WO2018068398A1 - 一种微磨削尖端精准诱导的曲面镜面脆裂成型方法 - Google Patents
一种微磨削尖端精准诱导的曲面镜面脆裂成型方法 Download PDFInfo
- Publication number
- WO2018068398A1 WO2018068398A1 PCT/CN2016/111601 CN2016111601W WO2018068398A1 WO 2018068398 A1 WO2018068398 A1 WO 2018068398A1 CN 2016111601 W CN2016111601 W CN 2016111601W WO 2018068398 A1 WO2018068398 A1 WO 2018068398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- optical glass
- glass material
- loading
- tip
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/04—Cutting or splitting in curves, especially for making spectacle lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B19/00—Single-purpose machines or devices for particular grinding operations not covered by any other main group
- B24B19/02—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
- B24B19/028—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for microgrooves or oil spots
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/023—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
- C03B33/033—Apparatus for opening score lines in glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/10—Glass-cutting tools, e.g. scoring tools
Definitions
- the invention relates to the field of manufacturing optical glass curved surfaces, in particular to a diamond micro-tip micro-grinding method for breaking smooth micro-grooves without brittle fracture, and a micro-crack-induced material near-zero removal forming method, which is an optical curved surface without external New processing technology in machining.
- the existing optical curved surface processing is mainly processed by expensive multi-axis CNC precision machine tools, which requires many processes such as rough grinding, fine grinding and polishing.
- the tool wears fast and the numerical control equipment is difficult to control, the processing efficiency is extremely low, and the production There are a lot of emissions that are difficult to recycle, At the same time, the cost is high, the efficiency is low, and the cutting fluid is not environmentally friendly.
- the micro-crack is induced by the precise and smooth micro-grinding tip, and the optical curved surface is formed by controlling the micro-crack expansion, which is fast, low in cost and good in effect. And the relevant mechanical model is established, which can be used to predict the force during processing.
- the laser is used to scribe the laser along the microgroove to facilitate the cutting of the glass, the edge breakage is not solved and an oblique section is produced.
- the laser is used to scribe the scribe line and then the laser is used to illuminate the micro-marks to achieve the purpose of splitting the glass.
- edge damage and burrs are unavoidable, and there is thermal damage in the cross section, which leads to subsequent processing of the section.
- Laser and chemical etching methods can be used for microtip processing of hard and brittle materials, but with a depth of less than 7.5 ⁇ m And the surface of the microgroove is irregular and rough.
- the micro-tips of the diamond wheel are used to machine micro-grooves for precise and smooth micro-grooves.
- the present invention provides a curved mirror surface crack forming method that is precisely induced by a micro-grinding tip.
- the invention provides micro-grinding micro-grooves by using a micro-tip of a diamond grinding wheel, and obtains an optical curved surface by microcrack-induced brittle fracture forming, and the main technical problem is to solve the micro-groove edge damage caused by rolling and laser etching.
- the glass surface mirror cracking process without pollution, high efficiency and low cost is realized.
- a micro-grinding tip accurately induced curved mirror embrittlement forming method comprising the steps of:
- Two supporting points with a distance L are set on one side of the optical glass material on which the micro-groove is processed, and a loading head having a horizontal offset distance l between the loading point and the micro-tip of the groove is disposed on the other side of the optical glass material.
- the loading ram applies a force F perpendicularly to the optical glass material at a certain loading speed ⁇ , A smooth curved surface is formed by the induction of the loading point of the force F and the microtip of the groove.
- B is the width of the workpiece
- W is the thickness of the workpiece
- hv is the depth of the micro-groove
- rv is the radius of the tip of the groove
- L is the distance of the support point.
- the loading speed is ⁇ ⁇ 50 mm / min.
- V-shaped micro-grooves have an included angle of 60o ⁇ 120o.
- the radius R is a convex arc-shaped smooth curved surface with a plate thickness; if the horizontal deviation distance l between the loading point and the groove micro-tip is smaller than the thickness W, a radius is formed.
- a convex arc-shaped smooth surface is formed.
- the material of the workpiece material comprises optical glass, ceramic or sapphire.
- the invention has the advantages of avoiding the micro-groove edge damage and the unevenness of the cutting surface caused by rolling and laser etching, and avoiding the precision grinding of the curved mirror surface by using a high-consumption high-precision five-axis machine tool.
- a cutting surface with high precision and low surface roughness, with an average shape accuracy of 8.8 ⁇ m/mm and an average surface roughness R a 13.7 nm.
- Figure 1 is a schematic diagram of micro-groove grinding of an optical glass material.
- Figure 2 is a schematic diagram of micro-tip precision induced brittle fracture forming.
- Figure 3 is a schematic diagram of another microtip precise induction of brittle fracture.
- Figure 4 is a schematic diagram of another microtip precise induction of brittle fracture.
- Figure 5 is an electron micrograph of the surface morphology of the microcrack induced brittle fracture surface in the XZ plane.
- Fig. 6 is an electron micrograph of the surface morphology of the microcrack-induced brittle fracture surface in the XY plane.
- Figure 7 is an electron micrograph of the surface morphology of the microcrack induced brittle fracture surface in the YZ plane.
- Figure 8 is a schematic diagram of the micro-tip precision induced brittle fracture forming process.
- the figure shows: 1-wheel microtip; 2-diamond wheel; 3-optical glass material; 31-to-be-peeled part; 32-to-be-formed part; 4-V-shaped micro-groove; 5-groove micro-tip; 6-loading indenter; 7-smooth surface; 8-loading point.
- a micro-grinding tip accurately induced curved mirror embrittlement forming method comprising the steps of:
- Two support points of distance L are set on one side of the optical glass material 3 on which the micro-grooves 4 are processed, and a horizontal offset distance l between the loading point 8 and the groove micro-tips 5 is provided on the other side of the optical glass material 3.
- Loading the indenter 6, the loading indenter 6 applies a force F perpendicularly to the optical glass material 3 at a certain loading speed ⁇ ,
- the through smooth surface 7 is formed within 0.3 milliseconds by the induction of the loading point 8 of the force F and the groove microtip 5.
- B is the width of the workpiece
- W is the thickness of the workpiece
- hv is the depth of the micro-groove
- rv is the radius of the tip of the groove
- L is the distance of the support point.
- the loading speed is ⁇ ⁇ 50 mm/min.
- the V-shaped micro-trench 4 has an angle of 60o to 120o.
- the material of the workpiece material 3 includes optical glass, ceramic or sapphire.
- the grinding wheel microtip 1 of the diamond grinding wheel 2 is used to grind the precise and smooth V-shaped micro-groove 4 and the micro-groove tip 5 on the optical glass material 3. It has a micro-groove optical glass material with no damage and precision. It is then used to precisely induce the brittle fracture forming process for the microgroove tip 5.
- the V-shaped microgrooves 4 are placed on the reverse side of the loading ram 6, and the loading is achieved by controlling the loading speed of the loading ram 6.
- the optical glass material 3 begins to fragile at the V-shaped microtip 4, and the crack expands along the cutting surface to form a desired smooth curved surface 7.
- the curvature of the smooth curved surface 7 is controlled by controlling the loading point 8 of the loading ram 6, and when the structure of the V-shaped micro-groove 4 is constant, the support distance L is adjusted. Can control the cutting force.
- Figures 4 to 7 show the actual view of the V-shaped micro-trench 4 and the smooth curved surface 7 to achieve the mirror surface.
- the micro-tip accurately induces the brittle fracture forming time to be in the order of milliseconds, which has high efficiency characteristics, and its precise induced brittle fracture forming process is shown in Fig. 8.
- a CNC precision grinding machine (SMART) is employed. B818) Equipment trimming 600# metal bond diamond grinding wheel to obtain micro tip. Grinding wheel size: diameter 150 mm, thickness 4 mm, dressing speed 500 mm / min, cutting depth 20 microns.
- the workpiece material 3 is a quartz optical glass with a geometric length ⁇ width ⁇ height of 120 mm ⁇ 40 mm ⁇ 4 mm, the processing microgroove depth is 500 microns.
- the axis of the grinding wheel is parallel to the longitudinal direction of the workpiece. The grinding wheel rotates at a speed of 2,400 rpm, the micro-grinding feed rate is 500 mm/min, and the micro-grinding depth is 20 ⁇ m.
- Microcrack induced brittle fracture forming process using WDW-05 test machine loading speed is 5 mm/min, 10 mm/min, 20 mm/min, 60 mm/min, 100 mm/min, 200 mm/min, 300 mm/min.
- the support distance is 35 mm and the offset distance is 1.5 mm.
- High-speed cameras are used to record microcrack-induced brittle-shaping processing times.
- the 1000 profiler detects the shape accuracy and surface roughness of the cut surface.
- the result was a shape accuracy of 8.8 ⁇ m/mm and a surface roughness Ra of 13.7 nm.
- the brittle fracture forming time is within 0.3ms, and the radius of the arc is 6.74 mm.
- the above method mainly includes two steps of grinding micro-grooves and micro-tips to accurately induce brittle fracture forming, wherein: the focus of grinding the micro-grooves is to accurately obtain the micro-V-shaped tip of the designed diamond grinding wheel, first through numerical control The grinder grinds the V-shaped tip of the diamond wheel, and then uses the micro-tip to grind the precision and smooth micro-groove of the design track on the surface of the hard and brittle material.
- the micro-tip precision-induced brittle fracture forming focuses on the loading speed and loading point, and the micro-tip precision-induced brittle fracture molding is given by different loading speeds and loading points to obtain the desired curved mirror surface.
- the curved mirror surface embrittlement forming method of the embodiment can eliminate the need of the coolant and the polishing liquid, and the time of the brittle crack processing is 0.3 milliseconds or less, and the shape precision along the direction of the microgroove and along the loading direction are respectively 8.8. Micron/mm and 31.7 micron/mm with surface roughness of 13.7 nm and 29.6 respectively Nano.
- the 2.5D and 3D glass curved bodies are machined by the position of the applied force and the position of the microgroove tip and the amount of the applied force, and the application force of the brittle fracture can be predicted by the microgroove tip radius, depth, angle, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
一种微磨削尖端精准诱导的曲面镜面脆裂成型方法,包括步骤:通过金刚石砂轮V形尖端在光学玻璃材料(3)表面磨削出带有沟槽微尖端的V形微沟槽(4);在光学玻璃材料(3)加工有微沟槽(4)的一面设定两个距离为L的支撑点,在光学玻璃材料(3)的另一面设置加载点(8)与沟槽微尖端(5)之间具有水平偏离距离1的加载压头(6),加载压头(6)按加载速度v对光学玻璃材料(3)垂直施加作用力F,通过作用力F的加载点(8)与沟槽微尖端(5)的诱导在0.3毫秒以内形成贯穿的光滑镜面曲面(7)。本方法不需要冷却液、抛光液和材料去除,脆裂加工的加载时间在4秒以内,沿微槽方向和沿加载方向形状精度达到8.8微米/毫米和31.7微米/毫米,表面粗糙度达到13.7纳米和29.6纳米。
Description
技术领域
本发明涉及光学玻璃曲面的制造领域,具体涉及无脆裂破坏的破损光滑的微沟槽的金刚石微尖端微磨削方法,微裂纹诱导的材料近零去除成形方法,是一种光学曲面无需外在机械加工的新的加工技术。
背景技术
显示屏、 LED
照明、聚光、信息传输等需要光学曲面,提高系统性能,减小系统能耗。现有的光学曲面的加工主要采用昂贵的多轴数控精密机床进行机械加工,制造需要粗磨、精磨和抛光等多道工序,工具磨损快和数控设备难控制,加工效率极低,且生产中有大量难回收的排放物,
同时成本高,效率低,且切削液不环保。
因此,采用精确和光滑的微磨削尖端诱导产生微裂纹,通过控制微裂纹扩展脆裂成形光学曲面,时间快,成本低,效果好。并且建立了相关力学模型,可用于预测加工过程中的受力。
目前,硬质合金和 PCD 刀轮广泛运用于分割玻璃,但刀具寿命有所限制。因此,发明了较硬的 CVD
金刚石轮用于代替硬质合金和 PCD
刀轮。但是,使用刀轮切割玻璃,不可避免边缘存在破损,和断面的不平整。超声振动辅助金刚石刀轮划线切割玻璃,虽可以增加纵向微裂纹深度有利于玻璃的切割,但是边缘破损及断面不平整问题未能解决,仍需要进一步的磨削。
虽然通过金刚石划线,加以激光沿微槽照射有利于玻璃的切割,但是边缘破损未能解决,并产生斜的断面。采用激光照射划线并再用激光照射微痕以达到分割玻璃的目的,但是,边缘破损和毛刺不可避免,并断面存在热破损,导致断面需要后续处理。
激光和化学腐蚀的方法可用于硬脆性材料的微尖端的加工,但加工深度小于 7.5 μ m
并且微槽表面不规整和粗糙。金刚石砂轮微尖端用于加工微沟槽,可得到精确和光滑的微沟槽。
采用精确和光滑的微磨削尖端诱导切割光学材料无需附加的工序可一次完成精确和镜面加工。
发明内容
为了克服上述现有技术的不足,本发明提供了一种微磨削尖端精准诱导的曲面镜面脆裂成型方法。本发明提供了使用金刚石砂轮微尖端微磨削微沟槽,并通过微裂纹诱导脆裂成形得到光学曲面,主要解决的技术问题是解决了滚压和激光刻蚀带来的微沟槽边缘破损以及精磨抛光工艺的效率低等问题,实现无污染、高效率、低成本的玻璃曲面镜面脆裂加工。
本发明所采用的技术方案是:
一种微磨削尖端精准诱导的曲面镜面脆裂成型方法,包括步骤:
通过金刚石砂轮V形尖端在长方形板的光学玻璃材料表面磨削出带有沟槽微尖端的V形微沟槽;
在光学玻璃材料加工有微沟槽的一面设定两个距离为L的支撑点,在光学玻璃材料的另一面设置加载点与沟槽微尖端之间具有水平偏离距离l的加载压头,所述加载压头按一定的加载速度ν对光学玻璃材料垂直施加作用力F,
通过作用力F的加载点与沟槽微尖端的诱导形成贯穿的光滑曲面。
其中,B为工件宽度、W为工件厚度、hv为微沟槽深度、rv为沟槽尖端半径、L为支撑点距离。
进一步地,所述的加载速度ν<50mm/min。
进一步地,所述的V形微沟槽的夹角为60o~120o。
进一步地,当V形微沟槽的中心线与光学玻璃材料表面夹角θ为90°时,若加载压头的加载点与沟槽微尖端的水平偏离距离l等于板厚W时,则形成半径R为板厚的凸圆弧形光滑曲面;若加载点与沟槽微尖端的水平偏离距离l小于板厚W时,则形成半径
的凸圆弧形 光滑曲面 。
的凸圆弧形 光滑曲面 。
进一步地,当V形微沟槽的中心线与光学玻璃材料夹角θ小于90度且所述中心线通过加载点时,得到沿所述对称线脆裂的斜平面形光滑曲面。
进一步地,所述的工件材料的材质包括光学玻璃、陶瓷或蓝宝石。
与现有技术相比,本发明的有益效果是避免滚压和激光刻蚀造成的微沟槽边缘破损和切割面的不平整,以及避免使用高消耗的高精密五轴机床精密磨削曲面镜面,得到高精度和低表面粗糙度的切割表面,平均形状精度达8.8
微米/毫米,平均表面粗糙度Ra=13.7 纳米。
附图说明
图 1是光学玻璃材料微沟槽磨削原理图。
图2是微尖端精准诱导脆裂成型示意图。
图3 是另一微尖端精准诱导脆裂成型示意图。
图4 是另一微尖端精准诱导脆裂成型示意图。
图 5 是XZ平面的微裂纹诱导脆裂切割面表面形貌电镜图。
图 6是XY平面的微裂纹诱导脆裂切割面表面形貌电镜图。
图 7 是YZ平面的微裂纹诱导脆裂切割面表面形貌电镜图。
图8是微尖端精准诱导脆裂成形过程示意图。
图中所示为:1-砂轮微尖端;2-金刚石砂轮;3-光学玻璃材料;31-待剥离部分;32-待成型部分;4-V形微沟槽;5-沟槽微尖端;6-加载压头;7-光滑曲面;8-加载点。
具体实施方式
为更好理解本发明,下面结合附图和实施例对本发明做进一步的说明,但是本发明要求保护的范围并不局限于实施例所表示的范围。
一种微磨削尖端精准诱导的曲面镜面脆裂成型方法,包括步骤:
通过金刚石砂轮V形尖端在长方形板的光学玻璃材料3表面磨削出带有沟槽微尖端5的V形微沟槽4(见图1);
在光学玻璃材料3加工有微沟槽4的一面设定两个距离为L的支撑点,在光学玻璃材料3的另一面设置加载点8与沟槽微尖端5之间具有水平偏离距离l的加载压头6,所述加载压头6按一定的加载速度ν对光学玻璃材料3垂直施加作用力F,
通过作用力F的加载点8与沟槽微尖端5的诱导在0.3毫秒以内形成贯穿的光滑曲面7。
其中,B为工件宽度、W为工件厚度、hv为微沟槽深度、rv为沟槽尖端半径、L为支撑点距离。
具体而言,所述的加载速度ν<50mm/min。
具体而言,所述的V形微沟槽4的夹角为60o~120o。
在本发明的另一实施例中,当V形微沟槽4的中心线与光学玻璃材料3表面夹角θ为90°时,若加载压头6的加载点8与沟槽微尖端5的水平偏离距离l等于板厚W时,则形成半径R为板厚的凸圆弧形光滑曲面7;若加载点8与沟槽微尖端5的水平偏离距离l小于板厚W时,则形成半径
的凸圆弧形光滑曲面7。
的凸圆弧形光滑曲面 7 ,若水平偏移距离
的凸圆弧形光滑曲面 7 。
在本发明的另一实施例中,当V形微沟槽4的中心线与光学玻璃材料3夹角θ小于90度且所述中心线通过加载点8时,得到沿所述对称线脆裂的斜平面形光滑曲面7。
的凹圆弧形光滑曲面 7 。
具体而言,所述的工件材料3的材质包括光学玻璃、陶瓷或蓝宝石。
如图1所示,加工V形微沟槽4时用金刚石砂轮2的砂轮微尖端1在光学玻璃材料3上磨削出精密和光滑的V形微沟槽4和微沟槽尖端5,得到具有无破损精密光滑的微沟槽光学玻璃材料。然后用于微沟槽尖端5精准诱导脆裂成形加工。如图2至图4所示,V形微沟槽4置于加载压头6的反面,通过控制加载压头6的加载速度实现加载。随着加载进行达到临界条件,光学玻璃材料3由V形微尖端4处开始脆断,裂纹沿沿切割面扩展脆裂形成所需光滑曲面7。通过控制加载压头6的加载点8控制光滑曲面7的曲率,在V形微沟槽4结构一定时,通过调节支撑距离L
可控制切割力。图4至图7显示了V形微沟槽4和光滑曲面7实际图,达到了镜面。微尖端精准诱导脆裂成形时间处于毫秒级,具有高效率特点,其精准诱导脆裂成形过程如图8所示。
在另一实施例中,采用CNC精密磨床(SMART
B818)设备修整600#金属结合剂金刚石砂轮,得到微尖端。砂轮尺寸:直径150毫米,厚度4毫米,修整进给速度500毫米/分钟,切削深度20微米。工件材料3是石英光学玻璃,几何尺寸长×宽×高为120毫米×
40毫米×
4毫米,加工微槽深度为500微米。砂轮轴线和工件长边方向平行。研磨砂轮转速2400转/分钟,微磨削进给速度500毫米/分钟,微磨削切削深度20微米。采用WDW-05试验机进行微裂纹诱导脆裂成形加工,加载速度为
5毫米/分钟,10毫米/分钟,20毫米/分钟,60毫米/分钟,100毫米/分钟,200毫米/分钟,300毫米/分钟。支撑距离35毫米,偏移距离1.5毫米。高速摄影机用于记录微裂纹诱导脆裂成形加工时间。
之后采用TALYSURF CLI
1000轮廓仪检测切割面形状精度和表面粗糙度。结果为:形状精度达到8.8微米/毫米,表面粗糙度Ra=13.7纳米。脆裂成形加工时间在0.3ms之内,形成圆弧半径为6.74毫米。
综上所述,上述方法主要包括磨削微沟槽和微尖端精准诱导脆裂成形两个步骤,其中:磨削微沟槽的重点在于精确得到设计的金刚石砂轮微V形尖端,首先通过数控磨床对磨修整金刚石砂轮V形尖端,然后利用微尖端在硬脆性的材料表面磨削出设计轨迹的精密和光滑的微槽。而微尖端精准诱导脆裂成形重点在于加载速度和加载点,通过给定不同的加载速度和加载点进行微尖端精准诱导脆裂成型,得到所需的曲面镜面。
所述实施例的曲面镜面脆裂成形方法可以不需要冷却液和抛光液,脆裂加工的时间在0.3毫秒及以下,沿微槽方向和沿加载方向形状精度分别为8.8
微米/毫米和31.7 微米/毫米,表面粗糙度分别为13.7 纳米和29.6
纳米。利用施加力的位置和微槽尖端的位置以及施加力的大小加工出2.5D和3D的玻璃曲面体,脆断的施加力可以通过微沟槽尖端半径、深度、角度等进行预测。
Claims (9)
- 一种微磨削尖端精准诱导的曲面镜面脆裂成型方法,其特征在于,包括步骤:通过金刚石砂轮V形尖端在长方形板的光学玻璃材料3表面磨削出带有沟槽微尖端(5)的V形微沟槽(4);在光学玻璃材料(3)加工有微沟槽(4)的一面设定两个距离为L的支撑点,在光学玻璃材料(3)的另一面设置加载点(8)与沟槽微尖端(5)之间具有水平偏离距离l的加载压头(6),所述加载压头(6)按一定的加载速度ν对光学玻璃材料(3)垂直施加作用力F, 通过作用力F的加载点(8)与沟槽微尖端(5)的诱导形成贯穿的光滑曲面(7)。
- 根据权利要求2所述的微磨削尖端精准诱导的曲面镜面脆裂成型方法,其特征在于:所述的加载速度ν<50mm/min。
- 根据权利要求1所述的微磨削尖端精准诱导的曲面镜面脆裂成型方法,其特征在于:所述的V形微沟槽(4)的夹角为60o~120o。
- 根据权利要求3所述的微磨削尖端精准诱导的曲面镜面脆裂成型方法,其特征在于:当V形微沟槽(4)的中心线与光学玻璃材料(3)夹角θ小于90度且所述中心线通过加载点(8)时,得到沿所述对称线脆裂的斜平面形光滑曲面(7)。
- 根据权利要求1所述的微磨削尖端精准诱导的曲面镜面脆裂成型方法,其特征在于:所述的工件材料(3)的材质包括光学玻璃、陶瓷或蓝宝石。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/340,388 US10745313B2 (en) | 2016-10-10 | 2016-12-23 | Method for micro-grinding tip-accurately induced brittle fracture forming of curved mirror surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610886300.3 | 2016-10-10 | ||
CN201610886300.3A CN106542727B (zh) | 2016-10-10 | 2016-10-10 | 一种微磨削尖端精准诱导的曲面镜面脆裂成型方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018068398A1 true WO2018068398A1 (zh) | 2018-04-19 |
Family
ID=58368485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/111601 WO2018068398A1 (zh) | 2016-10-10 | 2016-12-23 | 一种微磨削尖端精准诱导的曲面镜面脆裂成型方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10745313B2 (zh) |
CN (1) | CN106542727B (zh) |
WO (1) | WO2018068398A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07223828A (ja) * | 1994-02-14 | 1995-08-22 | Nippon Sheet Glass Co Ltd | ガラス板の切断方法 |
JPH08277137A (ja) * | 1996-04-18 | 1996-10-22 | Nippon Sheet Glass Co Ltd | ガラス板切断用カッター |
CN101037291A (zh) * | 2000-06-21 | 2007-09-19 | 肖特股份公司 | 从平板玻璃制造任何轮廓的玻璃板的方法和装置 |
CN101759355A (zh) * | 2008-12-23 | 2010-06-30 | 三星钻石工业股份有限公司 | 在脆性材料基板形成贯通孔的方法 |
CN105451844A (zh) * | 2014-07-24 | 2016-03-30 | 法国圣戈班玻璃厂 | 用于冲裁玻璃片的方法 |
WO2016108007A1 (fr) * | 2014-12-31 | 2016-07-07 | Saint-Gobain Glass France | Procédé de rompage d'une forme intérieure dans une feuille de verre |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3567086A (en) * | 1968-11-29 | 1971-03-02 | Monsanto Co | Method of fracturing sheet material |
US3865294A (en) * | 1972-04-10 | 1975-02-11 | Ppg Industries Inc | Subsurface cracks |
US3800991A (en) * | 1972-04-10 | 1974-04-02 | Ppg Industries Inc | Method of and an apparatus for cutting glass |
BE797819A (fr) * | 1972-04-10 | 1973-10-05 | Ppg Industries Inc | Procede et appareil de decoupe de verre en utilisant des fissures creees en dessous de la surface et articles obtenus |
US3865293A (en) * | 1972-04-10 | 1975-02-11 | Ppg Industries Inc | Subsurface cracks |
US4057184A (en) * | 1975-09-19 | 1977-11-08 | Ppg Industries, Inc. | Method of scoring glass using a scoring wheel having an arcuate scoring surface |
US4046300A (en) * | 1976-06-01 | 1977-09-06 | Libbey-Owens-Ford Company | Scored glass bracket breaking apparatus |
US4088255A (en) * | 1976-10-29 | 1978-05-09 | Ppg Industries, Inc. | Apparatus for opening lateral scores in moving glass sheets |
US4487350A (en) * | 1983-04-07 | 1984-12-11 | Ppg Industries, Inc. | Method and apparatus for cutting pattern shaped holes in glass sheets |
AT391858B (de) * | 1988-04-25 | 1990-12-10 | Lisec Peter | Vorrichtung zum brechen von einseitig geritzten glastafeln |
AU4381593A (en) * | 1992-05-18 | 1993-12-13 | Lockformer Company, The | Glass scoring mechanism |
TW308581B (zh) * | 1995-11-06 | 1997-06-21 | Mitsuboshi Diamond Kogyo Kk | |
CN101585657B (zh) * | 2003-01-29 | 2012-03-21 | 三星宝石工业株式会社 | 基板切割设备和基板切割方法 |
KR100563838B1 (ko) * | 2004-06-16 | 2006-03-28 | 주식회사 에쎌텍 | 취성 재료 절단 장비용 가압 롤러 장치 |
JP5376282B2 (ja) * | 2008-03-25 | 2013-12-25 | 日本電気硝子株式会社 | ガラス板折割方法及びガラス板折割装置 |
JP5832064B2 (ja) * | 2009-01-30 | 2015-12-16 | 三星ダイヤモンド工業株式会社 | カッター及びそれを用いた脆性材料基板の分断方法 |
JP2011102230A (ja) * | 2009-10-13 | 2011-05-26 | Canon Inc | 脆性材料の切り欠き加工方法、切り欠きを有する部材の製造方法、及び、表示装置の製造方法 |
CN102343528A (zh) * | 2011-09-23 | 2012-02-08 | 华南理工大学 | 一种具有微锥塔石英透镜阵列的微成型镜面及加工方法 |
JP5831119B2 (ja) * | 2011-10-17 | 2015-12-09 | 日本電気硝子株式会社 | ガラス基板割断装置、ガラス基板割断方法及びガラス基板作製方法 |
CN102501152A (zh) * | 2011-11-24 | 2012-06-20 | 华南理工大学 | 一种微结构阵列表面的微细、精密和镜面一体化磨削方法 |
US20130140291A1 (en) * | 2011-12-05 | 2013-06-06 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Glass Substrate Slicing Apparatus and Method |
TW201417928A (zh) * | 2012-07-30 | 2014-05-16 | Raydiance Inc | 具訂製邊形及粗糙度之脆性材料切割 |
WO2014130830A1 (en) * | 2013-02-23 | 2014-08-28 | Raydiance, Inc. | Shaping of brittle materials with controlled surface and bulk properties |
JP6249091B2 (ja) * | 2014-03-31 | 2017-12-20 | 三星ダイヤモンド工業株式会社 | 脆性材料基板の分断方法 |
JP2015221739A (ja) * | 2014-05-23 | 2015-12-10 | 株式会社ジャパンディスプレイ | 表示装置の製造方法 |
US10351461B2 (en) * | 2014-05-30 | 2019-07-16 | MITSUBOSHI DIAMOND INDUSTRlAL CO., LTD. | Method for dividing brittle substrate |
-
2016
- 2016-10-10 CN CN201610886300.3A patent/CN106542727B/zh not_active Expired - Fee Related
- 2016-12-23 WO PCT/CN2016/111601 patent/WO2018068398A1/zh active Application Filing
- 2016-12-23 US US16/340,388 patent/US10745313B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07223828A (ja) * | 1994-02-14 | 1995-08-22 | Nippon Sheet Glass Co Ltd | ガラス板の切断方法 |
JPH08277137A (ja) * | 1996-04-18 | 1996-10-22 | Nippon Sheet Glass Co Ltd | ガラス板切断用カッター |
CN101037291A (zh) * | 2000-06-21 | 2007-09-19 | 肖特股份公司 | 从平板玻璃制造任何轮廓的玻璃板的方法和装置 |
CN101759355A (zh) * | 2008-12-23 | 2010-06-30 | 三星钻石工业股份有限公司 | 在脆性材料基板形成贯通孔的方法 |
CN105451844A (zh) * | 2014-07-24 | 2016-03-30 | 法国圣戈班玻璃厂 | 用于冲裁玻璃片的方法 |
WO2016108007A1 (fr) * | 2014-12-31 | 2016-07-07 | Saint-Gobain Glass France | Procédé de rompage d'une forme intérieure dans une feuille de verre |
Also Published As
Publication number | Publication date |
---|---|
US20200048135A1 (en) | 2020-02-13 |
CN106542727A (zh) | 2017-03-29 |
CN106542727B (zh) | 2019-03-05 |
US10745313B2 (en) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5853081B2 (ja) | ワークピースから多数のウェハを同時に切り出すための方法 | |
US8518280B2 (en) | Brittle non-metallic workpiece with through hole and method for making same | |
JP4842015B2 (ja) | 脆性材料用のカッターホイールのチップホルダー | |
CN111069767B (zh) | 一种超声振动微激光辅助复合单点金刚石切削加工系统 | |
Arif et al. | An experimental investigation into micro ball end-milling of silicon | |
US20080110869A1 (en) | Method of machining mold surface using laser | |
Guo et al. | Surface quality characterisation of diamond cut V-groove structures made of rapidly solidified aluminium RSA-905 | |
Xiao et al. | Material removal behavior analysis of ZnSe crystal during side-forward nanoscratching | |
US20130271863A1 (en) | Flycutting groove machining method and flycutting mirror finishing method on film-like workpiece | |
JP2007030095A (ja) | ダイヤモンド工具の製造方法 | |
JP2003025118A (ja) | 切削用ダイヤモンド工具 | |
TW201808569A (zh) | 刻劃輪 | |
Nurul Amin et al. | An experimental approach to determine the critical depth of cut in brittle-to-ductile phase transition during end milling of soda-lime glass | |
WO2018068398A1 (zh) | 一种微磨削尖端精准诱导的曲面镜面脆裂成型方法 | |
Feng et al. | A comparison among dry laser ablation and some different water-laser co-machining processes of single crystal silicon carbide | |
CN110757263A (zh) | 一种基于机械研磨法的微圆弧刃金刚石刀具微豁控制方法 | |
KR101851453B1 (ko) | 취성 재료 기판에 있어서의 경사 크랙의 형성 방법 및 취성 재료 기판의 분단 방법 | |
Maas et al. | Machinability study of single-crystal sapphire in a ball-end milling process | |
Adelmann et al. | Investigation on flexural strength during fiber laser cutting of alumina | |
JP7087817B2 (ja) | カバーガラスの切断方法 | |
JP2004181548A (ja) | 単結晶ダイヤモンドバイトおよびその製造方法 | |
Zhang et al. | Experimental study on ductile-to-brittle behavior and crystal orientation in micro-crack induced severing of 4H-SiC and sapphire | |
JP2006137168A (ja) | 脆性材料の割断方法及び装置 | |
Iwatsuki et al. | Morphology of cleaved surface and observation of in situ crack propagation during cleaving | |
KR102716543B1 (ko) | 유리판의 절단 방법 및 유리판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16918632 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 31.07.19 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16918632 Country of ref document: EP Kind code of ref document: A1 |