WO2016084175A1 - Heat source-side unit and refrigeration cycle apparatus - Google Patents

Heat source-side unit and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2016084175A1
WO2016084175A1 PCT/JP2014/081283 JP2014081283W WO2016084175A1 WO 2016084175 A1 WO2016084175 A1 WO 2016084175A1 JP 2014081283 W JP2014081283 W JP 2014081283W WO 2016084175 A1 WO2016084175 A1 WO 2016084175A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
oil
flow path
Prior art date
Application number
PCT/JP2014/081283
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 塚本
伊藤 健
克也 前田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480082492.1A priority Critical patent/CN106796055B/en
Priority to JP2016561148A priority patent/JP6328269B2/en
Priority to PCT/JP2014/081283 priority patent/WO2016084175A1/en
Publication of WO2016084175A1 publication Critical patent/WO2016084175A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to a heat source side unit and a refrigeration cycle apparatus.
  • Patent Document 1 a refrigeration apparatus having a configuration in which oil separated by an oil separator is cooled and the cooled oil is returned to a compressor is known (see Patent Document 1).
  • oil separated by an oil separator is cooled by an air-cooled oil cooler that uses a part of the condenser, and then cooled by a refrigerant cooling oil cooler.
  • the present invention has been made against the background of the above problems, and by effectively utilizing the heat transfer area of the heat source side heat exchanger, the coefficient of performance of the refrigeration cycle apparatus is obtained by heat exchange of refrigerant or oil. It is an object to obtain a heat source side unit and a refrigeration cycle apparatus that can improve the temperature.
  • a heat source side unit includes a compressor, an oil separator that separates refrigerant and oil discharged from the compressor, causes the refrigerant to flow out from the refrigerant outflow portion, and causes oil to flow out from the oil outflow portion.
  • a heat source side heat exchanger, and a flow path switching device that switches communication between the multi-heat exchanger and the first flow path or the second flow path.
  • a refrigeration cycle apparatus includes the above heat source side unit.
  • the coefficient of performance of the refrigeration cycle apparatus can be improved because the heat transfer area of the heat source side heat exchanger is effectively used to heat-exchange the refrigerant or oil.
  • FIG. 1 is a diagram schematically illustrating an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 300 includes a use side unit 100 and a heat source side unit 200.
  • the use side unit 100 and the heat source side unit 200 are connected by piping, and a refrigerant circulation circuit 400 in which the refrigerant circulates is formed.
  • a refrigerant having a large difference in enthalpy during adiabatic compression such as R32 or R410A, is used.
  • the heat source side unit 200 of the refrigeration cycle apparatus 300 flows through the oil passage 410 through which oil flows, the multi heat exchange passage 420 through which refrigerant or oil selectively flows, and the refrigerant circulation circuit 400.
  • the refrigerant circulation circuit 400 is illustrated by a solid line
  • the oil flow path 410 is illustrated by a dotted line
  • the multi heat exchange flow path 420 is illustrated by a one-dot chain line.
  • the use side unit 100 includes an opening / closing device 13, an expansion device 12, and a use side heat exchanger 2, and these are connected by piping.
  • the opening / closing device 13 switches between opening and closing to control the passage of the refrigerant to the expansion device 12 and the use side heat exchanger 2, and is configured by, for example, an electromagnetic valve.
  • the opening / closing device 13 may be omitted.
  • the expansion device 12 expands the refrigerant, and includes, for example, an electronic expansion valve or a capillary tube whose opening degree can be changed.
  • the use side heat exchanger 2 is for causing heat exchange between the refrigerant and air, for example.
  • a blower (not shown) that guides air to the use side heat exchanger 2 is installed in the vicinity of the use side heat exchanger 2 so as to promote heat exchange in the use side heat exchanger 2. It has become.
  • the heat source side unit 200 includes a compressor 1, an oil separator 4, a heat source side heat exchanger 5, and a receiver 7, which are connected by piping.
  • the compressor 1 compresses a refrigerant, and is, for example, a two-stage screw compressor including a low-stage compression unit 1a and a high-stage compression unit 1b. Between the low stage compression part 1a and the high stage compression part 1b, the intermediate
  • the low stage compression unit 1a sucks the refrigerant gas from the use side heat exchanger 2, performs the first stage compression, and discharges it to the intermediate stage 1c.
  • the high stage compression unit 1 b sucks the refrigerant gas from the intermediate stage 1 c, performs the second stage compression, and discharges it to the oil separator 4.
  • the compressor 1 applied to this embodiment is not limited to the above-described two-stage screw compressor.
  • the compressor 1 may be a compressor using other principles such as a scroll compressor, or may be a compressor constituted of one stage or three or more stages. Some parts used in the compressor 1 are limited in temperature. Therefore, there is a restriction on the temperature of the refrigerant discharged from the compressor 1.
  • the restriction temperature of the refrigerant discharged from the compressor 1 is, for example, 85 degrees, but the restriction temperature varies depending on the specifications of the compressor 1 and the like, and is not limited to 85 degrees.
  • the compressor 1 is controlled so that the temperature of the discharged refrigerant is, for example, a restriction temperature or less.
  • the compressor 1 may be driven by, for example, an inverter (not shown) and can adjust the rotation speed.
  • the heat source side unit 200 includes a temperature sensor 70 that detects the outside air temperature outside the heat source side unit 200 and a control device 72 that controls the entire heat source side unit 200.
  • the control device 72 uses, for example, the outside temperature detected by the temperature sensor 70, the compressor 1, the expansion device for injection 50, and the opening / closing devices 51a, 52a, 53a, 54a, 51b, 52b, 53b, 54b and Control 55 etc. is performed.
  • the oil separator 4 separates the refrigerant discharged from the compressor 1 and the oil.
  • the oil separator 4 has a refrigerant outflow portion 4a for flowing out the separated refrigerant and an oil outflow portion 4b for flowing out the separated oil.
  • the heat source side heat exchanger 5 includes a refrigerant heat exchanger 5a and one or more multi-heat exchangers 5b.
  • the refrigerant heat exchanger 5a exchanges heat between the refrigerant separated by the oil separator 4 and air.
  • the multi heat exchanger 5b performs heat exchange between the refrigerant or oil separated by the oil separator 4 and oil.
  • one refrigerant heat exchanger 5a and two multi heat exchangers 5b provided below the refrigerant heat exchanger 5a first multi heat exchanger 5b1 and second multi heat exchanger 5b2.
  • the multi heat exchanger 5b may be provided above the refrigerant heat exchanger 5a, and the multi heat exchanger 5b may be provided above and below the refrigerant heat exchanger 5a.
  • the refrigerant heat exchanger 5a and the multi heat exchanger 5b have different heat transfer areas.
  • the refrigerant heat exchanger 5a may have a smaller heat transfer area than the multi heat exchanger 5b, but the refrigerant heat exchanger 5a has a larger heat transfer than the multi heat exchanger 5b.
  • By having a heat area a heat transfer area for heat exchange of the refrigerant can be ensured.
  • the blower 6 guides air to the heat source side heat exchanger 5 and is installed in the vicinity of the heat source side heat exchanger 5.
  • the receiver 7 has a function of accumulating the refrigerant liquid flowing out from the heat source side heat exchanger 5. The receiver 7 may be omitted.
  • the refrigerant circuit 400 includes the compressor 1, the refrigerant flow path of the oil separator 4, the refrigerant heat exchanger 5a of the heat source side heat exchanger 5, the receiver 7, the switching device 13, the expansion device 12, and the use
  • the side heat exchanger 2 is connected in an annular shape by piping, and the refrigerant circulates inside.
  • the refrigerant compressed by the compressor 1 is separated into refrigerant and oil by the oil separator 4.
  • the refrigerant separated by the oil separator 4 flows out from the refrigerant outflow portion 4a and flows into the refrigerant heat exchanger 5a.
  • the refrigerant that has been heat-exchanged and condensed by the refrigerant heat exchanger 5 a flows into the expansion device 12 via the receiver 7 and the opening / closing device 13.
  • the refrigerant expanded by the expansion device 12 is heat-exchanged by the use side heat exchanger 2 and evaporated, flows into the compressor 1 and is compressed again.
  • the oil flow path 410 connects the oil outflow portion 4 b of the oil separator 4 and the compressor 1.
  • An opening / closing device 55, a check valve 56 and a check valve 58 are installed in the middle of the oil flow path 410.
  • the oil separated by the oil separator 4 passes through, for example, the opening / closing device 55, then passes through the check valve 56, and is injected into the compressor 1.
  • the oil that has passed through the check valve 56 is branched before the compressor 1 and is injected into the low-stage compression unit 1a and the high-stage compression unit 1b of the compressor 1. ing.
  • a check valve 58 is installed between the low-stage compression section 1a and the high-stage compression section 1b, and oil flows from the high-stage compression section 1b to the low-stage compression section 1a through the oil passage 410. Is configured to not.
  • the opening / closing device 55 controls the passage of oil flowing through the oil flow path 410 by switching between opening and closing, and is configured by, for example, an electromagnetic valve.
  • the check valve 56 prevents oil from flowing back from the compressor 1 to the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2.
  • the injection flow path 430 is for injecting a part of the refrigerant heat-exchanged by the heat source side heat exchanger 5 into the compressor 1.
  • the injection flow path 430 branches from between the receiver 7 of the refrigerant circulation circuit 400 and the opening / closing device 13 and is connected to the intermediate stage 1 c of the compressor 1.
  • An injection expansion device 50 is installed in the middle of the injection flow path 430.
  • the injection expansion device 50 is composed of an electronic expansion valve whose opening degree can be changed, so that when a refrigerant injection of a refrigerant liquid is required, a part of the refrigerant can be injected into the compressor 1. It is configured.
  • only the oil injection for injecting oil performs the refrigerant injection only when the temperature of the refrigerant discharged from the compressor 1 exceeds the restriction temperature.
  • the refrigeration cycle apparatus 300 is operating transiently or when the outside air temperature outside the heat source side unit 200 is very high, an increase in the discharge gas refrigerant temperature may not be suppressed by only oil injection, In such a case, refrigerant injection is performed.
  • the time when the refrigeration cycle apparatus 300 is operating transiently is, for example, immediately after the start of operation of the refrigeration cycle apparatus 300 or when the operating state of the refrigeration cycle apparatus 300 changes abruptly.
  • the multi heat exchange flow path 420 is provided with a “flow path switching device” and a multi heat exchanger 5b in the middle, and flows out from the refrigerant outflow portion 4a of the oil separator 4 or out of the oil outflow portion 4b. Oil selectively flows to the multi heat exchanger 5b.
  • a first flow path 40 a communicates with the refrigerant outflow portion 4 a of the oil separator 4, and a second flow path 40 b communicates with the oil outflow portion 4 b of the oil separator 4.
  • the multi heat exchanger 5b is connected to the first flow path 40a and the second flow path 40b.
  • a “flow path switching device” is connected between the multi heat exchanger 5b and the first flow path 40a and the second flow path 40b.
  • the “flow path switching device” selectively communicates the multi-heat exchanger 5b with the first flow path 40a or the second flow path 40.
  • refrigerant or oil selectively flows through each of the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2.
  • the first multi-heat exchanger 5b1 is connected to the first flow path 40a via the switching device 53b.
  • the first multi-heat exchanger 5b1 is connected to the second flow path 40b via the opening / closing device 51b.
  • the opening / closing device 53b and the opening / closing device 51b correspond to the “flow path switching device” of the present invention.
  • the opening / closing device 53b and the opening / closing device 51b may be replaced with a three-way valve or the like.
  • the second multi-heat exchanger 5b2 is connected to the first flow path 40a via the opening / closing device 53a.
  • the second multi-heat exchanger 5b2 is connected to the second flow path 40b via the switchgear 51a.
  • the opening / closing device 53a and the opening / closing device 51a correspond to the “flow path switching device” of the present invention.
  • the opening / closing device 53a and the opening / closing device 51a may be replaced with a three-way valve or the like.
  • the refrigerant subjected to the heat exchange joins with the refrigerant flowing in the refrigerant circuit 400 through the opening / closing device 54b.
  • the oil subjected to heat exchange flows into the oil flow path 410 via the opening / closing device 52b.
  • the opening / closing device 54b and the opening / closing device 52b may be replaced with a three-way valve or the like.
  • the refrigerant subjected to the heat exchange joins with the refrigerant flowing through the refrigerant circuit 400 via the opening / closing device 54a. Further, when heat exchange between oil and air is performed in the second multi heat exchanger 5b2, the oil subjected to heat exchange flows into the oil flow path 410 via the opening / closing device 52a.
  • the opening / closing device 54a and the opening / closing device 52a may be replaced with a three-way valve or the like.
  • the refrigerant that has flowed through the opening / closing device 54a or the opening / closing device 54b joins the refrigerant that flows through the refrigerant circulation circuit 400 through the check valve 57, and the first multi-heat exchanger 5b1 from the refrigerant circulation circuit 400.
  • the refrigerant does not flow back to the second multi heat exchanger 5b2 side.
  • FIG. 2 is a diagram showing an example of the relationship between the function of the multi-heat exchanger according to Embodiment 1 of the present invention and the outside air temperature.
  • the normal outside temperature range is 25 to 35 degrees
  • the high outside temperature range is 35 to 40 degrees
  • the low outside temperature range is 25 degrees or less.
  • the ranges of the normal outside air temperature, the high outside air temperature, and the low outside air temperature are appropriately determined according to the specifications of the refrigeration cycle apparatus 300, and are not limited to the above examples.
  • the function of the multi heat exchanger 5b is changed according to the outside air temperature. That is, when the outside air temperature is the normal outside temperature, the first multi heat exchanger 5b1 functions as a refrigerant heat exchanger, and the second multi heat exchanger 5b2 functions as an oil heat exchanger. Moreover, when the outside air temperature is a high outside air temperature that is higher than the normal outside air temperature, the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 function as an oil heat exchanger. When the outside air temperature is a low outside air temperature that is lower than the normal outside air temperature, the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 function as a refrigerant heat exchanger.
  • FIG. 3 is a diagram for explaining an example of the operation of the refrigeration cycle apparatus at the normal outside air temperature.
  • the solid line arrows indicate the flow of the refrigerant
  • the dotted line arrows indicate the flow of the oil.
  • the opening / closing devices 51a, 52a, 53b and 54b are set to “open”, and the opening / closing devices 51b, 52b, 53a, 54a and 55 are set to “closed”. To do.
  • the refrigerant and oil separated by the oil separator 4 flow as follows. That is, the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5a to exchange heat, and flows into the first multi heat exchanger 5b1 through the opening / closing device 53b of the multi heat exchange channel 420. Heat exchanged.
  • the refrigerant heat-exchanged by the first multi-heat exchanger 5b1 passes through the opening / closing device 54b of the multi-heat exchange channel 420 and joins the refrigerant flowing through the refrigerant circulation circuit 400.
  • the refrigerant heat-exchanged by the refrigerant heat exchanger 5a and the refrigerant heat-exchanged by the first multi heat exchanger 5b1 flow into the expansion device 12 through the receiver 7.
  • the oil separated by the oil separator 4 flows into the second multi heat exchanger 5b2 through the opening / closing device 51a of the multi heat exchange flow path 420 and is heat-exchanged.
  • the oil heat-exchanged in the second multi-heat exchanger 5b2 flows through the oil passage 410 through the opening / closing device 52a of the multi-heat exchange passage 420, and is injected into the compressor 1. That is, in the example of this embodiment, the oil that has been heat-exchanged and cooled by the second multi-heat exchanger 5b2 is injected into the low-stage compression unit 1a through the check valve 56, and the check valve 56 and the check valve The high pressure compression unit 1b is injected through the stop valve 58.
  • the second multi heat exchanger 5b2 functions as an oil heat exchanger for exchanging heat of the oil
  • the first multi heat exchanger 5b1 functions as a refrigerant heat exchanger for exchanging heat between the refrigerants.
  • the outside air temperature is a normal outside air temperature
  • the temperature of the refrigerant discharged from the compressor 1 is restricted by cooling the oil only with the second multi-heat exchanger 5b2 and cooling the compressor 1 with the cooled oil. It can be kept below the temperature.
  • the first multi-heat exchanger 5b1 functions as a refrigerant heat exchanger that exchanges heat with the refrigerant
  • the heat exchange between the refrigerant and the air is performed using the wide heat transfer area of the heat source side heat exchanger 5. It can be performed.
  • the coefficient of performance of the refrigeration cycle apparatus 300 (cooling capacity of the refrigeration cycle apparatus / compression power of the compressor) is improved.
  • FIG. 4 is a diagram illustrating an example of the operation of the refrigeration cycle apparatus at a high outside air temperature.
  • the solid line arrow indicates the flow of the refrigerant
  • the dotted line arrow indicates the flow of the oil.
  • the opening / closing devices 51a, 51b, 52a and 52b are set to “open”, and the opening / closing devices 53a, 53b, 54a, 54b and 55 are set to “closed”. To do.
  • the refrigerant and oil separated by the oil separator 4 flow as follows. That is, the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5 a and is heat-exchanged, and flows into the expansion device 12 through the receiver 7.
  • the oil separated by the oil separator 4 passes through the opening / closing device 51a and the opening / closing device 51b of the multi heat exchange channel 420 and is heat-exchanged by the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2.
  • the oil heat-exchanged in the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 passes through the switching device 52a and the switching device 52b of the multi-heat exchange channel 420, and joins the oil channel 410 to be compressed. It is injected into the machine 1.
  • oil cooled by heat exchange in the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 is injected into the low-stage compression unit 1a through the check valve 56. Then, it is injected into the high-stage compression section 1b through the check valve 56 and the check valve 58.
  • the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 are oil heat exchangers that exchange oil with heat. It is functioning.
  • the oil is cooled by the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2, and the compressor 1 is cooled by the cooled oil.
  • the temperature of the discharge gas refrigerant can be suppressed below the restriction temperature.
  • the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 are made to function as oil heat exchangers that exchange oil. For this reason, the heat transfer area for heat exchange of the refrigerant in the heat source side heat exchanger 5 is narrow, and the condensation temperature of the refrigerant is high. Therefore, the compression power of the compressor 1 is increasing.
  • the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 are made to function as oil heat exchangers that exchange oil heat. Therefore, the coefficient of performance of the refrigeration cycle apparatus 300 is improved. The reason will be described in comparison with the following comparative example.
  • the comparative example when the outside air temperature is a high outside air temperature, at least one of the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 is caused to function as a refrigerant heat exchanger that exchanges heat between the refrigerants.
  • the heat transfer area for heat exchange with the refrigerant in the heat source side heat exchanger 5 increases, and the condensation temperature of the refrigerant decreases.
  • the heat transfer area for radiating the oil in the heat source side heat exchanger 5 is small, the oil cannot be sufficiently cooled.
  • the temperature of the refrigerant discharged from the compressor 1 cannot be suppressed below the restriction temperature only by oil injection. Therefore, in the comparative example, refrigerant injection is performed in order to keep the temperature of the refrigerant discharged from the compressor 1 below the restriction temperature.
  • refrigerant injection is performed in order to keep the temperature of the refrigerant discharged from the compressor 1 below the restriction temperature.
  • the pressure of the intermediate stage 1c between the low stage compression part 1a and the high stage compression part 1b of the compressor 1 increases.
  • the compression ratio in the low stage compression unit 1a increases, the volume efficiency in the low stage compression unit 1a deteriorates and the cooling capacity decreases. Furthermore, in the high stage compression unit 1b, the amount of refrigerant to be sucked increases, so that the compression power increases. As a result, when the outside air temperature is a high outside air temperature, at least one of the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 functions as a refrigerant heat exchanger that exchanges heat between the refrigerants. In this case, the coefficient of performance of the refrigeration cycle apparatus 300 decreases.
  • the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 function as oil heat exchangers (Embodiment 1), and the first multi heat exchanger.
  • the refrigerant injection is performed with at least one of 5b1 and the second multi-heat exchanger 5b2 functioning as a refrigerant heat exchanger (comparative example)
  • the oil when the outside air temperature becomes higher than the high outside air temperature, the oil may not be sufficiently cooled only by the oil injection, and therefore the oil injection and the liquid injection may be used in combination. .
  • FIG. 5 is a diagram illustrating an example of the operation of the refrigeration cycle apparatus at a low outside air temperature.
  • the solid line arrow indicates the flow of the refrigerant
  • the dotted line arrow indicates the flow of the oil.
  • the opening / closing devices 51a, 51b, 52a, 52b, 53a, 53b, 54a and 54b are set to “closed”, and the opening / closing device 55 is set to “open”. To do.
  • the refrigerant and oil separated by the oil separator 4 flow as follows.
  • the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5a and exchanges heat, and also passes through the opening / closing device 53a and the opening / closing device 53b of the multi-heat exchange channel 420, thereby performing the first multi-heat exchange.
  • Heat is exchanged in the vessel 5b1 and the second multi heat exchanger 5b2.
  • the refrigerant heat-exchanged in the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 merges with the refrigerant flowing in the refrigerant circulation circuit 400 through the opening / closing device 54a and the opening / closing device 54b of the multi-heat exchange channel 420. To do.
  • the refrigerant heat-exchanged by the refrigerant heat exchanger 5a, the refrigerant heat-exchanged by the first multi-heat exchanger 5b1, and the refrigerant heat-exchanged by the second multi-heat exchanger 5b2 pass through the receiver 7 to the expansion device 12. Inflow.
  • the oil separated by the oil separator 4 does not flow to the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2, but is directly injected into the compressor 1 through the opening / closing device 55 of the oil flow path 410. Is done. That is, when the outside air temperature is a low outside air temperature, the oil separated by the oil separator 4 is not cooled by the first multi-heat exchanger 5b1 or the second multi-heat exchanger 5b2, and the check valve 56 is injected into the low-stage compression unit 1a, and is injected into the high-stage compression unit 1b through the check valve 56 and the check valve 58.
  • the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 function as a refrigerant heat exchanger that exchanges heat between the refrigerants. is doing.
  • the outside air temperature is low, the temperature of the refrigerant discharged from the compressor 1 is low because the condensation temperature of the refrigerant is low.
  • the temperature of the oil separated from the refrigerant does not increase. Accordingly, when the outside air temperature is a low outside air temperature, the oil separated by the oil separator 4 is directly injected into the compressor 1 so that the temperature of the refrigerant discharged from the compressor 1 is kept below the restriction temperature. Can do.
  • the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 function as a refrigerant heat exchanger that exchanges heat with the refrigerant. Heat exchange between the refrigerant and the air can be performed using a wide heat transfer area of the heat source side heat exchanger 5.
  • the outside air temperature is a low outside air temperature
  • the condensation temperature of the refrigerant can be lowered, so that the compression power of the compressor 1 can be reduced. Therefore, in this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 is improved.
  • the coefficient of performance of the refrigeration cycle apparatus 300 can be improved by effectively using the heat transfer area of the heat source side heat exchanger 5 to exchange heat with refrigerant or oil. it can.
  • the coefficient of performance of the refrigeration cycle apparatus 300 is improved because the temperature of the refrigerant discharged from the compressor 1 is normally kept below the restriction temperature only by oil injection.
  • FIG. 6 is a diagram related to the first modification of the first embodiment, and is a diagram for explaining an example of the operation of the switchgear at the normal outside air temperature, and FIG. 7 relates to the first modification of the first embodiment.
  • FIG. 8 is a figure regarding the modification 1 of Embodiment 1, Comprising: Switchgear at the time of low outdoor temperature It is a figure explaining the example of operation
  • FIGS. 6 to 8 after the opening / closing control of the opening / closing device is performed by the startup control, the corresponding opening / closing device opens and closes in conjunction with each other. In addition, after the opening / closing control of the opening / closing device is performed by the stop time control, the corresponding opening / closing device opens and closes in conjunction with each other. That is, with the configuration of Modification 1, the number of opening / closing devices that perform opening / closing control can be reduced.
  • FIG. 9 is a diagram related to the second modification of the first embodiment, and is a diagram illustrating an example of the relationship between the function of the multi-heat exchanger and the outside air temperature.
  • the heat transfer area of the first multi-heat exchanger 5b1 and the heat transfer area of the second multi-heat exchanger 5b2 are different. That is, in Modification 2, the heat transfer area of the first multi-heat exchanger 5b1 is formed larger than the heat transfer area of the second multi-heat exchanger 5b2.
  • the heat transfer area of the heat source side heat exchanger 5 is changed by making the heat transfer area of the first multi-heat exchanger 5b1 different from the heat transfer area of the second multi-heat exchanger 5b2. Furthermore, it can utilize efficiently.
  • the first multi-heat exchanger 5b1 having a large heat transfer area is caused to function as an oil heat exchanger, and the second multi-heat exchanger 5b2 having a small heat transfer area is used as a refrigerant heat exchanger. It is functioning.
  • the normal outside air temperature B since the outside air temperature is lower than the normal outside air temperature A, the heat transfer area for heat exchange of oil is reduced and the heat transfer area for heat exchange of the refrigerant is increased. ing.
  • the first multi-heat exchanger 5b1 having a large heat transfer area is caused to function as a refrigerant heat exchanger, and the second multi-heat exchanger 5b2 having a small heat transfer area is used as an oil heat exchanger. It is functioning.
  • the coefficient of performance of the refrigeration cycle apparatus 300 can be improved.
  • FIG. 10 is a diagram related to the third modification of the first embodiment and is a diagram schematically illustrating an example of the refrigeration cycle apparatus.
  • the heat source side heat exchanger 5 includes two multi heat exchangers 5b (first multi heat exchanger 5b1 and second multi heat exchanger 5b2).
  • Embodiment 1 is not limited to the one provided with two multi heat exchangers 5b. That is, the heat source side heat exchanger 5 may be provided with one multi-heat exchanger 5b, or may be provided with three or more multi-heat exchangers 5b.
  • the heat source side heat exchanger 51 of the heat source side unit 200A1 of the refrigeration cycle apparatus 300A1 includes three multi heat exchangers 5b (first multi heat exchanger 5b1, second multi heat exchanger). 5b2 and a third multi-heat exchanger 5b3).
  • FIG. 11 is a diagram related to the third modification of the first embodiment and is a diagram illustrating an example of the relationship between the function of the multi-heat exchanger and the outside air temperature.
  • the oil quantity is changed by changing the quantity of the multi heat exchanger 5b that performs heat exchange between the normal outside air temperature A and the normal outside air temperature B that is lower than the normal outside air temperature A.
  • the ratio of the heat transfer area for heat exchange to the heat transfer area for heat exchange of the refrigerant is adjusted.
  • the normal outside air temperature A since the outside air temperature is higher than the normal outside air temperature B, the heat transfer area for heat exchange of oil is increased, and the heat transfer area for heat exchange of the refrigerant is reduced. .
  • the number of multi heat exchangers 5b that exchange heat with oil is increased, and the number of multi heat exchangers 5b that exchange heat with refrigerant is reduced.
  • the heat transfer area of the multi heat exchanger 5b is used more efficiently, and the coefficient of performance of the refrigeration cycle apparatus 300 is improved.
  • the heat transfer area of the heat source side heat exchanger 5 can be efficiently used by increasing the number of the multi heat exchangers 5b. The coefficient can be improved.
  • FIG. 12 is a diagram related to the fourth modification of the first embodiment and is a diagram illustrating an example of the relationship between the function of the multi-heat exchanger and the outside air temperature.
  • three multi heat exchangers 5b first multi heat exchanger 5b1, second multi heat exchanger 5b2, and third multi heat exchanger 5b3 are provided. Further, the heat transfer area of the first multi-heat exchanger 5b1 is formed to be the largest, the heat transfer area of the third multi-heat exchanger 5b3 is formed to be the smallest, and the heat transfer of the second multi-heat exchanger 5b2 is formed.
  • the area is smaller than the heat transfer area of the first multi-heat exchanger 5b1 and larger than the heat transfer area of the third multi-heat exchanger 5b3.
  • the coefficient of performance of the refrigeration cycle apparatus 300 can be improved further.
  • three or more multi-heat exchangers 5b may be provided, and the heat transfer areas of the three or more multi-heat exchangers 5b may be different.
  • FIG. 13 is a diagram schematically illustrating an example of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the economizer channel 430A is for injecting a part of the refrigerant heat-exchanged by the heat source side heat exchanger 5 into the compressor 1 via the economizer 49b.
  • the economizer flow path 430 ⁇ / b> A branches from between the receiver 7 of the refrigerant circulation circuit 400 and the opening / closing device 13 and is connected to the intermediate stage 1 c of the compressor 1.
  • the economizer 49b exchanges heat between the refrigerant flowing through the refrigerant circulation circuit 400 and the refrigerant passing through the economizer expansion device 49a in the economizer flow path 430A.
  • the economizer expansion device 49a is composed of an electronic expansion valve that can change the opening degree.
  • the refrigerant heat-exchanged by the economizer 49b through the economizer expansion device 49a of the economizer channel 430A is injected into the intermediate stage 1c of the compressor 1.
  • the pressure in the intermediate stage 1c of the compressor 1 can be reduced by making liquid injection unnecessary as in the first embodiment. Therefore, in this embodiment, the refrigeration effect (the amount of change in enthalpy per unit mass of the refrigerant) when the refrigerant flowing through the refrigerant circuit 400 is supercooled by the economizer 49b is increased, and the refrigeration capacity is increased. Yes. This is because the amount of heat exchange in the economizer 49b increases because the pressure in the intermediate stage 1c of the compressor 1 is low. Therefore, according to this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 is improved.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
  • the heat source side heat exchanger 5 includes the refrigerant heat exchanger 5a and the multi heat exchanger 5b
  • the heat source side heat exchanger includes a plurality of heat source side heat exchangers.
  • the thing provided with the multi heat exchanger 5b may be sufficient.
  • the heat transfer area of the heat source side heat exchanger can be effectively used by using the multi heat exchanger 5b of the heat source side heat exchanger. Therefore, the same effect as the above embodiment can be obtained.
  • the use side unit 100 and the heat source side unit 200 are configured separately, and the refrigeration cycle apparatus 300 in which these are connected by piping has been described. 300 may be configured such that the use side unit 100 and the heat source side unit 200 are integrally formed.
  • the heat source side unit 200 may be configured to include the opening / closing device 13, the expansion device 12, and the use side heat exchanger 2.
  • the refrigerant circulation circuit 400 is provided with flow path switching means such as a four-way valve, the direction in which the refrigerant flows is changed to cause the use side heat exchanger 2 to function as a condenser, and the heat source side heat exchanger 5
  • the refrigerant heat exchanger 5a can also function as an evaporator.
  • the flow path switching means may be installed so that the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5a of the use side heat exchanger 2 or the heat source side heat exchanger 5.
  • the refrigerant heat exchanger 5a of the heat source-side heat exchanger 5 functions as an evaporator
  • the compressor 1, the use-side heat exchanger 2, an expansion device 12 the refrigerant may be circulated in the order of the refrigerant heat exchanger 5a of the heat source side heat exchanger 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This heat source-side unit 200 is provided with: a compressor 1; an oil separator 4 that separates oil and refrigerant discharged from the compressor 1 so that the refrigerant is made to flow out from a refrigerant flow outlet 4a and the oil is made to flow out from an oil flow outlet 4b; a first flow channel 40a in communication with the refrigerant flow outlet 4a; a second flow channel 40b in communication with the oil flow outlet 4b; a heat source-side heat exchanger 5 having a multi-heat exchanger 5b that is connected to the first flow channel 40a and the second flow channel 40b and subjects the refrigerant or oil to heat exchange; and flow channel-switching devices 51a and 53a to switch whether the multi-heat exchanger 5 communicates with the first flow channel 40a or the second flow channel 40b.

Description

熱源側ユニットおよび冷凍サイクル装置Heat source unit and refrigeration cycle apparatus
 この発明は、熱源側ユニットおよび冷凍サイクル装置に関するものである。 The present invention relates to a heat source side unit and a refrigeration cycle apparatus.
 従来から、油分離器で分離した油を冷却し、冷却した油を圧縮機に戻す構成を備えた冷凍装置が知られている(特許文献1参照)。例えば、特許文献1の冷凍装置では、油分離器で分離した油が、凝縮器の一部を利用した空冷式油冷却器で冷却され、その後に冷媒冷却油冷却器で冷却されている。 Conventionally, a refrigeration apparatus having a configuration in which oil separated by an oil separator is cooled and the cooled oil is returned to a compressor is known (see Patent Document 1). For example, in the refrigeration apparatus of Patent Document 1, oil separated by an oil separator is cooled by an air-cooled oil cooler that uses a part of the condenser, and then cooled by a refrigerant cooling oil cooler.
特開平4-203764号公報(第2頁、第1図)Japanese Patent Laid-Open No. 4-203764 (2nd page, FIG. 1)
 特許文献1の冷凍装置では、凝縮器の一部が空冷式油冷却器として構成されているため、例えば油の冷却が不要な場合等においては、凝縮器の一部が機能せず、凝縮器の伝熱面積が有効に利用されていない。さらに、特許文献1の冷凍装置では、空冷式油冷却器のみでは、油の冷却を十分に行えない場合があるため、冷媒で油の冷却を行う冷媒冷却油冷却器が設けられている。特許文献1の冷媒冷却油冷却器は、油の冷却が不要な場合または空冷式油冷却器のみで油の冷却を行うことができる場合等には、不必要な構成となっている。 In the refrigeration apparatus of Patent Document 1, since a part of the condenser is configured as an air-cooled oil cooler, for example, when cooling of oil is unnecessary, a part of the condenser does not function, and the condenser The heat transfer area is not used effectively. Furthermore, in the refrigeration apparatus of Patent Document 1, there is a case where the oil cooling cannot be sufficiently performed only with the air-cooled oil cooler. Therefore, a refrigerant cooling oil cooler that cools the oil with a refrigerant is provided. The refrigerant cooling oil cooler of Patent Document 1 has an unnecessary configuration when cooling of oil is unnecessary or when cooling of oil can be performed only with an air-cooled oil cooler.
 この発明は、上記のような課題を背景としてなされたものであり、熱源側熱交換器の伝熱面積を有効に利用して、冷媒または油を熱交換させることによって、冷凍サイクル装置の成績係数を向上させることができる熱源側ユニットおよび冷凍サイクル装置を得ることを目的としている。 The present invention has been made against the background of the above problems, and by effectively utilizing the heat transfer area of the heat source side heat exchanger, the coefficient of performance of the refrigeration cycle apparatus is obtained by heat exchange of refrigerant or oil. It is an object to obtain a heat source side unit and a refrigeration cycle apparatus that can improve the temperature.
 この発明に係る熱源側ユニットは、圧縮機と、圧縮機から吐出された冷媒と油とを分離して、冷媒を冷媒流出部から流出させ、油を油流出部から流出させる、油分離器と、冷媒流出部に連通した第1流路と、油流出部に連通した第2流路と、第1流路および第2流路に接続され、冷媒または油を熱交換させるマルチ熱交換器を有する熱源側熱交換器と、マルチ熱交換器と第1流路または第2流路との連通を切り替える流路切替装置と、を備えている。 A heat source side unit according to the present invention includes a compressor, an oil separator that separates refrigerant and oil discharged from the compressor, causes the refrigerant to flow out from the refrigerant outflow portion, and causes oil to flow out from the oil outflow portion. A first flow path communicating with the refrigerant outflow section, a second flow path communicating with the oil outflow section, and a multi-heat exchanger connected to the first flow path and the second flow path for exchanging heat between the refrigerant or the oil. A heat source side heat exchanger, and a flow path switching device that switches communication between the multi-heat exchanger and the first flow path or the second flow path.
 また、この発明に係る冷凍サイクル装置は、上記の熱源側ユニットを備えている。 Further, a refrigeration cycle apparatus according to the present invention includes the above heat source side unit.
 この発明によれば、熱源側熱交換器の伝熱面積を有効に利用して、冷媒または油を熱交換させているため、冷凍サイクル装置の成績係数を向上させることができる。 According to the present invention, the coefficient of performance of the refrigeration cycle apparatus can be improved because the heat transfer area of the heat source side heat exchanger is effectively used to heat-exchange the refrigerant or oil.
この発明の実施の形態1に係る冷凍サイクル装置の例を模式的に記載した図である。It is the figure which described typically the example of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るマルチ熱交換器の機能と外気温度との関係の例を示す図である。It is a figure which shows the example of the relationship between the function of the multi heat exchanger which concerns on Embodiment 1 of this invention, and external temperature. 通常外気温度のときの冷凍サイクル装置の動作の例を説明する図である。It is a figure explaining the example of operation | movement of the refrigerating-cycle apparatus at the time of normal outside temperature. 高外気温度のときの冷凍サイクル装置の動作の例を説明する図である。It is a figure explaining the example of operation | movement of the refrigerating-cycle apparatus at the time of high outdoor temperature. 低外気温度のときの冷凍サイクル装置の動作の例を説明する図である。It is a figure explaining the example of operation | movement of the refrigerating-cycle apparatus at the time of low external temperature. 実施の形態1の変形例1に関する図であって、通常外気温度のときの開閉装置の動作の例を説明する図である。It is a figure regarding the modification 1 of Embodiment 1, Comprising: It is a figure explaining the example of operation | movement of the switchgear at the time of normal outside temperature. 実施の形態1の変形例1に関する図であって、高外気温度のときの開閉装置の動作の例を説明する図である。It is a figure regarding the modification 1 of Embodiment 1, Comprising: It is a figure explaining the example of operation | movement of the switchgear at the time of high outdoor temperature. 実施の形態1の変形例1に関する図であって、低外気温度のときの開閉装置の動作の例を説明する図である。It is a figure regarding the modification 1 of Embodiment 1, Comprising: It is a figure explaining the example of operation | movement of the switchgear at the time of low outdoor temperature. 実施の形態1の変形例2に関する図であって、マルチ熱交換器の機能と外気温度との関係の例を示す図である。It is a figure regarding the modification 2 of Embodiment 1, Comprising: It is a figure which shows the example of the relationship between the function of a multi heat exchanger, and external temperature. 実施の形態1の変形例3に関する図であって、冷凍サイクル装置の例を模式的に記載した図である。It is a figure regarding the modification 3 of Embodiment 1, Comprising: It is the figure which described typically the example of the refrigerating-cycle apparatus. 実施の形態1の変形例3に関する図であって、マルチ熱交換器の機能と外気温度との関係の例を示す図である。It is a figure regarding the modification 3 of Embodiment 1, Comprising: It is a figure which shows the example of the relationship between the function of a multi heat exchanger, and external temperature. 実施の形態1の変形例4に関する図であって、マルチ熱交換器の機能と外気温度との関係の例を示す図である。It is a figure regarding the modification 4 of Embodiment 1, Comprising: It is a figure which shows the example of the relationship between the function of a multi heat exchanger, and external temperature. この発明の実施の形態2に係る冷凍サイクル装置の例を模式的に記載した図である。It is the figure which described typically the example of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention.
 実施の形態1.
[冷凍サイクル装置]
 図1は、この発明の実施の形態1に係る冷凍サイクル装置の例を模式的に記載した図である。図1に示すように、この実施の形態に係る冷凍サイクル装置300は、利用側ユニット100と熱源側ユニット200とを備えている。利用側ユニット100と熱源側ユニット200とは配管で接続されており、冷媒が循環する冷媒循環回路400が形成されている。なお、この実施の形態の冷凍サイクル装置300では、例えばR32またはR410A等の断熱圧縮時のエンタルピーの差が大きい冷媒が使用されている。また、この実施の形態に係る冷凍サイクル装置300の熱源側ユニット200は、油が流れる油流路410と、冷媒または油が選択的に流れるマルチ熱交換流路420と、冷媒循環回路400に流れる冷媒の一部を圧縮機1にインジェクションするインジェクション流路430とを備えている。なお、図1において、冷媒循環回路400は実線で図示されており、油流路410は点線で図示されており、マルチ熱交換流路420は一点鎖線で図示されている。
Embodiment 1 FIG.
[Refrigeration cycle equipment]
FIG. 1 is a diagram schematically illustrating an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus 300 according to this embodiment includes a use side unit 100 and a heat source side unit 200. The use side unit 100 and the heat source side unit 200 are connected by piping, and a refrigerant circulation circuit 400 in which the refrigerant circulates is formed. In the refrigeration cycle apparatus 300 of this embodiment, a refrigerant having a large difference in enthalpy during adiabatic compression, such as R32 or R410A, is used. Further, the heat source side unit 200 of the refrigeration cycle apparatus 300 according to this embodiment flows through the oil passage 410 through which oil flows, the multi heat exchange passage 420 through which refrigerant or oil selectively flows, and the refrigerant circulation circuit 400. An injection flow path 430 for injecting a part of the refrigerant into the compressor 1. In FIG. 1, the refrigerant circulation circuit 400 is illustrated by a solid line, the oil flow path 410 is illustrated by a dotted line, and the multi heat exchange flow path 420 is illustrated by a one-dot chain line.
[利用側ユニット]
 利用側ユニット100は、開閉装置13と、膨張装置12と、利用側熱交換器2とを備え、これらが配管で接続されている。開閉装置13は、開閉を切り替えて、膨張装置12および利用側熱交換器2への冷媒の通過を制御するものであり、例えば電磁弁等で構成されている。なお、開閉装置13は、省略されていてもよい。膨張装置12は、冷媒を膨張させるものであり、例えば、開度を変更することができる電子式膨張弁、またはキャピラリーチューブ等で構成されている。利用側熱交換器2は、例えば冷媒と空気との熱交換を行わせるものである。例えば、利用側熱交換器2の近傍には、利用側熱交換器2へ空気を導く送風機(図示を省略)が設置されており、利用側熱交換器2での熱交換を促進するようになっている。
[Usage unit]
The use side unit 100 includes an opening / closing device 13, an expansion device 12, and a use side heat exchanger 2, and these are connected by piping. The opening / closing device 13 switches between opening and closing to control the passage of the refrigerant to the expansion device 12 and the use side heat exchanger 2, and is configured by, for example, an electromagnetic valve. The opening / closing device 13 may be omitted. The expansion device 12 expands the refrigerant, and includes, for example, an electronic expansion valve or a capillary tube whose opening degree can be changed. The use side heat exchanger 2 is for causing heat exchange between the refrigerant and air, for example. For example, a blower (not shown) that guides air to the use side heat exchanger 2 is installed in the vicinity of the use side heat exchanger 2 so as to promote heat exchange in the use side heat exchanger 2. It has become.
[熱源側ユニット]
 熱源側ユニット200は、圧縮機1と、油分離器4と、熱源側熱交換器5と、レシーバ7とを備え、これらが配管で接続されている。圧縮機1は、冷媒を圧縮するものであり、例えば低段圧縮部1aと高段圧縮部1bとを含む二段スクリュー圧縮機である。低段圧縮部1aと高段圧縮部1bとの間には、冷媒を注入することができる中間段1cが設けられている。低段圧縮部1aは、利用側熱交換器2から冷媒ガスを吸い込み、第1段の圧縮を行って、中間段1cへ吐出する。高段圧縮部1bは、中間段1cから冷媒ガスを吸い込み、第2段の圧縮を行って、油分離器4へ吐出する。なお、この実施の形態に適用される圧縮機1は、上記の二段スクリュー圧縮機に限定されるものではない。例えば、圧縮機1は、スクロール圧縮機等の他の原理を利用した圧縮機であってもよく、一段または三段以上で構成された圧縮機であってもよい。圧縮機1で使用されているパーツには、温度に制約があるものがある。そのため、圧縮機1から吐出される冷媒の温度には制約が設けられている。圧縮機1から吐出される吐出冷媒の制約温度は、例えば85度であるが、制約温度は、圧縮機1の仕様等によって変わるものであり、85度に限定されるものではない。圧縮機1は、吐出冷媒の温度を例えば制約温度以下とするように制御されている。なお、圧縮機1は、例えば、図示を省略してあるインバータ等によって駆動され、回転数を調整することができるものであってもよい。また、熱源側ユニット200は、熱源側ユニット200の外部の外気温度を検出する温度センサ70および熱源側ユニット200の全体の制御を行う制御装置72を備えている。制御装置72は、例えば、温度センサ70が検出した外気温度等を利用して、圧縮機1、インジェクション用膨張装置50、ならびに開閉装置51a、52a、53a、54a、51b、52b、53b、54bおよび55等の制御を行う。
[Heat source side unit]
The heat source side unit 200 includes a compressor 1, an oil separator 4, a heat source side heat exchanger 5, and a receiver 7, which are connected by piping. The compressor 1 compresses a refrigerant, and is, for example, a two-stage screw compressor including a low-stage compression unit 1a and a high-stage compression unit 1b. Between the low stage compression part 1a and the high stage compression part 1b, the intermediate | middle stage 1c which can inject | pour a refrigerant | coolant is provided. The low stage compression unit 1a sucks the refrigerant gas from the use side heat exchanger 2, performs the first stage compression, and discharges it to the intermediate stage 1c. The high stage compression unit 1 b sucks the refrigerant gas from the intermediate stage 1 c, performs the second stage compression, and discharges it to the oil separator 4. In addition, the compressor 1 applied to this embodiment is not limited to the above-described two-stage screw compressor. For example, the compressor 1 may be a compressor using other principles such as a scroll compressor, or may be a compressor constituted of one stage or three or more stages. Some parts used in the compressor 1 are limited in temperature. Therefore, there is a restriction on the temperature of the refrigerant discharged from the compressor 1. The restriction temperature of the refrigerant discharged from the compressor 1 is, for example, 85 degrees, but the restriction temperature varies depending on the specifications of the compressor 1 and the like, and is not limited to 85 degrees. The compressor 1 is controlled so that the temperature of the discharged refrigerant is, for example, a restriction temperature or less. The compressor 1 may be driven by, for example, an inverter (not shown) and can adjust the rotation speed. Further, the heat source side unit 200 includes a temperature sensor 70 that detects the outside air temperature outside the heat source side unit 200 and a control device 72 that controls the entire heat source side unit 200. The control device 72 uses, for example, the outside temperature detected by the temperature sensor 70, the compressor 1, the expansion device for injection 50, and the opening / closing devices 51a, 52a, 53a, 54a, 51b, 52b, 53b, 54b and Control 55 etc. is performed.
 油分離器4は、圧縮機1から吐出された冷媒と油とを分離するものである。油分離器4は、分離した冷媒を流出させる冷媒流出部4aと、分離した油を流出させる油流出部4bとを有する。熱源側熱交換器5は、冷媒熱交換器5aと1つ以上のマルチ熱交換器5bとを備えている。冷媒熱交換器5aは、油分離器4で分離された冷媒と空気との熱交換を行わせるものである。マルチ熱交換器5bは、油分離器4で分離された冷媒または油と空気との熱交換を行わせるものである。この実施の形態では、1つの冷媒熱交換器5aと、冷媒熱交換器5aの下方に設けられた2つのマルチ熱交換器5b(第1マルチ熱交換器5b1および第2マルチ熱交換器5b2)と、が一体的に形成された熱源側熱交換器5の例について説明する。なお、マルチ熱交換器5bが冷媒熱交換器5aの上方に設けられていてもよく、マルチ熱交換器5bが冷媒熱交換器5aの上方および下方に設けられていてもよいが、マルチ熱交換器5bを冷媒熱交換器5aの下方に設置することによって、マルチ熱交換器5bが油と空気との熱交換を行わせる油熱交換器として作用するときに、油の放熱が効率良く行われる。冷媒熱交換器5aとマルチ熱交換器5bとは、異なる伝熱面積を有している。冷媒熱交換器5aは、マルチ熱交換器5bと比較して、小さい伝熱面積を有するものであってもよいが、冷媒熱交換器5aが、マルチ熱交換器5bと比較して、大きい伝熱面積を有することによって、冷媒を熱交換させる伝熱面積を確実に確保することができる。送風機6は、熱源側熱交換器5へ空気を導くものであり、熱源側熱交換器5の近傍に設置されている。レシーバ7は、熱源側熱交換器5から流出した冷媒液を溜める機能を有するものである。なお、レシーバ7は、省略されていてもよい。 The oil separator 4 separates the refrigerant discharged from the compressor 1 and the oil. The oil separator 4 has a refrigerant outflow portion 4a for flowing out the separated refrigerant and an oil outflow portion 4b for flowing out the separated oil. The heat source side heat exchanger 5 includes a refrigerant heat exchanger 5a and one or more multi-heat exchangers 5b. The refrigerant heat exchanger 5a exchanges heat between the refrigerant separated by the oil separator 4 and air. The multi heat exchanger 5b performs heat exchange between the refrigerant or oil separated by the oil separator 4 and oil. In this embodiment, one refrigerant heat exchanger 5a and two multi heat exchangers 5b provided below the refrigerant heat exchanger 5a (first multi heat exchanger 5b1 and second multi heat exchanger 5b2). An example of the heat source side heat exchanger 5 in which are integrally formed will be described. The multi heat exchanger 5b may be provided above the refrigerant heat exchanger 5a, and the multi heat exchanger 5b may be provided above and below the refrigerant heat exchanger 5a. By installing the heat exchanger 5b below the refrigerant heat exchanger 5a, the heat is efficiently radiated when the multi heat exchanger 5b acts as an oil heat exchanger that performs heat exchange between oil and air. . The refrigerant heat exchanger 5a and the multi heat exchanger 5b have different heat transfer areas. The refrigerant heat exchanger 5a may have a smaller heat transfer area than the multi heat exchanger 5b, but the refrigerant heat exchanger 5a has a larger heat transfer than the multi heat exchanger 5b. By having a heat area, a heat transfer area for heat exchange of the refrigerant can be ensured. The blower 6 guides air to the heat source side heat exchanger 5 and is installed in the vicinity of the heat source side heat exchanger 5. The receiver 7 has a function of accumulating the refrigerant liquid flowing out from the heat source side heat exchanger 5. The receiver 7 may be omitted.
[冷媒循環回路]
 冷媒循環回路400は、圧縮機1と、油分離器4の冷媒流路と、熱源側熱交換器5の冷媒熱交換器5aと、レシーバ7と、開閉装置13と、膨張装置12と、利用側熱交換器2とが、配管で環状に接続され、内部に冷媒が循環するものである。圧縮機1で圧縮された冷媒は、油分離器4で冷媒と油とに分離される。油分離器4で分離された冷媒は、冷媒流出部4aから流出して、冷媒熱交換器5aに流入する。冷媒熱交換器5aで熱交換されて凝縮した冷媒は、レシーバ7および開閉装置13を介して、膨張装置12に流入する。膨張装置12で膨張された冷媒は、利用側熱交換器2で熱交換されて蒸発し、圧縮機1に流入し再び圧縮される。
[Refrigerant circulation circuit]
The refrigerant circuit 400 includes the compressor 1, the refrigerant flow path of the oil separator 4, the refrigerant heat exchanger 5a of the heat source side heat exchanger 5, the receiver 7, the switching device 13, the expansion device 12, and the use The side heat exchanger 2 is connected in an annular shape by piping, and the refrigerant circulates inside. The refrigerant compressed by the compressor 1 is separated into refrigerant and oil by the oil separator 4. The refrigerant separated by the oil separator 4 flows out from the refrigerant outflow portion 4a and flows into the refrigerant heat exchanger 5a. The refrigerant that has been heat-exchanged and condensed by the refrigerant heat exchanger 5 a flows into the expansion device 12 via the receiver 7 and the opening / closing device 13. The refrigerant expanded by the expansion device 12 is heat-exchanged by the use side heat exchanger 2 and evaporated, flows into the compressor 1 and is compressed again.
[油流路]
 油流路410は、油分離器4の油流出部4bと圧縮機1とを接続するものである。油流路410の途中部には、開閉装置55と逆止弁56と逆止弁58とが設置されている。油分離器4で分離された油は、例えば、開閉装置55を通過し、その後に逆止弁56を通過して、圧縮機1にインジェクションされる。この実施の形態の例では、逆止弁56を通過した油は、圧縮機1の手前で分岐され、圧縮機1の低段圧縮部1aと高段圧縮部1bとにインジェクションされるようになっている。低段圧縮部1aと高段圧縮部1bとの間には、逆止弁58が設置されており、油流路410を通って、高段圧縮部1bから低段圧縮部1aに油が流れないように構成されている。開閉装置55は、開閉を切り替えて、油流路410に流れる油の通過を制御するものであり、例えば電磁弁等で構成されている。逆止弁56は、圧縮機1から第1マルチ熱交換器5b1および第2マルチ熱交換器5b2へ油が逆流することを防止するものである。
[Oil channel]
The oil flow path 410 connects the oil outflow portion 4 b of the oil separator 4 and the compressor 1. An opening / closing device 55, a check valve 56 and a check valve 58 are installed in the middle of the oil flow path 410. The oil separated by the oil separator 4 passes through, for example, the opening / closing device 55, then passes through the check valve 56, and is injected into the compressor 1. In the example of this embodiment, the oil that has passed through the check valve 56 is branched before the compressor 1 and is injected into the low-stage compression unit 1a and the high-stage compression unit 1b of the compressor 1. ing. A check valve 58 is installed between the low-stage compression section 1a and the high-stage compression section 1b, and oil flows from the high-stage compression section 1b to the low-stage compression section 1a through the oil passage 410. Is configured to not. The opening / closing device 55 controls the passage of oil flowing through the oil flow path 410 by switching between opening and closing, and is configured by, for example, an electromagnetic valve. The check valve 56 prevents oil from flowing back from the compressor 1 to the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2.
[インジェクション流路]
 インジェクション流路430は、熱源側熱交換器5で熱交換された冷媒の一部を、圧縮機1にインジェクションするものである。インジェクション流路430は、冷媒循環回路400のレシーバ7と開閉装置13との間から分岐して、圧縮機1の中間段1cに接続されている。インジェクション流路430の途中部には、インジェクション用膨張装置50が設置されている。インジェクション用膨張装置50は、開度を変更することができる電子式膨張弁で構成されており、冷媒液の冷媒インジェクションを必要とするときに、冷媒の一部を圧縮機1にインジェクションできるように構成されている。この実施の形態では、油をインジェクションする油インジェクションのみでは、圧縮機1から吐出される冷媒の温度が制約温度を超えてしまう場合にのみ、冷媒インジェクションを行う。例えば、冷凍サイクル装置300が過渡的に運転しているとき、または熱源側ユニット200の外側の外気温度が非常に高いときに、油インジェクションのみでは吐出ガス冷媒温度の上昇を抑制できない場合があり、このような場合に冷媒インジェクションを行う。なお、冷凍サイクル装置300が過渡的に運転しているときとは、例えば、冷凍サイクル装置300の運転開始直後または冷凍サイクル装置300の運転状態が急激に変化したとき等である。
[Injection flow path]
The injection flow path 430 is for injecting a part of the refrigerant heat-exchanged by the heat source side heat exchanger 5 into the compressor 1. The injection flow path 430 branches from between the receiver 7 of the refrigerant circulation circuit 400 and the opening / closing device 13 and is connected to the intermediate stage 1 c of the compressor 1. An injection expansion device 50 is installed in the middle of the injection flow path 430. The injection expansion device 50 is composed of an electronic expansion valve whose opening degree can be changed, so that when a refrigerant injection of a refrigerant liquid is required, a part of the refrigerant can be injected into the compressor 1. It is configured. In this embodiment, only the oil injection for injecting oil performs the refrigerant injection only when the temperature of the refrigerant discharged from the compressor 1 exceeds the restriction temperature. For example, when the refrigeration cycle apparatus 300 is operating transiently or when the outside air temperature outside the heat source side unit 200 is very high, an increase in the discharge gas refrigerant temperature may not be suppressed by only oil injection, In such a case, refrigerant injection is performed. Note that the time when the refrigeration cycle apparatus 300 is operating transiently is, for example, immediately after the start of operation of the refrigeration cycle apparatus 300 or when the operating state of the refrigeration cycle apparatus 300 changes abruptly.
[マルチ熱交換流路]
 マルチ熱交換流路420は、途中部に「流路切替装置」およびマルチ熱交換器5bが設置されており、油分離器4の冷媒流出部4aから流出した冷媒または油流出部4bから流出した油が、マルチ熱交換器5bに選択的に流れるようになっている。油分離器4の冷媒流出部4aには、第1流路40aが連通しており、油分離器4の油流出部4bには、第2流路40bが連通している。そして、マルチ熱交換器5bは、第1流路40aおよび第2流路40bに接続されている。マルチ熱交換器5bと第1流路40aおよび第2流路40bとの間には「流路切替装置」が接続されている。「流路切替装置」は、マルチ熱交換器5bと第1流路40aまたは第2流路40とを選択的に連通させる。この実施の形態の例では、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2のそれぞれに、冷媒または油が選択的に流れるようになっている。
[Multi heat exchange channel]
The multi heat exchange flow path 420 is provided with a “flow path switching device” and a multi heat exchanger 5b in the middle, and flows out from the refrigerant outflow portion 4a of the oil separator 4 or out of the oil outflow portion 4b. Oil selectively flows to the multi heat exchanger 5b. A first flow path 40 a communicates with the refrigerant outflow portion 4 a of the oil separator 4, and a second flow path 40 b communicates with the oil outflow portion 4 b of the oil separator 4. The multi heat exchanger 5b is connected to the first flow path 40a and the second flow path 40b. A “flow path switching device” is connected between the multi heat exchanger 5b and the first flow path 40a and the second flow path 40b. The “flow path switching device” selectively communicates the multi-heat exchanger 5b with the first flow path 40a or the second flow path 40. In the example of this embodiment, refrigerant or oil selectively flows through each of the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2.
 第1マルチ熱交換器5b1は、開閉装置53bを介して、第1流路40aと接続されている。また、第1マルチ熱交換器5b1は、開閉装置51bを介して、第2流路40bと接続されている。開閉装置53bおよび開閉装置51bは、この発明の「流路切替装置」に相当するものである。開閉装置53bおよび開閉装置51bは、三方弁等に置き換えられてもよい。 The first multi-heat exchanger 5b1 is connected to the first flow path 40a via the switching device 53b. The first multi-heat exchanger 5b1 is connected to the second flow path 40b via the opening / closing device 51b. The opening / closing device 53b and the opening / closing device 51b correspond to the “flow path switching device” of the present invention. The opening / closing device 53b and the opening / closing device 51b may be replaced with a three-way valve or the like.
 第2マルチ熱交換器5b2は、開閉装置53aを介して、第1流路40aと接続されている。また、第2マルチ熱交換器5b2は、開閉装置51aを介して、第2流路40bと接続されている。開閉装置53aおよび開閉装置51aは、この発明の「流路切替装置」に相当するものである。開閉装置53aおよび開閉装置51aは、三方弁等に置き換えられてもよい。 The second multi-heat exchanger 5b2 is connected to the first flow path 40a via the opening / closing device 53a. The second multi-heat exchanger 5b2 is connected to the second flow path 40b via the switchgear 51a. The opening / closing device 53a and the opening / closing device 51a correspond to the “flow path switching device” of the present invention. The opening / closing device 53a and the opening / closing device 51a may be replaced with a three-way valve or the like.
 第1マルチ熱交換器5b1で冷媒と空気との熱交換が行われた場合には、熱交換が行われた冷媒は開閉装置54bを介して冷媒循環回路400を流れる冷媒と合流する。また、第1マルチ熱交換器5b1で油と空気との熱交換が行われた場合には、熱交換が行われた油は開閉装置52bを介して油流路410に流れる。開閉装置54bおよび開閉装置52bは、三方弁等に置き換えられてもよい。 When the heat exchange between the refrigerant and the air is performed in the first multi-heat exchanger 5b1, the refrigerant subjected to the heat exchange joins with the refrigerant flowing in the refrigerant circuit 400 through the opening / closing device 54b. In addition, when heat exchange between oil and air is performed in the first multi-heat exchanger 5b1, the oil subjected to heat exchange flows into the oil flow path 410 via the opening / closing device 52b. The opening / closing device 54b and the opening / closing device 52b may be replaced with a three-way valve or the like.
 第2マルチ熱交換器5b2で冷媒と空気との熱交換が行われた場合には、熱交換が行われた冷媒は開閉装置54aを介して冷媒循環回路400を流れる冷媒と合流する。また、第2マルチ熱交換器5b2で油と空気との熱交換が行われた場合には、熱交換が行われた油が開閉装置52aを介して油流路410に流れる。開閉装置54aおよび開閉装置52aは、三方弁等に置き換えられてもよい。なお、開閉装置54aまたは開閉装置54bを流れた冷媒は、逆止弁57を通って冷媒循環回路400を流れる冷媒と合流するようになっており、冷媒循環回路400から第1マルチ熱交換器5b1または第2マルチ熱交換器5b2側に冷媒が逆流しないようになっている。 When the heat exchange between the refrigerant and the air is performed in the second multi heat exchanger 5b2, the refrigerant subjected to the heat exchange joins with the refrigerant flowing through the refrigerant circuit 400 via the opening / closing device 54a. Further, when heat exchange between oil and air is performed in the second multi heat exchanger 5b2, the oil subjected to heat exchange flows into the oil flow path 410 via the opening / closing device 52a. The opening / closing device 54a and the opening / closing device 52a may be replaced with a three-way valve or the like. Note that the refrigerant that has flowed through the opening / closing device 54a or the opening / closing device 54b joins the refrigerant that flows through the refrigerant circulation circuit 400 through the check valve 57, and the first multi-heat exchanger 5b1 from the refrigerant circulation circuit 400. Alternatively, the refrigerant does not flow back to the second multi heat exchanger 5b2 side.
[実施の形態1の冷凍サイクル装置の動作例]
 次に、この実施の形態に係る冷凍サイクル装置300の動作の例について説明する。図2は、この発明の実施の形態1に係るマルチ熱交換器の機能と外気温度との関係の例を示す図である。なお、図2に示す例では、通常外気温度の範囲が25度~35度となっており、高外気温度の範囲が35度~40度となっており、低外気温度の範囲が25度以下となっているが、通常外気温度、高外気温度および低外気温度の範囲は、冷凍サイクル装置300の仕様等に応じて適宜定められるものであり、上記の例に限定されるものではない。
[Operation Example of Refrigeration Cycle Device of Embodiment 1]
Next, an example of the operation of the refrigeration cycle apparatus 300 according to this embodiment will be described. FIG. 2 is a diagram showing an example of the relationship between the function of the multi-heat exchanger according to Embodiment 1 of the present invention and the outside air temperature. In the example shown in FIG. 2, the normal outside temperature range is 25 to 35 degrees, the high outside temperature range is 35 to 40 degrees, and the low outside temperature range is 25 degrees or less. However, the ranges of the normal outside air temperature, the high outside air temperature, and the low outside air temperature are appropriately determined according to the specifications of the refrigeration cycle apparatus 300, and are not limited to the above examples.
 図2に示すように、この実施の形態に係る冷凍サイクル装置300では、外気温度に応じて、マルチ熱交換器5bの機能を変更する。すなわち、外気温度が通常外気温度である場合には、第1マルチ熱交換器5b1が冷媒熱交換器として機能し、第2マルチ熱交換器5b2が油熱交換器として機能する。また、外気温度が通常外気温度と比較して高い高外気温度である場合には、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2が、油熱交換器として機能する。また、外気温度が通常外気温度と比較して低い低外気温度である場合には、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2が、冷媒熱交換器として機能する。 As shown in FIG. 2, in the refrigeration cycle apparatus 300 according to this embodiment, the function of the multi heat exchanger 5b is changed according to the outside air temperature. That is, when the outside air temperature is the normal outside temperature, the first multi heat exchanger 5b1 functions as a refrigerant heat exchanger, and the second multi heat exchanger 5b2 functions as an oil heat exchanger. Moreover, when the outside air temperature is a high outside air temperature that is higher than the normal outside air temperature, the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 function as an oil heat exchanger. When the outside air temperature is a low outside air temperature that is lower than the normal outside air temperature, the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 function as a refrigerant heat exchanger.
[通常外気温度のときの冷凍サイクル装置の動作]
 まず、外気温度が通常外気温度のときの冷凍サイクル装置300の動作の例について説明する。図3は、通常外気温度のときの冷凍サイクル装置の動作の例を説明する図である。なお、図3において、実線の矢印は冷媒の流れを示しており、点線の矢印は油の流れを示している。図3に示すように、外気温度が通常外気温度である場合には、開閉装置51a、52a、53bおよび54bを“開”とし、開閉装置51b、52b、53a、54aおよび55を“閉”とする。このときに、油分離器4で分離された冷媒および油は、以下のように流れる。すなわち、油分離器4で分離された冷媒は、冷媒熱交換器5aに流入し熱交換されるとともに、マルチ熱交換流路420の開閉装置53bを通って第1マルチ熱交換器5b1に流入し熱交換される。第1マルチ熱交換器5b1で熱交換された冷媒は、マルチ熱交換流路420の開閉装置54bを通って、冷媒循環回路400を流れる冷媒と合流する。冷媒熱交換器5aで熱交換された冷媒および第1マルチ熱交換器5b1で熱交換された冷媒は、レシーバ7を通って膨張装置12に流入する。
[Operation of refrigeration cycle equipment at normal outside air temperature]
First, an example of the operation of the refrigeration cycle apparatus 300 when the outside air temperature is the normal outside air temperature will be described. FIG. 3 is a diagram for explaining an example of the operation of the refrigeration cycle apparatus at the normal outside air temperature. In FIG. 3, the solid line arrows indicate the flow of the refrigerant, and the dotted line arrows indicate the flow of the oil. As shown in FIG. 3, when the outside air temperature is a normal outside air temperature, the opening / closing devices 51a, 52a, 53b and 54b are set to “open”, and the opening / closing devices 51b, 52b, 53a, 54a and 55 are set to “closed”. To do. At this time, the refrigerant and oil separated by the oil separator 4 flow as follows. That is, the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5a to exchange heat, and flows into the first multi heat exchanger 5b1 through the opening / closing device 53b of the multi heat exchange channel 420. Heat exchanged. The refrigerant heat-exchanged by the first multi-heat exchanger 5b1 passes through the opening / closing device 54b of the multi-heat exchange channel 420 and joins the refrigerant flowing through the refrigerant circulation circuit 400. The refrigerant heat-exchanged by the refrigerant heat exchanger 5a and the refrigerant heat-exchanged by the first multi heat exchanger 5b1 flow into the expansion device 12 through the receiver 7.
 また、油分離器4で分離された油は、マルチ熱交換流路420の開閉装置51aを通って第2マルチ熱交換器5b2に流入し熱交換される。第2マルチ熱交換器5b2で熱交換された油は、マルチ熱交換流路420の開閉装置52aを通って、油流路410を流れ、圧縮機1にインジェクションされる。つまり、この実施の形態の例では、第2マルチ熱交換器5b2で熱交換されて冷却された油は、逆止弁56を通って低段圧縮部1aにインジェクションされ、逆止弁56および逆止弁58を通って高段圧縮部1bにインジェクションされる。 Further, the oil separated by the oil separator 4 flows into the second multi heat exchanger 5b2 through the opening / closing device 51a of the multi heat exchange flow path 420 and is heat-exchanged. The oil heat-exchanged in the second multi-heat exchanger 5b2 flows through the oil passage 410 through the opening / closing device 52a of the multi-heat exchange passage 420, and is injected into the compressor 1. That is, in the example of this embodiment, the oil that has been heat-exchanged and cooled by the second multi-heat exchanger 5b2 is injected into the low-stage compression unit 1a through the check valve 56, and the check valve 56 and the check valve The high pressure compression unit 1b is injected through the stop valve 58.
 上記のように、この実施の形態では、外気温度が通常外気温度である場合には、第2マルチ熱交換器5b2が油を熱交換させる油熱交換器として機能し、第1マルチ熱交換器5b1が冷媒を熱交換させる冷媒熱交換器として機能している。外気温度が通常外気温度である場合には、第2マルチ熱交換器5b2のみで油を冷却し、冷却した油で圧縮機1を冷却することによって、圧縮機1が吐出する冷媒の温度を制約温度以下に抑えることができる。そして、第1マルチ熱交換器5b1は、冷媒と熱交換を行う冷媒熱交換器として機能しているため、熱源側熱交換器5の広い伝熱面積を使用して冷媒と空気との熱交換を行うことができる。その結果、この実施の形態では、外気温度が通常外気温度である場合には、冷媒の凝縮温度を低くすることができるため、圧縮機1の圧縮動力を低減することができる。したがって、この実施の形態では、冷凍サイクル装置300の成績係数(冷凍サイクル装置の冷却能力/圧縮機の圧縮動力)が向上されている。 As described above, in this embodiment, when the outside air temperature is the normal outside air temperature, the second multi heat exchanger 5b2 functions as an oil heat exchanger for exchanging heat of the oil, and the first multi heat exchanger 5b1 functions as a refrigerant heat exchanger for exchanging heat between the refrigerants. When the outside air temperature is a normal outside air temperature, the temperature of the refrigerant discharged from the compressor 1 is restricted by cooling the oil only with the second multi-heat exchanger 5b2 and cooling the compressor 1 with the cooled oil. It can be kept below the temperature. Since the first multi-heat exchanger 5b1 functions as a refrigerant heat exchanger that exchanges heat with the refrigerant, the heat exchange between the refrigerant and the air is performed using the wide heat transfer area of the heat source side heat exchanger 5. It can be performed. As a result, in this embodiment, when the outside air temperature is the normal outside air temperature, the condensation temperature of the refrigerant can be lowered, so that the compression power of the compressor 1 can be reduced. Therefore, in this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 (cooling capacity of the refrigeration cycle apparatus / compression power of the compressor) is improved.
[高外気温度のときの冷凍サイクル装置の動作]
 次に、外気温度が通常外気温度と比較して高い高外気温度であるときの冷凍サイクル装置300の動作の例について説明する。図4は、高外気温度のときの冷凍サイクル装置の動作の例を説明する図である。なお、図4において、実線の矢印は冷媒の流れを示しており、点線の矢印は油の流れを示している。図4に示すように、外気温度が高外気温度である場合には、開閉装置51a、51b、52aおよび52bを“開”として、開閉装置53a、53b、54a、54bおよび55を“閉”とする。このときに、油分離器4で分離された冷媒および油は、以下のように流れる。すなわち、油分離器4で分離された冷媒は、冷媒熱交換器5aに流入し熱交換され、レシーバ7を通って膨張装置12に流入する。
[Operation of refrigeration cycle equipment at high outside air temperature]
Next, an example of the operation of the refrigeration cycle apparatus 300 when the outside air temperature is a high outside air temperature that is higher than the normal outside air temperature will be described. FIG. 4 is a diagram illustrating an example of the operation of the refrigeration cycle apparatus at a high outside air temperature. In FIG. 4, the solid line arrow indicates the flow of the refrigerant, and the dotted line arrow indicates the flow of the oil. As shown in FIG. 4, when the outside air temperature is a high outside air temperature, the opening / closing devices 51a, 51b, 52a and 52b are set to “open”, and the opening / closing devices 53a, 53b, 54a, 54b and 55 are set to “closed”. To do. At this time, the refrigerant and oil separated by the oil separator 4 flow as follows. That is, the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5 a and is heat-exchanged, and flows into the expansion device 12 through the receiver 7.
 また、油分離器4で分離された油は、マルチ熱交換流路420の開閉装置51aおよび開閉装置51bを通って、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2で熱交換される。第1マルチ熱交換器5b1および第2マルチ熱交換器5b2で熱交換された油は、マルチ熱交換流路420の開閉装置52aおよび開閉装置52bを通って、油流路410に合流し、圧縮機1にインジェクションされる。つまり、この実施の形態の例では、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2で熱交換されて冷却された油は、逆止弁56を通って低段圧縮部1aにインジェクションされ、逆止弁56および逆止弁58を通って高段圧縮部1bにインジェクションされる。 Further, the oil separated by the oil separator 4 passes through the opening / closing device 51a and the opening / closing device 51b of the multi heat exchange channel 420 and is heat-exchanged by the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2. The The oil heat-exchanged in the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 passes through the switching device 52a and the switching device 52b of the multi-heat exchange channel 420, and joins the oil channel 410 to be compressed. It is injected into the machine 1. That is, in the example of this embodiment, oil cooled by heat exchange in the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 is injected into the low-stage compression unit 1a through the check valve 56. Then, it is injected into the high-stage compression section 1b through the check valve 56 and the check valve 58.
 上記のように、この実施の形態では、外気温度が高外気温度である場合には、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2が、油を熱交換させる油熱交換器として機能している。外気温度が高外気温度である場合には、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2で油を冷却し、冷却した油で圧縮機1を冷却することによって、圧縮機1の吐出ガス冷媒の温度を制約温度以下に抑えることができる。 As described above, in this embodiment, when the outside air temperature is a high outside air temperature, the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 are oil heat exchangers that exchange oil with heat. It is functioning. When the outside air temperature is a high outside air temperature, the oil is cooled by the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2, and the compressor 1 is cooled by the cooled oil. The temperature of the discharge gas refrigerant can be suppressed below the restriction temperature.
 なお、この実施の形態では、外気温度が高外気温度である場合に、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2を、油を熱交換させる油熱交換器として機能させているため、熱源側熱交換器5の冷媒を熱交換させる伝熱面積が狭くなっており、冷媒の凝縮温度が高くなっている。そのため、圧縮機1の圧縮動力が増加している。しかしながら、この実施の形態では、外気温度が高外気温度である場合に、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2を、油を熱交換させる油熱交換器として機能させているため、冷凍サイクル装置300の成績係数が向上されている。その理由を以下の比較例と比較して説明する。 In this embodiment, when the outside air temperature is a high outside air temperature, the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 are made to function as oil heat exchangers that exchange oil. For this reason, the heat transfer area for heat exchange of the refrigerant in the heat source side heat exchanger 5 is narrow, and the condensation temperature of the refrigerant is high. Therefore, the compression power of the compressor 1 is increasing. However, in this embodiment, when the outside air temperature is a high outside air temperature, the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 are made to function as oil heat exchangers that exchange oil heat. Therefore, the coefficient of performance of the refrigeration cycle apparatus 300 is improved. The reason will be described in comparison with the following comparative example.
[比較例]
 比較例では、外気温度が高外気温度である場合に、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2のうちの少なくとも一方を、冷媒を熱交換させる冷媒熱交換器として機能させる。比較例では、熱源側熱交換器5の冷媒と熱交換させる伝熱面積が大きくなり、冷媒の凝縮温度が低くなる。しかしながら、比較例では、熱源側熱交換器5の油を放熱させる伝熱面積が小さくなっているため、油を十分に冷却することができない。その結果、比較例では、油インジェクションのみでは、圧縮機1から吐出される冷媒の温度を制約温度以下に抑えることができない。そこで、比較例では、圧縮機1から吐出される冷媒の温度を制約温度以下に抑えるために、冷媒インジェクションを行う。冷媒インジェクションを行う場合には、圧縮機1の低段圧縮部1aと高段圧縮部1bとの間の中間段1cの圧力が上昇する。中間段1cの圧力が上昇すると、低段圧縮部1aの圧縮比[(低段圧縮部1aの吐出圧力=中間段1cの圧力)/低段圧縮部1aの吸込圧力]が大きくなる。低段圧縮部1aでの圧縮比が大きくなると、低段圧縮部1aでの体積効率が悪化し、冷却能力が低下する。さらに、高段圧縮部1bでは、吸込む冷媒の量が増加するため、圧縮動力が増大する。それらの結果、外気温度が高外気温度である場合に、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2のうちの少なくとも一方を、冷媒を熱交換させる冷媒熱交換器として機能させた場合には、冷凍サイクル装置300の成績係数が低下する。
[Comparative example]
In the comparative example, when the outside air temperature is a high outside air temperature, at least one of the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 is caused to function as a refrigerant heat exchanger that exchanges heat between the refrigerants. In the comparative example, the heat transfer area for heat exchange with the refrigerant in the heat source side heat exchanger 5 increases, and the condensation temperature of the refrigerant decreases. However, in the comparative example, since the heat transfer area for radiating the oil in the heat source side heat exchanger 5 is small, the oil cannot be sufficiently cooled. As a result, in the comparative example, the temperature of the refrigerant discharged from the compressor 1 cannot be suppressed below the restriction temperature only by oil injection. Therefore, in the comparative example, refrigerant injection is performed in order to keep the temperature of the refrigerant discharged from the compressor 1 below the restriction temperature. When performing refrigerant injection, the pressure of the intermediate stage 1c between the low stage compression part 1a and the high stage compression part 1b of the compressor 1 increases. When the pressure of the intermediate stage 1c increases, the compression ratio of the low stage compression section 1a [(discharge pressure of the low stage compression section 1a = pressure of the intermediate stage 1c) / suction pressure of the low stage compression section 1a] increases. When the compression ratio in the low stage compression unit 1a increases, the volume efficiency in the low stage compression unit 1a deteriorates and the cooling capacity decreases. Furthermore, in the high stage compression unit 1b, the amount of refrigerant to be sucked increases, so that the compression power increases. As a result, when the outside air temperature is a high outside air temperature, at least one of the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 functions as a refrigerant heat exchanger that exchanges heat between the refrigerants. In this case, the coefficient of performance of the refrigeration cycle apparatus 300 decreases.
[実施の形態1と比較例との比較]
 外気温度が高外気温度である場合に、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2を油熱交換器として機能させた場合(実施の形態1)と、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2のうちの少なくとも一方を冷媒熱交換器として機能させて且つ冷媒インジェクションを行った場合(比較例)と、を比較すると、実施の形態1のように、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2を油熱交換器として機能させた場合の方が、圧縮機1の圧縮動力を小さくすることができるため、冷凍サイクル装置300の成績係数が良好である。
[Comparison between Embodiment 1 and Comparative Example]
When the outside air temperature is a high outside air temperature, the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 function as oil heat exchangers (Embodiment 1), and the first multi heat exchanger. When the refrigerant injection is performed with at least one of 5b1 and the second multi-heat exchanger 5b2 functioning as a refrigerant heat exchanger (comparative example), as in the first embodiment, the first Since the compression power of the compressor 1 can be reduced when the multi heat exchanger 5b1 and the second multi heat exchanger 5b2 are functioned as oil heat exchangers, the coefficient of performance of the refrigeration cycle apparatus 300 is good. It is.
 なお、例えば、外気温度が高外気温度よりも高くなった場合等には、油インジェクションのみでは、油を十分に冷却できなくなることがあるため、油インジェクションと液インジェクションとが併用される場合もある。 In addition, for example, when the outside air temperature becomes higher than the high outside air temperature, the oil may not be sufficiently cooled only by the oil injection, and therefore the oil injection and the liquid injection may be used in combination. .
[低外気温度のときの冷凍サイクル装置の動作]
 次に、外気温度が通常外気温度と比較して低い低外気温度であるときの冷凍サイクル装置300の動作の例について説明する。図5は、低外気温度のときの冷凍サイクル装置の動作の例を説明する図である。なお、図5において、実線の矢印は冷媒の流れを示しており、点線の矢印は油の流れを示している。図5に示すように、外気温度が低外気温度である場合には、開閉装置51a、51b、52a、52b、53a、53b、54aおよび54bを“閉”として、開閉装置55を“開”とする。このときに、油分離器4で分離された冷媒および油は、以下のように流れる。すなわち、油分離器4で分離された冷媒は、冷媒熱交換器5aに流入し熱交換されるとともに、マルチ熱交換流路420の開閉装置53aおよび開閉装置53bを通って、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2で熱交換される。第1マルチ熱交換器5b1および第2マルチ熱交換器5b2で熱交換された冷媒は、マルチ熱交換流路420の開閉装置54aおよび開閉装置54bを通って、冷媒循環回路400に流れる冷媒と合流する。冷媒熱交換器5aで熱交換された冷媒、第1マルチ熱交換器5b1で熱交換された冷媒および第2マルチ熱交換器5b2で熱交換された冷媒は、レシーバ7を通って膨張装置12に流入する。
[Operation of refrigeration cycle equipment at low outside air temperature]
Next, an example of the operation of the refrigeration cycle apparatus 300 when the outside air temperature is a low outside air temperature that is lower than the normal outside air temperature will be described. FIG. 5 is a diagram illustrating an example of the operation of the refrigeration cycle apparatus at a low outside air temperature. In FIG. 5, the solid line arrow indicates the flow of the refrigerant, and the dotted line arrow indicates the flow of the oil. As shown in FIG. 5, when the outside air temperature is a low outside air temperature, the opening / closing devices 51a, 51b, 52a, 52b, 53a, 53b, 54a and 54b are set to “closed”, and the opening / closing device 55 is set to “open”. To do. At this time, the refrigerant and oil separated by the oil separator 4 flow as follows. In other words, the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5a and exchanges heat, and also passes through the opening / closing device 53a and the opening / closing device 53b of the multi-heat exchange channel 420, thereby performing the first multi-heat exchange. Heat is exchanged in the vessel 5b1 and the second multi heat exchanger 5b2. The refrigerant heat-exchanged in the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 merges with the refrigerant flowing in the refrigerant circulation circuit 400 through the opening / closing device 54a and the opening / closing device 54b of the multi-heat exchange channel 420. To do. The refrigerant heat-exchanged by the refrigerant heat exchanger 5a, the refrigerant heat-exchanged by the first multi-heat exchanger 5b1, and the refrigerant heat-exchanged by the second multi-heat exchanger 5b2 pass through the receiver 7 to the expansion device 12. Inflow.
 また、油分離器4で分離された油は、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2へは流れず、油流路410の開閉装置55を通って圧縮機1に直接インジェクションされる。すなわち、外気温度が低外気温度である場合には、油分離器4で分離された油は、第1マルチ熱交換器5b1または第2マルチ熱交換器5b2で冷却されることなく、逆止弁56を通って低段圧縮部1aにインジェクションされ、逆止弁56および逆止弁58を通って高段圧縮部1bにインジェクションされる。 Further, the oil separated by the oil separator 4 does not flow to the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2, but is directly injected into the compressor 1 through the opening / closing device 55 of the oil flow path 410. Is done. That is, when the outside air temperature is a low outside air temperature, the oil separated by the oil separator 4 is not cooled by the first multi-heat exchanger 5b1 or the second multi-heat exchanger 5b2, and the check valve 56 is injected into the low-stage compression unit 1a, and is injected into the high-stage compression unit 1b through the check valve 56 and the check valve 58.
 上記のように、この実施の形態では、外気温度が低外気温度である場合には、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2が冷媒を熱交換させる冷媒熱交換器として機能している。外気温度が低い場合には、冷媒の凝縮温度が低くなるため、圧縮機1から吐出される冷媒の温度が低くなる。さらに、この場合には、冷媒から分離された油の温度も高くならない。したがって、外気温度が低外気温度である場合には、油分離器4で分離した油を圧縮機1に直接インジェクションすることで、圧縮機1から吐出される冷媒の温度を制約温度以下に抑えることができる。この実施の形態では、外気温度が低外気温度である場合に、第1マルチ熱交換器5b1および第2マルチ熱交換器5b2が冷媒と熱交換を行う冷媒熱交換器として機能しているため、熱源側熱交換器5の広い伝熱面積を使用して冷媒と空気との熱交換を行うことができる。その結果、この実施の形態では、外気温度が低外気温度である場合には、冷媒の凝縮温度を低くすることができるため、圧縮機1の圧縮動力を低減することができる。したがって、この実施の形態では、冷凍サイクル装置300の成績係数が向上されている。 As described above, in this embodiment, when the outside air temperature is a low outside air temperature, the first multi-heat exchanger 5b1 and the second multi-heat exchanger 5b2 function as a refrigerant heat exchanger that exchanges heat between the refrigerants. is doing. When the outside air temperature is low, the temperature of the refrigerant discharged from the compressor 1 is low because the condensation temperature of the refrigerant is low. Furthermore, in this case, the temperature of the oil separated from the refrigerant does not increase. Accordingly, when the outside air temperature is a low outside air temperature, the oil separated by the oil separator 4 is directly injected into the compressor 1 so that the temperature of the refrigerant discharged from the compressor 1 is kept below the restriction temperature. Can do. In this embodiment, when the outside air temperature is a low outside air temperature, the first multi heat exchanger 5b1 and the second multi heat exchanger 5b2 function as a refrigerant heat exchanger that exchanges heat with the refrigerant. Heat exchange between the refrigerant and the air can be performed using a wide heat transfer area of the heat source side heat exchanger 5. As a result, in this embodiment, when the outside air temperature is a low outside air temperature, the condensation temperature of the refrigerant can be lowered, so that the compression power of the compressor 1 can be reduced. Therefore, in this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 is improved.
 上記のように、この実施の形態では、熱源側熱交換器5の伝熱面積を有効に利用して、冷媒または油を熱交換させることによって、冷凍サイクル装置300の成績係数を向上させることができる。 As described above, in this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 can be improved by effectively using the heat transfer area of the heat source side heat exchanger 5 to exchange heat with refrigerant or oil. it can.
 さらに、上記の、低外気温度のときの冷凍サイクル装置300の動作と、通常外気温度のときの冷凍サイクル装置300の動作と、高外気温度のときの冷凍サイクル装置300の動作と、の切り替えを、冷凍サイクル装置300が動作している間において定期的に行うことによって、冷凍サイクル装置300の動作中の成績係数をさらに向上させることができる。 Further, switching between the operation of the refrigeration cycle apparatus 300 at a low outside air temperature, the operation of the refrigeration cycle apparatus 300 at a normal outside air temperature, and the operation of the refrigeration cycle apparatus 300 at a high outside air temperature is performed. By performing this periodically while the refrigeration cycle apparatus 300 is operating, the coefficient of performance during the operation of the refrigeration cycle apparatus 300 can be further improved.
 また、この実施の形態では、R32またはR410A等の断熱圧縮時のエンタルピーの差が大きい冷媒が使用される場合に、上記の効果が顕著となる。なぜなら、断熱圧縮時のエンタルピーの差が大きい冷媒を圧縮機1で圧縮したときに、圧縮機1から吐出される冷媒ガスの温度が高温になる。 Further, in this embodiment, when a refrigerant having a large difference in enthalpy during adiabatic compression such as R32 or R410A is used, the above effect becomes remarkable. This is because when the refrigerant having a large difference in enthalpy during adiabatic compression is compressed by the compressor 1, the temperature of the refrigerant gas discharged from the compressor 1 becomes high.
 また、この実施の形態では、通常は、油インジェクションのみによって、圧縮機1から吐出される冷媒の温度を制約温度以下に抑えているため、冷凍サイクル装置300の成績係数が向上されている。 Further, in this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 is improved because the temperature of the refrigerant discharged from the compressor 1 is normally kept below the restriction temperature only by oil injection.
 なお、実施の形態1は、上記で説明した例に限定されるものではない。 Note that the first embodiment is not limited to the example described above.
[変形例1]
 例えば、上記の実施の形態1の説明では、全ての開閉装置の開閉制御を行う例についての説明を行ったが、開閉装置52a、52b、54aおよび54bは、一次側(開閉装置(電磁弁)の上流側)の圧力が二次側(開閉装置(電磁弁)の下流側)の圧力を超えたときに、“開”となる機能を有するものであってもよい。変形例1における開閉装置52a、52b、54aおよび54bの動作を以下に説明する。図6は、実施の形態1の変形例1に関する図であって、通常外気温度のときの開閉装置の動作の例を説明する図であり、図7は、実施の形態1の変形例1に関する図であって、高外気温度のときの開閉装置の動作の例を説明する図であり、図8は、実施の形態1の変形例1に関する図であって、低外気温度のときの開閉装置の動作の例を説明する図である。図6~図8に示すように、起動時制御で開閉装置の開閉制御を行ったのちに、対応する開閉装置が連動して開閉する。また、停止時制御で開閉装置の開閉制御を行ったのちに、対応する開閉装置が連動して開閉する。つまり、変形例1の構成とすることによって、開閉制御を行う開閉装置の数量を低減することができる。
[Modification 1]
For example, in the above description of the first embodiment, an example in which the opening / closing control of all the opening / closing devices is performed has been described. It may have a function of being “open” when the pressure on the upstream side exceeds the pressure on the secondary side (downstream side of the switching device (solenoid valve)). The operation of the opening / closing devices 52a, 52b, 54a and 54b in Modification 1 will be described below. FIG. 6 is a diagram related to the first modification of the first embodiment, and is a diagram for explaining an example of the operation of the switchgear at the normal outside air temperature, and FIG. 7 relates to the first modification of the first embodiment. It is a figure, and is a figure explaining the example of operation | movement of the switchgear at the time of high outdoor temperature, FIG. 8 is a figure regarding the modification 1 of Embodiment 1, Comprising: Switchgear at the time of low outdoor temperature It is a figure explaining the example of operation | movement of. As shown in FIGS. 6 to 8, after the opening / closing control of the opening / closing device is performed by the startup control, the corresponding opening / closing device opens and closes in conjunction with each other. In addition, after the opening / closing control of the opening / closing device is performed by the stop time control, the corresponding opening / closing device opens and closes in conjunction with each other. That is, with the configuration of Modification 1, the number of opening / closing devices that perform opening / closing control can be reduced.
[変形例2]
 また、例えば、図9は、実施の形態1の変形例2に関する図であって、マルチ熱交換器の機能と外気温度との関係の例を示す図である。変形例2では、第1マルチ熱交換器5b1の伝熱面積と第2マルチ熱交換器5b2の伝熱面積とを異ならせてある。すなわち、変形例2では、第1マルチ熱交換器5b1の伝熱面積が、第2マルチ熱交換器5b2の伝熱面積と比較して、大きく形成されている。このように、第1マルチ熱交換器5b1の伝熱面積と第2マルチ熱交換器5b2の伝熱面積とを異ならせることによって、変形例2では、熱源側熱交換器5の伝熱面積をさらに効率良く利用することができる。
[Modification 2]
For example, FIG. 9 is a diagram related to the second modification of the first embodiment, and is a diagram illustrating an example of the relationship between the function of the multi-heat exchanger and the outside air temperature. In the modified example 2, the heat transfer area of the first multi-heat exchanger 5b1 and the heat transfer area of the second multi-heat exchanger 5b2 are different. That is, in Modification 2, the heat transfer area of the first multi-heat exchanger 5b1 is formed larger than the heat transfer area of the second multi-heat exchanger 5b2. In this way, in the second modification, the heat transfer area of the heat source side heat exchanger 5 is changed by making the heat transfer area of the first multi-heat exchanger 5b1 different from the heat transfer area of the second multi-heat exchanger 5b2. Furthermore, it can utilize efficiently.
 すなわち、変形例2では、図9に示すように、通常外気温度Aの場合と、通常外気温度Aよりも低い外気温度である通常外気温度Bとで、油を熱交換させる伝熱面積と冷媒を熱交換させる伝熱面積との割合を調整している。通常外気温度Aの場合には、通常外気温度Bと比較して、外気温度が高いため、油を熱交換させる伝熱面積を大きくして、冷媒を熱交換させる伝熱面積を小さくしている。つまり、通常外気温度Aの場合には、伝熱面積が大きい第1マルチ熱交換器5b1を油熱交換器として機能させ、伝熱面積が小さい第2マルチ熱交換器5b2を冷媒熱交換器として機能させている。また、通常外気温度Bの場合には、通常外気温度Aと比較して、外気温度が低いため、油を熱交換させる伝熱面積を小さくして、冷媒を熱交換させる伝熱面積を大きくしている。つまり、通常外気温度Bの場合には、伝熱面積が大きい第1マルチ熱交換器5b1を冷媒熱交換器として機能させ、伝熱面積が小さい第2マルチ熱交換器5b2を油熱交換器として機能させている。変形例2では、熱源側熱交換器5の伝熱面積を、効率良く利用することができるため、冷凍サイクル装置300の成績係数を向上させることができる。 That is, in Modification 2, as shown in FIG. 9, the heat transfer area and the refrigerant that exchange heat between oil at the normal outside air temperature A and the normal outside air temperature B that is lower than the normal outside air temperature A. The ratio with the heat transfer area to exchange heat is adjusted. In the case of the normal outside air temperature A, since the outside air temperature is higher than the normal outside air temperature B, the heat transfer area for heat exchange of oil is increased, and the heat transfer area for heat exchange of the refrigerant is reduced. . That is, in the case of normal outside air temperature A, the first multi-heat exchanger 5b1 having a large heat transfer area is caused to function as an oil heat exchanger, and the second multi-heat exchanger 5b2 having a small heat transfer area is used as a refrigerant heat exchanger. It is functioning. In the case of the normal outside air temperature B, since the outside air temperature is lower than the normal outside air temperature A, the heat transfer area for heat exchange of oil is reduced and the heat transfer area for heat exchange of the refrigerant is increased. ing. That is, in the case of normal outside air temperature B, the first multi-heat exchanger 5b1 having a large heat transfer area is caused to function as a refrigerant heat exchanger, and the second multi-heat exchanger 5b2 having a small heat transfer area is used as an oil heat exchanger. It is functioning. In the modification 2, since the heat transfer area of the heat source side heat exchanger 5 can be used efficiently, the coefficient of performance of the refrigeration cycle apparatus 300 can be improved.
[変形例3]
 また、例えば、図10は、実施の形態1の変形例3に関する図であって、冷凍サイクル装置の例を模式的に記載した図である。なお、上記の実施の形態1の説明では、熱源側熱交換器5が、2つのマルチ熱交換器5b(第1マルチ熱交換器5b1および第2マルチ熱交換器5b2)を備えた例についての説明を行ったが、実施の形態1は、2つのマルチ熱交換器5bを備えたものに限定されるものではない。すなわち、熱源側熱交換器5は、1つのマルチ熱交換器5bを備えたものであってもよく、3つ以上のマルチ熱交換器5bを備えたものであってもよい。図10に記載の変形例3では、冷凍サイクル装置300A1の熱源側ユニット200A1の熱源側熱交換器51は、3つのマルチ熱交換器5b(第1マルチ熱交換器5b1、第2マルチ熱交換器5b2および第3マルチ熱交換器5b3)を備えている。
[Modification 3]
Further, for example, FIG. 10 is a diagram related to the third modification of the first embodiment and is a diagram schematically illustrating an example of the refrigeration cycle apparatus. In the description of the first embodiment, the heat source side heat exchanger 5 includes two multi heat exchangers 5b (first multi heat exchanger 5b1 and second multi heat exchanger 5b2). Although described, Embodiment 1 is not limited to the one provided with two multi heat exchangers 5b. That is, the heat source side heat exchanger 5 may be provided with one multi-heat exchanger 5b, or may be provided with three or more multi-heat exchangers 5b. In Modification 3 shown in FIG. 10, the heat source side heat exchanger 51 of the heat source side unit 200A1 of the refrigeration cycle apparatus 300A1 includes three multi heat exchangers 5b (first multi heat exchanger 5b1, second multi heat exchanger). 5b2 and a third multi-heat exchanger 5b3).
 図11は、実施の形態1の変形例3に関する図であって、マルチ熱交換器の機能と外気温度との関係の例を示す図である。変形例3では、通常外気温度Aの場合と、通常外気温度Aよりも低い外気温度である通常外気温度Bとで、熱交換を行わせるマルチ熱交換器5bの数量を変更することによって、油を熱交換させる伝熱面積と冷媒を熱交換させる伝熱面積との割合を調整している。通常外気温度Aの場合には、通常外気温度Bと比較して、外気温度が高いため、油を熱交換させる伝熱面積を大きくして、冷媒を熱交換させる伝熱面積を小さくしている。つまり、この場合には、油を熱交換させるマルチ熱交換器5bの数量を増やして、冷媒を熱交換させるマルチ熱交換器5bの数量を減らしている。また、通常外気温度Bの場合には、通常外気温度Aと比較して、外気温度が低いため、油を熱交換させる伝熱面積を小さくして、冷媒を熱交換させる伝熱面積を大きくしている。つまり、この場合には、油を熱交換させるマルチ熱交換器5bの数量を減らして、冷媒を熱交換させるマルチ熱交換器5bの数量を増やしている。変形例3では、マルチ熱交換器5bの伝熱面積が、さらに効率良く利用されており、冷凍サイクル装置300の成績係数が向上されている。なお、上記の説明からも明らかなように、マルチ熱交換器5bの数量を多くした分、熱源側熱交換器5の伝熱面積を効率良く利用することができるため、冷凍サイクル装置300の成績係数を向上させることができる。 FIG. 11 is a diagram related to the third modification of the first embodiment and is a diagram illustrating an example of the relationship between the function of the multi-heat exchanger and the outside air temperature. In the third modification, the oil quantity is changed by changing the quantity of the multi heat exchanger 5b that performs heat exchange between the normal outside air temperature A and the normal outside air temperature B that is lower than the normal outside air temperature A. The ratio of the heat transfer area for heat exchange to the heat transfer area for heat exchange of the refrigerant is adjusted. In the case of the normal outside air temperature A, since the outside air temperature is higher than the normal outside air temperature B, the heat transfer area for heat exchange of oil is increased, and the heat transfer area for heat exchange of the refrigerant is reduced. . In other words, in this case, the number of multi heat exchangers 5b that exchange heat with oil is increased, and the number of multi heat exchangers 5b that exchange heat with refrigerant is reduced. In the case of the normal outside air temperature B, since the outside air temperature is lower than the normal outside air temperature A, the heat transfer area for heat exchange of oil is reduced and the heat transfer area for heat exchange of the refrigerant is increased. ing. That is, in this case, the number of multi heat exchangers 5b that exchange oil with heat is reduced, and the number of multi heat exchangers 5b that exchange heat with refrigerant is increased. In the modification 3, the heat transfer area of the multi heat exchanger 5b is used more efficiently, and the coefficient of performance of the refrigeration cycle apparatus 300 is improved. As is clear from the above description, the heat transfer area of the heat source side heat exchanger 5 can be efficiently used by increasing the number of the multi heat exchangers 5b. The coefficient can be improved.
[変形例4]
 また、例えば、変形例2と変形例3とを組み合わせて、変形例4とすることもできる。図12は、実施の形態1の変形例4に関する図であって、マルチ熱交換器の機能と外気温度との関係の例を示す図である。図12に示す変形例4の例では、3つのマルチ熱交換器5b(第1マルチ熱交換器5b1、第2マルチ熱交換器5b2および第3マルチ熱交換器5b3)を備えている。また、第1マルチ熱交換器5b1の伝熱面積が最も大きく形成されており、第3マルチ熱交換器5b3の伝熱面積が最も小さく形成されており、第2マルチ熱交換器5b2の伝熱面積が第1マルチ熱交換器5b1の伝熱面積よりも小さく且つ第3マルチ熱交換器5b3の伝熱面積よりも大きく形成されている。変形例4の構成とすることによって、熱源側熱交換器5の伝熱面積がさらに効率良く利用されるため、冷凍サイクル装置300の成績係数をさらに向上させることができる。なお、3つ以上のマルチ熱交換器5bを備え、3つ以上のマルチ熱交換器5bのそれぞれの伝熱面積を異ならせてもよい。
[Modification 4]
Further, for example, Modification 2 can be combined with Modification 3 to form Modification 4. FIG. 12 is a diagram related to the fourth modification of the first embodiment and is a diagram illustrating an example of the relationship between the function of the multi-heat exchanger and the outside air temperature. In the example of the modified example 4 shown in FIG. 12, three multi heat exchangers 5b (first multi heat exchanger 5b1, second multi heat exchanger 5b2, and third multi heat exchanger 5b3) are provided. Further, the heat transfer area of the first multi-heat exchanger 5b1 is formed to be the largest, the heat transfer area of the third multi-heat exchanger 5b3 is formed to be the smallest, and the heat transfer of the second multi-heat exchanger 5b2 is formed. The area is smaller than the heat transfer area of the first multi-heat exchanger 5b1 and larger than the heat transfer area of the third multi-heat exchanger 5b3. By setting it as the structure of the modification 4, since the heat-transfer area of the heat source side heat exchanger 5 is utilized still more efficiently, the coefficient of performance of the refrigeration cycle apparatus 300 can be improved further. Note that three or more multi-heat exchangers 5b may be provided, and the heat transfer areas of the three or more multi-heat exchangers 5b may be different.
 実施の形態2.
 この発明の実施の形態2では、実施の形態1のインジェクション流路430に代えて、冷凍サイクル装置300A2の熱源側ユニット200A2がエコノマイザ流路430Aを備えている点で異なる。以下の説明では、実施の形態1と重複する部分については、説明を省略する。図13は、この発明の実施の形態2に係る冷凍サイクル装置の例を模式的に記載した図である。
Embodiment 2. FIG.
The second embodiment of the present invention is different in that the heat source side unit 200A2 of the refrigeration cycle apparatus 300A2 includes an economizer channel 430A instead of the injection channel 430 of the first embodiment. In the following description, the description overlapping with the first embodiment will be omitted. FIG. 13 is a diagram schematically illustrating an example of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
[エコノマイザ流路]
 エコノマイザ流路430Aは、熱源側熱交換器5で熱交換された冷媒の一部を、エコノマイザ49bを介して、圧縮機1にインジェクションするものである。エコノマイザ流路430Aは、冷媒循環回路400のレシーバ7と開閉装置13との間から分岐して、圧縮機1の中間段1cに接続されている。エコノマイザ49bは、冷媒循環回路400を流れる冷媒と、エコノマイザ流路430Aのエコノマイザ膨張装置49aを通った冷媒とを熱交換させるものである。エコノマイザ膨張装置49aは、開度を変更することができる電子式膨張弁で構成されている。エコノマイザ流路430Aのエコノマイザ膨張装置49aを通ってエコノマイザ49bで熱交換された冷媒は、圧縮機1の中間段1cにインジェクションされる。
[Economizer flow path]
The economizer channel 430A is for injecting a part of the refrigerant heat-exchanged by the heat source side heat exchanger 5 into the compressor 1 via the economizer 49b. The economizer flow path 430 </ b> A branches from between the receiver 7 of the refrigerant circulation circuit 400 and the opening / closing device 13 and is connected to the intermediate stage 1 c of the compressor 1. The economizer 49b exchanges heat between the refrigerant flowing through the refrigerant circulation circuit 400 and the refrigerant passing through the economizer expansion device 49a in the economizer flow path 430A. The economizer expansion device 49a is composed of an electronic expansion valve that can change the opening degree. The refrigerant heat-exchanged by the economizer 49b through the economizer expansion device 49a of the economizer channel 430A is injected into the intermediate stage 1c of the compressor 1.
 上記のように、この実施の形態では、実施の形態1と同様に液インジェクションを不要とすることで、圧縮機1の中間段1cの圧力を低下させることができる。そのため、この実施の形態では、冷媒循環回路400を流れる冷媒が、エコノマイザ49bで過冷却される際の冷凍効果(冷媒の単位質量当たりのエンタルピーの変化量)が増大し、冷凍能力が増加されている。圧縮機1の中間段1cの圧力が低くなっているため、エコノマイザ49bでの熱交換量が増大するからである。したがって、この実施の形態によれば、冷凍サイクル装置300の成績係数が向上されている。 As described above, in this embodiment, the pressure in the intermediate stage 1c of the compressor 1 can be reduced by making liquid injection unnecessary as in the first embodiment. Therefore, in this embodiment, the refrigeration effect (the amount of change in enthalpy per unit mass of the refrigerant) when the refrigerant flowing through the refrigerant circuit 400 is supercooled by the economizer 49b is increased, and the refrigeration capacity is increased. Yes. This is because the amount of heat exchange in the economizer 49b increases because the pressure in the intermediate stage 1c of the compressor 1 is low. Therefore, according to this embodiment, the coefficient of performance of the refrigeration cycle apparatus 300 is improved.
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
 例えば、上記の実施の形態では、熱源側熱交換器5が、冷媒熱交換器5aとマルチ熱交換器5bとを備えた例についての説明を行ったが、熱源側熱交換器は、複数のマルチ熱交換器5bを備えたものであってもよい。このように、冷媒熱交換器5aを省略した場合であっても、熱源側熱交換器のマルチ熱交換器5bを利用して、熱源側熱交換器の伝熱面積を有効に利用することができるため、上記の実施の形態と同様の効果が得られる。 For example, in the above embodiment, the example in which the heat source side heat exchanger 5 includes the refrigerant heat exchanger 5a and the multi heat exchanger 5b has been described. However, the heat source side heat exchanger includes a plurality of heat source side heat exchangers. The thing provided with the multi heat exchanger 5b may be sufficient. As described above, even when the refrigerant heat exchanger 5a is omitted, the heat transfer area of the heat source side heat exchanger can be effectively used by using the multi heat exchanger 5b of the heat source side heat exchanger. Therefore, the same effect as the above embodiment can be obtained.
 また、例えば、上記の実施の形態では、利用側ユニット100と熱源側ユニット200とが別体で構成され、これらが配管で接続された冷凍サイクル装置300についての説明を行ったが、冷凍サイクル装置300は、利用側ユニット100と熱源側ユニット200とが一体的に構成されたものであってもよい。この場合には、例えば、熱源側ユニット200が、開閉装置13と膨張装置12と利用側熱交換器2とを備えて構成されていればよい。 Further, for example, in the above-described embodiment, the use side unit 100 and the heat source side unit 200 are configured separately, and the refrigeration cycle apparatus 300 in which these are connected by piping has been described. 300 may be configured such that the use side unit 100 and the heat source side unit 200 are integrally formed. In this case, for example, the heat source side unit 200 may be configured to include the opening / closing device 13, the expansion device 12, and the use side heat exchanger 2.
 また、冷媒循環回路400に四方弁等の流路切替手段を設けてある場合には、冷媒が流れる向きを変えて、利用側熱交換器2を凝縮器として機能させ、熱源側熱交換器5の冷媒熱交換器5aを蒸発器として機能させることもできる。この場合には、油分離器4で分離された冷媒が、利用側熱交換器2または熱源側熱交換器5の冷媒熱交換器5aに流れるように、流路切替手段を設置すればよい。利用側熱交換器2を凝縮器として機能させ、熱源側熱交換器5の冷媒熱交換器5aを蒸発器として機能させる場合には、例えば、圧縮機1、利用側熱交換器2、膨張装置12、熱源側熱交換器5の冷媒熱交換器5aの順に冷媒を循環させればよい。 Further, in the case where the refrigerant circulation circuit 400 is provided with flow path switching means such as a four-way valve, the direction in which the refrigerant flows is changed to cause the use side heat exchanger 2 to function as a condenser, and the heat source side heat exchanger 5 The refrigerant heat exchanger 5a can also function as an evaporator. In this case, the flow path switching means may be installed so that the refrigerant separated by the oil separator 4 flows into the refrigerant heat exchanger 5a of the use side heat exchanger 2 or the heat source side heat exchanger 5. In the case where the use-side heat exchanger 2 functions as a condenser and the refrigerant heat exchanger 5a of the heat source-side heat exchanger 5 functions as an evaporator, for example, the compressor 1, the use-side heat exchanger 2, an expansion device 12, the refrigerant may be circulated in the order of the refrigerant heat exchanger 5a of the heat source side heat exchanger 5.
 1 圧縮機、1a 低段圧縮部、1b 高段圧縮部、1c 中間段、2 利用側熱交換器、4 油分離器、4a 冷媒流出部、4b 油流出部、5 熱源側熱交換器、5a 冷媒熱交換器、5b マルチ熱交換器、5b1 第1マルチ熱交換器、5b2 第2マルチ熱交換器、5b3 第3マルチ熱交換器、6 送風機、7 レシーバ、12 膨張装置、13 開閉装置、40a 第1流路、40b 第2流路、49a エコノマイザ膨張装置、49b エコノマイザ、50 インジェクション用膨張装置、51 マルチ熱交換器、51a 開閉装置、51b 開閉装置、52a 開閉装置、52b 開閉装置、53a 開閉装置、53b 開閉装置、54a 開閉装置、54b 開閉装置、55 開閉装置、56 逆止弁、57 逆止弁、58 逆止弁、70 温度センサ、72 制御装置、100 利用側ユニット、200 熱源側ユニット、200A1 熱源側ユニット、200A2 熱源側ユニット、300 冷凍サイクル装置、300A1 冷凍サイクル装置、300A2 冷凍サイクル装置、400 冷媒循環回路、410 油流路、420 マルチ熱交換流路、430 インジェクション流路、430A エコノマイザ流路。 1 compressor, 1a low stage compression section, 1b high stage compression section, 1c intermediate stage, 2 use side heat exchanger, 4 oil separator, 4a refrigerant outflow section, 4b oil outflow section, 5 heat source side heat exchanger, 5a Refrigerant heat exchanger, 5b multi heat exchanger, 5b1, first multi heat exchanger, 5b2, second multi heat exchanger, 5b3, third multi heat exchanger, 6 blower, 7 receiver, 12 expansion device, 13 switchgear, 40a 1st flow path, 40b 2nd flow path, 49a economizer expansion device, 49b economizer, 50 injection expansion device, 51 multi heat exchanger, 51a switchgear, 51b switchgear, 52a switchgear, 52b switchgear, 53a switchgear 53b switchgear, 54a switchgear, 54b switchgear, 55 switchgear, 56 check valve, 57 check valve 58 check valve, 70 temperature sensor, 72 control device, 100 usage side unit, 200 heat source side unit, 200A1 heat source side unit, 200A2 heat source side unit, 300 refrigeration cycle device, 300A1 refrigeration cycle device, 300A2 refrigeration cycle device, 400 refrigerant Circulation circuit, 410 oil flow path, 420 multi heat exchange flow path, 430 injection flow path, 430A economizer flow path.

Claims (13)

  1.  圧縮機と、
     前記圧縮機から吐出された冷媒と油とを分離して、冷媒を冷媒流出部から流出させ、油を油流出部から流出させる、油分離器と、
     前記冷媒流出部に連通した第1流路と、
     前記油流出部に連通した第2流路と、
     前記第1流路および前記第2流路に接続され、冷媒または油を熱交換させるマルチ熱交換器を有する熱源側熱交換器と、
     前記マルチ熱交換器と前記第1流路または前記第2流路との連通を切り替える流路切替装置と、を備えた、
     熱源側ユニット。
    A compressor,
    An oil separator that separates refrigerant and oil discharged from the compressor, causes the refrigerant to flow out from the refrigerant outflow portion, and causes oil to flow out from the oil outflow portion;
    A first flow path communicating with the refrigerant outflow portion;
    A second flow path communicating with the oil outflow portion;
    A heat source side heat exchanger having a multi heat exchanger connected to the first flow path and the second flow path for heat exchange of refrigerant or oil;
    A flow path switching device that switches communication between the multi-heat exchanger and the first flow path or the second flow path,
    Heat source side unit.
  2.  前記熱源側熱交換器は、複数の前記マルチ熱交換器を有し、
     複数の前記マルチ熱交換器のそれぞれは、前記第1流路および前記第2流路を介して、前記冷媒流出部および前記油流出部に並列に接続されており、
     前記流路切替装置は、複数の前記マルチ熱交換器のそれぞれの、前記第1流路または前記第2流路との連通を切り替える、
     請求項1記載の熱源側ユニット。
    The heat source side heat exchanger has a plurality of the multiple heat exchangers,
    Each of the multiple heat exchangers is connected in parallel to the refrigerant outlet and the oil outlet through the first channel and the second channel,
    The flow path switching device switches communication between the first flow path or the second flow path of each of the multiple heat exchangers.
    The heat source side unit according to claim 1.
  3.  複数の前記マルチ熱交換器は、伝熱面積が異なるものを含んでいる、
     請求項2記載の熱源側ユニット。
    The plurality of multi heat exchangers include ones having different heat transfer areas.
    The heat source side unit according to claim 2.
  4.  前記熱源側熱交換器は、前記冷媒流出部に連通し、冷媒を熱交換させる冷媒熱交換器を有する、
     請求項1~請求項3の何れか1項に記載の熱源側ユニット。
    The heat source side heat exchanger includes a refrigerant heat exchanger that communicates with the refrigerant outflow portion and exchanges heat between the refrigerants.
    The heat source unit according to any one of claims 1 to 3.
  5.  前記冷媒熱交換器は、前記マルチ熱交換器とは伝熱面積が異なる、
     請求項4記載の熱源側ユニット。
    The refrigerant heat exchanger is different in heat transfer area from the multi-heat exchanger.
    The heat source side unit according to claim 4.
  6.  前記冷媒熱交換器は、前記マルチ熱交換器と比較して伝熱面積が大きい、
     請求項5記載の熱源側ユニット。
    The refrigerant heat exchanger has a large heat transfer area compared to the multi heat exchanger,
    The heat source side unit according to claim 5.
  7.  前記マルチ熱交換器と前記冷媒熱交換器とが一体的に形成された、
     請求項4~請求項6の何れか1項に記載の熱源側ユニット。
    The multi heat exchanger and the refrigerant heat exchanger are integrally formed,
    The heat source side unit according to any one of claims 4 to 6.
  8.  前記マルチ熱交換器は、前記冷媒熱交換器の下方に設けられている、
     請求項4~請求項7の何れか1項に記載の熱源側ユニット。
    The multi heat exchanger is provided below the refrigerant heat exchanger,
    The heat source side unit according to any one of claims 4 to 7.
  9.  前記圧縮機は、低段圧縮部と中間段と高段圧縮部とを含んでいる、
     請求項1~請求項8の何れか1項に記載の熱源側ユニット。
    The compressor includes a low-stage compression unit, an intermediate stage, and a high-stage compression unit.
    The heat source side unit according to any one of claims 1 to 8.
  10.  前記圧縮機の中間段に前記熱源側熱交換器で凝縮された冷媒の一部をインジェクションするエコノマイザ流路を備え、
     前記エコノマイザ流路の途中部に、前記熱源側熱交換器で凝縮された冷媒の一部を膨張させるエコノマイザ膨張装置と、前記エコノマイザ膨張装置で膨張された冷媒と前記熱源側熱交換器で凝縮された冷媒とを熱交換させるエコノマイザと、が設置された、
     請求項9記載の熱源側ユニット。
    An economizer flow path for injecting a part of the refrigerant condensed in the heat source side heat exchanger at an intermediate stage of the compressor;
    An economizer expansion device that expands a part of the refrigerant condensed in the heat source side heat exchanger, and a refrigerant expanded in the economizer expansion device and the heat source side heat exchanger are condensed in the middle part of the economizer flow path. And an economizer that exchanges heat with the refrigerant.
    The heat source side unit according to claim 9.
  11.  請求項1~請求項10の何れか1項に記載の熱源側ユニットと、
     前記熱源側熱交換器で熱交換された冷媒を膨張させる膨張装置および前記膨張装置で膨張された冷媒を熱交換させる利用側熱交換器を備えた利用側ユニットと、を備えた、
     冷凍サイクル装置。
    The heat source side unit according to any one of claims 1 to 10,
    An expansion device that expands the refrigerant heat-exchanged by the heat source-side heat exchanger, and a usage-side unit that includes a usage-side heat exchanger that exchanges heat of the refrigerant expanded by the expansion device.
    Refrigeration cycle equipment.
  12.  前記熱源側ユニットの外部の外気温度を検出する温度センサと、
     前記温度センサの検出結果を利用して、前記流路切替装置の制御を行う制御装置と、をさらに備え、
     前記制御装置は、前記外気温度が高くなるほど、前記マルチ熱交換器の前記油を熱交換させる面積を広くするように、前記流路切替装置を制御する、
     請求項11記載の冷凍サイクル装置。
    A temperature sensor for detecting an outside air temperature outside the heat source side unit;
    A control device that controls the flow path switching device using the detection result of the temperature sensor; and
    The control device controls the flow path switching device so as to increase an area for heat exchange of the oil of the multi-heat exchanger as the outside air temperature increases.
    The refrigeration cycle apparatus according to claim 11.
  13.  圧縮機と、
     前記圧縮機から吐出された冷媒と油とを分離して、冷媒を冷媒流出部から流出させ、油を油流出部から流出させる、油分離器と、
     前記冷媒流出部に連通した第1流路と、
     前記油流出部に連通した第2流路と、
     前記第1流路および前記第2流路に接続され、冷媒または油を熱交換させるマルチ熱交換器を有する熱源側熱交換器と、
     前記マルチ熱交換器と前記第1流路または前記第2流路との連通を切り替える流路切替装置と、
     前記熱源側熱交換器で熱交換された冷媒を膨張させる膨張装置と、
     前記膨張装置で膨張された冷媒を熱交換させる利用側熱交換器と、を備えた、
     冷凍サイクル装置。
    A compressor,
    An oil separator that separates refrigerant and oil discharged from the compressor, causes the refrigerant to flow out from the refrigerant outflow portion, and causes oil to flow out from the oil outflow portion;
    A first flow path communicating with the refrigerant outflow portion;
    A second flow path communicating with the oil outflow portion;
    A heat source side heat exchanger having a multi heat exchanger connected to the first flow path and the second flow path for heat exchange of refrigerant or oil;
    A flow path switching device that switches communication between the multi-heat exchanger and the first flow path or the second flow path;
    An expansion device for expanding the refrigerant heat exchanged in the heat source side heat exchanger;
    A use-side heat exchanger that exchanges heat between the refrigerant expanded in the expansion device,
    Refrigeration cycle equipment.
PCT/JP2014/081283 2014-11-26 2014-11-26 Heat source-side unit and refrigeration cycle apparatus WO2016084175A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480082492.1A CN106796055B (en) 2014-11-26 2014-11-26 Heat source side unit and refrigerating circulatory device
JP2016561148A JP6328269B2 (en) 2014-11-26 2014-11-26 Heat source unit and refrigeration cycle apparatus
PCT/JP2014/081283 WO2016084175A1 (en) 2014-11-26 2014-11-26 Heat source-side unit and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081283 WO2016084175A1 (en) 2014-11-26 2014-11-26 Heat source-side unit and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2016084175A1 true WO2016084175A1 (en) 2016-06-02

Family

ID=56073795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081283 WO2016084175A1 (en) 2014-11-26 2014-11-26 Heat source-side unit and refrigeration cycle apparatus

Country Status (3)

Country Link
JP (1) JP6328269B2 (en)
CN (1) CN106796055B (en)
WO (1) WO2016084175A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073881A1 (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Refrigeration cycle system
WO2019026270A1 (en) * 2017-08-04 2019-02-07 三菱電機株式会社 Refrigeration cycle device and heat source unit
WO2023135958A1 (en) * 2022-01-14 2023-07-20 パナソニックIpマネジメント株式会社 Freezing apparatus
WO2023135956A1 (en) * 2022-01-14 2023-07-20 パナソニックIpマネジメント株式会社 Refrigeration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203764A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Freezer device
JPH085168A (en) * 1994-06-23 1996-01-12 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JPH09318166A (en) * 1996-05-30 1997-12-12 Mitsubishi Heavy Ind Ltd Refrigerating apparatus
JP2004301462A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Refrigerating machine
JP2007093182A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Refrigerator
DE102007011278A1 (en) * 2007-03-08 2008-09-11 Volkswagen Ag Combined cooler or radiator, for separate coolant flows of vehicle, includes partition moved to vary volumetric proportions of coolant circuits in accordance with cooling demands
JP2011117716A (en) * 2009-11-04 2011-06-16 Valeo Systemes Thermiques Heat exchanger including at least three heat exchange section, and heat energy management system including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603227A (en) * 1995-11-13 1997-02-18 Carrier Corporation Back pressure control for improved system operative efficiency
DK2229563T3 (en) * 2008-01-17 2018-04-30 Carrier Corp Refrigerant vapor compression system with lubricant cooler
CN201330707Y (en) * 2008-11-20 2009-10-21 商思友 Refrigerator oil cooling system for screw compressor
EP2383529B1 (en) * 2009-01-27 2019-10-30 Mitsubishi Electric Corporation Air conditioner and method of returning refrigerating machine oil
CN202521932U (en) * 2012-04-11 2012-11-07 珠海格力电器股份有限公司 Cooling system of screw machine set
CN102901259A (en) * 2012-10-31 2013-01-30 南京五洲制冷集团有限公司 Double-machine double-stage compression refrigeration unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203764A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Freezer device
JPH085168A (en) * 1994-06-23 1996-01-12 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JPH09318166A (en) * 1996-05-30 1997-12-12 Mitsubishi Heavy Ind Ltd Refrigerating apparatus
JP2004301462A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Refrigerating machine
JP2007093182A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Refrigerator
DE102007011278A1 (en) * 2007-03-08 2008-09-11 Volkswagen Ag Combined cooler or radiator, for separate coolant flows of vehicle, includes partition moved to vary volumetric proportions of coolant circuits in accordance with cooling demands
JP2011117716A (en) * 2009-11-04 2011-06-16 Valeo Systemes Thermiques Heat exchanger including at least three heat exchange section, and heat energy management system including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073881A1 (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Refrigeration cycle system
JPWO2018073881A1 (en) * 2016-10-18 2019-04-04 三菱電機株式会社 Refrigeration cycle equipment
WO2019026270A1 (en) * 2017-08-04 2019-02-07 三菱電機株式会社 Refrigeration cycle device and heat source unit
GB2578254A (en) * 2017-08-04 2020-04-22 Mitsubishi Electric Corp Refrigeration cycle device and heat source unit
JPWO2019026270A1 (en) * 2017-08-04 2020-07-09 三菱電機株式会社 Refrigeration cycle device and heat source unit
GB2578254B (en) * 2017-08-04 2021-09-01 Mitsubishi Electric Corp Refrigeration cycle apparatus and heat source unit
WO2023135958A1 (en) * 2022-01-14 2023-07-20 パナソニックIpマネジメント株式会社 Freezing apparatus
WO2023135956A1 (en) * 2022-01-14 2023-07-20 パナソニックIpマネジメント株式会社 Refrigeration device

Also Published As

Publication number Publication date
JPWO2016084175A1 (en) 2017-04-27
CN106796055B (en) 2019-04-30
CN106796055A (en) 2017-05-31
JP6328269B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5239824B2 (en) Refrigeration equipment
JP6479162B2 (en) Air conditioner
US20060218952A1 (en) Refrigerating device and refrigerator
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
EP1462740A2 (en) Refrigerator
JP6463470B2 (en) Refrigeration equipment
JP6328269B2 (en) Heat source unit and refrigeration cycle apparatus
EP2354723A2 (en) Refrigerant system
KR20070071213A (en) Air conditioner
JP2011242048A (en) Refrigerating cycle device
JP2017161193A (en) Air conditioner
JP2013181736A (en) Refrigerating apparatus for container
JP2011047525A (en) Air conditioner
JP2011133133A (en) Refrigerating device
JP2008002742A (en) Refrigerating device
JP6253370B2 (en) Refrigeration cycle equipment
JP6072559B2 (en) Refrigeration equipment
JP2010060181A (en) Refrigeration system
JP5895662B2 (en) Refrigeration equipment
JP2009204304A (en) Refrigeration air conditioner
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
WO2013073070A1 (en) Refrigeration cycle device
JP4341967B2 (en) Multi-type air conditioner
JP2011133132A (en) Refrigerating device
JP5176874B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907149

Country of ref document: EP

Kind code of ref document: A1