WO2018072273A1 - 一种基于hsr双向环网的报文时延测量及修正方法 - Google Patents

一种基于hsr双向环网的报文时延测量及修正方法 Download PDF

Info

Publication number
WO2018072273A1
WO2018072273A1 PCT/CN2016/108793 CN2016108793W WO2018072273A1 WO 2018072273 A1 WO2018072273 A1 WO 2018072273A1 CN 2016108793 W CN2016108793 W CN 2016108793W WO 2018072273 A1 WO2018072273 A1 WO 2018072273A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
delay
port
packet
message
Prior art date
Application number
PCT/CN2016/108793
Other languages
English (en)
French (fr)
Inventor
周华良
郑玉平
杨志宏
谢黎
胡国
吴海
王凯
赵马泉
Original Assignee
国电南瑞科技股份有限公司
国电南瑞南京控制系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 国电南瑞南京控制系统有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2018072273A1 publication Critical patent/WO2018072273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route

Definitions

  • the invention relates to a packet delay measurement and correction method based on an HSR bidirectional ring network, and belongs to the technical field of power system automation communication.
  • State Grid Corporation is currently vigorously promoting the construction of smart grids, of which the construction of intelligent substations is an important part of it.
  • the reliability of network communication plays an important role in the stability of the entire intelligent substation system.
  • the self-healing time of network single-point disconnection is an important indicator to measure the reliability of network communication.
  • network redundancy protocols such as the rapid spanning tree protocol (RSTP) cannot meet the requirements of zero self-healing time. In order to improve the reliability of the network, it is necessary to reduce the self-healing time.
  • RSTP rapid spanning tree protocol
  • IEC62439-3 defines the High Availability Seamless Ring Protocol (HSR). It has the characteristics of zero failure of network fault recovery, no frame loss when faults, and high network reliability. It has received more and more attention in the field of intelligent substation. ABB has developed substation protection and monitoring devices with HSR network functions abroad, but such devices are currently quite expensive and basically monopolize overseas markets.
  • HSR High Availability Seamless Ring Protocol
  • the present invention aims to provide a packet delay measurement and correction method based on an HSR bidirectional ring network, which ensures zero delay in the event of a network failure. No frame loss, high network reliability, and the ability to correct the delay correction field in the message.
  • a method for measuring and correcting packet delay based on an HSR bidirectional ring network includes the following steps:
  • the source node simultaneously sends the same Ethernet packet to the target receiving node in the two directions of the HSR bidirectional ring network
  • the calculated Ethernet packet is added to the delay time domain of the Ethernet packet in the delay time domain of the Ethernet packet, and the final delay correction domain field is obtained, thereby implementing Ethernet packet transmission. Correction of delay;
  • the target receiving node selects the packet with the first arrival direction, and uses the final delay correction domain field in the packet as the final delay of the packet.
  • the source node of an Ethernet packet is node 1, and the destination receiving node is node 3.
  • the source node sends the same packet to both the two directions of the HSR bidirectional ring network through port A and port B.
  • the message arrives at port B of the target receiving node through node 6, node 5, and node 4.
  • the packet sent by port B passes through node 2 to port A of the destination receiving node.
  • the packet sent by port 1 of node 1 to node 3 port A receives the total delay:
  • ⁇ t1 is the path delay of the node 1 port B to the node 2 port A;
  • ⁇ t2 is the dwell time of the message in node 2;
  • ⁇ t3 is the node 2 port B to node 3 port A path delay
  • the packet sent by the port 1 of the node 1 to the port 3 of the port 3 receives the total delay:
  • ⁇ t1' is the path delay of the port 1 port A to node 6 port B;
  • ⁇ t2' is the dwell time of the message in node 6;
  • ⁇ t3' is the path delay of the node 6 port A to node 5 port B;
  • ⁇ t4' is the dwell time of the message in node 5;
  • ⁇ t5' is the path delay of the node 5 port A to node 4 port B;
  • ⁇ t6' is the dwell time of the message in node 4.
  • ⁇ t7' is the node 4 port A to node 3 port B path delay
  • Node 3 takes the packet that arrives first, and the total delay of packet transmission is the delay of the packet from node 1 to node 3, that is, the delay of the packet from node 1 to node 3 is The minimum time of the same message from the two paths:
  • ⁇ T Min ( ⁇ t, ⁇ t').
  • the method for calculating the dwell time of each message in each node is as follows:
  • the Ethernet packet is received from port A.
  • the receiving time T1 is recorded as the receiving time stamp of the packet by the internal time stamp of the node.
  • FTCF Fre Transmit Correction Field
  • the packet is forwarded from the port B.
  • the sending time T2 is recorded as the receiving time stamp of the packet by using the internal time stamp of the node.
  • the path delay between the nodes is calculated as follows:
  • Node 1 port B receives the delay measurement request message Pdelay_req, and records the reception time t2, that is, the node 1 time scale;
  • Node 1 port B sends a delay measurement request response message Pdelay_resp to node 2 port B, and records the transmission time t3, that is, the node 1 time stamp, and transmits the frame in the result of the t3-t2 calculation update packet.
  • Correction field field
  • Node 2 port A receives the delay measurement request response message Pdelay_resp; and records the reception time t4, that is, the node 2 time scale, and calculates t4-t1;
  • the HSR node When the port receives the packet, the HSR node rewrites the delay correction domain field to FTCF-T1.
  • the local node forwards the packet, it sends the time T2 and calculates it when it sends the delay correction field field of the packet.
  • the value of the path delay PathDelay is added to the delay correction domain, that is, the final delay correction domain field becomes FTCF-T1+T2+PathDelay, and the contents of other messages remain unchanged.
  • each node automatically calculates the camping time of the packet at the local node, and corrects the delay correction domain field in the packet;
  • each node When Ethernet packets pass through each node in the network, each node also automatically calculates the transmission time of the message between the previous node and the node, and corrects the delay correction domain field in the message.
  • FIG. 1 is a schematic diagram of communication transmission of an HSR network according to the present invention.
  • FIG. 2 is a diagram showing an example of calculation of dwell time of an Ethernet packet in each node according to the present invention:
  • FIG. 3 is a schematic diagram of a path delay calculation method between nodes according to the present invention.
  • FIG. 4 is a schematic diagram of a method for modifying a delay field of a transmitted message by an HSR node according to the present invention.
  • the invention realizes the HSR protocol by using the FPGA, realizes the fast bidirectional ring network redundant data processing on the data link layer through the search algorithm, thereby ensuring zero delay in the network failure, no frame loss in the failure, and high network reliability.
  • the functions of the time synchronization of each device in the HSR ring network and the related control and control of the sampled and measured sample value packets need to accurately measure the delay of the Ethernet message during the path transmission.
  • an Ethernet packet delay measurement and correction technology in the HSR ring network architecture of the intelligent substation is provided, and the HSR ring network protocol is applied in the intelligent substation, the smart substation architecture and cost are simplified, and the intelligent substation operation is improved. Reliability is very important.
  • the source node of a certain Ethernet packet is node 1, and the target receiving node is node 3.
  • the source node (node 1) sends the same packet to the HSR ring in both directions through port A and port B.
  • the packet sent by port A passes through node 6, node 5, and node 4 to the destination receiving node.
  • Port B the packet sent by port B passes through node 2 to port A of the destination receiving node (node 3).
  • the node When each of the two packets passes through a node, the node records the time stamp of receiving and forwarding, and The difference (that is, the dwell time of the packet at the local node) is corrected for the delay correction domain field in the packet, and the port of the node receiving the packet calculated by the node and the previous node are also sent.
  • the path delay between the ports of the packet corrects the delay correction domain field in the packet.
  • the packet sent during forwarding is the packet after the modification of the delay correction domain field.
  • the packet sent by port 1 of node 1 to node 3 port A receives the total delay:
  • ⁇ t1 is the node 1 port B to node 2 port A path delay
  • ⁇ t2 is the dwell time of the message in node 2.
  • ⁇ t3 is the delay of node 2 port B to node 3 port A path
  • the packet sent by the port 1 of the node 1 to the port 3 of the port 3 receives the total delay:
  • ⁇ t1' is the path delay of node 1 port A to node 6 port B
  • ⁇ t2' is the dwell time of the message in node 6.
  • ⁇ t3' is the path delay of node 6 port A to node 5 port B
  • ⁇ t4' is the dwell time of the message in node 5.
  • ⁇ t5' is the path delay of node 5 port A to node 4 port B
  • ⁇ t6' is the dwell time of the message in node 4.
  • ⁇ t7' is the node 4 port A to node 3 port B path delay
  • Node 3 takes the packet that arrives first, and the total delay of packet transmission is the delay of the packet from node 1 to node 3. That is, the minimum time that the packet delay from the node 1 to the node 3 is the same packet from the two paths:
  • ⁇ T Min( ⁇ t, ⁇ t')
  • an example of calculation of the dwell time of the Ethernet message of the present invention in each node is as follows:
  • the Ethernet packet is received from port A.
  • the receiving time T1 is recorded as the receiving time stamp of the packet by the internal time stamp of the local node, and the delay of receiving the packet is received.
  • Time Correction Field Field FTCF Fram Transmit Correction Field
  • a method for calculating a path delay between nodes is performed by taking the path delay calculation of the node 1 port B to the node 2 port A in FIG. 1 as an example:
  • Node 2 port A is scheduled to send a delay measurement request message (Pdelay_req message) to node 1 port B, and record the transmission time t1 (node 2 time stamp)
  • Node 1 port B receives the delay measurement request message (Pdelay_req message) and records the reception time t2 (node 1 time scale)
  • Node 1 port B sends a delay measurement request response message (Pdelay_resp message) to node 2 port B and records the transmission time t3 (node 1 time scale), and updates the result of t3-t2 calculation to the frame in the message. Transmit correction field
  • Node 2 port A receives the delay measurement request response message (Pdelay_resp message) and records the reception time t4 (node 2 time scale), and calculates t4-t1
  • the Ethernet packet of the present invention implements packet delay calculation and delay correction by modifying a transmission message delay correction domain field after passing through an HSR node:
  • the HSR node Since the HSR node has written the delay correction domain field as FTCF-T1 when the port receives the packet, when the local node forwards the packet to the delay correction domain field of the packet, it will send the time T2 and the above.
  • the calculated path delay PathDelay value is added to the value Correct the domain value, that is, the modified domain field becomes FTCF-T1+T2+PathDelay, and the contents of other messages remain unchanged.
  • each network node related device in the HSR ring network in the intelligent substation reliably completes the relevant protection measurement and control function.

Abstract

本发明公开了一种基于HSR双向环网的报文时延测量及修正方法,包括以下步骤:源节点同时向HSR双向环网的两个方向目标接收节点发送同一份以太网报文;通过记录以太网报文在每个节点进出时标来计算报文在此节点的驻留时间;计算节点之间的路径延时;将计算得到的以太网报文在本节点驻留时间和节点之间的路径延时累加到以太网报文的时延修正域中,得到最终延时修正域字段,从而实现以太网报文传输时延的修正;目标接收节点选取最先到达方向的那份报文,并将此份报文中最终延时修正域字段作为此报文的最终时延。本发明保证了在网络故障时恢复零延时、故障时不丢帧、网络高可靠性,并且能够修正报文中延时修正域字段。

Description

一种基于HSR双向环网的报文时延测量及修正方法 技术领域
本发明涉及一种基于HSR双向环网的报文时延测量及修正方法,属于电力系统自动化通信技术领域。
背景技术
国家电网公司目前在大力推进智能电网的建设,其中智能变电站的建设是其中重要的一环。网络通信的可靠性对整个智能变电站系统的稳定有重要作用。网络单点断线的自愈时间是衡量网络通信可靠性的重要指标。目前常用的快速生成协议(rapid spanning tree protocol,RSTP)等网络冗余协议无法达到零自愈时间的要求。为了提高网络的可靠性,必须降低自愈时间。
IEC62439-3定义了高可用无缝环网协议(HSR)。其具有网络故障恢复零延时、故障时不丢帧、网络可靠性高等特点,在智能变电站领域,越来越受到大家的重视。国外已经有ABB公司研制了具有HSR网络功能的变电站保护测控装置,但此类装置目前价格相当昂贵,基本垄断了海外市场。
发明内容
针对现有技术存在的不足,本发明目的是提供一种基于HSR双向环网的报文时延测量及修正方法,保证了在网络故障时恢复零延时、 故障时不丢帧、网络高可靠性,并且能够修正报文中延时修正域字段。
为了实现上述目的,本发明是通过如下的技术方案来实现:
本发明的一种基于HSR双向环网的报文时延测量及修正方法,包括以下步骤:
源节点同时向HSR双向环网的两个方向目标接收节点发送同一份以太网报文;
通过记录以太网报文在每个节点进出时标来计算报文在此节点的驻留时间;并通过专用报文的方式测量两个相邻节点之间的传输路径时间来计算出节点之间的路径延时;
将计算得到的以太网报文在本节点驻留时间和节点之间的路径延时累加到以太网报文的时延修正域中,得到最终延时修正域字段,从而实现以太网报文传输时延的修正;
所述目标接收节点选取最先到达方向的那份报文,并将此份报文中最终延时修正域字段作为此报文的最终时延。
上述最终时延的计算方法如下:
假设一份以太网报文的源节点为节点1,目标接收节点为节点3;源节点通过端口A和端口B往HSR双向环网的两个方向同时发出同一份报文,其中,端口A发出的报文先后经过节点6、节点5、节点4到达目标接收节点的端口B,端口B发出的报文先后经过节点2到达目标接收节点的端口A,这两份报文每经过一个节点时,此节点记录接收时标T1和转发时标T2,计算出报文在本节点的驻留时间,并对报文中的延时修正域字段进行时间值累加修正,即FTCF’=FTCF-T1+T2,其中,FTCF为延时修正域字段;同时,计算 出本节点接收报文的端口与上一节点发送报文的端口之间的路径延时,并对报文中的延时修正域字段进行时间值累加修正,即FTCF”=FTCF’+PathDelay=FTCF-T1+T2+PathDelay,其中,PathDelay为节点中计算的路径延时;
节点1端口B发出的报文到节点3端口A接收总时延:
Δt=Δt1+Δt2+Δt3
其中,Δt1为节点1端口B到节点2端口A路径延时;
Δt2为报文在节点2中的驻留时间;
Δt3为节点2端口B到节点3端口A路径延时;
节点1端口A发出的报文到节点3端口B接收总时延:
Δt'=Δt1'+Δt2'+Δt3'+Δt4'+Δt5'+Δt6'+Δt7'
其中,Δt1'为节点1端口A到节点6端口B路径延时;
Δt2'为报文在节点6中的驻留时间;
Δt3'为节点6端口A到节点5端口B路径延时;
Δt4'为报文在节点5中的驻留时间;
Δt5'为节点5端口A到节点4端口B路径延时;
Δt6'为报文在节点4中的驻留时间;
Δt7'为节点4端口A到节点3端口B路径延时;
节点3取最先到达的那份报文,其报文传输总时延即为此报文从节点1到节点3的时延,即最终报文从节点1到达节点3的报文时延为两条路径过来的同一报文的最小时间:
ΔT=Min(Δt,Δt')。
上述报文在每个节点中驻留时间的计算方法如下:
(1-1)以太网报文从端口A开始接收,当接收到报文的SFD标识时,以本节点的内部时标记录此接收时刻T1作为报文的接收时标,当接收到此报文的延时修正域字段FTCF(Frame Transmit Correction Field)时,将FTCF-T1的值替换掉原FTCF,其它报文内容保持不变;
(1-2)此报文从端口B开始转发,当发送完成此报文的SFD标识时,以本节点的内部时标记录此发送时刻T2作为报文的接收时标;
(1-3)则以太网报文在此节点中驻留时间即为T2-T1。
以节点1端口B到节点2端口A路径延时计算为例,所述节点之间的路径延时的计算方法如下:
(2-1)节点2端口A定时往节点1端口B发送延时测量请求报文Pdelay_req,并记录发送时刻t1即节点2时标;
(2-2)节点1端口B接收延时测量请求报文Pdelay_req,并记录接收时刻t2即节点1时标;
(2-3)节点1端口B往节点2端口B发送延时测量请求响应报文Pdelay_resp,并记录发送时刻t3即节点1时标,并将t3-t2计算的结果更新报文中的Frame transmit correction Field字段;
(2-4)节点2端口A接收延时测量请求响应报文Pdelay_resp;并记录接收时刻t4即节点2时标,并计算t4-t1;
(2-5)则在节点2中计算路径延时PathDelay=[(t4–t1)-(t3–t2)]/2。
上述最终延时修正域字段的计算方法如下:
HSR节点在端口接收报文时已将延时修正域字段改写为FTCF-T1,当本节点转发此报文,在发送到此报文的延时修正域字段时,将发送时刻T2和计算出来的路径延时PathDelay的值都累加到时延修正域中,即最终延时修正域字段变为FTCF-T1+T2+PathDelay,其它报文内容保持不变。
本发明的有益效果是:
1)保证在网络故障时恢复零延时、故障时不丢帧、保障了网络高可靠性,每个节点采用最先到的那份报文,丢弃后到的报文,保证了智能变电站系统内部以太网报文对实时性的要求;
2)以太网报文通过网络中的每个节点时,每个节点自动计算出报文在本节点的驻留时间,并修正报文中延时修正域字段;
3)以太网报文通过网络中的每个节点时,每个节点还自动计算出报文在上一节点与本节点之间传输时间,并修正报文中延时修正域字段。
附图说明
图1为本发明的HSR网络通讯传输示意图;
图2为本发明的以太网报文在每个节点中驻留时间的计算示例图:
图3为本发明的节点之间路径延时计算方法示意图;
图4为本发明的以太网报文每经过一个HSR节点修改发送报文延时修正域字段的方法示意图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明利用FPGA实现HSR协议,通过查找算法,在数据链路层上实现快速双向环网冗余数据处理,从而保证在网络故障时恢复零延时、故障时不丢帧、网络高可靠性。HSR环网中各设备的对时同步以及相关的保护测控采样值报文的计算控制等功能都需要精确测量以太网报文在路径传输过程中的延时。
因此,提供一种智能变电站内相关设备在HSR环网架构中以太网报文延时测量及修正技术,对于HSR环网协议在智能变电站内应用,精简智能变电站架构和成本,提高智能变电站运行的可靠性具有很重要的意义。
参见图1,假设某份以太网报文的源节点为节点1,目标接收节点为节点3。源节点(节点1)通过端口A和端口B往HSR环网的两个方向同时发出同一份报文,其中端口A发出的报文先后经过节点6、节点5、节点4到达目标接收节点(节点3)的端口B,端口B发出的报文先后经过节点2到达目标接收节点(节点3)的端口A,这两份报文每经过一个节点时,此节点记录接收和转发的时标,并将差值(即报文在本节点的驻留时间)对报文中的延时修正域字段进行修正,同时,还需将本节点计算出来的本节点接收报文的端口与上一节点发送报文的端口之间的路径延时对报文中的延时修正域字段进行修正,转发时发送的报文即是通过计算修改过延时修正域字段后的报文。
节点1端口B发出的报文到节点3端口A接收总时延:
Δt=Δt1+Δt2+Δt3
其中,Δt1为节点1端口B到节点2端口A路径延时
Δt2为报文在节点2中的驻留时间
Δt3为节点2端口B到节点3端口A路径延时
节点1端口A发出的报文到节点3端口B接收总时延:
Δt'=Δt1'+Δt2'+Δt3'+Δt4'+Δt5'+Δt6'+Δt7'
其中,Δt1'为节点1端口A到节点6端口B路径延时
Δt2'为报文在节点6中的驻留时间
Δt3'为节点6端口A到节点5端口B路径延时
Δt4'为报文在节点5中的驻留时间
Δt5'为节点5端口A到节点4端口B路径延时
Δt6'为报文在节点4中的驻留时间
Δt7'为节点4端口A到节点3端口B路径延时
节点3取最先到达的那份报文,其报文传输总时延即为此报文从节点1到节点3的时延。即最终报文从节点1到达节点3的报文时延为两条路径过来的同一报文的最小时间:
ΔT=Min(Δt,Δt')
参见图2,本发明的以太网报文在每个节点中驻留时间的计算示例如下:
1)以太网报文从端口A开始接收,当接收到报文的SFD标识时,以本节点的内部时标记录此接收时刻T1作为报文的接收时标,当接收到此报文的延时修正域字段FTCF(Frame Transmit Correction Field) 时,将FTCF-T1的值替换掉原FTCF,其它报文内容保持不变。
2)此报文从端口B开始转发,当发送完成此报文的SFD标识时,以本节点的内部时标记录此发送时刻T2作为报文的接收时标
3)以太网报文在此节点中驻留时间即为T2-T1
参见图3,为本发明的节点之间路径延时计算方法,以图1中节点1端口B到节点2端口A路径延时计算为例:
1)节点2端口A定时往节点1端口B发送延时测量请求报文(Pdelay_req报文),并记录发送时刻t1(节点2时标)
2)节点1端口B接收延时测量请求报文(Pdelay_req报文)并记录接收时刻t2(节点1时标)
3)节点1端口B往节点2端口B发送延时测量请求响应报文(Pdelay_resp报文)并记录发送时刻t3(节点1时标),并将t3-t2计算的结果更新报文中的Frame transmit correction Field字段
4)节点2端口A接收延时测量请求响应报文(Pdelay_resp报文)并记录接收时刻t4(节点2时标),并计算t4-t1
5)在节点2中计算路径延时PathDelay=[(t4–t1)-(t3–t2)]/2
参见图4,为本发明以太网报文每经过一个HSR节点通过修改发送报文延时修正域字段实现报文延时计算及延时修正:
由于HSR节点在端口接收报文时已将延时修正域字段该写为FTCF-T1,当本节点转发此报文在发送到此报文的延时修正域字段时,将发送时刻T2和上述计算出来的路径延时PathDelay的值都累加到 修正域值,即修正域字段变为FTCF-T1+T2+PathDelay,其它报文内容保持不变。
从源节点到目标接收节点经过HSR环网所传递的两份报文经过HSR环网的每一个节点时对延时修正域字段都做上述处理,最终目标接收节点取最先收到的那份报文,并将其中延时修正域字段取出,用于与源节点进行对时、同步。基于本发明的报文时延测量及修正技术,智能变电站内HSR环网内各个网络节点相关设备可靠的完成相关保护测控功能。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

  1. 一种基于HSR双向环网的报文时延测量及修正方法,其特征在于,包括以下步骤:
    源节点同时向HSR双向环网的两个方向目标接收节点发送同一份以太网报文;
    通过记录以太网报文在每个节点进出时标来计算报文在此节点的驻留时间;并通过测量两个相邻节点之间的传输路径时间来计算节点之间的路径延时;
    将计算得到的以太网报文在本节点驻留时间和节点之间的路径延时累加到以太网报文的时延修正域中,得到最终延时修正域字段,从而实现以太网报文传输时延的修正;
    所述目标接收节点选取最先到达方向的那份报文,并将此份报文中最终延时修正域字段作为此报文的最终时延。
  2. 根据权利要求1所述的基于HSR双向环网的报文时延测量及修正方法,其特征在于,所述最终时延的计算方法如下:
    假设一份以太网报文的源节点为节点1,目标接收节点为节点3;源节点通过端口A和端口B往HSR双向环网的两个方向同时发出同一份报文,其中,端口A发出的报文先后经过节点6、节点5、节点4到达目标接收节点的端口B,端口B发出的报文先后经过节点2到达目标接收节点的端口A,这两份报文每经过一个节点时,此节点记录接收时标T1和转发时标T2,计算出报文在本节点的驻留时间,并对报文中的延时修正域字段进行时间值累加修正,即FTCF’=FTCF-T1+T2,其中,FTCF为延时修正域字段;同时,计算 出本节点接收报文的端口与上一节点发送报文的端口之间的路径延时,并对报文中的延时修正域字段进行时间值累加修正,即FTCF”=FTCF’+PathDelay=FTCF-T1+T2+PathDelay,其中,PathDelay为节点中计算的路径延时;
    节点1端口B发出的报文到节点3端口A接收总时延:
    Δt=Δt1+Δt2+Δt3
    其中,Δt1为节点1端口B到节点2端口A路径延时;
    Δt2为报文在节点2中的驻留时间;
    Δt3为节点2端口B到节点3端口A路径延时;
    节点1端口A发出的报文到节点3端口B接收总时延:
    Δt'=Δt1'+Δt2'+Δt3'+Δt4'+Δt5'+Δt6'+Δt7'
    其中,Δt1'为节点1端口A到节点6端口B路径延时;
    Δt2'为报文在节点6中的驻留时间;
    Δt3'为节点6端口A到节点5端口B路径延时;
    Δt4'为报文在节点5中的驻留时间;
    Δt5'为节点5端口A到节点4端口B路径延时;
    Δt6'为报文在节点4中的驻留时间;
    Δt7'为节点4端口A到节点3端口B路径延时;
    节点3取最先到达的那份报文,其报文传输总时延即为此报文从节点1到节点3的时延,即最终报文从节点1到达节点3的报文时延为两条路径过来的同一报文的最小时间:
    ΔT=Min(Δt,Δt')。
  3. 根据权利要求1所述的基于HSR双向环网的报文时延测量及修正方法,其特征在于,所述报文在每个节点中驻留时间的计算方法如下:
    (1-1)以太网报文从端口A开始接收,当接收到报文的SFD标识时,以本节点的内部时标记录此接收时刻T1作为报文的接收时标,当接收到此报文的延时修正域字段FTCF时,将FTCF-T1的值替换掉原FTCF,其它报文内容保持不变;
    (1-2)此报文从端口B开始转发,当发送完成此报文的SFD标识时,以本节点的内部时标记录此发送时刻T2作为报文的接收时标;
    (1-3)则以太网报文在此节点中驻留时间即为T2-T1。
  4. 根据权利要求3所述的基于HSR双向环网的报文时延测量及修正方法,其特征在于,以节点1端口B到节点2端口A路径延时计算为例,所述节点之间的路径延时的计算方法如下:
    (2-1)节点2端口A定时往节点1端口B发送延时测量请求报文Pdelay_req,并记录发送时刻t1即节点2时标;
    (2-2)节点1端口B接收延时测量请求报文Pdelay_req,并记录接收时刻t2即节点1时标;
    (2-3)节点1端口B往节点2端口B发送延时测量请求响应报文Pdelay_resp,并记录发送时刻t3即节点1时标,并将t3-t2计算的结果更新报文中的Frame transmit correction Field字段;
    (2-4)节点2端口A接收延时测量请求响应报文Pdelay_resp;并记录接收时刻t4即节点2时标,并计算t4-t1;
    (2-5)则在节点2中计算路径延时PathDelay=[(t4–t1)-(t3–t2)]/2。
  5. 根据权利要求4所述的基于HSR双向环网的报文时延测量及修正方法,其特征在于,所述最终延时修正域字段的计算方法如下:
    HSR节点在端口接收报文时已将延时修正域字段改写为FTCF-T1,当本节点转发此报文,在发送到此报文的延时修正域字段时,将发送时刻T2和计算出来的路径延时PathDelay的值都累加到时延修正域中,即最终延时修正域字段变为FTCF-T1+T2+PathDelay,其它报文内容保持不变。
PCT/CN2016/108793 2016-10-17 2016-12-07 一种基于hsr双向环网的报文时延测量及修正方法 WO2018072273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610902400.0 2016-10-17
CN201610902400.0A CN106506260A (zh) 2016-10-17 2016-10-17 一种基于hsr双向环网的报文时延测量及修正方法

Publications (1)

Publication Number Publication Date
WO2018072273A1 true WO2018072273A1 (zh) 2018-04-26

Family

ID=58293644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108793 WO2018072273A1 (zh) 2016-10-17 2016-12-07 一种基于hsr双向环网的报文时延测量及修正方法

Country Status (2)

Country Link
CN (1) CN106506260A (zh)
WO (1) WO2018072273A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217900A (zh) * 2018-10-24 2019-01-15 国网河南省电力公司 一种用于就地化元件保护双向冗余环网通信测试的损伤仪及其实现方法
CN113037457A (zh) * 2021-02-26 2021-06-25 国网冀北电力有限公司廊坊供电公司 一种基于芯片化保护装置的采样方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104857B (zh) * 2017-05-09 2019-10-25 国网四川省电力公司阿坝供电公司 一种智能变电站网络交换机延时累加测试方法及系统
CN107359978A (zh) * 2017-07-03 2017-11-17 南京南瑞继保电气有限公司 一种基于数据转发延时测量的hsr/prp网络采样同步方法
CN108667686B (zh) * 2018-04-11 2021-10-22 国电南瑞科技股份有限公司 一种网络报文时延测量的可信度评估方法
CN109379252B (zh) * 2018-10-18 2022-04-29 南京丰道电力科技有限公司 一种基于可编程逻辑器件的网络延时测量方法及装置
CN109613906B (zh) * 2018-11-08 2020-05-22 国网湖南省电力有限公司 第三代智能变电站测控子机测试系统及其应用方法
CN109600289B (zh) * 2018-12-06 2022-10-11 中国电力科学研究院有限公司 智能变电站用hsr环网内及环网间数据收发方法及保护
CN109831246A (zh) * 2019-02-27 2019-05-31 南京电研电力自动化股份有限公司 一种基于hsr的线路光差同步方法
CN111953442A (zh) * 2020-06-28 2020-11-17 成都星辰瀑布通信技术有限公司 一种快速高精度时间同步系统
WO2022204875A1 (zh) * 2021-03-29 2022-10-06 华为技术有限公司 测量方法及网络设备
CN115002006B (zh) * 2022-04-27 2023-07-07 北京中睿天下信息技术有限公司 网络设备时延测试方法
CN115499359B (zh) * 2022-09-15 2023-12-29 四川灵通电讯有限公司 基于标准hsr协议浪费链路资源的改进方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195766A (zh) * 2010-03-01 2011-09-21 杭州华三通信技术有限公司 一种时间同步的方法和时钟设备
US20120213061A1 (en) * 2011-02-18 2012-08-23 The Hong Kong University Of Science And Technology Cognitive relay techniques
CN103683218A (zh) * 2013-12-18 2014-03-26 南京国电南自电网自动化有限公司 基于hsr环网的分布式母线保护装置
CN103715766A (zh) * 2013-12-18 2014-04-09 南京国电南自电网自动化有限公司 一种环网分布式母线保护同步方法
CN205142215U (zh) * 2015-10-08 2016-04-06 南京南瑞继保电气有限公司 站间通信装置站间通信hsr环网

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE552672T1 (de) * 2009-07-31 2012-04-15 Abb Research Ltd Datenübertragung in einem ringkommunikationsnetzwerk
CN102833061B (zh) * 2012-08-31 2016-02-24 北京东土科技股份有限公司 基于无缝冗余环网的提高时钟精度的方法及节点

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195766A (zh) * 2010-03-01 2011-09-21 杭州华三通信技术有限公司 一种时间同步的方法和时钟设备
US20120213061A1 (en) * 2011-02-18 2012-08-23 The Hong Kong University Of Science And Technology Cognitive relay techniques
CN103683218A (zh) * 2013-12-18 2014-03-26 南京国电南自电网自动化有限公司 基于hsr环网的分布式母线保护装置
CN103715766A (zh) * 2013-12-18 2014-04-09 南京国电南自电网自动化有限公司 一种环网分布式母线保护同步方法
CN205142215U (zh) * 2015-10-08 2016-04-06 南京南瑞继保电气有限公司 站间通信装置站间通信hsr环网

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217900A (zh) * 2018-10-24 2019-01-15 国网河南省电力公司 一种用于就地化元件保护双向冗余环网通信测试的损伤仪及其实现方法
CN113037457A (zh) * 2021-02-26 2021-06-25 国网冀北电力有限公司廊坊供电公司 一种基于芯片化保护装置的采样方法及系统

Also Published As

Publication number Publication date
CN106506260A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2018072273A1 (zh) 一种基于hsr双向环网的报文时延测量及修正方法
US9515845B2 (en) Utility communication method and system
JP4899959B2 (ja) Vpn装置
US20150085862A1 (en) Forwarding Multicast Data Packets
CN102694689B (zh) 一种网络拓扑发现方法和装置
CN103326963A (zh) 数字化变电站过程层数据交换装置
JP2015122640A (ja) 中継システムおよびスイッチ装置
US9094286B2 (en) Transmission device, transmission method, and computer-readable recording medium
US20150215108A1 (en) Method and device for detecting 1588 time error between network elements
JPWO2012023538A1 (ja) 通信装置、通信システム、通信方法、および記録媒体
US9936004B2 (en) Network interface for transmitting protection data of a power network
CN103973825A (zh) 叠加网络中通告mac地址可达性的方法、节点设备及发送方法
WO2013182031A1 (zh) 清除媒体接入控制转发表项的方法和设备
CN107359978A (zh) 一种基于数据转发延时测量的hsr/prp网络采样同步方法
CN103067278B (zh) 一种数据帧的传输处理方法、设备及系统
CN100446476C (zh) 一种网络故障检测结果互通的方法和装置
CN105227393A (zh) 一种双向转发检测方法
CN103259721A (zh) Spbm网络中的报文转发方法及装置
WO2009009985A1 (fr) Procédé et appareil pour accélérer la convergence de liaison
CN113541845B (zh) 一种电力通信继电保护业务时延控制方法、系统及继电保护设备
CN101547131B (zh) Eaps环网单通故障定位和保护方法
CN104618057A (zh) 一种分组传送网无损伤保护倒换方法及系统
WO2014008809A1 (zh) 一种丢失帧测定方法及系统
WO2015032203A1 (zh) 网元和环网保护的方法
US10003469B2 (en) Multicast forwarding method and apparatus in transparent interconnection of lots of link network, and routing bridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919346

Country of ref document: EP

Kind code of ref document: A1