WO2018068378A1 - 一种电极系统及含有该电极系统的试条和仪器 - Google Patents

一种电极系统及含有该电极系统的试条和仪器 Download PDF

Info

Publication number
WO2018068378A1
WO2018068378A1 PCT/CN2016/109481 CN2016109481W WO2018068378A1 WO 2018068378 A1 WO2018068378 A1 WO 2018068378A1 CN 2016109481 W CN2016109481 W CN 2016109481W WO 2018068378 A1 WO2018068378 A1 WO 2018068378A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
test strip
substrate
working electrode
channel plate
Prior art date
Application number
PCT/CN2016/109481
Other languages
English (en)
French (fr)
Inventor
赵天贤
张仑
许文文
周芳芳
Original Assignee
广州好芝生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州好芝生物科技有限公司 filed Critical 广州好芝生物科技有限公司
Publication of WO2018068378A1 publication Critical patent/WO2018068378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors

Definitions

  • the present invention relates to an electrode, and more particularly to an electrode for detecting blood clotting time.
  • Electrochemical sensors have been widely used in the detection of various clinical parameters such as blood sugar, blood clotting, blood gas and blood electrolytes, especially for the detection of blood clotting time.
  • Prothrombin time (PT) and international normalized ratio INR were determined by measuring the release of thrombin during coagulation using an electrochemical method.
  • the detection process is divided into two processes. The first process is the contact of the blood sample with the reagent. The thromboplastin in the reagent causes the blood to undergo a blood coagulation reaction to produce thrombin. The thrombin reacts with the substrate in the reagent to produce oxidizable. substance.
  • the second process is that the analyzer applies a DC voltage between the working electrode and the reference electrode to cause the oxidizable species to be oxidized to generate a current, and the blood clotting time is calculated by analyzing the oxidation current curve.
  • Chinese utility new patent CN102818822A discloses a device for measuring blood clotting time by measuring changes in blood electrical impedance generated during blood coagulation, the device comprising one or more pairs of electrodes, including but not limited to carbon, gold, Silver, copper, carbon, silver, palladium, platinum, nickel, other similar materials, or any combination of the foregoing, functions to connect the electrical connections between the blood and the instrumentation.
  • the electrodes used to detect prothrombin time are a pair of electrodes arranged in parallel, and such electrode arrangements are also common in electrochemical sensors. Since there is no component to frame the reagents, this design has a disadvantage in that the reproducibility of the reagent spot is not ideal, thus affecting the measurement accuracy.
  • Chinese patent CN2788184Y discloses a biological test strip which relates to a biological test strip for detecting blood ketone body concentration or glucose concentration in whole blood, which comprises: a substrate carrying an electrode, and a reaction zone space provided with a reaction reagent a hydrophilic cover plate, a spacer layer between the substrate and the hydrophilic cover plate; wherein the electrode comprises a strip-shaped working electrode and a strip-shaped reference electrode; the spacer layer has a groove open on one side
  • the reaction zone space is defined by the spacer layer having a groove and the substrate, the hydrophilic cover plate, and has a sample hole and a vent hole. The venting hole is located on the hydrophilic cover.
  • the structure of the bioassay strip is a common method for existing related test strips.
  • the present invention provides an electrode.
  • the electrodes provided by the present invention are particularly useful for the detection of prothrombin. It has good reproducibility and simple production process.
  • the invention provides an electrode system comprising two or more electrodes, one of which is a working electrode and the other of which is a reference electrode; the working electrode is a sheet-like structure, and the reference electrode contains a surrounding A non-closed ring structure disposed with the working electrode; preferably, the sheet structure is a regular or irregular circle or polygon; the non-closed ring structure is a regular or irregular ring or polygon ring.
  • the non-closed annular structure is a non-closed ring structure having an opening; preferably, it is an annular shape having an opening.
  • the working electrode is a circular or approximately circular sheet-like structure
  • the reference electrode is a non-closed annular structure arranged concentrically with the working electrode
  • the non-closed annular structure means that the reference electrode is arranged in an annular (or approximately annular) course, and one end thereof is not in contact with the other end, thereby defining an annular shape having an opening.
  • the size of the opening depends on the electrode fabrication technique used. If high precision techniques such as chemical etching or laser cutting are used, the opening width can be as small as 0.1 mm. If low precision technology such as silk screen printing is used, the opening width needs to be larger. , generally above 1mm. The smaller the opening, the better, the main function of which is to pass the wire connecting the working electrode located therein.
  • the size of the opening depends on the electrode fabrication technique used. If high precision technology such as chemical etching or laser cutting is used, the opening can be as small as 0.1 mm. If low precision technology such as silk screen printing is used, the opening needs to be larger. Above 1mm.
  • the ring has an inner diameter of 1 mm - 10 mm and an outer diameter of 2 mm - 12 mm; the circular working electrode has a diameter of 0.5 mm - 9 mm.
  • the circular working electrode and the non-closed annular structure reference electrode each have a certain thickness and a thickness of 0.01 mm - 0.1 mm and 0.05 - 0.5 mm, respectively.
  • Thickness refers to the level of protrusion that protrudes from the substrate.
  • the material of the working electrode is selected from an inert metal or carbon; the material of the reference electrode is selected from silver/silver chloride; more preferably, the material of the working electrode is selected from the group consisting of gold, platinum, rhodium, and carbon; more preferably, The material of the working electrode is selected from the group consisting of carbon.
  • the Ag/AgCl electrode material refers to a mixture of silver and silver chloride, and the ratio is generally between 10%/90% and 50%/50%.
  • the advantage of the electrode pair formed by the combination of the sheet-shaped working electrode and the reference electrode of the non-closed ring is that the reference electrode of the non-closed ring is used as a limiting component of the reaction reagent without adding additional components to improve Reproducibility of reagents to improve test accuracy.
  • the electrode structure can directly point the reaction reagent on the working electrode to increase the efficiency of the electrochemical reaction.
  • the reaction reagent is mainly composed of thromboplastin, a thrombin substrate, a film former and a preservative.
  • the various components are first dissolved in a buffer to form a reagent mixture, and then the reagent mixture is spotted into the inner diameter of the non-closed annular structure by a suitable spotting method such as contact or jetting.
  • a suitable spotting method such as contact or jetting.
  • the reagent mixture does not overflow during spotting and is confined within the inner diameter of the reference electrode, and can form a uniform film after drying, Enhance the repeatability of the test strip.
  • the invention adopts carbon or an inert metal as a working electrode, and Ag/AgCl as a reference electrode; in particular, carbon is used as a working electrode, and Ag/AgCl is used as a reference. Specific electrode. Both materials can be printed onto the substrate by silk screen printing. Since the silk screen technique is very simple, an electrode system made in accordance with the present invention can be implemented at low cost.
  • the present invention also provides a substrate containing the above electrode or a test strip further assembled.
  • the substrate is an insulating material.
  • the substrate is further provided with two conductive lines respectively connecting the working electrode and the reference electrode; more preferably, the two conductive lines are respectively connected to the two conductive contact plates;
  • the reference electrode is further provided with a protrusion at any position of the non-closed ring structure for connecting the conductive wire.
  • the test strip comprises an insulating substrate loaded with the electrode, and a chemical reagent is loaded on the insulating substrate in a non-closed loop structure of the reference electrode; preferably, the chemical reagent is formed by liquid sample after being spotted and dried. .
  • the test object of the test strip is a liquid sample; more preferably, the liquid sample is a blood sample.
  • the test strip further includes a channel plate on the substrate, and a cover plate located above the channel plate; the channel plate has a structure on the non-closed ring structure And a channel plate hollow structure having an area larger than the non-closed ring structure; the space defined by the channel plate hollow structure on the substrate is a reaction zone.
  • the test strip further comprises a pad on the substrate. a high sheet, a channel plate above the pad, and a cover plate over the channel plate; the pad having a surface above the non-closed ring structure and having an area greater than the non-closed ring structure a padded hollow structure; the channel plate has a channel plate hollow structure corresponding in position to the padded hollow structure; the space defined by the paddle hollow structure on the substrate is a reaction zone.
  • the reaction zone is the zone where the blood sample eventually enters and reacts with the zone (eg, a clotting reaction).
  • the test strip of the present invention may have a structure such as a cover plate, a channel plate, a substrate or the like contained in the test strip, which is a structure other than the electrode system disclosed in the prior art, such as disclosed in CN 2788184Y. Alternatively, these parts may also be an improved structure.
  • the structure of the cover plate and the passage plate of the present invention may be as follows.
  • the cover of the test strip is provided with a sample injection hole at one end and an air outlet at the other end;
  • the channel plate is provided with a sample introduction chamber, a liquid circulation passage and a circulation hole, wherein the cover plate is stacked on the passage
  • the injection chamber is located below the injection hole and is connected to the flow hole through the liquid circulation passage, wherein the circulation hole of the channel plate is further connected with an extension pipe And extending in a direction relative to the injection chamber and the other side of the liquid flow conduit.
  • the channel plate defines an outside communication passage through the air outlet a venting opening, the venting opening being located at any point of the extension duct, or the venting opening being at least partially in contact with the extension duct;
  • the air outlet has a diameter of 0.1 mm to 5 mm; preferably, a ratio of a cross-sectional area of the extension duct to a cross-sectional area of the liquid flow passage is 1:1 - 1:10;
  • the ratio of the length of the extension duct to the length of the liquid flow passage is 1:1 - 1:10;
  • the wall of the liquid circulation channel is at least partially hydrophilic, and the hydrophilic material portion penetrates both ends of the liquid communication channel;
  • the wall of the extension duct is at least partially hydrophobic; preferably the portion of the outlet is a hydrophobic material, and the portion adjacent the orifice is a hydrophilic material, and the length of the portion of the hydrophilic material is preferably 1-2 mm.
  • the injection chamber, the liquid circulation channel, the flow hole, the extension pipe and the gas vent are all on the same straight line;
  • the distance of the gas permeable opening from the end is 1 mm - 10 mm; preferably, the ratio of the area of the gas vent to the injection hole is 1:1 - 1:100.
  • the invention also provides a test instrument comprising the above test strip.
  • the invention relates to a test strip/instrument for the above electrode, in particular to a test strip/meter for detecting a blood sample Especially for strips/instruments used to detect prothrombin time.
  • the present invention has the following beneficial effects:
  • the invention adopts a special structure electrode system, which utilizes the thickness and hydrophobicity of the reference electrode to not only participate in the electrochemical reaction, but also as a limiting component of the reaction reagent, so that the reaction reagent is after being spotted onto the working electrode It can form a uniform dry reagent film, thereby improving the repeatability of the test strip reaction signal.
  • reaction reagent can be uniformly solidified on the surface of the working electrode, when the blood sample flows into the reaction zone and reacts with the reagent in the dry reagent film, the generated oxidizable substance can flow to the surface of the working electrode quickly and uniformly. It is oxidized and thus makes the oxidation reaction more efficient and reproducible.
  • the electrode material used in the invention has low cost and can be printed on the substrate by a silk screen printing process. Therefore, the test strip of the invention has low production cost and can greatly reduce the burden of diagnosis and medical cost.
  • Figure 1 A substrate with a circular electrode of the invention.
  • Figure 2 A substrate with a square electrode of the invention.
  • Fig. 3 is a schematic view showing the substrate reagent of Example 1 after spotting and drying.
  • Figure 4 is a simulated exploded view of a typical test strip of the present invention.
  • Figure 5 is a schematic view showing the explosion of a test strip of the present invention.
  • Figure 6 Schematic diagram of the explosion of another test strip of the present invention (including padding).
  • Figure 7 Prothrombin time test response curve
  • 7a shows the reaction current curve measured by the electrode system of the present invention
  • Fig. 7b shows the reaction current measured by the existing electrode system (parallel electrode system) curve.
  • Figure 8 Structure of the test strip of the prior art (CN2788184Y).
  • the electrodes are supported on the insulating substrate 3.
  • the substrate 3 used may be any insulating material such as plastic PET, ABS, PC or the like. Because the materials used for the two electrodes are different, they can be printed onto the substrate twice. The order of printing is irrelevant. Simply print the first electrode and then print the second electrode.
  • the working electrode 321 is a circular sheet-like structure, the material is selected from carbon; the reference electrode 322 is an annular shape having an opening, the material is selected from silver/silver chloride; and the working electrode 321 is connected to the first conductive through the conductive line 323.
  • the contact plate 325, the conductive line 323 is routed through the opening of the reference electrode 322; the annular shaped reference electrode 322 (any position on the circumference of the ring may also be provided with a small protrusion to facilitate the connection of the conductive line, of course, if not It is also possible to provide a small protrusion) to be connected to the second conductive contact plate 326 through the conductive line 324.
  • a conductive contact plate is used to connect the test strip to the current sense line in the analyzer.
  • the oxidation current generated on the working electrode flows through the conductive line 323 to the conductive contact plate 325, and then flows into the current detecting circuit in the analyzer, and the current loop is completed through the conductive contact plate 326, the conductive line 324, and the reference electrode 322.
  • the inner diameter of the ring is 2mm and the outer diameter is 3mm;
  • the circular working electrode has a diameter of 2 mm.
  • Both the circular working electrode and the non-closed annular structure reference electrode have a certain thickness, and the thicknesses are 0.01 mm and 0.05 mm, respectively.
  • the only difference between the embodiment 2 shown in Fig. 2 and the above-mentioned embodiment 1 is that the shape of the electrode is changed from a circular shape to a square shape, and the manufacturing process and working principle of the two are not different.
  • the circular structure on the printing template can be squared.
  • the working electrode 321 is a square sheet-like structure, the material is selected from carbon; the reference electrode 322 is a square shape having an opening, the material is selected from silver/silver chloride; and the working electrode 321 is connected to the first conductive contact plate 325 through the conductive line 323.
  • the conductive wire 323 is routed through the opening of the reference electrode 322; the square reference electrode 322 (a small protrusion can be provided at any position on the square to facilitate the connection of the conductive wire, of course, if no small protrusion is provided)
  • Conductive line 324 is coupled to second conductive contact plate 326. A conductive contact plate is used to connect the test strip to the current sense line in the analyzer.
  • the oxidation current generated on the working electrode flows through the conductive line 323 to the conductive contact plate 325, and then flows into the current detecting circuit in the analyzer, and the current loop is completed through the conductive contact plate 326, the conductive line 324, and the reference electrode 322.
  • Example 1 the circular electrode shown in Example 1 is preferred because the circular structure is more suitable for spotting the reaction reagent, and the dried reagent film is more uniform after curing.
  • Fig. 3 shows a dry reagent film after spotting the reagent and drying on the basis of Example 1.
  • the reagent mixture is usually spotted at the center of the working electrode, and due to its flow characteristics, the reagent mixture will automatically flow from the center to the periphery until the inner peripheral edge of the reference electrode 322 stops flowing.
  • a dry reagent film 327 is formed on the surface of the working electrode and around it.
  • the coagulation reaction will occur on the surface of the dry reagent film 327, so that the generated oxidizable species can flow rapidly to the working electrode through the microporous channel on the dry reagent membrane (in the figure) It is masked under the dry reagent film 327, not shown) and oxidized to generate an oxidizing current.
  • Figure 4 shows an exploded view of a test strip containing the electrode of the present invention.
  • the constituent elements of the liquid sample detecting strip include a cover plate 1, a channel plate 2, and a substrate 3.
  • the substrate 3 is an insulating substrate as in Embodiment 1, on which an electrode as in Embodiment 1 is loaded.
  • the cover plate 1 is a panel having a sample hole 11 for collecting a blood sample.
  • the bleeding position is after the finger of the subject receives the acupuncture and squeezes a proper amount of blood.
  • the blood sample flows into the injection chamber of the next plate and the channel plate, and the channel reaches the flow hole.
  • the flow hole communicates with the next plate, that is, the position where the electrode of the insulating substrate is located. Thereby, a coagulation reaction is carried out in the reaction zone defined by the electrode pair and the generated oxidizable substance is oxidized to generate a current signal for detection.
  • Figure 5 further illustrates the test strip of the present invention having a preferred cover structure in the form of a line drawing.
  • the injection hole 11 is disposed at the left end of the cover plate 1, and the air outlet 12 is disposed at the right end of the cover plate 1.
  • the channel plate 2 is provided with a sample chamber 21, a groove as a liquid flow path 22, and a flow hole 23.
  • the groove is hollowed out, and when the upper and lower surfaces of the channel plate are respectively stacked with the cover plate 1 and the substrate 3, the space defined by them together A flow conduit is formed therebetween, one side wall of the pipe is the lower surface of the cover plate, and the other side wall is the upper surface of the substrate 3.
  • the injection chamber 21 is disposed at the left end of the channel plate 2, and when the cover plate 1 is stacked on the channel plate 2, the injection chamber 21 is located directly below the injection hole 11 in the cover plate 1.
  • the injection chamber 21 and the flow holes 23 are connected by the liquid flow path 22 so that the liquid can flow from the sample chamber 21 into the flow holes 23 through the liquid flow path 22.
  • the flow orifice 23 extends with an extension conduit 24 of the liquid flow passage 22 relative to the distal end of the injection chamber 21.
  • the air outlet 12 on the cover plate 1 is located directly above the end of the extension duct 24, and the air passage defined by the passage plate 2 is located at the end of the extension duct 24, so that the extension duct 24 communicates with the outside through the air vent defined by the air outlet 12. .
  • the liquid flow path 22 is a channel for up and down hollowing, specifically, a pipe formed by the space defined by the cover plate 1 and the substrate 3 when the upper and lower surfaces of the channel plate 2 are respectively stacked.
  • the substrate 3 carries a reaction zone 31 in which the electrode of the present invention is accommodated (not shown in detail in the figure, see the electrode of Example 1-3 for details).
  • the reaction zone 31 is located directly below the flow hole 23 of the channel plate 2.
  • the cover plate 1, the passage plate 2, and the substrate 3, which are provided as described above, are stacked in a movable manner from the bottom to the top to form a liquid sample test strip.
  • reaction zone 31 comprises a hydrophilic material, or the reaction zone 31 is at least partially made of a hydrophilic material.
  • the liquid flow passage 22 has four tube walls (such as the two side walls of the hollow trench itself and the cover plate 1, the substrate 3 and the portion defined by the hollow groove) Or at least one of the walls of the non-hollowed groove itself and the cover plate 1 and the portion of the non-hollowed groove are made of a hydrophilic material; of course, another alternative embodiment At least the liquid flow conduit at least partially comprises a hydrophilic material or is partially made of a hydrophilic material; the above effect is better when the four tube walls are all made of a hydrophilic material.
  • the extension pipe 24 comprises a hydrophobic material, or at least partially made of a hydrophobic material;
  • the portion near the gas outlet is a hydrophobic material, and the portion close to the flow hole is a hydrophilic material.
  • the liquid sample to be tested is spotted in the injection hole 11, and the liquid sample flows from the injection hole 11 into the injection chamber 21. Under the action of the hydrophilic material of the cover plate 1, the liquid sample flows into the reaction area through the liquid flow channel 22. 31. During this process, the vent opening at the end of the extension duct 24 passes through the air outlet 12 on the cover plate 1 and The outside is connected so that the liquid can flow forward in the liquid circulation passage 22. When the liquid sample to be tested fills the reaction zone 31, it will then flow forward into the extension duct 24 until the hydrophobic portion or the gas outlet 12 in the conduit is extended to prevent flow by its hydrophobic action.
  • the viscosity of the liquid sample is large, it is possible that the liquid sample stops flowing before reaching the hydrophobic portion or the gas outlet port 12 because the tensile force generated by the hydrophilic action of the cap plate 1 and the flow resistance of the liquid sample are balanced.
  • the liquid sample test strip is inserted into the test instrument to energize the electrode. At this time, the liquid sample and the reaction reagent are reacted in the electrode that is energized.
  • the coagulation reaction will occur on the surface of the dry reagent membrane, and the oxidizable substance thus formed can be oxidized by rapidly flowing to the surface of the working electrode through the microporous channel on the dry reagent membrane. An oxidation current is generated.
  • prothrombin time detection was carried out using the test strip of Example 4.
  • the test strip needs to be used in combination with an analyzer.
  • the functions of the analyzer include: 1) applying a DC voltage between the working electrode and the reference electrode; 2) detecting the current between the two electrodes; 3) recording the measured A plot of current versus time; 4) Analysis of the current-time curve to calculate prothrombin time.
  • An analyzer configured by a commercially available prothrombin time detecting device can be used.
  • Fig. 7a shows a set of reaction current curves measured by the electrode system of the present invention
  • Fig. 7b shows a reaction current curve measured by an existing electrode system (parallel electrode system). Comparing the two sets of curves, the electrode system of the present invention is significantly superior in repeatability to the existing electrode system, the electrode system of the present invention has a CV of 5%, while the existing system has a CV of 20%. And the optimization is produced under the condition that the production cost of the device is reduced (carbon is used as the electrode material, and the cost is low).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种电极系统,其包括至少两个电极,所述电极之一为工作电极(321),另一电极为参比电极(322)。所述工作电极(321)为片状结构,所述参比电极(322)为围绕工作电极而布置的非封闭环结构;所述片状结构为规则或不规则的圆形或多边形;所述非封闭环结构为规则或不规则的圆环或多边形环。

Description

一种电极系统及含有该电极系统的试条和仪器 技术领域
本发明涉及一种电极,尤其是一种用于检测血液凝结时间的电极。
背景技术
电化学传感器已广泛用于各种临床参数的检测如血糖、凝血、血气和血液电解质等,尤其适合血液凝结时间的检测。通过使用电化学法对凝血过程中凝血酶的释放进行测量来确定凝血酶原时间(PT)和国际标准化比值INR。这个检测过程分为两个过程,第一个过程是血液样品与试剂接触,试剂里的促凝血酶原激酶促使血液发生凝血反应而产生凝血酶,凝血酶与试剂中的底物反应产生可氧化物质。第二个过程是分析仪在工作电极和参比电极之间施加一个直流电压,使可氧化物质被氧化而产生电流,通过对氧化电流曲线的分析而算出血液凝结时间。
中国实用新专利CN102818822A公开了一种通过测量凝血过程中产生的血液电阻抗变化来测量血液凝结时间的装置,这种装置包括一对或多对电极,电极材料包括但不限定于碳、金、银、铜、碳、银、钯、铂、镍、其它类似的材料或上述材料的任意组合,其作用为连通血液与检测仪器之间的电路连接。用于检测凝血酶原时间的电极是一对平行布置的电极,这种电极安排也常见于电化学传感器。由于没有任何部件框定反应试剂,这种设计有一个缺点,即试剂点样的重复性不理想,因而影响测量精度。
中国专利CN2788184Y公开了一种生物检测试条,其涉及检测全血中血酮体浓度或葡萄糖浓度的一种生物检测试条,其包括:载有电极的基板,设置有反应试剂的反应区空间,亲水盖板,所述基板与亲水盖板之间的间隔层;其中,所述电极包括条状的工作电极和条状的参比电极;所述间隔层上具有一边开口的沟槽;所述反应区空间由具有沟槽的所述间隔层与所述基板、亲水盖板限定形成,并具有进样孔和排气孔。所述的排气孔位于所述亲水盖板上。该生物检测试条的结构为现有相关检测试条的常用方式。
发明内容
为了克服现有技术的不足,本发明提供了一种电极。
本发明所提供的电极尤其适用于凝血酶原的检测。其重现性好、生产工艺简单。
发明通过以下技术方案实现:
发明提供了一种电极系统,其包括两个或以上的电极,所述电极之一为工作电极,另一电极为参比电极;所述工作电极为片状结构,所述参比电极含有围绕工作电极而布置的非封闭环结构;优选地,所述片状结构为规则或不规则的圆形或多边形;所述非封闭环结构为规则或不规则的圆环或多边形环。
所述非封闭环状结构是具有一个开口的非封闭环结构;优选地,为具有一个开口的圆环状形状。
作为一种实施方式,所述工作电极为圆形或近似圆形的片状结构,所述参比电极为与工作电极同心布置的非封闭环状结构。
所述非封闭环状结构是指参比电极以圆环状(或近似圆环状)的路线布置,并且其一端与另一端不相接,从而限定出具有一个开口的圆环状形状。
所述开口的大小根据采用的电极制作技术而定,如果采用高精密技术如化学腐蚀法或激光切割法,开口宽度可以小至0.1mm;如果采用低精密技术如丝印法,开口宽度需要大一些,一般在1mm以上。开口越小越好,其作用主要是让连接位于其中的工作电极的导线通过。所述开口的大小根据采用的电极制作技术而定,如果采用高精密技术如化学腐蚀法或激光切割法,开口可以小至0.1mm;如果采用低精密技术如丝印法,开口需要大一些,一般在1mm以上。
所述的圆环的内直径为1mm–10mm,外径为2mm–12mm;所述圆形工作电极的直径为0.5mm–9mm。
优选地,所述的圆形工作电极和非封闭环状结构参比电极均具有一定的厚度,厚度分别为0.01mm–0.1mm和0.05–0.5mm。厚度是指突出于基板的水平高度。
所述工作电极的材料选自惰性金属或碳;参比电极的材料选自银/氯化银;更优选地,所述工作电极的材料选自金、铂、铑和碳;更优选地,所述工作电极的材料选自碳。
Ag/AgCl电极材料是指银和氯化银的混合物,比例一般在10%/90%至50%/50%之间。
采用片状的工作电极及非封闭环的参比电极配合而成的电极对的好处在于:在没有增加额外部件的情况下,利用非封闭环的参比电极作为反应试剂的限定部件,以提高试剂点样的重复性,从而提高测试精度。另外,这种电极结构可以将反应试剂直接点在工作电极上,以增加电化学反应的效率。
所述反应试剂主要由促凝血酶原激酶,凝血酶底物,成膜剂及防腐剂等组成。所述的各种成分首先均溶解在缓冲液中而形成试剂混合液,然后通过适当的点样方法如接触式或喷射式将试剂混合液点样到非封闭环状结构的内径之内,此时电极表面及其周围的基板表面将附有试剂,最后将试剂烘干固化而在工作电极上及其周围形成一层干试剂膜。
由于非封闭环参比电极的厚度及疏水性,所述试剂混合液在点样时不会溢出而被限制在所述参比电极的内径之内,并在干燥之后能够形成均匀的膜,以增强测试试条的反应重复性。
配合上述的非封闭环结构及圆形结构设置的电极,发明分别采用了碳或惰性金属作为工作电极,Ag/AgCl作为参比电极;尤其优选地是采用碳作为工作电极,Ag/AgCl作为参比电极。这两种材料都可以通过丝印法印制到基材上。由于丝印技术非常简单,根据本发明制作的电极系统可以做到低成本。
本发明同时提供了含有上述电极的基板、或进一步组装而成的检测试条。
所述的基板为绝缘材料。
优选地,所述基板上还设有分别连接工作电极和参比电极的两根导电线;更优选地,所述的两根导电线分别连接两个导电接触板;
更优选地,所述的参比电极还设有位于所述非封闭环结构任意位置上的突出,所述突出用以连接导电线。
检测试条含有负载有所述电极的绝缘基板,于绝缘基板上位于参比电极的非封闭环结构内负载有化学试剂;优选地,所述化学试剂是由液态试剂经点样、干燥后形成。
所述的试条的检测对象为液体样本;更优选地,所述的液体样本为血样。
作为一种可选的实施方式,所述的试条还含有位于基板之上的,通道板,以及位于通道板之上的盖板;所述通道板具有一个位于所述非封闭环结构之上的,并且面积大于所述非封闭环结构的通道板镂空结构;所述的通道板镂空结构限定出的位于所述基板上的空间为反应区。
或者,作为另一种可选的实施方式,所述的试条还含有位于基板之上的垫 高片、位于垫高片之上的通道板,以及位于通道板之上的盖板;所述垫高片具有一个位于所述非封闭环结构之上的,并且面积大于所述非封闭环结构的垫高片镂空结构;所述通道板具有在位置上对应于垫高片镂空结构的通道板镂空结构;所述垫高片镂空结构限定出的位于所述基板上的空间为反应区。
反应区即为血样最终进入并与该区域进行反应(例如凝血反应)的区域。
本发明的试条除了上述的电极系统,该试条所含有的盖板、通道板、基板等的结构可以是采用现有技术,如CN2788184Y所公开的除了电极系统之外的结构。或者,这些部分也可以是经过改进的结构。
作为一种改进结构的实施例,本发明的盖板和通道板的结构可以是如下方案。
试条的盖板上一端设有进样孔,另一端设有出气口;所述通道板设有进样腔、液体流通通道和流通孔,其中,当所述盖板叠装于所述通道板之上时,所述进样腔位于所述进样孔的下方,并通过所述液体流通通道连接所述流通孔,其特征在于,所述通道板的所述流通孔还连接有延伸管道,其延伸方向为相对于所述进样腔和所述液体流通管道的另外一侧,当所述盖板叠装于通道板之上时,所述通道板通过出气口限定出一个与外界相通的透气口,所述透气口位于所述延伸管道的任意一点上,或者所述透气口至少部分与所述延伸管道接触;
优选地,所述出气口的孔径为0.1mm-5mm;优选地,所述延伸管道的横截面积与所述液体流通通道的横截面积之比为1:1–1:10;
优选地,所述延伸管道的长度与所述液体流通通道的长度之比为1:1–1:10;
优选地,所述液体流通通道的管壁至少部分为亲水材料,并且所述亲水材料部位贯穿液体连通通道的两端;
优选地,所述延伸管道的管壁至少部分为疏水材料;优选地靠近出气口部分为疏水材料,而靠近流通孔部分为亲水材料,亲水材料部分的长度最好有1-2mm。
优选地,所述进样腔、所述液体流通通道、所述流通孔、所述延伸管道与所述透气口均位于同一直线上;
优选地,所述透气口距所述末端的距离为1mm–10mm;优选地,所述透气口的面积与所述进样孔的面积比为1:1–1:100。
本发明同时提供了含有上述检测试条的检测仪器。
本发明含有上述电极的检测试条/仪器,尤其是用于检测血液样本的试条/仪 器;尤其是用于检测凝血酶原时间的试条/仪器。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用特殊结构的电极系统,利用参比电极的厚度和疏水性,使其不仅参与电化学反应,而且还作为反应试剂的限定部件,使得反应试剂在被点样到工作电极上之后能形成均匀的干试剂膜,从而提高测试试条反应信号的重复性。
2.由于反应试剂能被均匀地固化在工作电极的表面上,当血液样品流入反应区后和干试剂膜中的试剂发生反应,产生的可氧化物质可快速且均匀地流到工作电极的表面上而被氧化,因而使得氧化反应效率更高且重复性好。
3.发明所采用的电极材料成本低,且可通过丝印工艺印制到基材上,所以,本发明的测试试条生产成本低,可以大大降低诊断、医疗成本负担。
附图说明
图1:本发明带有圆形电极的基板。
图2:本发明带有方形电极的基板。
图3:实施例1基板试剂点样并干燥后的示意图。
图4:本发明一个典型的测试试条的模拟爆炸图。
图5:本发明一个测试试条的爆炸示意图。
图6:本发明另一个测试试条的爆炸示意图(含垫高片)。
图7:凝血酶原时间测试反应曲线;7a显示的是用本发明的电极系统测得的反应电流曲线,图7b显示的是用现有电极系统(平行设置的电极系统)测得的反应电流曲线。
图8:现有技术(CN2788184Y)的检测试条结构。
具体实施方式
为更进一步阐述本发明为达成预定目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下。
实施例1
如图1所示,电极负载于绝缘基板3。所用基板3可以是任何绝缘材料,比如塑料PET,ABS,PC等。因为两个电极所用材料不同,可以分两次印刷到基板上,印制顺序无关紧要,只需将先印制的烘干再印制第二个电极。
工作电极321为圆形片状结构,材料选自碳;参比电极322为具有一个开口的圆环状形状,材料选自银/氯化银;工作电极321通过导电线323连接至第一导电接触板325,导电线323通过参比电极322的开口布线;圆环状形状的参比电极322(圆环圆周上任意位置也可以设有一个小突出以更方便导电线的连接,当然如果不设有小突出也是可以的)通过导电线324连接至第二导电接触板326。导电接触板用以将试条和分析仪中的电流检测线路连接起来。工作电极上产生的氧化电流通过导电线323流到导电接触板325,然后流入分析仪中的电流检测电路,电流回路通过导电接触板326,导电线324和参比电极322完成。
产品参数:
开口宽度:1mm
圆环内径为2mm,外径为3mm;
圆形工作电极的直径为2mm。
圆形工作电极和非封闭环状结构参比电极均具有一定的厚度,厚度分别为0.01mm和0.05mm。
实施例2
图2展示的实施例2和上述实施例1的唯一区别是电极形状由圆形变成方形,两者的制作工艺和工作原理没有区别。在印制电极时,把印刷模板上的圆形结构变成方形即可。
工作电极321为方形片状结构,材料选自碳;参比电极322为具有一个开口的方形形状,材料选自银/氯化银;工作电极321通过导电线323连接至第一导电接触板325,导电线323通过参比电极322的开口布线;方形的参比电极322(方形上任意位置可以设有一个小突出以更方便导电线的连接,当然如果不设有小突出也是可以的)通过导电线324连接至第二导电接触板326。导电接触板用以将试条和分析仪中的电流检测线路连接起来。工作电极上产生的氧化电流通过导电线323流到导电接触板325,然后流入分析仪中的电流检测电路,电流回路通过导电接触板326,导电线324和参比电极322完成。
上述两个实施例只是用于说明本发明的两个特例而已,其它形状的电极也 是本发明的保护范围,比如三角形,椭圆形,梯形等。但所述的实施例1所展示的圆形电极是优选的,因为圆形结构更适合于反应试剂的点样,固化后的干试剂膜更均匀。
实施例3
图3显示了在实施例1的基础上点样试剂并干燥后的干试剂膜。试剂混合液通常被点在工作电极的中心处,由于其流动特性,试剂混合液将从中心处自动流向四周,直至参比电极322的内周边沿而停止流动。经过自然风干和烘干之后,在工作电极表面及周围形成一层干试剂膜327。
当血液样品被加到反应区后,凝血反应将在干试剂膜327表面上发生,因此而生成的可氧化物质可以通过干试剂膜上的微孔通道快速地流到工作电极(在该图中被掩盖于干试剂膜327之下,未示出)表面上而被氧化而产生氧化电流。
实施例4
图4显示了含有本发明电极的检测试条的爆炸图。
即用于液体样本检测试条的结构。液体样本检测试条的构成元件包括盖板1、通道板2和基板3。
基板3即如实施例1的绝缘基板,其上负载了如实施例1的电极。
盖板1是具有进样孔11的面板,进样孔用以采集血样,例如,在进行针刺采血的操作中,受试者手指接收针刺并挤压出适量血量之后,将出血位置至于进样口处,随之血样即流入下一个板及通道板的进样腔,并且随其中通道到达流通孔。流通孔连通下一个板即绝缘基板的电极所处的位置。从而在电极对所限定出的反应区域内进行凝血反应并使得所产生的可氧化物质被氧化而产生电流信号而得以检测。
实施例5
图5将本发明的含有优选的盖板结构的试条以线条图的形式进一步显示。
其中,进样孔11设于盖板1的左端,出气口12设于盖板1的右端。通道板2设有进样腔21、作为液体流通通道22的沟槽和流通孔23。沟槽是镂空的,当通道板的上下表面分别叠装了盖板1和基板3时,由它们共同限定出来的空 间形成了流通管道,管道的一侧壁为盖板下表面,另一侧壁为基板3上表面。其中,进样腔21设于通道板2的左端,且当盖板1叠装于通道板2之上时,进样腔21位于盖板1中的进样孔11的正下方。
另外,进样腔21和流通孔23通过液体流通通道22连接,使得液体能够经液体流通通道22从进样腔21流入流通孔23中。流通孔23相对于进样腔21的远端延伸有液体流通通道22的延伸管道24。盖板1上的出气口12位于延伸管道24的末端的正上方,与通道板2限定的透气口位于延伸管道24的末端,使得延伸管道24通过由出气口12限定出的透气口与外界连通。
在本实施方案中,液体流通通道22为一上下镂空之通道,具体地,是通道板2的上下表面分别叠装了盖板1和基板3时,由它们共同限定出来的空间形成的管道。
基板3上载有反应区域31,反应区域中即容纳了本发明的电极(该图中未详细示出,详见实施例1-3的电极)。反应区域31位于通道板2的流通孔23的正下方。
部件如上述所设的盖板1、通道板2和基板3通过活动式叠装的方式,由下至上依次叠装,形成液体样本检测试条。
为引导液体样品更迅速地流入反应区域31实现反应,在优选的实施方案中,所述反应区域31包含亲水材料,或所述反应区域31至少部分地由亲水材料制作而成。
而在更为优选的实施方案中,所述液体流通通道22所具有的四个管壁(如镂空沟槽本身的两个侧壁与盖板1、基板3与所述镂空沟槽限定之部分,或者是非镂空沟槽本身三个管壁与盖板1与所述非镂空沟槽限定之部分)至少有一个管壁是由亲水材料制作而成的;当然另一种可替代的实施方式,至少所述液体流通管道至少部分地包含亲水材料,或者部分地由亲水材料制作而成;当所述四个管壁全部由亲水材料制成时上述效果更佳。
而为了防止液体样本从所述延伸管道24流出所述出气口12,影响反应的质量,在优选的实施方案中,所述延伸管道24包含有疏水材料,或者至少部分地由疏水材料制成;靠近出气口部分为疏水材料,而靠近流通孔部分为亲水材料。
使用时,在进样孔11点入待测液体样本,液体样本从进样孔11流入进样腔21,在盖板1亲水材料的作用下,液体样本经液体流通通道22流进反应区域31,在此过程中,由于延伸管道24末端的透气口通过盖板1上的出气口12与 外界连通,使得液体能够在液体流通通道22中往前流动。当待测液体样本充满反应区域31后,将接着往前流动进入延伸管道24,直至延伸管道中的疏水部分或出气口12而被其疏水作用阻止流动。如果液体样品的粘度较大,液体样品有可能在未到达疏水部分或出气口12之前就停止流动,因为此时由盖板1的亲水作用产生的拉力和液体样品的流动阻力达到平衡。将液体样本检测试条插入检测仪器中,使得电极通电。此时,液体样本、反应试剂在通电的电极中进行反应。
当待测液体样本流入反应区后,凝血反应将在干试剂膜表面上发生,由此而生成的可氧化物质可以通过干试剂膜上的微孔通道快速地流到工作电极表面上而被氧化而产生氧化电流。
实施例6
采用实施例4的检测试条进行凝血酶原时间检测实施例。所述试条需与一分析仪结合使用,分析仪的功能包括:1)在工作电极和参比电极之间施加一直流电压;2)检测两个电极之间的电流;3)记录所测得电流随时间变化的曲线;4)分析电流-时间曲线计算出凝血酶原时间。可采用市售凝血酶原时间检测装置所配置的分析仪。
图7a显示的是一组用本发明的电极系统测得的反应电流曲线,图7b显示的是用现有电极系统(平行设置的电极系统)测得的反应电流曲线。对比所述两组曲线,本发明的电极系统在重复性方面明显优于现有电极系统,本发明的电极系统的CV为5%,而现有系统的CV为20%。并且该优化是在降低了设备生产成本(采用碳作为电极材料即可,成本低廉)的情况下产生的。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (11)

  1. 一种电极系统,其包括两个或以上的电极,所述电极之一为工作电极,电极之二为参比电极;所述工作电极为片状结构,所述参比电极含有围绕工作电极而布置的非封闭环结构;优选地,所述片状结构为规则或不规则的圆形或多边形;所述非封闭环结构为规则或不规则的圆环或多边形环。
  2. 如权利要求1所述的电极系统,所述非封闭环状结构是具有一个或以上的开口的非封闭环结构;
    优选具有一个开口;
    优选地,为具有一个开口的圆环状形状。
  3. 如上述任一权利要求所述的电极系统,其特征在于,所述工作电极的材料选自惰性金属或碳;参比电极的材料选自银/氯化银;更优选地,所述工作电极的材料选自金、铂、铑和碳;更优选地,所述工作电极的材料选自碳。
  4. 如上述任一权利要求所述的电极系统,其特征在于所述圆环参比电极的内直径为1mm–10mm,外直径为2mm–12mm;所述圆形工作电极的直径为0.5mm–9mm。
  5. 如上述任一权利要求所述的电极系统,其特征在于所述的工作电极的厚度为0.01mm–0.1mm,参比电极的厚度为0.05–0.5mm。
  6. 一种含有如权利要求1-5任一所述电极系统的基板,其特征在于,所述电极负载于基板上,所述基板为绝缘材料;
    优选地,所述基板上还设有分别连接工作电极和参比电极的两根导电线;更优选地,所述的两根导电线分别连接两个导电接触板;
    更优选地,所述的参比电极还设有位于所述非封闭环结构任意位置上的突出,所述突出用以连接导电线。
  7. 一种含有如权利要求1-5任一所述电极系统的检测试条,其特征在于,检测试条为表面负载有所述电极的绝缘基板;优选地,所述工作电极表面、和/或所述参比电极内径以内的基板表面负载有化学试剂;优选地,所述化学试剂是由液态试剂经点样、干燥后形成。
  8. 如权利要求7所述的检测试条,其特征在于所述的试条的检测对象为液体样本;更优选地,所述的液体样本为血样。
  9. 如权利要求7-8任一所述的检测试条,优选地,所述的试条还含有位于基板 之上的通道板,以及位于通道板之上的盖板;所述通道板具有一个位于所述非封闭环结构之上的,并且面积大于所述非封闭环结构的通道板镂空结构;
    所述的通道板镂空结构限定出的位于所述基板上的空间为反应区;
    或者,所述的试条还含有位于基板之上的垫高片、位于垫高片之上的通道板,以及位于通道板之上的盖板;所述垫高片具有一个位于所述非封闭环结构之上的,并且面积大于所述非封闭环结构的垫高片镂空结构;所述通道板具有在位置上对应于垫高片镂空结构的通道板镂空结构;所述垫高片镂空结构限定出的位于所述基板上的空间为反应区;
    优选地,所述的检测试条为凝血检测试条。
  10. 如权利要求7-9任一所述的试条,其特征在于所述的盖板上一端设有进样孔,另一端设有出气口;所述通道板设有进样腔、液体流通通道和流通孔,其中,当所述盖板叠装于所述通道板之上时,所述进样腔位于所述进样孔的下方,并通过所述液体流通通道连接所述流通孔,其特征在于,所述通道板的所述流通孔还连接有延伸管道,其延伸方向为相对于所述进样腔和所述液体流通管道的另外一侧,当所述盖板叠装于通道板之上时,所述通道板通过出气口限定出一个与外界相通的透气口,所述透气口位于所述延伸管道的任意一点上,或者所述透气口至少部分与所述延伸管道接触;
    优选地,所述出气口的孔径为0.1mm-5mm;优选地,所述延伸管道的横截面积与所述液体流通通道的横截面积之比为1:1–1:10;
    优选地,所述延伸管道的长度与所述液体流通通道的长度之比为1:1–1:10;
    优选地,所述液体流通通道的管壁至少部分为亲水材料,并且所述亲水材料部位贯穿液体连通通道的两端;
    优选地,所述延伸管道的管壁至少部分为疏水材料;优选地靠近出气口部分为疏水材料,而靠近流通孔部分为亲水材料;优选地,亲水材料部分的长度为1-2mm。
    优选地,所述进样腔、所述液体流通通道、所述流通孔、所述延伸管道与所述透气口均位于同一直线上;
    优选地,所述透气口距所述末端的距离为1mm–10mm;优选地,所述透气口的面积与所述进样孔的面积比为1:1–1:100。
  11. 一种含有如权利要求10所述检测试条的检测仪器;优选地,所述的仪器为凝血酶原时间检测仪器。
PCT/CN2016/109481 2016-10-11 2016-12-12 一种电极系统及含有该电极系统的试条和仪器 WO2018068378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621115518.0U CN206945598U (zh) 2016-10-11 2016-10-11 一种电极系统及含有该电极系统的试条和仪器
CN201621115518.0 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018068378A1 true WO2018068378A1 (zh) 2018-04-19

Family

ID=61356273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109481 WO2018068378A1 (zh) 2016-10-11 2016-12-12 一种电极系统及含有该电极系统的试条和仪器

Country Status (2)

Country Link
CN (1) CN206945598U (zh)
WO (1) WO2018068378A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD918654S1 (en) 2019-06-06 2021-05-11 Sharkninja Operating Llc Grill plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917942B (zh) * 2016-10-11 2021-06-18 广州好芝生物科技有限公司 一种电极系统及含有该电极系统的试条和仪器
CN108398470B (zh) * 2018-04-13 2024-01-30 广州万孚生物技术股份有限公司 血液活化凝血时间测定生物传感器及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2660527Y (zh) * 2003-12-19 2004-12-01 南开大学 用于生物传感器的酶电极
CN1584575A (zh) * 2004-05-24 2005-02-23 北京怡成生物电子技术有限公司 一种电化学生物传感器及其制造方法
CN2723998Y (zh) * 2004-08-23 2005-09-07 南开大学 用于残留农药检测的酶电极
CN103575773A (zh) * 2012-08-07 2014-02-12 达尔生技股份有限公司 生物检测试片及其系统
US20140065715A1 (en) * 2012-08-31 2014-03-06 Se Hyun SHIN Apparatus and method of platelet multi-function analysis, and micro stirring chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2660527Y (zh) * 2003-12-19 2004-12-01 南开大学 用于生物传感器的酶电极
CN1584575A (zh) * 2004-05-24 2005-02-23 北京怡成生物电子技术有限公司 一种电化学生物传感器及其制造方法
CN2723998Y (zh) * 2004-08-23 2005-09-07 南开大学 用于残留农药检测的酶电极
CN103575773A (zh) * 2012-08-07 2014-02-12 达尔生技股份有限公司 生物检测试片及其系统
US20140065715A1 (en) * 2012-08-31 2014-03-06 Se Hyun SHIN Apparatus and method of platelet multi-function analysis, and micro stirring chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD918654S1 (en) 2019-06-06 2021-05-11 Sharkninja Operating Llc Grill plate

Also Published As

Publication number Publication date
CN206945598U (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
JP6297026B2 (ja) センサアセンブリ及びその製造方法
EP2387714B1 (en) Diagnostic multi-layer dry phase test strip with integrated biosensors
JP2001516040A (ja) 低容量電気化学センサー
CN108020584B (zh) 葡萄糖量测装置与设备
JP4662952B2 (ja) 流体の流れを導くためのベントを有する流体試験センサ
CN108120755B (zh) 检测装置及其应用
WO2018068378A1 (zh) 一种电极系统及含有该电极系统的试条和仪器
JPH03503677A (ja) 参照電極
WO2002048703A1 (fr) Element d'analyse, instrument de mesure et procede permettant de determiner la nature d'un substrat utilisant cet element d'analyse
JPWO2005100968A1 (ja) 分析装置
JPH01291153A (ja) バイオセンサ
JP2009505102A (ja) テストストリップの製造方法及びテストパターンの分析方法
JPWO2007026683A1 (ja) 試料供給状態の検出方法および分析用具
US20140147912A1 (en) Bio-sensor
KR20150048702A (ko) 교차하는 샘플 수용 챔버들을 가진 전기화학-기반 분석 검사 스트립
US9347909B2 (en) Sample-retainable biosensor test strip
CA2434437C (en) Test device for analysing a biological sample liquid
JP5734277B2 (ja) 迅速な血球分離が可能な疾病診断用のバイオセンサー
WO2021121207A1 (zh) 一种检测生物样品的生物传感器
CN107917942B (zh) 一种电极系统及含有该电极系统的试条和仪器
WO2018068377A1 (zh) 一种液体样本导流装置及含有该导流装置的检测设备
JP3117103U (ja) 微量で見本抽出可能な電気化学生物試験片
CA2513597C (en) Electrochemical sensor having improved response time
CN209446517U (zh) 一种基于微球的抗干扰丝网印刷电极
JP2008129004A (ja) バイオセンサ試験片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16918902

Country of ref document: EP

Kind code of ref document: A1