WO2018070849A1 - 반사 방지용 광학 필터 및 유기 발광 장치 - Google Patents

반사 방지용 광학 필터 및 유기 발광 장치 Download PDF

Info

Publication number
WO2018070849A1
WO2018070849A1 PCT/KR2017/011370 KR2017011370W WO2018070849A1 WO 2018070849 A1 WO2018070849 A1 WO 2018070849A1 KR 2017011370 W KR2017011370 W KR 2017011370W WO 2018070849 A1 WO2018070849 A1 WO 2018070849A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation film
optical filter
retardation
axis
organic light
Prior art date
Application number
PCT/KR2017/011370
Other languages
English (en)
French (fr)
Inventor
김선국
윤혁
박문수
정종현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780062215.8A priority Critical patent/CN109844581B/zh
Priority to US16/332,602 priority patent/US10804500B2/en
Priority to EP17860176.1A priority patent/EP3528015B1/en
Priority to JP2019515821A priority patent/JP7042809B2/ja
Publication of WO2018070849A1 publication Critical patent/WO2018070849A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present application relates to an antireflection optical filter and an organic light emitting device.
  • the organic light emitting device is a self-luminous display device that emits light by itself and thus does not require a separate backlight, thereby reducing thickness and advantageously implementing a flexible display device.
  • the organic light emitting device may reflect external light by the metal electrode and the metal wiring formed on the organic light emitting display panel, and the visibility and the contrast ratio may be deteriorated by the reflected external light, resulting in poor display quality.
  • a circularly polarizing plate may be attached to one surface of an organic light emitting display panel to reduce the leakage of the reflected external light to the outside.
  • the currently developed circular polarizer has a strong viewing angle dependency, and thus has a problem in that visibility is lowered due to a decrease in antireflection performance toward the surface.
  • An object of the present application is to provide an optical filter having excellent omnidirectional antireflection performance and color characteristics, as well as an organic light emitting device having improved visibility by applying the optical filter.
  • the present application relates to an antireflection optical filter.
  • the optical filter may sequentially include a polarizer having a absorption axis formed in one direction, a first retardation film, and a second retardation film.
  • the polarizer means an element that exhibits selective transmission and absorption characteristics with respect to incident light.
  • the polarizer may transmit, for example, light oscillating in one direction from incident light oscillating in various directions, and absorb light oscillating in the other direction.
  • the polarizer included in the optical filter may be a linear polarizer.
  • the linearly polarized light means a case in which the light selectively transmitting is linearly polarized by vibrating in one direction and the light selectively absorbing is linearly polarized by vibrating in a direction orthogonal to the vibration direction of the linearly polarized light.
  • the polarizer examples include a polarizer in which iodine is impregnated in a polymer stretched film such as a PVA stretched film, or a liquid crystal polymerized in an oriented state as a host, and an anisotropic dye arranged according to the alignment of the liquid crystal as a guest.
  • Guest-hosted polarizers may be used, but are not limited thereto.
  • a PVA stretched film may be used as the polarizer.
  • the transmittance to polarization degree of the polarizer may be appropriately adjusted in consideration of the purpose of the present application.
  • the transmittance of the polarizer may be 42.5% to 55%, and the degree of polarization may be 65% to 99.9997%.
  • each of the above cases may include an error within about ⁇ 15 degrees, an error within about ⁇ 10 degrees or an error within about ⁇ 5 degrees.
  • the retardation film may mean an element capable of converting incident polarization by controlling birefringence as an optical “anisotropic” film.
  • the x-axis refers to a direction parallel to the in-plane slow axis of the retardation film
  • the y-axis refers to a direction parallel to the in-plane fast axis of the retardation film.
  • the z axis means the thickness direction of the retardation film.
  • the x and y axes may be perpendicular to each other in plane. While describing the optical axis of the retardation film herein, unless otherwise specified, the slow axis means.
  • the slow axis may mean a long axis direction of the rod shape, and when the retardation film includes a disc-shaped liquid crystal molecule, the slow axis may mean a normal direction of the disc shape.
  • the Nz value of the retardation film is calculated by the following Equation 1.
  • Nz (nx-nz) / (nx-ny)
  • a retardation film satisfying the following formula 2 may be referred to as a so-called + C plate.
  • a retardation film satisfying the following formula 3 may be referred to as a so-called + B plate.
  • a retardation film satisfying the following formula 4 may be referred to as a so-called -B plate.
  • a retardation film that satisfies Equation 5 below may be referred to as a so-called + A plate.
  • nx ny ⁇ nz
  • the surface retardation (Rin) of the retardation film is calculated by the following Equation 6.
  • the retardation Rth in the thickness direction of the retardation film is calculated by the following Equation 7.
  • Rin d ⁇ (nx-ny)
  • Rth d ⁇ ⁇ (nz- (nx + ny) / 2 ⁇
  • nx, ny, and nz are refractive indexes in the x-axis, y-axis, and z-axis directions defined above, respectively, and d is the thickness of the retardation film.
  • the reverse wavelength dispersion characteristic may mean a characteristic satisfying the following Equation 8
  • the normal wavelength dispersion characteristic may mean a characteristic satisfying the following Equation 9
  • a flat wavelength dispersion characteristic may mean a property that satisfies Equation 10 below.
  • R (450) / R (550) R (650) / R (550)
  • the refractive index of the retardation film is described, and unless otherwise specified, the refractive index with respect to light having a wavelength of about 550 nm.
  • the first retardation film may be a + A plate or a -B plate.
  • the first retardation film may have a Nz value of 1.0 to 1.5.
  • the second retardation film may be a + B plate.
  • the second retardation film may have an Nz value of ⁇ 1 or less.
  • In-plane slow axes of the first retardation film and the second retardation film may be 43 degrees to 47 degrees with the absorption axis of the polarizer, respectively.
  • the in-plane slow axis of the second retardation film may be orthogonal or parallel to the in-plane slow axis of the first retardation film.
  • FIG. 1 exemplarily illustrates an optical filter of the present application including a polarizer 30, a first retardation film 10, and a second retardation film 20 in sequence.
  • the optical filter of the present application may be implemented in the following first to fourth embodiments according to the relationship between the Nz value of the first retardation film and the in-plane slow axis between the first retardation film and the second retardation film.
  • 2 to 5 exemplarily show optical filters according to the first to fourth embodiments, respectively.
  • the parenthesis of the polarizer 30 means the absorption axis of the polarizer
  • the parenthesis of the first retardation film 10 means the type and in-plane slow axis of the first retardation film
  • the parenthesis of the second retardation film 20 is the second retardation It means the kind of film and the in-plane slow axis.
  • the Nz value of the first retardation film is 1, and the in-plane slow axes of the first retardation film and the second retardation film may be orthogonal to each other.
  • the first retardation film may be a + A plate.
  • the Nz value of the first retardation film is greater than 1 to 1.5 or less, and the in-plane slow axes of the first retardation film and the second retardation film may be perpendicular to each other.
  • the first retardation film may be a -B plate.
  • the Nz value of the first retardation film is 1, and the in-plane slow axes of the first retardation film and the second retardation film may be parallel to each other.
  • the first retardation film may be a + A plate.
  • the Nz value of the first retardation film is greater than 1 and less than or equal to 1.5, and the in-plane slow axes of the first retardation film and the second retardation film may be parallel to each other.
  • the first retardation film may be a -B plate.
  • the optical filter may exhibit excellent omnidirectional antireflection performance and color characteristics in front as well as side.
  • the optical filter will be described in more detail.
  • the optical filter may have a reflectance measured at an inclination angle of 60 degrees of 13% or less, 12% or less, 11% or less, or 10% or less.
  • the reflectance may be a reflectance of light of any wavelength in the visible region, for example, a reflectance of light of any wavelength in the range of 380 nm to 780 nm, or a reflectance of light belonging to the entire visible region.
  • the reflectance may be, for example, a reflectance measured at the polarizer side of the optical filter.
  • the reflectance may refer to a reflectance measured at a specific tilt angle of 60 degrees of inclination or to a predetermined range of tilt angles, or to a reflectance measured for all tilt angles at a tilt angle of 60 degrees, and measured in the manner described in the following examples. It is a shame.
  • the optical filter may have an average color deviation of 50 or less, 45 or less, or 40 or less.
  • Color deviation herein as a formula in the embodiment of the color characteristic ⁇ in the simulation assessment E * ab, which will be described later as referring to the color of the side how naneunji is different from the color of the front side when the optical filter is applied to the organic light emitting display panel It may mean a value to be calculated.
  • the first retardation film may have a quarter wavelength phase delay property.
  • the “n wavelength phase retardation characteristic” may mean a characteristic capable of retarding incident light by n times the wavelength of the incident light within at least a portion of a wavelength range.
  • the quarter wavelength phase delay characteristic may mean a characteristic that may phase-retard incident light by 1/4 times the wavelength of the incident light within at least a portion of a wavelength range.
  • the on-plane retardation of light of 550 nm wavelength of the first retardation film may be 70 nm to 200 nm.
  • the first retardation film has a plane retardation with respect to light having a wavelength of 550 nm. May be from 120 nm to 200 nm.
  • the lower limit of the plane retardation of the first retardation film may be 120 nm or more, 130 nm or more, 140 nm or more, 150 nm or more, or 155 nm or more, and the upper limit may be 200 nm or less, 195 nm or less, or 190 nm or less. have.
  • the first retardation film has a plane retardation with respect to light having a wavelength of 550 nm. May be 70 nm to 160 nm.
  • the lower limit of the plane retardation of the first retardation film may be 70 nm or more, 80 nm or more, or 90 nm or more, and the upper limit may be 160 nm or less, 150 nm or less, 140 nm or less, or 130 nm or less.
  • the on-plane retardation of the first retardation film satisfies the above range, it may be advantageous to exhibit excellent omnidirectional antireflection performance and color characteristics not only on the front side but also on the side surface.
  • the first retardation film may have reverse wavelength dispersion.
  • the first retardation film may have a property that an on-plane retardation increases as the wavelength of incident light increases.
  • the wavelength of the incident light may be, for example, 300 nm to 800 nm.
  • R (450) / R (550) value of the first retardation film may be 0.60 to 0.99, specifically, 0.60 to 0.92.
  • the value of R (650) / R (550) of the first retardation film may be 1.01 to 1.19, 1.05 to 1.15, or 1.09 to 1.11 while having a value greater than that of R (450) / R 550.
  • the first retardation film has a reverse wavelength dispersion characteristic, it may be advantageous to exhibit excellent omnidirectional antireflection performance and color characteristics in front as well as side.
  • the Nz value of the second retardation film may be -1 or less.
  • the lower limit of the Nz value of the second retardation film may be -11,000 or more.
  • the plane retardation of the second retardation film with respect to light having a wavelength of 550 nm may be greater than 0 nm and 70 nm or less. More specifically, the lower limit of the planar phase difference of the second retardation film may be greater than 0 nm, 5 nm or more, 10 nm or more, 11 nm or more, 12 nm or more, or 13 nm or more, and the upper limit is 70 nm or less, 60 nm or less. , 55 nm or less, or 54 nm or less.
  • the thickness retardation of the second retardation film may be 50 nm to 200 nm.
  • the lower limit of the thickness retardation of the second retardation film may be 50 nm or more, 60 nm or more, 70 nm or more, 80 nm or more, 83 nm or more, 85 nm or more, or 88 nm or more, and the upper limit is 200 nm. Or less, 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 125. nm or less, 110 nm or less or 105 nm or less.
  • the on-plane retardation to thickness direction retardation of the second retardation film satisfy the above range, it may be advantageous to exhibit excellent anti-directional reflection performance and color characteristics not only on the front side but also on the side surface.
  • the second retardation film may have reverse wavelength dispersion characteristics, flat wavelength dispersion characteristics, or normal wavelength dispersion characteristics.
  • the first and second retardation films may be polymer films.
  • the polymer film include polyolefins such as PC (polycarbonate), norbornene resin (norbonene resin), PVA (poly (vinyl alcohol)), PS (polystyrene), PMMA (poly (methyl methacrylate)), PP (polypropylene), A film including Par (poly (arylate)), PA (polyamide), PET (poly (ethylene terephthalate)) or PS (polysulfone) may be used.
  • the polymer film may be stretched or shrunk under appropriate conditions to impart birefringence to be used as the first and second retardation films.
  • the first and second retardation films may be liquid crystal films.
  • the liquid crystal film may include a state in which the liquid crystal molecules are aligned and polymerized.
  • the liquid crystal molecules may be polymerizable liquid crystal molecules.
  • the polymerizable liquid crystal molecule may mean a molecule including a site capable of exhibiting liquid crystal, for example, a mesogen skeleton, and one or more polymerizable functional groups.
  • including the polymerizable liquid crystal molecules in a polymerized form may mean a state in which the liquid crystal molecules are polymerized to form a skeleton such as a main chain or side chain of the liquid crystal polymer in the liquid crystal film.
  • the thickness of the first retardation film to the second retardation film may be appropriately adjusted in consideration of the purpose of the present application.
  • the thickness of the first retardation film may be 0.5 ⁇ m to 100 ⁇ m.
  • the thickness of the second retardation film may be 0.5 ⁇ m to 100 ⁇ m.
  • the optical filter may further include a surface treatment layer.
  • the surface treatment layer may include an antireflection layer and the like.
  • the surface treatment layer may be disposed on the outer side of the polarizer, that is, on the opposite side on which the second retardation film is disposed.
  • the antireflection layer may be a laminate of two or more layers having different refractive indices, but is not limited thereto.
  • the first retardation film, the second retardation film, or the polarizer of the optical filter may be attached to each other through an adhesive or an adhesive, or may be laminated to each other by direct coating.
  • An optically transparent adhesive or an adhesive can be used as the said adhesive or an adhesive agent.
  • Incident unpolarized light (hereinafter referred to as “external light”) incident from the outside passes through the polarizer and transmits only one of the two polarization orthogonal components, that is, the first polarization orthogonal component, and is polarized.
  • the light may be converted into circularly polarized light while passing through the first retardation film.
  • the circularly polarized light is reflected from the display panel of the organic light emitting diode display including the substrate, the electrode, and the like, and the rotation direction of the circularly polarized light is changed, and the circularly polarized light passes through the first retardation film again, and thus, among the two polarized orthogonal components. Is converted into another polarization orthogonal component, that is, a second polarization orthogonal component. Since the second polarized orthogonal component does not pass through the polarizer and no light is emitted to the outside, the second polarized orthogonal component may have an external light reflection preventing effect.
  • the optical filter of the present application can effectively prevent reflection of external light incident from the side, the side visibility of the organic light emitting device can be improved.
  • the viewing angle polarization compensation principle can effectively prevent reflection of external light incident from the side surface.
  • the optical filter of the present application can be applied to organic bales and devices.
  • 6 is a cross-sectional view illustrating the organic light emitting device by way of example.
  • the organic light emitting device includes an organic light emitting display panel 200 and an optical filter 100 disposed on one surface of the organic light emitting display panel 200.
  • the first retardation film 10 of the optical filter may be disposed adjacent to the organic light emitting display panel 200 as compared to the polarizer 30.
  • the organic light emitting display panel may include a base substrate, a lower electrode, an organic emission layer, an upper electrode, and an encapsulation substrate.
  • One of the lower electrode and the upper electrode may be an anode and the other may be a cathode.
  • the anode may be made of a conductive material having a high work function as an electrode into which holes are injected, and the cathode may be made of a conductive material having a low work function as an electrode into which electrons are injected.
  • At least one of the lower electrode and the upper electrode may be made of a transparent conductive material through which emitted light can come out, and may be, for example, ITO or IZO.
  • the organic light emitting layer may include an organic material that emits light when a voltage is applied to the lower electrode and the upper electrode.
  • An auxiliary layer may be further included between the lower electrode and the organic light emitting layer and between the upper electrode and the organic light emitting layer.
  • the auxiliary layer may include a hole transporting layer, a hole injecting layer, an electron injecting layer, and an electron transporting layer to balance electrons and holes.
  • the encapsulation substrate may be made of glass, metal, and / or polymer, and may encapsulate the lower electrode, the organic emission layer, and the upper electrode to prevent the inflow of moisture and / or oxygen from the outside.
  • the optical filter 100 may be disposed on a side from which light is emitted from the organic light emitting display panel.
  • the bottom emission structure may be disposed outside the base substrate.
  • the bottom emission structure may be disposed outside of the encapsulation substrate.
  • the optical filter 100 may improve display characteristics of the organic light emitting device by preventing external light from being reflected outside the organic light emitting device by being reflected by a reflective layer made of metal such as an electrode and a wire of the organic light emitting display panel 200. .
  • the optical filter 100 may exhibit an anti-reflection effect not only in the front but also in the side as described above, the side visibility may be improved.
  • the optical filter of the present application is excellent in the omnidirectional antireflection performance and color characteristics from the front as well as the side, the optical filter can be applied to the organic light emitting device to improve the visibility.
  • FIG. 1 is an exemplary cross-sectional view of an optical filter of the present application.
  • FIG 2 is an exemplary cross-sectional view of an optical filter according to a first embodiment of the present application.
  • FIG 3 is an exemplary cross-sectional view of an optical filter according to a second embodiment of the present application.
  • FIG 4 is an exemplary cross-sectional view of an optical filter according to a third embodiment of the present application.
  • FIG 5 is an exemplary cross-sectional view of an optical filter according to a fourth embodiment of the present application.
  • FIG. 6 is a cross-sectional view of an organic light emitting device according to an embodiment of the present application.
  • FIG. 7 is a result of evaluation of color characteristics simulation of Example 1.
  • FIG. 8 is a result of evaluation of color characteristics simulation of Example 3.
  • the structure in which the polarizer, the retardation film and the OLED panel were sequentially arranged was set as in Examples 1 to 4 and Comparative Examples 1 to 2 below.
  • the polarizer has an absorption axis in one direction, has a single transmittance (Ts) of 42.5%, and the OLED panel is Galaxy S6.
  • the structure in which the polarizer, the first retardation film, the second retardation film, and the OLED panel were sequentially arranged was set.
  • the first retardation film is a + A plate having R (450) / (550) of 0.84
  • the second retardation film is a + B plate.
  • the absorption axis of the polarizer is 0 degrees
  • the slow axis of the first retardation film is +45 degrees
  • the slow axis of the second retardation film is -45 degrees.
  • Example First retardation film 2nd phase difference film Maximum reflectance (%) (60 degrees side) Color deviation Rin (nm) Nz Rin (nm) Rth (nm) Average maximum 1-1 140 -10999 0.01 110 9.82 20.5 75.9 1-2 150 -9 11 105 9.83 24.7 85.3 1-3 160 -4 22 99 10.07 28.9 99.3 1-4 175 -2.3 33 94 10.43 36.2 101.5 1-5 185 -1.5 44 88 10.65 42.3 123.5 1-6 195 -One 55 83 11.02 53.5 155.4
  • the structure in which the polarizer, the first retardation film, the second retardation film, and the OLED panel were sequentially arranged was set.
  • the first retardation film is a -B plate having R (450) / 550 of 0.84, and the second retardation film is a + B plate.
  • the absorption axis of the polarizer is 0 degrees
  • the slow axis of the first retardation film is +45 degrees
  • the slow axis of the second retardation film is -45 degrees.
  • Example First retardation film 2nd phase difference film Maximum reflectance (%) (60 degrees side) Color deviation Nz Rin (nm) Rth (nm) Nz Rin (nm) Rth (nm) Average maximum 2-1 1.1 155 -93 -9.0 13 123.5 9.80 27.6 91.3 2-2 1.1 155 -93 -9.0 14 133 9.85 24.4 85.6 2-3 1.2 155 -108.5 -9.0 14 133 9.92 31.3 115.1 2-4 1.1 160 -96 -9.0 15 142.5 9.97 28.4 108.5 2-5 1.2 155 -108.5 -9.0 15 142.5 9.92 27.3 89.1 2-6 1.2 160 -112 -9.0 16 152 9.92 31.0 116.4 2-7 1.3 160 -128 -9.0 17 161.5 9.97 33.8 123.1 2-8 1.1 170 -102 -4.0 30 135 9.81 27.5 94.5 2-9 1.1 175 -105 -4.0 32 144 9.87 31.3 133.7 2-10 1.1 180 -108
  • the structure in which the polarizer, the first retardation film, the second retardation film, and the OLED panel were sequentially arranged was set.
  • the first retardation film is a + A plate in which R (450) / (550) is 0.84, and the second retardation film is a + B plate.
  • the absorption axis of the polarizer is 0 degrees
  • the slow axis of the first retardation film is +45 degrees
  • the slow axis of the second retardation film is +45 degrees.
  • Example First retardation film 2nd phase difference film Maximum reflectance (%) (60 degrees side) Color deviation Rin (nm) Nz Rin (nm) Rth (nm) Average maximum 3-1 130 -9 11 105 9.79 20.5 75.9 3-2 120 -4 22 99 9.76 20.1 83.2 3-3 110 -2.3 33 94 9.84 19.6 87.9 3-4 100 -1.5 44 88 9.80 19.04 89.7 3-5 90 -One 55 83 10.02 18.3 90.6
  • the structure in which the polarizer, the first retardation film, the second retardation film, and the OLED panel were sequentially arranged was set.
  • the first retardation film is a -B plate having R (450) / 550 of 0.84, and the second retardation film is a + B plate.
  • the absorption axis of the polarizer is 0 degrees
  • the slow axis of the first retardation film is +45 degrees
  • the slow axis of the second retardation film is +45 degrees.
  • Example First retardation film 2nd phase difference film Maximum reflectance (%) (60 degrees side) Color deviation Nz Rin (nm) Rth (nm) Nz Rin (nm) Rth (nm) Average maximum 4-1 1.1 130 -78 -9.0 12 114 9.82 22.9 86.1 4-2 1.2 125 -87.5 -9.0 13 123.5 9.89 23.8 88.5 4-3 1.3 125 -100 -9.0 14 133 9.99 26.1 95.9 4-4 1.1 115 -69 -4.0 24 108 9.87 21.2 91.7 4-5 1.2 115 -80.5 -4.0 24 108 9.90 25.9 101.6 4-6 1.3 115 -92 -4.0 28 126 9.93 24.9 96.1 4-7 1.1 105 -63 -2.3 33 93.5 9.89 22.9 98.9 4-8 1.2 100 -70 -2.3 39 110.5 9.88 21.4 99.4 4-9 1.3 100 -80 -2.3 39 110.5 9.88 24.9 106.4 4-10 1.1 95 -57 -
  • the structure in which the polarizer, the first retardation film and the OLED panel were sequentially arranged was set.
  • the first retardation film has a plane retardation of 140 nm for light at a wavelength of 550 nm, an R (450) / R (550) of 0.84, and a + A plate.
  • the absorption axis of the polarizer is 0 degrees, and the in-plane slow axis of the first retardation film is 45 degrees.
  • Example 1-3 In the structures of Example 1-3, Example 2-2, Example 3-4, and Example 4-2, except that the in-plane slow axis of the second retardation film and the absorption axis of the polarizer were arranged in parallel, respectively.
  • Examples 1 to 4 and Comparative Examples 1 to 2 the reflectance was simulated (Techwiz 1D plus, Men's System) in a 60 degree lateral direction with respect to the front at 0 degrees to 360 degrees of east angle, and the results are shown in the above table. It summarized from 1 to Table 6.
  • the maximum reflectance Max. Means the highest reflectance among the reflectances at an angle of 0 to 360 degrees.
  • the structures of Examples 1 to 4 have a lower maximum reflectance (Max.) Than the structures of Comparative Examples 1 to 2, and thus it is confirmed that the antireflection effect is excellent.
  • Examples 1 to 4 and Comparative Examples 1 to 2 simulated and evaluated the omni-directional color characteristics (Techwiz 1D plus, man system), and the results are shown in FIGS. 7 to 9, and the results are shown in Tables 1 to 6 Summarized in
  • (L * 1 , a * 1 , b * 1 ) means the reflection color value from the front (an inclination angle of 0 °, azimuth angle of 0 °), and (L * 2 , a * 2 , b * 2 ) Means the reflection color value at each inclination and azimuth position.
  • 7 to 9 are graphs showing the calculated color deviation with respect to the full azimuth angle. What the color deviation value means is how much the color of the side differs from the color of the front. Therefore, as the color in FIG. 8 is darker, it may be a measure to determine that the uniform color is implemented in all directions.
  • the colors displayed represent colors that can be perceived by real people.
  • the center of the circle means the front face (0 degree of inclination, 0 degree of azimuth), indicating that the angle of inclination increases up to 60 ° as it moves away from the circle.
  • Azimuth angles such as 90 °, 180 °, and 270 ° in the counterclockwise direction from the right (0 °) along the radial direction of the circle, respectively.
  • the maximum color deviation (Max.) Means the highest color deviation among the reflectances at 0 to 360 degrees of east angle
  • the average color deviation (Ave.) is the color to 0 to 360 degrees of east angle.
  • the structures of Examples 1 to 4 have lower maximum color deviations and average color deviations, compared to those of Comparative Example 1, and thus can be expected to realize uniform colors in all directions.
  • the structures of Examples 1 and 3 are darker in color than the structure of Comparative Example 1, and have low uniform color deviation (Max.) And average color deviation (Ave.), thus being uniform at all directions. You can see that it implements color.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

본 출원은 광학 필터 및 유기 발광 표시 장치에 관하 것이다. 본 출원의 광학 필터는 정면뿐만 아니라 측면에서도 전 방위 반사 방지 성능 및 컬러 특성이 우수하며, 상기 광학 필터는 유기 발광 장치에 적용되어 시인성을 향상시킬 수 있다.

Description

반사 방지용 광학 필터 및 유기 발광 장치
본 출원은 반사 방지용 광학 필터 및 유기 발광 장치에 관한 것이다.
본 출원은 2016년 10월 14일자 한국 특허 출원 제10-2016-0133355에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
근래 모니터 또는 텔레비전 등의 경량화 및 박형화가 요구되고 있으며, 이러한 요구에 따라 유기 발광 장치(organic light emitting device, OLED)가 주목받고 있다. 유기 발광 장치는 스스로 발광하는 자체 발광형 표시 장치로서 별도의 백라이트가 필요 없어 두께를 줄일 수 있고 플렉시블 표시 장치를 구현하는데 유리하다.
한편, 유기 발광 장치는 유기 발광 표시 패널에 형성된 금속 전극 및 금속 배선에 의해 외부광을 반사시킬 수 있고 반사된 외부광에 의해 시인성과 대비비가 저하되어 표시 품질이 떨어질 수 있다. 특허 문헌 1(대한민국 특허공개 제2009-0122138호)과 같이 유기 발광 표시 패널의 일면에 원편광판을 부착하여 상기 반사된 외부광이 바깥으로 새어 나오는 것을 줄일 수 있다.
그러나 현재 개발되어 있는 원편광판은 시야각 의존성이 강하여 면으로 갈수록 반사 방지 성능이 저하되어 시인성이 떨어지는 문제점이 있다.
본 출원이 해결하고자 하는 과제는 정면뿐만 아니라 측면에서도 전 방위 반사 방지 성능 및 컬러 특성이 우수한 광학 필터 및 상기 광학 필터를 적용하여 시인성이 개선된 유기 발광 장치를 제공하는 것이다.
본 출원은 반사 방지용 광학 필터에 관한 것이다. 상기 광학 필터는 일 방향으로 형성된 흡수축을 가지는 편광자, 제 1 위상차 필름 및 제 2 위상차 필름을 순차로 포함할 수 있다.
본 명세서에서 편광자는 입사 광에 대하여 선택적 투과 및 흡수 특성을 나타내는 소자를 의미한다. 편광자는 예를 들어, 여러 방향으로 진동하는 입사 광으로부터 어느 한쪽 방향으로 진동하는 광은 투과하고, 나머지 방향으로 진동하는 광은 흡수할 수 있다.
상기 광학 필터에 포함되는 편광자는 선편광자일 수 있다. 본 명세서에서 선편광자는 선택적으로 투과하는 광이 어느 하나의 방향으로 진동하는 선 편광이고 선택적으로 흡수하는 광이 상기 선편광의 진동 방향과 직교하는 방향으로 진동하는 선편광인 경우를 의미한다.
상기 편광자로는, 예를 들어, PVA 연신 필름 등과 같은 고분자 연신 필름에 요오드를 염착한 편광자 또는 배향된 상태로 중합된 액정을 호스트로 하고, 상기 액정의 배향에 따라 배열된 이방성 염료를 게스트로 하는 게스트-호스트형 편광자를 사용할 수 있으나 이에 제한되는 것은 아니다.
본 출원의 일 실시예에 의하면 상기 편광자로는 PVA 연신 필름을 사용할 수 있다. 상기 편광자의 투과율 내지 편광도는 본 출원의 목적을 고려하여 적절히 조절될 수 있다. 예를 들어 상기 편광자의 투과율은 42.5% 내지 55%일 수 있고, 편광도는 65% 내지 99.9997% 일 수 있다.
본 명세서에서 각도를 정의하면서, 수직, 수평, 직교 또는 평행 등의 용어를 사용하는 경우, 이는 목적하는 효과를 손상시키지 않는 범위에서의 실질적인 수직, 수평, 직교 또는 평행을 의미하는 것으로, 예를 들면, 제조 오차(error) 또는 편차(variation) 등을 감안한 오차를 포함하는 것이다. 예를 들면, 상기 각각의 경우는, 약 ±15도 이내의 오차, 약 ±10도 이내의 오차 또는 약 ±5도 이내의 오차를 포함할 수 있다.
본 명세서에서 위상차 필름은 광학 이방성 필름으로서 복굴절을 제어함으로써 입사 편광을 변환할 수 있는 소자를 의미할 수 있다. 본 명세서에서 위상차 필름의 x축, y축 및 z축을 기재하면서 특별한 언급이 없는 한, 상기 x축은 위상차 필름의 면내 지상축과 평행한 방향 의미하고, y 축은 위상차 필름의 면내 진상축과 평행한 방향을 의미하며, z축은 위상차 필름의 두께 방향을 의미한다. 상기 x축과 y축은 면내에서 서로 직교를 이룰 수 있다. 본 명세서에서 위상차 필름의 광축을 기재하면서 특별히 달리 규정하지 않는 한 지상축을 의미한다. 상기 위상차 필름이 막대 형상의 액정 분자를 포함하는 경우 지상축은 상기 막대 형상의 장축 방향을 의미할 수 있고 디스크 형상의 액정 분자를 포함하는 경우 지상축은 상기 디스크 형상의 법선 방향을 의미할 수 있다.
본 명세서에서 위상차 필름의 Nz 값은 하기 수식 1로 계산된다.
[수식 1]
Nz = (nx-nz)/(nx-ny)
본 명세서에서 하기 수식 2를 만족하는 위상차 필름을 소위 +C 플레이트로 호칭할 수 있다.
본 명세서에서 하기 수식 3을 만족하는 위상차 필름을 소위 +B 플레이트로 호칭할 수 있다.
본 명세서에서 하기 수식 4를 만족하는 위상차 필름을 소위 -B 플레이트로 호칭할 수 있다.
본 명세서에서 하기 수식 5를 만족하는 위상차 필름을 소위 +A 플레이트로 호칭할 수 있다.
[수식 2]
nx = ny < nz
[수식 3]
ny < nx ≠ nz
[수식 4]
nx > ny > nz
[수식 5]
nx > ny = nz
본 명세서에서 위상차 필름의 면상 위상차(Rin)는 하기 수식 6으로 계산된다.
본 명세서에서 위상차 필름의 두께 방향의 위상차(Rth)는 하기 수식 7로 계산된다.
[수식 6]
Rin = d × (nx - ny)
[수식 7]
Rth = d × {(nz-(nx+ny)/2}
수식 1 내지 수식 7에서, nx, ny 및 nz는 각각 상기 정의한 x축, y축 및 z축 방향의 굴절률이고, d는 위상차 필름의 두께이다.
본 명세서에서 역파장 분산 특성은 하기 수식 8을 만족하는 특성을 의미할 수 있고, 정상 파장 분산 특성(normal wavelength dispersion)은 하기 수식 9를 만족하는 특성을 의미할 수 있으며, 플랫 파장 분산 특성(flat wavelength dispersion)은 하기 수식 10을 만족하는 특성을 의미할 수 있다.
[수식 8]
R(450)/R(550) < R(650)/R(550)
[수식 9]
R(450)/R(550) > R(650)/R(550
[수식 10]
R(450)/R(550) = R(650)/R(550)
본 명세서에서 위상차 필름의 굴절률을 기재하면서 특별히 달리 규정하지 않는 한, 약 550 nm 파장의 광에 대한 굴절률을 의미한다.
본 출원의 광학 필터에 따르면, 상기 제 1 위상차 필름은 +A 플레이트 또는 -B 플레이트일 수 있다. 상기 제 1 위상차 필름은 Nz 값이 1.0 내지 1.5일 수 있다. 상기 제 2 위상차 필름은 +B 플레이트일 수 있다. 상기 제 2 위상차 필름은 Nz 값이 -1 이하일 수 있다. 상기 제 1 위상차 필름 및 제 2 위상차 필름의 면내 지상축은 각각 상기 편광자의 흡수축과 43도 내지 47도를 이룰 수 있다. 상기 제 2 위상차 필름의 면내 지상축은 제 1 위상차 필름의 면내 지상축과 직교하거나 또는 평행할 수 있다.
도 1은 편광자(30), 제 1 위상차 필름(10) 및 제 2 위상차 필름(20)을 순차로 포함하는 본 출원의 광학 필터를 예시적으로 나타낸다.
본 출원의 광학 필터는 제 1 위상차 필름의 Nz 값 및 제 1 위상차 필름과 제 2 위상차 필름 간의 면내 지상축의 관계에 따라 하기 제 1 내지 제 4 실시예로 구현될 수 있다. 도 2 내지 도 5는 각각 제 1 내지 제 4 실시예에 따른 광학 필터를 예시적으로 나타낸다. 편광자(30)의 괄호는 편광자의 흡수축을 의미하고, 제 1 위상차 필름(10)의 괄호는 제 1 위상차 필름의 종류 및 면내 지상축를 의미하고, 제 2 위상차 필름(20)의 괄호는 제 2 위상차 필름의 종류 및 면내 지상축을 의미한다.
도 2에 나타낸 바와 같이 본 출원의 제 1 실시예에 따른 광학 필터에 따르면 제 1 위상차 필름의 Nz 값은 1이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 직교할 수 있다. 상기 제 1 위상차 필름은 +A 플레이트일 수 있다.
도 3에 나타낸 바와 같이 본 출원의 제 2 실시예에 따른 광학 필터에 따르면 제 1 위상차 필름의 Nz 값은 1 초과 내지 1.5 이하이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 직교할 수 있다. 상기 제 1 위상차 필름은 -B 플레이트일 수 있다.
도 4에 나타낸 바와 같이 본 출원의 제 3 실시예에 따른 광학 필터에 따르면 제 1 위상차 필름의 Nz 값은 1이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 평행할 수 있다. 상기 제 1 위상차 필름은 +A 플레이트일 수 있다.
도 5에 나타낸 바와 같이 본 출원의 제 4 실시예에 따른 광학 필터에 따르면 제 1 위상차 필름의 Nz 값은 1 초과 내지 1.5 이하이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 평행할 수 있다. 상기 제 1 위상차 필름은 -B 플레이트일 수 있다.
상기 광학 필터는 정면뿐만 아니라 측면에서도 우수한 전 방위 반사 방지 성능 및 컬러 특성을 나타낼 수 있다. 이하, 상기 광학 필터에 대하여 보다 구체적으로 설명한다.
상기 광학 필터는, 예를 들면 경사각 60도에서 측정한 반사율이 13% 이하, 12% 이하, 11% 이하 또는 10% 이하일 수 있다. 상기 반사율은 가시광 영역 내의 어느 한 파장의 광에 대한 반사율, 예를 들면, 380 nm 내지 780 nm 범위 중 어느 한 파장의 광에 대한 반사율이거나, 혹은 가시광 전영역에 속하는 광에 대한 반사율일 수 있다. 상기 반사율은, 예를 들면, 광학 필터의 편광자측에서 측정한 반사율일 수 있다. 상기 반사율은 경사각 60도의 특정 동경각 또는 소정 범위의 동경각에서 측정한 반사율이거나 혹은 경사각 60도에서의 모든 동경각에 대하여 측정한 반사율을 의미할 수 있고, 후술하는 실시예에서 기재된 방식으로 측정한 수치이다.
상기 광학 필터는 색 편차의 평균이 50 이하, 45 이하 또는 40 이하일 수 있다. 본 명세서에서 색 편차는 상기 광학 필터가 유기발광표시패널에 적용되었을 때 측면의 색상이 정면의 색상과 얼마나 차이가 나는지를 의미하는 것으로 후술하는 실시예의 컬러 특성 시뮬레이션 평가에서 △E* ab의 수식으로 계산되는 값을 의미할 수 있다.
상기 제 1 위상차 필름은 1/4 파장 위상 지연 특성을 가질 수 있다. 본 명세서에서「n 파장 위상 지연 특성」은 적어도 일부의 파장 범위 내에서, 입사 광을 그 입사광의 파장의 n배 만큼 위상 지연 시킬 수 있는 특성을 의미할 수 있다. 따라서, 상기 1/4 파장 위상 지연 특성은 적어도 일부의 파장 범위 내에서, 입사 광을 그 입사광의 파장의 1/4배 큼 위상 지연 시킬 수 있는 특성을 의미할 수 있다.
상기 제 1 위상차 필름의 550 nm 파장의 광에 대한 면상 위상차는 70 nm 내지 200nm일 수 있다. 상기 제 1 위상차 필름은 상기 제 1 실시예 내지 제 2 실시예의 경우, 예를 들어, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축이 서로 직교하는 경우, 550 nm 파장의 광에 대한 면상 위상차가 120 nm 내지 200 nm일 수 있다. 보다 구체적으로, 상기 제 1 위상차 필름의 면상 위상차의 하한은 120 nm 이상, 130nm 이상, 140 nm 이상, 150 nm 이상 또는 155 nm 이상일 수 있고, 상한은 200 nm 이하, 195 nm 이하 또는 190 nm 이하일 수 있다. 상기 제 1 위상차 필름은 상기 제 3 실시예 내지 제 4 실시예의 경우, 예를 들어, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축이 서로 평행하는 경우, 550 nm 파장의 광에 대한 면상 위상차가 70 nm 내지 160 nm일 수 있다. 보다 구체적으로, 상기 제 1 위상차 필름의 면상 위상차의 하한은 70 nm 이상, 80nm 이상 또는 90 nm 이상일 수 있고, 상한은 160 nm 이하, 150 nm 이하, 140 nm 이하 또는 130 nm 이하일 수 있다.
제 1 위상차 필름의 면상 위상차가 상기 범위를 만족하는 경우 정면뿐만 아니라 측면에서도 우수한 전 방위 반사 방지 성능 및 컬러 특성을 나타내는데 유리할 수 있다.
상기 제 1 위상차 필름은 역파장 분산 특성(reverse wavelength dispersion)을 가질 수 있다. 예를 들어, 상기 제 1 위상차 필름은 입사 광의 파장이 증가할수록 면상 위상차가 증가하는 특성을 가질 수 있다. 상기 입사 광의 파장은 예를 들어 300 nm 내지 800 nm일 수 있다.
상기 제 1 위상차 필름의 R(450)/R(550) 값은 0.60 내지 0.99, 구체적으로, 0.60 내지 0.92일 수 있다. 상기 제 1 위상차 필름의 R(650)/R(550)의 값은 상기 R(450)/R(550)보다 큰 값을 가지면서, 1.01 내지 1.19, 1.05 내지 1.15 또는 1.09 내지 1.11일 수 있다. 상기 제 1 위상차 필름이 역파장 분산 특성을 가지는 경우 정면뿐만 아니라 측면에서도 우수한 전 방위 반사 방지 성능 및 컬러 특성을 나타내는데 유리할 수 있다.
상기 제 2 위상차 필름의 Nz 값은 -1 이하일 수 있다. 상기 제 2 위상차 필름의 Nz 값의 하한은 -11,000 이상일 수 있다. 상기 제 2 위상차 필름의 Nz 값이 상기 범위를 만족하는 경우 정면뿐만 아니라 측면에서도 우수한 전 방위 반사 방지 성능 및 컬러 특성을 나타내는데 유리할 수 있다.
상기 제 2 위상차 필름의 550 nm 파장의 광에 대한 면상 위상차는 0 nm 초과 내지 70 nm 이하일 수 있다. 보다 구체적으로, 상기 제 2 위상차 필름의 면상 위상차의 하한은 0 nm 초과, 5 nm 이상, 10 nm 이상, 11 nm 이상, 12 nm 이상 또는 13 nm 이상일 수 있고, 상한은 70 nm 이하, 60 nm 이하, 55 nm 이하, 또는 54 nm 이하 일 수 있다. 상기 제 2 위상차 필름의 두께 방향 위상차는 50 nm 내지 200 nm일 수 있다. 보다 구체적으로, 상기 제 2 위상차 필름의 두께 방향 위상차의 하한은 50 nm 이상, 60 nm 이상, 70 nm 이상, 80 nm 이상, 83 nm 이상, 85 nm 이상 또는 88 nm 이상일 수 있고, 상한은 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하, 125. nm 이하, 110 nm 이하 또는 105 nm 이하일 수 있다. 상기 제 2 위상차 필름의 면상 위상차 내지 두께 방향 위상차가 상기 범위를 만족하는 경우 정면뿐만 아니라 측면에서도 우수한 전 방위 반사 방지 성능 및 컬러 특성을 나타내는데 유리할 수 있다.
상기 제 2 위상차 필름은 역파장 분산 특성, 플랫 파장 분산 특성 또는 정상 파장 분산 특성을 가질 수 있다.
상기 제 1 및 제 2 위상차 필름은 고분자 필름일수 있다. 상기 고분자 필름으로는, PC(polycarbonate), 노르보넨 수지(norbonene resin), PVA(poly(vinyl alcohol)), PS(polystyrene), PMMA(poly(methyl methacrylate)), PP(polypropylene) 등의 폴리올레핀, Par(poly(arylate)), PA(polyamide), PET(poly(ethylene terephthalate)) 또는 PS(polysulfone) 등을 포함하는 필름을 사용할 수 있다. 상기 고분자 필름을 적절한 조건에서 연신 또는 수축 처리하여 복굴절성을 부여하여 상기 제 1 및 제 2 위상차 필름으로 사용할 수 있다.
상기 제 1 및 제 2 위상차 필름은 액정 필름일 수 있다. 상기 액정 필름은 액정 분자를 배향 및 중합시킨 상태로 포함할 수 있다. 상기 액정 분자는 중합성 액정 분자일 수 있다. 본 명세서에서 중합성 액정 분자는, 액정성을 나타낼 수 있는 부위, 예를 들면 메조겐(mesogen) 골격 등을 포함하고, 중합성 관능기를 하나 이상 포함하는 분자를 의미할 수 있다. 또한 중합성 액정 분자를 중합된 형태로 포함한다는 것은 상기 액정 분자가 중합되어 액정 필름 내에서 액정 고분자의 주쇄 또는 측쇄와 같은 골격을 형성하고 있는 상태를 의미할 수 있다.
상기 제 1 위상차 필름 내지 제 2 위상차 필름의 두께는 본 출원의 목적을 고려하여 적절히 조절될 수 있다. 상기 제 1 위상차 필름의 두께는 0.5㎛ 내지 100㎛ 일 수 있다. 상기 제 2 위상차 필름의 두께는 0.5㎛ 내지 100㎛ 일 수 있다.
상기 광학 필터는 표면처리 층을 더 포함할 수 있다. 상기 표면처리 층으로는 반사방지 층 등을 예시할 수 있다. 상기 표면처리 층은 상기 편광자의 외측에, 즉 제 2 위상차 필름이 배치된 반대 측면에 배치될 수 있다. 상기 반사방지 층으로는 굴절률이 상이한 2개 이상의 층의 적층체 등을 사용할 수 있으나 이에 제한되는 것은 아니다.
상기 광학 필터의 제 1 위상차 필름, 제 2 위상차 필름 내지 편광자는 점착제 또는 접착제를 통해 서로 부착되어 있거나 혹은 직접 코팅에 의해 서로 적층되어 있을 수 있다. 상기 점착제로 또는 접착제로는 광학 투명 점착제 또는 접착제를 사용할 수 있다.
본 출원의 광학 필터는 외광의 반사를 방지할 수 있으므로, 유기 발광 장치의 시인성을 개선할 수 있다. 외부로부터 입사되는 비편광된 광(incident unpolarized light)(이하 "외광"이라 한다)은 편광자를 통과하면서 두 개의 편광 직교 성분 중 하나의 편광 직교 성분, 즉 제1 편광 직교 성분만이 투과되고, 편광된 광은 제 1 위상차 필름을 통과하면서 원편광으로 바뀔 수 있다. 상기 원편광된 광은 기판, 전극 등을 포함한 유기 발광 표시 장치의 표시 패널에서 반사되면서 원편광의 회전 방향이 바뀌게 되고 상기 원편광된 광이 제 1 위상차 필름을 다시 통과하면서 두 개의 편광 직교 성분 중 다른 하나의 편광 직교 성분, 즉 제2 편광 직교 성분으로 변환된다. 상기 제 2 편광 직교 성분은 편광자를 통과하지 못하여 외부로 광이 방출되지 않으므로 외광 반사 방지 효과를 가질 수 있다.
본 출원의 광학 필터는 측면에서 입사되는 외광의 반사도 효과적으로 방지할 수 있으므로 유기 발광 장치의 측면 시인성을 개선할 수 있다. 예를 들어, 시야각 편광 보상 원리를 통해 측면에서 입사되는 외광의 반사도 효과적으로 방지할 수 있다.
본 출원의 광학 필터는 유기 발과 장치에 적용될 수 있다. 도 6은 상기 유기 발광 장치를 예시적으로 도시한 단면도이다. 도 6을 참조하면, 상기 유기 발광 장치는 유기 발광 표시 패널(200)과 유기 발광 표시 패널(200)의 일면에 위치하는 광학 필터(100)을 포함한다. 상기 광학 필터의 제 1 위상차 필름 (10)이 편광자 (30)에 비하여 유기 발광 표시 패널(200)에 인접하게 배치될 수 있다.
상기 유기 발광 표시 패널은 베이스 기판, 하부 전극, 유기 발광층, 상부 전극 및 봉지 기판 등을 포함할 수 있다. 상기 하부 전극 및 상부 전극 중 하나는 애노드(anode)이고 다른 하나는 캐소드(cathode)일 수 있다. 애노드는 정공(hole)이 주입되는 전극으로 일 함수(work function)가 높은 도전 물질로 만들어질 수 있으며 캐소드는 전자가 주입되는 전극으로 일 함수가 낮은 도전 물질로 만들어질 수 있다. 하부 전극 및 상부 전극 중 적어도 하나는 발광된 빛이 외부로 나올 수 있는 투명 도전 물질로 만들어질 수 있으며 예컨대 ITO 또 는 IZO 일 수 있다. 유기 발광층은 하부 전극과 상부 전극)에 전압이 인가되었을 때 빛을 낼 수 있는 유기 물질을 포함할 수 있다.
하부 전극과 유기 발광층 사이 및 상부 전극과 유기 발광층 사이에는 부대층을 더 포함할 수 있다. 부대층은 전자와 정공의 균형을 맞추기 위한 정공 전달층(hole transporting layer), 정공 주입층(hole injecting layer), 전자 주입층(electron injecting layer) 및 전자 전달층(electron transporting layer)을 포함할 수 있으나 이에 한정되는 것은 아니다. 봉지 기판은 유리, 금속 및/또는 고분자로 만들어질 수 있으며, 하부 전극, 유기 발광층 및 상부 전극을 봉지하여 외부로부터 수분 및/또는 산소가 유입되는 것을 방지할 수 있다.
광학 필터(100)는 유기 발광 표시 패널에서 빛이 나오는 측에 배치될 수 있다. 예컨대 베이스 기판 측으로 빛이 나오는 배면 발 광(bottom emission) 구조인 경우 베이스 기판의 외측에 배치될 수 있고, 봉지 기판 측으로 빛이 나 오는 전면 발광(top emission) 구조인 경우 봉지 기판의 외측에 배치될 수 있다. 광학 필터(100)은 외광이 유기 발광 표시 패널(200)의 전극 및 배선 등과 같이 금속으로 만들어진 반사층에 의해 반사되어 유기 발광 장치의 외측으로 나오는 것을 방지함으로써 유기 발광 장치의 표시 특성을 개선할 수 있다. 또한, 광학 필터 (100)은 전술한 바와 같이 정면뿐만 아니라 측면에서도 반사 방지 효과를 나타낼 수 있으므로 측면 시인성을 개선할 수 있다.
본 출원의 광학 필터는 정면뿐만 아니라 측면에서도 전 방위 반사 방지 성능 및 칼라 특성이 우수하며, 상기 광학 필터는 유기 발광 장치에 적용되어 시인성을 향상시킬 수 있다.
도 1은 본 출원의 광학 필터의 예시적인 단면도이다.
도 2는 본 출원의 제 1 실시예에 따른 광학 필터의 예시적인 단면도이다
도 3은 본 출원의 제 2 실시예에 따른 광학 필터의 예시적인 단면도이다.
도 4는 본 출원의 제 3 실시예에 따른 광학 필터의 예시적인 단면도이다.
도 5는 본 출원의 제 4 실시예에 따른 광학 필터의 예시적인 단면도이다.
도 6은 본 출원의 일 실시예에 따른 유기 발광 장치의 단면도이다.
도 7은 실시예 1의 컬러 특성 시뮬레이션 평가 결과이다.
도 8은 실시예 3의 컬러 특성 시뮬레이션 평가 결과이다.
도 9는 비교예 1 및 비교예 2의 컬러 특성 시뮬레이션 평가 결과이다.
이하 실시예 및 비교예를 통하여 상기 내용을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 내용에 의해 제한되는 것은 아니다.
반사율 및 컬러 특성 시뮬레이션 평가를 위해, 편광자, 위상차 필름 및 OLED 패널이 순차로 배치된 구조를 하기 실시예 1 내지 4 및 비교예 1 내지 2와 같이 설정했다. 상기 편광자는 일 방향으로 흡수축을 가지고, 단체 투과율(Ts)이 42.5%이며, 상기 OLED 패널은 Galaxy S6이다.
실시예 1
시뮬레이션 평가를 위하여, 편광자, 제 1 위상차 필름, 제 2 위상차 필름 및 OLED 패널이 순차로 배치된 구조를 설정했다.
상기 제 1 위상차 필름은 R(450)/(550)이 0.84인 +A 플레이트이고, 제 2 위상차 필름은 +B 플레이트이다.
상기 편광자의 흡수축은 0도이고, 상기 제 1 위상차 필름의 지상축은 +45도이며, 상기 제 2 위상차 필름의 지상축은 -45도이다.
제 1 및 제 2 위상차 필름의 광학 물성을 하기 표 1과 같이 조절하여 6 개의 샘플을 준비했다.
실시예 제 1 위상차 필름 제 2 위상차 필름 최대 반사율(%)(60도 측면) 색편차
Rin (nm) Nz Rin (nm) Rth (nm) 평균 최대
1-1 140 -10999 0.01 110 9.82 20.5 75.9
1-2 150 -9 11 105 9.83 24.7 85.3
1-3 160 -4 22 99 10.07 28.9 99.3
1-4 175 -2.3 33 94 10.43 36.2 101.5
1-5 185 -1.5 44 88 10.65 42.3 123.5
1-6 195 -1 55 83 11.02 53.5 155.4
실시예 2
시뮬레이션 평가를 위하여, 편광자, 제 1 위상차 필름, 제 2 위상차 필름 및 OLED 패널이 순차로 배치된 구조를 설정했다.
제 1 위상차 필름은 R(450)/(550)이 0.84인 -B 플레이트이고, 제 2 위상차 필름은 +B 플레이트이다.
상기 편광자의 흡수축을 0도이고, 상기 제 1 위상차 필름의 지상축은 +45도이며, 상기 제 2 위상차 필름의 지상축은 -45도이다.
제 1 및 제2 위상차 필름의 광학 물성을 하기 표 2와 같이 조절하여 13 개의 샘플을 준비했다.
실시예 제 1 위상차 필름 제 2 위상차 필름 최대 반사율(%)(60도 측면) 색편차
Nz Rin (nm) Rth (nm) Nz Rin (nm) Rth (nm) 평균 최대
2-1 1.1 155 -93 -9.0 13 123.5 9.80 27.6 91.3
2-2 1.1 155 -93 -9.0 14 133 9.85 24.4 85.6
2-3 1.2 155 -108.5 -9.0 14 133 9.92 31.3 115.1
2-4 1.1 160 -96 -9.0 15 142.5 9.97 28.4 108.5
2-5 1.2 155 -108.5 -9.0 15 142.5 9.92 27.3 89.1
2-6 1.2 160 -112 -9.0 16 152 9.92 31.0 116.4
2-7 1.3 160 -128 -9.0 17 161.5 9.97 33.8 123.1
2-8 1.1 170 -102 -4.0 30 135 9.81 27.5 94.5
2-9 1.1 175 -105 -4.0 32 144 9.87 31.3 133.7
2-10 1.1 180 -108 -4.0 34 153 9.94 33.5 147.4
2-11 1.2 180 -126 -4.0 36 162 9.94 36.9 154.9
2-12 1.1 185 -111 -2.3 51 144.5 9.98 26.8 124.2
2-13 1.1 190 -114 -2.3 54 153 9.83 29.0 136.4
2-14 1.1 235 -141 -1 97.5 146.2 10.05 61.4 189.5
실시예 3
시뮬레이션 평가를 위하여, 편광자, 제 1 위상차 필름, 제 2 위상차 필름 및 OLED 패널이 순차로 배치된 구조를 설정했다.
제 1 위상차 필름은 R(450)/(550)이 0.84인 +A 플레이트이고, 제 2 위상차 필름은 +B 플레이트이다.
상기 편광자의 흡수축은 0도이고, 상기 제 1 위상차 필름의 지상축은 +45도이며, 상기 제 2 위상차 필름의 지상축은 +45도이다.
제 1 및 제 2 위상차 필름의 광학 물성을 하기 표 3과 같이 조절하여 5 개의 샘플을 준비했다.
실시예 제 1 위상차 필름 제 2 위상차 필름 최대 반사율(%)(60도 측면) 색편차
Rin (nm) Nz Rin (nm) Rth (nm) 평균 최대
3-1 130 -9 11 105 9.79 20.5 75.9
3-2 120 -4 22 99 9.76 20.1 83.2
3-3 110 -2.3 33 94 9.84 19.6 87.9
3-4 100 -1.5 44 88 9.80 19.04 89.7
3-5 90 -1 55 83 10.02 18.3 90.6
실시예 4
시뮬레이션 평가를 위하여, 편광자, 제 1 위상차 필름, 제 2 위상차 필름 및 OLED 패널이 순차로 배치된 구조를 설정했다.
제 1 위상차 필름은 R(450)/(550)이 0.84인 -B 플레이트이고, 제 2 위상차 필름은 +B 플레이트이다.
상기 편광자의 흡수축을 0도이고, 상기 제 1 위상차 필름의 지상축은 +45도이며, 상기 제 2 위상차 필름의 지상축은 +45도이다.
제 1 및 제2 위상차 필름의 광학 물성을 하기 표 2와 같이 조절하여 18 개의 샘플을 준비했다.
실시예 제 1 위상차 필름 제 2 위상차 필름 최대 반사율(%)(60도 측면) 색편차
Nz Rin (nm) Rth (nm) Nz Rin (nm) Rth (nm) 평균 최대
4-1 1.1 130 -78 -9.0 12 114 9.82 22.9 86.1
4-2 1.2 125 -87.5 -9.0 13 123.5 9.89 23.8 88.5
4-3 1.3 125 -100 -9.0 14 133 9.99 26.1 95.9
4-4 1.1 115 -69 -4.0 24 108 9.87 21.2 91.7
4-5 1.2 115 -80.5 -4.0 24 108 9.90 25.9 101.6
4-6 1.3 115 -92 -4.0 28 126 9.93 24.9 96.1
4-7 1.1 105 -63 -2.3 33 93.5 9.89 22.9 98.9
4-8 1.2 100 -70 -2.3 39 110.5 9.88 21.4 99.4
4-9 1.3 100 -80 -2.3 39 110.5 9.88 24.9 106.4
4-10 1.1 95 -57 -1.5 44 88 9.82 22.7 103.5
4-11 1.2 90 -63 -1.5 48 96 9.80 22.3 103.4
4-12 1.3 85 -68 -1.5 52 104 9.94 21.5 100.8
4-13 1.4 85 -76.5 -1.5 56 112 10.00 23.5 109.5
4-14 1.1 80 -48 -1.0 60 90 9.84 20 104.4
4-15 1.2 80 -56 -1.0 60 90 9.93 22.1 107.9
4-16 1.3 75 -60 -1.0 65 97.5 9.88 21.8 109.3
4-17 1.4 75 -67.5 -1.0 65 97.5 10.00 24.7 113.6
4-18 1.5 70 -70 -1.0 70 105 9.97 23.9 114
비교예 1
시뮬레이션 평가를 위하여, 편광자, 제 1 위상차 필름 및 OLED 패널이 순차로 배치된 구조를 설정했다.
제 1 위상차 필름은 550 nm 파장의 광에 대한 면상 위상차가 140nm이고, R(450)/R(550)이 0.84이며, +A플레이트이다.
상기 편광자의 흡수축은 0도이고, 상기 제 1 위상차 필름의 면내 지상축은 45도이다.
비교예 제 1 위상차 필름 최대 반사율(%)(60도 측면) 색편차
Rin (nm) 평균 최대
1 140 14.7 70.7 176.8
비교예 2
실시예 1-3, 실시예 2-2, 실시예 3-4, 실시예 4-2의 구조에 있어서 각각 제 2 위상차 필름의 면내 지상축과 편광자의 흡수축이 평행을 이루도록 배치한 것을 제외하고는 동일한 구조로 비교예 2-1, 비교예 2-2, 비교예 2-3 및 비교예 2-4를 설정하였다.
비교예 제 1 위상차 필름 제 2 위상차 필름 최대 반사율(%)(60도 측면) 색편차
Nz Rin (nm) Rth (nm) Nz Rin (nm) Rth (nm) 평균 최대
2-1 1 160 -80 -4 22 99 13.70 20.1 87.6
2-2 1.1 155 -93 -9 14 133 11.60 21.2 78.0
2-3 1 100 -50 -1.5 44 88 16.54 10.0 45.9
2-4 1.1 125 -87.5 -9 13 123.5 10.68 21.2 90.7
평가예 1 반사율 시뮬레이션 평가
실시예 1 내지 4 및 비교예 1 내지 2에 대하여 동경각 0도 내지 360도에 따라 정면을 기준으로 60도 측면 방향에서 반사율을 시뮬레이션(Techwiz 1D plus, 사나이시스템) 평가하고, 그 결과를 상기 표 1 내지 표 6에 정리하였다. 최대 반사율(Max.)은 동경각 0도 내지 360도에서 반사율 중에 가장 높은 반사율을 의미한다. 실시예 1 내지 4의 구조는 비교예 1 내지 2의 구조에 비하여 최대 반사율(Max.) 이 낮아 반사 방지 효과가 우수함을 확인할 수 있다.
평가예 2 컬러 특성 시뮬레이션 평가
실시예 1 내지 4 및 비교예 1 내지 2에 대하여 전 방위 컬러 특성(Techwiz 1D plus, 사나이시스템)을 시뮬레이션 평가하고, 그 결과를 도 7 내지 도 9에 도시하였고, 그 결과를 표 1 내지 표 6에 정리하였다.
컬러 특성의 경우 표면반사 영향도를 제외하고 분석하는 것이 적절하기 때문에 Extended jones 방식으로 계산 평가하였다. 도 7 내지 9의 각각의 원의 밝기는 색편차 (Color difference, ΔE* ab)를 의미하며 검은색에 가까울수록 색편차가 낮은 것을 의미한다. 색편차는 아래와 같은 수식에 의해 정의된다.
Figure PCTKR2017011370-appb-I000001
상기 수식에서 (L* 1,a* 1,b* 1)은 정면 (경사각 0°, 방위각 0°)에서의 반사색상 값을 의미하며, (L* 2,a* 2,b* 2)는 각각의 경사각, 방위각 별 위치에서의 반사 색상 값을 의미한다. 도 7 내지 9는 전 방위 각도에 대한 색 편차를 계산하여 도시화한 그래프이다. 색편차 수치가 의미하는 것은 측면의 색상이 정면의 색상과 얼마나 차이 나는지를 나타내는 것이다. 따라서 도 8에서의 색상이 어두울수록 전방위에서 균일한 색상을 구현한다고 판단할 수 있는 척도가 될 수 있다.
표시된 색상은 실제 사람이 인지할 수 있는 색감을 나타낸다. 원의 중심은 정면 (경사각 0˚, 방위각 0˚)를 의미하며 원으로부터 멀어질수록 최대 60˚까지 경사각이 증가하는 것을 나타낸다. 원의 지름방향을 따라 우측(0˚)으로부터 반 시계 방향으로 각각 90˚, 180˚, 270˚ 등의 방위각을 의미한다.
표 1 내지 표 6 에서 최대 색 편차(Max.)는 동경각 0도 내지 360도에서 반사율 중에 가장 높은 색 편차를 의미하고, 평균 색 편차(Ave.)는 동경각 0도 내지 360도에의 색 편차의 평균 값을 의미한다. 실시예 1 내지 4의 구조는 비교예 1의 구조에 비하여 최대 색 편차(Max.) 및 평균 색 편차(Ave.)가 낮아 전방위에서 균일한 색상을 구현할 것을 예측할 수 있다. 구체적으로, 도 7 내지 도 9에 따르면 실시예 1 및 3의 구조는 비교예 1의 구조에 비하여 색상이 어둡고, 최대 색 편차(Max.) 및 평균 색 편차(Ave.)가 낮아 전방위에서 균일한 색상을 구현함을 확인할 수 있다.
[부호의 설명]
10: 제 1 위상차 필름 20: 제 2 위상차 필름 30: 편광자 100: 광학 필터 200: 유기 발광 표시 패널

Claims (14)

  1. 일 방향으로 형성된 흡수축을 가지는 편광자, 하기 수식 1의 Nz 값이 1 내지 1.5인 제 1 위상차 필름 및 하기 수식 1의 Nz 값이 -1 이하인 제 2 위상차 필름을 포함하고, 상기 제 1 위상차 필름 및 제 2 위상차 필름의 면내 지상축은 각각 상기 편광자의 흡수축과 43도 내지 47도를 이루는 반사 방지용 광학 필터:
    [수식 1]
    Nz = (nx-nz)/(nx-ny)
    수식 1에서 nx, ny 및 nz는 위상차 필름의 x축, y축 및 z축 방향의 굴절률이고, x축은 위상차 필름의 면내 지상축(slow axis)과 평행한 방향이며, y축은 위상차 필름의 면내 진상(fast axis)축과 평행한 방향이고, z축은 위상차 필름의 두께 방향이다.
  2. 제 1 항에 있어서, 제 1 위상차 필름의 Nz 값은 1이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 직교하는 광학 필터.
  3. 제 1 항에 있어서, 제 1 위상차 필름의 Nz 값은 1 초과 내지 1.5 이하이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 직교하는 광학 필터.
  4. 제 1 항에 있어서, 제 1 위상차 필름의 Nz 값은 1이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 평행하는 광학 필터.
  5. 제 1 항에 있어서, 제 1 위상차 필름의 Nz 값은 1 초과 내지 1.5 이하이고, 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 평행하는 광학 필터.
  6. 제 1 항에 있어서, 제 2 위상차 필름의 Nz 값의 하한은 -11,000 이상인 광학 필터.
  7. 제 1 항에 있어서, 상기 제 1 위상차 필름의 550 nm 파장의 광에 대한 면상 위상차는 70 nm 내지 200 nm인 광학 필터.
  8. 제 1 항 에 있어서, 상기 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 직교하고, 상기 제 1 위상차 필름의 면상 위상차는 120 nm 내지 200 nm인 광학 필터.
  9. 제 1 항에 있어서, 상기 제 1 위상차 필름과 제 2 위상차 필름의 면내 지상축은 서로 평행하고, 상기 제 1 위상차 필름의 면상 위상차는 70 nm 내지 160 nm인 광학 필터.
  10. 제 1 항에 있어서, 상기 제 1 위상차 필름의 R(450)/R(550)는 0.60 내지 0.92이고, R(λ)는 λnm 광에 대한 위상차 필름의 면상 위상차를 의미하는 광학 필터.
  11. 제 1 항에 있어서, 상기 제 2 위상차 필름의 550 nm 파장의 광에 대한 면상 위상차는 0 nm 초과 내지 70 nm 이하인 광학 필터.
  12. 제 1 항에 있어서, 상기 제 2 위상차 필름의 하기 수식 7로 계산되는 두께 방향 위상차는 50 nm 내지 200 nm인 광학 필터:
    [수식 7]
    Rth = d × {(nz-(nx+ny)/2}
    수식 7에서 nx, ny 및 nz는 제1항에서 정의한 바와 동일하고 d는 위상차 필름의 두께를 의미한다.
  13. 제 1 항의 광학 필터 및 유기발광표시패널을 포함하는 유기발광장치.
  14. 제 13 항에 있어서 광학 필터의 제 1 위상차 필름이 편광자에 비하여 유기발광표시패널에 인접하게 배치되는 유기발광장치.
PCT/KR2017/011370 2016-10-14 2017-10-16 반사 방지용 광학 필터 및 유기 발광 장치 WO2018070849A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780062215.8A CN109844581B (zh) 2016-10-14 2017-10-16 用于抗反射的滤光器和有机发光器件
US16/332,602 US10804500B2 (en) 2016-10-14 2017-10-16 Optical filter for anti-reflection and organic light-emitting device
EP17860176.1A EP3528015B1 (en) 2016-10-14 2017-10-16 Antireflection optical filter and organic light-emitting device
JP2019515821A JP7042809B2 (ja) 2016-10-14 2017-10-16 反射防止用光学フィルターおよび有機発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160133355 2016-10-14
KR10-2016-0133355 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070849A1 true WO2018070849A1 (ko) 2018-04-19

Family

ID=61905814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011370 WO2018070849A1 (ko) 2016-10-14 2017-10-16 반사 방지용 광학 필터 및 유기 발광 장치

Country Status (7)

Country Link
US (1) US10804500B2 (ko)
EP (1) EP3528015B1 (ko)
JP (1) JP7042809B2 (ko)
KR (1) KR101966831B1 (ko)
CN (1) CN109844581B (ko)
TW (1) TWI645976B (ko)
WO (1) WO2018070849A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005996A1 (ja) * 2019-07-10 2021-01-14 住友化学株式会社 円偏光板及び画像表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564213B1 (ko) * 2019-03-12 2023-08-04 삼성에스디아이 주식회사 발광소자 표시장치
US20220187524A1 (en) * 2019-04-02 2022-06-16 Samsung Sdi Co., Ltd. Polarizing plate and optical display apparatus comprising same
JP7439238B2 (ja) * 2019-09-23 2024-02-27 エルジー・ケム・リミテッド 偏光板
KR102564216B1 (ko) * 2020-01-03 2023-08-04 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
EP4291002A3 (en) * 2022-05-16 2024-02-28 Samsung Display Co., Ltd. Display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039611A (ja) * 1998-07-23 2000-02-08 Sumitomo Chem Co Ltd 液晶表示装置
KR20090117641A (ko) * 2008-05-09 2009-11-12 동우 화인켐 주식회사 음의 굴절률 특성을 갖는 이축성 위상차 필름과 양의 굴절률 특성을 갖는 이축성 위상차 필름이 구비된 면상 스위칭 액정 표시장치
KR101565009B1 (ko) * 2008-12-19 2015-11-02 동우 화인켐 주식회사 하판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치
KR20160012274A (ko) * 2014-07-23 2016-02-03 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR101632610B1 (ko) * 2009-05-04 2016-06-22 동우 화인켐 주식회사 복합구성 편광판 세트 및 이를 포함하는 푸른 상 액정모드 액정표시장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW588171B (en) 2001-10-12 2004-05-21 Fujitsu Display Tech Liquid crystal display device
KR101106294B1 (ko) 2008-05-22 2012-01-18 주식회사 엘지화학 유기발광소자용 휘도 향상 편광판
JP5728298B2 (ja) 2010-06-10 2015-06-03 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
KR20130036918A (ko) 2011-10-05 2013-04-15 동우 화인켐 주식회사 광시야각 면상 스위칭 모드 액정표시장치
JP5528606B2 (ja) 2012-06-21 2014-06-25 日東電工株式会社 偏光板および有機elパネル
CN104813202B (zh) * 2012-11-23 2017-06-13 Lg化学株式会社 光学膜
KR101628428B1 (ko) * 2012-12-17 2016-06-08 제일모직주식회사 편광판, 이의 제조방법 및 이를 포함하는 광학표시장치
KR101587681B1 (ko) * 2013-01-22 2016-01-21 제일모직주식회사 편광판 및 이를 포함하는 광학표시장치
JP6310645B2 (ja) * 2013-05-20 2018-04-11 日東電工株式会社 光学部材、偏光板のセットおよび液晶表示装置
KR101436441B1 (ko) 2013-07-23 2014-09-02 동우 화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치
KR102079557B1 (ko) 2013-11-19 2020-02-20 엘지디스플레이 주식회사 유기발광소자용 편광판 및 이를 포함하는 유기발광소자
KR101622018B1 (ko) * 2014-02-27 2016-05-17 제일모직주식회사 편광판 및 이를 포함하는 광학표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039611A (ja) * 1998-07-23 2000-02-08 Sumitomo Chem Co Ltd 液晶表示装置
KR20090117641A (ko) * 2008-05-09 2009-11-12 동우 화인켐 주식회사 음의 굴절률 특성을 갖는 이축성 위상차 필름과 양의 굴절률 특성을 갖는 이축성 위상차 필름이 구비된 면상 스위칭 액정 표시장치
KR101565009B1 (ko) * 2008-12-19 2015-11-02 동우 화인켐 주식회사 하판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치
KR101632610B1 (ko) * 2009-05-04 2016-06-22 동우 화인켐 주식회사 복합구성 편광판 세트 및 이를 포함하는 푸른 상 액정모드 액정표시장치
KR20160012274A (ko) * 2014-07-23 2016-02-03 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005996A1 (ja) * 2019-07-10 2021-01-14 住友化学株式会社 円偏光板及び画像表示装置

Also Published As

Publication number Publication date
EP3528015A4 (en) 2019-12-25
KR20180041610A (ko) 2018-04-24
US10804500B2 (en) 2020-10-13
CN109844581B (zh) 2022-04-19
TWI645976B (zh) 2019-01-01
TW201821261A (zh) 2018-06-16
CN109844581A (zh) 2019-06-04
EP3528015A1 (en) 2019-08-21
EP3528015B1 (en) 2024-05-29
KR101966831B1 (ko) 2019-04-08
US20200212367A1 (en) 2020-07-02
JP2019530011A (ja) 2019-10-17
JP7042809B2 (ja) 2022-03-28

Similar Documents

Publication Publication Date Title
WO2018070849A1 (ko) 반사 방지용 광학 필터 및 유기 발광 장치
WO2018080138A1 (ko) 반사 방지용 광학 필터 및 유기 발광 장치
WO2019203560A1 (ko) 타원 편광판 및 유기발광장치
WO2019203562A1 (ko) 타원 편광판 및 유기발광장치
WO2019203563A1 (ko) 타원 편광판 및 유기발광장치
KR102103498B1 (ko) 보상 필름, 광학 필름 및 표시 장치
WO2018194421A1 (ko) 반사 방지용 광학 필터 및 유기 발광 장치
WO2009120009A1 (ko) 시야각 보상필름 일체형 편광판 및 이를 포함하는 ips-lcd
KR102103497B1 (ko) 보상 필름, 광학 필름 및 표시 장치
WO2018212528A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2018080036A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2018074788A1 (ko) 반사 방지용 광학 필터 및 유기 발광 장치
WO2019203561A1 (ko) 타원 편광판 및 유기발광장치
WO2009142450A1 (ko) 유기발광소자용 휘도 향상 편광판
CN108132492A (zh) 补偿膜和抗反射膜及显示装置
WO2013094978A1 (ko) 편광판
WO2020171458A1 (ko) 편광판의 제조 방법
WO2014081260A1 (ko) 광학 필름
WO2019112163A1 (ko) 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2018139875A1 (ko) 반사 방지용 광학 필터 및 유기 발광 장치
KR102664378B1 (ko) 유기발광소자의 광학특성 향상을 위한 광학보상필름
WO2024043682A1 (ko) 편광판 및 광학표시장치
WO2013022245A2 (ko) 광학 필름
KR20210037875A (ko) 편광판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017860176

Country of ref document: EP

Effective date: 20190514