WO2018072080A1 - 高效节能隔热窗 - Google Patents

高效节能隔热窗 Download PDF

Info

Publication number
WO2018072080A1
WO2018072080A1 PCT/CN2016/102354 CN2016102354W WO2018072080A1 WO 2018072080 A1 WO2018072080 A1 WO 2018072080A1 CN 2016102354 W CN2016102354 W CN 2016102354W WO 2018072080 A1 WO2018072080 A1 WO 2018072080A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
glass
energy
strip
sealing strip
Prior art date
Application number
PCT/CN2016/102354
Other languages
English (en)
French (fr)
Inventor
余卫平
Original Assignee
余卫平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 余卫平 filed Critical 余卫平
Priority to CN201680018649.3A priority Critical patent/CN107690504A/zh
Priority to PCT/CN2016/102354 priority patent/WO2018072080A1/zh
Publication of WO2018072080A1 publication Critical patent/WO2018072080A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/16Sealing arrangements on wings or parts co-operating with the wings
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/16Sealing arrangements on wings or parts co-operating with the wings
    • E06B7/22Sealing arrangements on wings or parts co-operating with the wings by means of elastic edgings, e.g. elastic rubber tubes; by means of resilient edgings, e.g. felt or plush strips, resilient metal strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a sash, a door leaf or the like for closing an opening, and more particularly to an energy efficient insulated window.
  • the existing technical solutions are as follows: 1) using three glass two-chamber insulating glass or vacuum insulating glass 2) using high-performance double-silver or triple-silver Low-e glass; 3) changing the traditional aluminum alloy spacer in the insulating glass to the warm-side spacer; 4) filling the hollow cavity of the hollow glass with an inert gas.
  • Option 1 Window glass construction costs have increased significantly.
  • the configuration of window glass is mostly double glass hollow glass, the thickness of which is generally 22mm, 24mm, 28mm, etc.; the thickness of three glass and two cavity hollow glass is generally 33mm, 36mm, 39mm, etc.; the thickness of vacuum insulating glass is generally 27mm, 35mm Etc.
  • the existing sash profile section needs to be modified to adapt to the thickness variation of the glazing, which makes the adaptability of the existing sash profile less, which greatly increases the amount of profile and the cost of profile opening.
  • Scheme 2 As shown in Figure 1, the existing aluminum window using double glass double silver Low-e insulating glass, including window glass 10, outdoor window frame 20, indoor window frame 30, heat insulation strip 40, outdoor rubber strip 50, indoor strip 60.
  • the window glass 10 is fixed between the outdoor window frame 20 and the indoor window frame 30 through the outdoor rubber strip 50 and the indoor rubber strip 60, and the outdoor window frame 20 and the indoor window frame 30 are connected by a heat insulating strip 40.
  • the aluminum window mainly relies on the heat insulation strip 40 (solving the insulation of the profile) and the hollow Low-e glass (solving the insulation of the window glass 10) to solve the heat conduction problem.
  • the heat transfer coefficient of the whole window is 2.1W/(m 2 K) after double-glass double-silver Low-e insulating glass. It can be seen that this scheme adopts double-glass double-silver Low-e glass, which reduces the heat transfer coefficient of the glass window to a certain extent, but the contribution to the improvement of the heat insulation effect of the whole window is still not satisfactory. This is because, according to theoretical research and thermal calculation of a large number of differently configured window systems, it is found that although the area of the window frame only accounts for 20%-25% of the entire window, the heat transfer through the window frame accounts for the entire window.
  • the heat transfer amount only accounts for less than 50% of the whole window. Therefore, after the heat insulation performance of the window glass is improved, most of the heat that is blocked will be transmitted through the gap between the edge of the window glass and the window frame, resulting in a decrease in the heat transfer coefficient of the entire window, and may The phenomenon of condensation on the surface of the window frame occurs, and the heat transfer coefficient of the entire window cannot meet the increasingly stringent energy-saving design requirements.
  • the technical problem to be solved by the present invention is to provide an energy-efficient heat-insulating window with simple structure, convenient construction, low cost, and large-scale energy-saving effect of the whole window.
  • the energy-efficient heat-insulating window of the invention comprises an outer frame, an inner frame and a window glass composed of an indoor window frame and an outdoor window frame, characterized in that: aerogel insulation is installed between the inner frame and the window glass. a sealing strip made of carpet.
  • the energy-efficient heat-insulating window of the present invention wherein the seal strip made of the aerogel heat-insulating blanket is a seal strip having a "concave” shape or an "L" shape.
  • the energy-efficient heat-insulating window of the invention wherein the window glass is double-layer or three-layer glass, and a warm edge spacer is disposed between two adjacent layers of glass.
  • the energy-efficient heat-insulating window of the present invention wherein the cross-section has a "concave” shape or an "L"-shaped sealing strip and an inner-frame is provided with a "a"-shaped sealing strip made of an aerogel insulation blanket. .
  • the high-efficiency energy-saving heat-insulating window of the present invention wherein the sealing strip having a "concave” shape or an "L" shape is an entire strip of end-to-end sealing strips.
  • the sealing strip having a "concave” cross section is composed of four “concave” shaped sub-sealing strips which are connected end to end, wherein a pair of end-sealing "concave” shaped sub-sealing strips respectively The two opposite glass sides and the two glass corners of the glazing are covered, and the other pair of open “concave” shaped sub-seals cover the remaining two opposite glass sides of the glazing.
  • the sealing strip with an "L" shape in cross section is composed of four “L"-shaped sub-sealing strips which are connected end to end, wherein the "L"-shaped sub-sealing strips of a pair of end seals respectively Covering the two opposite glass sides of the glazing and two a glass corner, another pair of open-ended "L” shaped sub-seal strips covering the remaining two opposite glass edges of the glazing, one side of the "L" shaped sealing strip covering the window On the outside of the glass.
  • the high-efficiency energy-saving heat-insulating window of the invention wherein the "one-shaped" sealing strip is formed by one whole or four "one"-shaped sub-sealing strips are connected end to end.
  • At least two glass blocks are interspersed in the "a"-shaped sealing strip located at the bottom of the window glass.
  • the high-efficiency energy-saving heat-insulating window of the invention is provided with a sealing strip made of aerogel insulation blanket between the window frame and the window glass.
  • the sealing strip has a simple structure, is convenient and quick to install, does not need to change the existing window structure, and saves the profile opening. Modular cost.
  • the sealing strip fundamentally blocks the leakage of heat from the gap between the window frame and the window glass, effectively solves the heat conduction problem of the window frame, significantly reduces the heat transfer coefficient of the whole window, and greatly enhances the energy saving effect. .
  • FIG. 1 is a schematic view showing a prior art aluminum window structure using double-glass Low-e insulating glass
  • FIG. 2 is a partial cross-sectional view of the right window frame in the first embodiment of the energy-efficient heat-insulating window of the present invention
  • FIG. 3 is a partial cross-sectional view of the lower sash of the first embodiment of the energy-efficient heat-insulating window of the present invention
  • Figure 4 is a B-direction view of Figure 3 taken along line A;
  • Figure 5 is a plan view showing the lower portion of the "concave" strip in the first embodiment of the high-efficiency energy-saving heat insulating window of the present invention
  • FIG. 6 is a schematic plan view showing the left "concave" strip in the first embodiment of the high-efficiency energy-saving heat insulating window of the present invention
  • Figure 7 is a partial cross-sectional view of the right window frame of the second embodiment of the energy-efficient heat-insulating window of the present invention.
  • Figure 8 is a partial cross-sectional view of the lower sash of the second embodiment of the energy-efficient heat-insulating window of the present invention.
  • Figure 9 is a D-direction view of Figure 8 taken along line C;
  • FIG. 10 is a schematic plan view showing the lowering of the "L" shaped strip in the second embodiment of the high-efficiency energy-saving heat insulating window of the present invention.
  • FIG. 11 is a schematic plan view showing the left "L" shaped strip in the second embodiment of the high-efficiency energy-saving heat insulating window of the present invention.
  • Figure 12 is a schematic view showing the calculation part of the heat transfer average coefficient of the high-efficiency energy-saving heat insulation window of the present invention
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the energy-efficient heat-insulating window of the present invention comprises an outer frame 1, an inner frame 4 composed of an indoor window frame 2 and an outdoor window frame 3, and a window glass 5, and the window glass 5 has two layers.
  • a warm edge spacer 7 is disposed between adjacent two layers of glass to reduce the amount of heat transfer of the window glass 5.
  • the window glass 5 is fixed outdoors by the outdoor rubber strip 101 and the indoor rubber strip 102.
  • the outdoor sash 3 and the indoor sash 2 are connected by a heat insulating strip 103.
  • a sealing strip 6 having a "concave" cross section made of an aerogel insulation blanket is installed.
  • An "a"-shaped sealing strip 9 made of an aerogel insulation blanket is disposed between the sealing strip 6 having a “concave” cross section and the inner frame 4.
  • the sealing strip 6 having a “concave” cross section and the “one” sealing strip 9 are all integral sealing strips end to end.
  • the sealing strip 6 having a "concave” cross section is sequentially coated on the upper, left, lower and right sides of the window glass 5.
  • the upper and lower “concave” strips (not shown), the left “concave” strips 62, the lower “concave” strips 63, and the right “concave” strips 64 are formed by four sub-seal strips. .
  • the upper “concave” strips and the lower “concave” strips 63 are identical in structure and are sealed at the ends of the left and right ends in the respective lengths D.
  • the upper “concave” strips and the lower “concave” strips 63 respectively cover the two upper and lower opposite glass sides of the window glass 5 and the upper and lower pairs of glass corners.
  • the upper “concave” strip covers the top, front (outside), rear (inside), left and right sides of the upper edge of the window glass 5, and the lower “concave” strip 63 covers the window.
  • the bottom, the front (outdoor side), the rear (indoor side), the left and right sides of the lower edge of the glass 5 are five sides.
  • the left “concave” strip 62 and the right “concave” strip 64 which are open at both ends, are identical in structure and interface with the upper "concave” strip and the lower “concave” strip 63.
  • the left “concave” strip 62 covers the left side, the front (outdoor side), and the rear (inside side) three sides at the left edge of the window glass 5.
  • the right “concave” strip 64 covers the right side, the front (outdoor side), and the rear (inside side) three sides of the right edge of the window glass 5.
  • the sealing strip 6 having a “concave” cross section and the "a” shaped sealing strip 9 can be fixed between the window glass 5 and the inner frame 4 by adhesive or mechanical fixing.
  • the “one” sealing strip 9 can also be made of the upper “one” strip (not shown), the left “one” strip 92, and the lower “one” strip 93.
  • the right "one" strip 94 four sub-sealing strips are connected one after the other.
  • the lower "one" strip 93 is interspersed with at least two glass blocks 12, and in this embodiment, the inner hole of the inner frame 4 (ie, the window glass 5)
  • the length of the mounting port is L, and the distances M and N between the center point of the two glass blocks 12 and the ends of the inner frame 4 are respectively 1/4L.
  • the number and arrangement positions and manners of the above-mentioned glass blocks 12 can be adjusted according to actual glass support requirements, which are not enumerated here.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the energy-efficient heat-insulating window of the present invention comprises an outer frame 1 ′, an inner frame 4 ′ composed of an indoor sash 2 ′ and an outdoor sash 3 ′, and a window glass 5 ′, a window glass.
  • 5' is two layers, and a warm edge spacer 7' is disposed between adjacent two layers of glass to reduce the heat transfer amount of the window glass 5'.
  • the window glass 5' is fixed between the outdoor window frame 3' and the indoor window frame 2' by the outdoor rubber strip 101' and the indoor rubber strip 102'.
  • the outdoor sash 3' and the indoor sash 2' are connected by a heat insulating strip 103'.
  • a sealing strip 6' having an "L” shape in cross section made of an aerogel insulation blanket is installed between the inner frame 4' and the window glass 5'.
  • An "A"-shaped sealing strip 9' made of an aerogel insulation blanket is disposed between the "L"-shaped sealing strip 6' and the inner frame 4'.
  • the sealing strip 6' and the "a"-shaped sealing strip 9' having an "L” shape in cross section are all integral sealing strips end to end.
  • the sealing strip 6' having an "L” shape in cross section is sequentially coated on the upper, left, lower and right sides of the window glass 5'.
  • the lower “L” shaped strip 63' and the right “L” shaped strip 64' are composed of four sub-sealing strips.
  • the upper “L” shaped strip and the lower “L” shaped strip 63' have the same structure and are sealed at both ends of the respective lengths D'.
  • the upper “L” strip and the lower “L” strip 63' respectively cover the upper and lower opposite glass sides of the window glass 5' and the upper and lower pairs of glass corners.
  • the upper “L” shaped strip (not shown) covers the top, front (outdoor side), left and right sides of the window glass 5', and the lower “L” shaped strip 63' Covering the bottom, front (outdoor), left and right sides of the lower edge of the window glass 5'.
  • the left “L” shaped strip 62' and the right “L” shaped strip 64' which are open at both ends, are identical in structure and are butted to the ends of the upper "L” shaped strip and the lower "L” shaped strip 63'.
  • the left “L” shaped strip 62' covers the left and front (outdoor side) two sides at the left edge of the glazing 5'
  • the right “L” shaped strip 64' covers the right edge of the glazing 5' 2 sides of the right and front (outdoor side).
  • the "one" seal 9' can also be made of the upper “one” (not shown), the left “one” strip 92', the lower “one” strip 93', and the right “one” strip. 94' four sub-sealing strips are connected one after the other.
  • the sealing strip 6' and the "one” sealing strip 9' having an "L" shape in cross section may be fixed between the window glass 5' and the inner frame 4' by adhesive or mechanical fixing. Meanwhile, as shown in FIG.
  • At least two glass blocks 12 ′ are arranged on the lower “one” strip 93 ′, and the arrangement and implementation of the glass block 12 ′ are implemented.
  • Example 1 is the same and will not be described here.
  • the average heat transfer coefficient U t of the insulated window (in watts per square meter ⁇ degree, ie W/(m 2 K)) is calculated as follows (refer to the National Fenestration Rating Council) Calculation method):
  • A is the product of the width and height of the visible portion of the window glass 5;
  • U f is the heat transfer coefficient of the upper, lower, left and right four side portions 41 of the inner visible portion of the inner frame 4 and the outer frame 1;
  • a f is the sum of the areas of the upper, lower, left and right four side portions 41 of the inner visible portion of the inner frame 4 and the outer frame 1;
  • U eg is the heat transfer coefficient at the upper, lower, left and right side portions 52 of the window glass 5;
  • a eg is the sum of the areas of the upper, lower, left and right side portions 52 of the window glass 5, wherein the width S of each side portion 52 is 65 mm;
  • U cog is the heat transfer coefficient at the central portion 51 of the window glass 5;
  • a cog is the area after A minus A f and A eg .
  • the parameters of the window glass selected in the prior art and the energy-efficient heat-insulating window of the present invention are as follows:
  • Table 2 and Table 3 show the relevant calculation data of the heat transfer coefficient of the aluminum window in the prior art.
  • Table 4 and Table 5 are related calculation data of the heat transfer coefficient of the energy-efficient heat-insulating window of the present invention.
  • the energy-efficient heat-insulating window of the present invention has a low thermal conductivity (generally not higher than 0.021 W/(m ⁇ K)) between the window glass, the outdoor window frame and the indoor window frame.
  • the sealing strip made of gel insulation blanket, the thermal insulation performance of the sealing strip is lower than that of air, and the thermal conductivity of the material is reduced by more than 10 times compared with the traditional door and window thermal insulation bridge material.
  • the thermal coefficient ie, the U value of the whole window
  • the heat transfer coefficient of the whole window can be reduced to 1.5-1.6W/(m 2 K), and the heat insulation effect is outstanding.
  • the sealing strip does not need to change the structure of the existing window, and does not affect its watertightness, airtightness and structural deformation performance, and greatly improves the heat insulation performance of the whole window, and ensures that no knot is formed inside the window frame.
  • the problem of exposure has greatly reduced the overall cost of the exterior windows of high-energy buildings.
  • the aerogel insulation blanket is easy to install and can be well adapted to the complex cross-sectional shape between the window glass, the outdoor window frame and the indoor window frame to form a continuous and integral heat insulation strip of the same material.
  • the aerogel insulation blanket is an inorganic heat insulating material having a combustion performance of Class A, the problem of poor combustion performance of the organic heat insulating material can be avoided.
  • the warm-side spacer strip can be selected when necessary, which reduces the use probability to a certain extent, which is beneficial to shorten the construction period and save expenses.
  • the energy-saving heat-insulating window of the invention has the advantages of simple structure, convenient construction, low cost, and can greatly improve the energy-saving effect of the whole window, and the heat transfer coefficient of the whole window is reduced by 15% compared with the prior art double-glass aluminum window.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

高效节能隔热窗,包括外框(1)、由室内窗框(2)和室外窗框(3)组成的内框(4)及窗玻璃(5),在所述内框(4)和窗玻璃(5)之间装设有气凝胶隔热毯制成的密封条(6),该节能隔热窗结构简单、施工便捷、成本低,并且能大幅度提高整窗节能效果,整窗传热系数较现有技术的双玻铝窗下降了15%。

Description

高效节能隔热窗 技术领域
本发明涉及一种用于闭合开口的窗扇、门扇或类似构件,特别是涉及一种高效节能隔热窗。
背景技术
我国的建筑外窗节能技术和要求正在逐步提高,以北京为例,从2012年起,国家规范要求的建筑外窗传热系数已经从过去的2.8W/(m2K)降低到了2.0W/(m2K)。即便如此,我国与欧美发达国家的差距仍然十分明显,德国1994年的建筑外窗传热系数已经达到了1.8W/(m2K),2012年更是进一步降低到了1.3W/(m2K)。根据住建部建筑门窗节能标识的统计,2013年中,相关的门窗节能标识产品共1787个,但90%以上都是传热系数为2.0-3.2W/(m2K)的产品,低于2.0W/(m2K)的门窗产品仍以国外产品为主。因此,如何进一步降低传热系数、改善国产门窗节能效果,成了业内亟待解决的问题。
以断桥铝窗为例,在确定了基本建筑外窗窗型后,为降低整窗的传热系数Ut,现有的技术方案有:1)采用三玻两腔中空玻璃或真空中空玻璃;2)采用高性能的双银或三银Low-e玻璃;3)将中空玻璃中传统的铝合金间隔条改为暖边间隔条;4)在中空玻璃的中空腔内填充惰性气体。
从工程设计角度来看,上述技术方案分别存在以下不足:
方案1):窗玻璃造价大幅增加。目前窗玻璃的配置大都为双玻中空玻璃,其厚度一般为22mm、24mm、28mm等;三玻两腔中空玻璃的厚度一般为33mm、36mm、39mm等;真空中空玻璃的厚度一般为27mm、35mm等,现有的窗框型材断面需要修改以适应窗玻璃的厚度变化,这就使得现有窗框型材的适应性降低,大幅增加了型材用量以及的型材开模的成本。
方案3):大量使用暖边间隔条,由于暖边间隔条的技术含量较高,基本依赖进口,大量使用不但采购环节复杂,周期长,影响施工进度,而且成本也高。同时暖边间隔条的使用只能部分降低玻璃传热的边部效应,因此,对整窗的传热系数下降的贡献率较低。
方案4):中空玻璃填充惰性气体存在泄露问题,而且实际检测传热系数的方法也较为复杂、实际操作难度较大,同时,行业内对中空玻璃填充惰性气体后的耐久性一直存疑,不适合大面积推广使用。
方案2):如图1所示,现有的采用双玻双银Low-e中空玻璃的铝窗,包括窗玻璃10、室 外窗框20、室内窗框30、隔热条40、室外胶条50、室内胶条60。其中窗玻璃10通过室外胶条50和室内胶条60被固定在室外窗框20和室内窗框30之间,室外窗框20和室内窗框30之间通过隔热条40连接。该铝窗主要依靠隔热条40(解决型材的隔热)和中空Low-e玻璃(解决窗玻璃10的隔热)解决热传导问题。经美国LBNL的Window7,Therm7热工分析软件分析,采用双玻双银Low-e中空玻璃后,整窗传热系数为2.1W/(m2K)。可见,本方案采用了双玻双银Low-e玻璃,在一定程度上降低了玻璃窗的传热系数,但对改善整窗隔热效果的贡献仍不理想。这是因为,根据理论研究和对大量不同配置的窗系统进行热工计算后发现,窗框的面积虽然只占整窗的20%-25%,但通过窗框的传热量却占整窗的50%以上,而窗玻璃的面积虽然占整窗的75%-80%,传热量却只占整窗的50%以下。因此,该方案在提高了窗玻璃的隔热性能后,被阻挡的大部分热量会经窗玻璃边部及其与窗框之间的缝隙传递,导致整窗传热系数下降不明显,并可能出现窗框表面结露的现象,而且整窗传热系数也不能满足日益严苛的节能设计要求。
发明内容
本发明要解决的技术问题是提供一种结构简单、施工便捷、成本低,并且能大幅度提高整窗节能效果的高效节能隔热窗。
本发明高效节能隔热窗,包括外框、由室内窗框和室外窗框组成的内框及窗玻璃,其特征在于:在所述内框和窗玻璃之间装设有气凝胶隔热毯制成的密封条。
本发明高效节能隔热窗,其中所述气凝胶隔热毯制成的密封条为断面呈“凹”形或“L”形的密封条。
本发明高效节能隔热窗,其中所述窗玻璃为双层或三层玻璃,相邻两层玻璃之间设置有暖边间隔条。
本发明高效节能隔热窗,其中所述断面呈“凹”形或“L”形的密封条与所述内框之间装设有气凝胶隔热毯制成的“一”字形密封条。
本发明高效节能隔热窗,其中所述断面呈“凹”形或“L”形的密封条为一整条首尾相接的密封条。
本发明高效节能隔热窗,其中所述断面呈“凹”形的密封条由四条首尾相接的“凹”形子密封条组成,其中一对端头封口的“凹”形子密封条分别包覆窗玻璃的两个相对的玻璃边及两个玻璃角,另一对端头开口的“凹”形子密封条包覆窗玻璃的其余两个相对的玻璃边。
本发明高效节能隔热窗,其中所述断面呈“L”形的密封条由四条首尾相接的“L”形子密封条组成,其中一对端头封口的“L”形子密封条分别包覆窗玻璃的两个相对的玻璃边及两个 玻璃角,另一对端头开口的“L”形子密封条包覆窗玻璃的其余两个相对的玻璃边,所述断面呈“L”形的密封条的一个边包覆在所述窗玻璃的室外面上。
本发明高效节能隔热窗,其中所述“一”字形密封条为一整条或由四条“一”字形子密封条首尾相接而成。
本发明高效节能隔热窗,在位于所述窗玻璃底部的“一”字形密封条内间隔镶嵌至少两个玻璃垫块。
本发明高效节能隔热窗在窗框与窗玻璃之间设置气凝胶隔热毯制成的密封条,密封条结构简单,安装方便、快捷,不需改变现有窗结构,节省了型材开模成本。而且,密封条从根本上阻断了热量从窗框与窗玻璃之间的缝隙处泄漏,有效地解决了窗框的热传导问题,显著降低了整窗的传热系数,大幅度增强了节能效果。
下面结合附图对本发明的高效节能隔热窗作进一步说明。
附图说明
图1为现有技术的采用双玻Low-e中空玻璃的铝窗结构示意图;
图2为本发明高效节能隔热窗实施例一中右窗框处的局部剖视图;
图3为本发明高效节能隔热窗实施例一中下窗框处的局部剖视图;
图4为图3沿A向剖切之后的B向视图;
图5为本发明高效节能隔热窗实施例一中下“凹”形条展开后的平面示意图;
图6为本发明高效节能隔热窗实施例一中左“凹”形条展开后的平面示意图;
图7为本发明高效节能隔热窗实施例二中右窗框处的局部剖视图;
图8为本发明高效节能隔热窗实施例二中下窗框处的局部剖视图;
图9为图8沿C向剖切之后的D向视图;
图10为本发明高效节能隔热窗实施例二中下“L”形条展开后的平面示意图;
图11为本发明高效节能隔热窗实施例二中左“L”形条展开后的平面示意图;
图12为本发明高效节能隔热窗传热平均系数计算部位示意图。
具体实施方式
实施例一:
如图2、图3所示,本发明的高效节能隔热窗,包括外框1、由室内窗框2和室外窗框3组成的内框4及窗玻璃5,窗玻璃5为两层,相邻两层玻璃之间设置有暖边间隔条7,用以降低窗玻璃5的传热量。其中窗玻璃5通过室外胶条101和室内胶条102被固定在室外 窗框3和室内窗框2之间。室外窗框3和室内窗框2之间通过隔热条103连接。在内框4和窗玻璃5之间装设有气凝胶隔热毯制成的断面呈“凹”形的密封条6。断面呈“凹”形的密封条6和内框4之间装设有气凝胶隔热毯制成的“一”字形密封条9。断面呈“凹”形的密封条6、“一”字形密封条9均为一整条首尾相接的密封条。
如图4至图6所示(图5、图6中的虚线为折叠线),断面呈“凹”形的密封条6由依次包覆在窗玻璃5的上、左、下、右四个窗玻璃边且首尾相接的上“凹”形条(图中未示出)、左“凹”形条62、下“凹”形条63、右“凹”形条64四条子密封条组成。上“凹”形条、下“凹”形条63结构相同且沿各自长度D方向的左右两端端头封口。上“凹”形条、下“凹”形条63分别包覆窗玻璃5的两个上下相对的玻璃边及上、下两对玻璃角。具体地,上“凹”形条包覆窗玻璃5的上边缘处的顶、前(室外面)、后(室内面)、左、右5个侧面,下“凹”形条63包覆窗玻璃5的下边缘处的底、前(室外面)、后(室内面)、左、右5个侧面。两端端头开口的左“凹”形条62、右“凹”形条64结构相同且与上“凹”形条、下“凹”形条63对接。具体地,左“凹”形条62包覆窗玻璃5左边缘处的左、前(室外面)、后(室内面)3个侧面。右“凹”形条64包覆窗玻璃5右边缘处的右、前(室外面)、后(室内面)3个侧面。断面呈“凹”形的密封条6、”一”字形密封条9均可通过粘结剂或机械固定的方式固定在窗玻璃5与内框4之间。与断面呈“凹”形的密封条6同理,“一”字形密封条9也可由上“一”字条(图中未示出)、左“一”字条92、下“一”字条93、右“一”字条94四条子密封条首尾依次相接而成。为了便于支撑窗玻璃5,如图3、图4所示,下“一”字条93上间隔镶嵌有至少两个玻璃垫块12,本实施例中,内框4的内孔(即窗玻璃5的安装口)的长度为L,两个玻璃垫块12的中心点与内框4两端点处的距离M、N分别为1/4L。当然,上述玻璃垫块12的数量及设置位置和方式可以根据实际玻璃支撑需求调整,此处不一一列举。
实施例二:
如图7、图8所示,本发明的高效节能隔热窗,包括外框1'、由室内窗框2'和室外窗框3'组成的内框4'及窗玻璃5',窗玻璃5'为两层,相邻两层玻璃之间设置有暖边间隔条7',用以降低窗玻璃5'的传热量。其中窗玻璃5'通过室外胶条101'和室内胶条102'被固定在室外窗框3'和室内窗框2'之间。室外窗框3'和室内窗框2'之间通过隔热条103'连接。在内框4'和窗玻璃5'之间装设有气凝胶隔热毯制成的断面呈“L”形的密封条6'。断面呈“L”形的密封条6'和内框4'之间装设有气凝胶隔热毯制成的“一”字形密封条9'。断面呈“L”形的密封条6'和“一”字形密封条9'均为一整条首尾相接的密封条。如图9至图11所示(图10、图11中的虚线为折叠线),断面呈“L”形的密封条6'由依次包覆在窗玻璃5'的上、左、下、右四个窗玻璃边且首尾相接的上“L”形条(图中未示出)、左“L”形条62'、 下“L”形条63'、右“L”形条64'四条子密封条组成。上“L”形条、下“L”形条63'结构相同且沿各自长度D'方向的两端端头封口。上“L”形条、下“L”形条63'分别包覆窗玻璃5'的上下两个相对的玻璃边及上下两对玻璃角。具体地,上“L”形条(图中未示出)包覆窗玻璃5'的上边缘处的顶、前(室外面)、左、右4个侧面,下“L”形条63'包覆窗玻璃5'下边缘处的底、前(室外面)、左、右4个侧面。两端端头开口的左“L”形条62'、右“L”形条64'结构相同且与上“L”形条、下“L”形条63'的端头对接。具体地,左“L”形条62'包覆窗玻璃5'的左边缘处的左、前(室外面)2个侧面,右“L”形条64'包覆窗玻璃5'右边缘处的右、前(室外面)2个侧面。与实施例一相同,“一”字形密封条9'也可由上“一”字条(图中未示出)、左“一”字条92'、下“一”字条93'、右“一”字条94'四条子密封条首尾依次相接而成。断面呈“L”形的密封条6'、“一”字形密封条9'均可通过粘结剂或机械固定的方式固定在窗玻璃5'与内框4'之间。同时,如图8、图9所示,为了便于支撑窗玻璃5',下“一”字条93'上间隔镶嵌有至少两个玻璃垫块12',该玻璃垫块12'的设置方式与实施例一相同,此处不再赘述。
下面通过现有技术与本发明高效节能隔热窗的计算、测试数据的对比说明本发明高效节能隔热窗的热传导效果。
本隔热窗平均传热系数Ut(单位为瓦/(平方米·度),即W/(m2K))计算公式如下(参考美国门窗热效评级委员会(即National Fenestration Rating Council)的计算方法):
Figure PCTCN2016102354-appb-000001
如图2、图12所示,其中:
A为窗玻璃5可视部位宽与高的乘积;
Uf为内框4、外框1的室内可视部分的上、下、左、右四个边部41处的传热系数;
Af为内框4、外框1的室内可视部分的上、下、左、右四个边部41的面积之和;
Ueg为窗玻璃5的上、下、左、右四个边部52处的传热系数;
Aeg为窗玻璃5的上、下、左、右四个边部52的面积之和,其中,每个边部52的宽度S均为65mm;
Ucog为窗玻璃5的中心部位51处的传热系数;
Acog为A减去Af和Aeg之后的面积。
如下表1所示,现有技术和本发明高效节能隔热窗中选用的窗玻璃的参数如下:
表1:
Figure PCTCN2016102354-appb-000002
表2、表3为现有技术中铝窗传热系数的相关计算数据。
表2:
Frame框
Figure PCTCN2016102354-appb-000003
表:3:
Figure PCTCN2016102354-appb-000004
表4、表5为本发明高效节能隔热窗传热系数的相关计算数据。
表4:
Frame框
Figure PCTCN2016102354-appb-000005
表5:
Figure PCTCN2016102354-appb-000006
综上所述,本发明的高效节能隔热窗,由于在窗玻璃、室外窗框和室内窗框之间设置了导热系数较低(一般不高于0.021W/(m·K))的气凝胶隔热毯制成的密封条,该密封条的隔热性能比空气的导热系数还低,相比传统的门窗隔热断桥材料,其材料导热系数更是降低了10倍以上,传热系数(即整窗U值)可达到1.7-1.8W/(m2K),较现有技术的双玻铝窗下降了15%,显著增强了节能效果。采用三玻Low-e中空玻璃时,整窗传热系数甚至可降至1.5-1.6W/(m2K),隔热效果突出。而且,本密封条使用时不需改变现有窗的构造,既不影响其水密性、气密性和结构变形性能,又大幅提高了整窗的隔热性能,确保窗框室内侧不产生结露问题,大大减少了高节能建筑外窗的综合成本。同时,气凝胶隔热毯便于安装,能很好地适应窗玻璃、室外窗框和室内窗框之间的复杂截面形状,形成同一材质且连续、整体的隔热条。另外,由于气凝胶隔热毯是燃烧性能A级的无机隔热材料,故还可避免使用有机隔热材料燃烧性能差的问题。还有,采用密封条后,暖边间隔条可在必要的时候选用,一定程度上降低了其使用几率,有利于缩短工期、节省开支。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
工业实用性
本发明节能隔热窗结构简单、施工便捷、成本低,并且能大幅度提高整窗节能效果,整窗传热系数较现有技术的双玻铝窗下降了15%。

Claims (9)

  1. 一种高效节能隔热窗,包括外框(1、1')、由室内窗框(2、2')和室外窗框(3、3')组成的内框(4、4')及窗玻璃(5、5'),其特征在于:在所述内框(4、4')和窗玻璃(5、5')之间装设有气凝胶隔热毯制成的密封条。
  2. 根据权利要求1所述的高效节能隔热窗,其特征在于:所述气凝胶隔热毯制成的密封条为断面呈“凹”形或“L”形的密封条(6、6')。
  3. 根据权利要求2所述的高效节能隔热窗,其特征在于:所述窗玻璃(5、5')为双层或三层玻璃,相邻两层玻璃之间设置有暖边间隔条(7、7')。
  4. 根据权利要求3所述的高效节能隔热窗,其特征在于:所述断面呈“凹”形或“L”形的密封条(6、6')与所述内框(4、4')之间装设有气凝胶隔热毯制成的“一”字形密封条(9、9')。
  5. 根据权利要求4所述的高效节能隔热窗,其特征在于:所述断面呈“凹”形或“L”形的密封条(6、6')为一整条首尾相接的密封条。
  6. 根据权利要求4所述的高效节能隔热窗,其特征在于:所述断面呈“凹”形的密封条(6)由四条首尾相接的“凹”形子密封条组成,其中一对端头封口的“凹”形子密封条分别包覆窗玻璃(5)的两个相对的玻璃边及两个玻璃角,另一对端头开口的“凹”形子密封条包覆窗玻璃(5)的其余两个相对的玻璃边。
  7. 根据权利要求4所述的高效节能隔热窗,其特征在于:所述断面呈“L”形的密封条(6')由四条首尾相接的“L”形子密封条组成,其中一对端头封口的“L”形子密封条分别包覆窗玻璃(5')的两个相对的玻璃边及两个玻璃角,另一对端头开口的“L”形子密封条包覆窗玻璃(5')的其余两个相对的玻璃边,所述断面呈“L”形的密封条(6')的一个边包覆在所述窗玻璃(5')的室外面上。
  8. 根据权利要求6或7所述的高效节能隔热窗,其特征在于:所述“一”字形密封条(9、9')为一整条或由四条“一”字形子密封条首尾相接而成。
  9. 根据权利要求8所述的高效节能隔热窗,其特征在于:在位于所述窗玻璃(5、5')底部的“一”字形密封条(9、9')内间隔镶嵌至少两个玻璃垫块(12、12')。
PCT/CN2016/102354 2016-10-18 2016-10-18 高效节能隔热窗 WO2018072080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680018649.3A CN107690504A (zh) 2016-10-18 2016-10-18 高效节能隔热窗
PCT/CN2016/102354 WO2018072080A1 (zh) 2016-10-18 2016-10-18 高效节能隔热窗

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102354 WO2018072080A1 (zh) 2016-10-18 2016-10-18 高效节能隔热窗

Publications (1)

Publication Number Publication Date
WO2018072080A1 true WO2018072080A1 (zh) 2018-04-26

Family

ID=61152312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102354 WO2018072080A1 (zh) 2016-10-18 2016-10-18 高效节能隔热窗

Country Status (2)

Country Link
CN (1) CN107690504A (zh)
WO (1) WO2018072080A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005323A (zh) * 2019-03-31 2019-07-12 谢英杰 具有三层密封的塑钢门窗及其主型材结构
CN114251042A (zh) * 2021-12-10 2022-03-29 厦门合立道工程设计集团股份有限公司 一种既有建筑门窗传热系数降低用多功能隔热装置
CN117489247A (zh) * 2023-11-22 2024-02-02 中建三局集团北京有限公司 一种节能型隔热保温窗

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2951367C (en) * 2015-11-24 2019-12-31 Weiping Yu Structure for blocking heat transfer through thermal bridge of curtain wall building
CN108661504B (zh) * 2018-06-27 2023-08-15 曹娟 一种具有气压平衡功能的节能窗系统
CA3163808A1 (en) * 2020-02-07 2021-08-12 Alicia Droge Glazing having an rfid transponder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277093A1 (en) * 2005-10-08 2009-11-12 Helmut Over Component
CN202509974U (zh) * 2012-04-25 2012-10-31 徐玉媚 一种断桥铝合金窗
CN203531669U (zh) * 2013-09-16 2014-04-09 安徽华普节能房屋材料有限责任公司 铝竹复合断桥式节能窗
CN104295190A (zh) * 2014-09-25 2015-01-21 无锡金城幕墙装饰工程有限公司 明框幕墙铝合金窗框转折
CN205134659U (zh) * 2015-11-24 2016-04-06 余卫平 阻断通过幕墙建筑节点热冷桥传热的结构
CN206091822U (zh) * 2016-10-18 2017-04-12 余卫平 高效节能隔热窗

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012009140U1 (de) * 2012-09-24 2012-12-10 Kathrin Cremer Isolierglaselement aus Kunststoff
CN205531973U (zh) * 2016-04-11 2016-08-31 青岛乐克来新型门窗有限公司 软硬共济型高节能铝合金门窗
CN205638098U (zh) * 2016-04-29 2016-10-12 营口托田铝业有限公司 一种高性能隔热平开窗

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277093A1 (en) * 2005-10-08 2009-11-12 Helmut Over Component
CN202509974U (zh) * 2012-04-25 2012-10-31 徐玉媚 一种断桥铝合金窗
CN203531669U (zh) * 2013-09-16 2014-04-09 安徽华普节能房屋材料有限责任公司 铝竹复合断桥式节能窗
CN104295190A (zh) * 2014-09-25 2015-01-21 无锡金城幕墙装饰工程有限公司 明框幕墙铝合金窗框转折
CN205134659U (zh) * 2015-11-24 2016-04-06 余卫平 阻断通过幕墙建筑节点热冷桥传热的结构
CN206091822U (zh) * 2016-10-18 2017-04-12 余卫平 高效节能隔热窗

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005323A (zh) * 2019-03-31 2019-07-12 谢英杰 具有三层密封的塑钢门窗及其主型材结构
CN114251042A (zh) * 2021-12-10 2022-03-29 厦门合立道工程设计集团股份有限公司 一种既有建筑门窗传热系数降低用多功能隔热装置
CN114251042B (zh) * 2021-12-10 2023-10-13 厦门合立道工程设计集团股份有限公司 一种既有建筑门窗传热系数降低用多功能隔热装置
CN117489247A (zh) * 2023-11-22 2024-02-02 中建三局集团北京有限公司 一种节能型隔热保温窗
CN117489247B (zh) * 2023-11-22 2024-04-19 中建三局集团北京有限公司 一种节能型隔热保温窗

Also Published As

Publication number Publication date
CN107690504A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2018072080A1 (zh) 高效节能隔热窗
CN204876211U (zh) 一种三玻两腔隔热保温型中空玻璃
CN103603576A (zh) 一种含有隔热条和多道密封的隔热断桥铝合金型材
CN105040867A (zh) 一种三玻两腔隔热保温型中空玻璃
CN203835159U (zh) 隔热铝合金门窗
CN203223123U (zh) 具有防水、隔热隔音性能的门窗型材
CN207004362U (zh) 一种防火钢衬组合式防火窗结构
CN206091822U (zh) 高效节能隔热窗
CN207829738U (zh) 一种Low-E真空复合中空玻璃
CN205858066U (zh) 一种双腔体隔热保温的内平开窗结构
CN106837106A (zh) 一种断桥铝合金门窗结构
CN103452431A (zh) 一种节能注胶平开窗
CN205638062U (zh) 一种新型节能铝合金窗
CN209959057U (zh) 一种五道密封窗
CN207092875U (zh) 一种断桥铝合金门窗结构
CN206785241U (zh) 一种保温隔热铝合金窗
CN202706291U (zh) 隔热保温型双层玻璃幕墙
CN221322174U (zh) 一种门窗用节能玻璃暖边结构
CN202578336U (zh) 钢质断桥无序平开门总成
CN206581846U (zh) 一种被动房门扇中间密封条
CN105888449A (zh) 一种铝合金型材
CN209990337U (zh) 一种节能断桥铝合金平开窗
CN203515152U (zh) 一种节能注胶平开窗
CN212225048U (zh) 一种保温绝热窗
CN216446758U (zh) 一种断热桥钢塑门窗

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919050

Country of ref document: EP

Kind code of ref document: A1