WO2018073538A1 - Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu - Google Patents

Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu Download PDF

Info

Publication number
WO2018073538A1
WO2018073538A1 PCT/FR2017/052868 FR2017052868W WO2018073538A1 WO 2018073538 A1 WO2018073538 A1 WO 2018073538A1 FR 2017052868 W FR2017052868 W FR 2017052868W WO 2018073538 A1 WO2018073538 A1 WO 2018073538A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
ceramic
cmas
μιη
Prior art date
Application number
PCT/FR2017/052868
Other languages
English (en)
Inventor
Benjamin Bernard
Aurélie QUET
Emmanuel HERVE
Luc Bianchi
Aurélien JOULIA
André MALIE
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Safran filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to CA3040347A priority Critical patent/CA3040347A1/fr
Priority to US16/341,956 priority patent/US20190242001A1/en
Priority to EP17797677.6A priority patent/EP3529395B1/fr
Priority to BR112019007670-0A priority patent/BR112019007670B1/pt
Priority to CN201780064708.5A priority patent/CN109874330B/zh
Priority to RU2019115140A priority patent/RU2761397C2/ru
Priority to JP2019541889A priority patent/JP7271429B2/ja
Publication of WO2018073538A1 publication Critical patent/WO2018073538A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2112Aluminium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • the present invention relates to a method for coating at least one surface of a solid substrate with at least one layer comprising at least one ceramic compound.
  • This layer is in particular a layer able to withstand infiltration and degradation at high temperature due to contaminants, in particular contaminants in the form of solid particles such as dust, sand, or ash.
  • contaminants may be in particular constituted by a mixture of oxides generally comprising lime (CaO), magnesium oxide (MgO), alumina (Al2O3) and silicon oxide (S102). These contaminants are usually called CMAS.
  • the invention further relates to the solid substrate coated with a layer obtainable by the coating method according to the invention.
  • the invention also relates to a part comprising said solid substrate. More particularly, the layer prepared by the process according to the invention is intended to be integrated within multilayer coatings protecting a solid substrate made of metal alloy or metal superalloy or ceramic matrix composite (CMC), optionally coated with a layer. connection, itself optionally also coated with a thermally insulating ceramic layer, and / or an anti-oxidation layer, and / or an anti-corrosion layer.
  • CMC ceramic matrix composite
  • the technical field of the invention can be broadly defined as that of anti-CMAS coatings.
  • the invention finds particular application in gas turbines or propulsion systems used in particular in the aeronautical, space, naval and land, for the protection of parts exposed to high temperatures such as, for example, turbine parts such as stationary and moving vanes, distributors, turbine rings, parts of the combustion chamber or the nozzle.
  • turbine parts such as stationary and moving vanes, distributors, turbine rings, parts of the combustion chamber or the nozzle.
  • thermal barrier systems comprising a thermally insulating layer of ceramic oxide, most often made of YSZ ("Yttria-Stabilized”).
  • Zirconia that is to say zirconia stabilized with yttrine (yttrium oxide Y2O3), typically containing from 7 to 8% by weight of yttrium oxide Y2O3.
  • a thermal barrier system is a multilayer system composed of at least one thermally insulating layer making it possible to reduce the surface temperature of the structuring material, namely the surface temperature of the material constituting the part such as a gas turbine part. that we want to protect thermally.
  • Plasma sputtering leads to lamellar microstructures with low thermal conductivity but limited life during thermal cycling [1].
  • the EB-PVD process is preferred because of the resulting columnar microstructures which, despite less advantageous thermal conductivities, ensure accommodation of thermomechanical stresses, and ensure long service life.
  • the EB-PVD process is also preferred to the APS process for its ability to maintain aeration vents allowing for increased operating temperatures [1].
  • Ceramic coatings with improved thermal insulation properties have recently been obtained using specific materials or processes.
  • the microstructures can be homogeneous (that is, the pores or particles that make up the layer have no characteristic orientation at the micrometric scale), porous, vertically cracked, or columnar (ie that is, the layer has a structure having, at the micrometric scale, a preferred orientation in the direction of the thickness of the layer, with an organization in the form of columnar domains and, between the columnar domains, empty spaces or spaces inter-columnar that reflect the compactness of the columnar stack and the amplitude of which is scalable), with or without inter passes (resulting from the presence of unmelted particles (unmelted) or partially melted within the deposit.
  • thermal barrier systems In addition to thermal barrier systems, environmental barrier systems may also experience this type of degradation by CMAS particles.
  • An environmental barrier system is a multilayer system, typically applied to metal surfaces or ceramic matrix composites. This environmental barrier system is composed of at least one layer resistant to corrosive environments.
  • anti-CMAS anti-CMAS
  • apatite and / or anorthite phase formation appears to be able to stop CMAS infiltration.
  • Different materials have been identified for their ability to form these phases.
  • the documents [5] and [6] notably present materials making it possible to limit and / or stop the infiltration of CMAS.
  • RE Se, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Yb, Dy, Ho, Er, Tm, Tb, Lu
  • composite materials composed of Y 2 O 3 and ZrO 2 and / or Al 2 O 3 and / or TiO 2 , hexa-aluminates, and rare earth mono- and di-silicates (the rare earth being Y or Yb), and mixtures of these materials.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • EB-PVD bilayer architectures comprising a columnar microstructure thermal insulating layer protected by an anti-CMAS layer, induces the presence of inter-columnar spaces which, after infiltration of the CMAS and cooling, stiffen the system which can then delaminate.
  • Anti-CMAS coatings made by APS lead to non-columnar lamellar microstructures, with lamellae with large surfaces able to react with CMAS to form more stable phases. However, it is complicated to apply these layers on high pressure turbine parts, as this may obstruct the vent holes.
  • the SPS and SPPS processes which provide nanostructured layers or finely structured layers, may be solutions for forming anti-CMAS layers having homogeneous microstructures without obstructing the vent holes.
  • the anti-CMAS layers obtained by SPS are currently produced with suspensions containing particles having sizes smaller than 1 ⁇ m (documents [9] and [10]).
  • the solid substrate may be constituted simply by a simple support which is in the form of a solid support or in the form of a layer, or the solid substrate may be constituted by a support on which there is a layer or a coating multilayer for example a multilayer thermal protection coating namely a thermal barrier system or a multilayer coating for protection against corrosive environments, namely an environmental barrier system.
  • This method must allow the preparation of this layer on all types of substrates, whatever the geometry of this substrate, whatever the material constituting this substrate (that is to say more exactly the material constituting the support or the layer on which is deposited the layer prepared by the process), regardless of the structure, in particular the microstructure of the substrate (support or layer), and whatever the method by which this substrate (support or layer) was prepared.
  • the method according to the invention must allow the preparation of a ceramic layer, more specifically an effective anti-CMAS layer, on a substrate (support or layer) prepared by a technique chosen from EB techniques. -PVD, APS, SPS, SPPS, PVD, CVD, gel sol, and all combinations of these techniques.
  • the method according to the invention must allow the preparation of a ceramic layer, more specifically of an effective anti-CMAS layer, on a substrate (support or layer) having a microstructure chosen from a structure columnar, columnar and porous structure, compact and porous columnar structure, homogeneous structure, homogeneous and porous structure, dense structure, dense and vertically fissured structure, porous and vertically fissured structure, and all combinations of these techniques .
  • the object of the invention is, inter alia, to provide a method for coating at least one surface of a solid substrate with at least one layer comprising at least one ceramic compound, which meets these needs, among others, and which does not does not present the disadvantages, defects, limitations and disadvantages of the prior art processes, including prior art SPS methods, and which solves the problems of the prior art methods.
  • a method of coating at least one surface of a solid substrate with at least one layer comprising at least one ceramic compound by a plasma projection of "SPS" suspensions in which at least one suspension of solid particles of at least one ceramic compound is injected into a plasma jet and then the thermal jet which contains the suspension of solid particles is sprayed onto the surface of the substrate, whereby the layer comprising at least one ceramic compound is formed on the surface of the substrate; characterized in that in the suspension, at least 90% by volume of the solid particles have a larger dimension (called dgo), such as a diameter, less than 15 ⁇ , preferably less than 10 ⁇ , and at least 50 % by volume of the solid particles have a larger dimension (called dso) such that a diameter greater than or equal to 1 ⁇ ; a method further characterized in that the ceramic compound is selected from the so-called anti-CMAS compounds, preferably the ceramic compound is selected from the rare earth zirconates of the formula RE 2 Zr 2 0 7 , where
  • At least 90% by volume of the solid particles have a larger dimension (called dgo), such as a diameter, less than 8 ⁇ , preferably less than 5 ⁇ .
  • At least 50% by volume of the solid particles have a larger dimension (called dso) such that a diameter greater than or equal to 2 ⁇ , preferably greater than or equal to 3 ⁇ , more preferably greater than or equal to 4 ⁇ , better still greater than or equal to 5 ⁇ .
  • dso may be equal to 1 ⁇ , 1.01 ⁇ , 3 ⁇ , 5 ⁇ , or 5.5 ⁇ .
  • dgo can be equal to 7 ⁇ , 4 ⁇ , 4,95 ⁇ , 5 ⁇ , 12 ⁇ , 13 ⁇ or 13,2 ⁇ .
  • the invention covers all possible combinations of dgo and dso values mentioned above.
  • the analysis of the particle size of the suspension is carried out by laser diffraction granulometry according to the ISO 24235 standard.
  • the dgo and the dso can be determined from the ISO 9276 standard.
  • the term "lamellar”, applied to a layer, means that the layer has a structure having, at the micrometric scale, elementary bricks having a preferred orientation in the direction perpendicular to the thickness of the layer.
  • the term "columnar”, applied to a layer, means that the layer has a structure having, at the micrometric scale, a preferred orientation of elementary bricks in the direction of the thickness of the layer, these bricks being organized in the form of of columns.
  • the term "homogeneous" applied to a layer means that the layer has a structure formed of elementary bricks that have no characteristic orientation to the micrometric scale. Similarly, the porosity of the layer has no characteristic orientation at the micrometric scale.
  • the method according to the invention is fundamentally different from the processes of the prior art in that it implements a specific deposition technique, namely a suspension plasma projection technique (SPS) and in that the suspension contains particles which have a very specific particle size, namely a particle size defined by the fact that at least 90% by volume of the solid particles have a larger dimension (called dgo), such as a diameter, of less than 15 ⁇ , preferably less than 10 ⁇ , and at least 50% by volume of the solid particles have a larger dimension such that a diameter (called dso) greater than or equal to 1 ⁇ .
  • SPS suspension plasma projection technique
  • suspension particles Such granulometry of the suspension particles is neither described nor suggested in the prior art, where the SPS methods used to prepare, for example, anti-CMAS layers use suspensions containing "small" particles having different sizes. less than 1 ⁇ , that is to say with a dso less than 1 ⁇ , in particular a dso and / or a nanometric dgo, that is to say greater than or equal to 1 nanometer and less than or equal to 100 nanometers , or a dso and / or submicrometer dgo, that is to say greater than 100 nanometers and less than 1000 nanometers.
  • the layer obtained by the process according to the invention has a much greater tortuosity, because of the use of much larger particles.
  • This significant tortuosity makes it possible to slow the infiltration, for example liquid CMAS in the thickness of the layer.
  • the injection of the particles in the SPS technique carried out according to the invention is carried out on the basis of a suspension of particles carried in a pressurized liquid vector. This makes it possible to penetrate the particles having a dgo less than 15 ⁇ , preferably less than 10 ⁇ , by inertia effect at the heart of the plasma jet without undue disturbance of the latter and thus optimize their transport and heating by the plasma jet.
  • the process according to the invention does not have the disadvantages of the processes of the prior art and provides a solution to the problems of the processes of the prior art.
  • the layer obtained by the process according to the invention has a lamellar microstructure and a tortuous porous network.
  • the layer obtained by the process according to the invention comprises at the same time:
  • the layer obtained by the process according to the invention may optionally have cracks, but it is non-columnar and non-homogeneous, whatever the microstructure of the surface to be coated.
  • the layer obtained by the process according to the invention thus has a microstructure which is particularly adapted to its anti-CMAS function. It allows the formation on its surface, with a limited infiltration of its porous network, stable phases, reaction products between the material of the layer and liquid CMAS. These stable phases block the infiltration of CMAS deep into the coating.
  • the layer according to the invention Due to the specific size of the initial particles used in the suspension, the layer according to the invention has a stack of molten lamellae (resulting from the melting of the solid particles of the suspension), partially melted (solid particles resulting from the partial melting of the solid particles of the suspension) and unmelted particles (solid particles of the unmelted suspension which have retained their initial shape, by example of sphere).
  • the layer thus has a tortuous porous network making it difficult to access contaminants, its infiltration by contaminants, such as liquid CMAS.
  • the microstructure of the layer according to the invention is lamellar. It is neither columnar nor homogeneous.
  • the lamellar microstructure of the layer obtained by the process according to the invention assures an increased resistance with respect to the particulate mechanical erosion, in particular the resistance with respect to the particulate mechanical erosion is greater than a microstructure.
  • homogeneous or columnar obtained by an SPS technique using the suspensions traditionally used in this technique with "small" particles.
  • the layer according to the invention is characterized in that it does not obstruct the vent holes.
  • the particle size distribution of the initial particles of the suspension is sufficiently fine to lead to more finely structured layers when compared to layers prepared by an APS technique.
  • the method according to the invention by using suspended particles having a dgo less than or equal to 10 ⁇ and a dso greater than or equal to 1 ⁇ , makes it possible to prepare layers with microstructures that are close to the microstructures obtained by the APS technique without presenting the defects of these microstructures, that is to say by not obstructing the vent holes.
  • the use according to the process of the invention of suspended particles having a dgo less than 15 ⁇ , preferably less than 10 ⁇ , and a dso greater than or equal to 1 ⁇ makes it possible to obtain a layer with a microstructure lamellar to increase chemical resistance to contaminants such as CMAS and mechanical resistance to particle erosion, while not obstructing vent holes.
  • the layer has a porosity of 5 to 50% by volume, preferably 5 to 20% by volume.
  • the layer has a thickness of 10 ⁇ to 1000 ⁇ , preferably from 10 to 300 ⁇ .
  • the method according to the invention ensures the preparation of a layer having the advantageous properties exposed herein on all types of substrates, whatever the geometry of this substrate, whatever the material constituting this substrate (ie to say more exactly the material constituting the support or the layer on which the layer prepared by the process is deposited, regardless of the structure, in particular the microstructure of the substrate (support or layer), whatever the morphology of this substrate, and whatever the method by which this substrate (support or layer) was prepared.
  • the process according to the invention makes it possible to prepare a ceramic layer, more specifically an effective anti-CMAS layer, on a substrate (support or layer) prepared by a technique chosen from EB-techniques. PVD, APS, SPS, SPPS, PVD, CVD, gel sol, and all combinations of these techniques.
  • the solid substrate may be constituted simply by a simple solid support, which is for example in the form of a solid support or in the form of a layer, and is deposited, by the method according to the invention, the layer comprising at least one ceramic compound directly on at least one surface of said support.
  • the solid substrate may be constituted by a solid support on which there is a single layer (different from the layer of at least one compound ceramic prepared by the process according to the invention), or a stack of several layers (different from the layer of at least one ceramic compound prepared by the process according to the invention), and the layer comprising at least one ceramic compound is deposited on at least one surface of said single layer or on at least one surface of the upper layer of said stack of layers.
  • Said support may be made of a material chosen from materials that are susceptible to infiltration and / or attack by contaminants such as CMASs.
  • Said support can be in particular a material chosen from metals, metal alloys, such as superalloys such as superalloys AMI, René, and CMSX ® -4, ceramic matrix composites (CMC), such as matrix composites SiC, C-SiC mixed matrix composites, and combinations and / or mixtures of the aforementioned materials.
  • metals metal alloys, such as superalloys such as superalloys AMI, René, and CMSX ® -4, ceramic matrix composites (CMC), such as matrix composites SiC, C-SiC mixed matrix composites, and combinations and / or mixtures of the aforementioned materials.
  • CMC ceramic matrix composites
  • Superalloys are metal alloys characterized by mechanical strength and resistance to oxidation and corrosion at high temperatures.
  • it is preferably monocrystalline superalloys.
  • Such a superalloy is for example the superalloy called AMI, which is a nickel base superalloy, having a mass composition of 5 to 8% Co, 6.5 to 10% Cr, 0.5 to 2.5% Mo, 5 to 9% W, 6 to 9% Ta, 4.5 to 5.8% Al, 1 to 2% Ti, 0 to 1.5% Nb, and C, Zr, B each less than 0.01. %.
  • AMI nickel base superalloy
  • the AMI superalloy is described in US-A-4,639,280.
  • René The family of superalloys called René was developed by
  • CMSX ® -4 superalloy is a trademark of Cannon-Muskegon ® .
  • the layer of the invention can be applied to parts formed by these superalloys.
  • the single layer or said stack of layers which is on the support forms on the support a monolayer or multilayer thermal protection coating, namely a thermal barrier system, and / or a coating.
  • monolayer or multilayer protection against corrosive environments namely an environmental barrier system.
  • the single layer may be chosen from the binding layers, and the thermal or environmental barrier layers, such as the layers, in particular the ceramic layers, thermally insulating, the layers, in particular the ceramic layers, the anti-oxidation layers, and the layers including ceramic layers anti-corrosion.
  • the thermal or environmental barrier layers such as the layers, in particular the ceramic layers, thermally insulating, the layers, in particular the ceramic layers, the anti-oxidation layers, and the layers including ceramic layers anti-corrosion.
  • the stack of several layers that is on the support can comprise, from the support:
  • tie layer which covers the support
  • the thermal barrier layers and the environmental barrier layers such as the layers, in particular the ceramic layers, thermally insulating, the layers, in particular the ceramic, anti-oxidation layers, and the layers, in particular anti-corrosion ceramic layers;
  • the multilayer stack on the support includes:
  • the thermal barrier layers and the environmental barrier layers such as the layers, in particular the ceramic layers, thermally insulating, the layers, in particular the ceramic, anti-oxidation layers, and the layers, in particular the ceramic layers, anti corrosion.
  • the thermal barrier layers and the environmental barrier layers such as the layers, in particular the ceramic layers, thermally insulating, the layers, in particular the ceramic layers, anti-oxidation, and the layers, in particular the ceramic, anti-corrosion layers can be layers prepared by a technique selected from EB-PVD, APS, SPS, SPPS, sol-gel, PVD, CVD, and combinations of these techniques.
  • the thermal barrier layers are made of a material chosen from zirconium or hafnium oxides, stabilized with yttrium oxide. or other rare earth oxides, aluminum silicates, yttrium silicates or other rare earths, these silicates being doped with alkaline earth metal oxides, and rare earth zirconates, which crystallize according to a pyrochlore structure, and combinations and / or mixtures of the aforementioned materials.
  • the thermal barrier layers are yttria stabilized zirconia (YSZ).
  • the environmental barrier layers are made of a material chosen from aluminum silicates, optionally doped with alkaline earth elements, rare earth silicates, and combinations and / or mixtures of the abovementioned materials.
  • the bonding layer may be of a material selected from metals, metal alloys such as metal alloys ⁇ - ⁇ , modified or otherwise by Pt, Hf, Zr, Y, Si or combinations thereof, metal alloys ⁇ - ⁇ - ⁇ '- ⁇ 3 ⁇ modified or not with Pt, Cr, Hf, Zr, Y, Si or combinations thereof, alloys MCrAIY where M is Ni, Co, NiCo, Si, SiC, SiO 2 , mullite, BSAS, and combinations and / or mixtures of the aforementioned materials.
  • metals metal alloys such as metal alloys ⁇ - ⁇ , modified or otherwise by Pt, Hf, Zr, Y, Si or combinations thereof, metal alloys ⁇ - ⁇ - ⁇ '- ⁇ 3 ⁇ modified or not with Pt, Cr, Hf, Zr, Y, Si or combinations thereof, alloys MCrAIY where M is Ni, Co, NiCo, Si, SiC, SiO 2 , mullite, BSAS, and combinations and / or mixtures
  • the substrate may consist of a support of a metal alloy such as a superalloy, preferably monocrystalline, or of a ceramic matrix composite (CMC), coated with a metal bonding layer itself. coated with a layer, such as a ceramic layer selected from the thermal barrier layers and the environmental barrier layers.
  • a metal alloy such as a superalloy, preferably monocrystalline, or of a ceramic matrix composite (CMC)
  • CMC ceramic matrix composite
  • the substrate is constituted by a support of a metal alloy such as a superalloy or a ceramic matrix composite (CMC), coated with a metal bonding layer itself coated with a layer zirconia thermal barrier ceramic (Zr0 2 ) stabilized with yttrine (Y 2 O 3).
  • a metal alloy such as a superalloy or a ceramic matrix composite (CMC)
  • CMC ceramic matrix composite
  • Zr0 2 layer zirconia thermal barrier ceramic
  • Y 2 O 3 yttrine
  • the substrate may consist of a support of a metal alloy such as a superalloy or a ceramic matrix composite (CMC), coated with a metal bonding layer itself coated with a ceramic layer of thermal and / or environmental barrier performed by a technique selected from the techniques of APS, EB-PVD, SPS, SPPS, sol-gel, CVD, and combinations of these techniques.
  • a metal alloy such as a superalloy or a ceramic matrix composite (CMC)
  • CMC ceramic matrix composite
  • the plasma projection technique of a suspension is used to produce the layer according to the invention. It consists in injecting into a flow with high thermal and kinetic energy (for example a plasma jet which can be produced by a plasma DC torch), a liquid suspension containing particles of the material of the layer to be prepared.
  • a plasma jet which can be produced by a plasma DC torch
  • the suspension contains from 1 to 40% by weight, preferably from 8 to 15% by weight of solid particles, for example 12% by weight of solid particles.
  • the solvent of the suspension may be selected from water, alcohols such as aliphatic alcohols 1 to 5C such as ethanol and mixtures thereof.
  • the suspension is injected using a mechanical injector, from a pressurized tank.
  • the injection of the suspension into the plasma jet is generally radial.
  • the inclination of the injector relative to the longitudinal axis of the plasma jet can vary from 20 to 160 °, but is preferably 90 °.
  • the orientation of the injector makes it possible to optimize the injection of the suspension into the plasma jet, and thus to promote the formation of a layer of good quality on the surface of the plasma jet. substrate.
  • the injector can be moved in the longitudinal direction of the plasma jet. The closer the injector is to the surface of the substrate to be coated, the shorter the residence time of the particles in the plasma jet, thus making it possible to control the thermokinetic treatment imposed on the particles.
  • the diameter of the injector can vary between 50 ⁇ and 300 ⁇ .
  • the injection device may be provided with one or more injectors, for example according to the amount of suspension and / or the number of different suspensions to be injected.
  • the suspension thus injected will fragment in contact with the plasma jet.
  • the solvent will then evaporate, the particles will be heat-treated and accelerated to the substrate, and thus form a layer.
  • the plasma jet can be generated from a plasmagene gas advantageously chosen from argon, helium, dihydrogen, dinitrogen, the binary mixtures of the four gases mentioned, the ternary mixtures of the four gases mentioned.
  • the plasma jet generation technique is chosen from an arc plasma, blown or not, an inductive plasma or radiofrequency plasma.
  • the generated plasma can operate at atmospheric pressure or at lower pressure.
  • an arc plasma the latter can be extended by the stack of neutrodes between the cathode and the anode between which the arc is generated.
  • the injection is carried out by means of an injection system having an injection diameter of between 50 and 300 ⁇ at an injection pressure of the injection system. injection between 1 and 7 bar and from a suspension comprising between 1% and 40% by weight of solid particulate elements.
  • the invention further relates to the substrate coated with at least one layer obtainable by the method according to the invention, as described above.
  • the layer has a lamellar microstructure and a tortuous porous network.
  • the layer comprises at the same time:
  • the layer has a porosity of 5 to 50% by volume, preferably 5 to 20% by volume.
  • the layer has a thickness of 10 ⁇ to 1000 ⁇ , preferably from 10 ⁇ to 300 ⁇ .
  • the invention also relates to a part comprising said coated substrate.
  • This part may be a part of a turbine, such as a turbine blade, a distributor, a turbine ring, or a part of a combustion chamber, or a part of a nozzle, or more generally any part subjected to aggression by liquid and / or solid contaminants such as CMAS.
  • This turbine may be for example an aeronautical turbine or a land turbine.
  • the invention also relates to the use of the layer obtainable by the method according to the invention, for protecting a solid substrate against degradation caused by contaminants such as CMAS.
  • the invention finds particular application in gas turbines or propulsion systems used in particular in the aviation, space, naval and land, for the protection of parts exposed to high temperatures such as, for example, parts of the turbine like stationary and moving vanes, distributors, turbine rings, parts of the combustion chamber or the nozzle.
  • FIG. 1 is a schematic side sectional view showing a multilayer system whose upper layer is an "anti-CMAS" layer 1, according to the invention, obtained by the method according to the invention implementing the SPS technique with initial particles having a dgo less than 10 ⁇ and a dso greater than or equal to 1 ⁇ .
  • FIG. 2 is a schematic sectional side view which shows in a simplified manner the multilayer system represented in FIG. 1, the upper layer of which is an "anti-CMAS" layer 1, according to the invention, obtained by the method according to the invention implementing the SPS technique with initial particles having a dgo less than 15 ⁇ , preferably less than 10 ⁇ , and a dso greater than or equal to 1 ⁇ .
  • FIG. 1 is a schematic sectional side view which shows in a simplified manner the multilayer system represented in FIG. 1, the upper layer of which is an "anti-CMAS" layer 1, according to the invention, obtained by the method according to the invention implementing the SPS technique with initial particles having a dgo less than 15 ⁇ , preferably less than 10 ⁇ , and a dso greater than or equal to 1 ⁇ .
  • FIG. 1 is a schematic sectional side view which shows in a simplified manner the multilayer system represented in FIG. 1, the upper layer of which is an "anti-CMAS" layer 1, according to the invention, obtained by the
  • Example 3 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in Example 1 which comprises an anti-CMAS layer obtained by SPS with initial particles having a dgo less than 10 ⁇ and a dso greater than or equal to 1 ⁇ made on the surface of a porous columnar YSZ layer 6 obtained by SPS.
  • SEM scanning electron micrograph
  • the scale shown in FIG. 3 represents 100 ⁇ .
  • FIG. 4 is a scanning electron micrograph (SEM) in backscattered electrons of a polished section of the sample prepared in Example 2, which comprises an anti-CMAS layer 1 obtained by SPS with initial particles having a dgo less than 10 ⁇ and a dso greater than or equal to 1 ⁇ , and produced on the surface of a porous compact columnar YSZ layer 7 obtained by SPS.
  • SEM scanning electron micrograph
  • the scale shown in FIG. 4 represents 100 ⁇ .
  • Figure 5 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in Example 3, which comprises an anti-CMAS layer obtained by SPS with initial particles having a dgo less than 10 ⁇ and a dso greater than or equal to 1 ⁇ , and produced on the surface of a columnar YSZ layer 8 obtained by EB-PVD.
  • SEM scanning electron micrograph
  • the scale shown in FIG. 5 represents 100 ⁇ .
  • FIG. 6 is a backscattered microscopic electron microscopy (M EB) micrograph of a polished section of SPS-derived CMAS layer 1 in Example 3 at the surface of a columnar YSZ layer 8 obtained by EB-PVD.
  • M EB backscattered microscopic electron microscopy
  • the observation is performed after CMAS infiltration.
  • the scale shown in FIG. 6 represents 5 ⁇ .
  • FIG. 7A is a scanning electron micrograph (SEM) in backscattered electrons
  • FIG. 7B is an EDS ("Energy Dispersive Spectroscopy") analysis of the silicon of a polished section of layer 1 (FIG. analogous to SPS anti-CMAS layer 13 of Figure 9A) in Example 4 at the surface of an APS-obtained YSZ layer 11. The observation is performed after CMAS infiltration.
  • the scale shown in FIGS. 7A and 7B represents 25 ⁇ .
  • Figure 8A is another scanning electron micrograph (SEM) of backscattered electrons
  • Figure 8B is an EDS analysis of silicon of a polished section of layer 1 (similar to layer 13 of Figure 9A).
  • anti-CMAS according to the invention obtained by SPS in Example 4 on the surface of a YSZ layer 11 obtained by APS.
  • the observation is performed in an area with a crack 12 after CMAS infiltration.
  • the scale shown in FIGS. 8A and 8B represents 25 ⁇ .
  • FIG. 9A is yet another scanning electron micrograph (SEM) in backscattered electrons and an analysis in EDS of the silicon of a polished section of an anti-CMAS layer of Gd 2 Zr 2 07 obtained in FIG. Example 4, by SPS, with initial particles having a dgo of 7 ⁇ and a dso of 3 ⁇ .
  • This layer is made on the surface of a YSZ layer 11 obtained by APS.
  • the scale shown in FIG. 9A represents 25 ⁇ .
  • the observation is performed in an area with crack after CMAS infiltration.
  • FIG. 9B is a backscattered electron microscopy (SEM) micrograph (left) and a silicon EDS analysis (right) of a polished section of an anti-CMAS layer of Gd2Zr 2 07 according to the invention, obtained in Example 5, by SPS, with initial particles having a diameter of 4.95 ⁇ and a dso of 1.01 ⁇ , on the surface of a layer 11 YSZ obtained by APS.
  • SEM backscattered electron microscopy
  • the observation is carried out in a zone exhibiting cracking after CMAS infiltration.
  • the scale shown in FIG. 9B represents 25 ⁇ .
  • FIG. 9C is a backscattered electron microscopy (SEM) micrograph and an EDS analysis of silicon of a polished section of the anti-CMAS layer of Gd 2 Zr 2 07 obtained in Example 6, not according to the invention by SPS, with initial particles having a dgo of 0.89 ⁇ and a dso of 0.41 ⁇ .
  • This layer is made on the surface of a YSZ layer 11 obtained by APS. The observation is performed in an area with crack after CMAS infiltration.
  • the scale shown in FIG. 9C represents 25 ⁇ .
  • FIG. 10 is a diffractogram obtained by CMAS infiltration X-ray diffraction of the anti-CMAS layer 13 obtained in Example 4.
  • Figure 11 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in Example 11.
  • This sample comprises an anti-CMAS layer 21 made of Gd2Zr 2 07 prepared at the surface of a YSZ layer 8, columnar, obtained by an EB-PVD process.
  • the anti-CMAS layer is prepared according to the invention by an SPS method using a suspension containing initial particles having a dgo of 13.2 ⁇ and a dso greater than or equal to 1 ⁇ , namely 5.5 ⁇ . .
  • the scale shown in FIG. 11 represents 100 ⁇ .
  • FIG. 12 is a scanning electron micrograph (SEM) in backscattered electrons of a polished section of the anti-CMAS layer 21 obtained by SPS in example 12 on a self-supporting substrate 11 made of stabilized zirconia stabilized in a phase t 'and obtained by APS.
  • SEM scanning electron micrograph
  • the scale shown in FIG. 12 represents 100 ⁇ .
  • FIG. 1 shows an embodiment of the method according to the invention, in which the layer according to the invention prepared by the process according to the invention, 1, is deposited on the surface of a system comprising the layers 2 , 3, 4, shown in Figure 1.
  • the various layers of the stack 2, 3, 4 may represent, by way of example and not exclusively, the layers of a thermal barrier system applied to aeronautical parts superalloy.
  • the layer 2 can be made of a material chosen from the materials of thermal barrier systems and / or barrier systems such as for example zirconia (Zr0 2 ) and / or yttrine (Y2O3) for stabilizing the phase t ', and all other suitable materials, as well as combinations and / or mixtures of these materials.
  • thermal barrier systems and / or barrier systems such as for example zirconia (Zr0 2 ) and / or yttrine (Y2O3) for stabilizing the phase t ', and all other suitable materials, as well as combinations and / or mixtures of these materials.
  • the layer 2 can be produced by a method, a deposition technique, chosen from the EB-PVD, APS, SPS, SPPS, sol-gel and CVD processes, and all the other processes capable of carrying out this process. layer, as well as combinations of these processes.
  • the layer 2 has a microstructure characteristic of the deposition technique used.
  • This layer may, for example, non-exclusively present a columnar microstructure, a columnar and porous microstructure, a compact and porous columnar microstructure, a homogeneous microstructure, a homogeneous and porous microstructructure, a dense microstructure, a dense and vertically cracked microstructructure, a porous and vertically cracked microstructructure.
  • the layer 1 according to the invention can be applied to a layer 2 having a porous columnar microstructure obtained by SPS (layer 6 in FIG. 3).
  • the layer 1 according to the invention can be applied to a layer 2 having a porous compact columnar microstructure obtained by SPS (layer 7 in FIG. 4).
  • the layer 1 according to the invention can be applied to a layer 2 having a columnar microstructure obtained by EB-PVD (layer 8 in FIG. 5).
  • the layer 2 has a function of thermal barrier and / or environmental barrier. It also allows, but not exclusively, to ensure good performance in terms of life and thermal insulation or protection against oxidation and wet corrosion.
  • the layer 3 acts as a link layer.
  • the layer 3 may comprise an oxide layer obtained by oxidation of the elements of the layer 3, as described above.
  • layer 3 may be an aluminoform layer, i.e., oxidation of layer 3 may advantageously produce a layer of ⁇ -alumina.
  • the layer 4 is part of a part or element of a part made of a material chosen from metal alloys, such as metal superalloys, ceramic matrix composites (CMC), and combinations and / or mixtures of these materials.
  • This material of the layer 4 may in particular be chosen from superalloys AMI, René, and CMSX ® -4.
  • an anti-CMAS layer 1 according to the invention obtained by the process according to the invention implementing the SPS technique with particles of the injected suspension having a dgo less than 10 ⁇ and a dso greater than or equal to 1 ⁇ ;
  • This system is coated with an anti-CMAS layer 1 obtained by SPS with injected particles having a dia less than 15 ⁇ , preferably less than 10 ⁇ , and a dso greater than or equal to 1 ⁇ .
  • the layer 1 according to the invention may be applied to the surface of a layer 5.
  • This layer 5 may include independently and / or combined the layers 2, 3, 4.
  • the layers 2 and 3 and / or the layer 5 allow, but not exclusively, to provide a thermal and / or environmental barrier function. They also allow, but not exclusively, to ensure good performance in terms of service life and thermal insulation or protection against oxidation and wet corrosion.
  • the addition of the layer 1 according to the invention does not degrade the performance of the systems, described in Figures 1 and 2, on which it is applied.
  • the microstructure of the layer 1 has a homogeneous and / or cracked morphology, but not exclusively, whether it is carried out on the layer 2 or the layer 5 and whatever the microstructure and / or the composition of the layer 2 or layer 5.
  • the layer 1 according to the invention reacts with CMAS at high temperature, more precisely at a temperature above the melting temperature of CMAS, to form a reactive zone 9 (FIG. 6) beyond which CMAS penetration within layer 1 is stopped and / or limited.
  • zone 9 is composed of reaction products between CMAS and layer 1 including, but not exclusively, apatite and / or anorthite and / or zirconia phases and / or other reaction products and or combinations thereof. and / or mixtures of these phases.
  • the layer 11 obtained by APS is included in the description of the layer 2 described in FIG.
  • a layer 1 according to the invention is produced by the process according to the invention, it is possible before coating the substrate (including layers 2 to 4 of FIG. 1 and / or layer 5 of Figure 2) by the layer 1, prepare and / or clean the surface to be coated in order to eliminate residues and / or contaminants (inorganic and / or organic) which could prevent the deposition and / or degrade the adhesion and / or affect the microstructure.
  • the surface preparation may be the formation of a surface roughness by sanding, the oxidation of the substrate to generate a thin oxide layer and / or a combination of these methods of preparation.
  • suspensions of ceramic particles in ethanol are first prepared by placing ceramic particles in suspension in ethanol to obtain suspensions having a ceramic concentration of 12%. in mass.
  • suspensions thus prepared are then injected into a blown arc plasma using an assembly consisting of:
  • the layer is made with an Oerlikon-Metco ® Triplex Pro200 torch, with a distance between the torch outlet and the substrate of 70 mm, using a mixture of plasma gas consisting of 80% by volume of argon and 20% by volume of helium.
  • Example 5 the layer is made with an Oerlikon-Metco ® triplex Pro200 torch, with a distance between the torch outlet and the 60 mm substrate, using a mixture of plasma gas consisting of 80% by volume. of argon and 20% by volume of helium.
  • Example 6 the layer is made with an Oerlikon-Metco ® type F4-VB torch, with a distance between the torch outlet and the substrate of 50 mm, using a mixture of plasma gas consisting of % by volume of argon and 38% by volume of helium.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention (see FIG. 3).
  • the anti-CMAS layer 1, consisting of Gd 2 Zr 2 O 7, is prepared on the surface of a columnar YSZ layer 6, porous, obtained by an SPS process.
  • the anti-CMAS layer is prepared by an SPS method using a suspension containing initial particles having a dgo less than 10 ⁇ , namely a dgo of 7 ⁇ , and a dso greater than or equal to 1 ⁇ , namely 3 ⁇ .
  • Figure 3 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in this example.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention.
  • the anti-CMAS layer 1 consisting of Gd 2 Zr 2 07 is prepared on the surface of a columnar, compact, porous YSZ layer 7 obtained by an SPS process.
  • the anti-CMAS layer is prepared by an SPS method using a suspension containing initial particles having a dgo less than 10 ⁇ , namely a dgo of 7 ⁇ , and a dso greater than or equal to 1 ⁇ , namely 3 ⁇ .
  • Figure 4 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in this example.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention.
  • the anti-CMAS layer 1 consisting of 2 Gd2Zr 07 is prepared on the surface of a layer 8 of YSZ, columnar shape, obtained by an EB-PVD process.
  • the anti-CMAS layer is prepared by an SPS method using a suspension containing initial particles having a dgo less than 10 ⁇ , namely a dgo of 7 ⁇ , and a dso greater than or equal to 1 ⁇ , namely 3 ⁇ .
  • Figure 5 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in this example.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention (see FIG. 9A after infiltration by CMAS).
  • the layer 13 anti-CMAS consisting of Gd 2 Zr 2 07 is obtained by SPS using a suspension containing particles of Gd 2 Zr 2 07 having a dgo of 7 ⁇ and a dso of 3 ⁇ .
  • the layer is made on a free-standing substrate 11 of stabilized zirconia stabilized in a phase t 'and obtained by APS.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention (see FIG. 9B after infiltration by CMAS).
  • the layer 14 has nti-CMAS consists of Gd2Zr February 07, is obtained by SPS using a suspension containing particles of Gd2Zr February 07 having a dgo 4.95 ⁇ and a dso 1.01 ⁇ .
  • the layer is made on a free-standing substrate 11 of stabilized zirconia stabilized in a phase t 'and obtained by APS.
  • an anti-CMAS layer not according to the invention is prepared by a process which is not in accordance with the invention (see FIG. 9C after infiltration by CMAS).
  • the layer 15 has nti-CMAS consists of Gd2Zr20 7, is obtained by SPS using a non-suspension according to the invention, containing Gd2Zr2 ⁇ 7 particles having a dgo 0.89 ⁇ and a dso 0.41 ⁇ .
  • the layer is made on a free-standing substrate 11 of stabilized zirconia stabilized in a phase t 'and obtained by APS.
  • the CMAS (23.5% CaO - 15.0% Al 2 O 3 - 61.5% SiO 2 - 0% MgO (in mass%)) is deposited on the surface of each of the samples ( 30 mg / cm 2 ). The sample is heated at 1250 ° C for 1 hour.
  • each of the anti-CMAS layers reacted and showed a drop of CMAS solidified on the surface of the sample.
  • Example 7 At the end of the tests, a scanning electron microscope (M EB) observation is carried out in backscattered electrons of a polished section of each of the samples. Also, for most samples, an energy dispersive spectroscopy (EDS) of the silicon of a polished section of the sample is carried out.
  • M EB scanning electron microscope
  • EDS energy dispersive spectroscopy
  • a CMAS infiltration test is carried out according to the protocol described above, on the sample prepared in Example 3, and the sample is observed after infiltration.
  • FIG. 6 is a scanning electron micrograph (M EB) of backscattered electrons of a polished section of the anti-CMAS layer obtained by SPS in Example 3 at the surface of a columnar YSZ layer 8 obtained by EB-PVD.
  • M EB scanning electron micrograph
  • a CMAS infiltration test is carried out according to the protocol described above, on the sample prepared in Example 4, and the sample is observed after infiltration of CMAS.
  • Figure 7A is a scanning electron micrograph (M EB) of backscattered electrons
  • Figure 7B is an EDS ("Energy Dispersive Spectroscopy") analysis of the silicon of a polished section of layer 1 (13).
  • Anti-CMAS obtained by SPS in Example 4 on the surface of a YSZ layer 11 obtained by APS.
  • FIG. 8A is another scanning electron micrograph (SEM) of backscattered electrons
  • Figure 8B is another DHS analysis of silicon of a polished section of the SPS-derived CMAS layer 1 in the Example 4 on the surface of a YSZ layer 11 obtained by APS.
  • the observation is made here in a zone having a crack 12 after CMAS infiltration and shows on the surface the solidified CMAS 10 and a reaction zone 9 comprising the reaction products between the CMAS and the layer 1 (13).
  • the lighter zone on the EDS plate corresponds either to the solidified CMAS 10 or to the reaction zone 9, or to the degree of penetration within the crack of the CMAS or of the reaction products between the CMAS and the layer 1.
  • Figure 9A is yet another Scanning electron microscope (SEM) micrograph in backscattered electrons (left) and an EDS analysis of silicon (right) of a polished section of an anti-CMAS layer of Gd 2 Zr 2 07 obtained in Example 4, by SPS, with initial particles having a dgo of 7 ⁇ and a dso of 3 ⁇ .
  • This layer is made on the surface of a YSZ layer 11 obtained by APS.
  • the observation is carried out in a zone having a fissure after CMAS infiltration and shows on the surface the solidified CMAS 10 and a reaction zone 9 comprising the reaction products between the CMAS and the layer 13.
  • the lighter zone on the EDS plate corresponds either to the solidified CMAS 10 or to the reaction zone 9, or to the degree of penetration within the CMAS crack or the reaction products between the CMAS and the layer 13.
  • FIG. 10 is a diffractogram obtained by X-ray diffraction after CMAS infiltration of the anti-CMAS 13 layer. The analysis shows the presence of the initial material Gd2Zr 2 07, an apatite phase Ca 2 Gd 8 (SiO 4 ) 60 2 of an anorthite phase CaAl 2 (SiO 4 ) 2 and zirconia.
  • FIG. 9B is a backscattered electron microscopy (SEM) micrograph (left) and an EDS analysis of silicon (right) of a polished section of an anti-CMAS layer of Gd 2 Zr 2 07 obtained in Example 5, by SPS with initial particles having a diameter of 4.95 ⁇ and a dso of 1.01 ⁇ .
  • SEM backscattered electron microscopy
  • This layer is made on the surface of a YSZ layer 11 obtained by APS.
  • the observation is carried out in a zone having cracking after CMAS infiltration and shows on the surface the solidified CMAS 10 and a reaction zone 9 comprising the reaction products between the CMAS and the layer 14.
  • the lighter zone on the EDS plate corresponds either to the solidified CMAS 10 or to the reaction zone 9 or to the degree of penetration within the CMAS crack or the reaction products between the CMAS and the layer 14.
  • a CMAS infiltration test is carried out according to the protocol described above, on the sample not according to the invention prepared in Example 6, and the sample is observed after infiltration.
  • Figure 9C is a micrograph made with a scanning electron microscope (SEM) backscattered electron (left) and analysis by EDS silicon (right) of a polished section of the 15 anti-CMAS layer Gd2Zr February 07 obtained in the example
  • This layer is made on the surface of a YSZ layer 11 obtained by APS.
  • the observation is carried out in a zone having a fissure after CMAS infiltration and shows on the surface the solidified CMAS 10 and a reaction zone 9 comprising the reaction products between the CMAS and the layer 15.
  • the lighter zone on the EDS plate corresponds either to the solidified CMAS 10 or to the reaction zone 9, or to the degree of penetration within CMAS cracking or the reaction products between the CMAS and the layer 15.
  • the phases in the presence analyzed by X-ray diffraction comprise the initial material Gd 2 Zr 2 07, an apatite phase Ca 2 Gd 8 (SiO 4 ) 60 2 , an anorthite phase CaAl 2 (SiO 4 ) 2 and zirconia (FIG. ).
  • the reactive zone 9 as well as the CMAS penetration within the anti-CMAS layer is more important, more severe, as the particle sizes decrease. .
  • the layer 15 of Example 6 (FIG. 9C), not in accordance with the invention, has a much larger infiltration, which is harsher than the layers 13 and 14 according to the invention (FIGS. 9A and 9B).
  • the size of the particles of anti-CMAS material injected into the plasma jet generates a difference in the morphology of the porosity.
  • the smaller particles will notably offer the liquid CMAS a greater number of entry points, and more numerous and direct propagation paths in the thickness of the layer.
  • “small particles” are used in the suspension, and there is then an infiltration of the coating by the CMAS in the thickness of the coating.
  • the kinetics of penetration within the coating is in competition with the kinetics of reaction allowing the formation of effective blocking phases.
  • the reaction kinetics of CMAS with the material of the layers is faster than the kinetics of infiltration, penetration, CMAS in the porosity of the layers.
  • the layers according to the invention because they are prepared with suspensions which have a "large" particle size therefore have a high tortuosity, which slows down the kinetics of penetration, infiltration CMAS.
  • the kinetics of CMAS penetration in the layers prepared by the process according to the invention is much slower than the reaction kinetics of CMAS with the layer material which allows the formation of effective blocking phases.
  • the anti-CMAS layer makes it possible, by the strong tortuosity generated, to form the blocking phase and / or the blocking phases at the surface and / or at a shallow depth within the anti-CMAS layer.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention.
  • the anti-CMAS layer 21 consisting of Gd 2 Zr 2 07 is prepared on the surface of a columnar YSZ layer 8 obtained by an EB-PVD process.
  • the anti-CMAS layer is prepared by an SPS method using a suspension containing initial particles having a dgo of 13.2 ⁇ and a dso greater than or equal to 1 ⁇ , namely 5.5 ⁇ .
  • the YSZ layer 8 is the same as the YSZ layer 8 of Example 3 but the layer 21 has a different particle size.
  • Figure 11 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the sample prepared in this example.
  • an anti-CMAS layer according to the invention is prepared by the process according to the invention (see FIG. 12 after infiltration by CMAS).
  • the anti-CMAS layer 21 consisting of Gd 2 Zr 2 O 07 is obtained by SPS using a suspension containing particles of Gd2Zr 2 07 having a dgo of 13.2 ⁇ and a dso of 5.5 ⁇ .
  • the layer is made on a free-standing substrate 11 of yttria stabilized zirconia in a phase t 'and obtained by APS.
  • a CMAS infiltration test is carried out according to the protocol described above, on the sample prepared in Example 12, and the sample is observed after infiltration.
  • Figure 12 is a scanning electron micrograph (SEM) of backscattered electrons of a polished section of the anti-CMAS layer obtained by SPS.
  • the observation is performed after infiltration by the CMAS, and reveals on the surface the solidified CMAS 10 and a reaction zone 9 comprising the reaction products between the CMAS and the layer 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Procédé de revêtement d'au moins une surface d'un substrat solide par au moins une couche comprenant au moins un composé céramique par une technique de projection plasma de suspensions «SPS», dans lequel on injecte moins une suspension de particules solides d'au moins un composé céramique dans un jet de plasma puis on projette le jet thermique qui contient la suspension de particules solides sur la surface du substrat, moyennant quoi on forme la couche comprenant au moins un composé céramique sur la surface du substrat; procédé caractérisé en ce que dans la suspension, au moins 90% en volume des particules solides présentent une plus grande dimension (appelée d90), telle qu'un diamètre, inférieure à 15 µm, de préférence inférieure à 10 µm, et au moins 50% en volume des particules solides présentent une plus grande dimension telle qu'un diamètre (appelée d50), supérieure ou égale à 1 µm. Substrat revêtu d'au moins une couche susceptible d'être obtenue par ledit procédé. Pièce comprenant ledit substrat revêtu. Utilisation de ladite couche pour protéger un substrat solide contre les dégradations causées par des contaminants tels que les CMAS.

Description

PROCEDE DE REVETEMENT D'UNE SURFACE D'UN SUBSTRAT SOLIDE PAR UNE COUCHE COMPRENANT UN COMPOSE CERAMIQUE, ET SUBSTRAT REVETU AINSI OBTENU.
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un procédé de revêtement d'au moins une surface d'un substrat solide par au moins une couche comprenant au moins un composé céramique.
Cette couche est notamment une couche apte à résister aux infiltrations et aux dégradations à haute température dues à des contaminants, en particulier des contaminants se présentant sous la forme de particules solides comme des poussières, des sables, ou des cendres. Ces contaminants peuvent être en particulier constitués par un mélange d'oxydes comprenant généralement de la chaux (CaO), de l'oxyde de magnésium (MgO), de l'alumine (AI2O3) et de l'oxyde de silicium (S1O2). Ces contaminants sont généralement appelés CMAS.
L'invention a trait, en outre, au substrat solide revêtu d'une couche susceptible d'être obtenue par le procédé de revêtement selon l'invention.
L'invention concerne aussi une pièce comprenant ledit substrat solide. Plus particulièrement, la couche préparée par le procédé selon l'invention est destinée à être intégrée au sein des revêtements multicouche protégeant un substrat solide en alliage métallique ou en superalliage métallique ou en composite à matrice céramique (CMC), éventuellement revêtu d'une couche de liaison, elle-même également éventuellement revêtue d'une couche céramique isolante thermiquement, et/ou d'une couche anti-oxydation, et/ou d'une couche anti-corrosion.
Le domaine technique de l'invention peut être défini de manière générale comme celui des revêtements anti-CMAS.
L'invention trouve en particulier son application dans les turbines à gaz ou les systèmes de propulsion utilisés notamment dans les industries aéronautiques, spatiales, navales et terrestres, pour la protection des pièces exposées à de hautes températures telles que, par exemple, des pièces de la turbine comme les aubes fixes et mobiles, les distributeurs, les anneaux de turbine, des pièces de la chambre de combustion ou de la tuyère. ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Pour augmenter l'efficacité des turbines à gaz, leur température de fonctionnement doit être de plus en plus élevée. Les pièces qui les constituent sont alors soumises à des environnements de plus en plus sévères en termes de température de peau, de sollicitations thermomécaniques, ou d'agressions chimiques.
Ainsi, au fil des années, l'augmentation des températures de fonctionnement des turbines à gaz a nécessité d'avoir recours à des systèmes de barrières thermiques comprenant une couche isolante thermiquement en oxyde céramique, le plus souvent constituée de YSZ (« Yttria-Stabilized Zirconia » en anglais) c'est-à-dire de zircone stabilisée par de l'yttrine (Oxyde d'yttrium Y2O3), contenant de façon classique de 7 à 8 % en masse d'oxyde d'yttrium Y2O3.
Un système de barrière thermique est un système multicouche composé au moins d'une couche isolante thermiquement permettant de diminuer la température de surface du matériau structurant, à savoir la température de surface du matéria u constituant la pièce telle qu'une pièce de turbine à gaz que l'on souhaite protéger thermiquement.
Dans l'industrie, deux technologies sont actuellement utilisées pour préparer la couche de céramique isolante en YSZ. Ces technologies sont la projection plasma par voie sèche réalisée sous air à la pression atmosphérique (« APS » pour « Atmospheric Plasma Spraying » en anglais), et le procédé de dépôt physique en phase vapeur assisté par un faisceau d'électrons (« EB-PVD » pour « Electron Beam - Physical Vapour Déposition » en anglais).
La projection plasma conduit à des microstructures lamellaires à faible conductivité thermique mais à durée de vie limitée lors des cyclages thermiques [1].
Pour les pièces fortement sollicitées thermo-mécaniquement, le procédé EB-PVD est privilégié, du fait des microstructures colonnaires résultantes qui, en dépit de conductivités thermiques moins avantageuses, assurent l'accommodation des contraintes thermomécaniques, et assurent des durées de vie élevées. Le procédé EB-PVD est également préféré au procédé APS pour sa capacité à conserver les évents d'aération permettant une augmentation des températures de fonctionnement [1].
Des revêtements céramiques présentant des propriétés d'isolation thermique améliorées ont récemment été obtenus en utilisant des matériaux ou des procédés spécifiques.
On notera en pa rticulier la réalisation de dépôts de YSZ par les procédés de projection plasma de solutions (« SPPS », « Solution Precursor Plasma Spraying en anglais ») ou de suspensions (« SPS », « Suspension Plasma Spraying » en anglais). Les dépôts obtenus par ces procédés présentent des microstructures variées qui permettent d'accroître l'isolation thermique du revêtement tout en assurant une résistance au cyclage thermique importante. Les microstructures peuvent être homogènes (c'est-à-dire que les pores ou particules qui composent la couche n'ont pas d'orientation caractéristique à l'échelle micrométrique), poreuses, fissurées verticalement, ou colonnaires (c'est-à-dire que la couche présente une structure ayant, à l'échelle micrométrique, une orientation privilégiée dans le sens de l'épaisseur de la couche, avec une organisation sous forme de domaines colonnaires et, entre les domaines colonnaires, des espaces vides ou espaces inter-colonnaires qui traduisent la compacité de l'empilement colonnaire et dont l'amplitude est modulable), avec ou non des inter-passes (résultant de la présence de particules infondues (non fondues) ou partiellement fondues au sein du dépôt. Les microstructures peuvent aussi présenter des combinaisons des diverses morphologies décrites ci-dessus. Des exemples de ces microstructures sont présentés dans les documents [2] et [3].
Le document [4] montre que le procédé de SPS permet de préparer avec succès des revêtements barrières thermiques sur des pièces aéronautiques de type aubes de turbine tout en permettant la conservation des trous d'évents.
Cependant, d'autres problèmes sont apparus, nécessitant l'apport de nouvelles fonctionnalités aux systèmes de barrières thermiques. Ainsi, l'augmentation des températures de fonctionnement des turbines à gaz induit des dommages importants dans les parties chaudes des turbines dus aux contaminants, généralement sous la forme de poussières, présentes dans l'environnement des pièces de ces turbines. Ces contaminants peuvent, par exemple, dans le cas d'un turboréacteur, être des oxydes, sous la forme de particules, provenant, soit de l'extérieur, soit d'éléments ablatés sur les pièces situées dans les zones plus froides. Ces contaminants sont usuellement nommés CMAS et sont le plus souvent composés d'un mélange d'oxydes comportant généralement de la chaux (CaO), de l'oxyde de magnésium (MgO), de l'alumine (AI2O3) et de l'oxyde de silicium (S1O2). A partir de températures de l'ordre de 1150 °C, les CMAS fondus s'infiltrent au sein du système de barrière thermique et peuvent conduire, lors des cyclages thermiques, à la rigidification, à la fissuration et, in fine, à la délamination du système de barrière thermique. Par ailleurs, une interaction chimique est constatée entre les CMAS et les couches du système, conduisant à la dissolution de la zircone yttriée et à la précipitation de nouvelles phases moins stables. Ces deux phénomènes peuvent entraîner une perte d'intégrité des barrières thermiques et constituent un frein à l'augmentation de la température de fonctionnement des turboréacteurs.
Outre les systèmes de barrière thermique, les systèmes de barrière environnementale peuvent également subir ce type de dégradation par des particules de CMAS.
Un système de barrière environnementale est un système multicouche, typiquement appliqué sur des surfaces métalliques ou des composites à matrice céramique. Ce système de barrière environnementale est composé au moins d'une couche résistant à des environnements corrosifs.
Différentes voies ont été explorées afin de proposer des matériaux dits « anti-CMAS » qui réagissent avec les contaminants CMAS, pour former à haute température des phases stables qui stopperont et/ou limiteront l'infiltration au cœur du revêtement.
En particulier, la formation de phases apatite et/ou anorthite apparaît comme capable de stopper les infiltrations de CMAS. Différents matériaux ont été identifiés pour leur capacité à former ces phases. Les documents [5] et [6] présentent notamment des matériaux permettant de limiter et/ou stopper l'infiltration de CMAS. On citera par exemple les zirconates de terre rare de formule RE2Zr207 (où RE= Se, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Yb, Dy, Ho, Er, Tm, Tb, Lu), les matériaux composites composés de Y2Û3 et de Zr02 et/ou AI2Û3 et/ou Ti02, les hexa-aluminates, et les mono- et di-silicates de terre rare (la terre rare étant Y ou Yb), et les mélanges de ces matériaux.
L'incompatibilité chimique avec d'autres éléments du système de barrière thermique et/ou les faibles propriétés mécaniques des compositions anti-CMAS ont mené au développement de systèmes, architectures, comportant une première couche d'YSZ puis une seconde couche de protection contre les CMAS, faite d'un matériau pouvant avoir un effet anti-CMAS. Les documents [7], [8], [9] et [10] traitent de tels systèmes.
Pour la formation de cette couche de protection contre les CMAS, de nombreux procédés de dépôt peuvent être utilisés, comme les procédés APS, SPS, SPPS, EB-PVD, déjà mentionnés plus haut, le procédé de dépôt physique en phase vapeur (« PVD », « Physical Vapour Déposition »), le procédé de dépôt chimique en phase vapeur (« CVD », « Chemical Vapour Déposition »), le procédé sol-gel, etc.
La réalisation d'architectures bicouches par le procédé EB-PVD, comprenant une couche isolante thermique à microstructure colonnaire protégée par une couche anti-CMAS induit la présence d'espaces inter colonnaires favorisant, après infiltration du CMAS et refroidissement, une rigidification du système qui peut alors se délaminer.
Les revêtements anti-CMAS réalisés par APS conduisent quant à eux à des microstructures lamellaires non colonnaires, avec des lamelles présentant de larges surfaces aptes à réagir avec les CMAS pour former des phases plus stables. Il est cependant compliqué d'appliquer ces couches sur des pièces de turbine haute pression sous peine d'obstruer les trous d'évent.
Les procédés SPS et SPPS, qui donnent des couches nanostructurées ou des couches finement structurées, peuvent être des solutions pour former des couches anti-CMAS possédant des microstructures homogènes sans obstruer les trous d'évent.
Les couches anti-CMAS obtenues par SPS sont actuellement réalisées avec des suspensions contenant des particules présentant des tailles inférieures à 1 μίπ (documents [9] et [10]). Cependant, il s'est avéré que dans les couches anti-CMAS obtenues par SPS apparaissent des points d'infiltration des contaminants CMAS au-travers de la couche, ce qui rend ainsi l'infiltration des contaminants CMAS très importante au cœur du revêtement, sous la couche anti-CMAS, contrairement, par exemple, à un dépôt réalisé par la technique de APS.
Il existe donc au regard de ce qui précède un besoin pour un procédé, en particulier pour un procédé de SPS, qui permette de préparer sur un substrat solide, une couche de céramique, plus précisément une couche anti-CMAS, présentant notamment une résistance accrue à l'infiltration par les contaminants CMAS et ne provoquant pas l'obstruction des trous d'évent.
Le substrat solide peut être constitué simplement par un simple support qui se présente sous la forme d'un support massif ou sous la forme d'une couche, ou le substrat solide peut être constitué par un support sur lequel se trouve une couche ou un revêtement multicouche par exemple un revêtement multicouche de protection thermique à savoir un système de barrière thermique ou un revêtement multicouche de protection contre les environnements corrosifs, à savoir un système de barrière environnementale.
Ce procédé doit permettre la préparation de cette couche sur tous types de substrats, quelle que soit la géométrie de ce substrat, quel que soit le matériau constituant ce substrat (c'est-à-dire plus exactement le matériau constituant le support ou la couche sur laquelle est déposée la couche préparée par le procédé), quelle que soit la structure notamment la microstructure du substrat (support ou couche), et quel que soit le procédé par lequel a été préparé ce substrat (support ou couche).
En particulier, le procédé selon l'invention doit permettre la préparation d'une couche de céramique, plus précisément d'une couche anti-CMAS, efficace, sur un substrat (support ou couche) préparé par une technique choisie parmi les techniques de EB-PVD, APS, SPS, SPPS, PVD, CVD, sol gel, et toutes les combinaisons de ces techniques.
En particulier, le procédé selon l'invention doit permettre la préparation d'une couche de céramique, plus précisément d'une couche anti-CMAS, efficace, sur un substrat (support ou couche) présentant une microstructure choisie parmi une structure colonnaire, une structure colonnaire et poreuse, une structure colonnaire compacte et poreuse, une structure homogène, une structure homogène et poreuse, une structure dense, une structure dense et fissurée verticalement, une structure poreuse et fissurée verticalement, et toutes les combinaisons de ces techniques.
I I existe notamment un besoin pour un tel procédé qui assure un fonctionnement des turboréacteurs à de plus ha utes températures, sans dégradation du système par les CMAS.
Le but de l'invention est, entre autres, de fournir un procédé de revêtement d'au moins une surface d'un substrat solide par au moins une couche comprenant au moins un composé céramique, qui réponde entre autres à ces besoins et qui ne présente pas les inconvénients, défauts, limitations et désavantages des procédés de l'art antérieur, notamment des procédés de SPS de l'art antérieur, et qui résolve les problèmes des procédés de l'art antérieur. EXPOSÉ DE L'INVENTION
Ce but, et d'autres encore, sont atteints, conformément à l'invention, par un procédé de revêtement d'a u moins une surface d'un substrat solide par au moins une couche comprenant au moins un composé céramique par une technique de projection plasma de suspensions « SPS », dans lequel on injecte au moins une suspension de particules solides d'au moins un composé céramique dans un jet de plasma puis on projette le jet thermique qui contient la suspension de particules solides sur la surface du substrat, moyennant quoi on forme la couche comprenant au moins un composé céra mique sur la surface du substrat; procédé caractérisé en ce que dans la suspension, au moins 90% en volume des particules solides présentent une plus grande dimension (appelée dgo), telle qu'un diamètre, inférieure à 15 μιη, de préférence inférieure à 10 μιη, et au moins 50% en volume des particules solides présentent une plus grande dimension (appelée dso) telle qu'un diamètre, supérieure ou égale à 1 μιη ; procédé caractérisé en outre en ce que le composé céramique est choisi pa rmi les composés dits composés anti-CMAS, de préférence le composé céramique est choisi parmi les zirconates de terre rare de formule RE2Zr207 , où RE est Se, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Yb, Dy, Ho, Er, Tm, Tb, ou Lu, les composites du Y2O3 avec Zr02 et/ou AI2O3 et/ou Ti02, les hexa-aluminates, les silicates d'aluminium, les silicates d'yttrium ou d'autres terres rares, ces silicates pouvant être dopés par un ou plusieurs oxydes de métal alcalino-terreux, et leurs mélanges; de préférence encore, le composé céramique est le Gd2Zr207.
Avantageusement, dans la suspension, au moins 90% en volume des particules solides présentent une plus grande dimension (appelée dgo), telle qu'un diamètre, inférieure à 8 μιη, de préférence inférieure à 5 μιη.
Avantageusement, dans la suspension, au moins 50% en volume des particules solides présentent une plus grande dimension (appelée dso) telle qu'un diamètre, supérieure ou égale à 2 μιη, de préférence supérieure ou égale à 3 μιη, de préférence encore supérieure ou égale à 4 μιη, mieux encore supérieure ou égale à 5 μιη.
Par exemple, dso peut être égal à 1 μιη, 1,01 μιη, 3 μιη, 5 μιη, ou 5,5 μιη.
Par exemple, dgo peut être égal à 7 μιη, 4 μιη, 4,95 μιη, 5 μιη, 12 μιη, 13 μιη ou 13,2 μιη.
L'invention couvre toutes les combinaisons possibles de valeurs de dgo et de dso mentionnées plus haut.
L'analyse de la taille des particules de la suspension est réalisée par granulométrie à diffraction laser selon la norme ISO 24235.
Le dgo et le dso peuvent être déterminés à partir de la norme ISO 9276.
Dans la suite, le terme « lamellaire », appliqué à une couche, signifie que la couche présente une structure ayant, à l'échelle micrométrique, des briques élémentaires ayant une orientation privilégiée dans le sens perpendiculaire à l'épaisseur de la couche.
Le terme « colonnaire », appliqué à une couche, signifie que la couche présente une structure ayant, à l'échelle micrométrique, une orientation privilégiée de briques élémentaires dans le sens de l'épaisseur de la couche, ces briques étant organisées sous la forme de colonnes.
Le terme « homogène », appliqué à une couche, signifie que la couche a une structure formée de briques élémentaires qui n'ont pas d'orientation caractéristique à l'échelle micrométrique. De même, la porosité de la couche n'a pas d'orientation caractéristique à l'échelle micrométrique.
Le procédé selon l'invention se distingue fondamentalement des procédés de l'art antérieur en ce qu'il met en œuvre une technique de dépôt spécifique, à savoir une technique de projection plasma d'une suspension (SPS) et en ce que la suspension contient des particules qui possèdent une granulométrie très spécifique, à savoir une granulométrie définie par le fait qu'au moins 90% en volume des particules solides présentent une plus grande dimension (appelée dgo), telle qu'un diamètre, inférieure à 15 μιη, de préférence inférieure à 10 μιη, et au moins 50% en volume des particules solides présentent une plus grande dimension telle qu'un diamètre (appelée dso) supérieure ou égale à 1 μιη.
Une telle granulométrie des particules de la suspension n'est ni décrite ni suggérée dans l'art antérieur, où les procédés de SPS utilisés pour préparer par exemple des couches anti-CMAS mettent en œuvre des suspensions contenant des particules « petites » présentant des tailles inférieures à 1 μιη, c'est-à-dire avec un dso inférieur à 1 μιη, notamment un dso et/ou un dgo nanométrique, c'est-à-dire supérieur ou égal à 1 nanomètre et inférieur ou égal à 100 nanomètres, ou un dso et/ou un dgo submicrométrique, c'est-à-dire supérieur à 100 nanomètres et inférieur à 1000 nanomètres.
Dans l'art antérieur, l'utilisation de particules de petite taille favorise l'apparition de points d'infiltration des contaminants, par exemple du CMAS au-travers de la couche et rend ainsi l'infiltration des contaminants, par exemple des CMAS, plus importante au cœur du revêtement. Ce comportement des couches anti-CMAS obtenues par SPS dans l'art antérieur peut être attribué à la faible tortuosité du réseau poreux des couches obtenues à partir de particules fines.
Au contraire, la couche obtenue par le procédé selon l'invention présente une tortuosité bien plus importante, du fait de l'utilisation de particules beaucoup plus grosses. Cette tortuosité importante permet de ralentir l'infiltration, par exemple du CMAS liquide dans l'épaisseur de la couche. A la différence de la technique d'APS où l'injection des particules se fait à l'aide d'un gaz porteur, l'injection des particules dans la technique SPS mise en œuvre selon l'invention est réalisée à partir d'une suspension de particules véhiculées dans un liquide vecteur sous pression. Cela permet de faire pénétrer les particules présentant un dgo inférieur à 15 μιη, de préférence inférieur à 10 μιη, par effet d'inertie au cœur du jet de plasma sans perturbation excessive de ce dernier et d'optimiser ainsi leur transport et leur chauffage par le jet de plasma.
Le procédé selon l'invention ne présente pas les inconvénients des procédés de l'art antérieur et apporte une solution aux problèmes des procédés de l'art antérieur.
Avantageusement, la couche obtenue par le procédé selon l'invention possède une microstructure lamellaire et un réseau poreux tortueux.
Avantageusement, la couche obtenue par le procédé selon l'invention comprend à la fois :
- des lamelles issues de la fusion des particules solides de la suspension,
des particules solides issues de la fusion partielle des particules solides de la suspension, et
des particules solides de la suspension non fondues.
La couche obtenue par le procédé selon l'invention peut éventuellement présenter des fissures, mais elle est non colonnaire et non homogène, et ce quelle que soit la microstructure de la surface à revêtir.
La couche obtenue par le procédé selon l'invention présente ainsi une microstructure qui est notamment adaptée à sa fonction anti-CMAS. Elle permet la formation à sa surface, avec une infiltration limitée de son réseau poreux, de phases stables, produits de réaction entre le matériau de la couche et les CMAS liquide. Ces phases stables bloquent l'infiltration des CMAS en profondeur dans le revêtement.
Du fait de la taille spécifique des particules initiales utilisées dans la suspension, la couche selon l'invention présente un empilement de lamelles fondues (issues de la fusion des particules solides de la suspension), partiellement fondues (particules solides issues de la fusion partielle des particules solides de la suspension) et de particules infondues (particules solides de la suspension non fondues qui ont conservé leur forme initiale, par exemple de sphère). La couche présente donc un réseau poreux tortueux rendant difficile son accès aux contaminants, son infiltration par les contaminants, tels que les CMAS liquides.
Contrairement aux couches obtenues par la technique de SPS mettant en œuvre les suspensions traditionnellement utilisées dans cette technique, dont les particules ont un dso inférieur à 1 μιη, notamment un dso et/ou un dgo nanométrique, c'est- à-dire supérieur ou égal à 1 nanomètre et inférieur ou égal à 100 nanomètres, ou submicrométrique, c'est-à-dire supérieur à 100 nanomètres et inférieur à 1000 nanomètres, la microstructure de la couche selon l'invention est lamellaire. Elle n'est ni colonnaire, ni homogène.
La microstructure lamellaire de la couche obtenue par le procédé selon l'invention assure une résistance accrue vis-à-vis de l'érosion mécanique particulaire, en particulier la résistance vis-à-vis de l'érosion mécanique particulaire est supérieure à une microstructure homogène ou colonnaire obtenue par une technique de SPS mettant en œuvre les suspensions traditionnellement utilisées dans cette technique avec de « petites » particules.
En outre, de façon avantageuse, la couche selon l'invention est caractérisée en ce qu'elle n'obstrue pas les trous d'évent. En effet, la répartition granulométrique des particules initiales de la suspension est suffisamment fine pour conduire à des couches plus finement structurées lorsqu'on les compare à des couches préparées par une technique d'APS.
Le procédé selon l'invention grâce à l'utilisation de particules en suspension présentant un dgo inférieur ou égal à 10 μιη et un dso supérieur ou égal à 1 μιη, permet de préparer des couches avec des microstructures qui se rapprochent des microstructures obtenues par la technique APS sans présenter les défauts de ces microstructures, c'est-à-dire en n'obstruant pas les trous d'évent. Finalement, l'utilisation conformément au procédé de l'invention de particules en suspension présentant un dgo inférieur à 15 μιη, de préférence inférieur à 10 μιη, et un dso supérieur ou égal à 1 μιη, permet d'obtenir une couche avec une microstructure lamellaire permettant d'accroître la résistance chimique vis-à-vis des contaminants tels que les CMAS et la résistance mécanique vis-à-vis de l'érosion particulaire, tout en n'obstruant pas les trous d'évents.
Avantageusement, la couche a une porosité de 5 à 50% en volume, de préférence de 5 à 20% en volume.
Avantageusement, la couche a une épaisseur de 10 μιη à 1000 μιη, de préférence de 10 à 300 μιη.
Il n'existe aucune limitation sur le substrat qui peut être revêtu d'une couche par le procédé selon l'invention.
Le procédé selon l'invention assure la préparation d'une couche présentant les propriétés avantageuses exposées dans la présente sur tous types de substrats, quelle que soit la géométrie de ce substrat, quel que soit le matériau constituant ce substrat (c'est-à-dire plus exactement le matériau constituant le support ou la couche sur lequel est déposée la couche préparée par le procédé), quelle que soit la structure notamment la microstructure du substrat (support ou couche), quelle que soit la morphologie de ce substrat, et quel que soit le procédé par lequel a été préparé ce substrat (support ou couche).
En particulier, le procédé selon l'invention permet la préparation d'une couche de céramique, plus précisément d'une couche anti-CMAS, efficace, sur un substrat (support ou couche) préparé par une technique choisie parmi les techniques de EB-PVD, APS, SPS, SPPS, PVD, CVD, sol gel , et toutes les combinaisons de ces techniques.
Le substrat solide peut être constitué simplement par un simple support solide, qui se présente par exemple sous la forme d'un support massif ou sous la forme d'une couche, et on dépose, par le procédé selon l'invention, la couche comprenant au moins un composé céramique directement sur au moins une surface dudit support.
Ou bien, le substrat solide peut être constitué par un support solide sur lequel se trouve une couche unique (différente de la couche d'au moins un composé céramique préparée par le procédé selon l'invention), ou un empilement de plusieurs couches (différentes de la couche d'au moins un composé céramique préparée par le procédé selon l'invention), et on dépose la couche comprenant au moins un composé céramique sur au moins une surface de ladite couche unique ou sur au moins une surface de la couche supérieure dudit empilement de couches.
Ledit support peut être en un matériau choisi parmi les matériaux sensibles à une infiltration et/ou à une attaque par les contaminants tels que les CMAS.
Ledit support peut être notamment en un matériau choisi parmi les métaux, les alliages de métaux, tels que les superalliages comme les superalliages AMI, René, et CMSX®-4, les composites à matrice céramique (CMC), tels que les composites à matrice SiC, les composites à matrice mixte C-SiC, et les combinaisons et/ou mélanges des matériaux précités.
Les superalliages sont des alliages métalliques caractérisés par une résistance mécanique et une résistance à l'oxydation et à la corrosion à haute température.
Dans le cadre de l'invention, Il s'agit de préférence de superalliages monocristallins.
Un tel superalliage, couramment utilisé, est par exemple le superalliage dénommé AMI, qui est un superalliage base nickel, ayant une composition en masse de 5 à 8% Co, 6,5 à 10% Cr, 0,5 à 2,5% Mo, 5 à 9% W, 6 à 9 % Ta, 4,5 à 5,8% Al, 1 à 2 % Ti, 0 à 1,5% Nb, et C, Zr, B chacun inférieur à 0,01%.
Le superalliage AMI est décrit dans le brevet US-A-4,639,280.
La famille de superalliages dénommée René a été développée par
General Electric®.
Le superalliage CMSX®-4 est une marque de la société Cannon- Muskegon®.
La couche de l'invention peut être appliquée sur des pièces constituées par ces superalliages.
Avantageusement, la couche unique ou ledit empilement de couches qui se trouve sur le support forme sur le support un revêtement monocouche ou multicouche de protection thermique, à savoir un système de barrière thermique, et/ou un revêtement monocouche ou multicouche de protection contre les environnements corrosifs, à savoir un système de barrière environnementale.
Avantageusement, la couche unique peut être choisie parmi les couches de liaison, et les couches de barrière thermique ou environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches notamment les couches céramiques anti-corrosion.
Avantageusement, l'empilement de plusieurs couches qui se trouve sur le support peut comprendre, depuis le support :
une couche de liaison qui revêt le support ;
une ou plusieurs couches choisie(s) parmi les couches de barrière thermique et les couches de barrière environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches notamment les couches céramiques anti-corrosion ;
ou bien l'empilement de plusieurs couches qui se trouve sur le support comprend :
plusieurs couches choisies parmi les couches de barrière thermique et les couches de barrière environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches, notamment les couches céramiques, anticorrosion.
Avantageusement, les couches de barrière thermique et les couches de barrière environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, antioxydation, et les couches, notamment les couches céramiques, anti-corrosion peuvent être des couches préparées par une technique choisie parmi les techniques EB-PVD, APS, SPS, SPPS, sol-gel, PVD, CVD, et les combinaisons de ces techniques.
Avantageusement, les couches de barrière thermique sont en un matériau choisi parmi les oxydes de zirconium ou d'hafnium, stabilisés à l'oxyde d'yttrium ou à d'autres oxydes de terres rares, les silicates d'aluminium, les silicates d'yttrium ou d'autres terres rares, ces silicates pouvant être dopés par des oxydes de métaux alcalino- terreux, et les zirconates de terre rare, qui cristallisent selon une structure pyrochlore, et les combinaisons et/ou mélanges des matériaux précités.
De préférence, les couches de barrière thermique sont en zircone stabilisée à l'yttrium (YSZ).
Avantageusement, les couches de barrière environnementale sont en un matériau choisi parmi les silicates d'aluminium, éventuellement dopés par des éléments alcalino-terreux, les silicates de terre rare, et les combinaisons et/ou mélanges des matériaux précités.
Avantageusement, la couche de liaison peut être en un matériau choisi parmi les métaux, les alliages métalliques tels que les alliages métalliques β-ΝϊΑΙ, modifiés ou non par du Pt, Hf, Zr, Y, du Si ou des combinaisons de ces éléments, les alliages métalliques γ-Νί-γ'-ΝΪ3ΑΙ modifiés ou non par du Pt, Cr, Hf, Zr, Y, du Si ou des combinaisons de ces éléments, les alliages MCrAIY où M est Ni, Co, NiCo, le Si, le SiC, le Si02, la mullite, le BSAS, et les combinaisons et/ou mélanges des matériaux précités.
Selon une forme de réalisation, le substrat peut être constitué par un support en un alliage métallique tel qu'un superalliage, de préférence monocristallin, ou par un composite à matrice céramique (CMC), revêtu d'une couche de liaison métallique elle-même revêtue d'une couche, telle qu'une couche céramique choisie parmi les couches de barrière thermique et les couches de barrière environnementale.
Selon une autre forme de réalisation, le substrat est constitué par un support en un alliage métallique tel qu'un superalliage ou par un composite à matrice céramique (CMC), revêtu d'une couche de liaison métallique elle-même revêtue d'une couche céramique de barrière thermique en zircone (Zr02) stabilisée à l'yttrine (Y2Û3).
Selon encore une autre forme de réalisation, le substrat peut être constitué par un support en un alliage métallique tel qu'un superalliage ou par un composite à matrice céramique (CMC), revêtu d'une couche de liaison métallique elle- même revêtue d'une couche céramique de barrière thermique et/ou environnementale réalisée par une technique choisie parmi les techniques de APS, EB-PVD, SPS, SPPS, sol-gel, CVD, et les combinaisons de ces techniques.
La technique de projection plasma d'une suspension est mise en œuvre pour réaliser la couche selon l'invention. Elle consiste à injecter dans un écoulement à haute énergie thermique et cinétique (par exemple un jet de plasma qui peut être produit par une torche plasma à courant continu), une suspension liquide contenant des particules du matériau de la couche à préparer.
Généralement, la suspension contient de 1 à 40% en masse, de préférence de 8 à 15% en masse de particules solides, par exemple 12% en masse de particules solides.
Le solvant de la suspension peut être choisi parmi l'eau, les alcools tels que les alcools aliphatiques de 1 à 5C comme l'éthanol et leurs mélanges.
La suspension est injectée à l'aide d'un injecteur mécanique, à partir d'un réservoir pressurisé.
Dans le procédé selon l'invention, l'injection de la suspension dans le jet de plasma se fait généralement de manière radiale. L'inclinaison de l'injecteur par rapport à l'axe longitudinal du jet de plasma peut varier de 20 à 160°, mais est préférentiellement de 90°. De manière connue de l'homme du métier, l'orientation de l'injecteur permet d'optimiser l'injection de la suspension dans le jet de plasma, et donc de favoriser la formation d'une couche de bonne qualité sur la surface du substrat.
L'injecteur peut être déplacé dans le sens longitudinal du jet de plasma. Plus l'injecteur sera près de la surface du substrat à revêtir, plus le temps de séjour des particules dans le jet de plasma sera réduit, permettant ainsi de contrôler le traitement thermocinétique imposé aux particules.
Le diamètre de l'injecteur peut varier entre 50 μιη et 300 μιη.
Le dispositif d'injection peut être doté d'un ou plusieurs injecteurs, par exemple selon la quantité de suspension et/ou le nombre de suspensions différentes à injecter. La suspension ainsi injectée va se fragmenter au contact du jet plasma. Le solvant va ensuite s'évaporer, les particules vont pouvoir être traitées thermiquement et être accélérées vers le substrat, et ainsi former une couche.
Le jet plasma peut être généré à partir d'un gaz plasmagène avantageusement choisi parmi l'argon, l'hélium, le dihydrogène, le diazote, les mélanges binaires des quatre gaz cités, les mélanges ternaires des quatre gaz cités.
La technique de génération du jet plasma est choisie parmi un plasma d'arc, soufflé ou non, un plasma inductif ou radiofréquence. Le plasma généré peut fonctionner à la pression atmosphérique ou à plus basse pression. Dans le cas d'un plasma d'arc, ce dernier peut être allongé par l'empilement de neutrodes entre la cathode et l'anode entre lesquelles l'arc est généré.
Selon un mode de réalisation préféré du procédé objet de l'invention, l'injection est réalisée au moyen d'un système d'injection ayant un diamètre d'injection compris entre 50 et 300 μιη, à une pression d'injection du système d'injection comprise entre 1 et 7 bar et à partir d'une suspension comprenant entre 1% et 40% en poids d'éléments particulaires solides.
L'invention concerne en outre le substrat revêtu d'au moins une couche susceptible d'être obtenue par le procédé selon l'invention, tel que décrit plus haut.
Avantageusement, la couche possède une microstructure lamellaire et un réseau poreux tortueux.
Avantageusement, la couche comprend à la fois :
des lamelles issues de la fusion des particules solides de suspension,
des particules solides issues de la fusion partielle des particul solides de la suspension, et
des particules solides de la suspension non fondues.
Avantageusement, la couche a une porosité de 5 à 50% en volume, de préférence de 5 à 20% en volume. Avantageusement, la couche a une épaisseur de 10 μιη à 1000 μιη, de préférence de 10 μιη à 300 μιη.
L'invention a aussi pour objet une pièce comprenant ledit substrat revêtu.
Cette pièce peut être une pièce d'une turbine, telle qu'une aube de turbine, un distributeur, un anneau de turbine, ou une pièce d'une chambre à combustion, ou une pièce d'une tuyère, ou plus généralement toute pièce soumise à des agressions par des contaminants liquides et/ou solides tels que les CMAS.
Cette turbine peut être par exemple une turbine aéronautique ou une turbine terrestre.
L'invention concerne aussi l'utilisation de la couche susceptible d'être obtenue par le procédé selon l'invention, pour protéger un substrat solide contre les dégradations causées par des contaminants tels que les CMAS.
L'invention trouve notamment son application dans les turbines à gaz ou les systèmes de propulsion utilisés notamment dans les industries aéronautiques, spatiales, navales et terrestres, pour la protection des pièces exposées à de hautes températures telles que, par exemple, des pièces de la turbine comme les aubes fixes et mobiles, les distributeurs, les anneaux de turbine, des pièces de la chambre de combustion ou de la tuyère.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 est une vue schématique latérale en coupe qui représente un système multicouche dont la couche supérieure est une couche « anti-CMAS » 1, selon l'invention, obtenue par le procédé selon l'invention mettant en œuvre la technique de SPS avec des particules initiales présentant un dgo inférieur à 10 μιη et un dso supérieur ou égal à 1 μιη.
La Figure 2 une vue schématique latérale en coupe qui représente de manière simplifiée le système multicouche représenté sur la Figure 1, dont la couche supérieure est une couche « anti-CMAS » 1, selon l'invention, obtenue par le procédé selon l'invention mettant en œuvre la technique de SPS avec des particules initiales présentant un dgo inférieur à 15 μιη, de préférence inférieur à 10 μιη, et un dso supérieur ou égal à 1 μιη. La Figure 3 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans l'exemple 1 qui comprend une couche 1 anti-CMAS obtenue par SPS avec des particules initiales présentant un dgo inférieur à 10 μιη et un dso supérieur ou égal à 1 μιη réalisée à la surface d'une couche 6 YSZ colonnaire poreuse obtenue par SPS.
L'échelle portée sur la Figure 3 représente 100 μιη.
La Figure 4 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans l'exemple 2, qui comprend une couche 1 anti-CMAS obtenue par SPS avec des particules initiales présentant un dgo inférieur à 10 μιη et un dso supérieur ou égal à 1 μιη, et réalisée à la surface d'une couche 7 YSZ colonnaire compacte poreuse obtenue par SPS.
L'échelle portée sur la Figure 4 représente 100 μιη .
La Figure 5 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans l'exemple 3, qui comprend une couche 1 anti-CMAS obtenue par SPS avec des particules initiales présentant un dgo inférieur à 10 μιη et un dso supérieur ou égal à 1 μιη, et réalisée à la surface d'une couche 8 YSZ colonnaire obtenue par EB-PVD.
L'échelle portée sur la Figure 5 représente 100 μιη .
La Figure 6 est une micrographie réalisée au microscope électronique à ba layage (M EB) en électrons rétrodiffusés d'une coupe polie de la couche 1 anti-CMAS obtenue par SPS dans l'exemple 3 à la surface d'une couche 8 YSZ colonnaire obtenue par EB-PVD.
L'observation est réalisée après infiltration CMAS.
L'échelle portée sur la Figure 6 représente 5 μιη.
- La Figure 7A est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés, et la Figure 7B est une analyse par EDS (« Energy Dispersive Spectroscopy en anglais ») du silicium d'une coupe polie de la couche 1 (analogue à la couche 13 de la Figure 9A) anti-CMAS obtenue par SPS dans l'exemple 4 à la surface d'une couche 11 YSZ obtenue par APS. L'observation est réalisée après infiltration CMAS. L'échelle portée sur les Figures 7A et 7B représente 25 μιη.
La Figure 8A est une autre micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés, et la Figure 8B est une analyse par EDS du silicium d'une coupe polie de la couche 1 (analogue à la couche 13 de la Figure 9A) anti-CMAS selon l'invention, obtenue par SPS dans l'exemple 4 à la surface d'une couche 11 YSZ obtenue par APS.
L'observation est réalisée dans une zone présentant une fissure 12 après infiltration CMAS.
L'échelle portée sur les Figure 8A et 8B représente 25 μιη.
- La Figure 9A est encore une autre micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés et une analyse en EDS du silicium d'une coupe polie d'une couche 13 anti-CMAS de Gd2Zr207 obtenue dans l'exemple 4, par SPS, avec des particules initiales présentant un dgo de 7 μιη et un dso de 3 μιη. Cette couche est réalisée à la surface d'une couche 11 YSZ obtenue par APS.
L'échelle portée sur la Figure 9A représente 25 μιη.
L'observation est réalisée dans une zone présentant une fissure après infiltration CMAS.
La Figure 9B est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés (à gauche) et une analyse en EDS du silicium (à droite) d'une coupe polie d'une couche 14 anti-CMAS de Gd2Zr207 selon l'invention, obtenue dans l'exemple 5, par SPS, avec des particules initiales présentant un diamètre de 4,95 μιη et un dso de 1,01 μιη, à la surface d'une couche 11 YSZ obtenue par APS.
L'observation est réalisée dans une zone présentant une fissuration après infiltration CMAS.
L'échelle portée sur la Figure 9B représente 25 μιη.
La Figure 9C est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés et une analyse en EDS du silicium d'une coupe polie de la couche 15 anti-CMAS de Gd2Zr207 obtenue dans l'exemple 6, non conforme à l'invention par SPS, avec des particules initiales présentant un dgo de 0,89 μιη et un dso de 0,41 μιη. Cette couche est réalisée à la surface d'une couche 11 YSZ obtenue par APS. L'observation est réalisée dans une zone présentant une fissure après infiltration CMAS.
L'échelle portée sur la Figure 9C représente 25 μιη.
La Figure 10 est un diffractogramme obtenu en diffraction des rayons X après infiltration CMAS de la couche anti-CMAS 13 obtenue dans l'exemple 4.
La Figure 11 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans l'exemple 11. Cet échantillon comprend une couche 21 anti-CMAS constituée de Gd2Zr207 préparée à la surface d'une couche 8 de YSZ, colonnaire, obtenue par un procédé de EB-PVD. La couche anti-CMAS est préparée conformément à l'invention par un procédé de SPS en utilisant une suspension contenant des particules initiales présentant un dgo de 13,2 μιη et un dso supérieur ou égal à 1 μιη, à savoir de 5,5 μιη.
L'échelle portée sur la Figure 11 représente 100 μιη.
La Figure 12 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de la couche 21 anti-CMAS obtenue par SPS dans l'exemple 12 sur un substrat autoporté 11 en zircone yttriée stabilisée dans une phase t' et obtenu par APS.
L'observation est réalisée après infiltration CMAS (Exemple 13).
L'échelle portée sur la Figure 12 représente 100 μιη.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULI ERS
Sur la Figure 1 est représenté un mode de réalisation du procédé selon l'invention, dans lequel la couche selon l'invention, préparée par le procédé selon l'invention, 1, est déposée à la surface d'un système comprenant les couches 2, 3, 4, représentées sur la Figure 1.
Les différentes couches de l'empilement 2, 3, 4 peuvent représenter, à titre d'exemple et de façon non exclusive, les couches d'un système de barrière thermique appliqué sur des pièces aéronautiques en superalliage.
Avantageusement, la couche 2 peut être en un matériau choisi parmi les matériaux des systèmes de barrières thermiques et/ou des systèmes de barrières environnementales tels que par exemple la zircone (Zr02) et/ou l'yttrine (Y2O3) permettant une stabilisation de la phase t', et tous les autres matériaux adaptés, ainsi que les combinaisons et/ou les mélanges de ces matériaux.
En outre, de façon avantageuse, la couche 2 peut être réalisée par un procédé, technique de dépôt, choisi parmi les procédés EB-PVD, APS, SPS, SPPS, sol-gel, CVD, et tous les autres procédés aptes à réaliser cette couche, ainsi que les combinaisons de ces procédés.
Avantageusement, la couche 2 présente une microstructure caractéristique de la technique de dépôt employée. Cette couche peut, par exemple, de façon non exclusive présenter une microstructructure colonnaire, une microstructructure colonnaire et poreuse, une microstructructure colonnaire compacte et poreuse, une microstructructure homogène, une microstructructure homogène et poreuse, une microstructructure dense, une microstructructure dense et fissurée verticalement, une microstructructure poreuse et fissurée verticalement.
Selon un premier mode de réalisation, la couche 1 selon l'invention peut être appliquée sur une couche 2 présentant une microstructure colonnaire poreuse obtenue par SPS (couche 6 sur la Figure 3).
Selon un deuxième mode de réalisation, la couche 1 selon l'invention peut être appliquée sur une couche 2 présentant une microstructure colonnaire compacte poreuse obtenue par SPS (couche 7 sur la Figure 4).
Selon un troisième mode de réalisation, la couche 1 selon l'invention peut être appliquée sur une couche 2 présentant une microstructure colonnaire obtenue par EB-PVD (couche 8 en Figure 5).
De façon avantageuse, la couche 2 a une fonction de barrière thermique et/ou de barrière environnementale. Elle permet en outre, mais pas exclusivement, d'assurer de bonnes performances en termes de durée de vie et d'isolation thermique ou de protection contre l'oxydation et la corrosion humide.
Avantageusement, la couche 3 assure le rôle de couche de liaison.
La couche 3 peut être en un matériau choisi parmi les métaux, les alliages métalliques tels que les alliages métalliques β-NiAI (modifiés ou non par du Pt, Hf, Zr, Y, Si ou des combinaisons de ces éléments), les aluminures d'alliage γ-Νί-γ'-ΝΪ3ΑΙ (modifiés ou non par du Pt, Cr, Hf, Zr, Y, Si ou des combinaisons de ces éléments), les alliages MCrAIY (où M=Ni,Co,NiCo), le Si, le SiC, le Si02, la mullite, le BSAS, et tous les autres matériaux adaptés, ainsi que les combinaisons et/ou mélanges de ces matériaux.
De façon avantageuse, la couche 3 peut comprendre une couche d'oxyde obtenue par oxydation des éléments de la couche 3, tel que décrit précédemment. Par exemple, mais pas exclusivement, la couche 3 peut être une couche aluminoformeuse, c'est-à-dire que l'oxydation de la couche 3 peut produire avantageusement une couche d'alumine a.
Avantageusement, la couche 4 fait partie d'une pièce ou d'un élément d'une pièce en un matériau choisi parmi les alliages métalliques, tels que les superalliages métalliques, les composites à matrice céramique (CMC), et les combinaisons et/ou mélanges de ces matériaux. Ce matériau de la couche 4 peut être notamment choisi parmi les superalliages AMI, René, et CMSX®-4.
Sur la Figure 2, la couche 1, et le système comprenant les couches 2, 3, 4, représenté sur la Figure 1 sont simplifiés à deux éléments, à savoir :
une couche 1 anti-CMAS selon l'invention obtenue par le procédé selon l'invention mettant en œuvre la technique de SPS avec des particules de la suspension injectée présentant un dgo inférieur à 10 μιη et un dso supérieur ou égal à 1 μιη ;
- une couche 5 pouvant décrire exactement le système des couches
2, 3, 4 de la Figure 1, ou une ou plusieurs couches du système des couches 2, 3, 4 de la Figure 1, ou une ou plusieurs combinaisons de couches du système des couches 2, 3, 4 de la Figure 1. Ce système est revêtu par une couche anti-CMAS 1 obtenue par SPS avec des particules injectées présentant un dgo inférieur à 15 μιη, de préférence inférieur à 10 μιη, et un dso supérieur ou égal à 1 μιη.
Ainsi, avantageusement, la couche 1 selon l'invention peut être appliquée sur la surface d'une couche 5. Cette couche 5 peut inclure de façon indépendante et/ou combinée les couches 2, 3, 4. De façon avantageuse, les couches 2 et 3 et/ou la couche 5 permettent, mais pas exclusivement, d'assurer une fonction de barrière thermique et/ou environnementale. Elles permettent en outre, mais pas exclusivement, d'assurer de bonnes performances en termes de durée de vie et d'isolation thermique ou de protection contre l'oxydation et la corrosion humide. De façon avantageuse, l'ajout de la couche 1 selon l'invention ne dégrade pas les performances des systèmes, décrits sur les Figures 1 et 2, sur lesquels elle est appliquée.
Avantageusement, la microstructure de la couche 1 présente une morphologie homogène et/ou fissurée, mais pas exclusivement, qu'elle soit réalisée sur la couche 2 ou la couche 5 et ce quelles que soient la microstructure et/ou la composition de la couche 2 ou de la couche 5.
Avantageusement, la couche 1 selon l'invention réagit avec les CMAS à haute température, plus précisément à une température supérieure à la température de fusion des CMAS, pour former une zone réactive 9 (Figure 6) au-delà de laquelle la pénétration des CMAS au sein de la couche 1 est stoppée et/ou limitée.
Finalement, les CMAS solidifiés 10 sont donc observés à la surface du revêtement (voir exemples, Figure 6).
De façon avantageuse, la zone 9 est composée de produits de réaction entre les CMAS et la couche 1 incluant, mais pas exclusivement, des phases apatite et/ou anorthite et/ou zircone et/ou d'autres produits de réaction et ou des combinaisons et/ou des mélanges de ces phases.
Par exemple, aucune infiltration des CMAS au sein de la couche 1 déposée sur une couche 11 obtenue par APS n'est observée après un test d'infiltration des CMAS au-delà de la zone de réaction 9 (Figure 7A et 7B). De façon avantageuse, la couche 11 obtenue par APS est comprise dans la description de la couche 2 décrite sur la Figure 1.
De la même manière, aucune infiltration du CMAS au sein de la couche 1 déposée sur une couche 11 obtenue par APS n'est observée après un test d'infiltration CMAS au-delà de la zone de réaction 9 (Figures 8A et 8B). La fissure 12 observée au sein de la couche 1 déposée sur une couche 11 obtenue par APS, est rapidement obstruée par des produits de réaction similaires à ceux composant la zone 9 (Figure 8A et 8B). De façon avantageuse, la couche 11 obtenue par APS est comprise dans la description de la couche 2 décrite sur la Figure 1.
Il est à noter que, lorsqu'on réalise une couche 1 selon l'invention, par le procédé selon l'invention, on peut préalablement au revêtement du substrat (incluant les couches 2 à 4 de la Figure 1 et/ou la couche 5 de la Figure 2) par la couche 1, préparer et/ou nettoyer la surface à revêtir afin d'éliminer les résidus et/ou contaminants (inorganiques et/ou organiques) qui seraient susceptibles d'empêcher le dépôt et/ou de dégrader l'adhérence et/ou d'affecter la microstructure. La préparation de la surface peut être la formation d'une rugosité de surface par sablage, l'oxydation du substrat pour générer une fine couche d'oxyde et/ou une combinaison de ces procédés de préparation.
L'invention va maintenant être décrite en référence aux exemples suivants, donnés à titre illustratif et non limitatif.
Pour préparer les couches anti-CMAS, on prépare tout d'abord des suspensions de particules de céramique dans de l'éthanol en mettant des particules de céramique en suspension dans de l'éthanol afin obtenir des suspensions présentant une concentration en céramique de 12% en masse.
Les suspensions ainsi préparées sont ensuite injectées dans un plasma d'arc soufflé en utilisant un montage constitué de :
une torche à plasma à courant continu F4-VB de Oerlikon-Metco® et/ou Triplex Pro200 de Oerlikon-Metco®;
un dispositif robotique sur lequel est placée la torche et qui permet son déplacement ;
un dispositif permettant de fixer la surface à revêtir à une distance définie de la torche. La combinaison du mouvement autorisé par ce dispositif et par celui du dispositif précédent permet de revêtir la surface d'un échantillon ;
un dispositif d'injection de suspension.
Dans les exemples 1, 2, 3, et 4, la couche est réalisée avec une torche Triplex Pro200 de Oerlikon-Metco®, avec une distance entre la sortie de la torche et le substrat de 70 mm, en utilisant un mélange de gaz plasmagène constitué par 80% en volume d'argon et 20% en volume d'hélium.
Dans l'exemple 5, la couche est réalisée avec une torche Triplex Pro200 de Oerlikon-Metco®, avec une distance entre la sortie de la torche et le substrat de 60 mm, en utilisant un mélange de gaz plasmagène constitué par 80% en volume d'argon et 20% en volume d'hélium.
Dans l'exemple 6, la couche est réalisée avec une torche de type F4-VB de Oerlikon-Metco®, avec une distance entre la sortie de la torche et le substrat de 50 mm, en utilisant un mélange de gaz plasmagène constitué par 62% en volume d'argon et 38% en volume d'hélium.
EXEMPLES
Exemple 1.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention (voir Figure 3).
La couche 1 anti-CMAS, constituée de Gd2Zr207, est préparée à la surface d'une couche 6 de YSZ, colonnaire, poreuse, obtenue par un procédé de SPS. La couche anti-CMAS est préparée par un procédé de SPS en utilisant une suspension contenant des particules initiales présentant un dgo inférieur à 10 μιη, à savoir un dgo de 7 μιη, et un dso supérieur ou égal à 1 μιη, à savoir de 3 μιη.
L'échantillon ainsi préparé constitué par la couche anti-CMAS sur le substrat rentre dans le cadre du système représenté sur les Figures 1 et 2.
La Figure 3 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans cet exemple.
Exemple 2.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention. La couche 1 anti-CMAS constituée de Gd2Zr207 est préparée à la surface d'une couche 7 de YSZ, colonnaire, compacte, poreuse, obtenue par un procédé de SPS. La couche anti-CMAS est préparée par un procédé de SPS en utilisant une suspension contenant des particules initiales présentant un dgo inférieur à 10 μιη, à savoir un dgo de 7 μιη, et un dso supérieur ou égal à 1 μιη, à savoir de 3 μιη.
L'échantillon ainsi préparé constitué par la couche anti-CMAS sur le substrat rentre dans le cadre du système représenté sur les Figures 1 et 2.
La Figure 4 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans cet exemple.
Exemple 3.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention.
La couche 1 anti-CMAS constituée de Gd2Zr207 est préparée à la surface d'une couche 8 de YSZ, colonnaire, obtenue par un procédé de EB-PVD. La couche anti- CMAS est préparée par un procédé de SPS en utilisant une suspension contenant des particules initiales présentant un dgo inférieur à 10 μιη, à savoir un dgo de 7 μιη, et un dso supérieur ou égal à 1 μιη, à savoir de 3 μιη.
L'échantillon ainsi préparé constitué par la couche anti-CMAS sur le substrat rentre dans le cadre du système représenté sur les Figures 1 et 2.
La Figure 5 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans cet exemple.
Exemple 4.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention (voir Figure 9A après infiltration par les CMAS).
La couche 13 anti-CMAS constituée de Gd2Zr207, est obtenue par SPS en utilisant une suspension contenant des particules de Gd2Zr207 présentant un dgo de 7 μιη et un dso de 3 μιη. La couche est réalisée sur un substrat autoporté 11 en zircone yttriée stabilisé dans une phase t' et obtenu par APS.
Exemple 5.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention (voir Figure 9B après infiltration par les CMAS).
La couche 14 a nti-CMAS constituée de Gd2Zr207, est obtenue par SPS en utilisant une suspension contenant des particules de Gd2Zr207 présentant un dgo de 4,95 μιη et un dso de 1,01 μιη. La couche est réalisée sur un substrat autoporté 11 en zircone yttriée stabilisé dans une phase t' et obtenu par APS.
Exemple 6 (Comparatif).
Dans cet exemple, on prépare une couche anti-CMAS non conforme à l'invention, par un procédé non conforme à l'invention (voir Figure 9C après infiltration par les CMAS).
La couche 15 a nti-CMAS constituée de Gd2Zr207, est obtenue par SPS en utilisant une suspension non conforme à l'invention, contenant des particules de Gd2Zr2Û7 présentant un dgo de 0,89 μιη et un dso de 0,41 μιη . La couche est réalisée sur un substrat autoporté 11 en zircone yttriée stabilisé dans une phase t' et obtenu par APS.
Dans les exemples 7 à 10 qui suivent, on effectue des tests d'infiltration aux CMAS sur les échantillons prépa rés dans les exemples 3 à 6.
Dans chacun des exemples 7 à 10, le CMAS (23,5 % CaO - 15,0 % Al203 - 61,5 % S1O2 - 0% MgO (en % massique)) est déposé en surface de chacun des échantillons (30 mg/cm2). L'échantillon est chauffé à 1250 °C pendant 1 h.
A la fin des tests, chacune des couches anti-CMAS a réagi et laisse apparaître une goutte de CMAS solidifiée en surface de l'échantillon.
A la fin des tests, on réalise une observation au microscope électronique à balayage (M EB) en électrons rétrodiffusés d'une coupe polie de chacun des échantillons. On effectue éga lement pour la plupart des échantillons une analyse EDS (« Energy Dispersive Spectroscopy » en anglais) du silicium d'une coupe polie de l'échantillon. Exemple 7.
Dans cet exemple, on effectue un test d'infiltration aux CMAS selon le protocole décrit plus haut, sur l'échantillon préparé dans l'exemple 3, et on observe l'échantillon après infiltration.
La Figure 6 est une micrographie réalisée au microscope électronique à balayage (M EB) en électrons rétrodiffusés d'une coupe polie de la couche 1 anti-CMAS obtenue par SPS dans l'exemple 3 à la surface d'une couche 8 YSZ colonnaire obtenue par EB-PVD.
L'observation réalisée après infiltration par les CMAS laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre les CMAS et la couche 1.
Exemple 8.
Dans cet exemple, on effectue un test d'infiltration aux CMAS selon le protocole décrit plus haut, sur l'échantillon préparé dans l'exemple 4, et on observe l'échantillon après infiltration de CMAS.
La Figure 7A est une micrographie réalisée au microscope électronique à balayage (M EB) en électrons rétrodiffusés, et la Figure 7B est une analyse EDS (« Energy Dispersive Spectroscopy » en anglais) du silicium d'une coupe polie de la couche 1 (13) anti- CMAS obtenue par SPS dans l'exemple 4 à la surface d'une couche 11 YSZ obtenue par APS.
L'observation est ici réalisée dans une zone non fissurée, sans fissure, dans laquelle il ne s'est pas produit d'infiltration.
L'observation réalisée après infiltration de CMAS laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre les CMAS et la couche 1. La zone plus claire sur le cliché EDS correspond, soit au CMAS solidifié 10, soit à la zone de réaction 9. La Figure 8A est une autre micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés, et la Figure 8B est une autre analyse en EDS du silicium d'une coupe polie de la couche 1 anti-CMAS obtenue par SPS dans l'exemple 4 à la surface d'une couche 11 YSZ obtenue par APS.
L'observation est ici réalisée dans une zone présentant une fissure 12 après infiltration CMAS et laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre le CMAS et la couche 1(13). La zone plus claire sur le cliché EDS correspond soit au CMAS solidifié 10, soit à la zone de réaction 9, soit au degré de pénétration au sein de la fissure du CMAS ou des produits de réaction entre le CMAS et la couche 1.
La Figure 9A est encore une autre micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés (à gauche) et une analyse en EDS du silicium (à droite) d'une coupe polie d'une couche 13 anti-CMAS de Gd2Zr207 obtenue dans l'exemple 4, par SPS, avec des particules initiales présentant un dgo de 7 μιη et un dso de 3 μιη. Cette couche est réalisée à la surface d'une couche 11 YSZ obtenue par APS.
L'observation est réalisée dans une zone présentant une fissure après infiltration CMAS et laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre les CMAS et la couche 13. La zone plus claire sur le cliché EDS correspond soit au CMAS solidifié 10, soit à la zone de réaction 9, soit au degré de pénétration au sein de la fissure du CMAS ou des produits de réaction entre le CMAS et la couche 13.
La Figure 10 est un diffractogramme obtenu en diffraction des rayons X après infiltration CMAS de la couche anti-CMAS 13. L'analyse montre la présence du matériau initial Gd2Zr207, d'une phase apatite Ca2Gd8(Si04)602, d'une phase anorthite CaAI2(Si04)2 et de zircone.
Exemple 9.
Dans cet exemple, on effectue un test d'infiltration aux CMAS selon le protocole décrit plus haut, sur l'échantillon préparé dans l'exemple 5, et on observe l'échantillon après infiltration. La Figure 9B est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés (à gauche) et une analyse en EDS du silicium (à droite) d'une coupe polie d'une couche 14 anti-CMAS de Gd2Zr207 obtenue dans l'exemple 5, par SPS avec des particules initiales présentant un diamètre de 4,95 μιη et un dso de 1,01 μιη.
Cette couche est réalisée à la surface d'une couche 11 YSZ obtenue par APS. L'observation est réalisée dans une zone présentant une fissuration après infiltration CMAS et laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre les CMAS et la couche 14. La zone plus claire sur le cliché EDS correspond soit au CMAS solidifié 10 soit à la zone de réaction 9 soit au degré de pénétration au sein de la fissure du CMAS ou des produits de réaction entre le CMAS et la couche 14.
Exemple 10 (Comparatif).
Dans cet exemple, on effectue un test d'infiltration aux CMAS selon le protocole décrit plus haut, sur l'échantillon non conforme à l'invention préparé dans l'exemple 6, et on observe l'échantillon après infiltration.
La Figure 9C est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés (à gauche) et une analyse en EDS du silicium (à droite) d'une coupe polie de la couche 15 anti-CMAS de Gd2Zr207 obtenue dans l'exemple
6, par SPS, avec des particules initiales présentant un dgo de 0,89 μιη et un dso de 0,41 μιη.
Cette couche est réalisée à la surface d'une couche 11 YSZ obtenue par APS. L'observation est réalisée dans une zone présentant une fissure après infiltration CMAS et laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre les CMAS et la couche 15. La zone plus claire sur le cliché EDS correspond soit au CMAS solidifié 10, soit à la zone de réaction 9, soit au degré de pénétration au sein de la fissuration du CMAS ou des produits de réaction entre le CMAS et la couche 15. Conclusion des exemples 1 à 10.
Entre les CMAS et la couche anti-CMAS, une zone réactive 9 composée de phases bloquantes est observée (Figures 6, 7 A, 7B, 8A, 8B, 9A, 9B, 9C).
La visualisation des CMAS et de la zone réactive est également illustrée par les clichés EDS présentés sur les Figures 9A, 9B et 9C.
Les phases en présence analysées par Diffraction des Rayons X comprennent le matériau initial Gd2Zr207, une phase apatite Ca2Gd8(Si04)602, une phase anorthite CaAI2(Si04)2 et de la zircone (Figure 10).
Que cela soit au-travers de la porosité du revêtement ou des fissures, la zone réactive 9 ainsi que la pénétration des CMAS au sein de la couche anti-CMAS est plus importante, sévère, au fur et à mesure que les tailles de particules décroissent.
En particulier, la couche 15 de l'exemple 6 (Figure 9C), non conforme à l'invention, présente une infiltration beaucoup plus importante, sévère que les couches 13 et 14 selon l'invention (Figure 9A et Figure 9B).
La taille des particules de matériau anti-CMAS injectées dans le jet plasma génère une différence au niveau de la morphologie de la porosité. En effet, les plus petites particules vont notamment offrir au CMAS liquide un plus grand nombre de points d'entrée, et des chemins de propagation plus nombreux et directs dans l'épaisseur de la couche. Ainsi, dans l'exemple 6, non conforme à l'invention, des « petites particules » sont utilisées dans la suspension, et il se produit alors une infiltration du revêtement par les CMAS dans l'épaisseur du revêtement.
La cinétique de pénétration au sein du revêtement est en compétition avec la cinétique de réaction permettant la formation de phases bloquantes efficaces.
Dans les couches préparées par procédé selon l'invention, la cinétique de réaction des CMAS avec le matériau des couches est plus rapide que la cinétique d'infiltration, de pénétration, des CMAS dans la porosité des couches. En effet, les couches selon l'invention, du fait qu'elles sont préparées avec des suspensions qui possèdent une « grosse » taille de particules présentent en conséquence une tortuosité élevée, qui ralentit la cinétique de pénétration, d'infiltration des CMAS. La cinétique de pénétration des CMAS dans les couches préparées par le procédé selon l'invention est bien moins rapide que la cinétique de réaction des CMAS avec le matériau des couches qui permet la formation de phases bloquantes efficaces.
La cinétique de pénétration de la couche anti-CMAS par le CMAS à haute température est ralentie pour des particules initiales présentant des tailles conformes à l'invention. Dans ce cas, la couche anti-CMAS permet, par la forte tortuosité générée, la formation de la phase bloquante et/ou des phases bloquantes en surface et/ou sur une faible profondeur au sein de la couche anti-CMAS.
Le plus faible degré d'infiltration, au niveau des fissures ou au niveau des zones non fissurées, est observé pour la couche 13 de l'exemple 4 selon l'invention.
Exemple 11.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention. La couche 21 anti-CMAS constituée de Gd2Zr207 est préparée à la surface d'une couche 8 de YSZ, colonnaire, obtenue par un procédé de EB-PVD.
La couche anti-CMAS est préparée par un procédé de SPS en utilisant une suspension contenant des particules initiales présentant un dgo de 13,2 μιη et un dso supérieur ou égal à 1 μιη, à savoir de 5,5 μιη.
La couche 8 de YSZ est la même que la couche 8 de YSZ de l'exemple 3 mais la couche 21 a une taille de particules différente.
L'échantillon ainsi préparé constitué par la couche anti-CMAS sur le substrat rentre dans le cadre du système représenté sur les Figures 1 et 2.
La Figure 11 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de l'échantillon préparé dans cet exemple.
Exemple 12.
Dans cet exemple, on prépare une couche anti-CMAS selon l'invention, par le procédé selon l'invention (voir Figure 12 après infiltration par les CMAS). La couche 21 anti-CMAS constituée de Gd2Zr207 est obtenue par SPS en utilisant une suspension contenant des particules de Gd2Zr207 présentant un dgo de 13,2 μιη et un dso de 5,5 μιη. La couche est réalisée sur un substrat autoporté 11 en zircone yttriée stabilisée dans une phase t' et obtenue par APS. Exemple 13.
Dans cet exemple, on effectue un test d'infiltration aux CMAS selon le protocole décrit plus haut, sur l'échantillon préparé dans l'exemple 12, et on observe l'échantillon après infiltration.
La Figure 12 est une micrographie réalisée au microscope électronique à balayage (MEB) en électrons rétrodiffusés d'une coupe polie de la couche 21 anti-CMAS obtenue par SPS.
L'observation est réalisée après infiltration par les CMAS, et laisse apparaître en surface le CMAS solidifié 10 et une zone de réaction 9 comprenant les produits de réaction entre le CMAS et la couche 21.
REFERENCES
A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, N. Hitchman, "Technical and economical aspects of current thermal barrier coating Systems for gas turbine engines by thermal spray and EBPVD: a review", Journal of Thermal Spray Technology, 17, 2008, 199-213.
N. Curry, K. Van Every, T. Snyder, N. Markocsan, "Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings", Coati ngs, 4, 2014, pp 630-650.
E. H. Jordan, L. Xie, M. Gell, N. P. Padture, B. Cetegen, A. Ozturk, J. Roth, T. D. Xiao, P.
E. C. Bryant, "Superior thermal barrier coatings using solution precursor plasma spray", Journal of Thermal Spray Technology, 13, 2004, pp 57-65.
Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler, D. Ellsworth, "Novel thermal barrier coatings produced by axial suspension plasma spray", Proceeding of
International Thermal Spray Conférence and Exposition (ITSC), Hamburg, Germany,
2011.
K. N. Lee, US-2009/0184280-A1.
K. W. Schlichting, M. J. Maloney, D. A. Litton, M. Freling, J. G. Smeggil, D. B. Snow, US-2010/0196605-A1.
B. Nagaraj, T. L. Few, T. P. McCaffrey, B. P. L'Heureux, US-2011/0151219-A1.
A. Meyer, H. Kassner, R. Vassen, D. Stoever, J.L Marques-Lopez, US-2011/0244216-A1.
B. T. Hazel, D. A. Litton, M. J. Maloney, US-2013/0260132-A1.
C. W. Strock, M. Maloney, D. A. Litton, B. J. Zimmerman, B. T. Hazel, US-2014/0065408-A1.

Claims

REVENDICATIONS
1. Procédé de revêtement d'au moins une surface d'un substrat solide par au moins une couche comprenant au moins un composé céramique par une technique de projection plasma de suspensions « SPS », dans lequel on injecte au moins une suspension de particules solides d'au moins un composé céramique dans un jet de plasma puis on projette le jet thermique qui contient la suspension de particules solides sur la surface du substrat, moyennant quoi on forme la couche comprenant au moins un composé céramique sur la surface du substrat; procédé caractérisé en ce que da ns la suspension, au moins 90% en volume des particules solides présentent une plus grande dimension (appelée dgo), telle qu'un diamètre, inférieure à 15 μιη, de préférence inférieure à 10 μιη, et au moins 50% en volume des particules solides présentent une plus grande dimension (appelée dso) telle qu'un diamètre, supérieure ou égale à 1 μιη ; procédé caractérisé en outre en ce que le composé céramique est choisi parmi les composés dits composés anti-CMAS, de préférence le com posé céramique est choisi parmi les zirconates de terre ra re de formule RE2Zr207 , où RE est Se, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Yb, Dy, Ho, Er, Tm, Tb, ou Lu, les composites du Y2Û3 avec Zr02 et/ou AI2Û3 et/ou Ti02, les hexa- aluminates, les silicates d'aluminium, les silicates d'yttrium ou d'autres terres rares, ces silicates pouvant être dopés par un ou plusieurs oxydes de méta l alcalino-terreux, et leurs mélanges; de préférence encore, le composé céramique est le Gd2Zr207.
2. Procédé selon la revendication 1, da ns lequel la couche possède une microstructure lamellaire et un réseau poreux tortueux.
3. Procédé selon la revendication 2, dans lequel la couche comprend à la fois :
des lamelles issues de la fusion des particules solides de la suspension,
des particules solides issues de la fusion partielle des particules solides de la suspension, et des particules solides de la suspension non fondues.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche a une porosité de 5 à 50% en volume, de préférence de 5 à 20% en volume.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche a une épaisseur de 10 μιη à 1000 μιη, de préférence de 10 μιη à 300 μιη.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le substrat solide est constitué par un support solide, qui se présente par exemple sous la forme d'un support massif ou sous la forme d'une couche, et on dépose la couche comprenant au moins un composé céramique directement sur au moins une surface dudit support.
7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le substrat solide est constitué par un support solide sur lequel se trouve une couche unique ou un empilement de plusieurs couches, et on dépose la couche comprenant au moins un composé céramique sur au moins une surface de ladite couche unique ou sur au moins une surface de la couche supérieure dudit empilement de couches.
8. Procédé selon la revendication 6 ou 7, dans lequel le support est en un matériau choisi parmi les matériaux sensibles à une infiltration et/ou à une attaque par les contaminants tels que les CMAS ; notamment le support est en un matériau choisi parmi les métaux, les alliages de métaux tels que les superalliages, de préférence les superalliages monocristallins, les composites à matrice céramique (CMC) tels que les composites à matrice SiC, les composites à matrice mixte C-SiC, et les combinaisons et mélanges des matériaux précités.
9. Procédé selon la revendication 7, dans lequel la couche unique ou ledit empilement de couches qui se trouve sur le support forme sur le support un revêtement monocouche ou multicouche de protection thermique, à savoir un système de barrière thermique, et/ou un revêtement monocouche ou multicouche de protection contre les environnements corrosifs, à savoir un système de barrière environnementale.
10. Procédé selon la revendication 7, dans lequel la couche unique est choisie parmi les couches de liaison, et les couches de barrière thermique ou environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches, notamment les couches céramiques, anti-corrosion.
11. Procédé selon la revendication 7, dans lequel l'empilement de plusieurs couches qui se trouve sur le support comprend, depuis le support :
une couche de liaison qui revêt le support ;
une ou plusieurs couches choisie(s) parmi les couches de barrière thermique et les couches de barrière environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches, notamment les couches céramiques, anti-corrosion ;
ou bien l'empilement de plusieurs couches qui se trouve sur le support comprend :
plusieurs couches choisies parmi les couches de barrière thermique et les couches de barrière environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches, notamment les couches céramiques, anticorrosion.
12. Procédé selon la revendication 10 ou 11, dans lequel les couches de barrière thermique et les couches de barrière environnementale, telles que les couches, notamment les couches céramiques, isolantes thermiquement, les couches, notamment les couches céramiques, anti-oxydation, et les couches, notamment les couches céramiques, anti-corrosion sont des couches préparées par une technique choisie parmi les techniques EB-PVD, APS, SPS, SPPS, sol-gel, PVD, CVD, et les combinaisons de ces techniques.
13. Procédé selon l'une quelconque des revendications 10 à 12, dans lequel les couches de barrière thermique sont en un matériau choisi parmi les oxydes de zirconium ou d'hafnium, stabilisés à l'oxyde d'yttrium ou à d'autres oxydes de terres rares, les silicates d'aluminium, les silicates d'yttrium ou d'autres terres rares, ces silicates pouvant être dopés par des oxydes de métaux alcalino-terreux, et les zirconates de terre rare, qui cristallisent selon une structure pyrochlore, et les combinaisons et/ou mélanges des matériaux précités, de préférence, les couches de barrière thermique sont en zircone stabilisée à l'yttrium (YSZ) ; et les couches de barrière environnementale sont en un matériau choisi parmi les silicates d'aluminium, éventuellement dopés par des éléments alcalino-terreux, les silicates de terre rare, et les combinaisons et/ou mélanges des matériaux précités.
14. Procédé selon l'une quelconque des revendications 10 à 13, dans lequel la couche de liaison est en un matériau choisi parmi les métaux, les alliages métalliques tels que les alliages métalliques β-ΝϊΑΙ, modifiés ou non par du Pt, Hf, Zr, Y, du Si ou des combinaisons de ces éléments, les alliages métalliques γ-Νί-γ'-ΝΪ3ΑΙ modifiés ou non par du Pt, Cr, Hf, Zr, Y, du Si ou des combinaisons de ces éléments, les alliages MCrAIY où M est Ni, Co, NiCo, le Si, le SiC, le Si02, la mullite, le BSAS, et les combinaisons et/ou mélanges des matériaux précités.
15. Procédé selon l'une quelconque des revendications précédentes, dans lequel le substrat est constitué par un support en un alliage métallique tel qu'un superalliage ou par un composite à matrice céramique (CMC), revêtu d'une couche de liaison métallique elle-même revêtue d'une couche, telle qu'une couche céramique choisie parmi les couches de barrière thermique et les couches de barrière environnementale.
16. Procédé selon l'une quelconque des revendications précédentes, dans lequel le substrat est constitué par un support en un alliage métallique tel qu'un superalliage ou par un composite à matrice céramique (CMC), revêtu d'une couche de liaison métallique elle-même revêtue d'une couche céramique de barrière thermique en zircone (Zr02) stabilisée à l'yttrine (Y2O3).
17. Procédé selon l'une quelconque des revendications précédentes, dans lequel le substrat est constitué par un support en un alliage métallique tel qu'un superalliage ou par un composite à matrice céramique (CMC), revêtu d'une couche de liaison métallique elle-même revêtue d'une couche céramique de barrière thermique et/ou environnementale réalisée par une technique choisie parmi les techniques de APS, EB-PVD, SPS, SPPS, sol-gel, CVD, et les combinaisons de ces techniques.
18. Substrat revêtu d'au moins une couche susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 17.
19. Substrat selon la revendication 18, dans lequel la couche possède une microstructure lamellaire et un réseau poreux tortueux.
20. Substrat selon l'une quelconque des revendications 18 et 19, dans lequel la couche comprend à la fois :
des lamelles issues de la fusion des particules solides de la suspension,
- des particules solides issues de la fusion partielle des particules solides de la suspension, et
des particules solides de la suspension non fondues.
21. Substrat selon l'une quelconque des revendications 18 à 20, dans lequel la couche a une porosité de 5 à 50% en volume, de préférence de 5 à 20% en volume.
22. Substrat selon l'une quelconque des revendications 18 à 21, dans lequel la couche a une épaisseur de 10 μιη à 1000 μιη, de préférence de 10 μιη à 300 μιη.
23. Pièce comprenant le substrat revêtu selon l'une quelconque des revendications 19 à 22.
24. Pièce selon la revendication 23 qui est une pièce d'une turbine, telle qu'une aube de turbine, un distributeur, un anneau de turbine, ou une pièce d'une chambre à combustion, ou une pièce d'une tuyère, ou plus généralement toute pièce soumise à des agressions par des contaminants liquides et/ou solides tels que les CMAS.
25. Utilisation de la couche susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 17, pour protéger un substrat solide contre les dégradations causées par des contaminants tels que les CMAS.
PCT/FR2017/052868 2016-10-18 2017-10-18 Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu WO2018073538A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3040347A CA3040347A1 (fr) 2016-10-18 2017-10-18 Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu
US16/341,956 US20190242001A1 (en) 2016-10-18 2017-10-18 Method for coating a surface of a solid substrate with a layer comprising a ceramic compound, and coated substrate thus obtained
EP17797677.6A EP3529395B1 (fr) 2016-10-18 2017-10-18 Procédé de revêtement d'une surface d'un substrat solide par une couche comprenant un composé céramique, et substrat revêtu ainsi obtenu
BR112019007670-0A BR112019007670B1 (pt) 2016-10-18 2017-10-18 Método para revestimento de pelo menos uma superfície de um substrato sólido, substrato, peça e uso da camada obtenível pelo método
CN201780064708.5A CN109874330B (zh) 2016-10-18 2017-10-18 含陶瓷化合物的层涂覆固体基材表面的方法及所获得的涂覆的基材
RU2019115140A RU2761397C2 (ru) 2016-10-18 2017-10-18 Способ покрытия поверхности твердой основы слоем, содержащим керамическое соединение, и основа с покрытием, полученная этим способом
JP2019541889A JP7271429B2 (ja) 2016-10-18 2017-10-18 セラミック化合物を含む層を有する固体基材の表面をコーティングする方法、及び該方法で得られたコーティング基材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1660103A FR3057580B1 (fr) 2016-10-18 2016-10-18 Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu
FR1660103 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018073538A1 true WO2018073538A1 (fr) 2018-04-26

Family

ID=58347466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/052868 WO2018073538A1 (fr) 2016-10-18 2017-10-18 Procede de revetement d'une surface d'un substrat solide par une couche comprenant un compose ceramique, et substrat revetu ainsi obtenu

Country Status (9)

Country Link
US (1) US20190242001A1 (fr)
EP (1) EP3529395B1 (fr)
JP (1) JP7271429B2 (fr)
CN (1) CN109874330B (fr)
BR (1) BR112019007670B1 (fr)
CA (1) CA3040347A1 (fr)
FR (1) FR3057580B1 (fr)
RU (1) RU2761397C2 (fr)
WO (1) WO2018073538A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421636A1 (fr) * 2017-06-26 2019-01-02 Rolls-Royce Corporation Couche à densité elevée pour un article en céramique ou en composite à matrice céramique
CN110218965A (zh) * 2019-05-28 2019-09-10 沈阳富创精密设备有限公司 一种先进陶瓷层的制备方法
US11673097B2 (en) 2019-05-09 2023-06-13 Valorbec, Societe En Commandite Filtration membrane and methods of use and manufacture thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210087695A1 (en) * 2017-12-19 2021-03-25 Oerlikon Metco (Us) Inc. Erosion and cmas resistant coating for protecting ebc and cmc layers and thermal spray coating method
CN108866470A (zh) * 2018-06-19 2018-11-23 扬州睿德石油机械有限公司 一种大气等离子喷涂合金-陶瓷层状涂层的制备方法
JP2022514483A (ja) * 2018-12-18 2022-02-14 エリコン メテコ(ユーエス)インコーポレイテッド Ebc層及びcmc層を保護するためのコーティング並びにその溶射コーティング方法
CN111850454B (zh) * 2020-07-30 2022-12-16 江苏大学 一种抗cmas侵蚀的热障涂层及制备方法
JP2022094933A (ja) * 2020-12-15 2022-06-27 信越化学工業株式会社 プラズマ溶射用スラリー、溶射膜の製造方法、酸化アルミニウム溶射膜、及び溶射部材
EP4071266A1 (fr) 2021-04-07 2022-10-12 Treibacher Industrie AG Suspension pour revêtements par pulvérisation thermique
EP4071267A1 (fr) 2021-04-07 2022-10-12 Treibacher Industrie AG Suspension pour revêtements par pulvérisation thermique
US12111148B2 (en) * 2021-05-21 2024-10-08 General Electric Company Component imaging systems, apparatus, and methods
CN113461442B (zh) * 2021-07-22 2022-04-15 北京航空航天大学 一种提高热障涂层抗cmas的方法和一种抗cmas的工件
CN114752881B (zh) * 2022-03-25 2024-03-08 华东理工大学 一种抗cmas腐蚀热障涂层的制备方法以及由此得到的热障涂层
CN115231953A (zh) * 2022-07-22 2022-10-25 燕山大学 一种硬质合金基体陶瓷复合材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639280A (en) 1983-12-29 1987-01-27 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels "A.R.M.I.N.E.S." Monocrystalline alloy with a nickel matrix basis
US20090184280A1 (en) 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
US20100196605A1 (en) 2006-01-20 2010-08-05 United Technologies Corporation Yttria-Stabilized Zirconia Coating with a Molten Silicate Resistant Outer Layer
US20110151219A1 (en) 2009-12-21 2011-06-23 Bangalore Nagaraj Coating Systems for Protection of Substrates Exposed to Hot and Harsh Environments and Coated Articles
US20110244216A1 (en) 2008-02-06 2011-10-06 Alexandra Meyer Thermal barrier coating system and method for the production thereof
EP2415905A1 (fr) * 2010-08-05 2012-02-08 United Technologies Corporation Revêtement TBC résistant au CMAS
US20130260132A1 (en) 2012-04-02 2013-10-03 United Technologies Corporation Hybrid thermal barrier coating
US20140065408A1 (en) 2012-09-05 2014-03-06 Christopher W. Strock Thermal barrier coating for gas turbine engine components
EP2947173A1 (fr) * 2014-05-20 2015-11-25 United Technologies Corporation Revêtement à barrière thermique résistante en aluminosilicate de calcium magnésium (cmas) et procédé de revêtement correspondant
WO2016043754A1 (fr) * 2014-09-18 2016-03-24 Oerlikon Metco (Us) Inc. Charge d'alimentation pré-formulée en forme de poudre

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025798A1 (de) * 2004-05-26 2005-12-22 Mtu Aero Engines Gmbh Wärmedämmschichtsystem
US20070160859A1 (en) * 2006-01-06 2007-07-12 General Electric Company Layered thermal barrier coatings containing lanthanide series oxides for improved resistance to CMAS degradation
US8124252B2 (en) * 2008-11-25 2012-02-28 Rolls-Royce Corporation Abradable layer including a rare earth silicate
FR2940278B1 (fr) * 2008-12-24 2011-05-06 Snecma Propulsion Solide Barriere environnementale pour substrat refractaire contenant du silicium
US8443891B2 (en) * 2009-12-18 2013-05-21 Petro-Hunt, L.L.C. Methods of fracturing a well using Venturi section
FR2957358B1 (fr) * 2010-03-12 2012-04-13 Snecma Methode de fabrication d'une protection de barriere thermique et revetement multicouche apte a former une barriere thermique
JP5953947B2 (ja) * 2012-06-04 2016-07-20 株式会社Ihi 耐環境被覆されたセラミックス基複合材料部品及びその製造方法
JP2014240511A (ja) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド 溶射皮膜の製造方法および溶射用材料
US9890089B2 (en) * 2014-03-11 2018-02-13 General Electric Company Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating
GB2532466B (en) * 2014-11-19 2020-11-25 Weston Body Hardware Ltd A paddle latch
JP6510824B2 (ja) * 2015-01-27 2019-05-08 日本イットリウム株式会社 溶射用粉末及び溶射材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639280A (en) 1983-12-29 1987-01-27 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels "A.R.M.I.N.E.S." Monocrystalline alloy with a nickel matrix basis
US20100196605A1 (en) 2006-01-20 2010-08-05 United Technologies Corporation Yttria-Stabilized Zirconia Coating with a Molten Silicate Resistant Outer Layer
US20090184280A1 (en) 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
US20110244216A1 (en) 2008-02-06 2011-10-06 Alexandra Meyer Thermal barrier coating system and method for the production thereof
US20110151219A1 (en) 2009-12-21 2011-06-23 Bangalore Nagaraj Coating Systems for Protection of Substrates Exposed to Hot and Harsh Environments and Coated Articles
EP2415905A1 (fr) * 2010-08-05 2012-02-08 United Technologies Corporation Revêtement TBC résistant au CMAS
US20130260132A1 (en) 2012-04-02 2013-10-03 United Technologies Corporation Hybrid thermal barrier coating
US20140065408A1 (en) 2012-09-05 2014-03-06 Christopher W. Strock Thermal barrier coating for gas turbine engine components
EP2947173A1 (fr) * 2014-05-20 2015-11-25 United Technologies Corporation Revêtement à barrière thermique résistante en aluminosilicate de calcium magnésium (cmas) et procédé de revêtement correspondant
WO2016043754A1 (fr) * 2014-09-18 2016-03-24 Oerlikon Metco (Us) Inc. Charge d'alimentation pré-formulée en forme de poudre

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. FEUERSTEIN; J. KNAPP; T. TAYLOR; A. ASHARY; A. BOLCAVAGE; N. HITCHMAN: "Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review", JOURNAL OF THERMAL SPRAY TECHNOLOGY, vol. 17, 2008, pages 199 - 213
E. H. JORDAN; L. XIE; M. GELL; N. P. PADTURE; B. CETEGEN; A. OZTURK; J. ROTH; T. D. XIAO; P. E. C. BRYANT: "Superior thermal barrier coatings using solution precursor plasma spray", JOURNAL OF THERMAL SPRAY TECHNOLOGY, vol. 13, 2004, pages 57 - 65
N. CURRY; K. VAN EVERY; T. SNYDER; N. MARKOCSAN: "Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings", COATI NGS, vol. 4, 2014, pages 630 - 650
O. AREVALO-QUINTEROA, D. WALDBILLIGB, O. KESLER: "An investigation of the dispersion of YSZ, SDC, and mixtures of YSZ/SDC powders in aqueous suspensions for application in suspension plasma spraying", SURFACE AND COATINGS TECHNOLOGY, vol. 205, no. 21-22, 25 August 2011 (2011-08-25), pages 5218 - 5227, XP002769362 *
P. FAUCHAIS ET AL: "Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions", JOURNAL OF THERMAL SPRAY TECHNOLOGY, vol. 17, no. 1, 1 March 2008 (2008-03-01), pages 31 - 59, XP055201509, ISSN: 1059-9630, DOI: 10.1007/s11666-007-9152-2 *
Z. TANG; H. KIM; I. YAROSLAVSKI; G. MASINDO; Z. CELLER; D. ELLSWORTH: "Novel thermal barrier coatings produced by axial suspension plasma spray", PROCEEDING OF INTERNATIONAL THERMAL SPRAY CONFÉRENCE AND EXPOSITION (ITSC, 2011

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421636A1 (fr) * 2017-06-26 2019-01-02 Rolls-Royce Corporation Couche à densité elevée pour un article en céramique ou en composite à matrice céramique
US10858725B2 (en) 2017-06-26 2020-12-08 Rolls-Royce Corporation High density bond coat for ceramic or ceramic matrix composites
US11673097B2 (en) 2019-05-09 2023-06-13 Valorbec, Societe En Commandite Filtration membrane and methods of use and manufacture thereof
CN110218965A (zh) * 2019-05-28 2019-09-10 沈阳富创精密设备有限公司 一种先进陶瓷层的制备方法

Also Published As

Publication number Publication date
CA3040347A1 (fr) 2018-04-26
BR112019007670A2 (pt) 2019-07-02
FR3057580A1 (fr) 2018-04-20
RU2761397C2 (ru) 2021-12-08
BR112019007670B1 (pt) 2023-04-04
JP2019533090A (ja) 2019-11-14
FR3057580B1 (fr) 2023-12-29
CN109874330B (zh) 2021-07-16
RU2019115140A3 (fr) 2021-04-02
EP3529395A1 (fr) 2019-08-28
RU2019115140A (ru) 2020-11-20
EP3529395B1 (fr) 2024-08-14
US20190242001A1 (en) 2019-08-08
JP7271429B2 (ja) 2023-05-11
CN109874330A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
EP3529395B1 (fr) Procédé de revêtement d'une surface d'un substrat solide par une couche comprenant un composé céramique, et substrat revêtu ainsi obtenu
CA2792518C (fr) Methode de fabrication d'une protecton de barriere thermique et revetement multicouche apte a former une barriere thermique
JP2009108410A (ja) 遮熱コーティング用アルミナ系保護皮膜
CA2481932C (fr) Cible destinee a etre evaporee sous faisceau d'electrons, son procede de fabrication, barriere thermique et revetement obtenus a partir d'une cible, et piece mecanique comportant un tel revetement
EP3638885B1 (fr) Pièce de turbomachine revêtue et procédé de fabrication associé
WO2018087452A1 (fr) Piece de turbomachine revetue d'une barriere thermique et procede pour l'obtenir.
WO2018229406A1 (fr) Pièce de turbomachine revêtue et procédé de fabrication associé
EP2935641A1 (fr) Procédé de revêtement d'un substrat par un matériau abradable céramique, et revêtement ainsi obtenu
WO2019129996A1 (fr) Piece revetue d'une composition de protection contre les cmas a fissuration controlee, et procede de traitement correspondant
CA2991435C (fr) Piece revetue d'un revetement de protection contre les cmas
WO2017080948A1 (fr) Revêtement céramique multicouche de protection thermique à haute température, notamment pour application aéronautique, et son procédé de fabrication
WO2010092298A1 (fr) Procede de depot d'une couche de protection sur une piece.
FR3070400A1 (fr) Couche protectrice resistante aux materiaux du type cmas
WO2023094752A1 (fr) Procédé de revêtement par électrophorèse d'une pièce en matériau composite à matrice céramique par une barrière environnementale

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17797677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3040347

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019541889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019007670

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017797677

Country of ref document: EP

Effective date: 20190520

ENP Entry into the national phase

Ref document number: 112019007670

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190416