WO2018073875A1 - Power conversion device, motor drive device, and air conditioner - Google Patents

Power conversion device, motor drive device, and air conditioner Download PDF

Info

Publication number
WO2018073875A1
WO2018073875A1 PCT/JP2016/080747 JP2016080747W WO2018073875A1 WO 2018073875 A1 WO2018073875 A1 WO 2018073875A1 JP 2016080747 W JP2016080747 W JP 2016080747W WO 2018073875 A1 WO2018073875 A1 WO 2018073875A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
power supply
power
current
arm
Prior art date
Application number
PCT/JP2016/080747
Other languages
French (fr)
Japanese (ja)
Inventor
崇 山川
成雄 梅原
啓介 植村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/080747 priority Critical patent/WO2018073875A1/en
Priority to JP2018545732A priority patent/JPWO2018073875A1/en
Publication of WO2018073875A1 publication Critical patent/WO2018073875A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device that converts AC power into DC power and supplies the load to a load, a motor driving device including the power conversion device, and an air conditioner.
  • the power source current that is a current supplied from the power source includes a harmonic current that is a harmonic component that is a frequency component of a frequency higher than the frequency of the fundamental wave.
  • a harmonic current that is a harmonic component that is a frequency component of a frequency higher than the frequency of the fundamental wave.
  • the converter takes measures to suppress the harmonic current contained in the power supply current by chopping with AC (Alternating Current) or DC (Direct Current).
  • Patent Document 1 discloses a technique for realizing a low loss by controlling a power supply current by one arm of a full bridge circuit and switching a switching element of the other arm of the full bridge circuit in accordance with the power supply polarity. Is disclosed.
  • the switching element of the arm that performs switching for controlling the power supply current has a higher switching frequency than the switching element of the other arm that performs switching according to the power supply polarity. Become. For this reason, the loss of the switching element of the arm that performs switching for power supply control is larger than that of the switching element of the other arm that performs switching according to the voltage polarity of the power supply. Therefore, the technique described in Patent Document 1 has a problem in that unevenness of heat generation occurs and it is difficult to increase the output.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can suppress unevenness in heat generation and achieve high output.
  • a power converter according to the present invention is a power converter that converts AC power supplied from an AC power source into DC power, each connected to the AC power source.
  • the power converter device concerning this invention is provided with the 1st switching element, the 2nd switching element, and the 3rd wiring provided with the 1st connection point,
  • the 1st switching element and the 2nd switching The elements are connected in series by a third wiring, the first connection point is connected to the reactor by the first wiring, the first arm is connected in parallel with the first arm, and the third switching element ,
  • a fourth switching element and a fourth wiring having a second connection point, wherein the third switching element and the fourth switching element are connected in series by the fourth wiring, and the second connection point Comprises a second arm connected to the reactor by a first wiring.
  • the power conversion device includes a fifth switching element, a sixth switching element, and a fifth wiring having a third connection point, which are connected in parallel with the second arm.
  • the fifth switching element and the sixth switching element are connected in series by the fifth wiring, and the third connection point is a third arm connected to the AC power source by the second wiring, the third arm, A capacitor connected in parallel.
  • the power conversion device has the effect of suppressing the bias of heat generation and realizing high output.
  • FIG. The figure which shows the structural example of the power converter device concerning Embodiment 1.
  • FIG. The figure which shows the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is larger than a current threshold value.
  • condenser short circuit through the alternating current power supply and reactor of Embodiment 1 The figure which shows an example of the capacitor
  • FIG. 1 The figure which shows an example of the power supply voltage phase estimation value (theta) s ⁇ and sine wave value sin (theta) s ⁇ calculated by the power supply voltage Vs of Embodiment 1, and a power supply voltage detection part
  • FIG. 1 The figure which shows an example of the carrier wave of Embodiment 1, and a reference
  • FIG. 1 The figure which shows an example of the reference
  • FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment.
  • FIG. 3 shows the structural example of the air conditioner of Embodiment 3.
  • FIG. 1 is a diagram illustrating a configuration example of the power conversion device according to the first embodiment of the present invention.
  • the power conversion apparatus 100 converts AC power supplied from a single-phase AC power source (hereinafter simply referred to as AC power source) 1 into DC power and outputs the DC power.
  • the power conversion device 100 includes a reactor 2, a bridge circuit 3, a smoothing capacitor 4, a power supply voltage detection unit 5, a power supply current detection unit 6, a bus voltage detection unit 7, and a control device 10. .
  • the bridge circuit 3 includes a first circuit 31 and a second circuit 32.
  • the first circuit 31 includes a first arm 33 and a second arm 34 connected in parallel to each other.
  • the first arm 33 includes a switching element 311 and a switching element 312 connected in series.
  • the second arm 34 includes a switching element 313 and a switching element 314 connected in series.
  • the second circuit 32 which is the third arm includes a switching element 321 and a switching element 322 connected in series.
  • the second circuit 32 is connected to the first circuit 31 in parallel.
  • the power conversion apparatus 100 includes a first wiring 501 and a second wiring 502 that are connected to the AC power source 1, and a reactor 2 that is disposed on the first wiring 501.
  • the first arm 33 includes a switching element 311 that is a first switching element, a switching element 312 that is a second switching element, and a third wiring 503 including a first connection point 506. Switching element 311 and switching element 312 are connected in series by third wiring 503, and first connection point 506 is connected to reactor 2 by first wiring 501.
  • the second arm 34 is connected in parallel to the first arm 33 and includes a switching element 313 that is a third switching element, a switching element 314 that is a fourth switching element, and a second connection point 507. 4th wiring 504 is provided. The switching element 313 and the switching element 314 are connected in series by the fourth wiring 504, and the second connection point 507 is connected to the reactor 2 by the first wiring 501.
  • the second circuit 32 that is the third arm is connected in parallel to the second arm 34, the switching element 321 that is the fifth switching element, the switching element 322 that is the sixth switching element, and the third The switching element 321 and the switching element 322 are connected in series by the fifth wiring 505.
  • the third connection point 508 is connected to the AC power source 1 by the second wiring 502.
  • the smoothing capacitor 4 that is a capacitor is connected in parallel with the second circuit 32 that is the third arm.
  • a first connection point 506 that is a connection point between the switching element 311 and the switching element 312 and a second connection point 507 that is a connection point between the switching element 313 and the switching element 314 are connected by a first wiring 501. The Therefore, the first connection point 506 and the second connection point 507 have the same potential, that is, the potential difference is zero.
  • the switching elements 311 to 314, 321, and 322 are configured by MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • switching elements 311 to 314, 321, and 322 may be MOSFETs formed of a wide band gap semiconductor such as GaN (gallium nitride), SiC (silicon carbide: silicon carbide), diamond, or the like.
  • a wide band gap semiconductor has high voltage resistance and high allowable current density, so that the module can be miniaturized. Since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin of the radiating portion.
  • the control device 10 generates drive pulses for operating the switching elements of the bridge circuit 3 based on signals output from the power supply voltage detection unit 5, the power supply current detection unit 6, and the bus voltage detection unit 7, respectively.
  • the power supply voltage detection unit 5 detects a power supply voltage Vs that is a voltage of electric power output from the AC power supply 1 and outputs an electric signal indicating the detection result to the control device 10.
  • the power supply current detection unit 6 detects a power supply current Is that is a current of power output from the AC power supply 1, and outputs an electric signal indicating the detection result to the control device 10.
  • the bus voltage detector 7 detects the bus voltage Vdc, which is a voltage obtained by smoothing the output voltage of the bridge circuit 3 with the smoothing capacitor 4, and outputs the detected voltage to the control device 10.
  • the switching elements 311, 313 and 321 which are switching elements connected to the positive side of the AC power supply 1, that is, the positive terminal of the AC power supply 1 are also referred to as upper switching elements.
  • switching elements 312, 314, and 322 that are switching elements connected to the negative side of the AC power supply 1, that is, the negative terminal of the AC power supply 1 are also referred to as lower switching elements.
  • the upper switching element and the lower switching element operate in a complementary manner. That is, when one of the upper switching element and the lower switching element is on, the other is off. Moreover, the 1st arm 33 and the 2nd arm 34 of the power converter device 100 of this Embodiment implement switching operation simultaneously.
  • the drive signal for driving the switching element 311 of the first arm 33 and the drive signal for driving the switching element 313 are the same, and the switching element 311 and the switching element 313 are simultaneously turned on and simultaneously turned off.
  • the drive signal for driving the switching element 312 of the first arm 33 and the drive signal for driving the switching element 314 are the same, and the switching element 312 and the switching element 314 are simultaneously turned on and simultaneously turned off.
  • each switching element constituting the first arm 33 and the second arm 34 is driven by a PWM (Pulse Width Modulation) signal generated by the control device 10.
  • PWM Pulse Width Modulation
  • the on / off operation of the switching elements 311 to 314 in accordance with the PWM signal is hereinafter also referred to as a switching operation.
  • the switching elements constituting the second circuit 32 that is the third arm are turned on or off by a drive signal generated by the control device 10.
  • the power supply voltage polarity which is the voltage polarity of the power supplied from the AC power supply 1
  • the switching element 322 is on and the switching element 321 is off
  • the switching element 321 is on and switching. Element 322 is off.
  • the absolute value of the power supply current which is the current of the power supplied from the AC power supply 1
  • a threshold value hereinafter, In the following case (referred to as current threshold)
  • both the switching element 322 and the switching element 321 are turned off.
  • FIG. 2 to 5 are diagrams showing current paths in the power conversion device 100 of the present embodiment when the absolute value of the power supply current is larger than the current threshold value.
  • FIG. 2 shows a state in which the power supply voltage polarity is positive, the switching element 311, the switching element 313, and the switching element 322 are on, and the other switching elements are off. In this state, current flows in the order of AC power source 1, reactor 2, switching element 311 and switching element 313, smoothing capacitor 4, switching element 322, and AC power source 1.
  • FIG. 3 shows a state where the power supply voltage polarity is negative, the switching element 312, the switching element 314 and the switching element 321 are on, and the other switching elements are off. In this state, current flows in the order of the AC power supply 1, the switching element 321, the smoothing capacitor 4, the switching element 312 and the switching element 314, the reactor 2, and the AC power supply 1.
  • FIG. 4 shows a state in which the power supply voltage polarity is positive, the switching element 312, the switching element 314 and the switching element 322 are on, and the other switching elements are off.
  • current flows in the order of the AC power source 1, the reactor 2, the switching element 312, the switching element 314, the switching element 322, and the AC power source 1, and a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed.
  • the power supply short-circuit path can be formed not through the freewheeling diode but via the switching element 312 and the switching element 314 that are in the on state.
  • FIG. 5 shows a state where the power supply voltage polarity is negative, the switching element 311, the switching element 313, and the switching element 321 are on, and the other switching elements are off.
  • the power supply short-circuit path can be formed via the switching element 311 and the switching element 313 rather than via the free wheel diode.
  • the control device 10 can control the power supply current Is and the bus voltage Vdc by controlling the switching of the current paths described above.
  • FIG. 6 and 7 are diagrams showing an example of capacitor short-circuiting via the AC power supply 1 and the reactor 2.
  • FIG. 6 shows a state where the power supply voltage polarity is positive and the power supply current is not flowing. Since the power supply voltage polarity is positive, originally, as shown in FIG. 2, the AC power source 1, the reactor 2, the switching element 311 and the switching element 313, the smoothing capacitor 4, the switching element 322, and the AC power source 1 Should flow. However, if the switching element 311, the switching element 313, and the switching element 322 are turned on when the power supply current is not flowing, the current flows in the opposite direction as shown in FIG. become.
  • FIG. 7 shows a state where the power supply voltage polarity is negative and the power supply current is not flowing. Since the power supply voltage polarity is negative, originally, as shown in FIG. 3, the AC power supply 1, the switching element 321, the smoothing capacitor 4, the switching element 312 and the switching element 314, the reactor 2, and the AC power supply 1 Should flow. However, if the switching element 312, the switching element 314, and the switching element 321 are turned on when the power supply current is not flowing, as shown in FIG. become.
  • the switching element 321 and the switching element 322 are allowed to be turned on, and when the power supply current is lower than the threshold value, The switching element 321 and the switching element 322 are turned off. Thereby, it is possible to prevent a capacitor short circuit through the AC power source 1 and the reactor 2, and it is possible to obtain a highly reliable power conversion device.
  • FIG. 8 to 11 are diagrams showing examples of current paths in the power conversion device 100 of the present embodiment when the absolute value of the power supply current is less than the threshold value.
  • FIG. 8 shows a state in which the power supply voltage polarity is positive, the switching elements 311 and 322 are on, and the other switching elements are off. In this case, the parasitic diode of the switching element 322 functions as a free-wheeling diode.
  • the absolute value of the power supply current may be a value that does not cause malfunction, and the lower the value, the longer the synchronous rectification period, and the more effective the conduction loss can be reduced.
  • the switching elements 311 and 322 may be turned off. By doing so, loss due to the drive power source generated in the switching elements 311 and 322 can be reduced.
  • FIG. 9 shows a state in which the power supply voltage polarity is negative, the switching elements 312 and 314 are on, and the other switching elements are off.
  • the parasitic diode of the switching element 321 functions as a freewheeling diode, and as shown in FIG. 9, the AC power supply 1, the freewheeling diode of the switching element 321, the smoothing capacitor 4, the switching element 312 and the switching element 314, the reactor 2, the alternating current A current flows in the order of the power source 1.
  • the absolute value of the power supply current may be a value that does not cause malfunction, and the lower the value, the longer the synchronous rectification period, and the more effective the conduction loss can be reduced.
  • the switching elements 312 and 314 may be turned off. By doing so, it is possible to reduce the loss due to the drive power generated in the switching elements 312 and 314.
  • FIG. 10 shows a state in which the power supply voltage polarity is positive, the switching elements 312 and 314 are on, and the other switching elements are off.
  • current flows in the order of the AC power supply 1, the reactor 2, the switching element 312 and the switching element 314, the return diode of the switching element 322, and the AC power supply 1.
  • the switching element 322 may be controlled to be turned on at the same time even if the absolute value of the power supply current is less than the threshold value. In that case, the conduction loss of the switching element 322 can be reduced.
  • FIG. 11 shows a state in which the power supply voltage polarity is negative, the switching elements 311 and 313 are on, and the other switching elements are off.
  • the current flows in the order of the AC power supply 1, the return diode of the switching element 321, the switching element 311 and the switching element 313, the reactor 2, and the AC power supply 1.
  • the switching element 321 since a short-circuit current flows, the switching element 321 may be controlled to be turned on at the same time even if the absolute value of the power supply current is less than the threshold value. In that case, the conduction loss of the switching element 321 can be reduced.
  • FIG. 12 is a diagram illustrating a configuration example of the control device 10 according to the present embodiment.
  • the control device 10 includes a power supply current command value control unit 21, an on-duty control unit 22, a power supply voltage phase calculation unit 23, a first pulse generation unit 24, and a second pulse generation.
  • the unit 25 is provided.
  • the power supply current command value control unit 21 calculates the power supply current effective value command value Is_rms * from the signal output from the bus voltage detection unit 7, that is, the bus voltage Vdc and the bus voltage command value Vdc * .
  • Bus voltage command value Vdc * may be set in advance or may be input from the outside of power converter 100.
  • the power supply current command value control unit 21 calculates the power supply current effective value command value Is_rms * by, for example, proportional-integral control using a difference between the bus voltage Vdc and the bus voltage command value Vdc * .
  • the on-duty control unit 22 uses the power supply current effective value command value Is_rms * calculated by the power supply current command value control unit 21 and a sin ⁇ ⁇ s described later calculated by the power supply voltage phase calculation unit 23 to supply the instantaneous power supply current value.
  • the command value Is * is calculated.
  • the on-duty control unit 22 calculates the reference on-duty duty of the switching elements 311 and 312 using the power source current instantaneous value command value Is * and the signal output from the power source current detecting unit 6, that is, the power source current Is. .
  • the reference duty of the switching elements 313 and 314 is the same as the reference on-duty duty of the switching elements 311 and 312.
  • the reference on-duty duty is calculated, for example, by proportional-integral control based on the difference between the power supply current instantaneous value command value Is * and the power supply current Is.
  • the power supply voltage phase calculation unit 23 uses the signal output from the power supply voltage detection unit 5, that is, the power supply voltage Vs, to calculate the power supply voltage phase estimation value ⁇ ⁇ s and the sine wave value sin ⁇ ⁇ s.
  • FIG. 13 is a diagram illustrating an example of the power supply voltage Vs and the power supply voltage phase estimation value ⁇ s ⁇ and the sine wave value sin ⁇ s ⁇ calculated by the power supply voltage detection unit 5.
  • the first stage of FIG. 13 shows the power supply voltage Vs
  • the second stage of FIG. 13 shows the power supply voltage phase estimation value ⁇ s ⁇
  • the third stage of FIG. 13 shows the sine wave value sin ⁇ s ⁇ . It is shown.
  • the power supply voltage phase calculation unit 23 linearly increases ⁇ s ⁇ , detects the timing at which the power supply voltage Vs switches from negative polarity to positive polarity, and resets ⁇ s ⁇ to 0 at this timing.
  • ⁇ s ⁇ becomes 360 °, that is, 0 ° at the timing when the power supply voltage Vs switches from negative polarity to positive polarity.
  • the power supply voltage phase calculation unit 23 calculates sin ⁇ s ⁇ based on the calculated power supply voltage phase estimation value ⁇ s ⁇ .
  • a zero cross detection circuit is used by using a zero cross detection circuit that detects the timing at which the power supply voltage Vs switches from negative polarity to positive polarity. Is used as an interrupt signal to reset the power supply voltage phase estimation value ⁇ s ⁇ .
  • the method of calculating the power supply voltage phase estimation value ⁇ s ⁇ is not limited to the above-described example, and any method may be used.
  • FIG. 14 is a diagram illustrating a configuration example of the first pulse generation unit 24.
  • the first pulse generation unit 24 includes a carrier generation unit 241, a reference PWM generation unit 242, a dead time generation unit 243, and a pulse selector unit 244.
  • the carrier generation unit 241 generates a carrier wave used for generating the reference PWM signal Scom.
  • the reference PWM signal Scom is a signal that serves as a reference for the PWM signal used to drive the switching elements 311 to 314. As described above, in the present embodiment, complementary PWM control is assumed, and the reference PWM signal is used to drive one switching element of the first arm 33, and the other switching element will be described later. In addition, a PWM signal complementary to the reference PWM signal is used.
  • the reference PWM generation unit 242 generates a reference PWM signal Scom by comparing the magnitude relationship between the reference on-duty and the carrier wave, that is, the carrier signal.
  • FIG. 15 is a diagram illustrating an example of the carrier wave carry and the reference PWM signal.
  • the carrier generation unit 241 sets the reference PWM signal Scom as a value indicating ON when duty> carry, and sets the reference PWM signal Scom as a value indicating OFF when duty ⁇ carry.
  • the reference PWM signal Scom is generated.
  • the high level indicates on and the low level indicates off. However, the high level indicates off and the reference PWM signal Scom is generated with the low level indicating on. Good.
  • the dead time generator 243 generates and outputs two complementary signals, the first PWM signal Sig1 and the second PWM signal Sig2, based on the reference PWM signal Scom. Specifically, the dead time generation unit 243 generates an inverted PWM signal Scom ′ that is a signal obtained by inverting the reference PWM signal Scom. Thereafter, the dead time generation unit 243 generates a first PWM signal Sig1 and a second PWM signal Sig2 by providing a dead time for the reference PWM signal Scom and the inverted PWM signal Scom '.
  • the dead time generation unit 243 sets the first PWM signal Sig1 and the second PWM so that both the first PWM signal Sig1 and the second PWM signal Sig2 have values indicating OFF during the dead time period.
  • a signal Sig2 is generated.
  • the dead time generation unit 243 makes the first PWM signal Sig1 the same as the reference PWM signal Scom.
  • the dead time generation unit 243 generates the second PWM signal Sig2 by changing the inverted PWM signal Scom 'from a value indicating ON to a value indicating OFF during the dead time.
  • the inverted PWM signal Scom ′ When the inverted PWM signal Scom ′ is generated by inverting the reference PWM signal Scom and the two switching elements constituting the same arm are driven by the reference PWM signal Scom and the inverted PWM signal Scom ′, respectively, ideally the same There is no period during which the two switching elements constituting the arm are turned on simultaneously. However, in general, there is a delay in the transition from the on state to the off state and from the off state to the on state. Therefore, due to this delay, two switching elements constituting the same arm may be turned on simultaneously, and the two switching elements constituting the same arm may be short-circuited.
  • the dead time (td) is a period provided so that the two switching elements constituting the same arm are not turned on at the same time even if there is a delay in the state transition.
  • the two PWM signals that drive the two switching elements constituting the same arm are both set to values indicating OFF.
  • FIG. 16 is a diagram illustrating an example of the reference PWM signal Scom, the inverted PWM signal Scom ′, the first PWM signal Sig1, and the second PWM signal Sig2.
  • the first stage of FIG. 16 shows the reference PWM signal Scom
  • the second stage of FIG. 16 shows the inverted PWM signal Scom ′
  • the third stage of FIG. 16 shows the first PWM signal Sig1.
  • the second PWM signal Sig2 is shown in the fourth stage of FIG.
  • the second PWM signal Sig2 has a value indicating OFF. Note that the above-described dead time generation method is an example, and the dead time generation method is not limited to the above-described example, and any method may be used.
  • the pulse selector unit 244 selects either the switching element 311 or the switching element 312 to transmit the first PWM signal Sig1 and the second PWM signal Sig2 output from the dead time generation unit 243.
  • FIG. 17 is a flowchart illustrating an example of a selection processing procedure in the pulse selector unit 244.
  • the pulse selector 244 determines whether the polarity of the power supply voltage Vs is positive, that is, whether Vs> 0 (step S1). When the polarity of the power supply voltage Vs is positive (step S1, Yes), the pulse selector unit 244 transmits the first PWM signal Sig1 as pulse_312 to the switching element 312 and the second PWM signal Sig2 as pulse_311. (Step S2).
  • the pulse selector unit 244 transmits the first PWM signal Sig1 to the switching element 311 as pulse_311 and the switching element 312 as the second PWM signal Sig2 as pulse_312. (Step S3).
  • the path shown in FIG. 5 and the path shown in FIG. 3 are switched by turning off or on of the switching element 311, that is, the switching element 311. This is because the bus voltage Vdc and the power supply current Is are controlled by the switching operation.
  • the pulse selector unit 244 repeats the above operation every time Vs is input.
  • the first pulse generation unit 24 generates pulse_311 that is a drive signal drive signal for the switching element 311 and pulse_312 that is a drive signal for the switching element 312.
  • the switching element 313 performs the switching operation at the same time as the switching element 311 and the switching element 314 performs the switching operation at the same time. Therefore, the pulse selector unit 244 outputs the same signal as the pulse_311 as the pulse_313 that is the drive signal of the switching element 313, and outputs the same signal as the pulse_312 as the pulse_314 that is the drive signal of the switching element 314. Therefore, there is no problem even if only pulse_311 and pulse_312 are generated and output as actual control signals and input as drive signals to the respective elements. In that case, it is possible to suppress processing related to pulse_313 and pulse_314.
  • the switching element 311 and the switching element 312 are controlled in a complementary relationship, the process of generating the inverted PWM signal Scom ′ from the reference PWM signal Scom can be realized using a simple signal inversion process. it can. In addition, it is possible to easily realize the output relationship of the drive pulses in one carrier and to prevent the upper and lower arms from being short-circuited regardless of the power source polarity. Stable control can be realized with simple processing.
  • FIG. 18 is a schematic diagram showing the relationship between current and loss in the switching element. Further, as shown in FIG. 18, in the region where the switching element loss is higher than the parasitic diode loss, that is, the current is high, it is possible to suppress the increase in loss due to the synchronous rectification control by stopping the complementary operation. That is, by performing control so that the synchronous rectification control is performed according to the power supply current Is, a highly efficient system can be obtained in the entire load region.
  • the control parameter used for the calculation in the power supply current command value control unit 21 and the on-duty control unit 22 has an optimum value according to the operation state of the circuit.
  • the operation state of the circuit is represented by at least one value among the power supply voltage Vs, the power supply current Is, and the bus voltage Vdc.
  • the proportional control gain in the on-duty control unit 22 changes in inverse proportion to the bus voltage. Therefore, the power supply current command value control unit 21 and the on-duty control unit 22 have at least one value among the power supply voltage Vs, the power supply current Is, and the bus voltage Vdc for realizing such a desired circuit operation.
  • a calculation formula or a table for calculating the corresponding control parameter may be held, and the control parameter may be adjusted according to the operation state of the circuit. Thereby, controllability can be improved.
  • proportional-integral control is given as the calculation method in the power supply current command value control unit 21 and the on-duty control unit 22, but the present invention is not limited by these control calculation methods, Other calculation methods may be used such as adding a term for proportional-integral-derivative control. Further, the calculation method in the power supply current command value control unit 21 and the on-duty control unit 22 may not be the same method.
  • the second pulse generator 25 is based on the signal output from the power supply voltage detector 5, that is, the power supply voltage Vs and the signal output from the power supply current detector 6, that is, the power supply current Is.
  • Pulse_321 that is a drive signal for the switching element 321 and pulse_322 that is a drive signal for the switching element 322 are generated and output, respectively.
  • FIG. 19 is a flowchart illustrating an example of a processing procedure in the second pulse generation unit 25.
  • the second pulse generator 25 controls the on / off state of the switching element 321 and the switching element 322 according to the polarity of the power supply voltage.
  • the second pulse generation unit 25 determines whether the polarity of the power supply voltage Vs is positive, that is, whether Vs> 0 (step S11).
  • the second pulse generation unit 25 generates and outputs pulse_321 and pulse_322 so that the switching element 321 is turned off and the switching element 322 is turned on. (Step S12).
  • the second pulse generation unit 25 When the polarity of the power supply voltage Vs is negative (No in step S11), the second pulse generation unit 25 generates and outputs pulse_321 and pulse_322 so that the switching element 321 is turned on and the switching element 322 is turned off. (Step S13). Thereby, synchronous rectification control is possible and a highly efficient system can be realized as described above.
  • FIG. 20 is a flowchart illustrating an example of a switching element control procedure based on the power supply current in the second pulse generation unit 25. As shown in FIG. 20, it is determined whether or not the power supply current is larger than the current threshold value ⁇ (step S21).
  • step S21 When the power supply current is larger than the current threshold ⁇ (step S21, Yes), the second pulse generator 25 permits the switching element 321 and the switching element 322 to be turned on (step S22).
  • the switching element 321 and the switching element 322 are turned on, the on and off states are controlled by the polarity of the power supply voltage shown in FIG.
  • the second pulse generation unit 25 does not allow the switching element 321 and the switching element 322 to be turned on (step S23).
  • the switching element 321 and the switching element 322 are not turned on, the switching element 321 and the switching element 322 are controlled to be turned off regardless of the polarity of the power supply voltage shown in FIG.
  • the switching element 321 and the switching element 322 are turned on when a current greater than or equal to the current threshold is flowing in the forward direction with respect to the freewheeling diode of the switching element. Thereby, it is possible to prevent a capacitor short circuit through the AC power supply 1 and the reactor 2.
  • the second pulse generation unit 25 controls the switching element 321 and the switching element 322 using the polarity of the power supply current, that is, the direction in which the current flows, without performing the on / off control based on the polarity of the power supply voltage. Also good.
  • the switching element 321 and the switching element 322 may be turned on based on the state of the switching control. Since no current flows through the switching element when switching is not performed, the timing at which such a state occurs is predicted so that the switching element 321 and the switching element 322 are not allowed to be turned on. In this case, the synchronous rectification effect may not be obtained in passive full-wave rectification (in a state where no short-circuit path is used), but it is possible to simply construct control without depending on detection of current or voltage.
  • switching element 321 and switching element 322 may be determined whether to allow switching element 321 and switching element 322 to be turned on based on the difference between the power supply voltage and the bus voltage. For example, when power supply voltage ⁇ bus voltage> 0, switching element 321 and switching element 322 are turned on, and when power supply voltage ⁇ bus voltage ⁇ 0, switching element 321 and switching element 322 are not allowed to be turned on. Like that.
  • control is performed so that the on-timing phase of the switching element 313 is synchronized with the on-timing of the switching element 311 in the switching cycle of the switching elements 311 to 314.
  • the current flowing through each switching element is halved when only the switching element 311 and the switching element 312 are used, and the loss generated in each switching element 311 to 314 is reduced.
  • the bias of element loss that is, the bias of heat generation in the bridge circuit constituted by the switching elements.
  • the synchronization control is performed using two arms connected in parallel.
  • the synchronization control may be performed using three arms connected in parallel.
  • the power conversion device when configured by connecting n arms (n is an integer of 2 or more) in parallel, the current of each switching element is a single arm. Of 1 / n. For this reason, the bias of loss can be suppressed by selecting n, which is the number of parallel connections of each switching element, based on the switching frequency, element characteristics, and characteristics of the gate drive circuit. Note that the bias of the element loss does not need to be completely suppressed, and the number of parallel connections of the switching elements may be appropriately selected based on the driving conditions and the like.
  • the second pulse generation unit 25 selects the switching element to be turned on from the switching element 321 and the switching element 322 based on the power supply voltage polarity, and prevents a capacitor short circuit based on the power supply current. Therefore, the switching element 321 and the switching element 322 were controlled.
  • the present invention is not limited to this example, and the first pulse generator 24 controls whether or not to allow the switching elements 311 to 314 to be turned on to prevent a capacitor short circuit based on the power supply current,
  • the pulse generating unit 25 may perform switching according to the power supply polarity without performing control for preventing the capacitor short circuit for the switching element 321 and the switching element 322.
  • the first pulse generation unit 24 does not allow the switching elements 311 and 313 to be turned on when the power supply current is equal to or smaller than the current threshold ⁇ , and the power supply current is larger than the current threshold ⁇ . In this case, the switching elements 311 and 313 are allowed to be turned on.
  • the first pulse generator 24 does not allow the switching elements 312 and 314 to be turned on when the power supply current is less than or equal to the current threshold value ⁇ , and when the power supply current is greater than the current threshold value ⁇ , the switching element 312 and 314 are allowed to be turned on.
  • the control device 10 may generate a drive signal pulse_312 for the switching element 312 when the power supply voltage is positive, and may generate a drive signal pulse_311 for the switching element 311 when the power supply voltage is negative (described later). (See FIG. 22). In this case, the control device 10 may generate a PWM signal for driving the switching elements 311 to 314 from the relationship among the power supply current Is, the power supply voltage Vs, and the bus voltage Vdc.
  • the switching elements 311 to 314 can be turned off before the timing when the power supply current becomes zero. In this case, even if the control of the switching elements 321 and 322 is controlled based on the power supply voltage polarity. Capacitor short-circuiting via an AC power supply can be prevented.
  • FIG. 21 is a diagram illustrating an example of each drive signal for one cycle of the power supply voltage in the power conversion apparatus 100 of the present embodiment.
  • FIG. 21 shows an example of each drive signal when a PWM signal is generated by the processing used in FIG.
  • the first stage of FIG. 21 shows the power supply voltage Vs
  • the second stage of FIG. 21 shows the primary current Is that is the power supply current
  • the third stage of FIG. The carrier signal is shown
  • the driving signals for the switching elements 311, 312, 321, and 322 are shown in the fourth to seventh stages in FIG. 21, respectively.
  • the timer set value ⁇ is shown in a staircase pattern, but the timer set value is a period in which the vertical axis of one stage is the same value. As shown in FIG.
  • the pulse width is determined for each timer set value ⁇ by comparison with the carrier signal.
  • the dead time is omitted.
  • the switching element 321 and the switching element 322 are turned on or off according to the polarity of the power supply voltage, and are turned off when the absolute value of the power supply current is less than or equal to the current threshold value. .
  • the filter or hysteresis in the current detection circuit or in the microcomputer after detection, excessive ON / OFF switching of switching near the threshold can be suppressed. It is possible to suppress the increase.
  • FIG. 22 is a diagram illustrating another example of each drive signal for one cycle of the power supply voltage in the power conversion apparatus 100 of the present embodiment.
  • FIG. 22 shows an example of each drive signal when the drive signal pulse_312 of the switching element 312 is generated when the power supply voltage is positive, and when the drive signal pulse_311 of the switching element 311 is generated when the power supply voltage is negative. ing.
  • FIG. 21 shows an example in which the switching element is controlled using the carrier signal.
  • the present invention is also applicable to the case where simple switching control is performed in which switching is performed once to a plurality of times during a half cycle of the power supply cycle.
  • the operation of the embodiment can be applied.
  • FIG. 23 is a diagram illustrating an example of each drive signal when the simple switching control is performed.
  • the first stage of FIG. 23 shows the power supply voltage Vs
  • the second stage of FIG. 23 shows the primary current Is as the power supply current
  • the third stage of FIG. 23 shows the primary current absolute value
  • the power supply polarity signal is shown in the fourth stage of FIG. 23, the power supply current signal is shown in the fifth stage of FIG. 23, and the sixth to ninth stages of FIG.
  • FIG. 23 shows an example in which the power supply voltage itself is not measured, the power supply polarity signal is generated by detecting the zero cross of the power supply voltage, and the power supply current signal is generated by detecting the zero cross of the power supply current. ing. Also in this case, when the power supply current is equal to or less than the current threshold, the switching element 311 and the switching element 321 are not turned on at the same time, and the switching element 312 and the switching element 322 are not turned on at the same time. Can be prevented.
  • FIG. 24 is a diagram illustrating an example of each drive signal in a passive state.
  • the first stage of FIG. 24 shows the power supply voltage Vs
  • the second stage of FIG. 24 shows the primary current Is as the power supply current
  • the third stage of FIG. 24 shows the primary current absolute value
  • the power supply polarity signal is shown in the fourth stage of FIG. 24, the power supply current signal is shown in the fifth stage of FIG. 24, and the sixth to ninth stages of FIG.
  • the drive signals of the switching elements 311, 312, 321, 322 are shown in FIG. Also in this case, when the power supply current is equal to or less than the current threshold, the switching element 311 and the switching element 321 are not turned on at the same time, and the switching element 312 and the switching element 322 are not turned on at the same time. Can be prevented.
  • the control is performed by the method of detecting the power supply current.
  • the synchronous rectification control period may be limited (shortened) when the synchronous rectification control is performed with the current threshold. Therefore, when performing synchronous rectification control by detecting the bus current, as described above, the switching element 321 or the switching element 322 depending on the polarity even if the absolute value of the power supply current is less than the threshold value during the short-circuit current operation. It may be controlled to turn on. In that case, since a synchronous rectification operation can be performed over a wide period, the conduction loss of the switching element 321 or the switching element 322 can be reduced.
  • this embodiment is particularly suitable when a general-purpose IPM (intelligent power module) is used.
  • general-purpose IPM a switching element having substantially the same characteristics is mounted on an internal switching element. For this reason, when a switching element that performs a switching operation by PWM and a switching element that performs a switching element according to the polarity of the power supply voltage coexist, the switching frequency of the switching element that performs a switching operation by PWM depends on the polarity of the power supply voltage. Higher than the switching frequency of the switching element. For this reason, the element loss of the switching element that performs the switching operation by PWM becomes larger than the loss of the switching element corresponding to the polarity of the power supply voltage.
  • the current flowing through the switching elements that perform the switching operation by PWM can be suppressed, and the loss between each element can be reduced.
  • the bias can be suppressed.
  • the yield of large chips such as SiC is poor, and in the case of an element that can be reduced in cost by using a small chip, it is possible to adopt a small chip compared to the case of four elements. Therefore, it is preferable because it can be realized at a relatively low cost.
  • the drive circuit of the switching element can be taken into the IPM, and the board area can be reduced. Moreover, cost can be suppressed by using a general general-purpose IPM.
  • one reactor 2 is connected between the AC power source 1 and the first arm 33.
  • the reactor is also inserted between the AC power source 1 and the second arm 34. There is no problem. In this case, the capacity per reactor can be reduced.
  • the power supply voltage is detected.
  • the method detects only the zero-cross information of the power supply voltage, it is only necessary to know the polarity of the power supply voltage, so that the operation described above can be performed. In that case, there is no problem even if the control is performed such that the off operation is performed for a certain period based on the estimated value of the power supply voltage phase in order to suppress erroneous polarity determination near the zero cross.
  • the switching element drive permission determination is performed by determining the threshold of the power supply current, but switching is performed by the power supply voltage, the input voltage of the first circuit 31 and the bus voltage, or the voltage across the switching element. There is no problem even if it is estimated and controlled that a current flows through the return diode of the element. Note that when estimating with the power supply voltage or the input voltage of the first circuit 31 and the bus voltage, there are many factors in the determination, so it is necessary to pay attention to the estimation error. When determining with the voltage across the switching element, A detection circuit is required for each switching element to be determined.
  • the control device 10 is realized by a processing circuit.
  • This processing circuit may be a processing circuit that is dedicated hardware, or may be a control circuit including a processor. Further, it may be constituted by a plurality of processing circuits.
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or these Is a combination.
  • FIG. 25 is a diagram illustrating a configuration example of the control circuit 200 of the present embodiment.
  • the control circuit 200 includes a processor 201 and a memory 202.
  • the processor is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)) or the like.
  • the memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, or a magnetic disk.
  • the processing circuit that implements the control device 10 is the control circuit 200 including a processor
  • the processor 201 reads out and executes a program describing the processing of the control device 10 stored in the memory 202.
  • the memory 202 is also used as a temporary memory in each process executed by the processor 201.
  • a power conversion device including an arm that performs switching for controlling the power supply current and an arm that corresponds to the polarity of the power supply voltage, switching for controlling the power supply current is performed.
  • the arms were connected in parallel. Thereby, the bias of element loss can be suppressed.
  • FIG. FIG. 26 is a diagram illustrating a configuration example of the driving apparatus according to the second embodiment.
  • the driving device 101 according to the second embodiment is a motor driving device and drives a motor 42 that is a load.
  • the drive device 101 according to the second embodiment includes the power conversion device 100 described in the first embodiment, the inverter 41, the motor current detection unit 44, and the inverter control unit 43.
  • the inverter 41 drives the motor 42 by converting the DC power supplied from the power converter 100 into AC power and applying it to the motor 42.
  • the load driven by the driving device is the motor 42 will be described.
  • the motor driven by the inverter 41 is not limited to the load.
  • the inverter 41 may have any configuration.
  • a switching element including an IGBT Insulated Gate Bipolar Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • a wide band gap element may be used as the switching element.
  • the motor current detector 44 detects the current flowing through the motor 42.
  • the inverter control unit 43 uses the current detected by the motor current detection unit 44 to generate a PWM signal for driving the switching element in the inverter 41 so that the motor 42 rotates at a desired rotational speed. Applied to the inverter 41.
  • the inverter control unit 43 is realized by a processing circuit similarly to the control device 10. Further, the control device 10 and the inverter control unit 43 may be realized by an integrated processing circuit.
  • the required bus voltage Vds varies depending on the operating state of the motor 42. There is a special feature.
  • the upper limit of the output voltage from the inverter 41 is limited by the input voltage to the inverter 41, that is, the bus voltage Vds that is the output of the power converter 100.
  • a region where the output voltage from the inverter 41 saturates beyond the upper limit limited by the bus voltage Vds is called an overmodulation region.
  • the number of windings of the stator of the motor 42 can be increased accordingly.
  • the current is reduced as the motor voltage increases, and loss reduction in the inverter 41 is expected.
  • the degree of increase in the number of turns of the motor 42 may be appropriately designed.
  • the power conversion apparatus 100 according to the first embodiment configures the drive apparatus 101 has been described above.
  • the power conversion device 100 of the first embodiment it is possible to realize the drive device 101 that suppresses the bias of element loss.
  • FIG. FIG. 27 is a diagram illustrating a configuration example of an air conditioner according to Embodiment 3 of the present invention.
  • the air conditioner of the present embodiment includes the motor 42 and the drive device (electric motor drive device) 101 described in the second embodiment.
  • a compressor 81 incorporating the motor 42 of the second embodiment, a four-way valve 82, an outdoor heat exchanger 83, an expansion valve 84, and an indoor heat exchanger 85 are connected via a refrigerant pipe 86. It has a refrigeration cycle attached, that is, a refrigeration cycle apparatus, and constitutes a separate air conditioner.
  • the motor 42 is controlled by the driving device 101.
  • a compressor 81 for compressing refrigerant and a motor 42 for operating the compressor 81 are provided inside the compressor 81, and the refrigerant circulates between the outdoor heat exchanger 83 and the indoor heat exchanger 85 from the compressor 81 for air conditioning and the like.
  • the refrigeration cycle to perform is comprised.
  • the structure shown in FIG. 27 is applicable not only to an air conditioner but also to equipment including a refrigeration cycle such as a refrigerator and a freezer.
  • the motor 42 is used as the motor of the compressor and the motor 42 is driven by the driving device 101 .
  • the motor 42 is used as the motor of the blower in the air conditioner. You may drive with the drive device 101.
  • the motor 42 may be used as the motor for both the blower and the driving device 101, and the motor 42 may be driven by the driving device 101.
  • air conditioners are often operated under intermediate conditions that are less than half of the rated output, that is, low output conditions throughout the year, and the contribution to the annual power consumption (APF (Annual Performance Factor)) of the intermediate conditions is high.
  • APF Annual Performance Factor
  • the number of rotations of the motor is low, and the bus voltage necessary for driving the motor tends to be low.
  • the power conversion device used in the air conditioner is operated passively, and the loss can be reduced in a wide range of operation modes from passive to high-frequency switching.
  • the power conversion device 100 is useful.
  • the reactor can be miniaturized, but in an air conditioner, there are many operations under intermediate conditions, so there is no need for miniaturization of the reactor.
  • the configuration and operation are more effective in terms of harmonic suppression and power factor.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This power conversion device (100) is provided with the following: a reactor (2); a first arm (33) that comprises a switching element (311) and a switching element (312) that are connected in series and that have a connection point connected to the reactor (2); a second arm (34) that is connected in parallel to the first arm (33) and that comprises a switching element (313) and a switching element (314) that are connected in series and that have a connection point connected to the reactor (2); a second circuit (32) that is connected in parallel to the second arm (34) and that comprises a switching element (321) and a switching element (322) that are connected in series and that have a connection point connected to an alternating current power source; and a smoothing capacitor (4) that is connected in parallel to the second circuit (32).

Description

電力変換装置、モータ駆動装置および空気調和機Power conversion device, motor drive device, and air conditioner
 本発明は、交流電力を直流電力に変換して負荷へ供給する電力変換装置、この電力変換装置を備えるモータ駆動装置および空気調和機に関する。 The present invention relates to a power conversion device that converts AC power into DC power and supplies the load to a load, a motor driving device including the power conversion device, and an air conditioner.
 電源から供給される電流である電源電流には、基本波の周波数より高い周波数の周波数成分である高調波成分である高調波電流が含まれる。高調波電流により生じる障害を抑制するため、高調波電流を発生させる電子機器に対して、国際的に規制が設けられている。この規制を順守するため、コンバータでは、AC(Alternating Current)またはDC(Direct Current)でのチョッピングにより、電源電流に含まれる高調波電流を抑制する施策がとられる。 The power source current that is a current supplied from the power source includes a harmonic current that is a harmonic component that is a frequency component of a frequency higher than the frequency of the fundamental wave. In order to suppress obstacles caused by harmonic currents, there are international regulations for electronic devices that generate harmonic currents. In order to comply with this regulation, the converter takes measures to suppress the harmonic current contained in the power supply current by chopping with AC (Alternating Current) or DC (Direct Current).
 中でもACでのチョッピング技術による損失低減技術として、整流回路をスイッチ素子により構成したフルブリッジコンバータが盛んに検討されている。例えば、特許文献1には、フルブリッジ回路の一方のアームにより電源電流を制御し、フルブリッジ回路の他方のアームのスイッチング素子を電源極性に応じてスイッチングさせることで、低損失化を実現する技術が開示されている。 In particular, full-bridge converters in which rectifier circuits are configured with switch elements are being actively studied as loss reduction techniques using AC chopping techniques. For example, Patent Document 1 discloses a technique for realizing a low loss by controlling a power supply current by one arm of a full bridge circuit and switching a switching element of the other arm of the full bridge circuit in accordance with the power supply polarity. Is disclosed.
特開2014-099946号公報JP 2014-099946 A
 しかしながら、特許文献1に記載の技術では、電源電流の制御のためのスイッチングを行うアームのスイッチング素子の方が、電源極性に応じたスイッチングを行う他方のアームのスイッチング素子に比べてスイッチング周波数が高くなる。このため、電源制御のためのスイッチングを行うアームのスイッチング素子の損失が、電源の電圧極性に応じたスイッチングを行う他方のアームのスイッチング素子に比べて大きくなる。したがって、特許文献1に記載の技術には、発熱の偏りが発生し、高出力化が困難であるという課題がある。 However, in the technique described in Patent Document 1, the switching element of the arm that performs switching for controlling the power supply current has a higher switching frequency than the switching element of the other arm that performs switching according to the power supply polarity. Become. For this reason, the loss of the switching element of the arm that performs switching for power supply control is larger than that of the switching element of the other arm that performs switching according to the voltage polarity of the power supply. Therefore, the technique described in Patent Document 1 has a problem in that unevenness of heat generation occurs and it is difficult to increase the output.
 本発明は、上記に鑑みてなされたものであって、発熱の偏りを抑制し、高出力化を実現することができる電力変換装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can suppress unevenness in heat generation and achieve high output.
 上述した課題を解決し、目的を達成するために、本発明にかかる電力変換装置は、交流電源から供給された交流電力を直流電力に変換する電力変換装置であって、それぞれが交流電源に接続される第1の配線および第2の配線と、第1の配線上に配置されるリアクタとを備える。また、本発明にかかる電力変換装置は、第1のスイッチング素子と、第2のスイッチング素子と、第1の接続点を備える第3の配線とを備え、第1のスイッチング素子および第2のスイッチング素子は第3の配線により直列に接続され、第1の接続点は第1の配線によりリアクタに接続される第1のアームと、第1のアームと並列に接続され、第3のスイッチング素子と、第4のスイッチング素子と、第2の接続点を備える第4の配線とを備え、第3のスイッチング素子および第4のスイッチング素子は第4の配線により直列に接続され、第2の接続点は第1の配線によりリアクタに接続される第2のアームと、を備える。さらに、本発明にかかる電力変換装置は、第2のアームと並列に接続され、第5のスイッチング素子と、第6のスイッチング素子と、第3の接続点を備える第5の配線とを備え、第5のスイッチング素子および第6のスイッチング素子は第5の配線により直列に接続され、第3の接続点は第2の配線により交流電源に接続される第3のアームと、第3のアームと並列に接続されるコンデンサと、を備える。 In order to solve the above-described problems and achieve the object, a power converter according to the present invention is a power converter that converts AC power supplied from an AC power source into DC power, each connected to the AC power source. First and second wirings, and a reactor disposed on the first wiring. Moreover, the power converter device concerning this invention is provided with the 1st switching element, the 2nd switching element, and the 3rd wiring provided with the 1st connection point, The 1st switching element and the 2nd switching The elements are connected in series by a third wiring, the first connection point is connected to the reactor by the first wiring, the first arm is connected in parallel with the first arm, and the third switching element , A fourth switching element and a fourth wiring having a second connection point, wherein the third switching element and the fourth switching element are connected in series by the fourth wiring, and the second connection point Comprises a second arm connected to the reactor by a first wiring. Furthermore, the power conversion device according to the present invention includes a fifth switching element, a sixth switching element, and a fifth wiring having a third connection point, which are connected in parallel with the second arm. The fifth switching element and the sixth switching element are connected in series by the fifth wiring, and the third connection point is a third arm connected to the AC power source by the second wiring, the third arm, A capacitor connected in parallel.
 本発明にかかる電力変換装置は、発熱の偏りを抑制し、高出力化を実現することができるという効果を奏する。 The power conversion device according to the present invention has the effect of suppressing the bias of heat generation and realizing high output.
実施の形態1にかかる電力変換装置の構成例を示す図The figure which shows the structural example of the power converter device concerning Embodiment 1. FIG. 電源電流の絶対値が電流閾値より大きい場合の実施の形態1の電力変換装置における電流経路を示す図The figure which shows the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is larger than a current threshold value. 電源電流の絶対値が電流閾値より大きい場合の実施の形態1の電力変換装置における電流経路を示す図The figure which shows the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is larger than a current threshold value. 電源電流の絶対値が電流閾値より大きい場合の実施の形態1の電力変換装置における電流経路を示す図The figure which shows the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is larger than a current threshold value. 電源電流の絶対値が電流閾値より大きい場合の実施の形態1の電力変換装置における電流経路を示す図The figure which shows the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is larger than a current threshold value. 実施の形態1の交流電源およびリアクタを介したコンデンサ短絡の一例を示す図The figure which shows an example of the capacitor | condenser short circuit through the alternating current power supply and reactor of Embodiment 1 実施の形態1の交流電源およびリアクタを介したコンデンサ短絡の一例を示す図The figure which shows an example of the capacitor | condenser short circuit through the alternating current power supply and reactor of Embodiment 1 電源電流の絶対値が閾値未満の場合の実施の形態1の電力変換装置における電流経路の例を示す図The figure which shows the example of the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is less than a threshold value 電源電流の絶対値が閾値未満の場合の実施の形態1の電力変換装置における電流経路の例を示す図The figure which shows the example of the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is less than a threshold value 電源電流の絶対値が閾値未満の場合の実施の形態1の電力変換装置における電流経路の例を示す図The figure which shows the example of the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is less than a threshold value 電源電流の絶対値が閾値未満の場合の実施の形態1の電力変換装置における電流経路の例を示す図The figure which shows the example of the current pathway in the power converter device of Embodiment 1 when the absolute value of power supply current is less than a threshold value 実施の形態1の制御装置の構成例を示す図The figure which shows the structural example of the control apparatus of Embodiment 1. 実施の形態1の電源電圧Vsと電源電圧検出部により算出される電源電圧位相推定値θs^および正弦波値sinθs^の一例を示す図The figure which shows an example of the power supply voltage phase estimation value (theta) s ^ and sine wave value sin (theta) s ^ calculated by the power supply voltage Vs of Embodiment 1, and a power supply voltage detection part 実施の形態1の第1のパルス生成部の構成例を示す図The figure which shows the structural example of the 1st pulse generation part of Embodiment 1. FIG. 実施の形態1の搬送波carryおよび基準PWM信号の一例を示す図The figure which shows an example of the carrier wave of Embodiment 1, and a reference | standard PWM signal 実施の形態1の基準PWM信号Scom、反転PWM信号Scom’、第1のPWM信号Sig1および第2のPWM信号Sig2の一例を示す図The figure which shows an example of the reference | standard PWM signal Scom of Embodiment 1, inversion PWM signal Scom ', 1st PWM signal Sig1, and 2nd PWM signal Sig2. 実施の形態1のパルスセレクタ部における選択処理手順の一例を示すフローチャートA flowchart showing an example of a selection processing procedure in the pulse selector unit of the first embodiment. 実施の形態1のスイッチング素子における電流と損失の関係を示す模式図Schematic diagram showing the relationship between current and loss in the switching element of the first embodiment 実施の形態1の同期駆動パルス生成部における処理手順の一例を示すフローチャートThe flowchart which shows an example of the process sequence in the synchronous drive pulse generation part of Embodiment 1. 実施の形態1の同期駆動パルス生成部における電源電流に基づくスイッチング素子の制御手順の一例を示すフローチャートThe flowchart which shows an example of the control procedure of the switching element based on the power supply current in the synchronous drive pulse generation part of Embodiment 1 実施の形態1の電力変換装置における電源電圧の1周期分の各駆動信号の一例を示す図The figure which shows an example of each drive signal for 1 period of the power supply voltage in the power converter device of Embodiment 1. 実施の形態1の電力変換装置における電源電圧の1周期分の各駆動信号の別の一例を示す図The figure which shows another example of each drive signal for 1 period of the power supply voltage in the power converter device of Embodiment 1. FIG. 実施の形態1の簡易スイッチング制御を実施する場合の各駆動信号の一例を示す図The figure which shows an example of each drive signal in the case of implementing the simple switching control of Embodiment 1 実施の形態1のパッシブな状態の各駆動信号の一例を示す図The figure which shows an example of each drive signal of the passive state of Embodiment 1 実施の形態1の制御回路の構成例を示す図FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment. 実施の形態2の駆動装置の構成例を示す図The figure which shows the structural example of the drive device of Embodiment 2. FIG. 実施の形態3の空気調和機の構成例を示す図The figure which shows the structural example of the air conditioner of Embodiment 3.
 以下に、本発明の実施の形態にかかる電力変換装置、モータ駆動装置および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a power conversion device, a motor drive device, and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置の構成例を示す図である。実施の形態1にかかる電力変換装置100は、単相交流電源(以下、単に交流電源という)1から供給される交流電力を直流電力に変換して出力する。図1に示すように、電力変換装置100は、リアクタ2、ブリッジ回路3、平滑コンデンサ4、電源電圧検出部5、電源電流検出部6、母線電圧検出部7、および制御装置10を備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of the power conversion device according to the first embodiment of the present invention. The power conversion apparatus 100 according to the first embodiment converts AC power supplied from a single-phase AC power source (hereinafter simply referred to as AC power source) 1 into DC power and outputs the DC power. As shown in FIG. 1, the power conversion device 100 includes a reactor 2, a bridge circuit 3, a smoothing capacitor 4, a power supply voltage detection unit 5, a power supply current detection unit 6, a bus voltage detection unit 7, and a control device 10. .
 ブリッジ回路3は、第1の回路31および第2の回路32を備える。第1の回路31は、互いに並列に接続された第1のアーム33および第2のアーム34を備える。第1のアーム33は、直列に接続されたスイッチング素子311およびスイッチング素子312を備える。第2のアーム34は、直列に接続されたスイッチング素子313およびスイッチング素子314を備える。第3のアームである第2の回路32は、直列に接続されたスイッチング素子321およびスイッチング素子322を備える。第2の回路32は、第1の回路31に並列に接続される。 The bridge circuit 3 includes a first circuit 31 and a second circuit 32. The first circuit 31 includes a first arm 33 and a second arm 34 connected in parallel to each other. The first arm 33 includes a switching element 311 and a switching element 312 connected in series. The second arm 34 includes a switching element 313 and a switching element 314 connected in series. The second circuit 32 which is the third arm includes a switching element 321 and a switching element 322 connected in series. The second circuit 32 is connected to the first circuit 31 in parallel.
 詳細には、電力変換装置100は、それぞれが交流電源1に接続される第1の配線501および第2の配線502と、第1の配線501に配置されるリアクタ2とを備える。また、第1のアーム33は、第1のスイッチング素子であるスイッチング素子311と、第2のスイッチング素子であるスイッチング素子312と、第1の接続点506を備える第3の配線503とを備える。スイッチング素子311およびスイッチング素子312は第3の配線503により直列に接続され、第1の接続点506は第1の配線501によりリアクタ2に接続される。第2のアーム34は、第1のアーム33と並列に接続され、第3のスイッチング素子であるスイッチング素子313と、第4のスイッチング素子であるスイッチング素子314と、第2の接続点507を備える第4の配線504とを備える。スイッチング素子313およびスイッチング素子314は第4の配線504により直列に接続され、第2の接続点507は第1の配線501によりリアクタ2に接続される。 Specifically, the power conversion apparatus 100 includes a first wiring 501 and a second wiring 502 that are connected to the AC power source 1, and a reactor 2 that is disposed on the first wiring 501. The first arm 33 includes a switching element 311 that is a first switching element, a switching element 312 that is a second switching element, and a third wiring 503 including a first connection point 506. Switching element 311 and switching element 312 are connected in series by third wiring 503, and first connection point 506 is connected to reactor 2 by first wiring 501. The second arm 34 is connected in parallel to the first arm 33 and includes a switching element 313 that is a third switching element, a switching element 314 that is a fourth switching element, and a second connection point 507. 4th wiring 504 is provided. The switching element 313 and the switching element 314 are connected in series by the fourth wiring 504, and the second connection point 507 is connected to the reactor 2 by the first wiring 501.
 第3のアームである第2の回路32は、第2のアーム34と並列に接続され、第5のスイッチング素子であるスイッチング素子321と、第6のスイッチング素子であるスイッチング素子322と、第3の接続点508を備える第5の配線505とを備え、スイッチング素子321およびスイッチング素子322は第5の配線505により直列に接続される。第3の接続点508は第2の配線502により交流電源1に接続される。コンデンサである平滑コンデンサ4は、第3のアームである第2の回路32と並列に接続される。スイッチング素子311とスイッチング素子312との接続点である第1の接続点506と、スイッチング素子313とスイッチング素子314との接続点である第2の接続点507とは第1の配線501により接続される。このため、第1の接続点506と第2の接続点507とは同電位すなわち電位差が零である。 The second circuit 32 that is the third arm is connected in parallel to the second arm 34, the switching element 321 that is the fifth switching element, the switching element 322 that is the sixth switching element, and the third The switching element 321 and the switching element 322 are connected in series by the fifth wiring 505. The third connection point 508 is connected to the AC power source 1 by the second wiring 502. The smoothing capacitor 4 that is a capacitor is connected in parallel with the second circuit 32 that is the third arm. A first connection point 506 that is a connection point between the switching element 311 and the switching element 312 and a second connection point 507 that is a connection point between the switching element 313 and the switching element 314 are connected by a first wiring 501. The Therefore, the first connection point 506 and the second connection point 507 have the same potential, that is, the potential difference is zero.
 スイッチング素子311~314,321,322は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)により構成される。一例として、スイッチング素子311~314,321,322は、GaN(窒化ガリウム)、SiC(シリコンカーバイド:炭化珪素)、ダイヤモンドなどのワイドバンドギャップ半導体により形成されたMOSFETを用いることができる。また、ここではワイドバンドギャップ半導体を用いることで耐電圧性が高く、許容電流密度も高くなるため、モジュールの小型化が可能となる。ワイドバンドギャップ半導体は、耐熱性も高いため、放熱部の放熱フィンの小型化も可能になる。 The switching elements 311 to 314, 321, and 322 are configured by MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). As an example, switching elements 311 to 314, 321, and 322 may be MOSFETs formed of a wide band gap semiconductor such as GaN (gallium nitride), SiC (silicon carbide: silicon carbide), diamond, or the like. In addition, the use of a wide band gap semiconductor has high voltage resistance and high allowable current density, so that the module can be miniaturized. Since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin of the radiating portion.
 制御装置10は、電源電圧検出部5、電源電流検出部6、および母線電圧検出部7からそれぞれ出力される信号に基づいて、ブリッジ回路3のスイッチング素子を動作させる駆動パルスを生成する。電源電圧検出部5は、交流電源1から出力される電力の電圧である電源電圧Vsを検出し、検出結果を示す電気信号を制御装置10へ出力する。電源電流検出部6は、交流電源1から出力される電力の電流である電源電流Isを検出し、検出結果を示す電気信号を制御装置10へ出力する。母線電圧検出部7は、ブリッジ回路3の出力電圧を平滑コンデンサ4で平滑した電圧である母線電圧Vdcを検出し、制御装置10に出力する。 The control device 10 generates drive pulses for operating the switching elements of the bridge circuit 3 based on signals output from the power supply voltage detection unit 5, the power supply current detection unit 6, and the bus voltage detection unit 7, respectively. The power supply voltage detection unit 5 detects a power supply voltage Vs that is a voltage of electric power output from the AC power supply 1 and outputs an electric signal indicating the detection result to the control device 10. The power supply current detection unit 6 detects a power supply current Is that is a current of power output from the AC power supply 1, and outputs an electric signal indicating the detection result to the control device 10. The bus voltage detector 7 detects the bus voltage Vdc, which is a voltage obtained by smoothing the output voltage of the bridge circuit 3 with the smoothing capacitor 4, and outputs the detected voltage to the control device 10.
 次に、本実施の形態の電力変換装置100の基本的な動作を説明する。以下では、スイッチング素子のうち交流電源1の正側すなわち交流電源1の正極端子に接続されるスイッチング素子であるスイッチング素子311,313,321を上側スイッチング素子とも呼ぶ。また、スイッチング素子のうち交流電源1の負側すなわち交流電源1の負極端子に接続されるスイッチング素子であるスイッチング素子312,314,322を下側スイッチング素子とも呼ぶ。 Next, the basic operation of the power conversion device 100 of the present embodiment will be described. Hereinafter, among the switching elements, the switching elements 311, 313 and 321 which are switching elements connected to the positive side of the AC power supply 1, that is, the positive terminal of the AC power supply 1 are also referred to as upper switching elements. In addition, among the switching elements, switching elements 312, 314, and 322 that are switching elements connected to the negative side of the AC power supply 1, that is, the negative terminal of the AC power supply 1 are also referred to as lower switching elements.
 本実施の形態の電力変換装置100における第1の回路31を構成する第1のアーム33および第2のアーム34では、上側スイッチング素子と下側スイッチング素子は相補的に動作する。すなわち、上側スイッチング素子および下側スイッチング素子のうち一方がオンの場合他方はオフである。また、本実施の形態の電力変換装置100の第1のアーム33と第2のアーム34とは同時にスイッチング動作を実施する。第1のアーム33のスイッチング素子311を駆動するための駆動信号とスイッチング素子313を駆動するための駆動信号とは同一であり、スイッチング素子311およびスイッチング素子313は、同時にオンとなり同時にオフとなる。第1のアーム33のスイッチング素子312を駆動するための駆動信号とスイッチング素子314を駆動するための駆動信号とは同一であり、スイッチング素子312およびスイッチング素子314は、同時にオンとなり同時にオフとなる。第1のアーム33および第2のアーム34を構成する各スイッチング素子は、後述するように、制御装置10により生成されるPWM(Pulse Width Modulation)信号により駆動される。PWM信号に従ったスイッチング素子311~314のオンまたはオフの動作を、以下スイッチング動作とも呼ぶ。 In the first arm 33 and the second arm 34 constituting the first circuit 31 in the power conversion device 100 of the present embodiment, the upper switching element and the lower switching element operate in a complementary manner. That is, when one of the upper switching element and the lower switching element is on, the other is off. Moreover, the 1st arm 33 and the 2nd arm 34 of the power converter device 100 of this Embodiment implement switching operation simultaneously. The drive signal for driving the switching element 311 of the first arm 33 and the drive signal for driving the switching element 313 are the same, and the switching element 311 and the switching element 313 are simultaneously turned on and simultaneously turned off. The drive signal for driving the switching element 312 of the first arm 33 and the drive signal for driving the switching element 314 are the same, and the switching element 312 and the switching element 314 are simultaneously turned on and simultaneously turned off. As will be described later, each switching element constituting the first arm 33 and the second arm 34 is driven by a PWM (Pulse Width Modulation) signal generated by the control device 10. The on / off operation of the switching elements 311 to 314 in accordance with the PWM signal is hereinafter also referred to as a switching operation.
 第3のアームである第2の回路32を構成するスイッチング素子は、制御装置10により生成される駆動信号によりオンまたはオフとなる。基本的には、交流電源1から供給される電力の電圧極性である電源電圧極性に応じてオンまたはオフの状態となる。具体的には、電源電圧極性が正の場合には、スイッチング素子322はオンでありかつスイッチング素子321はオフであり、電源電圧極性が負の場合には、スイッチング素子321はオンでありかつスイッチング素子322はオフである。ただし、後述するように、本実施の形態では、交流電源1およびリアクタ2を介したコンデンサ短絡を防ぐために、交流電源1から供給される電力の電流である電源電流の絶対値が閾値(以下、電流閾値という)以下の場合には、スイッチング素子322およびスイッチング素子321がともにオフとなる。 The switching elements constituting the second circuit 32 that is the third arm are turned on or off by a drive signal generated by the control device 10. Basically, the power supply voltage polarity, which is the voltage polarity of the power supplied from the AC power supply 1, is turned on or off. Specifically, when the power supply voltage polarity is positive, the switching element 322 is on and the switching element 321 is off, and when the power supply voltage polarity is negative, the switching element 321 is on and switching. Element 322 is off. However, as will be described later, in this embodiment, in order to prevent a capacitor short circuit via the AC power supply 1 and the reactor 2, the absolute value of the power supply current, which is the current of the power supplied from the AC power supply 1, is set to a threshold value (hereinafter, In the following case (referred to as current threshold), both the switching element 322 and the switching element 321 are turned off.
 図2~図5は、電源電流の絶対値が電流閾値より大きい場合の本実施の形態の電力変換装置100における電流経路を示す図である。図2は、電源電圧極性が正であり、スイッチング素子311、スイッチング素子313およびスイッチング素子322がオンであり、他のスイッチング素子がオフである状態を示している。この状態では、交流電源1、リアクタ2、スイッチング素子311およびスイッチング素子313、平滑コンデンサ4、スイッチング素子322、交流電源1の順序で電流が流れる。 2 to 5 are diagrams showing current paths in the power conversion device 100 of the present embodiment when the absolute value of the power supply current is larger than the current threshold value. FIG. 2 shows a state in which the power supply voltage polarity is positive, the switching element 311, the switching element 313, and the switching element 322 are on, and the other switching elements are off. In this state, current flows in the order of AC power source 1, reactor 2, switching element 311 and switching element 313, smoothing capacitor 4, switching element 322, and AC power source 1.
 図3は、電源電圧極性が負であり、スイッチング素子312、スイッチング素子314およびスイッチング素子321がオンであり、他のスイッチング素子がオフである状態を示している。この状態では、交流電源1、スイッチング素子321、平滑コンデンサ4、スイッチング素子312およびスイッチング素子314、リアクタ2、交流電源1の順序で電流が流れる。 FIG. 3 shows a state where the power supply voltage polarity is negative, the switching element 312, the switching element 314 and the switching element 321 are on, and the other switching elements are off. In this state, current flows in the order of the AC power supply 1, the switching element 321, the smoothing capacitor 4, the switching element 312 and the switching element 314, the reactor 2, and the AC power supply 1.
 図4は、電源電圧極性が正であり、スイッチング素子312、スイッチング素子314およびスイッチング素子322がオンであり、他のスイッチング素子がオフである状態を示している。この状態では、交流電源1、リアクタ2、スイッチング素子312およびスイッチング素子314、スイッチング素子322、交流電源1の順序で電流が流れ、平滑コンデンサ4を経由しない電源短絡経路が形成される。このように、本実施の形態では、還流ダイオードを経由するのではなく、オン状態のスイッチング素子312およびスイッチング素子314を経由して電源短絡経路を形成することができる。 FIG. 4 shows a state in which the power supply voltage polarity is positive, the switching element 312, the switching element 314 and the switching element 322 are on, and the other switching elements are off. In this state, current flows in the order of the AC power source 1, the reactor 2, the switching element 312, the switching element 314, the switching element 322, and the AC power source 1, and a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed. As described above, in this embodiment, the power supply short-circuit path can be formed not through the freewheeling diode but via the switching element 312 and the switching element 314 that are in the on state.
 図5は、電源電圧極性が負であり、スイッチング素子311、スイッチング素子313およびスイッチング素子321がオンであり、他のスイッチング素子がオフである状態を示している。この状態では、交流電源1、スイッチング素子321、スイッチング素子311およびスイッチング素子313、リアクタ2、交流電源1の順序で電流が流れ、平滑コンデンサ4を経由しない電源短絡経路が形成される。このように、本実施の形態では、還流ダイオードを経由するのではなく、スイッチング素子311およびスイッチング素子313を経由して電源短絡経路を形成することができる。 FIG. 5 shows a state where the power supply voltage polarity is negative, the switching element 311, the switching element 313, and the switching element 321 are on, and the other switching elements are off. In this state, current flows in the order of the AC power source 1, the switching element 321, the switching element 311, the switching element 313, the reactor 2, and the AC power source 1, and a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed. Thus, in the present embodiment, the power supply short-circuit path can be formed via the switching element 311 and the switching element 313 rather than via the free wheel diode.
 制御装置10は、以上述べた電流経路の切替えを制御することで、電源電流Isおよび母線電圧Vdcを制御することができる。 The control device 10 can control the power supply current Is and the bus voltage Vdc by controlling the switching of the current paths described above.
 しかしながら、例えば、電源電流が流れていないときに、スイッチング素子311、スイッチング素子313およびスイッチング素子322がオンとなった場合、交流電源1およびリアクタ2を介したコンデンサ短絡が発生する。これにより、本来とは逆方向に電流が流れて、力率悪化、高調波成分の増大、過電流による素子破壊、損失の増大といった問題が発生する可能性がある。 However, for example, when the switching element 311, the switching element 313, and the switching element 322 are turned on when the power supply current is not flowing, a capacitor short circuit occurs via the AC power supply 1 and the reactor 2. As a result, current flows in a direction opposite to the original direction, which may cause problems such as power factor deterioration, increase in harmonic components, element destruction due to overcurrent, and increase in loss.
 図6、図7は、交流電源1およびリアクタ2を介したコンデンサ短絡の一例を示す図である。図6は、電源電圧極性が正であり、電源電流が流れていない状態を示している。電源電圧極性が正であるから、本来は、図2に示したように、交流電源1、リアクタ2、スイッチング素子311およびスイッチング素子313、平滑コンデンサ4、スイッチング素子322、交流電源1の順序で電流が流れるべきである。しかしながら、電源電流が流れていない場合に、スイッチング素子311、スイッチング素子313およびスイッチング素子322がオンとなると、図6に示すように、本来とは逆の方向に電流が流れ、コンデンサ短絡が生じることになる。 6 and 7 are diagrams showing an example of capacitor short-circuiting via the AC power supply 1 and the reactor 2. FIG. 6 shows a state where the power supply voltage polarity is positive and the power supply current is not flowing. Since the power supply voltage polarity is positive, originally, as shown in FIG. 2, the AC power source 1, the reactor 2, the switching element 311 and the switching element 313, the smoothing capacitor 4, the switching element 322, and the AC power source 1 Should flow. However, if the switching element 311, the switching element 313, and the switching element 322 are turned on when the power supply current is not flowing, the current flows in the opposite direction as shown in FIG. become.
 図7は、電源電圧極性が負であり、電源電流が流れていない状態を示している。電源電圧極性が負であるから、本来は、図3に示したように、交流電源1、スイッチング素子321、平滑コンデンサ4、スイッチング素子312およびスイッチング素子314、リアクタ2、交流電源1の順序で電流が流れるべきである。しかしながら、電源電流が流れていない場合に、スイッチング素子312、スイッチング素子314およびスイッチング素子321がオンとなると、図7に示すように、本来とは逆の方向に電流が流れ、コンデンサ短絡が生じることになる。 FIG. 7 shows a state where the power supply voltage polarity is negative and the power supply current is not flowing. Since the power supply voltage polarity is negative, originally, as shown in FIG. 3, the AC power supply 1, the switching element 321, the smoothing capacitor 4, the switching element 312 and the switching element 314, the reactor 2, and the AC power supply 1 Should flow. However, if the switching element 312, the switching element 314, and the switching element 321 are turned on when the power supply current is not flowing, as shown in FIG. become.
 本実施の形態では、上述したコンデンサ短絡を防ぐために、電源電流が閾値以上の場合に、スイッチング素子321およびスイッチング素子322をオン状態とすることを許可し、電源電流が閾値未満の場合には、スイッチング素子321およびスイッチング素子322をオフ状態とする。これにより、交流電源1およびリアクタ2を介したコンデンサ短絡を防ぐことが可能であり、信頼性の高い電力変換装置を得ることが可能である。 In the present embodiment, in order to prevent the capacitor short circuit described above, when the power supply current is equal to or higher than the threshold value, the switching element 321 and the switching element 322 are allowed to be turned on, and when the power supply current is lower than the threshold value, The switching element 321 and the switching element 322 are turned off. Thereby, it is possible to prevent a capacitor short circuit through the AC power source 1 and the reactor 2, and it is possible to obtain a highly reliable power conversion device.
 図8~図11は、電源電流の絶対値が閾値未満の場合の本実施の形態の電力変換装置100における電流経路の例を示す図である。図8は、電源電圧極性が正であり、スイッチング素子311、322がオンであり、他のスイッチング素子がオフの状態を示している。この場合、スイッチング素子322の寄生ダイオードが還流ダイオードとして機能し、図8に示すように、交流電源1、リアクタ2、スイッチング素子311およびスイッチング素子313、平滑コンデンサ4、スイッチング素子322の還流ダイオード、交流電源1の順序で電流が流れる。なお、電源電流の絶対値としては誤動作を起こさない程度の値であればよく、低い程同期整流期間が長くなり、より効果的に導通損失を低減する事ができる。また、電流が小さい場合はスイッチング素子311、322をオフ状態にしても良い。そうすることで、スイッチング素子311、322に発生する駆動電源による損失を低減させることができる。 8 to 11 are diagrams showing examples of current paths in the power conversion device 100 of the present embodiment when the absolute value of the power supply current is less than the threshold value. FIG. 8 shows a state in which the power supply voltage polarity is positive, the switching elements 311 and 322 are on, and the other switching elements are off. In this case, the parasitic diode of the switching element 322 functions as a free-wheeling diode. As shown in FIG. 8, the AC power supply 1, the reactor 2, the switching element 311 and the switching element 313, the smoothing capacitor 4, the free-wheeling diode of the switching element 322, and the AC A current flows in the order of the power source 1. The absolute value of the power supply current may be a value that does not cause malfunction, and the lower the value, the longer the synchronous rectification period, and the more effective the conduction loss can be reduced. When the current is small, the switching elements 311 and 322 may be turned off. By doing so, loss due to the drive power source generated in the switching elements 311 and 322 can be reduced.
 図9は、電源電圧極性が負であり、スイッチング素子312、314がオンであり、他のスイッチング素子がオフの状態を示している。この場合、スイッチング素子321の寄生ダイオードが還流ダイオードとして機能し、図9に示すように、交流電源1、スイッチング素子321の還流ダイオード、平滑コンデンサ4、スイッチング素子312およびスイッチング素子314、リアクタ2、交流電源1の順序で電流が流れる。なお、電源電流の絶対値としては誤動作を起こさない程度の値であればよく、低い程同期整流期間が長くなり、より効果的に導通損失を低減する事ができる。また、電流が小さい場合はスイッチング素子312、314をオフ状態にしても良い。そうすることで、スイッチング素子312、314に発生する駆動電源による損失を低減させることができる。 FIG. 9 shows a state in which the power supply voltage polarity is negative, the switching elements 312 and 314 are on, and the other switching elements are off. In this case, the parasitic diode of the switching element 321 functions as a freewheeling diode, and as shown in FIG. 9, the AC power supply 1, the freewheeling diode of the switching element 321, the smoothing capacitor 4, the switching element 312 and the switching element 314, the reactor 2, the alternating current A current flows in the order of the power source 1. The absolute value of the power supply current may be a value that does not cause malfunction, and the lower the value, the longer the synchronous rectification period, and the more effective the conduction loss can be reduced. When the current is small, the switching elements 312 and 314 may be turned off. By doing so, it is possible to reduce the loss due to the drive power generated in the switching elements 312 and 314.
 図10は、電源電圧極性が正であり、スイッチング素子312、314がオンであり、他のスイッチング素子がオフの状態を示している。この状態では、図10に示すように、交流電源1、リアクタ2、スイッチング素子312およびスイッチング素子314、スイッチング素子322の還流ダイオード、交流電源1の順で電流が流れる。なお、この場合は短絡電流が流れる為、電源電流の絶対値が閾値未満であったとしても同時にスイッチング素子322をオンする様に制御したとしても良い。その場合、スイッチング素子322の導通損失が低減可能である。 FIG. 10 shows a state in which the power supply voltage polarity is positive, the switching elements 312 and 314 are on, and the other switching elements are off. In this state, as shown in FIG. 10, current flows in the order of the AC power supply 1, the reactor 2, the switching element 312 and the switching element 314, the return diode of the switching element 322, and the AC power supply 1. In this case, since a short circuit current flows, the switching element 322 may be controlled to be turned on at the same time even if the absolute value of the power supply current is less than the threshold value. In that case, the conduction loss of the switching element 322 can be reduced.
 図11は、電源電圧極性が負であり、スイッチング素子311、313がオンであり、他のスイッチング素子がオフの状態を示している。この状態では、図11に示すように、交流電源1、スイッチング素子321の還流ダイオード、スイッチング素子311およびスイッチング素子313、リアクタ2、交流電源1の順で電流が流れる。なお、この場合は短絡電流が流れる為、電源電流の絶対値が閾値未満であったとしても同時にスイッチング素子321をオンする様に制御したとしても良い。その場合、スイッチング素子321の導通損失が低減可能である。 FIG. 11 shows a state in which the power supply voltage polarity is negative, the switching elements 311 and 313 are on, and the other switching elements are off. In this state, as shown in FIG. 11, the current flows in the order of the AC power supply 1, the return diode of the switching element 321, the switching element 311 and the switching element 313, the reactor 2, and the AC power supply 1. In this case, since a short-circuit current flows, the switching element 321 may be controlled to be turned on at the same time even if the absolute value of the power supply current is less than the threshold value. In that case, the conduction loss of the switching element 321 can be reduced.
 次に、本実施の形態の制御装置10について説明する。図12は、本実施の形態の制御装置10の構成例を示す図である。図12に示すように、制御装置10は、電源電流指令値制御部21と、オンデューティ制御部22と、電源電圧位相算出部23と、第1のパルス生成部24と、第2のパルス生成部25を備える。 Next, the control device 10 of the present embodiment will be described. FIG. 12 is a diagram illustrating a configuration example of the control device 10 according to the present embodiment. As shown in FIG. 12, the control device 10 includes a power supply current command value control unit 21, an on-duty control unit 22, a power supply voltage phase calculation unit 23, a first pulse generation unit 24, and a second pulse generation. The unit 25 is provided.
 電源電流指令値制御部21は、母線電圧検出部7から出力される信号すなわち母線電圧Vdcと、母線電圧指令値Vdc*とから、電源電流実効値指令値Is_rms*を算出する。母線電圧指令値Vdc*は、予め設定されていてもよいし、電力変換装置100の外部から入力されてもよい。電源電流指令値制御部21は、例えば、母線電圧Vdcと母線電圧指令値Vdc*との差分を用いた比例積分制御により、電源電流実効値指令値Is_rms*を算出する。 The power supply current command value control unit 21 calculates the power supply current effective value command value Is_rms * from the signal output from the bus voltage detection unit 7, that is, the bus voltage Vdc and the bus voltage command value Vdc * . Bus voltage command value Vdc * may be set in advance or may be input from the outside of power converter 100. The power supply current command value control unit 21 calculates the power supply current effective value command value Is_rms * by, for example, proportional-integral control using a difference between the bus voltage Vdc and the bus voltage command value Vdc * .
 オンデューティ制御部22は、電源電流指令値制御部21により算出された電源電流実効値指令値Is_rms*と電源電圧位相算出部23により算出された後述するsinθ^sとを用いて電源電流瞬時値指令値Is*を算出する。さらに、オンデューティ制御部22は、電源電流瞬時値指令値Is*、および電源電流検出部6から出力される信号すなわち電源電流Isを用いて、スイッチング素子311および312の基準オンデューティdutyを演算する。スイッチング素子313およびスイッチング素子314の基準デューティは、スイッチング素子311および312の基準オンデューティdutyと同一である。この基準オンデューティdutyは、例えば、電源電流瞬時値指令値Is*と電源電流Isとの差分に基づいた比例積分制御により算出される。 The on-duty control unit 22 uses the power supply current effective value command value Is_rms * calculated by the power supply current command value control unit 21 and a sin θ ^ s described later calculated by the power supply voltage phase calculation unit 23 to supply the instantaneous power supply current value. The command value Is * is calculated. Furthermore, the on-duty control unit 22 calculates the reference on-duty duty of the switching elements 311 and 312 using the power source current instantaneous value command value Is * and the signal output from the power source current detecting unit 6, that is, the power source current Is. . The reference duty of the switching elements 313 and 314 is the same as the reference on-duty duty of the switching elements 311 and 312. The reference on-duty duty is calculated, for example, by proportional-integral control based on the difference between the power supply current instantaneous value command value Is * and the power supply current Is.
 電源電圧位相算出部23は、電源電圧検出部5から出力される信号すなわち電源電圧Vsを用いて、電源電圧位相推定値θ^sと、正弦波値sinθ^sとを算出する。図13は、電源電圧Vsと電源電圧検出部5により算出される電源電圧位相推定値θs^および正弦波値sinθs^の一例を示す図である。図13の1段目には、電源電圧Vsが示され、図13の2段目には、電源電圧位相推定値θs^が示され、図13の3段目には、正弦波値sinθs^が示されている。例えば、電源電圧位相算出部23は、θs^を線形に増加させ、電源電圧Vsが負極性から正極性に切り換わるタイミングを検出し、このタイミングでθs^を0にリセットする。これにより、制御遅延および検出遅延等が無い理想的な条件では、電源電圧Vsが負極性から正極性へ切り替わるタイミングでθs^は360°すなわち0°となる。電源電圧位相算出部23は、算出された電源電圧位相推定値θs^に基づいて、sinθs^を算出する。なお、マイクロコンピュータの割込み機能等を用いて電源電圧位相推定値θs^のリセットを実現する場合、電源電圧Vsの負極性から正極性へ切り替わるタイミングを検出するゼロクロス検出回路を用いて、ゼロクロス検出回路から出力される信号を割込み信号として用いて電源電圧位相推定値θs^をリセットする。なお、電源電圧位相推定値θs^の算出方法は、上述した例に限定されず、どのような方法を用いてもよい。 The power supply voltage phase calculation unit 23 uses the signal output from the power supply voltage detection unit 5, that is, the power supply voltage Vs, to calculate the power supply voltage phase estimation value θ ^ s and the sine wave value sinθ ^ s. FIG. 13 is a diagram illustrating an example of the power supply voltage Vs and the power supply voltage phase estimation value θs ^ and the sine wave value sinθs ^ calculated by the power supply voltage detection unit 5. The first stage of FIG. 13 shows the power supply voltage Vs, the second stage of FIG. 13 shows the power supply voltage phase estimation value θs ^, and the third stage of FIG. 13 shows the sine wave value sinθs ^. It is shown. For example, the power supply voltage phase calculation unit 23 linearly increases θs ^, detects the timing at which the power supply voltage Vs switches from negative polarity to positive polarity, and resets θs ^ to 0 at this timing. As a result, under ideal conditions with no control delay, no detection delay, etc., θs ^ becomes 360 °, that is, 0 ° at the timing when the power supply voltage Vs switches from negative polarity to positive polarity. The power supply voltage phase calculation unit 23 calculates sin θs ^ based on the calculated power supply voltage phase estimation value θs ^. When the reset of the power supply voltage phase estimation value θs ^ is realized by using an interrupt function or the like of a microcomputer, a zero cross detection circuit is used by using a zero cross detection circuit that detects the timing at which the power supply voltage Vs switches from negative polarity to positive polarity. Is used as an interrupt signal to reset the power supply voltage phase estimation value θs ^. Note that the method of calculating the power supply voltage phase estimation value θs ^ is not limited to the above-described example, and any method may be used.
 図14は、第1のパルス生成部24の構成例を示す図である。第1のパルス生成部24は、キャリア生成部241と、基準PWM生成部242と、デッドタイム生成部243と、パルスセレクタ部244とを備える。 FIG. 14 is a diagram illustrating a configuration example of the first pulse generation unit 24. The first pulse generation unit 24 includes a carrier generation unit 241, a reference PWM generation unit 242, a dead time generation unit 243, and a pulse selector unit 244.
 キャリア生成部241は、基準PWM信号Scomの生成に用いられる搬送波carryを生成する。基準PWM信号Scomは、スイッチング素子311~314の駆動に用いられるPWM信号の基準となる信号である。上述した通り、本実施の形態では、相補的なPWM制御を前提としており、第1のアーム33の一方のスイッチング素子の駆動に基準PWM信号が用いられ、他方のスイッチング素子には、後述するように、基準PWM信号に対して相補的なPWM信号が用いられる。 The carrier generation unit 241 generates a carrier wave used for generating the reference PWM signal Scom. The reference PWM signal Scom is a signal that serves as a reference for the PWM signal used to drive the switching elements 311 to 314. As described above, in the present embodiment, complementary PWM control is assumed, and the reference PWM signal is used to drive one switching element of the first arm 33, and the other switching element will be described later. In addition, a PWM signal complementary to the reference PWM signal is used.
 基準PWM生成部242は、基準オンデューティと搬送波carryすなわちキャリア信号との大小関係を比較することで、基準PWM信号Scomを生成する。図15は、搬送波carryおよび基準PWM信号の一例を示す図である。図15に示すように、キャリア生成部241は、duty>carryの場合は、基準PWM信号Scomを、オンを示す値とし、duty≦carryの場合は、基準PWM信号Scomを、オフを示す値とすることで、基準PWM信号Scomを生成する。図15の場合では、ハイレベルがオンを示し、ローレベルがオフを示すハイアクティブとしているが、ハイレベルがオフを示し、ローレベルがオンを示すローアクティブとして基準PWM信号Scomを生成してもよい。 The reference PWM generation unit 242 generates a reference PWM signal Scom by comparing the magnitude relationship between the reference on-duty and the carrier wave, that is, the carrier signal. FIG. 15 is a diagram illustrating an example of the carrier wave carry and the reference PWM signal. As illustrated in FIG. 15, the carrier generation unit 241 sets the reference PWM signal Scom as a value indicating ON when duty> carry, and sets the reference PWM signal Scom as a value indicating OFF when duty ≦ carry. Thus, the reference PWM signal Scom is generated. In the case of FIG. 15, the high level indicates on and the low level indicates off. However, the high level indicates off and the reference PWM signal Scom is generated with the low level indicating on. Good.
 デッドタイム生成部243は、基準PWM信号Scomに基づいて、2つの相補的な信号である第1のPWM信号Sig1および第2のPWM信号Sig2を生成して出力する。具体的には、デッドタイム生成部243は、基準PWM信号Scomを反転させた信号である反転PWM信号Scom’を生成する。その後、デッドタイム生成部243は、基準PWM信号Scomおよび反転PWM信号Scom’にデッドタイムを設けることにより、第1のPWM信号Sig1および第2のPWM信号Sig2を生成する。すなわち、デッドタイム生成部243は、デッドタイムの期間、第1のPWM信号Sig1および第2のPWM信号Sig2の両方がオフを示す値となるように、第1のPWM信号Sig1および第2のPWM信号Sig2を生成する。例えば、デッドタイム生成部243は、第1のPWM信号Sig1を基準PWM信号Scomと同一とする。また、デッドタイム生成部243は、反転PWM信号Scom’を、デッドタイムの間、信号値をオンを示す値からオフを示す値に変更することにより、第2のPWM信号Sig2を生成する。 The dead time generator 243 generates and outputs two complementary signals, the first PWM signal Sig1 and the second PWM signal Sig2, based on the reference PWM signal Scom. Specifically, the dead time generation unit 243 generates an inverted PWM signal Scom ′ that is a signal obtained by inverting the reference PWM signal Scom. Thereafter, the dead time generation unit 243 generates a first PWM signal Sig1 and a second PWM signal Sig2 by providing a dead time for the reference PWM signal Scom and the inverted PWM signal Scom '. In other words, the dead time generation unit 243 sets the first PWM signal Sig1 and the second PWM so that both the first PWM signal Sig1 and the second PWM signal Sig2 have values indicating OFF during the dead time period. A signal Sig2 is generated. For example, the dead time generation unit 243 makes the first PWM signal Sig1 the same as the reference PWM signal Scom. In addition, the dead time generation unit 243 generates the second PWM signal Sig2 by changing the inverted PWM signal Scom 'from a value indicating ON to a value indicating OFF during the dead time.
 反転PWM信号Scom’が基準PWM信号Scomを反転させて生成され、基準PWM信号Scomおよび反転PWM信号Scom’により同一アームを構成する2つのスイッチング素子がそれぞれ駆動される場合、理想的には、同一アームを構成する2つのスイッチング素子が同時にオンとなる期間は無い。しかしながら、一般的に、オン状態からオフ状態、およびオフ状態からオン状態への遷移には遅延が生じる。したがって、この遅延により、同一アームを構成する2つのスイッチング素子が同時にオンとなり、同一アームを構成する2つのスイッチング素子が短絡する可能性がある。デッドタイム(td)は、このように、状態遷移の遅延があっても同一アームを構成する2つのスイッチング素子が同時にオンとならないように、設けられる期間である。デッドタイムの間は、同一アームを構成する2つのスイッチング素子を駆動する2つのPWM信号は、ともにオフを示す値に設定される。 When the inverted PWM signal Scom ′ is generated by inverting the reference PWM signal Scom and the two switching elements constituting the same arm are driven by the reference PWM signal Scom and the inverted PWM signal Scom ′, respectively, ideally the same There is no period during which the two switching elements constituting the arm are turned on simultaneously. However, in general, there is a delay in the transition from the on state to the off state and from the off state to the on state. Therefore, due to this delay, two switching elements constituting the same arm may be turned on simultaneously, and the two switching elements constituting the same arm may be short-circuited. As described above, the dead time (td) is a period provided so that the two switching elements constituting the same arm are not turned on at the same time even if there is a delay in the state transition. During the dead time, the two PWM signals that drive the two switching elements constituting the same arm are both set to values indicating OFF.
 図16は、基準PWM信号Scom、反転PWM信号Scom’、第1のPWM信号Sig1および第2のPWM信号Sig2の一例を示す図である。図16の1段目には、基準PWM信号Scomが示され、図16の2段目には、反転PWM信号Scom’が示され、図16の3段目には、第1のPWM信号Sig1が示され、図16の4段目には、第2のPWM信号Sig2が示されている。図16に示した例では、反転PWM信号Scom’がオンを示す値となっているデッドタイム(td)の間、第2のPWM信号Sig2はオフを示す値となっている。なお、上述したデッドタイムの生成方法は一例であり、デッドタイムの生成方法は、上述した例に限定されず、どのような方法が用いられてもよい。 FIG. 16 is a diagram illustrating an example of the reference PWM signal Scom, the inverted PWM signal Scom ′, the first PWM signal Sig1, and the second PWM signal Sig2. The first stage of FIG. 16 shows the reference PWM signal Scom, the second stage of FIG. 16 shows the inverted PWM signal Scom ′, and the third stage of FIG. 16 shows the first PWM signal Sig1. The second PWM signal Sig2 is shown in the fourth stage of FIG. In the example shown in FIG. 16, during the dead time (td) in which the inverted PWM signal Scom 'has a value indicating ON, the second PWM signal Sig2 has a value indicating OFF. Note that the above-described dead time generation method is an example, and the dead time generation method is not limited to the above-described example, and any method may be used.
 パルスセレクタ部244は、デッドタイム生成部243から出力される第1のPWM信号Sig1および第2のPWM信号Sig2を、スイッチング素子311およびスイッチング素子312のどちらに伝送するかを選択する。図17は、パルスセレクタ部244における選択処理手順の一例を示すフローチャートである。パルスセレクタ部244は、まず、電源電圧Vsの極性が正であるかすなわちVs>0であるか否かを判断する(ステップS1)。電源電圧Vsの極性が正である場合(ステップS1 Yes)、パルスセレクタ部244は、第1のPWM信号Sig1をpulse_312としてスイッチング素子312へ伝達し、第2のPWM信号Sig2をpulse_311としてスイッチング素子311へ伝達する(ステップS2)。これは、電源電圧Vsが正極性のとき、スイッチング素子312のオフまたはオンにより、図4に示した経路と図2に示した経路とが切り換えられる、すなわちスイッチング素子312のスイッチング動作により母線電圧Vdcおよび電源電流Isの制御がなされるためである。 The pulse selector unit 244 selects either the switching element 311 or the switching element 312 to transmit the first PWM signal Sig1 and the second PWM signal Sig2 output from the dead time generation unit 243. FIG. 17 is a flowchart illustrating an example of a selection processing procedure in the pulse selector unit 244. First, the pulse selector 244 determines whether the polarity of the power supply voltage Vs is positive, that is, whether Vs> 0 (step S1). When the polarity of the power supply voltage Vs is positive (step S1, Yes), the pulse selector unit 244 transmits the first PWM signal Sig1 as pulse_312 to the switching element 312 and the second PWM signal Sig2 as pulse_311. (Step S2). This is because when the power supply voltage Vs is positive, the path shown in FIG. 4 and the path shown in FIG. 2 are switched by turning off or on the switching element 312, that is, the bus voltage Vdc is switched by the switching operation of the switching element 312. This is because the power supply current Is is controlled.
 電源電圧Vsの極性が負である場合(ステップS1 No)、パルスセレクタ部244は、第1のPWM信号Sig1をpulse_311としてスイッチング素子311へ伝達し、第2のPWM信号Sig2をpulse_312としてスイッチング素子312へ伝達する(ステップS3)。これは、図4で述べたように、電源電圧Vsが負極性のとき、スイッチング素子311のオフまたはオンにより図5に示した経路と図3に示した経路とが切り換えられる、すなわちスイッチング素子311のスイッチング動作により母線電圧Vdcおよび電源電流Isの制御がなされるためである。パルスセレクタ部244は、以上の動作をVsが入力されるたびに繰り返す。 When the polarity of the power supply voltage Vs is negative (No in step S1), the pulse selector unit 244 transmits the first PWM signal Sig1 to the switching element 311 as pulse_311 and the switching element 312 as the second PWM signal Sig2 as pulse_312. (Step S3). As described in FIG. 4, when the power supply voltage Vs is negative, the path shown in FIG. 5 and the path shown in FIG. 3 are switched by turning off or on of the switching element 311, that is, the switching element 311. This is because the bus voltage Vdc and the power supply current Is are controlled by the switching operation. The pulse selector unit 244 repeats the above operation every time Vs is input.
 以上のように、第1のパルス生成部24は、スイッチング素子311の駆動信号駆動信号であるpulse_311およびスイッチング素子312の駆動信号であるpulse_312を生成する。上述した通り、スイッチング素子313はスイッチング素子311と、スイッチング素子314はスイッチング素子312と、それぞれ同時にスイッチング動作を実施する。このため、パルスセレクタ部244は、スイッチング素子313の駆動信号であるpulse_313としてpulse_311と同一の信号を出力し、スイッチング素子314の駆動信号であるpulse_314としてpulse_312と同一の信号を出力する。そのため、実際の制御信号としてはpulse_311およびpulse_312のみを生成、出力し、各素子への駆動信号として入力したとしても問題ない。その場合、pulse_313およびpulse_314に関する処理を抑制する事が可能である。 As described above, the first pulse generation unit 24 generates pulse_311 that is a drive signal drive signal for the switching element 311 and pulse_312 that is a drive signal for the switching element 312. As described above, the switching element 313 performs the switching operation at the same time as the switching element 311 and the switching element 314 performs the switching operation at the same time. Therefore, the pulse selector unit 244 outputs the same signal as the pulse_311 as the pulse_313 that is the drive signal of the switching element 313, and outputs the same signal as the pulse_312 as the pulse_314 that is the drive signal of the switching element 314. Therefore, there is no problem even if only pulse_311 and pulse_312 are generated and output as actual control signals and input as drive signals to the respective elements. In that case, it is possible to suppress processing related to pulse_313 and pulse_314.
 上記の通り、スイッチング素子311およびスイッチング素子312は相補の関係にて制御されるため、基準PWM信号Scomから反転PWM信号Scom’を生成する処理は、簡易な信号反転処理を用いて実現することができる。また、電源極性によらず、1キャリアにおける駆動パルスの出力関係をおおよそ同一とすること、および上下アームの短絡防止を容易に実現することが可能である。簡易な処理で、安定した制御を実現することができる。 As described above, since the switching element 311 and the switching element 312 are controlled in a complementary relationship, the process of generating the inverted PWM signal Scom ′ from the reference PWM signal Scom can be realized using a simple signal inversion process. it can. In addition, it is possible to easily realize the output relationship of the drive pulses in one carrier and to prevent the upper and lower arms from being short-circuited regardless of the power source polarity. Stable control can be realized with simple processing.
 また、系列に接続された2つのアームのスイッチング素子311~314による同期整流制御が実現可能となるため、図18に示すように、スイッチング素子損失が寄生ダイオード損失よりも低いすなわち電流が小さい領域において損失を低減することが可能であり、高効率なシステムを得ることが可能である。図18は、スイッチング素子における電流と損失の関係を示す模式図である。また、図18に示すように、スイッチング素子損失が寄生ダイオード損失よりも高いすなわち電流が高い領域においては、相補動作を停止させることで、同期整流制御による損失増加を抑制することが可能である。すなわち、電源電流Isに応じて同期整流制御の実施の有無を切換えるように制御することで、全負荷領域において高効率なシステムを得ることができる。 Further, since synchronous rectification control by switching elements 311 to 314 of two arms connected in series can be realized, as shown in FIG. 18, in a region where switching element loss is lower than parasitic diode loss, that is, current is small. Loss can be reduced, and a highly efficient system can be obtained. FIG. 18 is a schematic diagram showing the relationship between current and loss in the switching element. Further, as shown in FIG. 18, in the region where the switching element loss is higher than the parasitic diode loss, that is, the current is high, it is possible to suppress the increase in loss due to the synchronous rectification control by stopping the complementary operation. That is, by performing control so that the synchronous rectification control is performed according to the power supply current Is, a highly efficient system can be obtained in the entire load region.
 ここで、電源電流指令値制御部21およびオンデューティ制御部22での演算に用いる制御パラメータは、回路の動作状況に合わせた最適値が存在する。回路の動作状況は、電源電圧Vs、電源電流Isおよび母線電圧Vdcのうち少なくとも1つの値等により表される。例えば、オンデューティ制御部22における比例制御ゲインは母線電圧に反比例して変化するのが望ましい。したがって、電源電流指令値制御部21およびオンデューティ制御部22は、このような所望の回路の動作を実現するための、電源電圧Vs、電源電流Isおよび母線電圧Vdcのうちの少なくとも1つの値に応じた制御パラメータを算出するための計算式またはテーブルを保持し、回路の動作状況に合わせて制御パラメータを調整するようにしてもよい。これにより制御性を向上することができる。 Here, the control parameter used for the calculation in the power supply current command value control unit 21 and the on-duty control unit 22 has an optimum value according to the operation state of the circuit. The operation state of the circuit is represented by at least one value among the power supply voltage Vs, the power supply current Is, and the bus voltage Vdc. For example, it is desirable that the proportional control gain in the on-duty control unit 22 changes in inverse proportion to the bus voltage. Therefore, the power supply current command value control unit 21 and the on-duty control unit 22 have at least one value among the power supply voltage Vs, the power supply current Is, and the bus voltage Vdc for realizing such a desired circuit operation. A calculation formula or a table for calculating the corresponding control parameter may be held, and the control parameter may be adjusted according to the operation state of the circuit. Thereby, controllability can be improved.
 また、上述した例では、電源電流指令値制御部21およびオンデューティ制御部22での演算手法として比例積分制御を挙げたが、これらの制御演算手法により本発明が限定されるものではなく、微分項を追加して比例積分微分制御とするなど、その他の演算手法を用いてもよい。また、電源電流指令値制御部21およびオンデューティ制御部22での演算手法は同一の手法でなくてもよい。 Further, in the above-described example, proportional-integral control is given as the calculation method in the power supply current command value control unit 21 and the on-duty control unit 22, but the present invention is not limited by these control calculation methods, Other calculation methods may be used such as adding a term for proportional-integral-derivative control. Further, the calculation method in the power supply current command value control unit 21 and the on-duty control unit 22 may not be the same method.
 図12の説明に戻り、第2のパルス生成部25は、電源電圧検出部5から出力される信号すなわち電源電圧Vsと電源電流検出部6から出力される信号すなわち電源電流Isとに基づいて、スイッチング素子321の駆動信号であるpulse_321およびスイッチング素子322の駆動信号であるpulse_322をそれぞれ生成して出力する。 Returning to the description of FIG. 12, the second pulse generator 25 is based on the signal output from the power supply voltage detector 5, that is, the power supply voltage Vs and the signal output from the power supply current detector 6, that is, the power supply current Is. Pulse_321 that is a drive signal for the switching element 321 and pulse_322 that is a drive signal for the switching element 322 are generated and output, respectively.
 図19は、第2のパルス生成部25における処理手順の一例を示すフローチャートである。第2のパルス生成部25は、基本的な動作としては、電源電圧の極性に応じて、スイッチング素子321およびスイッチング素子322のオンまたはオフの状態を制御する。図19に示すように、第2のパルス生成部25は、電源電圧Vsの極性が正であるかすなわちVs>0であるか否かを判断する(ステップS11)。電源電圧Vsの極性が正である場合(ステップS11 Yes)、第2のパルス生成部25は、スイッチング素子321をオフとし、スイッチング素子322をオンとするよう、pulse_321およびpulse_322を生成して出力する(ステップS12)。電源電圧Vsの極性が負である場合(ステップS11 No)、第2のパルス生成部25は、スイッチング素子321をオンとし、スイッチング素子322をオフとするよう、pulse_321およびpulse_322を生成して出力する(ステップS13)。これにより、同期整流制御が可能であり、前述のように高効率なシステムを実現することができる。 FIG. 19 is a flowchart illustrating an example of a processing procedure in the second pulse generation unit 25. As a basic operation, the second pulse generator 25 controls the on / off state of the switching element 321 and the switching element 322 according to the polarity of the power supply voltage. As shown in FIG. 19, the second pulse generation unit 25 determines whether the polarity of the power supply voltage Vs is positive, that is, whether Vs> 0 (step S11). When the polarity of the power supply voltage Vs is positive (step S11, Yes), the second pulse generation unit 25 generates and outputs pulse_321 and pulse_322 so that the switching element 321 is turned off and the switching element 322 is turned on. (Step S12). When the polarity of the power supply voltage Vs is negative (No in step S11), the second pulse generation unit 25 generates and outputs pulse_321 and pulse_322 so that the switching element 321 is turned on and the switching element 322 is turned off. (Step S13). Thereby, synchronous rectification control is possible and a highly efficient system can be realized as described above.
 しかしながら、上述したように、電源電流が流れていない際に、スイッチング素子311およびスイッチング素子322がオンした場合、交流電源1およびリアクタ2を介したコンデンサ短絡が発生する。このため、本実施の形態では、さらに、電源電流Isに基づいてスイッチング素子321およびスイッチング素子322のオンまたはオフの状態を制御する。図20は、第2のパルス生成部25における電源電流に基づくスイッチング素子の制御手順の一例を示すフローチャートである。図20に示すように、電源電流が電流閾値βより大きいか否かを判断する(ステップS21)。電源電流が電流閾値βより大きい場合(ステップS21 Yes)、第2のパルス生成部25は、スイッチング素子321およびスイッチング素子322のオンを許可する(ステップS22)。スイッチング素子321およびスイッチング素子322のオンが許可となっている場合には、図19に示した電源電圧の極性によりオンおよびオフの状態が制御される。 However, as described above, when the switching element 311 and the switching element 322 are turned on while the power supply current is not flowing, a capacitor short circuit occurs via the AC power supply 1 and the reactor 2. For this reason, in the present embodiment, the ON or OFF state of the switching element 321 and the switching element 322 is further controlled based on the power supply current Is. FIG. 20 is a flowchart illustrating an example of a switching element control procedure based on the power supply current in the second pulse generation unit 25. As shown in FIG. 20, it is determined whether or not the power supply current is larger than the current threshold value β (step S21). When the power supply current is larger than the current threshold β (step S21, Yes), the second pulse generator 25 permits the switching element 321 and the switching element 322 to be turned on (step S22). When the switching element 321 and the switching element 322 are turned on, the on and off states are controlled by the polarity of the power supply voltage shown in FIG.
 電源電流が電流閾値β以下の場合(ステップS21 No)、第2のパルス生成部25は、スイッチング素子321およびスイッチング素子322のオンを許可しない(ステップS23)。スイッチング素子321およびスイッチング素子322のオンが許可となっていない場合には、図19に示した電源電圧の極性にかかわらず、スイッチング素子321およびスイッチング素子322はオフ状態となるよう制御される。 When the power supply current is equal to or less than the current threshold β (No in step S21), the second pulse generation unit 25 does not allow the switching element 321 and the switching element 322 to be turned on (step S23). When the switching element 321 and the switching element 322 are not turned on, the switching element 321 and the switching element 322 are controlled to be turned off regardless of the polarity of the power supply voltage shown in FIG.
 以上の制御により、スイッチング素子のスイッチング素子の環流ダイオードに対して順方向に電流閾値以上の電流が流れている場合にスイッチング素子321およびスイッチング素子322をオンすることになる。これにより、交流電源1およびリアクタ2を介したコンデンサ短絡を防ぐことが可能となる。また、第2のパルス生成部25は、電源電圧の極性によるオンまたはオフの制御を行わずに、電源電流の極性すなわち電流の流れる方向を用いてスイッチング素子321およびスイッチング素子322の制御を行ってもよい。 With the above control, the switching element 321 and the switching element 322 are turned on when a current greater than or equal to the current threshold is flowing in the forward direction with respect to the freewheeling diode of the switching element. Thereby, it is possible to prevent a capacitor short circuit through the AC power supply 1 and the reactor 2. The second pulse generation unit 25 controls the switching element 321 and the switching element 322 using the polarity of the power supply current, that is, the direction in which the current flows, without performing the on / off control based on the polarity of the power supply voltage. Also good.
 また、図20に示した処理の代わりに、スイッチング制御の状態に基づいて、スイッチング素子321およびスイッチング素子322のオンを許可するか否かを判断するようにしてもよい。スイッチングが行われていないときにはスイッチング素子に電流は流れていないため、このような状態となるタイミングを予測して、スイッチング素子321およびスイッチング素子322のオンを許可しないようにする。なおその場合、パッシブ全波整流(短絡経路を用いない状態)では同期整流効果が得られない場合があるが、電流や電圧の検出に依存せず単純に制御を構築する事が可能である。 Further, instead of the processing shown in FIG. 20, it may be determined whether to allow the switching element 321 and the switching element 322 to be turned on based on the state of the switching control. Since no current flows through the switching element when switching is not performed, the timing at which such a state occurs is predicted so that the switching element 321 and the switching element 322 are not allowed to be turned on. In this case, the synchronous rectification effect may not be obtained in passive full-wave rectification (in a state where no short-circuit path is used), but it is possible to simply construct control without depending on detection of current or voltage.
 また、図20に示した処理の代わりに、電源電圧と母線電圧との差に基づいて、スイッチング素子321およびスイッチング素子322のオンを許可するか否かを判断するようにしてもよい。例えば、電源電圧-母線電圧>0となる場合に、スイッチング素子321およびスイッチング素子322のオンを許可し、電源電圧-母線電圧≦0の場合にはスイッチング素子321およびスイッチング素子322のオンを許可しないようにする。 Further, instead of the processing shown in FIG. 20, it may be determined whether to allow switching element 321 and switching element 322 to be turned on based on the difference between the power supply voltage and the bus voltage. For example, when power supply voltage−bus voltage> 0, switching element 321 and switching element 322 are turned on, and when power supply voltage−bus voltage ≦ 0, switching element 321 and switching element 322 are not allowed to be turned on. Like that.
 本実施の形態では、スイッチング素子311~314のスイッチング周期において、スイッチング素子311のオンタイミングに対し、スイッチング素子313のオンタイミングの位相が同期するように制御する。これにより、各スイッチング素子に流れる電流は、スイッチング素子311およびスイッチング素子312だけを用いた場合の2分の1となり各スイッチング素子311~314で発生する損失が低減される。これにより、スイッチング素子で構成されるブリッジ回路における素子損失の偏りすなわち発熱の偏りを抑制することが出来る。本実施の形態では、並列に接続される2つのアームを用いて同期制御を行うようにしたが、並列に接続される3つのアームを用いて同期制御を行ってもよい。例えば、n(nは2以上の整数)個のアームを並列接続して本実施の形態にかかる電力変換装置を構成した場合には、各スイッチング素子の電流が、単一のアームを用いた場合のn分の1となる。このため、スイッチング周波数、素子特性およびゲート駆動回路の特性に基づいて、各スイッチング素子の並列接続数であるnを選定する事で損失の偏りを抑制することが出来る。なお、素子損失の偏りは完全に抑制する必要はなく、駆動条件等に基づいて各スイッチング素子の並列接続数を適切に選定すればよい。 In this embodiment, control is performed so that the on-timing phase of the switching element 313 is synchronized with the on-timing of the switching element 311 in the switching cycle of the switching elements 311 to 314. As a result, the current flowing through each switching element is halved when only the switching element 311 and the switching element 312 are used, and the loss generated in each switching element 311 to 314 is reduced. Thereby, it is possible to suppress the bias of element loss, that is, the bias of heat generation in the bridge circuit constituted by the switching elements. In this embodiment, the synchronization control is performed using two arms connected in parallel. However, the synchronization control may be performed using three arms connected in parallel. For example, when the power conversion device according to the present embodiment is configured by connecting n arms (n is an integer of 2 or more) in parallel, the current of each switching element is a single arm. Of 1 / n. For this reason, the bias of loss can be suppressed by selecting n, which is the number of parallel connections of each switching element, based on the switching frequency, element characteristics, and characteristics of the gate drive circuit. Note that the bias of the element loss does not need to be completely suppressed, and the number of parallel connections of the switching elements may be appropriately selected based on the driving conditions and the like.
 なお、上述した例では、第2のパルス生成部25が、電源電圧極性に基づいてスイッチング素子321およびスイッチング素子322のうちオンとするスイッチング素子を選択し、電源電流に基づいて、コンデンサ短絡を防ぐためのスイッチング素子321およびスイッチング素子322の制御を行った。しかしながら、この例に限定されず、第1のパルス生成部24が、電源電流に基づいてスイッチング素子311~314を、コンデンサ短絡を防ぐようにオンを許可するか否かを制御し、第2のパルス生成部25は、スイッチング素子321およびスイッチング素子322に対しては、コンデンサ短絡を防ぐ制御は実施せずに電源極性に応じたスイッチングを行ってもよい。すなわち、例えば、第1のパルス生成部24は、電源電圧が正の場合、電源電流が電流閾値β以下の場合はスイッチング素子311,313のオンを許可せず、電源電流が電流閾値βより大きい場合にスイッチング素子311,313のオンを許可する。第1のパルス生成部24は、電源電圧が負の場合、電源電流が電流閾値β以下の場合はスイッチング素子312,314のオンを許可せず、電源電流が電流閾値βより大きい場合にスイッチング素子312,314のオンを許可する。 In the example described above, the second pulse generation unit 25 selects the switching element to be turned on from the switching element 321 and the switching element 322 based on the power supply voltage polarity, and prevents a capacitor short circuit based on the power supply current. Therefore, the switching element 321 and the switching element 322 were controlled. However, the present invention is not limited to this example, and the first pulse generator 24 controls whether or not to allow the switching elements 311 to 314 to be turned on to prevent a capacitor short circuit based on the power supply current, The pulse generating unit 25 may perform switching according to the power supply polarity without performing control for preventing the capacitor short circuit for the switching element 321 and the switching element 322. That is, for example, when the power supply voltage is positive, the first pulse generation unit 24 does not allow the switching elements 311 and 313 to be turned on when the power supply current is equal to or smaller than the current threshold β, and the power supply current is larger than the current threshold β. In this case, the switching elements 311 and 313 are allowed to be turned on. When the power supply voltage is negative, the first pulse generator 24 does not allow the switching elements 312 and 314 to be turned on when the power supply current is less than or equal to the current threshold value β, and when the power supply current is greater than the current threshold value β, the switching element 312 and 314 are allowed to be turned on.
 また、上述した例では、相補的なPWM信号を生成する方法を用いて電源周期ごとの各アームにおけるスイッチングを実現しているが、PWM信号の生成方法はこの例に限定されない。例えば、制御装置10は、電源電圧が正の場合にはスイッチング素子312の駆動信号pulse_312を生成し、電源電圧が負の場合にはスイッチング素子311の駆動信号pulse_311を生成してもよい(後述の図22参照)。また、この場合、制御装置10は、電源電流Is、電源電圧Vs、母線電圧Vdcの関係からスイッチング素子311~314を駆動するためのPWM信号を生成してもよい。そうすることで、電源電流が零となるタイミングの前にスイッチング素子311~314をオフさせることが可能であり、この場合、スイッチング素子321および322の制御を電源電圧極性に基づいて制御したとしても交流電源を介したコンデンサ短絡を防止することができる。 In the above-described example, switching in each arm for each power cycle is realized using a method for generating a complementary PWM signal, but the method for generating a PWM signal is not limited to this example. For example, the control device 10 may generate a drive signal pulse_312 for the switching element 312 when the power supply voltage is positive, and may generate a drive signal pulse_311 for the switching element 311 when the power supply voltage is negative (described later). (See FIG. 22). In this case, the control device 10 may generate a PWM signal for driving the switching elements 311 to 314 from the relationship among the power supply current Is, the power supply voltage Vs, and the bus voltage Vdc. By doing so, the switching elements 311 to 314 can be turned off before the timing when the power supply current becomes zero. In this case, even if the control of the switching elements 321 and 322 is controlled based on the power supply voltage polarity. Capacitor short-circuiting via an AC power supply can be prevented.
 図21は、本実施の形態の電力変換装置100における電源電圧の1周期分の各駆動信号の一例を示す図である。図21では、図19で用いた処理によりPWM信号を生成する場合の各駆動信号の一例が示されている。図21の1段目には、電源電圧Vsが示され、図21の2段目には、電源電流である一次電流Isが示され、図21の3段目には、タイマ設定値αおよびキャリア信号が示され、図21の4段目~7段目には、スイッチング素子311,312,321,322の駆動信号がそれぞれ示されている。図21では、タイマ設定値αを階段状に示しているが、タイマ設定値は1つの段の縦軸が同一の値となっている期間である。図21に示すように、タイマ設定値αごとにキャリア信号との比較によりパルス幅が決定される。なお、図21ではデッドタイムは省略している。図21に示すように、スイッチング素子321およびスイッチング素子322は、電源電圧の極性に応じてオンまたはオフが切り換えられるとともに、電源電流の絶対値が電流閾値以下の場合には、オフとなっている。なお、電流検出回路もしくは検出後のマイコン内部にて、フィルタもしくはヒステリシス等を持たせる事で、閾値付近でのスイッチングの過度なオン/オフの繰り返しを抑制する事が可能であり、損失及びノイズの増加を抑制する事が可能である。 FIG. 21 is a diagram illustrating an example of each drive signal for one cycle of the power supply voltage in the power conversion apparatus 100 of the present embodiment. FIG. 21 shows an example of each drive signal when a PWM signal is generated by the processing used in FIG. The first stage of FIG. 21 shows the power supply voltage Vs, the second stage of FIG. 21 shows the primary current Is that is the power supply current, and the third stage of FIG. The carrier signal is shown, and the driving signals for the switching elements 311, 312, 321, and 322 are shown in the fourth to seventh stages in FIG. 21, respectively. In FIG. 21, the timer set value α is shown in a staircase pattern, but the timer set value is a period in which the vertical axis of one stage is the same value. As shown in FIG. 21, the pulse width is determined for each timer set value α by comparison with the carrier signal. In FIG. 21, the dead time is omitted. As shown in FIG. 21, the switching element 321 and the switching element 322 are turned on or off according to the polarity of the power supply voltage, and are turned off when the absolute value of the power supply current is less than or equal to the current threshold value. . In addition, by providing a filter or hysteresis in the current detection circuit or in the microcomputer after detection, excessive ON / OFF switching of switching near the threshold can be suppressed. It is possible to suppress the increase.
 図22は、本実施の形態の電力変換装置100における電源電圧の1周期分の各駆動信号の別の一例を示す図である。図22では、電源電圧が正の場合にはスイッチング素子312の駆動信号pulse_312を生成し、電源電圧が負の場合にはスイッチング素子311の駆動信号pulse_311を生成した場合の各駆動信号の一例を示している。 FIG. 22 is a diagram illustrating another example of each drive signal for one cycle of the power supply voltage in the power conversion apparatus 100 of the present embodiment. FIG. 22 shows an example of each drive signal when the drive signal pulse_312 of the switching element 312 is generated when the power supply voltage is positive, and when the drive signal pulse_311 of the switching element 311 is generated when the power supply voltage is negative. ing.
 また、図21ではキャリア信号を用いてスイッチング素子が制御される例を示したが、電源周期の半周期中に1回~複数回スイッチングを実施する簡易スイッチング制御が実施される場合にも、本実施の形態の動作は適用できる。図23は、簡易スイッチング制御を実施する場合の各駆動信号の一例を示す図である。図23の1段目には、電源電圧Vsが示され、図23の2段目には、電源電流である一次電流Isが示され、図23の3段目には、一次電流絶対値|Is|(母線電流)が示され、図23の4段目には、電源極性信号が示され、図23の5段目には、電源電流信号が示され、図23の6~9段目には、スイッチング素子311,312,321,322の駆動信号がそれぞれ示されている。図23では、電源電圧自体は計測されておらず、電源電圧のゼロクロスを検出することにより電源極性信号が生成され、電源電流についてもゼロクロスを検出することにより電源電流信号が生成される例を示している。この場合も、電源電流が電流閾値以下の場合には、スイッチング素子311およびスイッチング素子321を同時にオンせず、また、スイッチング素子312およびスイッチング素子322を同時にオンしないように制御することにより、コンデンサ短絡を防ぐことができる。 FIG. 21 shows an example in which the switching element is controlled using the carrier signal. However, the present invention is also applicable to the case where simple switching control is performed in which switching is performed once to a plurality of times during a half cycle of the power supply cycle. The operation of the embodiment can be applied. FIG. 23 is a diagram illustrating an example of each drive signal when the simple switching control is performed. The first stage of FIG. 23 shows the power supply voltage Vs, the second stage of FIG. 23 shows the primary current Is as the power supply current, and the third stage of FIG. 23 shows the primary current absolute value | Is | (bus current) is shown, the power supply polarity signal is shown in the fourth stage of FIG. 23, the power supply current signal is shown in the fifth stage of FIG. 23, and the sixth to ninth stages of FIG. The drive signals of the switching elements 311, 312, 321, 322 are shown in FIG. FIG. 23 shows an example in which the power supply voltage itself is not measured, the power supply polarity signal is generated by detecting the zero cross of the power supply voltage, and the power supply current signal is generated by detecting the zero cross of the power supply current. ing. Also in this case, when the power supply current is equal to or less than the current threshold, the switching element 311 and the switching element 321 are not turned on at the same time, and the switching element 312 and the switching element 322 are not turned on at the same time. Can be prevented.
 また、スイッチング動作を行っていないパッシブな状態においても、電源電流が電流閾値以下の場合にはスイッチング素子321およびスイッチング素子322をオンさせないようにすることで、コンデンサ短絡を防ぐことができる。図24は、パッシブな状態の各駆動信号の一例を示す図である。図24の1段目には、電源電圧Vsが示され、図24の2段目には、電源電流である一次電流Isが示され、図24の3段目には、一次電流絶対値|Is|(母線電流)が示され、図24の4段目には、電源極性信号が示され、図24の5段目には、電源電流信号が示され、図24の6~9段目には、スイッチング素子311,312,321,322の駆動信号がそれぞれ示されている。この場合も、電源電流が電流閾値以下の場合には、スイッチング素子311およびスイッチング素子321を同時にオンせず、また、スイッチング素子312およびスイッチング素子322を同時にオンしないように制御することにより、コンデンサ短絡を防ぐことができる。 Further, even in a passive state where no switching operation is performed, a short circuit of the capacitor can be prevented by preventing the switching element 321 and the switching element 322 from being turned on when the power supply current is equal to or lower than the current threshold. FIG. 24 is a diagram illustrating an example of each drive signal in a passive state. The first stage of FIG. 24 shows the power supply voltage Vs, the second stage of FIG. 24 shows the primary current Is as the power supply current, and the third stage of FIG. 24 shows the primary current absolute value | Is | (bus current) is shown, the power supply polarity signal is shown in the fourth stage of FIG. 24, the power supply current signal is shown in the fifth stage of FIG. 24, and the sixth to ninth stages of FIG. The drive signals of the switching elements 311, 312, 321, 322 are shown in FIG. Also in this case, when the power supply current is equal to or less than the current threshold, the switching element 311 and the switching element 321 are not turned on at the same time, and the switching element 312 and the switching element 322 are not turned on at the same time. Can be prevented.
 なお、本実施の形態では電源電流を検出する方法にて制御実施しているが、回路3とコンデンサ4との間の母線電流を検出するようにしたとしても問題ない。その際、短絡経路の電流を検出できないため、電流閾値にて同期整流制御をすると同期整流動作可能な期間が制限される(短くなる)場合がある。そのため、母線電流の検出にて同期整流制御をする場合は、前述したように短絡電流動作時は電源電流の絶対値が閾値未満であったとしても極性に応じてスイッチング素子321、もしくはスイッチング素子322をオンする様に制御したとしても良い。その場合、広い期間において同期整流動作が可能となるため、スイッチング素子321もしくはスイッチング素子322の導通損失が低減可能である。 In this embodiment, the control is performed by the method of detecting the power supply current. However, there is no problem even if the bus current between the circuit 3 and the capacitor 4 is detected. At this time, since the current in the short-circuit path cannot be detected, the synchronous rectification control period may be limited (shortened) when the synchronous rectification control is performed with the current threshold. Therefore, when performing synchronous rectification control by detecting the bus current, as described above, the switching element 321 or the switching element 322 depending on the polarity even if the absolute value of the power supply current is less than the threshold value during the short-circuit current operation. It may be controlled to turn on. In that case, since a synchronous rectification operation can be performed over a wide period, the conduction loss of the switching element 321 or the switching element 322 can be reduced.
 なお、本実施の形態は汎用IPM(インテリジェントパワーモジュール)を用いる場合に特に適している。汎用IPMは、内部のスイッチング素子には略同一の特性のスイッチング素子を搭載する場合が一般的である。このため、PWMによるスイッチング動作を行うスイッチング素子と電源電圧の極性に応じたスイッチング素子を行うスイッチング素子とが混在する場合、PWMによるスイッチング動作を行うスイッチング素子のスイッチング周波数は、電源電圧の極性に応じたスイッチング素子のスイッチング周波数より高い。このため、PWMによるスイッチング動作を行うスイッチング素子の素子損失が電源電圧の極性に応じたスイッチング素子の損失より大きくなる。しかしながら、本実施の形態では、PWMによるスイッチング動作を行うスイッチング素子が並列に複数接続されているため、PWMによるスイッチング動作を行うスイッチング素子に流れる電流を抑制することができ、各素子間の損失の偏りを抑制することができる。特にSiCのような大型のチップの歩留まりが悪く、小型チップを用いた方が低コスト化が可能となる素子の場合、4素子で構成する場合に対して小型のチップを採用する事が可能となる為、比較的安価に実現する事が可能である為、好適である。 Note that this embodiment is particularly suitable when a general-purpose IPM (intelligent power module) is used. In general-purpose IPM, a switching element having substantially the same characteristics is mounted on an internal switching element. For this reason, when a switching element that performs a switching operation by PWM and a switching element that performs a switching element according to the polarity of the power supply voltage coexist, the switching frequency of the switching element that performs a switching operation by PWM depends on the polarity of the power supply voltage. Higher than the switching frequency of the switching element. For this reason, the element loss of the switching element that performs the switching operation by PWM becomes larger than the loss of the switching element corresponding to the polarity of the power supply voltage. However, in this embodiment, since a plurality of switching elements that perform the switching operation by PWM are connected in parallel, the current flowing through the switching elements that perform the switching operation by PWM can be suppressed, and the loss between each element can be reduced. The bias can be suppressed. In particular, the yield of large chips such as SiC is poor, and in the case of an element that can be reduced in cost by using a small chip, it is possible to adopt a small chip compared to the case of four elements. Therefore, it is preferable because it can be realized at a relatively low cost.
 また、IPMを用いることにより、スイッチング素子のドライブ回路等をIPM内部に取り込むことが可能であり、基板面積の削減が可能である。また、一般的な汎用IPMを用いることで、コストを抑制することができる。 Also, by using the IPM, the drive circuit of the switching element can be taken into the IPM, and the board area can be reduced. Moreover, cost can be suppressed by using a general general-purpose IPM.
 なお、アームを複数並列に接続してスイッチング動作を行う別の例として、並列接続されたスイッチング素子を180°位相をずらして制御するインタリーブ方式がある。本実施の形態では、インタリーブ方式ではなく、並列接続されたスイッチング素子を同時にスイッチングする同期制御方式を採用している。インタリーブ方式では、リアクタの小型化、リアクタ損失の低減が可能となる。しかしながら、空気調和機等のようにパッシブな状態で使用されることが多い場合、リアクタの小型化の必要はなく、本実施の形態の構成および動作の方が、高調波の抑制、電源力率の面で有効である。 In addition, as another example in which a plurality of arms are connected in parallel to perform a switching operation, there is an interleave method in which switching elements connected in parallel are controlled by shifting the phase by 180 °. In the present embodiment, a synchronous control system that switches switching elements connected in parallel at the same time is adopted instead of the interleave system. In the interleave method, the reactor can be downsized and the reactor loss can be reduced. However, if the reactor is often used in a passive state such as an air conditioner, it is not necessary to reduce the size of the reactor, and the configuration and operation of the present embodiment are more effective in suppressing harmonics and power source power factor. It is effective in terms of
 なお、本実施の形態では交流電源1と第1のアーム33との間にリアクタ2を1つ接続しているが、交流電源1と第2のアーム34との間にもリアクタを挿入する構成としても問題ない。この場合リアクタ1つ当りの容量を小さくすることができる。 In the present embodiment, one reactor 2 is connected between the AC power source 1 and the first arm 33. However, the reactor is also inserted between the AC power source 1 and the second arm 34. There is no problem. In this case, the capacity per reactor can be reduced.
 本実施の形態では電源電圧を検出するようにしたが、電源電圧のゼロクロス情報だけを検出する方式であっても、電源電圧の極性が把握できればよいため上述した動作を実施することができる。その場合、ゼロクロス付近での極性誤判定を抑制するために電源電圧位相推定値に基づいて一定期間オフ動作させる等の制御をしたとしても問題ない。 In the present embodiment, the power supply voltage is detected. However, even if the method detects only the zero-cross information of the power supply voltage, it is only necessary to know the polarity of the power supply voltage, so that the operation described above can be performed. In that case, there is no problem even if the control is performed such that the off operation is performed for a certain period based on the estimated value of the power supply voltage phase in order to suppress erroneous polarity determination near the zero cross.
 本実施の形態では電源電流の閾値判定にてスイッチング素子駆動の許可判定するようにしているが、電源電圧もしくは第一の回路31の入力電圧と母線電圧、もしくはスイッチング素子両端電圧、等にてスイッチング素子の還流ダイオードに電流が流れていることを推定して制御したとしても問題ない。なお、電源電圧もしくは第1の回路31の入力電圧と母線電圧にて推定する場合は、判定におけるバラツキ要因が多いため、推定誤差に注意が必要であり、スイッチング素子両端電圧にて判定する場合は判定したいスイッチング素子毎に検出回路が必要となる。 In the present embodiment, the switching element drive permission determination is performed by determining the threshold of the power supply current, but switching is performed by the power supply voltage, the input voltage of the first circuit 31 and the bus voltage, or the voltage across the switching element. There is no problem even if it is estimated and controlled that a current flows through the return diode of the element. Note that when estimating with the power supply voltage or the input voltage of the first circuit 31 and the bus voltage, there are many factors in the determination, so it is necessary to pay attention to the estimation error. When determining with the voltage across the switching element, A detection circuit is required for each switching element to be determined.
 ここで、本実施の形態の制御装置10のハードウェア構成について説明する。制御装置10は、処理回路により実現される。この処理回路は、専用のハードウェアである処理回路であってもよいし、プロセッサを備える制御回路であってもよい。また、複数の処理回路により構成されてもよい。専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。 Here, the hardware configuration of the control device 10 of the present embodiment will be described. The control device 10 is realized by a processing circuit. This processing circuit may be a processing circuit that is dedicated hardware, or may be a control circuit including a processor. Further, it may be constituted by a plurality of processing circuits. In the case of dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or these Is a combination.
 制御装置10を実現する処理回路がプロセッサを備える制御回路で実現される場合、この制御回路は例えば図25に示す構成の制御回路200である。図25は、本実施の形態の制御回路200の構成例を示す図である。制御回路200は、プロセッサ201とメモリ202を備える。プロセッサは、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)等である。メモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、等の、不揮発性または揮発性の半導体メモリ、磁気ディスク等が該当する。 When the processing circuit for realizing the control device 10 is realized by a control circuit including a processor, this control circuit is, for example, a control circuit 200 having a configuration shown in FIG. FIG. 25 is a diagram illustrating a configuration example of the control circuit 200 of the present embodiment. The control circuit 200 includes a processor 201 and a memory 202. The processor is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)) or the like. The memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, or a magnetic disk.
 制御装置10を実現する処理回路がプロセッサを備える制御回路200である場合、プロセッサ201が、メモリ202に記憶された制御装置10の処理が記述されたプログラムを読み出して実行することにより実現される。また、メモリ202は、プロセッサ201が実施する各処理における一時メモリとしても使用される。 When the processing circuit that implements the control device 10 is the control circuit 200 including a processor, the processor 201 reads out and executes a program describing the processing of the control device 10 stored in the memory 202. The memory 202 is also used as a temporary memory in each process executed by the processor 201.
 以上のように、本実施の形態では、電源電流の制御のためのスイッチングを行うアームと、電源電圧の極性に応じたアームとを備える電力変換装置において、電源電流の制御のためのスイッチングを行うアームを並列に接続するようにした。これにより、素子損失の偏りを抑制することができる。 As described above, in the present embodiment, in a power conversion device including an arm that performs switching for controlling the power supply current and an arm that corresponds to the polarity of the power supply voltage, switching for controlling the power supply current is performed. The arms were connected in parallel. Thereby, the bias of element loss can be suppressed.
実施の形態2.
 図26は、実施の形態2の駆動装置の構成例を示す図である。実施の形態2の駆動装置101はモータ駆動装置であり、負荷であるモータ42を駆動する。実施の形態2の駆動装置101は、実施の形態1で述べた電力変換装置100と、インバータ41と、モータ電流検出部44と、インバータ制御部43と、を備える。インバータ41は、電力変換装置100から供給される直流電力を交流電力に変換してモータ42へ印加することによりモータ42を駆動する。以下では、駆動装置により駆動される負荷がモータ42である例を説明する。インバータ41により駆動されるモータは負荷に限定されない。
Embodiment 2. FIG.
FIG. 26 is a diagram illustrating a configuration example of the driving apparatus according to the second embodiment. The driving device 101 according to the second embodiment is a motor driving device and drives a motor 42 that is a load. The drive device 101 according to the second embodiment includes the power conversion device 100 described in the first embodiment, the inverter 41, the motor current detection unit 44, and the inverter control unit 43. The inverter 41 drives the motor 42 by converting the DC power supplied from the power converter 100 into AC power and applying it to the motor 42. Hereinafter, an example in which the load driven by the driving device is the motor 42 will be described. The motor driven by the inverter 41 is not limited to the load.
 インバータ41は、どのような構成であってもよいが、例えば、IGBT(Insulated Gate Bipolar Transistor)をはじめとしたスイッチング素子を3相ブリッジ構成または2相ブリッジ構成とした回路である。スイッチング素子としてワイドバンドギャップ素子を用いてもよい。 The inverter 41 may have any configuration. For example, a switching element including an IGBT (Insulated Gate Bipolar Transistor) has a three-phase bridge configuration or a two-phase bridge configuration. A wide band gap element may be used as the switching element.
 モータ電流検出部44は、モータ42に流れる電流を検出する。インバータ制御部43は、モータ電流検出部44により検出された電流を用いて、モータ42が所望の回転数にて回転するように、インバータ41内のスイッチング素子を駆動するためのPWM信号を生成してインバータ41へ印加する。 The motor current detector 44 detects the current flowing through the motor 42. The inverter control unit 43 uses the current detected by the motor current detection unit 44 to generate a PWM signal for driving the switching element in the inverter 41 so that the motor 42 rotates at a desired rotational speed. Applied to the inverter 41.
 インバータ制御部43は、制御装置10と同様に処理回路によって実現される。また、制御装置10とインバータ制御部43とが一体化した処理回路により実現されてもよい。 The inverter control unit 43 is realized by a processing circuit similarly to the control device 10. Further, the control device 10 and the inverter control unit 43 may be realized by an integrated processing circuit.
 実施の形態1で述べた電力変換装置100が、図26に示したように、モータ42を駆動する駆動装置101において用いられる場合、必要な母線電圧Vdsが、モータ42の運転状態に応じて異なるという特色がある。 When the power conversion device 100 described in the first embodiment is used in the drive device 101 that drives the motor 42 as shown in FIG. 26, the required bus voltage Vds varies depending on the operating state of the motor 42. There is a special feature.
 一般に、モータ42の回転数が高回転になるほど、インバータ41からの出力電圧は高くなる必要がある。このインバータ41からの出力電圧の上限は、インバータ41への入力電圧、すなわち、電力変換装置100の出力である母線電圧Vdsにより制限される。インバータ41からの出力電圧が、母線電圧Vdsにより制限された上限を超えて飽和する領域を過変調領域と呼ぶ。 Generally, the higher the rotation speed of the motor 42, the higher the output voltage from the inverter 41 needs to be. The upper limit of the output voltage from the inverter 41 is limited by the input voltage to the inverter 41, that is, the bus voltage Vds that is the output of the power converter 100. A region where the output voltage from the inverter 41 saturates beyond the upper limit limited by the bus voltage Vds is called an overmodulation region.
 このような駆動装置101においては、モータ42が低回転である範囲すなわち過変調領域に到達しない範囲では、母線電圧Vdsを昇圧させる必要はない。一方、モータ42が高回転となった場合には、母線電圧Vdsを昇圧させることで、過変調領域をより高回転側にすることができる。これにより、モータ42の運転範囲を高回転側に拡大できる。 In such a driving device 101, it is not necessary to boost the bus voltage Vds in a range where the motor 42 is in a low rotation speed, that is, in a range where the motor 42 does not reach the overmodulation region. On the other hand, when the motor 42 is at a high speed, the overmodulation region can be set to a higher speed side by boosting the bus voltage Vds. Thereby, the operation range of the motor 42 can be expanded to the high rotation side.
 また、モータ42の運転範囲を拡大する必要がなければ、その分モータ42の固定子の巻線を高巻数化することができる。このとき、低回転数の領域では、モータ電圧が高くなる分、電流が少なくなり、インバータ41での損失低減が見込まれる。モータ42の運転範囲拡大と低回転数領域の損失改善の双方の効果を得るため、モータ42の高巻数化の程度を適切に設計してもよい。 Further, if it is not necessary to expand the operating range of the motor 42, the number of windings of the stator of the motor 42 can be increased accordingly. At this time, in the low rotation speed region, the current is reduced as the motor voltage increases, and loss reduction in the inverter 41 is expected. In order to obtain the effects of both expanding the operating range of the motor 42 and improving the loss in the low rotation speed region, the degree of increase in the number of turns of the motor 42 may be appropriately designed.
 以上、実施の形態1の電力変換装置100が駆動装置101を構成する例を説明した。実施の形態1の電力変換装置100を用いることにより、素子損失の偏りを抑制した駆動装置101を実現することができる。 The example in which the power conversion apparatus 100 according to the first embodiment configures the drive apparatus 101 has been described above. By using the power conversion device 100 of the first embodiment, it is possible to realize the drive device 101 that suppresses the bias of element loss.
実施の形態3.
 図27は、本発明の実施の形態3の空気調和機の構成例を示す図である。本実施の形態の空気調和機は、実施の形態2で述べたモータ42および駆動装置(電動機駆動装置)101を備える。本実施の形態の空気調和機は、実施の形態2のモータ42を内蔵した圧縮機81、四方弁82、室外熱交換器83、膨張弁84、室内熱交換器85が冷媒配管86を介して取り付けられた冷凍サイクルすなわち冷凍サイクル装置を有して、セパレート形空気調和機を構成している。モータ42は、駆動装置101により制御される。
Embodiment 3 FIG.
FIG. 27 is a diagram illustrating a configuration example of an air conditioner according to Embodiment 3 of the present invention. The air conditioner of the present embodiment includes the motor 42 and the drive device (electric motor drive device) 101 described in the second embodiment. In the air conditioner of the present embodiment, a compressor 81 incorporating the motor 42 of the second embodiment, a four-way valve 82, an outdoor heat exchanger 83, an expansion valve 84, and an indoor heat exchanger 85 are connected via a refrigerant pipe 86. It has a refrigeration cycle attached, that is, a refrigeration cycle apparatus, and constitutes a separate air conditioner. The motor 42 is controlled by the driving device 101.
 圧縮機81内部には冷媒を圧縮する圧縮機構87とこれを動作させるモータ42が設けられ、圧縮機81から室外熱交換器83と室内熱交換器85間を冷媒が循環することで冷暖房などを行う冷凍サイクルが構成されている。なお、図27に示した構成は、空気調和機だけでなく、冷蔵庫、冷凍庫等の冷凍サイクルを備える機器に適用可能である。 A compressor 81 for compressing refrigerant and a motor 42 for operating the compressor 81 are provided inside the compressor 81, and the refrigerant circulates between the outdoor heat exchanger 83 and the indoor heat exchanger 85 from the compressor 81 for air conditioning and the like. The refrigeration cycle to perform is comprised. In addition, the structure shown in FIG. 27 is applicable not only to an air conditioner but also to equipment including a refrigeration cycle such as a refrigerator and a freezer.
 また、上述した実施の形態では、圧縮機のモータとしてモータ42を用い、モータ42を駆動装置101により駆動する例を説明したが、空気調和機における送風機のモータとしてモータ42を用い、モータ42を駆動装置101により駆動してもよい。また、送風機および駆動装置101の両方のモータとしてモータ42を用い、モータ42を駆動装置101により駆動してもよい。 Further, in the above-described embodiment, the example in which the motor 42 is used as the motor of the compressor and the motor 42 is driven by the driving device 101 has been described. However, the motor 42 is used as the motor of the blower in the air conditioner. You may drive with the drive device 101. FIG. Further, the motor 42 may be used as the motor for both the blower and the driving device 101, and the motor 42 may be driven by the driving device 101.
 また、空気調和機では定格出力の半分以下である中間条件すなわち低出力条件での運転が年間を通じて多く、中間条件の年間消費電力(APF(Annual Performance Factor))への寄与度が高くなる。また、空気調和機においてはモータの回転数も低く、モータの駆動に必要な母線電圧は低い傾向にある。このため、空気調和機において用いられる電力変換装置はパッシブにて動作させることがシステム効率の面から有効であり、パッシブから高周波スイッチングまで幅広い運転モードにて損失の低減が可能な実施の形態1の電力変換装置100が有用である。上述した通り、インタリーブ方式では、リアクタを小型化することができるが、空気調和機においては中間条件での運転が多いためリアクタの小型化の必要はなく、実施の形態1の電力変換装置100の構成および動作の方が、高調波の抑制、電源力率の面で有効である。 In addition, air conditioners are often operated under intermediate conditions that are less than half of the rated output, that is, low output conditions throughout the year, and the contribution to the annual power consumption (APF (Annual Performance Factor)) of the intermediate conditions is high. In an air conditioner, the number of rotations of the motor is low, and the bus voltage necessary for driving the motor tends to be low. For this reason, it is effective from the aspect of system efficiency that the power conversion device used in the air conditioner is operated passively, and the loss can be reduced in a wide range of operation modes from passive to high-frequency switching. The power conversion device 100 is useful. As described above, in the interleave method, the reactor can be miniaturized, but in an air conditioner, there are many operations under intermediate conditions, so there is no need for miniaturization of the reactor. The configuration and operation are more effective in terms of harmonic suppression and power factor.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 単相交流電源、2 リアクタ、3 ブリッジ回路、4 平滑コンデンサ、5 電源電圧検出部、6 電源電流検出部、7 母線電圧検出部、10 制御装置、21 電源電流指令値制御部、22 オンデューティ制御部、23 電源電圧位相算出部、24 第1のパルス生成部、25 第2のパルス生成部、41 インバータ、42 モータ、43 インバータ制御部、44 モータ電流検出部、81 圧縮機、82 四方弁、83 室外熱交換器、84 膨張弁、85 室内熱交換器、86 冷媒配管、87 圧縮機構、100 電力変換装置、101 駆動装置、241 キャリア生成部、242 基準PWM生成部、243 デッドタイム生成部、244 パルスセレクタ部。 1 single-phase AC power supply, 2 reactors, 3 bridge circuit, 4 smoothing capacitor, 5 power supply voltage detection unit, 6 power supply current detection unit, 7 bus voltage detection unit, 10 control device, 21 power supply current command value control unit, 22 on-duty Control unit, 23 power supply voltage phase calculation unit, 24 first pulse generation unit, 25 second pulse generation unit, 41 inverter, 42 motor, 43 inverter control unit, 44 motor current detection unit, 81 compressor, 82 four-way valve , 83 outdoor heat exchanger, 84 expansion valve, 85 indoor heat exchanger, 86 refrigerant piping, 87 compression mechanism, 100 power conversion device, 101 drive device, 241 carrier generation unit, 242 reference PWM generation unit, 243 dead time generation unit 244 Pulse selector part.

Claims (10)

  1.  交流電源から供給された交流電力を直流電力に変換する電力変換装置であって、
     それぞれが前記交流電源に接続される第1の配線および第2の配線と、
     前記第1の配線上に配置されるリアクタと、
     第1のスイッチング素子と、第2のスイッチング素子と、第1の接続点を有する第3の配線とを備え、前記第1のスイッチング素子および前記第2のスイッチング素子は前記第3の配線により直列に接続され、前記第1の接続点は前記第1の配線により前記リアクタに接続される第1のアームと、
     前記第1のアームと並列に接続され、第3のスイッチング素子と、第4のスイッチング素子と、第2の接続点を有する第4の配線とを備え、前記第3のスイッチング素子および前記第4のスイッチング素子は前記第4の配線により直列に接続され、前記第2の接続点は前記第1の配線により前記リアクタに接続される第2のアームと、
     前記第2のアームと並列に接続され、第5のスイッチング素子と、第6のスイッチング素子と、第3の接続点を有する第5の配線とを備え、前記第5のスイッチング素子および前記第6のスイッチング素子は前記第5の配線により直列に接続され、前記第3の接続点は前記第2の配線により前記交流電源に接続される第3のアームと、
     前記第3のアームと並列に接続されるコンデンサと、
     を備える電力変換装置。
    A power conversion device that converts AC power supplied from an AC power source into DC power,
    A first wiring and a second wiring each connected to the AC power source;
    A reactor disposed on the first wiring;
    A first switching element, a second switching element, and a third wiring having a first connection point, wherein the first switching element and the second switching element are connected in series by the third wiring. A first arm connected to the reactor by the first wiring; and
    A third switching element; a fourth switching element; and a fourth wiring having a second connection point. The fourth switching element and the fourth switching element are connected in parallel to the first arm. Are connected in series by the fourth wiring, and the second connection point is a second arm connected to the reactor by the first wiring;
    A fifth switching element; a sixth switching element; and a fifth wiring having a third connection point. The fifth switching element and the sixth switching element are connected in parallel to the second arm. Switching elements are connected in series by the fifth wiring, and the third connection point is a third arm connected to the AC power supply by the second wiring;
    A capacitor connected in parallel with the third arm;
    A power conversion device comprising:
  2.  前記第1のアームおよび前記第2のアームのスイッチング周波数は、前記第3のアームのスイッチング周波数よりも高い請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein a switching frequency of the first arm and the second arm is higher than a switching frequency of the third arm.
  3.  前記第1のアーム、前記第2のアームおよび前記第3のアームは、インテリジェントパワーモジュールにより構成される請求項1または2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the first arm, the second arm, and the third arm are configured by an intelligent power module.
  4.  電源電流を検出する電流検出部を備え、
     前記電源電流に応じて、前記第5のスイッチング素子および前記第6のスイッチング素子のオンを許可するか否かを決定する請求項1から3のいずれか1つに記載の電力変換装置。
    It has a current detector that detects the power supply current,
    4. The power conversion device according to claim 1, wherein whether to turn on the fifth switching element and the sixth switching element is determined according to the power supply current. 5.
  5.  前記電源電流が閾値以下の場合に、前記第5のスイッチング素子および前記第6のスイッチング素子のオンを許可せず、前記電源電流が前記閾値より大きい場合に、前記第5のスイッチング素子および前記第6のスイッチング素子のオンを許可する請求項4に記載の電力変換装置。 When the power supply current is less than or equal to a threshold, the fifth switching element and the sixth switching element are not allowed to be turned on, and when the power supply current is greater than the threshold, the fifth switching element and the fifth switching element The power conversion device according to claim 4, wherein the switching element is allowed to be turned on.
  6.  前記第1のスイッチング素子の駆動信号と前記第3のスイッチング素子の駆動信号とは同一であり、前記第3のスイッチング素子の駆動信号と前記第4のスイッチング素子の駆動信号とは同一である請求項1から5のいずれか1つに記載の電力変換装置。 The drive signal for the first switching element and the drive signal for the third switching element are the same, and the drive signal for the third switching element and the drive signal for the fourth switching element are the same. Item 6. The power conversion device according to any one of Items 1 to 5.
  7.  モータを駆動するモータ制御装置であって、
     請求項1から6のいずれか1つに記載の電力変換装置と、
     前記電力変換装置から出力される直流電力を交流電力に変換して前記モータへ印加するインバータと、
     を備えるモータ駆動装置。
    A motor control device for driving a motor,
    The power conversion device according to any one of claims 1 to 6,
    An inverter that converts DC power output from the power converter into AC power and applies the AC power to the motor;
    A motor drive device comprising:
  8.  モータと、
     前記モータを駆動する請求項7に記載のモータ駆動装置と、
     を備える空気調和機。
    A motor,
    The motor driving device according to claim 7 for driving the motor;
    Air conditioner equipped with.
  9.  前記モータを備える送風機を備える請求項8に記載の空気調和機。 The air conditioner according to claim 8, further comprising a blower including the motor.
  10.  前記モータを備える圧縮機を備える請求項8に記載の空気調和機。 The air conditioner according to claim 8, further comprising a compressor including the motor.
PCT/JP2016/080747 2016-10-17 2016-10-17 Power conversion device, motor drive device, and air conditioner WO2018073875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/080747 WO2018073875A1 (en) 2016-10-17 2016-10-17 Power conversion device, motor drive device, and air conditioner
JP2018545732A JPWO2018073875A1 (en) 2016-10-17 2016-10-17 Power conversion device, motor drive device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080747 WO2018073875A1 (en) 2016-10-17 2016-10-17 Power conversion device, motor drive device, and air conditioner

Publications (1)

Publication Number Publication Date
WO2018073875A1 true WO2018073875A1 (en) 2018-04-26

Family

ID=62019149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080747 WO2018073875A1 (en) 2016-10-17 2016-10-17 Power conversion device, motor drive device, and air conditioner

Country Status (2)

Country Link
JP (1) JPWO2018073875A1 (en)
WO (1) WO2018073875A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221079A (en) * 2018-06-21 2019-12-26 株式会社富士通ゼネラル Rectifier circuit
WO2020066034A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Power conversion apparatus, motor drive apparatus, and air conditioner
JP2020089113A (en) * 2018-11-28 2020-06-04 株式会社富士通ゼネラル Rectifier circuit
CN112771775A (en) * 2018-09-28 2021-05-07 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner
CN112805913A (en) * 2018-09-28 2021-05-14 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner
CN113016131A (en) * 2018-11-07 2021-06-22 三菱电机株式会社 Motor drive device and air conditioner using the same
EP3826164A4 (en) * 2018-07-19 2021-07-14 Mitsubishi Electric Corporation Power conversion apparatus, motor drive apparatus, and air conditioner
CN113508520A (en) * 2019-03-11 2021-10-15 三菱电机株式会社 Converter device, motor drive device, and air conditioner
US11189439B2 (en) 2017-08-04 2021-11-30 Mitsubishi Electric Corporation Power converting apparatus, motor drive apparatus, and air conditioner
CN114287104A (en) * 2019-08-30 2022-04-05 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070490A (en) * 2010-09-21 2012-04-05 Tdk Corp Bridgeless power factor improvement converter
US20120139505A1 (en) * 2010-12-02 2012-06-07 Yuancheng Ren Bridgeless PFC Converter and the Method Thereof
JP2012152043A (en) * 2011-01-20 2012-08-09 Toyota Motor Corp Power supply system for vehicle
JP2014090570A (en) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp Dc power supply device, refrigeration cycle apparatus, air conditioner, and refrigerator
JP2014099946A (en) * 2011-03-07 2014-05-29 Panasonic Corp Step-up pfc control unit
WO2016132441A1 (en) * 2015-02-16 2016-08-25 三菱電機株式会社 Drive control device for power supply device, power supply device, and electric discharge machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625549A (en) * 1994-09-23 1997-04-29 Kaman Electronics Corporation Boost-buck rectifier bridge circuit topology with diode decoupled boost stage
US9654024B2 (en) * 2013-05-30 2017-05-16 Texas Instruments Incorporated AC-DC converter having soft-switched totem-pole output

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070490A (en) * 2010-09-21 2012-04-05 Tdk Corp Bridgeless power factor improvement converter
US20120139505A1 (en) * 2010-12-02 2012-06-07 Yuancheng Ren Bridgeless PFC Converter and the Method Thereof
JP2012152043A (en) * 2011-01-20 2012-08-09 Toyota Motor Corp Power supply system for vehicle
JP2014099946A (en) * 2011-03-07 2014-05-29 Panasonic Corp Step-up pfc control unit
JP2014090570A (en) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp Dc power supply device, refrigeration cycle apparatus, air conditioner, and refrigerator
WO2016132441A1 (en) * 2015-02-16 2016-08-25 三菱電機株式会社 Drive control device for power supply device, power supply device, and electric discharge machine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189439B2 (en) 2017-08-04 2021-11-30 Mitsubishi Electric Corporation Power converting apparatus, motor drive apparatus, and air conditioner
JP2019221079A (en) * 2018-06-21 2019-12-26 株式会社富士通ゼネラル Rectifier circuit
EP3826164A4 (en) * 2018-07-19 2021-07-14 Mitsubishi Electric Corporation Power conversion apparatus, motor drive apparatus, and air conditioner
US11909299B2 (en) 2018-07-19 2024-02-20 Mitsubishi Electric Corporation Power converting apparatus, motor driving apparatus, and air conditioner
US11804787B2 (en) 2018-09-28 2023-10-31 Mitsubishi Electric Corporation Power converting apparatus, motor driving apparatus, and air conditioner
CN112805913A (en) * 2018-09-28 2021-05-14 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner
CN112771775A (en) * 2018-09-28 2021-05-07 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner
JPWO2020066034A1 (en) * 2018-09-28 2021-03-11 三菱電機株式会社 Power converter, motor drive and air conditioner
CN112805913B (en) * 2018-09-28 2023-09-26 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner
CN112771775B (en) * 2018-09-28 2023-12-01 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner
WO2020066034A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Power conversion apparatus, motor drive apparatus, and air conditioner
CN113016131A (en) * 2018-11-07 2021-06-22 三菱电机株式会社 Motor drive device and air conditioner using the same
CN113016131B (en) * 2018-11-07 2024-01-16 三菱电机株式会社 Motor driving device and air conditioner using the same
JP2020089113A (en) * 2018-11-28 2020-06-04 株式会社富士通ゼネラル Rectifier circuit
CN113508520A (en) * 2019-03-11 2021-10-15 三菱电机株式会社 Converter device, motor drive device, and air conditioner
CN114287104A (en) * 2019-08-30 2022-04-05 三菱电机株式会社 Power conversion device, motor drive device, and air conditioner

Also Published As

Publication number Publication date
JPWO2018073875A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2018073875A1 (en) Power conversion device, motor drive device, and air conditioner
CN109874379B (en) Power conversion device and air conditioner
JP5490249B2 (en) HEAT PUMP DEVICE, HEAT PUMP SYSTEM, AND INVERTER CONTROL METHOD
US9929670B2 (en) Power conversion device, motor drive control device equipped with power conversion device, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower
JP7104209B2 (en) Power converter and air conditioner equipped with it
JP5855025B2 (en) Backflow prevention means, power conversion device and refrigeration air conditioner
TWI664802B (en) Power conversion device and refrigerating and air-conditioning equipment
JP6818892B2 (en) Power converter, motor drive and air conditioner
EP3190693A1 (en) Electric power converter
US20190334456A1 (en) Inverter device, compressor drive device, and air conditioner
JP4989698B2 (en) POWER CONVERTER, MOTOR DRIVE CONTROL DEVICE EQUIPPED WITH THE SAME, COMPRESSOR AND BLOWER HAVING THE SAME, AND AIR CONDITIONER HAVING THE COMPRESSOR OR BLOWER, REFRIGERATOR AND FREEzer
JP6952901B2 (en) Power converter, motor drive and air conditioner
JP6522228B2 (en) DC power supply device and refrigeration cycle applicable device
WO2020066033A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
JP5788540B2 (en) Electric motor drive device and refrigeration air conditioner
JP7034373B2 (en) DC power supply, power conversion device and refrigeration cycle device
JP2008061411A (en) Power conversion device
JP7296821B2 (en) DC power supply, motor drive and air conditioner
JP6982254B2 (en) Power converter and air conditioner
JP7313231B2 (en) DC power supply, motor drive and air conditioner
JP6884254B2 (en) Power converter and air conditioner
JP2022125276A (en) Power conversion apparatus and air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919437

Country of ref document: EP

Kind code of ref document: A1