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the heat exchanger 31a.
  • the control device 15A controls the refrigerating machine oil recovery mechanism that controls the refrigerating machine oil moving mechanism 41 to collect the refrigerating machine oil RO from the heat exchanger 31a to the refrigerating machine oil tank 10. Since the refrigerating machine oil filling operation and the refrigerating machine oil recovery operation performed by control device 15A are the same as those in the first embodiment, description thereof will not be repeated.
  • the efficiency of heat exchange performed between the refrigerant and the air in the heat exchangers 31a and 31b decreases.
  • the condensation capacity of the heat exchangers 31a and 31b can be reduced by reducing the amount of air blown per unit time of the fans 14a and 14b. it can.
  • the air flow rate per unit time of the fans 14a and 14b may be reduced to the reference amount to suppress the reduction of the condensation pressure. Even if the air flow rate per unit time of the fans 14a and 14b is reduced to the reference amount, if the condensing pressure is smaller than the reference pressure, the refrigerating machine oil filling operation similar to the first embodiment may be performed.
  • the refrigeration cycle apparatus can stably perform the low outdoor air cooling operation as in the first embodiment.
  • Embodiment 2 Some refrigeration cycle apparatuses include an accumulator having a function of separating the liquid refrigerant and the gas refrigerant in order to suppress the inflow of the liquid refrigerant to the compressor.
  • the accumulator is used as a refrigerating machine oil tank.
  • FIGS. 1, 5, and 6 are replaced with FIGS. 10 to 12, respectively. Since it is the same about other points, the description will not be repeated.
  • FIG. 10 is a functional block diagram showing a configuration of the refrigeration cycle apparatus 200 according to the second embodiment.
  • the refrigerating machine oil tank 10 the refrigerating machine oil moving mechanism 41, and the control device 15 in the configuration of the refrigerating cycle apparatus 100 shown in FIG. 1 are added to the accumulator 20, the refrigerating machine oil moving mechanism 42, and the control apparatus 25. Each has been replaced.
  • the accumulator 20 is connected between the evaporator 5 and the compressor 1.
  • the accumulator 20 is connected to the low pressure side with respect to the refrigerant pressure.
  • the accumulator 20 separates the refrigerant and refrigerating machine oil from the evaporator 5 into gas and liquid.
  • the accumulator 20 can be used as a refrigeration oil tank.
  • the refrigerating machine oil moving mechanism 42 includes a pump 32.
  • the pump 32 is connected between the accumulator 20 and the condenser 3a.
  • the pump 32 moves the refrigerating machine oil RO from the accumulator 20 to the condenser 3a.
  • Embodiment 2 since it is necessary to move the refrigerating machine oil RO from the accumulator 20 connected to the low pressure side to the condenser 3a connected to the high pressure side, the refrigerating machine oil RO is moved against the pressure gradient.
  • a pump 32 is required.
  • shutoff valves 6a and 6b are closed, the pump 32 is operated, and the refrigerating machine oil RO is moved from the accumulator 20 to the condenser 3a.
  • shutoff valves 6a and 6b are opened.
  • the refrigerating machine oil RO that has flowed out of the condenser 3 a returns to the accumulator 20 through the expansion valve 4 and the evaporator 5 and is stored.
  • FIG. 11 is a flowchart for explaining the flow of processing of the refrigerating machine oil filling operation in the second embodiment.
  • the control device 25 closes the closing valve 6a and the closing valve 6b and advances the process to S222.
  • the control device 25 operates the pump 32 in S222 and advances the process to S223.
  • the control device 25 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the accumulator 20 to the condenser 3a has elapsed.
  • control device 25 advances the process to S224.
  • control device 25 After stopping the pump 32 in S224, the control device 25 returns the process to the main routine.
  • the control device 25 After stopping the pump 32 in S224, the control device 25 returns the process to the main routine.
  • the control device 25 After the time required for the reference amount of the refrigerating machine oil RO to move from the accumulator 20 to the condenser 3a has not elapsed (NO in S223), the control device 25 returns the process to S223.
  • FIG. 12 is a flowchart for explaining the flow of processing of the refrigerating machine oil recovery operation in the second embodiment. As shown in FIG. 12, the control device 25 returns the process to the main routine after opening the closing valve 6a and the closing valve 6b in S135.
  • the shutoff valve is closed to prevent the refrigerant from flowing into the condenser during the low outdoor air cooling operation, and the refrigeration oil is moved to the accumulator by the refrigeration oil moving mechanism.
  • the condenser By filling the inside of the condenser with refrigerating machine oil in which the refrigerant is difficult to dissolve, the amount of refrigerant that leaks from the shut-off valve and accumulates in the condenser is suppressed, and the decrease in the amount of circulating refrigerant is suppressed. As a result, the low outside air cooling operation can be stably performed.
  • an accumulator of an existing refrigeration cycle apparatus including an accumulator can be used as a refrigeration machine oil tank. Therefore, the second embodiment can suppress the additional cost for realizing the refrigeration cycle apparatus according to the present invention rather than the first embodiment.
  • Embodiment 3 Some refrigeration cycle apparatuses include an oil separator having a function of separating the refrigerant and the refrigeration oil in order to return the refrigeration oil mixed with the refrigerant from the compressor to the compressor.
  • an oil separator having a function of separating the refrigerant and the refrigeration oil in order to return the refrigeration oil mixed with the refrigerant from the compressor to the compressor.
  • the difference between the third embodiment and the first embodiment is a refrigerating machine oil tank, a refrigerating machine oil moving mechanism, a refrigerating machine oil filling operation, and a refrigerating machine oil recovery operation.
  • FIG. 1, FIG. 5, and FIG. 6 replace FIG. 13, FIG. 14, and FIG. Since it is the same about other points, the description will not be repeated.
  • the flow of the refrigeration oil recovery operation is the same as that of the second embodiment, the description will not be repeated.
  • FIG. 13 is a functional block diagram showing the configuration of the refrigeration cycle apparatus 300 according to the third embodiment.
  • the refrigerating machine oil tank 10, the refrigerating machine oil moving mechanism 41, and the control device 15 in the configuration of the refrigerating cycle apparatus 100 shown in FIG. 1 include the oil separator 30, the refrigerating machine oil moving mechanism 43, and the control apparatus 35.
  • the refrigeration cycle apparatus 300 further includes a capillary tube 17 in addition to the configuration of the refrigeration cycle apparatus 100 shown in FIG.
  • the oil separator 30 is connected between the compressor 1 and the condenser 3a and between the compressor 1 and the condenser 3b.
  • the oil separator 30 is connected to the high pressure side with respect to the refrigerant pressure.
  • the capillary tube 17 is connected between the oil separator 30 and a flow path connecting the evaporator 5 and the compressor 1.
  • the oil separator 30 separates and stores the refrigerating machine oil RO mixed with the refrigerant from the compressor 1.
  • the oil separator 30 returns a part of the stored refrigerating machine oil RO to the flow path connecting the evaporator 5 and the compressor 1 via the capillary tube 17.
  • the refrigerating machine oil moving mechanism 43 includes a stop valve 33.
  • the shut-off valve 33 is connected between the oil separator 30 and the condenser 3a.
  • Embodiment 3 since both the oil separator 30 and the condenser 3a are connected to the high pressure side, when the shut-off valve 33 is opened, the refrigeration in the oil separator 30 is caused by the pressure of the refrigerant flowing into the oil separator 30.
  • the machine oil RO is pushed out, and the refrigerating machine oil RO moves to the condenser 3a.
  • the closing valves 6a and 6b are closed, the closing valve 33 is opened, and the refrigerating machine oil RO moves from the oil separator 30 to the condenser 3a.
  • shutoff valves 6a and 6b are opened.
  • the refrigerating machine oil RO that has flowed out of the condenser 3 a returns to the oil separator 30 and is stored via the expansion valve 4, the evaporator 5, and the compressor 1.
  • FIG. 14 is a flowchart for explaining the flow of processing of the refrigerating machine oil filling operation in the third embodiment.
  • the control device 35 closes the closing valve 6a and the closing valve 6b in S121 and advances the process to S322.
  • the control device 35 opens the shut-off valve 33 and advances the process to S323.
  • the control device 35 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the oil separator 30 to the condenser 3a has elapsed. When the time necessary for the reference amount of the refrigerating machine oil RO to move from the oil separator 30 to the condenser 3a has elapsed (YES in S323), the process proceeds to S324.
  • the control device 35 returns the processing to the main routine after closing the closing valve 33 in S324. If the time necessary for the reference amount of the refrigerating machine oil RO to move from the oil separator 30 to the condenser 3a has not elapsed (NO in S323), the process returns to S323.
  • the shutoff valve is closed to prevent the refrigerant from flowing into the condenser during the low outside air cooling operation, and the refrigerating machine oil is transferred to the refrigerating machine oil by the refrigerating machine oil moving mechanism. Moved from separator to condenser.
  • the amount of refrigerant that leaks from the shut-off valve and accumulates in the condenser is suppressed, and the decrease in the amount of circulating refrigerant is suppressed.
  • the low outside air cooling operation can be stably performed.
  • the oil separator of the existing refrigeration cycle apparatus provided with an oil separator can be used as it is as a refrigerator oil tank. Therefore, the third embodiment can suppress the additional cost for realizing the refrigeration cycle apparatus according to the present invention rather than the first embodiment.
  • the control device determines whether the reference amount of the refrigeration oil RO has moved to the refrigeration oil tank or whether it has moved from the refrigeration oil tank. Although it is determined that the time has elapsed, for example, it may be determined based on a change in the amount of liquid in the refrigerating machine oil tank detected by a liquid amount sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

In a refrigeration cycle system (100) according to the present invention, a refrigerant sequentially circulates through a compressor (1), a first valve (6a), a first condenser (3a) that is arranged in a first space, a second valve (6b), an expansion valve (4), and an evaporator (5) that is arranged in a second space. A liquid transfer mechanism (41) transfers a fluid (20) from a fluid retainer part (10) to the first condenser (3a). A second condenser (3b) is connected in parallel to the first valve (6a), the first condenser (3a) and the second valve (6b), which are connected in series. The fluid retainer part (10) is connected to the first condenser (3a). In cases where the temperature in the first space is lower than the reference temperature, a control device (15) transfers the fluid (20) from the fluid retainer part (10) to the first condenser (3a) after closing the first valve (6a) and the second valve (6b).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関し、より特定的には低外気冷房運転において行なわれる冷凍サイクル装置の制御に関する。 The present invention relates to a refrigeration cycle apparatus, and more particularly to control of a refrigeration cycle apparatus performed in a low outdoor air cooling operation.
 冷凍サイクル装置による冷房運転が、外気温によらず一定の期間継続して行なわれる場合がある。たとえばほぼ年間を通してサーバコンピュータが稼働しているサーバルームの場合、サーバコンピュータからの発熱によるサーバルームの気温上昇を放置しておくと、サーバコンピュータの処理能力が低下し、サーバコンピュータが故障して停止する場合も想定される。このような事態を防ぐために、サーバルームにおいては冷凍サイクル装置による冷房運転が年間を通して行なわれるのが通常である。 The cooling operation by the refrigeration cycle apparatus may be continuously performed for a certain period regardless of the outside temperature. For example, in a server room where the server computer is operating almost all year long, if the temperature rise in the server room due to the heat generated from the server computer is left unattended, the processing capacity of the server computer will drop and the server computer will fail and stop. It is also envisaged. In order to prevent such a situation, the cooling operation by the refrigeration cycle apparatus is usually performed throughout the year in the server room.
 外気温が基準温度(たとえば0℃)よりも低い場合に行なわれる冷房運転(以下では「低外気冷房運転」ともいう。)においては、凝縮器として機能する室外熱交換器によるガス冷媒の凝縮が過度に行なわれて、室外熱交換器内のガス冷媒が通常の冷房運転よりも減少してしまう場合がある。室外熱交換器内のガス冷媒が減少すると、凝縮圧力が低下するため、圧縮比(=凝縮圧力/蒸発圧力)が低下する。そのため、低外気冷房運転においては、凝縮圧力の低下を抑制して、効率的な圧縮機の運転に必要な圧縮比を確保する必要がある。 In a cooling operation (hereinafter also referred to as “low outdoor air cooling operation”) performed when the outside air temperature is lower than a reference temperature (for example, 0 ° C.), condensation of the gas refrigerant by the outdoor heat exchanger functioning as a condenser is performed. If performed excessively, the gas refrigerant in the outdoor heat exchanger may be reduced as compared with the normal cooling operation. When the gas refrigerant in the outdoor heat exchanger decreases, the condensation pressure decreases, so the compression ratio (= condensation pressure / evaporation pressure) decreases. Therefore, in the low outside air cooling operation, it is necessary to suppress the decrease in the condensation pressure and to secure a compression ratio necessary for efficient compressor operation.
 たとえば複数の室外熱交換器を備える冷凍サイクル装置の場合、低外気冷房運転時に一部の室外熱交換器へのガス冷媒の流入を止めてガス冷媒の凝縮を抑制することにより、凝縮圧力の低下を抑制することができる。たとえば、実開昭61-116975号公報(特許文献1)には、低外気冷房運転時に、逆止弁あるいは電磁弁を用いて一部の室外熱交換器にガス冷媒が流入しないようにすることにより、凝縮圧力の低下を抑制することができる冷凍機が開示されている。 For example, in the case of a refrigeration cycle apparatus including a plurality of outdoor heat exchangers, the condensation pressure is reduced by stopping the inflow of gas refrigerant to some of the outdoor heat exchangers and suppressing the condensation of the gas refrigerant during low outdoor air cooling operation. Can be suppressed. For example, in Japanese Utility Model Publication No. 61-116975 (Patent Document 1), a check valve or a solenoid valve is used to prevent gas refrigerant from flowing into some outdoor heat exchangers during low outdoor air cooling operation. Thus, a refrigerator that can suppress a decrease in the condensation pressure is disclosed.
実開昭61-116975号公報Japanese Utility Model Publication No. 61-116975
 弁の閉止能力は完全ではないため、弁を閉じても冷媒の通過を完全に止められない場合がある。そのため、実開昭61-116975号公報(特許文献1)に開示されているような、室外熱交換器へのガス冷媒の流入を止めるために弁を用いる構成においては、弁から徐々にガス冷媒が漏れて室外熱交換器へ流入し、凝縮された液冷媒が室外熱交換器の中に溜まっていく。そのため、低外気冷房運転において冷凍サイクル装置を循環して相変化を繰り返す冷媒量(以下では「循環冷媒量」ともいう。)が減少する。その結果、凝縮圧力および蒸発圧力が適正値よりも低下し、低外気冷房運転の継続が困難になり得る。 Since the valve closing capability is not perfect, the refrigerant may not be completely stopped even if the valve is closed. Therefore, in a configuration in which a valve is used to stop the inflow of the gas refrigerant to the outdoor heat exchanger as disclosed in Japanese Utility Model Publication No. 61-116975 (Patent Document 1), the gas refrigerant gradually begins to flow from the valve. Leaks and flows into the outdoor heat exchanger, and the condensed liquid refrigerant accumulates in the outdoor heat exchanger. Therefore, the amount of refrigerant that circulates through the refrigeration cycle apparatus and repeats the phase change in the low outside air cooling operation (hereinafter also referred to as “circulating refrigerant amount”) decreases. As a result, the condensing pressure and the evaporating pressure are lowered from appropriate values, and it may be difficult to continue the low outside air cooling operation.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、低外気冷房運転を安定的に行なうことである。 The present invention has been made to solve the above-described problems, and an object thereof is to stably perform a low outdoor air cooling operation.
 本発明に係る冷凍サイクル装置においては、冷媒が、圧縮機、第1弁、第1空間に設置された第1凝縮器、第2弁、膨張弁、および第2空間に設置された蒸発器の順に循環する。冷凍サイクル装置は、第2凝縮器と、流体貯留部と、液体移動機構と、制御装置とを備える。第2凝縮器は、第1空間に設置されている。流体貯留部は、冷媒と異なる流体を溜める。液体移動機構は、流体貯留部から第1凝縮器に流体を移動させる。制御装置は、第1弁、第2弁、および液体移動機構を制御する。第2凝縮器は、直列に接続された第1弁、第1凝縮器、および第2弁に対して並列に接続されている。流体貯留部は、第1凝縮器に接続されている。制御装置は、第1空間の温度が基準温度よりも小さい場合、第1弁および第2弁を閉じた後に、流体貯留部から第1凝縮器に流体を移動させる。 In the refrigeration cycle apparatus according to the present invention, the refrigerant is a compressor, a first valve, a first condenser installed in the first space, a second valve, an expansion valve, and an evaporator installed in the second space. It cycles in order. The refrigeration cycle apparatus includes a second condenser, a fluid storage unit, a liquid moving mechanism, and a control device. The second condenser is installed in the first space. The fluid reservoir stores a fluid different from the refrigerant. The liquid moving mechanism moves the fluid from the fluid reservoir to the first condenser. The control device controls the first valve, the second valve, and the liquid moving mechanism. The second condenser is connected in parallel to the first valve, the first condenser, and the second valve connected in series. The fluid reservoir is connected to the first condenser. When the temperature of the first space is lower than the reference temperature, the control device moves the fluid from the fluid reservoir to the first condenser after closing the first valve and the second valve.
 本発明に係る冷凍サイクル装置においては、低外気冷房運転時に第1弁および第2弁が閉じられるとともに、冷媒とは異なる流体を流体貯留部から第1凝縮器に移動させる。第1凝縮器が当該流体によって充填されることにより、第1弁および第2弁から漏れて第1凝縮器に溜まる冷媒量が抑制さるため、循環冷媒量の減少が抑制される。その結果、低外気冷房運転を安定的に行なうことができる。 In the refrigeration cycle apparatus according to the present invention, the first valve and the second valve are closed during the low outdoor air cooling operation, and a fluid different from the refrigerant is moved from the fluid reservoir to the first condenser. When the first condenser is filled with the fluid, the amount of refrigerant that leaks from the first valve and the second valve and accumulates in the first condenser is suppressed, and thus the decrease in the amount of circulating refrigerant is suppressed. As a result, the low outside air cooling operation can be stably performed.
実施の形態1に係る冷凍サイクル装置の構成を示す機能ブロック図である。2 is a functional block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1. FIG. 図1の冷凍機油移動機構の充填接続状態を説明するための図である。It is a figure for demonstrating the filling connection state of the refrigerator oil moving mechanism of FIG. 図1の冷凍機油移動機構の回収接続状態を説明するための図である。It is a figure for demonstrating the collection | recovery connection state of the refrigerator oil moving mechanism of FIG. 冷凍機油を冷凍機油タンクと凝縮器との間で移動させる処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process which moves refrigerating machine oil between a refrigerating machine oil tank and a condenser. 図4の冷凍機油充填運転の処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process of the refrigerating machine oil filling operation | movement of FIG. 図4の冷凍機油回収運転の処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of a process of the refrigerating machine oil collection | recovery driving | operation of FIG. ユーザによって行なわれる冷凍サイクル装置の停止操作の有無に応じて行なわれる処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process performed according to the presence or absence of the stop operation of the refrigerating-cycle apparatus performed by the user. 実施の形態1の変形例に係る冷凍サイクル装置の冷房運転における構成を示す機能ブロック図である。6 is a functional block diagram showing a configuration in a cooling operation of a refrigeration cycle apparatus according to a modification of the first embodiment. FIG. 実施の形態1の変形例に係る冷凍サイクル装置の暖房運転における構成を示す機能ブロック図である。It is a functional block diagram which shows the structure in the heating operation of the refrigeration cycle apparatus which concerns on the modification of Embodiment 1. 実施の形態2に係る冷凍サイクル装置の構成を示す機能ブロック図である。6 is a functional block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 2. FIG. 実施の形態2における冷凍機油充填運転の処理の流れを説明するためのフローチャートである。6 is a flowchart for explaining a flow of processing of a refrigerating machine oil filling operation in a second embodiment. 実施の形態2における冷凍機油回収運転の処理の流れを説明するためのフローチャートである。6 is a flowchart for explaining a flow of processing of a refrigeration oil recovery operation in the second embodiment. 実施の形態3に係る冷凍サイクル装置の構成を示す機能ブロック図である。6 is a functional block diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 3. FIG. 実施の形態3における冷凍機油充填運転の処理の流れを説明するためのフローチャートである。10 is a flowchart for illustrating a flow of processing of refrigerating machine oil filling operation in a third embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in principle.
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、室外に設置された室外機50と、室内に設置された室内機60とを備える。
Embodiment 1 FIG.
FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle apparatus 100 according to the first embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 100 includes an outdoor unit 50 installed outdoors and an indoor unit 60 installed indoors.
 室外機50は、圧縮機1と、凝縮器3a,3bと、閉止弁6a,6bと、冷凍機油タンク10と、冷凍機油移動機構41と、制御装置15と、温度センサTS1とを含む。室内機60は、膨張弁4と、蒸発器5とを含む。冷凍サイクル装置100は、冷媒が、圧縮機1、凝縮器3a,3b、膨張弁4、蒸発器5の順に循環する冷凍サイクルを備えている。冷凍機油タンク10は、凝縮器3aにおいて、圧縮機1と接続されている側を凝縮器3aの上流側とし、膨張弁4と接続されている側を凝縮器3aの下流側とした場合、圧縮機1の吐出口と凝縮器3aの下流側および、凝縮器3aの下流側と圧縮機1の吸入口に接続され、接続の切り替えは冷凍機油移動機構41によって行われる。制御装置15は、室内機60に含まれていてもよいし、あるいは室外機50および室内機60の外部に配置されていてもよい。 The outdoor unit 50 includes the compressor 1, the condensers 3a and 3b, the shut-off valves 6a and 6b, the refrigerating machine oil tank 10, the refrigerating machine oil moving mechanism 41, the control device 15, and the temperature sensor TS1. The indoor unit 60 includes the expansion valve 4 and the evaporator 5. The refrigeration cycle apparatus 100 includes a refrigeration cycle in which refrigerant circulates in the order of the compressor 1, the condensers 3 a and 3 b, the expansion valve 4, and the evaporator 5. The refrigerating machine oil tank 10 is compressed when the side connected to the compressor 1 is the upstream side of the condenser 3a and the side connected to the expansion valve 4 is the downstream side of the condenser 3a in the condenser 3a. The discharge port of the machine 1 and the downstream side of the condenser 3a, and the downstream side of the condenser 3a and the suction port of the compressor 1 are connected. The control device 15 may be included in the indoor unit 60, or may be disposed outside the outdoor unit 50 and the indoor unit 60.
 圧縮機1は、蒸発器5から受けた低圧のガス冷媒を圧縮し、高圧のガス冷媒を凝縮器3a,3bに出力する。 The compressor 1 compresses the low-pressure gas refrigerant received from the evaporator 5 and outputs the high-pressure gas refrigerant to the condensers 3a and 3b.
 凝縮器3aと凝縮器3bとは並列に接続されており、凝縮器3aの上流および下流には、閉止弁6a,6bがそれぞれ接続されている。閉止弁6aは圧縮機1から凝縮器3aへ流れる冷媒の流れを閉止する弁であり、閉止弁6bは凝縮器3aから膨張弁4へ流れる冷媒の流れを止める弁である。凝縮器3aは、閉止弁6a,6bの間に接続されている。凝縮器3bは、直列に接続された閉止弁6a、凝縮器3a、および閉止弁6bに対して並列に接続されている。 The condenser 3a and the condenser 3b are connected in parallel, and close valves 6a and 6b are connected to the upstream and downstream of the condenser 3a, respectively. The closing valve 6a is a valve for closing the flow of refrigerant flowing from the compressor 1 to the condenser 3a, and the closing valve 6b is a valve for stopping the flow of refrigerant flowing from the condenser 3a to the expansion valve 4. The condenser 3a is connected between the shut-off valves 6a and 6b. The condenser 3b is connected in parallel to the shutoff valve 6a, the condenser 3a, and the shutoff valve 6b connected in series.
 圧縮機1からの高温高圧のガス冷媒は、凝縮器3a,3bにおいて凝縮されて、液冷媒となって膨張弁4に流出する。凝縮器3a,3bからは、ガス冷媒が凝縮されて液冷媒となるときの熱(凝縮熱)が放出される。 The high-temperature and high-pressure gas refrigerant from the compressor 1 is condensed in the condensers 3a and 3b and flows out into the expansion valve 4 as liquid refrigerant. From the condensers 3a and 3b, heat (condensation heat) when the gas refrigerant is condensed to become a liquid refrigerant is released.
 凝縮器3a,3bからの液冷媒は、膨張弁4において断熱膨張して減圧され、湿り蒸気として蒸発器5へ流出する。膨張弁4としては、たとえば電子制御式膨張弁(LEV:Linear Expansion Valve)を用いることができる。 The liquid refrigerant from the condensers 3a and 3b is adiabatically expanded and decompressed in the expansion valve 4, and flows out to the evaporator 5 as wet steam. As the expansion valve 4, for example, an electronically controlled expansion valve (LEV: Linear Expansion Valve) can be used.
 膨張弁4からの湿り蒸気は、蒸発器5において蒸発し、ガス冷媒となって圧縮機1に流出する。蒸発器5においては、液冷媒が室内空気から熱(気化熱)を奪って蒸発する。 The wet steam from the expansion valve 4 evaporates in the evaporator 5 and flows out into the compressor 1 as a gas refrigerant. In the evaporator 5, the liquid refrigerant takes heat (vaporization heat) from the room air and evaporates.
 冷凍機油タンク10には、凝縮器3aを充填するための冷凍機油ROが貯留される。本実施の形態では、圧縮機1の潤滑油を冷凍機油ROとして使用する。冷凍機油タンク10は、凝縮器3aに接続されている。冷媒の冷凍機油ROに対する溶解度は、20%よりも小さいことが望ましい。冷媒と冷凍機油ROとは、互いにほとんど混合しない非相溶性(冷媒の冷凍機油ROに対する溶解度が1%未満)であることがさらに望ましい。 The refrigerating machine oil tank 10 stores refrigerating machine oil RO for filling the condenser 3a. In the present embodiment, the lubricating oil of the compressor 1 is used as the refrigerating machine oil RO. The refrigerator oil tank 10 is connected to the condenser 3a. It is desirable that the solubility of the refrigerant in the refrigerating machine oil RO is smaller than 20%. More preferably, the refrigerant and the refrigerating machine oil RO are incompatible with each other (the solubility of the refrigerant in the refrigerating machine oil RO is less than 1%).
 冷凍機油移動機構41は、冷凍機油タンク10から凝縮器3aに冷凍機油ROを移動させる。冷凍機油移動機構41は、四方弁11と、閉止弁12,13とを有する。四方弁11は、冷凍機油タンク10と圧縮機1の吐出口との接続もしくは、冷凍機油タンク10と圧縮機1の吸入口との接続を切り替える弁である。閉止弁12は、圧縮機1の吐出口と四方弁11との間に接続されている。閉止弁13は、圧縮機1の吸入口と四方弁11との間に接続されている。 The refrigerating machine oil moving mechanism 41 moves the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a. The refrigerator oil moving mechanism 41 includes a four-way valve 11 and closing valves 12 and 13. The four-way valve 11 is a valve that switches connection between the refrigerator oil tank 10 and the discharge port of the compressor 1 or connection between the refrigerator oil tank 10 and the suction port of the compressor 1. The stop valve 12 is connected between the discharge port of the compressor 1 and the four-way valve 11. The stop valve 13 is connected between the suction port of the compressor 1 and the four-way valve 11.
 四方弁11は、圧縮機1、冷凍機油タンク10、および凝縮器3aの間の接続状態を充填接続状態と回収接続状態との間で切り替える。充填接続状態においては、圧縮機1の吐出口と冷凍機油タンク10とが接続されるとともに、圧縮機1の吸入口と凝縮器3aとが接続されて、冷凍機油ROが冷凍機油タンク10から凝縮器3aに充填される。回収接続状態においては、圧縮機1の吐出口と凝縮器3aとが接続されるとともに圧縮機1の吸入口と冷凍機油タンク10とが接続されて、冷凍機油ROが凝縮器3aから冷凍機油タンク10に回収される。 The four-way valve 11 switches the connection state between the compressor 1, the refrigerating machine oil tank 10, and the condenser 3a between the filling connection state and the recovery connection state. In the filling connection state, the discharge port of the compressor 1 and the refrigerating machine oil tank 10 are connected, and the suction port of the compressor 1 and the condenser 3 a are connected, so that the refrigerating machine oil RO is condensed from the refrigerating machine oil tank 10. The container 3a is filled. In the recovery connection state, the discharge port of the compressor 1 and the condenser 3a are connected, and the suction port of the compressor 1 and the refrigerating machine oil tank 10 are connected, so that the refrigerating machine oil RO is supplied from the condenser 3a to the refrigerating machine oil tank. 10 recovered.
 制御装置15は、圧縮機1の駆動周波数を制御して圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置15は、膨張弁4の開度を制御して、蒸発器5から流出するガス冷媒の過熱度を最適値に近づける過熱度制御を行なう。制御装置15は、外気温T0を温度センサTS1から取得する。制御装置15は、外気温T0が基準温度T1より小さい場合、冷凍機油移動機構41を制御して、冷凍機油タンク10から凝縮器3aへ冷凍機油ROを移動させる冷凍機油充填運転を行なう。制御装置15は、冷凍機油移動機構41を制御して、凝縮器3aから冷凍機油タンク10へ冷凍機油ROを回収する冷凍機油回収運転を行なう。 The control device 15 controls the driving frequency of the compressor 1 to control the amount of refrigerant discharged from the compressor 1 per unit time. The control device 15 controls the degree of superheat of the gas refrigerant flowing out of the evaporator 5 so as to approach the optimum value by controlling the opening degree of the expansion valve 4. The control device 15 acquires the outside air temperature T0 from the temperature sensor TS1. When the outside air temperature T0 is lower than the reference temperature T1, the control device 15 controls the refrigerating machine oil moving mechanism 41 to perform a refrigerating machine oil filling operation for moving the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a. The control device 15 controls the refrigerating machine oil moving mechanism 41 to perform a refrigerating machine oil recovery operation for recovering the refrigerating machine oil RO from the condenser 3a to the refrigerating machine oil tank 10.
 制御装置15は、たとえばCPU(Central Processing Unit)のようなプロセッサを含む。制御装置15は、たとえばフラッシュメモリのような不揮発性のメモリを含む。当該メモリは、たとえばCPUに読み出されて実行されるOS(Operating System)、各種アプリケーションのプログラム(たとえば冷凍機油移動機構41の制御を行なうためのプログラム)、およびそのプログラムによって使用される各種データを保存することができる。 The control device 15 includes a processor such as a CPU (Central Processing Unit). The control device 15 includes a non-volatile memory such as a flash memory. The memory stores, for example, an OS (Operating System) read out and executed by the CPU, various application programs (for example, a program for controlling the refrigerator oil transfer mechanism 41), and various data used by the programs. Can be saved.
 低外気冷房運転においては、凝縮器3aによるガス冷媒の凝縮が過度に行なわれて、凝縮器3a内のガス冷媒が通常の冷房運転よりも減少してしまう場合がある。凝縮器3a内のガス冷媒が減少すると、凝縮圧力が低下するため、圧縮比が低下する。低外気冷房運転においては、凝縮圧力の低下を抑制して、効率的な圧縮機の運転に必要な圧縮比を確保する必要がある。そのため、実施の形態1においては、凝縮器3aによるガス冷媒の凝縮を抑制するため、閉止弁6a,6bが閉止される。 In the low outside air cooling operation, the gas refrigerant is excessively condensed by the condenser 3a, and the gas refrigerant in the condenser 3a may be reduced as compared with the normal cooling operation. When the gas refrigerant in the condenser 3a decreases, the condensation pressure decreases, so the compression ratio decreases. In the low outside air cooling operation, it is necessary to suppress a decrease in the condensation pressure and to secure a compression ratio necessary for efficient compressor operation. Therefore, in Embodiment 1, in order to suppress condensation of the gas refrigerant by the condenser 3a, the shutoff valves 6a and 6b are closed.
 しかし、閉止弁6a,6bの閉止能力は完全ではないため、閉止弁6a,6bを閉止しても、冷媒の通過を完全に止められない場合がある。そのため、閉止弁6a,6bから徐々にガス冷媒が漏れて凝縮器3aへ流入し、凝縮された液冷媒が凝縮器3aの中に溜まっていく。そのため、低外気冷房運転における循環冷媒量が減少する。その結果、凝縮圧力および蒸発圧力が適正値よりも低下し、低外気冷房運転の継続が困難になり得る。 However, since the closing ability of the closing valves 6a and 6b is not perfect, even if the closing valves 6a and 6b are closed, the passage of the refrigerant may not be completely stopped. Therefore, the gas refrigerant gradually leaks from the shutoff valves 6a and 6b and flows into the condenser 3a, and the condensed liquid refrigerant accumulates in the condenser 3a. Therefore, the amount of circulating refrigerant in the low outside air cooling operation is reduced. As a result, the condensing pressure and the evaporating pressure are lowered from appropriate values, and it may be difficult to continue the low outside air cooling operation.
 そこで実施の形態1に係る冷凍サイクル装置100においては、低外気冷房運転時に凝縮器3aへの冷媒の流入を防止するために閉止弁6a,6bが閉止されるとともに、冷凍機油移動機構41によって、冷凍機油ROが冷凍機油タンク10から凝縮器3aに移動される。凝縮器3aの内部が、冷媒が溶解し難い冷凍機油ROによって充填されることにより、閉止弁6a,6bから漏れて凝縮器3aに溜まる冷媒量が抑制されて、循環冷媒量の減少が抑制される。その結果、低外気冷房運転を安定的に行なうことができる。 Therefore, in the refrigeration cycle apparatus 100 according to the first embodiment, the shutoff valves 6a and 6b are closed to prevent the refrigerant from flowing into the condenser 3a during the low outside air cooling operation, and the refrigeration machine oil moving mechanism 41 The refrigerating machine oil RO is moved from the refrigerating machine oil tank 10 to the condenser 3a. By filling the inside of the condenser 3a with the refrigerating machine oil RO in which the refrigerant is difficult to dissolve, the amount of refrigerant that leaks from the stop valves 6a and 6b and accumulates in the condenser 3a is suppressed, and the decrease in the amount of circulating refrigerant is suppressed. The As a result, the low outside air cooling operation can be stably performed.
 図2は、図1の冷凍機油移動機構41の充填接続状態を説明するための図である。図2において、閉止弁6a,6bは閉止されており、閉止弁12,13は開放されている。図2に示されるように、圧縮機1の吐出口と冷凍機油タンク10とが接続されているとともに、圧縮機1の吸入口と凝縮器3aとが接続されている。圧縮機1から流出したガス冷媒の一部が閉止弁12を通過して、冷凍機油タンク10に流入する。冷凍機油タンク10にガス冷媒が流入するにつれて、冷凍機油ROが冷凍機油タンク10から凝縮器3aに充填される。凝縮器3aに冷凍機油ROが充填されるにつれて、凝縮器3aから圧縮機1の吸入口へ冷媒が戻される。図2に示される冷凍機油移動機構41の接続状態が一定時間保持された後、冷凍機油タンク10から凝縮器3aへの冷凍機油ROの充填が完了する。 FIG. 2 is a diagram for explaining a filling connection state of the refrigerating machine oil moving mechanism 41 of FIG. In FIG. 2, the closing valves 6a and 6b are closed, and the closing valves 12 and 13 are opened. As shown in FIG. 2, the discharge port of the compressor 1 and the refrigerating machine oil tank 10 are connected, and the suction port of the compressor 1 and the condenser 3a are connected. Part of the gas refrigerant flowing out of the compressor 1 passes through the shut-off valve 12 and flows into the refrigerator oil tank 10. As the gas refrigerant flows into the refrigerator oil tank 10, the refrigerator oil RO is filled from the refrigerator oil tank 10 into the condenser 3a. As the refrigerating machine oil RO is filled in the condenser 3a, the refrigerant is returned from the condenser 3a to the suction port of the compressor 1. After the connection state of the refrigerating machine oil moving mechanism 41 shown in FIG. 2 is maintained for a certain period of time, filling of the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a is completed.
 図3は、図1の冷凍機油移動機構41の回収接続状態を説明するための図である。図3において、閉止弁6a,6bは閉止されており、閉止弁12,13は開放されている。図3に示されるように、圧縮機1の吐出口と凝縮器3aとが接続されているとともに、圧縮機1の吸入口と冷凍機油タンク10とが接続されている。圧縮機1から流出したガス冷媒の一部が閉止弁12を通過して、凝縮器3aに流入する。凝縮器3aにガス冷媒が流入するにつれて、冷凍機油ROが凝縮器3aから冷凍機油タンク10に回収される。冷凍機油タンク10に冷凍機油ROが回収されるにつれて、圧縮機1から凝縮器3aへ冷媒が戻される。図3に示される冷凍機油移動機構41の接続状態が一定時間保持された後、凝縮器3aから冷凍機油タンク10への冷凍機油ROの回収が完了する。 FIG. 3 is a view for explaining a recovery connection state of the refrigerator oil moving mechanism 41 in FIG. In FIG. 3, the closing valves 6a and 6b are closed, and the closing valves 12 and 13 are opened. As shown in FIG. 3, the discharge port of the compressor 1 and the condenser 3a are connected, and the suction port of the compressor 1 and the refrigerator oil tank 10 are connected. A part of the gas refrigerant flowing out of the compressor 1 passes through the closing valve 12 and flows into the condenser 3a. As the gas refrigerant flows into the condenser 3a, the refrigeration oil RO is recovered from the condenser 3a to the refrigeration oil tank 10. As the refrigerating machine oil RO is recovered in the refrigerating machine oil tank 10, the refrigerant is returned from the compressor 1 to the condenser 3a. After the connection state of the refrigerating machine oil moving mechanism 41 shown in FIG. 3 is maintained for a predetermined time, the collection of the refrigerating machine oil RO from the condenser 3a to the refrigerating machine oil tank 10 is completed.
 図4は、冷凍機油ROを冷凍機油タンク10と凝縮器3aとの間で移動させる処理の流れを説明するためのフローチャートである。図4に示される処理は、冷凍サイクル運転を制御する不図示のメインルーチン中において一定時間間隔で行なわれる。以下ではステップを単にSと記載する。 FIG. 4 is a flowchart for explaining the flow of processing for moving the refrigeration oil RO between the refrigeration oil tank 10 and the condenser 3a. The process shown in FIG. 4 is performed at regular time intervals in a main routine (not shown) that controls the refrigeration cycle operation. Hereinafter, the step is simply referred to as S.
 図4に示されるように、制御装置15は、S11において外気温T0が基準温度T1よりも小さいか否かを判定する。外気温T0が基準温度T1よりも小さい場合(S11においてYES)、制御装置15は、処理をS12に進める。制御装置15は、S12において凝縮器3aに冷凍機油ROが充填されているか否かを判定する。実施の形態1においては、制御装置15は、閉止弁6a,6bが閉止されている場合に冷凍機油タンク10から凝縮器3aへの冷凍機油ROの充填が完了し、凝縮器3aに冷凍機油ROが充填されている(YES)と判定する。また、制御装置15は、閉止弁6a,6bが閉止されていない場合に凝縮器3aから冷凍機油タンク10への冷凍機油ROの回収が完了し、凝縮器3aに冷凍機油ROが充填されていない(NO)と判定する。凝縮器3aに冷凍機油ROが充填されていない場合(S12においてNO)、制御装置15は、処理をS120に進める。制御装置15は、S120において冷凍機油充填運転を行なった後、処理をメインルーチンに返す。凝縮器3aに冷凍機油ROが充填されている場合(S12においてYES)、制御装置15は、処理をメインルーチンに返す。 As shown in FIG. 4, the control device 15 determines whether or not the outside air temperature T0 is lower than the reference temperature T1 in S11. When outside temperature T0 is smaller than reference temperature T1 (YES in S11), control device 15 advances the process to S12. The control device 15 determines whether or not the condenser 3a is filled with the refrigerating machine oil RO in S12. In the first embodiment, the control device 15 completes the charging of the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the condenser 3a when the closing valves 6a and 6b are closed, and the refrigerating machine oil RO is supplied to the condenser 3a. Is determined to be filled (YES). Further, the control device 15 completes the recovery of the refrigerating machine oil RO from the condenser 3a to the refrigerating machine oil tank 10 when the closing valves 6a and 6b are not closed, and the refrigerating machine oil RO is not filled in the condenser 3a. (NO) is determined. If the condenser 3a is not filled with the refrigerating machine oil RO (NO in S12), the control device 15 advances the process to S120. After performing the refrigerating machine oil filling operation in S120, the control device 15 returns the process to the main routine. When condenser oil RO is filled in condenser 3a (YES in S12), control device 15 returns the process to the main routine.
 外気温T0が基準温度T1以上の場合(S11においてNO)、制御装置15は、S13において凝縮器3aに冷凍機油ROが充填されているか否かを判定する。凝縮器3aに冷凍機油ROが充填されている場合(S13においてYES)、冷房運転を低外気冷房運転から通常冷房運転に切り替える前に冷凍機油ROを冷凍機油タンク10に回収するため、制御装置15は、処理をS130に進める。制御装置15は、S130において冷凍機油回収運転を行なった後、処理をメインルーチンに返す。凝縮器3aに冷凍機油ROが充填されていない場合(S13においてNO)、制御装置15は、処理をメインルーチンに返す。 When the outside air temperature T0 is equal to or higher than the reference temperature T1 (NO in S11), the control device 15 determines whether or not the refrigerator oil RO is filled in the condenser 3a in S13. When the refrigerator oil RO is filled in the condenser 3a (YES in S13), the controller 15 collects the refrigerator oil RO in the refrigerator oil tank 10 before switching the cooling operation from the low outside air cooling operation to the normal cooling operation. Advances the process to S130. The control device 15 returns the processing to the main routine after performing the refrigerating machine oil recovery operation in S130. When the condenser oil RO is not filled in the condenser 3a (NO in S13), the control device 15 returns the process to the main routine.
 図5は、図4の冷凍機油充填運転(S120)の処理の流れを説明するためのフローチャートである。図5に示されるように、制御装置15は、S121において閉止弁6aおよび閉止弁6bを閉止して処理をS122に進める。制御装置15は、S122において四方弁11を切り替えて、冷凍機油移動機構41の接続状態を充填接続状態として、処理をS123に進める。制御装置15は、S123において閉止弁12および閉止弁13を開放して処理をS124に進める。制御装置15は、S124において、凝縮器3aに基準量の冷凍機油ROが充填されたか否かを判定する。実施の形態1においては、制御装置15は、S124において基準量の冷凍機油ROが冷凍機油タンク10から凝縮器3aに移動するのに必要な時間が経過したか否かを判定する。基準量の冷凍機油ROが冷凍機油タンク10から凝縮器3aに移動するのに必要な時間が経過した場合(S124においてYES)、制御装置15は、処理をS125に進める。制御装置15は、S125において閉止弁12および閉止弁13を閉止した後、処理をメインルーチンに返す。基準量の冷凍機油ROが冷凍機油タンク10から凝縮器3aに移動するのに必要な時間経過していない場合(S124においてNO)、制御装置15は、処理をS124に戻す。 FIG. 5 is a flowchart for explaining the processing flow of the refrigerating machine oil filling operation (S120) of FIG. As shown in FIG. 5, the control device 15 closes the closing valve 6a and the closing valve 6b in S121, and advances the process to S122. The control device 15 switches the four-way valve 11 in S122 to set the connection state of the refrigerator oil movement mechanism 41 to the filling connection state, and advances the process to S123. The control device 15 opens the closing valve 12 and the closing valve 13 in S123, and advances the processing to S124. In S124, the control device 15 determines whether or not the condenser 3a is filled with the reference amount of the refrigerating machine oil RO. In the first embodiment, the control device 15 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the refrigerating machine oil tank 10 to the condenser 3a has elapsed in S124. When the time necessary for the reference amount of the refrigerating machine oil RO to move from the refrigerating machine oil tank 10 to the condenser 3a has elapsed (YES in S124), the control device 15 advances the process to S125. The control device 15 returns the processing to the main routine after closing the closing valve 12 and the closing valve 13 in S125. When the time necessary for the reference amount of the refrigerating machine oil RO to move from the refrigerating machine oil tank 10 to the condenser 3a has not elapsed (NO in S124), the control device 15 returns the process to S124.
 実施の形態1において制御装置15は、基準量の冷凍機油ROが冷凍機油タンク10から凝縮器3aに移動したか否かを、図5のS124において、基準量の冷凍機油ROが冷凍機油タンク10から凝縮器3aに移動するのに必要な時間が経過したか否かで判定しているが、たとえば液量センサによって冷凍機油タンク10の液量が閾値より小さくなった否かによって判定してもよい。なお、冷凍機油タンク10の位置は、凝縮器3aに冷凍機油ROが基準量充填されたときの液面高さよりも、冷凍機油タンク10内の冷凍機油ROが貯留される空間の底面の位置が高いことが好ましい。 In the first embodiment, the control device 15 determines whether or not the reference amount of the refrigerating machine oil RO has moved from the refrigerating machine oil tank 10 to the condenser 3a. In S124 of FIG. Is determined based on whether or not the time required to move from the compressor to the condenser 3a has elapsed. For example, the determination may be made based on whether or not the liquid amount in the refrigerator oil tank 10 is smaller than the threshold value by the liquid amount sensor. Good. The position of the refrigerating machine oil tank 10 is such that the position of the bottom surface of the space where the refrigerating machine oil RO in the refrigerating machine oil tank 10 is stored is higher than the liquid level when the refrigerating machine oil RO is filled in the condenser 3a with a reference amount. High is preferred.
 図6は、図4の冷凍機油回収運転(S130)の処理の流れを説明するためのフローチャートである。図6に示されるように、制御装置15は、S131において四方弁11を切り替えて、冷凍機油移動機構41の接続状態を回収接続状態として、処理をS132に進める。制御装置15は、S132において閉止弁12および閉止弁13を開放して処理をS133に進める。制御装置15は、S133において、冷凍機油タンク10に基準量の冷凍機油ROが回収されたか否かを判定する。実施の形態1においては、制御装置15は、S133において基準量の冷凍機油ROが凝縮器3aから冷凍機油タンク10に移動するのに必要な時間が経過したか否かを判定する。基準量の冷凍機油ROが凝縮器3aから冷凍機油タンク10に移動するのに必要な時間が経過した場合(S133においてYES)、制御装置15は、処理をS134に進める。制御装置15は、S134において閉止弁12および閉止弁13を閉止した後、処理をS135に進める。制御装置15は、S135において閉止弁6aおよび閉止弁6bを開放した後、処理をメインルーチンに返す。基準量の冷凍機油ROが凝縮器3aから冷凍機油タンク10に移動するのに必要な時間が経過していない場合(S133においてNO)、制御装置15は、処理をS133に戻す。 FIG. 6 is a flowchart for explaining the processing flow of the refrigerating machine oil recovery operation (S130) of FIG. As shown in FIG. 6, the control device 15 switches the four-way valve 11 in S131 to set the connection state of the refrigerator oil moving mechanism 41 to the recovery connection state, and advances the process to S132. The control device 15 opens the closing valve 12 and the closing valve 13 in S132 and advances the process to S133. In S133, the control device 15 determines whether or not the reference amount of the refrigerating machine oil RO has been collected in the refrigerating machine oil tank 10. In the first embodiment, the control device 15 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the condenser 3a to the refrigerating machine oil tank 10 has elapsed in S133. When the time necessary for the reference amount of the refrigerating machine oil RO to move from the condenser 3a to the refrigerating machine oil tank 10 has elapsed (YES in S133), the control device 15 advances the process to S134. After closing the closing valve 12 and the closing valve 13 in S134, the control device 15 advances the process to S135. The control device 15 returns the processing to the main routine after opening the closing valve 6a and the closing valve 6b in S135. When the time necessary for the reference amount of the refrigerating machine oil RO to move from the condenser 3a to the refrigerating machine oil tank 10 has not elapsed (NO in S133), the control device 15 returns the process to S133.
 実施の形態1においては、制御装置15は、基準量の冷凍機油ROが凝縮器3aから冷凍機油タンク10に移動したか否かを、図6のS133において、基準量の冷凍機油ROが凝縮器3aから冷凍機油タンク10に移動するのに必要な時間が経過したか否かで判定しているが、たとえば液量センサによって冷凍機油タンク10の液量が閾値より大きくなった否かによって判定してもよい。 In the first embodiment, the control device 15 determines whether or not the reference amount of the refrigerating machine oil RO has moved from the condenser 3a to the refrigerating machine oil tank 10, and in S133 of FIG. The determination is made based on whether or not the time required to move from 3a to the refrigerating machine oil tank 10 has elapsed. For example, the determination is made based on whether or not the amount of liquid in the refrigerating machine oil tank 10 has become larger than the threshold by the liquid amount sensor. May be.
 冷凍サイクル装置100の運転開始時には凝縮器3aには冷凍機油ROが充填されていない状態であることが望ましい。そこで、実施の形態1では、ユーザによって冷凍サイクル装置100の停止操作が行なわれ、凝縮器3aに冷凍機油ROが充填されている場合にも、図6に示される冷凍機油回収運転が行われる。 When the operation of the refrigeration cycle apparatus 100 is started, it is desirable that the condenser 3a is not filled with the refrigeration oil RO. Therefore, in the first embodiment, the refrigerating machine oil recovery operation shown in FIG. 6 is performed even when the user performs a stop operation of the refrigerating cycle apparatus 100 and the condenser 3a is filled with the refrigerating machine oil RO.
 図7は、ユーザによって行なわれる冷凍サイクル装置100の停止操作の有無に応じて行なわれる処理の流れを説明するためのフローチャートである。図7に示されるように、制御装置15は、S21において、ユーザによって冷凍サイクル装置100の停止操作が行なわれたか否かを判定する。ユーザによって冷凍サイクル装置100の停止操作が行なわれた場合(S21においてYES)、制御装置15は、処理をS22に進める。制御装置15は、S22において、凝縮器3aに冷凍機油ROが充填されているか否かを判定する。凝縮器3aに冷凍機油ROが充填されている場合(S22においてYES)、制御装置15は、処理をS130に進め、冷凍機油回収運転を行なう。冷凍機油回収運転が完了した後、制御装置15は、S23において冷凍サイクル装置100を停止する。凝縮器3aに冷凍機油ROが充填されていない場合(S22においてNO)、制御装置15は、処理をS23に進めて冷凍サイクル装置を停止する。 FIG. 7 is a flowchart for explaining the flow of processing performed in accordance with whether or not the refrigeration cycle apparatus 100 is stopped by the user. As shown in FIG. 7, the control device 15 determines whether or not a stop operation of the refrigeration cycle apparatus 100 has been performed by the user in S <b> 21. When the stop operation of refrigeration cycle apparatus 100 is performed by the user (YES in S21), control device 15 advances the process to S22. In S22, the controller 15 determines whether or not the condenser 3a is filled with the refrigerating machine oil RO. If the condenser 3a is filled with the refrigerating machine oil RO (YES in S22), the control device 15 advances the process to S130 and performs the refrigerating machine oil recovery operation. After the refrigerating machine oil recovery operation is completed, the control device 15 stops the refrigeration cycle apparatus 100 in S23. When the condenser 3a is not filled with the refrigerating machine oil RO (NO in S22), the control device 15 advances the process to S23 and stops the refrigeration cycle apparatus.
 以上、実施の形態1に係る冷凍サイクル装置によれば、低外気冷房運転時に凝縮器への冷媒の流入を防止するために閉止弁が閉止されるとともに、冷凍機油移動機構によって、冷凍機油が冷凍機油タンクから凝縮器に移動される。凝縮器の内部が、冷媒が溶解し難い冷凍機油によって充填されることにより、閉止弁から漏れて凝縮器に溜まる冷媒量が抑制されて、循環冷媒量の減少が抑制される。その結果、低外気冷房運転を安定的に行なうことができる。なお、液体(油)回収時には冷媒も同時に冷凍機油タンク10へ流入するため、オイルセパレータを冷凍機油タンク10と圧縮機1の間に接続し、冷媒と冷凍機油とを分離してから回収する形態をとっても良いことは言うまでもない。 As described above, according to the refrigeration cycle apparatus according to Embodiment 1, the shutoff valve is closed to prevent the refrigerant from flowing into the condenser during the low outside air cooling operation, and the refrigeration oil is refrigerated by the refrigeration oil moving mechanism. Moved from machine oil tank to condenser. By filling the inside of the condenser with refrigerating machine oil in which the refrigerant is difficult to dissolve, the amount of refrigerant that leaks from the shut-off valve and accumulates in the condenser is suppressed, and the decrease in the amount of circulating refrigerant is suppressed. As a result, the low outside air cooling operation can be stably performed. Since the refrigerant also flows into the refrigerator oil tank 10 at the time of liquid (oil) recovery, an oil separator is connected between the refrigerator oil tank 10 and the compressor 1, and the refrigerant and the refrigerator oil are separated and recovered. Needless to say, you can take it.
 実施の形態1の変形例.
 図8および図9は、実施の形態1の変形例に係る冷凍サイクル装置100Aの構成を示す機能ブロック図である。図8および図9において、図1と同様の番号が付されている構成は、図1と同様の構成であるため、以下では当該構成についての説明を繰り返さない。
Modification of the first embodiment.
8 and 9 are functional block diagrams showing a configuration of a refrigeration cycle apparatus 100A according to a modification of the first embodiment. 8 and 9, the same reference numerals as those in FIG. 1 are the same as those in FIG. 1. Therefore, the description of the configurations will not be repeated below.
 冷凍サイクル装置100Aは、冷房運転(図8)および暖房運転(図9)の双方が可能である。以下では主に図8を参照しながら冷凍サイクル装置100Aの構成について説明し、必要に応じて図9を参照する。 The refrigeration cycle apparatus 100A can perform both a cooling operation (FIG. 8) and a heating operation (FIG. 9). Hereinafter, the configuration of the refrigeration cycle apparatus 100A will be described mainly with reference to FIG. 8, and FIG. 9 will be referred to as needed.
 図8に示されるように、冷凍サイクル装置100Aは、室外に設置された室外機50Aと、室内に設置された室内機60Aとを備える。 As shown in FIG. 8, the refrigeration cycle apparatus 100A includes an outdoor unit 50A installed outdoors and an indoor unit 60A installed indoors.
 室外機50Aは、圧縮機1と、四方弁2と、熱交換器31a,31bと、ファン14a,14bと、閉止弁6a,6bと、冷凍機油タンク10と、冷凍機油移動機構41と、制御装置15Aと、温度センサTS1とを含む。室外機50Aには、3台以上の熱交換器が含まれていてもよい。室内機60Aは、熱交換器5a,5bと、膨張弁4a,4bとを含む。室内機60Aには、3台以上の熱交換器が含まれていてもよい。冷凍サイクル装置100Aは、冷媒が、圧縮機1、四方弁2、凝縮器3a,3b、膨張弁4a,4b、熱交換器5a,5bの順に循環する冷凍サイクルを備えている。 The outdoor unit 50A includes a compressor 1, a four-way valve 2, heat exchangers 31a and 31b, fans 14a and 14b, stop valves 6a and 6b, a refrigerator oil tank 10, a refrigerator oil moving mechanism 41, and a control. Device 15A and temperature sensor TS1 are included. The outdoor unit 50A may include three or more heat exchangers. Indoor unit 60A includes heat exchangers 5a and 5b and expansion valves 4a and 4b. The indoor unit 60A may include three or more heat exchangers. The refrigeration cycle apparatus 100A includes a refrigeration cycle in which refrigerant circulates in the order of the compressor 1, the four-way valve 2, the condensers 3a and 3b, the expansion valves 4a and 4b, and the heat exchangers 5a and 5b.
 熱交換器31aは、閉止弁6a,6bの間に接続されている。熱交換器31bは、直列に接続された閉止弁6a、熱交換器31a、および閉止弁6bに対して並列に接続されている。熱交換器31a,31bは、冷房運転においては凝縮器として機能し、暖房運転においては蒸発器として機能する。 The heat exchanger 31a is connected between the shut-off valves 6a and 6b. The heat exchanger 31b is connected in parallel to the shutoff valve 6a, the heat exchanger 31a, and the shutoff valve 6b connected in series. The heat exchangers 31a and 31b function as a condenser in the cooling operation, and function as an evaporator in the heating operation.
 膨張弁4aおよび熱交換器5aは、熱交換器31aと四方弁2との間で、この順に直列に接続されている。膨張弁4bおよび熱交換器5bは、熱交換器31aと四方弁2との間で、この順に直列に接続されているとともに、直列に接続されている膨張弁4aおよび熱交換器5aに対して並列に接続されている。熱交換器5a,5bは、冷房運転においては蒸発器として機能し、暖房運転においては凝縮器として機能する。 The expansion valve 4a and the heat exchanger 5a are connected in series between the heat exchanger 31a and the four-way valve 2 in this order. The expansion valve 4b and the heat exchanger 5b are connected in series in this order between the heat exchanger 31a and the four-way valve 2, and with respect to the expansion valve 4a and the heat exchanger 5a connected in series. Connected in parallel. The heat exchangers 5a and 5b function as an evaporator in the cooling operation and function as a condenser in the heating operation.
 四方弁2は、制御装置15Aに制御されて、冷媒の循環方向を冷房運転における循環方向と暖房運転における循環方向との間で切り替える。冷房運転において四方弁2は、図8に示されるように、圧縮機1の吐出口と熱交換器31a,31bとを接続するとともに、圧縮機1の吸入口と熱交換器5a,5bとを接続する。暖房運転において四方弁2は、図9に示されるように圧縮機1の吐出口と熱交換器5a,5bとを接続するとともに、圧縮機1の吸入口と熱交換器31a,31bとを接続する。 The four-way valve 2 is controlled by the control device 15A to switch the circulation direction of the refrigerant between the circulation direction in the cooling operation and the circulation direction in the heating operation. In the cooling operation, as shown in FIG. 8, the four-way valve 2 connects the discharge port of the compressor 1 and the heat exchangers 31a and 31b, and connects the intake port of the compressor 1 and the heat exchangers 5a and 5b. Connecting. In the heating operation, the four-way valve 2 connects the discharge port of the compressor 1 and the heat exchangers 5a and 5b as shown in FIG. 9, and connects the suction port of the compressor 1 and the heat exchangers 31a and 31b. To do.
 ファン14a,14bは、制御装置15Aに制御されて、熱交換器31a,31bにそれぞれ送風する。ファン14a,14bの単位時間当たりの送風量(回転数)は、制御装置15Aによって制御される。 The fans 14a and 14b are controlled by the control device 15A and send air to the heat exchangers 31a and 31b, respectively. The amount of air blown per unit time (the number of rotations) of the fans 14a and 14b is controlled by the control device 15A.
 制御装置15Aは、膨張弁4a,4bの開度を制御して、圧縮機1へ吸引されるガス冷媒の過熱度を最適値に近づける過熱度制御を行なう。制御装置15Aは、四方弁2を制御して、冷媒の循環方向を冷房運転における循環方向と暖房運転における循環方向との間で切り替える。制御装置15Aは、ファン14a,14bの単位時間当たりの送風量を制御する。制御装置15Aは、冷房運転において外気温T0が基準温度T1より小さくなった場合、冷凍機油移動機構41を制御して、冷凍機油タンク10から熱交換器31aへ冷凍機油ROを移動させる冷凍機油充填運転を行なう。制御装置15Aは、冷凍機油移動機構41を制御して、熱交換器31aから冷凍機油タンク10へ冷凍機油ROを回収する冷凍機油回収運転の制御を行なう。制御装置15Aによって行なわれる冷凍機油充填運転および冷凍機油回収運転は、実施の形態1と同様であるため説明を繰り返さない。 The control device 15A controls the opening degree of the expansion valves 4a and 4b, and performs superheat degree control that brings the superheat degree of the gas refrigerant sucked into the compressor 1 close to the optimum value. The control device 15A controls the four-way valve 2 to switch the circulation direction of the refrigerant between the circulation direction in the cooling operation and the circulation direction in the heating operation. The control device 15A controls the air volume per unit time of the fans 14a and 14b. When the outside air temperature T0 becomes lower than the reference temperature T1 in the cooling operation, the control device 15A controls the refrigerating machine oil moving mechanism 41 to fill the refrigerating machine oil to move the refrigerating machine oil RO from the refrigerating machine oil tank 10 to the heat exchanger 31a. Do the driving. The control device 15A controls the refrigerating machine oil recovery mechanism that controls the refrigerating machine oil moving mechanism 41 to collect the refrigerating machine oil RO from the heat exchanger 31a to the refrigerating machine oil tank 10. Since the refrigerating machine oil filling operation and the refrigerating machine oil recovery operation performed by control device 15A are the same as those in the first embodiment, description thereof will not be repeated.
 ファン14a,14bの単位時間当たりの送風量が減少すると、熱交換器31a,31bにおける冷媒と空気との間で行なわれる熱交換の効率が低下する。熱交換器31a,31bが凝縮器として機能している冷房運転においては、ファン14a,14bの単位時間当たりの送風量を減少させることにより、熱交換器31a,31bの凝縮能力を減少させることができる。 When the air flow rate per unit time of the fans 14a and 14b decreases, the efficiency of heat exchange performed between the refrigerant and the air in the heat exchangers 31a and 31b decreases. In the cooling operation in which the heat exchangers 31a and 31b function as condensers, the condensation capacity of the heat exchangers 31a and 31b can be reduced by reducing the amount of air blown per unit time of the fans 14a and 14b. it can.
 そこで、実施の形態1の変形例においては、低外気冷房運転時において、まずファン14a,14bの単位時間当たり送風量を基準量まで低下させて、凝縮圧力の低下を抑制してもよい。ファン14a,14bの単位時間当たり送風量を基準量まで低下させても、凝縮圧力が基準圧力より小さい場合に、実施の形態1と同様の冷凍機油充填運転を行なってもよい。 Therefore, in the modified example of the first embodiment, during the low outdoor air cooling operation, first, the air flow rate per unit time of the fans 14a and 14b may be reduced to the reference amount to suppress the reduction of the condensation pressure. Even if the air flow rate per unit time of the fans 14a and 14b is reduced to the reference amount, if the condensing pressure is smaller than the reference pressure, the refrigerating machine oil filling operation similar to the first embodiment may be performed.
 以上、実施の形態1の変形例に係る冷凍サイクル装置によっても実施の形態1と同様に、低外気冷房運転を安定的に行なうことができる。 As described above, the refrigeration cycle apparatus according to the modification of the first embodiment can stably perform the low outdoor air cooling operation as in the first embodiment.
 実施の形態2.
 冷凍サイクル装置の中には、圧縮機への液冷媒の流入を抑制するために、液冷媒とガス冷媒とを分離する機能を有するアキュムレータを備えるものがある。実施の形態2においては、アキュムレータを冷凍機油タンクとして使用する構成について説明する。
Embodiment 2. FIG.
Some refrigeration cycle apparatuses include an accumulator having a function of separating the liquid refrigerant and the gas refrigerant in order to suppress the inflow of the liquid refrigerant to the compressor. In the second embodiment, a configuration in which the accumulator is used as a refrigerating machine oil tank will be described.
 実施の形態2と実施の形態1との違いは、冷凍機油タンク、冷凍機油移動機構、冷凍機油充填運転、および冷凍機油回収運転である。すなわち、図1、図5、および図6が、図10~図12にそれぞれ置き換わる。それら以外の点については同様であるため、説明を繰り返さない。 The differences between the second embodiment and the first embodiment are a refrigeration oil tank, a refrigeration oil transfer mechanism, a refrigeration oil filling operation, and a refrigeration oil recovery operation. That is, FIGS. 1, 5, and 6 are replaced with FIGS. 10 to 12, respectively. Since it is the same about other points, the description will not be repeated.
 図10は、実施の形態2に係る冷凍サイクル装置200の構成を示す機能ブロック図である。冷凍サイクル装置200においては、図1に示される冷凍サイクル装置100の構成における冷凍機油タンク10、冷凍機油移動機構41、および制御装置15が、アキュムレータ20、冷凍機油移動機構42、および制御装置25にそれぞれ置き換えられている。 FIG. 10 is a functional block diagram showing a configuration of the refrigeration cycle apparatus 200 according to the second embodiment. In the refrigerating cycle apparatus 200, the refrigerating machine oil tank 10, the refrigerating machine oil moving mechanism 41, and the control device 15 in the configuration of the refrigerating cycle apparatus 100 shown in FIG. 1 are added to the accumulator 20, the refrigerating machine oil moving mechanism 42, and the control apparatus 25. Each has been replaced.
 図10に示されるように、アキュムレータ20は、蒸発器5と圧縮機1との間に接続されている。アキュムレータ20は、冷媒の圧力に関して低圧側に接続されている。アキュムレータ20は、蒸発器5からの冷媒および冷凍機油とを気体と液体とに分離する。冷凍サイクル装置200に適切な量の冷媒が供給されて、冷凍サイクル装置が正常に動作している場合、アキュムレータ20に貯留される液冷媒はわずかである。冷凍サイクル装置200が正常に動作している場合にアキュムレータ20に貯留される液体のほとんどは、冷凍機油ROとなるため、アキュムレータ20を冷凍機油タンクとして利用することができる。 As shown in FIG. 10, the accumulator 20 is connected between the evaporator 5 and the compressor 1. The accumulator 20 is connected to the low pressure side with respect to the refrigerant pressure. The accumulator 20 separates the refrigerant and refrigerating machine oil from the evaporator 5 into gas and liquid. When an appropriate amount of refrigerant is supplied to the refrigeration cycle apparatus 200 and the refrigeration cycle apparatus is operating normally, only a small amount of liquid refrigerant is stored in the accumulator 20. Since most of the liquid stored in the accumulator 20 becomes the refrigeration oil RO when the refrigeration cycle apparatus 200 is operating normally, the accumulator 20 can be used as a refrigeration oil tank.
 冷凍機油移動機構42は、ポンプ32を含む。ポンプ32は、アキュムレータ20と凝縮器3aとの間に接続されている。ポンプ32は、アキュムレータ20から凝縮器3aへ冷凍機油ROを移動させる。実施の形態2においては、低圧側に接続されているアキュムレータ20から高圧側に接続されている凝縮器3aに冷凍機油ROを移動させる必要があるため、圧力勾配に逆らって冷凍機油ROを移動させることが可能なポンプ32が必要になる。 The refrigerating machine oil moving mechanism 42 includes a pump 32. The pump 32 is connected between the accumulator 20 and the condenser 3a. The pump 32 moves the refrigerating machine oil RO from the accumulator 20 to the condenser 3a. In Embodiment 2, since it is necessary to move the refrigerating machine oil RO from the accumulator 20 connected to the low pressure side to the condenser 3a connected to the high pressure side, the refrigerating machine oil RO is moved against the pressure gradient. A pump 32 is required.
 冷凍機油充填運転においては、閉止弁6a,6bが閉止されるとともに、ポンプ32が稼働されて、アキュムレータ20から凝縮器3aに冷凍機油ROが移動される。 In the refrigerating machine oil filling operation, the shutoff valves 6a and 6b are closed, the pump 32 is operated, and the refrigerating machine oil RO is moved from the accumulator 20 to the condenser 3a.
 冷媒回収運転においては、閉止弁6a,6bが開放される。凝縮器3aから流出した冷凍機油ROは、膨張弁4および蒸発器5を経由して、アキュムレータ20に戻って貯留される。 In the refrigerant recovery operation, the shutoff valves 6a and 6b are opened. The refrigerating machine oil RO that has flowed out of the condenser 3 a returns to the accumulator 20 through the expansion valve 4 and the evaporator 5 and is stored.
 図11は、実施の形態2における冷凍機油充填運転の処理の流れを説明するためのフローチャートである。図11に示されるように、制御装置25は、S121において、閉止弁6aおよび閉止弁6bを閉止して処理をS222に進める。制御装置25は、S222においてポンプ32を稼働させて処理をS223に進める。制御装置25は、S223において、基準量の冷凍機油ROがアキュムレータ20から凝縮器3aに移動するのに必要な時間が経過したか否かを判定する。基準量の冷凍機油ROがアキュムレータ20から凝縮器3aに移動するのに必要な時間が経過した場合(S223においてYES)、制御装置25は、処理をS224に進める。制御装置25は、S224においてポンプ32を停止した後、処理をメインルーチンに返す。基準量の冷凍機油ROがアキュムレータ20から凝縮器3aに移動するのに必要な時間が経過していない場合(S223においてNO)、制御装置25は、処理をS223に戻す。 FIG. 11 is a flowchart for explaining the flow of processing of the refrigerating machine oil filling operation in the second embodiment. As shown in FIG. 11, in S121, the control device 25 closes the closing valve 6a and the closing valve 6b and advances the process to S222. The control device 25 operates the pump 32 in S222 and advances the process to S223. In S223, the control device 25 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the accumulator 20 to the condenser 3a has elapsed. When the time necessary for the reference amount of refrigerating machine oil RO to move from accumulator 20 to condenser 3a has elapsed (YES in S223), control device 25 advances the process to S224. After stopping the pump 32 in S224, the control device 25 returns the process to the main routine. When the time required for the reference amount of the refrigerating machine oil RO to move from the accumulator 20 to the condenser 3a has not elapsed (NO in S223), the control device 25 returns the process to S223.
 図12は、実施の形態2における冷凍機油回収運転の処理の流れを説明するためのフローチャートである。図12に示されるように、制御装置25は、S135において閉止弁6aおよび閉止弁6bを開放した後、処理をメインルーチンに返す。 FIG. 12 is a flowchart for explaining the flow of processing of the refrigerating machine oil recovery operation in the second embodiment. As shown in FIG. 12, the control device 25 returns the process to the main routine after opening the closing valve 6a and the closing valve 6b in S135.
 以上、実施の形態2に係る冷凍サイクル装置によれば、低外気冷房運転時に凝縮器への冷媒の流入を防止するために閉止弁が閉止されるとともに、冷凍機油移動機構によって、冷凍機油がアキュムレータから凝縮器に移動される。凝縮器の内部が、冷媒が溶解し難い冷凍機油によって充填されることにより、閉止弁から漏れて凝縮器に溜まる冷媒量が抑制されて、循環冷媒量の減少が抑制される。その結果、低外気冷房運転を安定的に行なうことができる。 As described above, according to the refrigeration cycle apparatus according to Embodiment 2, the shutoff valve is closed to prevent the refrigerant from flowing into the condenser during the low outdoor air cooling operation, and the refrigeration oil is moved to the accumulator by the refrigeration oil moving mechanism. To the condenser. By filling the inside of the condenser with refrigerating machine oil in which the refrigerant is difficult to dissolve, the amount of refrigerant that leaks from the shut-off valve and accumulates in the condenser is suppressed, and the decrease in the amount of circulating refrigerant is suppressed. As a result, the low outside air cooling operation can be stably performed.
 さらに、実施の形態2においては、アキュムレータを備える既存の冷凍サイクル装置のアキュムレータを冷凍機油タンクとして使用することができる。そのため、実施の形態1よりも実施の形態2の方が、本発明に係る冷凍サイクル装置を実現するための追加コストを抑制することができる。 Furthermore, in the second embodiment, an accumulator of an existing refrigeration cycle apparatus including an accumulator can be used as a refrigeration machine oil tank. Therefore, the second embodiment can suppress the additional cost for realizing the refrigeration cycle apparatus according to the present invention rather than the first embodiment.
 実施の形態3.
 冷凍サイクル装置の中には、圧縮機からの冷媒に混合している冷凍機油を圧縮機に戻すために、冷媒と冷凍機油とを分離する機能を有するオイルセパレータを備えるものがある。実施の形態3においては、オイルセパレータを冷凍機油タンクとして使用する構成について説明する。
Embodiment 3 FIG.
Some refrigeration cycle apparatuses include an oil separator having a function of separating the refrigerant and the refrigeration oil in order to return the refrigeration oil mixed with the refrigerant from the compressor to the compressor. In Embodiment 3, a configuration in which an oil separator is used as a refrigerator oil tank will be described.
 実施の形態3と実施の形態1との違いは、冷凍機油タンク、冷凍機油移動機構、冷凍機油充填運転、および冷凍機油回収運転である。具体的には、図1、図5、および図6が、図13、図14、および図12にそれぞれ置き換わる。それら以外の点については同様であるため、説明を繰り返さない。また、冷凍機油回収運転の処理の流れは実施の形態2と同様であるため、説明を繰り返さない。 The difference between the third embodiment and the first embodiment is a refrigerating machine oil tank, a refrigerating machine oil moving mechanism, a refrigerating machine oil filling operation, and a refrigerating machine oil recovery operation. Specifically, FIG. 1, FIG. 5, and FIG. 6 replace FIG. 13, FIG. 14, and FIG. Since it is the same about other points, the description will not be repeated. Moreover, since the flow of the refrigeration oil recovery operation is the same as that of the second embodiment, the description will not be repeated.
 図13は、実施の形態3に係る冷凍サイクル装置300の構成を示す機能ブロック図である。冷凍サイクル装置300においては、図1に示される冷凍サイクル装置100の構成における冷凍機油タンク10、冷凍機油移動機構41、および制御装置15が、オイルセパレータ30、冷凍機油移動機構43、および制御装置35にそれぞれ置き換えられている。冷凍サイクル装置300は、図1に示される冷凍サイクル装置100の構成に加えて、キャピラリチューブ17をさらに備える。 FIG. 13 is a functional block diagram showing the configuration of the refrigeration cycle apparatus 300 according to the third embodiment. In the refrigerating cycle apparatus 300, the refrigerating machine oil tank 10, the refrigerating machine oil moving mechanism 41, and the control device 15 in the configuration of the refrigerating cycle apparatus 100 shown in FIG. 1 include the oil separator 30, the refrigerating machine oil moving mechanism 43, and the control apparatus 35. Has been replaced respectively. The refrigeration cycle apparatus 300 further includes a capillary tube 17 in addition to the configuration of the refrigeration cycle apparatus 100 shown in FIG.
 図13に示されるように、オイルセパレータ30は、圧縮機1と凝縮器3aとの間および圧縮機1と凝縮器3bの間に接続されている。オイルセパレータ30は、冷媒の圧力に関して高圧側に接続されている。キャピラリチューブ17は、蒸発器5および圧縮機1を接続する流路とオイルセパレータ30との間に接続されている。 As shown in FIG. 13, the oil separator 30 is connected between the compressor 1 and the condenser 3a and between the compressor 1 and the condenser 3b. The oil separator 30 is connected to the high pressure side with respect to the refrigerant pressure. The capillary tube 17 is connected between the oil separator 30 and a flow path connecting the evaporator 5 and the compressor 1.
 オイルセパレータ30は、圧縮機1からの冷媒に混合している冷凍機油ROを分離して貯留する。オイルセパレータ30は、貯留している冷凍機油ROの一部をキャピラリチューブ17を介して、蒸発器5および圧縮機1を接続する流路に戻す。 The oil separator 30 separates and stores the refrigerating machine oil RO mixed with the refrigerant from the compressor 1. The oil separator 30 returns a part of the stored refrigerating machine oil RO to the flow path connecting the evaporator 5 and the compressor 1 via the capillary tube 17.
 冷凍機油移動機構43は、閉止弁33を含む。閉止弁33は、オイルセパレータ30と凝縮器3aとの間に接続されている。実施の形態3においては、オイルセパレータ30および凝縮器3aのいずれもが高圧側に接続されているため、閉止弁33を開放すると、オイルセパレータ30に流入する冷媒の圧力によってオイルセパレータ30内の冷凍機油ROが押し出されて、凝縮器3aに冷凍機油ROが移動する。 The refrigerating machine oil moving mechanism 43 includes a stop valve 33. The shut-off valve 33 is connected between the oil separator 30 and the condenser 3a. In Embodiment 3, since both the oil separator 30 and the condenser 3a are connected to the high pressure side, when the shut-off valve 33 is opened, the refrigeration in the oil separator 30 is caused by the pressure of the refrigerant flowing into the oil separator 30. The machine oil RO is pushed out, and the refrigerating machine oil RO moves to the condenser 3a.
 冷凍機油充填運転においては、閉止弁6a,6bが閉止されるとともに、閉止弁33が開放されて、オイルセパレータ30から凝縮器3aに冷凍機油ROが移動する。 In the refrigerating machine oil filling operation, the closing valves 6a and 6b are closed, the closing valve 33 is opened, and the refrigerating machine oil RO moves from the oil separator 30 to the condenser 3a.
 冷媒回収運転においては、閉止弁6a,6bが開放される。凝縮器3aから流出した冷凍機油ROは、膨張弁4、蒸発器5、および圧縮機1を経由して、オイルセパレータ30に戻って貯留される。 In the refrigerant recovery operation, the shutoff valves 6a and 6b are opened. The refrigerating machine oil RO that has flowed out of the condenser 3 a returns to the oil separator 30 and is stored via the expansion valve 4, the evaporator 5, and the compressor 1.
 図14は、実施の形態3における冷凍機油充填運転の処理の流れを説明するためのフローチャートである。図14に示されるように、制御装置35は、S121において閉止弁6aおよび閉止弁6bを閉止して処理をS322に進める。制御装置35は、S322において閉止弁33を開放して処理をS323に進める。制御装置35は、S323において、基準量の冷凍機油ROがオイルセパレータ30から凝縮器3aに移動するのに必要な時間が経過したか否かを判定する。基準量の冷凍機油ROがオイルセパレータ30から凝縮器3aに移動するのに必要な時間経過した(S323においてYES)、処理をS324に進める。制御装置35は、S324において閉止弁33を閉止した後、処理をメインルーチンに返す。基準量の冷凍機油ROがオイルセパレータ30から凝縮器3aに移動するのに必要な時間が経過していない場合(S323においてNO)、処理をS323に戻す。 FIG. 14 is a flowchart for explaining the flow of processing of the refrigerating machine oil filling operation in the third embodiment. As shown in FIG. 14, the control device 35 closes the closing valve 6a and the closing valve 6b in S121 and advances the process to S322. In S322, the control device 35 opens the shut-off valve 33 and advances the process to S323. In S323, the control device 35 determines whether or not the time necessary for the reference amount of the refrigerating machine oil RO to move from the oil separator 30 to the condenser 3a has elapsed. When the time necessary for the reference amount of the refrigerating machine oil RO to move from the oil separator 30 to the condenser 3a has elapsed (YES in S323), the process proceeds to S324. The control device 35 returns the processing to the main routine after closing the closing valve 33 in S324. If the time necessary for the reference amount of the refrigerating machine oil RO to move from the oil separator 30 to the condenser 3a has not elapsed (NO in S323), the process returns to S323.
 以上、実施の形態3に係る冷凍サイクル装置によれば、低外気冷房運転時に凝縮器への冷媒の流入を防止するために閉止弁が閉止されるとともに、冷凍機油移動機構によって、冷凍機油がオイルセパレータから凝縮器に移動される。凝縮器の内部が、冷媒が溶解し難い冷凍機油によって充填されることにより、閉止弁から漏れて凝縮器に溜まる冷媒量が抑制されて、循環冷媒量の減少が抑制される。その結果、低外気冷房運転を安定的に行なうことができる。 As described above, according to the refrigeration cycle apparatus according to Embodiment 3, the shutoff valve is closed to prevent the refrigerant from flowing into the condenser during the low outside air cooling operation, and the refrigerating machine oil is transferred to the refrigerating machine oil by the refrigerating machine oil moving mechanism. Moved from separator to condenser. By filling the inside of the condenser with refrigerating machine oil in which the refrigerant is difficult to dissolve, the amount of refrigerant that leaks from the shut-off valve and accumulates in the condenser is suppressed, and the decrease in the amount of circulating refrigerant is suppressed. As a result, the low outside air cooling operation can be stably performed.
 さらに、実施の形態3においては、オイルセパレータを備える既存の冷凍サイクル装置のオイルセパレータをそのまま冷凍機油タンクとして使用することができる。そのため、実施の形態1よりも実施の形態3の方が、本発明に係る冷凍サイクル装置を実現するための追加コストを抑制することができる。 Furthermore, in Embodiment 3, the oil separator of the existing refrigeration cycle apparatus provided with an oil separator can be used as it is as a refrigerator oil tank. Therefore, the third embodiment can suppress the additional cost for realizing the refrigeration cycle apparatus according to the present invention rather than the first embodiment.
 なお、実施の形態2,3において、制御装置は、基準量の冷凍機油ROが冷凍機油タンクに移動したか否か、もしくは冷凍機油タンクから移動したか否かを、移動するのに必要な時間経過したことで判定しているが、たとえば液量センサによって検出された冷凍機油タンクの液量の変化によって判定してもよい。 In the second and third embodiments, the control device determines whether the reference amount of the refrigeration oil RO has moved to the refrigeration oil tank or whether it has moved from the refrigeration oil tank. Although it is determined that the time has elapsed, for example, it may be determined based on a change in the amount of liquid in the refrigerating machine oil tank detected by a liquid amount sensor.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are also scheduled to be implemented in appropriate combinations within a consistent range. The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 圧縮機、2,11 四方弁、3a,3b 凝縮器、4,4a,4b 膨張弁、5 蒸発器、5a,5b,31a,31b 熱交換器、6a,6b,12,13,33 閉止弁、10 冷凍機油タンク、14a,14b ファン、15,15A,25,35 制御装置、17 キャピラリチューブ、20 アキュムレータ、30 オイルセパレータ、32 ポンプ、41,42,43 冷凍機油移動機構、50,50A 室外機、60,60A 室内機、100,100A,200,300 冷凍サイクル装置、RO 冷凍機油、TS1 温度センサ。 1 compressor, 2, 11 four-way valve, 3a, 3b condenser, 4, 4a, 4b expansion valve, 5 evaporator, 5a, 5b, 31a, 31b heat exchanger, 6a, 6b, 12, 13, 33 closing valve 10, refrigerator oil tank, 14a, 14b fan, 15, 15A, 25, 35 control device, 17 capillary tube, 20 accumulator, 30 oil separator, 32 pump, 41, 42, 43 refrigerator oil moving mechanism, 50, 50A outdoor unit 60, 60A indoor unit, 100, 100A, 200, 300 refrigeration cycle device, RO refrigeration machine oil, TS1 temperature sensor.

Claims (13)

  1.  冷媒が、圧縮機、第1弁、第1空間に設置された第1凝縮器、第2弁、膨張弁、および第2空間に設置された蒸発器の順に循環する冷凍サイクル装置であって、
     前記第1空間に設置された第2凝縮器と、
     前記冷媒と異なる流体を溜める流体貯留部と、
     前記流体貯留部から前記第1凝縮器に前記流体を移動させる液体移動機構と、
     前記第1弁、前記第2弁、および前記液体移動機構を制御する制御装置とを備え、
     前記第2凝縮器は、直列に接続された前記第1弁、前記第1凝縮器、および前記第2弁に対して並列に接続され、
     前記流体貯留部は、前記第1凝縮器に接続され、
     前記制御装置は、前記第1空間の温度が基準温度よりも小さい場合、前記第1弁および前記第2弁を閉じた後に、前記流体貯留部から前記第1凝縮器に前記流体を移動させる、冷凍サイクル装置。
    The refrigerant is a refrigeration cycle apparatus in which a compressor, a first valve, a first condenser installed in the first space, a second valve, an expansion valve, and an evaporator installed in the second space are circulated in this order.
    A second condenser installed in the first space;
    A fluid reservoir for storing a fluid different from the refrigerant;
    A liquid moving mechanism for moving the fluid from the fluid reservoir to the first condenser;
    A control device for controlling the first valve, the second valve, and the liquid moving mechanism;
    The second condenser is connected in parallel to the first valve, the first condenser, and the second valve connected in series;
    The fluid reservoir is connected to the first condenser;
    When the temperature of the first space is lower than a reference temperature, the control device moves the fluid from the fluid reservoir to the first condenser after closing the first valve and the second valve. Refrigeration cycle equipment.
  2.  前記流体貯留部は、前記第1凝縮器に接続され、
     前記液体移動機構は、前記流体貯留部に接続された流路切替装置と、前記圧縮機の吐出口と前記流路切替装置との間に接続された第3弁と、前記圧縮機の吸入口と前記流路切替装置との間に接続された第4弁とを含み、
     前記流路切替装置は、前記第3弁、前記第4弁、前記流体貯留部、および前記第1凝縮器の間の接続状態を第1接続状態と第2接続状態との間で切り替え、
     前記第1接続状態においては、前記第3弁と前記流体貯留部とが接続されるとともに前記第4弁と前記第1凝縮器とが接続され、
     前記第2接続状態においては、前記第3弁と前記第1凝縮器とが接続されるとともに前記第4弁と前記流体貯留部とが接続され、
     前記制御装置は、前記第1空間の温度が前記基準温度よりも小さい場合、前記第1弁および前記第2弁を閉じるとともに、前記流路切替装置を制御して前記接続状態を前記第1接続状態に切り替え、前記流体貯留部から前記第1凝縮器に基準量の前記流体が移動するのに必要な時間が経過後、前記第3弁および前記第4弁を閉じる、請求項1に記載の冷凍サイクル装置。
    The fluid reservoir is connected to the first condenser;
    The liquid moving mechanism includes a flow path switching device connected to the fluid storage section, a third valve connected between the discharge port of the compressor and the flow path switching device, and an intake port of the compressor And a fourth valve connected between the flow path switching device,
    The flow path switching device switches a connection state between the third valve, the fourth valve, the fluid reservoir, and the first condenser between a first connection state and a second connection state,
    In the first connection state, the third valve and the fluid reservoir are connected and the fourth valve and the first condenser are connected,
    In the second connection state, the third valve and the first condenser are connected and the fourth valve and the fluid reservoir are connected,
    When the temperature of the first space is lower than the reference temperature, the control device closes the first valve and the second valve and controls the flow path switching device to change the connection state to the first connection. 2. The switch according to claim 1, wherein the third valve and the fourth valve are closed after a time required for the reference amount of the fluid to move from the fluid reservoir to the first condenser has elapsed. Refrigeration cycle equipment.
  3.  前記制御装置は、前記第1空間の温度が前記基準温度よりも大きい場合、前記流路切替装置を制御して前記接続状態を前記第2接続状態に切替えてから前記第3弁および前記第4弁を開けることによって、前記第1凝縮器内の前記流体を前記流体貯留部に回収する、請求項2に記載の冷凍サイクル装置。 When the temperature of the first space is higher than the reference temperature, the control device controls the flow path switching device to switch the connection state to the second connection state, and then performs the third valve and the fourth valve. The refrigeration cycle apparatus according to claim 2, wherein the fluid in the first condenser is collected in the fluid reservoir by opening a valve.
  4.  前記制御装置は、かつユーザによって前記冷凍サイクル装置の停止操作が行なわれた場合、前記流路切替装置を制御して前記接続状態を前記第2接続状態に切替えてから前記第3弁および前記第4弁を開けることによって、前記第1凝縮器内の前記流体を前記流体貯留部に回収する、請求項2に記載の冷凍サイクル装置。 When the user performs a stop operation of the refrigeration cycle device, the control device controls the flow path switching device to switch the connection state to the second connection state, and then the third valve and the second valve The refrigeration cycle apparatus according to claim 2, wherein the fluid in the first condenser is collected in the fluid storage unit by opening four valves.
  5.  前記第1凝縮器から前記流体貯留部に前記基準量の前記流体が移動するのに必要な時間が経過した後、前記第3弁および前記第4弁を閉じてから前記第1弁および前記第2弁を開ける、請求項3または4に記載の冷凍サイクル装置。 After the time necessary for the reference amount of the fluid to move from the first condenser to the fluid reservoir has elapsed, the third valve and the fourth valve are closed, and then the first valve and the first valve are closed. The refrigeration cycle apparatus according to claim 3 or 4, wherein two valves are opened.
  6.  前記流体貯留部は、前記蒸発器と前記圧縮機との間に接続され、前記蒸発器からの前記冷媒および前記流体を気体と液体とに分離し、
     前記液体移動機構は、前記流体貯留部と、前記第1凝縮器との間に接続され、前記流体貯留部から前記第1凝縮器へ前記流体を移動させるポンプを含み、
     前記制御装置は、前記第1空間の温度が前記基準温度よりも小さい場合、前記第1弁および前記第2弁を閉じた後に、前記ポンプを駆動して前記流体を前記第1凝縮器へ移動させる、請求項1に記載の冷凍サイクル装置。
    The fluid reservoir is connected between the evaporator and the compressor, and separates the refrigerant and the fluid from the evaporator into a gas and a liquid,
    The liquid moving mechanism includes a pump that is connected between the fluid reservoir and the first condenser and moves the fluid from the fluid reservoir to the first condenser;
    When the temperature of the first space is lower than the reference temperature, the control device drives the pump to move the fluid to the first condenser after closing the first valve and the second valve. The refrigeration cycle apparatus according to claim 1.
  7.  前記流体貯留部は、アキュムレータを含む、請求項6に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6, wherein the fluid storage unit includes an accumulator.
  8.  前記蒸発器および前記圧縮機を接続する流路と前記流体貯留部との間に接続された膨張機構をさらに備え、
     前記流体貯留部は、前記圧縮機と前記第1凝縮器との間および前記圧縮機と前記第2凝縮器の間に接続されて前記圧縮機からの前記流体を貯留するとともに、貯留している前記流体の一部を前記膨張機構を介して前記流路に戻し、
     前記液体移動機構は、前記流体貯留部と前記第1凝縮器との間に接続された第3弁を含み、
     前記制御装置は、前記第1空間の温度が前記基準温度よりも小さい場合、前記第1弁および前記第2弁を閉じた後に、前記第3弁を開く、請求項1に記載の冷凍サイクル装置。
    An expansion mechanism connected between the fluid reservoir and the flow path connecting the evaporator and the compressor;
    The fluid reservoir is connected between the compressor and the first condenser and between the compressor and the second condenser to store and store the fluid from the compressor. Returning a part of the fluid to the flow path via the expansion mechanism;
    The liquid movement mechanism includes a third valve connected between the fluid reservoir and the first condenser,
    2. The refrigeration cycle apparatus according to claim 1, wherein when the temperature of the first space is lower than the reference temperature, the control device opens the third valve after closing the first valve and the second valve. .
  9.  前記流体貯留部は、オイルセパレータを含む、請求項8に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 8, wherein the fluid storage unit includes an oil separator.
  10.  前記制御装置は、前記第1空間の温度が前記基準温度よりも大きい場合、前記第1弁および前記第2弁を開けることによって、前記第1凝縮器内の前記流体を前記流体貯留部に回収する、請求項6~9のいずれか1項に記載の冷凍サイクル装置。 When the temperature of the first space is higher than the reference temperature, the control device collects the fluid in the first condenser in the fluid storage unit by opening the first valve and the second valve. The refrigeration cycle apparatus according to any one of claims 6 to 9.
  11.  前記制御装置は、ユーザによって前記冷凍サイクル装置の停止操作が行なわれた場合であって、かつ前記第1凝縮器が前記流体によって充填されている場合、前記第1弁および前記第2弁を開ける、請求項6~9のいずれか1項に記載の冷凍サイクル装置。 The control device opens the first valve and the second valve when a stop operation of the refrigeration cycle apparatus is performed by a user and the first condenser is filled with the fluid. The refrigeration cycle apparatus according to any one of claims 6 to 9.
  12.  前記冷媒と前記流体とは、非相溶性である、請求項1~11のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 11, wherein the refrigerant and the fluid are incompatible.
  13.  前記流体は、冷凍機油である、請求項12に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 12, wherein the fluid is refrigeration oil.
PCT/JP2016/080769 2016-10-18 2016-10-18 Refrigeration cycle system WO2018073881A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/080769 WO2018073881A1 (en) 2016-10-18 2016-10-18 Refrigeration cycle system
JP2018545738A JP6644160B2 (en) 2016-10-18 2016-10-18 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080769 WO2018073881A1 (en) 2016-10-18 2016-10-18 Refrigeration cycle system

Publications (1)

Publication Number Publication Date
WO2018073881A1 true WO2018073881A1 (en) 2018-04-26

Family

ID=62018443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080769 WO2018073881A1 (en) 2016-10-18 2016-10-18 Refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6644160B2 (en)
WO (1) WO2018073881A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888906A (en) * 2018-10-31 2021-06-01 三菱电机株式会社 Refrigeration cycle device
JPWO2021140625A1 (en) * 2020-01-09 2021-07-15

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116975U (en) * 1985-01-08 1986-07-23
WO2016084175A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Heat source-side unit and refrigeration cycle apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116975U (en) * 1985-01-08 1986-07-23
WO2016084175A1 (en) * 2014-11-26 2016-06-02 三菱電機株式会社 Heat source-side unit and refrigeration cycle apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112888906A (en) * 2018-10-31 2021-06-01 三菱电机株式会社 Refrigeration cycle device
CN112888906B (en) * 2018-10-31 2023-03-03 三菱电机株式会社 Refrigeration cycle device
JPWO2021140625A1 (en) * 2020-01-09 2021-07-15
EP4089346A4 (en) * 2020-01-09 2022-12-28 Mitsubishi Electric Corporation Refrigeration cycle device
JP7325542B2 (en) 2020-01-09 2023-08-14 三菱電機株式会社 refrigeration cycle equipment

Also Published As

Publication number Publication date
JPWO2018073881A1 (en) 2019-04-04
JP6644160B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP4394709B2 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioner
JP6141425B2 (en) Refrigeration cycle equipment
JP5121908B2 (en) Air conditioner
JP6366742B2 (en) Air conditioner
EP2587193A2 (en) Air conditioner
JP5434460B2 (en) Heat pump equipment
JP2008185229A (en) Refrigerating device
JP5908183B1 (en) Air conditioner
JP2013257121A (en) Refrigerating device
JP4920717B2 (en) Refrigeration equipment
JP6715655B2 (en) Cooling system
EP3705807B1 (en) Refrigeration cycle device
JP6707195B2 (en) Refrigeration cycle equipment
JP5796619B2 (en) Air conditioner
WO2018073881A1 (en) Refrigeration cycle system
JP6433602B2 (en) Refrigeration cycle equipment
JP5871723B2 (en) Air conditioner and control method thereof
KR101414860B1 (en) Air conditioner and method of controlling the same
JP2018204805A (en) Refrigeration unit, refrigeration system and control method for refrigerant circuit
JP2017116136A (en) Air conditioner
KR101212684B1 (en) Hot water supply device associated with heat pump and control method thereof
JP6042037B2 (en) Refrigeration cycle equipment
JP2011202860A (en) Refrigerating device and oil amount management method of the same
JP2020085269A (en) Refrigeration cycle device
JP2008309474A (en) Pipe cleaning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919168

Country of ref document: EP

Kind code of ref document: A1