WO2018066979A1 - Apparatus for nanoparticle detection and method for nanoparticle detection using same - Google Patents

Apparatus for nanoparticle detection and method for nanoparticle detection using same Download PDF

Info

Publication number
WO2018066979A1
WO2018066979A1 PCT/KR2017/011136 KR2017011136W WO2018066979A1 WO 2018066979 A1 WO2018066979 A1 WO 2018066979A1 KR 2017011136 W KR2017011136 W KR 2017011136W WO 2018066979 A1 WO2018066979 A1 WO 2018066979A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
nanoparticles
chamber
sample
filter
Prior art date
Application number
PCT/KR2017/011136
Other languages
French (fr)
Korean (ko)
Inventor
조윤경
우현경
순카라비자야
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2018066979A1 publication Critical patent/WO2018066979A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape

Definitions

  • the present invention relates to a nanoparticle detection apparatus and a nanoparticle detection method using the same.
  • nano endoplasmic reticulum is a small 40-120 nm endoplasmic reticulum generated from cellular activity.
  • Nanovesicles are distinguished from other vesicles by their source and size. Nanovesicles were considered to be cellular byproducts at the time of discovery, but their importance was found to contribute to cellular activities such as tumor progression and metastasis and cellular signal transduction. Nanovesicles are present in almost every body fluid in the body and contain the genetic information of the cells from which they are derived. For this reason, nano vesicles are attracting attention as new drug delivery systems as well as new markers for various diseases including cancer.
  • the whole process of detecting nanoparticles from a sample is integrated
  • the present invention provides a nanoparticle detection device and a nanoparticle detection method using the same.
  • nanoparticle detection device capable of performing detection of a plurality of antigens and a nanoparticle detection method using the same.
  • nanoparticle detection device capable of more accurate detection and analysis, and a nanoparticle detection method using the same.
  • the detection device of the present embodiment is a disk for transferring fluid by centrifugal force, a sample accommodating part formed on the disk to accommodate a sample, and a fine particle for separating nanoparticles by filtering a sample transported and conveyed to the sample accommodating part.
  • a filter unit having a filtration membrane, a supply unit connected to the filter unit for supplying a detection liquid for detecting nanoparticles separated from the filtration membrane, a waste solution receiving unit connected to the filter unit outlet side and accommodating a solution having passed through the filtration membrane, to the disk It may include a flow path is formed and the fluid is transferred, and a valve for selectively opening and closing the flow path.
  • the sample accommodating part may include a sample chamber formed on the disk to accommodate a sample, connecting the sample chamber to the filter part, and having a flow path for transferring the sample according to the disc centrifugal force, and opening and closing the first flow path.
  • a sample chamber formed on the disk to accommodate a sample, connecting the sample chamber to the filter part, and having a flow path for transferring the sample according to the disc centrifugal force, and opening and closing the first flow path.
  • the sample chamber has a centrifugal separation of the sample according to the disc centrifugal force, and a settling portion for accommodating the centrifuged sample is elongated at the distal end of the disc along the centrifugal force direction, and the first flow path is directed toward the center of rotation of the disc.
  • the supernatant centrifuged by being connected to the settling boundary of the sample chamber may be transferred to the filter unit.
  • the settled portion may be formed to be inclined with respect to the radial direction of the disk.
  • the filter part includes a filter chamber having an entrance space and an exit space along a fluid movement direction, and a filter chamber in which the filtration membrane is installed between the entrance space and the exit space, and the entrance space is connected to the sample accommodating part, and the sample is introduced and filtered. Particles are accommodated, and the exit space may be connected to the waste liquid receiving portion.
  • the filtration membrane may be formed with pores of lnm to 100m.
  • the filter unit may be sequentially disposed along at least two fluid transfer directions, and the filtration membranes provided in each filter unit may have different pore sizes from each other to separate nanoparticles having different size ranges.
  • At least two or more filter units may be sequentially disposed along the fluid transfer direction, and the filtration membranes provided in each filter unit may gradually decrease pores along the fluid transfer direction.
  • the filtration membrane may be installed detachably from the disk.
  • the supply unit is formed in the disk and the antibody chamber for receiving the antibody provided for nanoparticle detection, the second flow path for connecting the antibody chamber and the filter unit and transfer the antibody to the filter unit in accordance with the centrifugal force of the disk, the second flow path It may include a second valve for opening and closing.
  • the supply part is formed in the disk and the substrate liquid chamber for receiving the substrate liquid provided for the detection of nanoparticles, the fourth flow path for connecting the substrate liquid chamber and the filter unit and transfer the substrate liquid to the filter unit in accordance with the centrifugal force of the disk,
  • the crab may further include four valves for opening and closing the four euros.
  • the supply part is a supply part is formed in the disc is a stop solution chamber for receiving a stop solution (stop solut ion) provided to stop the nanoparticle detection reaction, a connecting flow path for connecting the stop solution chamber and the substrate liquid chamber, and the connection Including a connecting valve for opening and closing the flow path, the stop solution can be supplied to the filter chamber via the substrate liquid chamber.
  • a stop solution stop solut ion
  • the supply unit may further include a washing unit for cleaning the filter unit by transferring the washing liquid to the filter unit.
  • the washing unit includes a washing liquid chamber formed in the disk to receive the washing liquid, a fifth flow passage connecting the washing liquid chamber to the filter unit and transferring the washing liquid to the filter unit according to the centrifugal force of the disk, and opening and closing the fifth passage. can do.
  • the washing liquid chamber may be divided into a plurality of washing liquids, and the washing liquid is separately received in each washing liquid chamber, and an outlet valve for discharging the washing liquid may be installed in the outlet flow path of each washing liquid chamber.
  • the waste liquid receiving part may include a waste fluid chamber formed on the disk to connect the waste liquid chamber and the filter unit to accommodate the waste liquid, and transfer the waste liquid to the waste liquid chamber according to the centrifugal force of the disk.
  • the sample may be an aqueous solution containing a biological sample or nanoparticles selected from blood, lymph, tissue fluid, urine, saliva cerebrospinal fluid, and sputum including bioparticles, or a combination thereof.
  • the sample accommodating part, the filter part, the supply part, and the waste liquid receiving part constitute one unit, and the unit may be arranged at a plurality of intervals along the circumferential direction of the disc.
  • the separating of the nanoparticles may sequentially separate nanoparticles having different size ranges through a plurality of filtration membranes in which pores gradually decrease.
  • Applying a centrifugal force to the disk may further comprise the step of supplying the washing liquid to the filter unit to wash.
  • the washing may include washing and removing excess antibody after detection of nanoparticles, and removing excess reagent after labeling nanoparticles.
  • the method may further include extracting nucleic acids by supplying a nucleic acid extracting reagent to the separated nanoparticles.
  • nanoparticle detection may be performed outside the disk.
  • the whole process of detecting nanoparticles from a sample may be integrated and simply performed in a single disk, thereby minimizing time and effort required for detecting nanoparticles. Accordingly, analysis and diagnosis of nanoparticles can be performed more easily while minimizing the input of skilled workers.
  • FIG. 9 is a view showing the nucleic acid detection results of the nanoparticles according to the present embodiment compared with the conventional.
  • FIG. 10 is a view showing a result of detecting the nanoparticles separated from the sample spiked into the plasma of cancer cell-derived nano endoplasmic reticulum according to the present embodiment compared with the conventional.
  • FIG. 11 is a diagram illustrating a result of detection after separation of nanoparticles according to spin conditions from a sample spiked with plasma of cancer cell-derived nano endoplasmic reticulum according to the present embodiment.
  • FIG. 12 is a view showing a result of detecting the nanoparticles after separation according to the volume of the sample spiked into the plasma of the cancer cell-derived nano endoplasmic reticulum according to this embodiment compared with the conventional.
  • FIG. 13 is a diagram illustrating the results of separation and protein detection of plasma from cancer patients and normal plasma-derived nanoparticles according to the present embodiment.
  • 14 is a diagram showing the results of separation and nucleic acid detection of normal plasma-derived nanoparticles according to the present embodiment compared with the conventional
  • this embodiment describes a structure for detecting nano vesicles from a sample as an example.
  • Nanovesicles can be captured from a variety of samples, including blood, lymph, tissue fluids, urine, saliva, cerebrospinal fluid, and biological samples containing sputum or aqueous solutions in which nanoparticles are dispersed.
  • This embodiment is not limited to the detection of nano vesicles, it is applicable to the detection of various nanoparticles.
  • the detection apparatus of the present embodiment includes a disk for transferring fluid by centrifugal force, a sample accommodating portion formed on the disk for accommodating a sample, and a filtration membrane for separating nano particles by filtering the transferred sample.
  • a filter part a supply part connected to the filter part to supply a detection liquid for detecting nanoparticles separated from the filtration membrane, a waste fluid receiving part connected to the filter part exit side to receive a solution passed through the filtration membrane, and formed on a disk to convey fluid It may include a flow path, and a valve for selectively opening and closing the flow path.
  • the disk may be formed by joining two plate structures of the upper plate and the lower plate in the form of a disk.
  • the disk may be formed by joining various numbers of plates in addition to the upper plate and the lower plate joining structure.
  • the disk may be further provided with a plate structure formed with a valve between the upper plate and the lower plate.
  • the inner surface of the upper plate and the lower plate can be formed with a cavity of the type set to form each component and the flow path.
  • the space formed between the upper plate and the lower plate forms a flow path with the chamber for receiving or transporting the fluid.
  • the upper and lower plates constituting the disk may be made of a material whose surface in contact with the fluid is biologically inert.
  • the upper plate and the lower plate may be made of a material having optical transmission.
  • the top and bottom plates may be made of polystyrene (PS), poly dimethyl siloxane (PDMS), poly methyl methacrylate (PMMA), polyacrylate, polycarbonate, and polycarbonate. ), Polysilic olefins (polyccl ic olef ins), polyimide (polyimide) polyurethane (polyurethanes) and the like.
  • This embodiment may be a structure for detecting a plurality of different nanoparticles using one disk.
  • the sample accommodating part, the filter part, the supplying part, and the waste liquid receiving part which are necessary for detecting the nanoparticles constitute one unit, and a plurality of units may be arranged at intervals along the circumferential direction of the disk.
  • 1 illustrates, for example, a structure in which two units are arranged. According to the size of the disk, the size of each unit, etc., various numbers of units may be provided in one disk. '
  • the sample receiving part, the supplying part, the filter part, and the waste liquid receiving part are sequentially positioned along the centrifugal force direction. Accordingly, the fluid flows from the sample receiving part and the supply part to the filter part and from the filter part to the waste liquid receiving part.
  • the centrifugal force by rotating the disk, it is possible to sequentially move the fluid to perform the desired process.
  • the flow path may be, for example, a micro flow path in which impurities hardly flow back.
  • the fine flow path may mean a flow path formed in a size having a resistance capable of preventing a back flow of the fluid.
  • the flow path has an inlet in each component part along the disc centrifugal force direction. Can be connected to the exit.
  • the exit of a component is the portion of the fluid outflow from the component and means the side near the outer leading edge of the disk along the direction of centrifugal force.
  • each component portion when centrifugal force is applied to the disk, the fluid contained in each component portion is able to move toward the inlet of the flow path by the centrifugal force and move all along the flow path. Therefore, no fluid remains in the chamber of each component, thereby minimizing the loss of the fluid. .
  • the valve is located at one side of the flow path to selectively open and close the flow path.
  • the valve may be of various structures that can block or open the flow path.
  • the valve may open and close the flow path by applying power to itself, or may open and close the flow path by a driving force from outside the disc.
  • valve When the valve is driven and the flow path is closed, fluid transfer between components connected to the flow path is interrupted. If necessary, the valve is driven to open the flow path and fluid is transferred between the components to initiate the required process.
  • each of the flow paths, valves, and chambers formed in the disk will be referred to separately according to their configuration for convenience of description.
  • it may refer to the flow path, a valve, and the whole chamber formed in the disc.
  • the disk 10 may be formed by joining two plate structures of a disk-shaped upper plate (see 12 in FIG. 4) and a lower plate (see 14 in FIG. 4).
  • the sample accommodating portion 20 of the present embodiment is formed on the disk 10 to provide a sample. It connects the sample chamber 21, the sample chamber 21 and the filter part 30 to receive, and opens and closes the 1st flow path 22 and the 1st flow path 22 which a sample is conveyed according to the centrifugal force of the disk 10.
  • FIG. It may comprise a first valve (23).
  • the sample chamber 21 can be understood as an empty space formed inside the disk 10.
  • the sample chamber 21 is connected to the filter unit 30 through the first flow passage 22.
  • the sample chamber 21 may be formed with a hole for injecting a sample on one side.
  • the sample contained in the sample chamber 21 is moved through the one flow path 22 by the centrifugal force of the disk 10.
  • One side of the first flow passage 22 is provided with a first valve 23 for opening and closing the first flow passage 22. Accordingly, when the first flow passage 22 is opened by operating the crab valve 23, the sample in the sample chamber 21 is moved to the filter portion 30 along the first flow passage 22.
  • the filter unit 30 has an entrance space 32 and an exit space 33 along the fluid movement direction, and the filter chamber 31 is provided with the filtration membrane 34 between the entrance space 32 and the exit space 33. It may include.
  • the filter chamber 31 is an empty space formed in the disk 10 and may be divided into an entry space 32 and an exit space 33 with a boundary of the filtration membrane 34.
  • the entrance space 32 of the filter chamber 31 is a space into which fluid, such as a sample, flows in, and is a space for receiving filtered nanoparticles. The nanoparticles are detected in the entrance space 32.
  • One side of the filter chamber 31 may be provided with a vent so that smooth filtration can be made.
  • the vent may be formed in the top plate, for example.
  • the entrance space 32 is connected to the sample chamber 21 of the sample accommodating portion 20 through the first flow passage 22.
  • the exit space 33 is connected to the waste liquid receiving part 70.
  • the permeate may be previously contained in the exit space 33 of the filter chamber 31.
  • the permeate is the same solution as the nanoparticles separated from the sample, It may be the same solution as the filtrate which has been filtered through the membrane 34.
  • the permeate is a solution that does not have particles to be separated and does not affect the sample or the filtrate, and any solution can be applied as long as it can reduce the capillary pressure of the pores of the filter membrane 34 at the exit side of the filter membrane 34.
  • the sample introduced into the entrance space 32 of the filtration membrane 34 can easily pass the fine pores of the filtration membrane 34 even under a smaller pressure. Therefore, the sample can be filtered more quickly to separate the nanoparticles.
  • the permeate can be accommodated in the filter chamber 31 exit space 33, for example, during device manufacture.
  • the filtration membrane 34 is a membrane structure in which numerous pores are formed on the surface.
  • the filtration membrane 34 may be formed with pores of lnm to 100nm for separation of nanoparticles contained in the sample.
  • the filtration membrane 34 may be selected to an appropriate pore size within the above range according to the type or size of the nanoparticles to be separated. If the pore size of the filtration membrane 34 is out of the above range, the nanoparticles may not be separated or the separation efficiency may be reduced.
  • the filtration membrane 34 may be formed of various materials to filter living cells, inorganic material particles, organic material particles, and the like.
  • the filtration membrane 34 may be formed of a material such as polycarbonate, polystyrene, polymethyl methacrylate, thermosetting plastic including cyclic olefin copolymer, anodized aluminum, nickel, silicon, or the like.
  • the filtration membrane formed of anodized aluminum has higher porosity and relatively uniform diameter pores than other materials.
  • the filtration membrane 34 of the present embodiment may be formed of a biologically inert material so that it can be applied to a biological sample.
  • the filtration membrane 34 may be formed of a material having optical transparency at the same time. Through this, nanoparticles can be detected using an optical detector without separating the filtration membrane 34 from the disk 10.
  • the apparatus may perform the detection process by separating the filtration membrane 34 from the disk 10. The separation structure of the filtration membrane 34 will be described later in detail.
  • the filter unit may be provided with one filtration membrane or may have a structure including two or more filtration membranes in one filter chamber.
  • a plurality of filtration membranes may be stacked and disposed between the entrance space and the exit space.
  • Each filtration membrane may have a structure in which the pore size gradually decreases along the fluid transfer direction, that is, from the entrance space to the exit space.
  • the filtration membrane disposed in the entrance space may have a pore size of 50 nm
  • the filtration membrane stacked below the exit space may have a pore size of 5 nm.
  • nanoparticles are separated while the pores disposed toward the entrance space pass through the large filtration membrane, and nanoparticles are separated while the pores pass through the small filtration membrane. Therefore, only nanoparticles of a specific size range can be screened and separated.
  • At least two or more filter units may be sequentially disposed along the fluid transfer direction, and the filtration membranes 34 provided in each filter unit may have a structure in which pores gradually decrease along the fluid transfer direction. This structure is shown in FIG. 2 and will be described later. Also in this structure, the sample containing the nanoparticles is separated from the primary particles while passing through the filter membrane with large pores, and the nanoparticles are separated while passing through the filter membrane with small pores in the next filter portion. Therefore, only the nanoparticles of a specific size range can be separated and collected.
  • the supply unit 40 is for detecting nanoparticles separated from the filtration membrane 34, and may have a structure for supplying the detection liquid to the filter unit 30.
  • the detection solution is a material for detecting nanoparticles, and may be, for example, an antibody attached to an antigen, a reagent for labeling an antibody, a reaction substrate solution, a nucleic acid extracting solution, a washing solution, or the like.
  • the detection liquid is applicable to any material that can be used to detect nanoparticles separated from the filter unit.
  • a second flow passage 42 which connects the antibody chamber 41, the antibody chamber 41, and the filter portion 30 containing the antibodies provided for the purpose and transfers the antibody to the filter portion 30 according to the centrifugal force of the disk 10.
  • Opening and closing the second flow path 42 may include two valves 43.
  • the antibody chamber 41 can be understood as an empty space formed inside the disk 10.
  • the antibody chamber 41 is connected to the filter chamber 31 through the second flow passage 42.
  • the antibody chamber 41 may be formed with a hole for injecting the antibody on one side.
  • the antibody contained in the antibody chamber 41 is moved through the two flow paths 42 by the centrifugal force of the disk 10.
  • One side of the crab 2 flow passage 42 is provided with a crab 2 valve 43 for opening and closing the second flow passage 42. Accordingly, when the second flow passage 42 is opened by operating the second valve 43, the antibody of the antibody chamber 41 is moved to the filter chamber 31 along the second flow passage 42.
  • the antibody is a primary detection antibody that binds to the biomarker of the nanoparticles and captures and fixes the biomarker, and may be a detection ion ant ibody having a biot in.
  • the supply section 40 is formed on the disk 10 for reagent supply, and includes a reagent chamber 44, a reagent chamber 44, and a filter section 30 containing a reagent provided for labeling an antibody for detecting nanoparticles. And a third valve 45 for opening and closing the third flow path 45 and the third flow path 45 for transferring the reagent to the filter unit 30 according to the centrifugal force of the disk 10.
  • the reagent chamber 44 may be understood as an empty space formed inside the disk 10.
  • the reagent chamber 44 ' is connected to the filter chamber 31 through the three flow paths 45.
  • the reagent chamber 44 may be formed with a hole for injecting a reagent on one side.
  • the reagent contained in the reagent chamber 44 is moved through the third flow path 45 by the centrifugal force of the disk 10.
  • One side of the third flow passage 45 is provided with a crab three valve 46 for opening and closing the crab three flow passage 45. Accordingly, when the third flow passage 45 is opened by operating the crab valve 46, the reagent of the reagent chamber 44 is moved to the filter chamber 31 along the third flow passage 45.
  • the reagent may be a fluorescent secondary detection antibody that binds to the antibody.
  • the reagent uses a biosignal such as fluorescent light to biomarker Any material that can be analyzed and quantified is applicable.
  • the reagent may be streptavidin-H P to amplify the antibody signal. The reagent amplifies the signal of the detection antibody, which is advantageous for measurement.
  • the supply unit 40 is formed in the disk 10 and connects the substrate liquid chamber 47 containing the substrate liquid provided for the nanoparticle detection reaction, the substrate liquid chamber 47 and the filter unit 30. According to the centrifugal force of (10), it may further include a fourth flow passage 48 for transferring the substrate liquid to the filter portion 30 and a fourth valve 49 for opening and closing the fourth flow passage 48.
  • Substrate liquid chamber 47 can be understood as an internal space formed in the disk (10).
  • the substrate liquid chamber 47 is connected to the filter chamber 31 through the fourth flow path 48.
  • Substrate liquid chamber 47 may be formed with a hole for injecting the substrate liquid on one side.
  • the substrate liquid contained in the substrate liquid chamber 47 is moved through the fourth flow path 48 by the centrifugal force of the disk 10.
  • One side of the fourth flow passage 48 is provided with a fourth valve 49 for opening and closing the fourth flow passage 48. Accordingly, when the fourth valve 49 is operated to open the fourth flow passage 48, the substrate liquid of the substrate liquid chamber 47 is moved to the filter chamber 31 along the fourth flow passage 48.
  • the substrate solution may be TMB (Tetramethylbenzidine) solution.
  • TMB is a substrate of HRP and changes color by HRP.
  • (3,3 ', 5,5'-tetramethylbenzidine) is blue when oxidized to hydrogen peroxide by Peroxidase catalysis and has maximum absorbance (0D; 0pt i cal densi ty) at 370nm and 652nm. 'When the reaction is stopped, it turns yellow and shows the maximum 0D value at 450nm.
  • the supply unit 40 may be a structure that provides a stop solut ion provided to stop the nanoparticle detection reaction.
  • the supply unit 40 is further provided with a stop solution chamber 50 formed in the disk 10 to receive the stop solution, the stop solution chamber 50 is the substrate liquid chamber 47 through the connecting passage 51 ) And the stop solution may be supplied to the filter chamber 31 through the substrate liquid chamber 47 according to the driving of the connection valve 52 installed at one side of the connection flow path 51.
  • the stop solution may be a solution containing a strong acid.
  • the stop solution is a substrate solution Stop the reaction of changing the color by the enzyme.
  • the antibody chamber 41, the reagent chamber 44, and the stationary solution chamber 50 connected to the substrate liquid chamber 47 and the substrate liquid chamber 47 are more than the filter chamber 31 along the centrifugal force direction of the disc 10. Located at the center of the disk (10). Accordingly, when centrifugal force is applied, the fluid contained in the antibody chamber 41, the reagent chamber 44, the substrate liquid chamber 47, and the stop solution chamber 50 is transferred to the filter chamber 31 along the flow path by the centrifugal force. do. Valves provided on each flow path open or close the flow path according to the process sequence to sequentially supply the required fluid to the filter chamber 31.
  • the supply unit 40 may further include a washing unit 60 for washing the filter unit 30 for more efficient and accurate detection.
  • the washing unit 60 is formed in the disk 10 to connect the washing liquid chamber 61, the washing liquid chamber 61 and the filter unit 30 to receive the washing liquid, and to the centrifugal force of the disk 10.
  • the chaff 15 may include the five valves 63 to open and close the fifteen flow passages 62 and the fifth flow passage 62 to transfer the washing liquid to the filter unit 30.
  • the washing liquid chamber 61 may be understood as an empty space formed inside the disk 10.
  • the washing liquid chamber 61 is connected to the filter chamber 31 through the fifth flow path 62.
  • the washing liquid chamber 61 may be formed with a hole for injecting the washing liquid on one side.
  • the washing liquid contained in the washing liquid chamber 61 is moved through the fifth flow path 62 by the centrifugal force of the disk 10.
  • One side of the fifth flow passage 62 is provided with a five-valve 63 for opening and closing the fifth flow passage 62. Accordingly, when the fifth flow passage 62 is opened by operating the crab 5 valve 63, the washing liquid of the washing liquid chamber 61 is moved to the filter chamber 31 along the fifth flow passage 62.
  • the washing liquid is removed by washing out any excess antibody or reagent remaining in the filter chamber 31. After being moved to the filter chamber 31 to wash the entrance space 32 of the filter chamber 31, the washing liquid passes through the filtration membrane 34 to the exit space 33, and then passes through a flow path connected to the exit space 33. Through the waste liquid receiving portion 70 is discharged. ⁇
  • the excess antibody that is not bound to the nanoparticles or the excess antibody that is not bound to the antibody is washed in the entry space 32 of the filter chamber 31 and removed together with the washing liquid into the exit space 33.
  • the washing liquid chamber 61 is provided in plurality, so that the washing liquid can be separately accommodated in each washing liquid chamber 61. Accordingly, the filter chamber 31 may be washed in a plurality of times as necessary.
  • the outlet flow passage of each washing liquid chamber 61 is connected to the fifth flow passage 62 so that the washing liquid can be supplied to the filter chamber 31 through the cradle 5 passage 62.
  • each washing liquid chamber 61 is connected to each other, the outlet valve 64 for discharging the washing liquid may be provided in this connection portion. That is, each washing liquid chamber 61 is arranged side by side and the outer end is connected to each other between neighboring washing liquid chamber 61. Therefore, if necessary, the outlet valve 64 provided at the connecting portion of the fifth valve 63 and each washing liquid chamber 61 may be sequentially opened to supply the washing liquid of each washing liquid chamber 61 to the filter chamber 31 in turn. .
  • the washing liquid chamber 61 is located at the center of the disk 10 rather than the filter chamber 31 along the centrifugal force direction of the disk 10 like the other chambers of the supply part 40 . Accordingly, when centrifugal force is applied, the washing liquid demanded in the washing liquid chamber 61 is transferred to the filter chamber 31 along the flow path by the centrifugal force.
  • the waste liquid receiving portion 70 is formed in the disk 10 to connect the waste liquid chamber 71, the waste liquid chamber 71, and the filter portion 30 , in which the waste liquid is received, and the waste liquid chamber according to the centrifugal force of the disk 10.
  • the system may include a sixth flow path 72 that is transferred to the 71.
  • One side of the sixth flow passage 72 may further include a six valve (see 73 of FIG. 2) to open and close the sixth flow passage 72.
  • the waste liquid chamber 71 can be understood as an empty space formed inside the disk 10.
  • the waste liquid chamber 71 is connected to the filter chamber 31 through the sixth flow path 72.
  • the waste liquid moved to the outlet space 33 of the filter chamber 31 is moved to the waste liquid chamber 71 through the sixth flow path 72 by the centrifugal force of the disk 10.
  • the waste liquid chamber 71 may have a vent hole at one side thereof so that the waste liquid may be smoothly moved to the exit space 33 through the filtration membrane 34 of the filter chamber 31.
  • the vent may be formed in the top plate, for example.
  • FIG. 2 shows another embodiment of a nanoparticle detection device.
  • the basic configuration of the sample receiving portion 20, the supply portion 40, the filter portion 30 and the waste liquid containing portion 70 provided in the form of the disc 10 or in the disc 10 is Same as the embodiment shown in FIG. 1. Therefore, in the following description, the same reference numerals are used for the same components, and detailed description thereof will be omitted.
  • the sample accommodating part 20 of the present exemplary embodiment may have a structure for removing a non-target material including impurities by purifying a sample.
  • the sample accommodating part 20 is formed in the disk 10 so that the sample chamber 21 for accommodating the sample centrifugally separates the sample according to the disc 10 centrifugal force, and the disc 10 along the direction of the centrifugal force.
  • the settling part 24 which accommodates the centrifuged sample is extended in the front-end
  • the crab 1 flow path 22 is the settling part of the said sample chamber 21 toward the rotation center of the disk 10 ( Connected to the boundary point 24 may be a structure for transferring the centrifuged supernatant to the filter unit (30).
  • the non-target material may mean impurities other than a solution containing nano particles to be purified.
  • the sample injected into the sample chamber 21 is centrifuged and purified by the centrifugal force according to the rotation of the disk 10.
  • the sample is separated into a solution containing nanoparticles and impurities other than the nanoparticles. Solid impurities along the centrifugal force direction are pushed toward the outer leading end of the disk 10 and a solution separated from the impurities is located toward the center of the disk 10.
  • the sample chamber 21 is formed by extending the settling portion 24 along the centrifugal force direction so that the separation between the impurities and the solution containing the nanoparticles in the space is clearly shown.
  • the settling portion 24 may have a hopper shape that becomes narrower toward the exit side so that impurities can be more easily settled. Therefore, it is possible to ensure separation of the precipitated impurities and the solution by centrifugal separation, so that non-target materials other than the solution flow into the filter chamber 31. It can be minimized.
  • the inlet of the crab 1 flow passage 22 may be connected to the portion facing the center of rotation of the disk 10 at the boundary point between the non-targeted coating of the sample chamber 21 and the solution.
  • the nanoparticle-containing solution centrifuged by the centrifugal force applied as the disk 10 rotates may be transferred to the filter chamber 31 through the one flow path 22. Since the impurities precipitated in the settling portion 24 are located outside the inlet of the first flow passage 22 along the centrifugal force direction, the impurities cannot be transferred through the crab 1 flow passage 22.
  • the sample is centrifuged and purified, and then provided to the filter chamber 31, so that the effect of separating and detecting nanomaterials through the filtration membrane 34 can be further enhanced.
  • the settling part 24 exiting side of the sample chamber 21 is connected to the waste liquid chamber 71, and it can process and process the impurity refine
  • FIG. A discharge flow path 26 through which impurities are transferred is formed between the exit of the settling portion 24 and the waste liquid chamber 71 of the sample chamber 21, and a discharge valve 27 that opens and closes the discharge flow path on one side of the discharge flow path 26. Is installed.
  • the target material is transferred to the filter chamber 31, and then the discharge passage 26 is opened to discharge the non-target substance remaining in the sample chamber 21 to the waste liquid chamber 71. Can be removed.
  • the settling part 24 may be formed to be inclined with respect to the radial direction of the disc 10 so as to increase the sample purification efficiency.
  • the depression 24 is formed, it turned to one side inclined at a predetermined angle (A) for the radial direction of the disk 10. Accordingly, the solid phase impurities in the centrifugal separation process are easily pulled down along the inclined surface of the settling portion 24 with respect to the radial direction of the disk, so that the settling is better and the separation effect can be enhanced.
  • the settling portion 24 is formed in the bottom surface 28 is gradually inclined upward toward the end along the direction of the centrifugal force at the boundary point, the end of the settling portion 24 in the sample It may further include a groove portion 25 for receiving the centrifuged impurities.
  • 3 shows a cross-sectional structure in the width direction of the disk 10.
  • the upper part is upper part and the lower part is located along the y axis direction.
  • the settling portion 24 of the sample chamber 21 is formed to be inclined upward from the lower bottom surface 28 toward the exit side of the end. Then, the exit side of the settling portion 24 forms a deep groove portion (bolt 91) deeply dug in the vertical direction.
  • the solid impurities settled toward the settling portion 24 exited by the centrifugal force move along the inclined bottom surface of the settling portion 24 and fall back to the groove portion 25 to prevent flow back.
  • the groove portion 25 is blocked by the inner circumferential surface with a hole having a depth, and when the solid impurities fall into the groove portion 25, the impurities cannot escape from the groove portion 25 even when no centrifugal force is applied. Therefore, it is possible to supply only the purified sample to the filter chamber 31 by minimizing the backflow of impurities to the boundary point of the sample chamber 21.
  • the discharge flow path is connected to the groove portion 25, and the pure water dropped to the groove portion 25 is discharged to the waste liquid chamber 71 through the discharge passage 26.
  • the filter unit of the present embodiment may include two filter chambers.
  • the two filter chambers are arranged sequentially along the fluid conveying direction.
  • the filtration membrane provided in each filter chamber may have a structure in which pores gradually decrease along the fluid transport direction.
  • the filter chamber disposed before the filter chamber 31 in which the detection of the nanoparticles is finally made out of the two filter chambers is referred to as a prechamber 35.
  • the prechamber is connected between the sample chamber 21 and the filter chamber 31.
  • the preliminary chamber 35 is connected to the sample chamber 21 through the first flow passage 22, and the filter chamber 31 is connected to the waste liquid chamber 71 through the crab 6 flow passage 72.
  • a conveyance passage 36 is formed between the preliminary chamber 35 and the filter chamber 31.
  • One side of the conveyance passage 36 is provided with a conveyance valve 37 for opening and closing the conveying flow passage. Accordingly, when the transfer valve 37 is opened, the filtrate filtered in the prechamber 35 is moved to the filter chamber 31 through the transfer passage 36.
  • the sample including the nanoparticles transferred from the sample chamber 21 passes through the filtration membrane 34 having large pores in the prechamber 35. Firstly, large particles other than nanoparticles are separated. In the next filter chamber 31, a small pore filtration membrane 34 is removed. As it passes, the nanoparticles finally separate. Therefore, only the nanoparticles of a specific size range can be separated and collected.
  • the supply unit 40 is connected to the filter chamber 31 to supply the fluid required for nanoparticle detection to the entrance space 32 of the filter chamber 31. Thus, the detection for the nanoparticles can be finally made in the filter chamber 31.
  • the present embodiment may have a structure for recovering the nanoparticles separated from the filter unit 30 to perform a necessary detection operation.
  • the apparatus is formed in the disk 10 and connected to the filter section 30, the recovery chamber 80, the recovery chamber 80 and the filter section 30 is recovered, the nanoparticles separated by the filtration membrane 34 is recovered.
  • (7) may further include a seventh flow path 81 to transfer the nanoparticles to the recovery chamber 80 and a seventh valve 82 to open and close the seventh flow path 81.
  • the recovery chamber 80 may be understood as an empty space formed inside the disc 10.
  • the recovery chamber 80 is connected to the filter chamber 31 through the crab 7 flow path 81.
  • the recovery chamber 80 may be formed with a hole for injecting a reagent for extracting nucleic acid into one side.
  • a nucleic acid extraction reagent including a phenol component By injecting a nucleic acid extraction reagent including a phenol component through the hole formed in the recovery chamber, it is possible to extract from the sample to the nucleic acid through the apparatus.
  • the crab 7 flow path 81 connects the entry space 32 of the filter chamber 31 and the recovery chamber 80. Accordingly, the fluid containing nanoparticles contained in the entry space 32 of the filter chamber 31 is moved through the seventh flow path 81 by centrifugal force.
  • a seventh valve 82 is provided on one side of the seventh flow path 81 to open and close the seven flow path 81. Accordingly, when the seventh valve 82 is operated to open the seventh flow path 81, the nanoparticle-containing fluid remaining in the entrance space 32 in the filter chamber 31 is recovered along the seven flow path 81. Is moved to chamber 80.
  • a nucleic acid extraction operation may be performed by injecting a nucleic acid extraction reagent including a spentol component into the fluid containing nanoparticles transferred to the recovery chamber 80.
  • Nucleic acid extraction can be performed separately from the outside of the device.
  • the filter unit 30 of the present embodiment may have a structure in which the filtration membrane 34 provided in the filter chamber 31 is detached from the disk 10. In this way, by separating the filtration membrane 34 from the filter chamber 31, the filtration membrane 34 filtered out from the disk 10 outside. Nucleic acid extraction can be performed separately for the nanoparticles.
  • the apparatus may further include a cover 90 detachably installed on the disk 10 to open and close the filter chamber 31, and a fastening part fixing the cover 90 to the disk 10.
  • the cover 90 is detachably installed on the top plate 12 of the disk 10.
  • the upper plate 12 is formed to be opened outward on the filter chamber 31 forming space.
  • the cover 90 is installed on the top plate 12 to form part of the top plate.
  • the fastening part may be a fastening structure using the bolt 91.
  • the fastening part may be applied to various structures in addition to the bolt 91.
  • a fastening hole 92 for fastening the bolt 91 may be formed on the cover 90 and the upper plate that is opposed thereto. Accordingly, by fastening the bolt 91 to the fastening hole 92, the cover 90 can be detachably coupled to the upper plate 12.
  • 5 shows another embodiment of a nanoparticle detection device. 5 is also in the form of a disk 10 or the basic configuration of the sample receiving portion 20, the filter portion 30 and the waste liquid receiving portion 70 provided in the disk 10 is shown in FIG. Same as the embodiment. In addition, although not shown, the configuration for the supply unit (see 40 of FIG. 1) may also be provided in the same manner. Therefore, in the following description, the same reference numerals are used for the same components, and detailed description thereof will be omitted.
  • the filter unit 30 of the present embodiment may include three filter chambers.
  • the filter unit may be provided in plurality of four or more besides three filter chambers.
  • the three filter chambers are arranged sequentially along the fluid conveying direction.
  • the three filter chambers are referred to as a first filter chamber 311, a second filter chamber 312 and a crab three filter chamber 313 along the fluid flow direction.
  • the filter chamber 31 may refer to all three filter chambers.
  • Each filter chamber 31 has the same structure except for the pore size of the filtration membrane 34 provided therein.
  • the first filter chamber 311 is connected to the sample chamber 21 through the first flow passage 22.
  • the entrance space of the second filter chamber 312 is connected to the exit space of the first filter chamber 311 through the flow path 315. Of the second filter chamber 312
  • the exit space is connected to the entrance space of the third filter chamber 313 through a separate flow path 317.
  • the fluid is sequentially filtered while passing through the first filter chamber 311, the second filter chamber 312, and the crab 3 filter chamber 131 in the sample chamber 21 to separate the nanoparticles.
  • a separate on-off valve (not shown) is installed at one side of each of the flow paths 315 and 317 to selectively open and close each flow path if necessary.
  • the filter membrane 34 provided in each filter chamber 31 may have a structure in which pores are different in size from each other and separate nanoparticles having different size ranges from each other. Thus, it is possible to separate and recover nanoparticles of different sizes through one device.
  • the filtration membrane provided in each filter chamber 31 may have a structure in which pores gradually decrease along the fluid conveying direction.
  • the three filter chambers 31 may be provided with filtration membranes 34 each having a different pore size to separate nanoparticles of different sizes from each other.
  • the combination of the filtration membranes provided in each filter chamber can be variously modified.
  • the first filter chamber 311 is provided with a filtration membrane having a pore size of 100 nm
  • the crab 2 filter chamber 312 is provided with a filtration membrane having a pore size of 50 mm 3
  • nanoparticles of different sizes can be separated and recovered in each filter chamber according to the combination of the filtration membranes in one device.
  • the sample including the nanoparticles transferred from the feed chamber 21 is separated from the nanoparticles having the first set size while passing through the large filtration membrane 34 having the pores of the crab 1 filter chamber 311. .
  • the sample transferred to the second filter chamber 312 passes through the filtration membrane 34 provided in the crab 2 filter chamber, and nanoparticles having a secondary size are separated.
  • the sample transferred to the third filter chamber 313 passes through the filtration membrane provided in the third filter chamber, and finally, nanoparticles having a predetermined size are separated.
  • nanoparticles of a specific size range can be separated and collected in each filter chamber.
  • nanos with different size distributions in one disk Particles can be separated and recovered.
  • the disk 10 is prepared by mounting an antibody, a reagent, a substrate liquid, a washing liquid, a filtration membrane 34, and the like for detecting nanoparticles.
  • the valves installed in the respective flow paths of the disc 10 may be closed to maintain the closed state.
  • the sample is supplied to the sample chamber 21 of the disk 10. Then, the disk 10 is rotated to apply centrifugal force.
  • the sample supplied to the sample chamber 21 by centrifugal force is centrifuged and purified primarily.
  • the sample is centrifuged to remove impurities and only the solution containing the nanoparticles is transferred to the filter unit 30.
  • the solution transferred to the filter part 30 passes through the filtration membrane 34 of the prechamber 35 by centrifugal force due to the rotation of the disk 10, and the large particles other than the nanoparticles are separated.
  • the solution which has passed through the filtration membrane 34 of the prechamber 35 is transferred to the filter chamber 31.
  • the nanoparticles are separated through the filtration membrane 34 of the filter chamber 31 and remain on the filtration membrane 34 in the entrance space 32 of the filter chamber 31.
  • the filtrate that has passed through the filtration membrane 34 of the filter chamber 31 is discharged to the waste liquid chamber 71.
  • the nanoparticles are detected by sequentially supplying the antibody, the reagent, the substrate liquid, and the like into the entrance space 32 of the filter chamber 31 while the nanoparticles are separated and captured through the filtration membrane 34.
  • FIG. 6 illustrates a process of detecting the nanoparticles by supplying an antibody, a reagent, and a substrate liquid to the nanoparticles separated and captured on the side space 32 above the filtration membrane 34 of the filter chamber 31 according to the present embodiment. have.
  • the antibody supplied to the filter chamber 31 adheres to the nanoparticles in the side space 32 on the filtration membrane 34. Since the antibody is confined in space and adheres to the surface of an unfixed nanoparticle, the antibody can be attached to the entire surface of the nanoparticle in a short time. On the other hand, In this case, the antibody may be attached only to some surfaces of the nanoparticles, and the antibody may not be attached to the entire surface. Thus, in the present embodiment, it is possible to detect the antigen on the entire surface of all the nanoparticles within a short time.
  • the reagent After washing the entry space 32 with the washing solution, the reagent is supplied to label the antibody.
  • the reagent binds to the antibody attached to the nanoparticles.
  • Reagents are fluorescent
  • the antibody signal finally attached to the nanoparticles is amplified.
  • excess reagents not attached to the antibody are removed through the wash solution.
  • the washing solution is supplied to the filter chamber 31 and centrifugal force is applied to the disk 10, the excess reagent is attached to the antibody and the remaining reagent is removed through the filtration membrane 34 together with the washing solution.
  • the substrate liquid After washing the entry space 32 with the washing liquid, the substrate liquid may be supplied to the entry space 32. After the substrate solution for reaction is supplied in the entrance space 32, the stop solution is supplied.
  • the nanoparticle-labeled solution including the stop solution may be transferred to the recovery chamber 80 to measure optical density and the like.
  • the nanoparticles of the solution transferred to the recovery chamber 80 may be fluorescently labeled, for example, to detect and analyze the nanoparticles using a fluorescence signal based measurement method.
  • the detection method of the present embodiment uses streptavidin-HRP for amplifying the antibody with the biot in and a signal and can measure ODCopt i cal densi ty) by injecting TMB after lbeling.
  • a nucleic acid extraction reagent including spent phenol is injected into the recovery chamber 80 to perform nucleic acid extraction of nanoparticles, or the filter chamber 31 of the disk 10 is removed. After opening to separate the filtration membrane 34, the nucleic acid extraction process can be performed from the outside.
  • nanoparticle separation and detection or nucleic acid extraction of a sample in a single disc 10 can be performed more simply and easily.
  • FIG. 7 shows the results obtained after separation of the nano endoplasmic reticulum from the LNCaP (prostate cancer cell line) cell culture medium and the urine sample using the apparatus according to the example of FIG. 2.
  • a graph of FIG. 7 shows the results of nano-vesicle detection according to the combination of the filtration membranes provided in the two filter chambers.
  • the graph shows nano vesicle recovery results within the range of 100-600 nm, 20-200 nm, and 20-600 nm, respectively.
  • filter I refers to the prechamber in FIG. 2
  • filter ⁇ refers to the filter chamber.
  • 'B graph of Figure 7 shows that the increase in the infusion volume of the cell culture .
  • the expression level of CD9 also increases.
  • FIG. 7C shows the results of 0D (opt i cal densi ty) in which the nano vesicles were finally detected by injecting 400 ⁇ urine samples of normal people and bladder cancer patients into the discs.
  • N represents the result for a normal person
  • P represents the result for a bladder cancer patient.
  • Figure 8 shows the comparison results of the nano-vesicle detection results by the device according to the present embodiment and the conventional device.
  • comparative examples are represented by UC and Exospin, and show detection results according to the related art compared with the embodiment.
  • the displayed graph is the result of detecting the nano vesicles through ultra-ultracentrifugation (UC; ul tracentr i fugat ion), which is a widely used method, and detected by ELISA detection method using 96 wel l piate.
  • the graph labeled Exospin shows the results of commercialization kit detecting nano vesicles separated by Exospin by ELISA detection method through 96wel l plate.
  • Comparative Examples were also detected by separating nano vesicles from urine samples of normal people and bladder cancer patients as in Example. The separated nano vesicles were detected through CD9 and CD81, protein markers expressed in nano vesicles.
  • a graph of FIG. 9 shows RNA electrophoresis results using a bioanalyzer.
  • RNA size and concentration were analyzed from the nano vesicles separated by the experimental and comparative examples.
  • Experimental results the same H group in both Examples and Comparative Examples Many RNAs of 250 nt or less associated with the endoplasmic reticulum were extracted.
  • the nano-vesicles separated by the detection apparatus of this embodiment in the concentration detection result showed higher RNA concentration than the nucleic acid extraction results and the comparative examples, thereby increasing the detection effect.
  • GAPDH is a house keeping gene
  • CD9 nano ER detection mageo PSA (prostate-speci fic ant igen) is a marker
  • PSMA prostate-speci fic membrane ant igen
  • C T means a high concentration as the value is lower. For example, if the value of C T is seven orders of magnitude, 2 7 means 128 times.
  • 9C shows the relative expression amount compared to UC, which is an ultracentrifugal separation technique, based on CT values.
  • 9D shows an image obtained by electrophoresis of the PCR product.
  • 9 is an image of electrophoresis of a PCR product such as a C graph.
  • Figure 10 shows the results of the detection after separation of the nano-vesicles using the apparatus according to the present embodiment and the conventional apparatus. This experiment was accomplished by spiked LNCaP cell-derived nano endoplasmic reticulum into plasma 100 mi crol iter. The initial number of nanoparticles after s ike is 3.98 ( ⁇ 0.16) E10 / mL and total protein is 66.45 ( ⁇ 0.095) mg / mL.
  • 10B shows the total protein detection result according to the pore size of the filtration membrane and the rotation speed of the disc (di sc) according to the present embodiment.
  • the graph shows the results of total protein detection by BCA at 20 nm 3000 rpm (364 G), 100 nm 3000 rpm (364 G) and 100 nm 1000 rpm (40G) combination conditions, respectively.
  • the nanoparticles were separated under the condition of 20 nm 3000 rpm (364 G)
  • the total protein was detected the most. That is, in the case of the pore size of 20 nm and the rotational speed of 300 rpm, the number of nanoparticles appears to be large when measured using NTA.
  • the purity of Pur i ty decreases due to the large amount of protein as measured by BCA. Able to know.
  • C graph of Figure 10 shows the filter membrane pore size and disk (di sc) of this embodiment
  • the purity of the separated nano vesicle samples according to the rotational speed combination is shown.
  • Experimental results it can be seen that the conditions of 100 nm 1000 rpm (40 G), the nano-vesicles are separated in the highest purity.
  • FIG. 10D shows the detection results of the marker (EpCAM) and the nano vesicle detection marker (CD81) used for cancer detection, according to the pore size of the filtration membrane and the rotation speed of the disc (di sc) according to the present embodiment.
  • Experimental results show that the total number of nano vesicles and cancer cell-derived endoplasmic reticulum was detected at 100 nm and 1000 rpm (40 G), and high-purity nanoparticles can be recovered without losing many nanoparticles. .
  • the E graph of FIG. 10 shows the recovery rate of the nano vesicles of the present example and the comparative example.
  • the results of the examples are represented by DISC, and the detection results are divided according to the pore size and the disk rotation speed of the filtration membrane.
  • the comparative example is represented by UC (ul tracentr i fugat ion) and shows the detection result by the conventional technique compared with an Example.
  • FIG. 11 shows the detection result after the nano vesicles were separated using a filtration membrane having a pore size of 100 nm in the apparatus according to the present embodiment.
  • LNCaP cell-derived nano endoplasmic reticulum was spiked into 100 microliters of plasma.
  • the initial number of nanoparticles after the spike is 6.34 ( ⁇ 0.12) ElO / mL.
  • the graphs in FIG. 11 are 600 rpm (15 G), 900 rpm (33 G) and 1200 rpm (58, respectively). G), nano vesicle detection results according to the rotational speed of the disc (di sc) at 1800 rpm (131 G) and 2400 rpm (233 G) are shown.
  • a graph of FIG. 11 shows the number of nanoparticles according to the disk rotation speed. Experimental results show that the number of nanoparticles decreases as the rotation speed increases from 900 rpm (33 G).
  • the B graph of FIG. 11 shows the total protein amount according to the disk rotation speed. Experimental results show that the total protein decreases with increasing rotation speed from 900 rpm (33G). '
  • FIG. 11C shows the nano vesicle separation time (left, open cicles) and purity (right, closed squares) according to disk rotation speed.
  • Experimental results show that the separation time of nano endoplasmic reticulum decreases with increasing rotation speed from 600 rpm (15 G), and shows high purity in the range of 600 rpm (15 G) to 1200 rpm (58 G), 1800 rpm From 131 G, purity gradually decreases.
  • FIG. 11D shows the amount of CD81 antigen expression on the surface of the nano vesicles according to the disk rotation speed.
  • CD81 antigen expression was relatively high in the range of 600rpm (15G) to 1200rpm (58G), and rapidly decreased from 1800rpm (131G).
  • Figure 12 shows the detection results after the separation of nano-vesicles for this Example and Comparative Example.
  • Di sc The results for the examples in FIG. 12 are labeled Di sc.
  • the example shows the result of detecting the nano vesicles after separating the disks with the filtration membrane having the pore size of 100 nm by operating at 900 rpm (33 G).
  • the comparative example is denoted by UC (ult racentr i ligat ion), and shows the detection result according to the prior art compared with the example.
  • the experiments were performed by spiked plasma of LNCaP cell-derived nano endoplasmic reticulum in the same manner as in Examples and Comparative Examples.
  • a graph of FIG. 12 shows the number of nano-vesicles detected.
  • the number of particles separated according to the injection volume of the plasma spiked with the LNCaP cell-derived nano-endoplasmic reticulum was linear relationship in the range of 5 mi crol i to 200 mi crol i ter (l inear relat ionship).
  • the nanoparticles can be separated in a larger number compared to the comparative example UC is superior.
  • FIG. 12B shows the result of quantitative analysis of surface proteins by ELISA of the detected nano vesicles.
  • the expression volume of CD9 / CD81 (CD9 capture / CD81 detect ion) on the surface of the nano-endoplasmic reticulum was changed according to the injection volume of plasma spiked with LNCaP cell-derived nano-endoplasmic reticulum. It can be seen that the linear increase in the range ter to 200 microl i ter. Thus, in the case of the example, it can be seen that the higher expression amount, compared to the comparative example UC. Therefore, the quantitative analysis of the blood endoplasmic reticulum is possible by utilizing the disc (di sc) of the present embodiment.
  • the graph C of FIG. 12 shows the result of separating R A derived from a nano endoplasmic reticulum.
  • the experiments were performed in the same manner as in Examples and Comparative Examples, spiked the LNCaP cell-derived nano endoplasmic reticulum in plasma 100 microliter, separated the nano vesicles, and injected the reagent of the phenol component to extract the nano-vesicle-derived RNA. Bioanalyzer was used and the extracted RNA was subjected to electrophoresis to analyze the size and concentration of RNA.
  • the experimental results showed that both the Examples and Comparative Examples had the same size, and many RNAs of 250 nt or less associated with the nano-vesicles were extracted.
  • the RNA concentration detection results can be increased by the nano-vesicle nucleic acid extraction results separated using the detection device of the present embodiment, showing a higher RNA concentration than the comparative examples to increase the detection effect.
  • RNA was difficult to detect in UC, which is a comparative example, even in the result of separating the nano-vesicle-derived RNA, whereas Exosomal RNA was detected in the sample separated using the disk of the example.
  • Figure 13 shows the detection results of the nano-vesicles separated from the normal plasma and plasma 200 mi Crol iter of the cancer patients according to the conditions of the embodiment compared with the conventional.
  • H is the normal plasma
  • L is the plasma of lung cancer patients
  • S means the plasma of gastric patients.
  • Di sc-20 shows the experimental results under the conditions of rotating and driving a disk having a filtration membrane having a pore size of 20 nm at 3000 rpm (364 G), and Di sc-100 has a disk having a filtration membrane having a pore size of 100 nm.
  • the experimental results are shown under the condition of driving rotationally at 1200 rpm (58 G).
  • the comparative example is represented by UC (ul tracentr i fugat ion) and shows the detection result by the conventional technique compared with an Example.
  • Graph A of Figure 13 shows the total protein amount according to the nano-vesicle separation method. As a result, the total protein content was the highest in Di sc-20 at 20 nm 3000 rpm (364 G) and similar for UC and Di sc-100 (100 nm 1200 rpm (58 G)). Total protein was low.
  • Graph B of FIG. 13 shows a result of recovering nanoparticles according to a method for separating nanovesicles.
  • the largest amount of nanoparticles was recovered in the Di sc-20 example at 20 nm 3000 rpm (364 G), but there was no difference in the number of nanoparticles between the normal sample and the cancer patient sample.
  • the di sc-100 example which was carried out at 100 nm 1200 rpm (58 G), the amount of .
  • the nanoparticles were recovered and there was a difference in the number of nanoparticles between normal and cancer patients.
  • Graph C of Figure 13 shows the purity of the nanoparticles according to the nano-vesicle separation method.
  • Graph D of FIG. 13 shows the expression level of a marker (EpCAM) used for cancer detection of the surface of the nano endoplasmic reticulum according to the method for separating nano vesicles.
  • EpCAM a marker
  • both Di sc-20 and Di sc-100 showed high antigen expression overall, and showed a large difference in the expression level of EpCAM antigen between normal patients and cancer patients.
  • the patient's blood-derived nano endoplasmic reticulum (BCA), total number of nanoparticles (NTA), and purity (NTA measured by NTA) were measured through four experiments. The number divided by the total protein mass measured by BCA), the nano-vesicle surface markers analyzed by ELISA results, it can be seen that excellent results in the Di sc-100 Example.
  • FIG. 14 compares and shows detection CT values of nano-vesicle detection results through the device according to the present embodiment and the conventional device.
  • the experiment was performed by extracting the nucleic acid of blood-derived nano endoplasmic reticulum isolated from the normal plasma of 200 microliters and detecting it by real-time PCR.
  • the expression level and detection rate of the nano vesicle surface antigens CD81, CD63, and CD9 were significantly higher than those of the UC and Exospin of the comparative example.
  • Figure 15 shows the extraction of nucleic acid of blood-derived nano-endoplasmic reticulum from the plasma subjected to the sample pretreatment step and the plasma pretreatment step using the proteinase K solution using the apparatus according to the present embodiment and real-t ime PCR (RT- PCR shows a result of detection.
  • RT- PCR real-t ime PCR
  • the experiment was performed by extracting nucleic acids from nano vesicles separated from the normal plasma of 200 microliters using the device according to the present example.
  • the graph of FIG. 15 shows detection CT values of GAPDH (House keeping gene), CD9, CD63, and CD81 (nano vesicle detection marker) through RT-PCR with nucleic acids extracted according to the present example.
  • FIG. 16 is a graph illustrating separation of nanovesicles from BT474 breast cancer cell line) cell culture medium according to size differences and analysis of surface proteins of nanovesicle fract ions having respective size distributions using the apparatus according to the embodiment of FIG. 5.
  • a mixture of all nanoparticles ranging in size from 20 nm to 600 nm will be present on the 20 nm AA0 filter.
  • Surface protein and molecular properties are as shown in FIG.
  • the nanoparticles may be separated by a size difference, and analysis for the nanoparticles having each size distribution may be performed.
  • Graph A of FIG. 16 shows the results of nano-vesicle separation according to the combination of the filtration membranes provided in the three filter chambers.
  • the particle solution can be recovered.
  • the graph B of FIG. 16 shows the detection results of BT474 breast cancer cell-derived nano vesicles separated from the filter membrane of each filter chamber.
  • the graph B of FIG. 16 shows normal i ze based on the amount of surface proteins of EpCAM and Sial i c acid of the nano vesicles.
  • nm M0 In the case of 20 nm M0 only, it means a nano-vesicle recovered on the 20 nm filter membrane using a 20 nm M0 filter membrane. That is, in the case of the embodiment having three filter chambers It refers to a nano-vesicle having a size of 20 nm or more detected in the third filter chamber (20 nm filtration membrane) without passing through the first filter chamber (200 nm filtration membrane) and the second filter chamber (100 nm filtration membrane). In the case of exofree medium, it means that the pure culture solution without the nano-vesicles was passed through a 20 nm filtration membrane.
  • EPCAM Epi theel Cel l adhesion molecule, a marker used for cancer detection
  • Sialic acid the expression level of Sialic acid
  • the present invention can selectively recover the nano vesicles fract ion having a different size distribution.
  • the nanoparticles can be detected more effectively using the detection apparatus according to the present embodiment.
  • Filter chamber 311 Giant 11 filter chamber

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Clinical Laboratory Science (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention provides an apparatus for nanoparticle detection, which integrates the complete process of nanoparticle detection from a sample so as to be more convenient to use, the apparatus comprising: a disk for transferring a fluid by a centrifugal force; a sample accommodating part, formed on the disk, for accommodating a sample; a filter part connected to the sample accommodating part and having a microfiltration membrane for filtering the transferred sample to separate the nanoparticles; a supply part, connected to the filter part, for supplying a detection liquid for detecting the nanoparticles separated by the filtration membrane; a waste liquid receiving part, connected to an output side of the filter part, for receiving a solution that has passed through the filtration membrane; a flow path, formed on the disk, for transferring the fluid; and a valve for selectively opening or closing the flow path.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
나노 입자 검출 장치 및 이를 이용한 나노 .입자 검출 방법  Nanoparticle Detection Device and Nanoparticle Detection Method Using the Same
【기술분야】  Technical Field
본 발명은 나노 입자 검출 장치 및 이를 이용한 나노 입자 검출 방.법에 관한 것이다.  The present invention relates to a nanoparticle detection apparatus and a nanoparticle detection method using the same.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
예를 들어, 나노 소포체는 세포 활동에서 발생되는 40—120 nm 사이즈의 작은 소포체이다. 나노 소포체는 발생지와 크기에 의해 다른 소포체들과 구분된다. 나노 소포체는 발견 당시에는 세포 부산물로 여겨졌으나 종양의 진행 및 전이, 세포 신호 전달 등의 세포 활동에 기여하는 것으로 그 중요성이 밝혀졌다. 나노 소포체는 신체의 거의 모든 체액에 존재하며 유래된 세포의 유전정보를 포함한다. 이 때문에, 나노 소포체는 암을 포함한 각종 질병의 새로운 마커 뿐만 아니라 새로운 약물전달 시스템으로 주목받고 있다.  For example, nano endoplasmic reticulum is a small 40-120 nm endoplasmic reticulum generated from cellular activity. Nanovesicles are distinguished from other vesicles by their source and size. Nanovesicles were considered to be cellular byproducts at the time of discovery, but their importance was found to contribute to cellular activities such as tumor progression and metastasis and cellular signal transduction. Nanovesicles are present in almost every body fluid in the body and contain the genetic information of the cells from which they are derived. For this reason, nano vesicles are attracting attention as new drug delivery systems as well as new markers for various diseases including cancer.
최근, 나노 소포체를 분리 및 검출하는 방법에 대한 연구가 지속적으로 늘어나고 있다. 나노 소포체를 분리하는 방법들은 밀도, 크기, af f ini ty를 이용한 것으로 크게 분류된다.  Recently, research on the method of separating and detecting nano vesicles has been continuously increasing. Methods for separating nano vesicles are classified into density, size, and af f ini ty.
나노 소포체를 분리 포획한 이후 나노 소포체의 특정 단백질이나 핵산 등을 검출하는 방법으로는 특정 항원의 발현양을 비교하는 단백질 분석과 발생된 세포의 유전정보를 분석하는 핵산 분석이 있다. 기존의 단백질 분석 방법인 96 wel l plate를 이용한 EL ISA( Enzyme- 1 inked i隱 unosorbent assay)는 plate에 특정 항체 흑은 단백질 특이적으로 나노 소포체를 부착한 후 다른 항체를 사용하여 검출하는 방법이다. 그러나, 종래 방법의 경우나노 소포체를 부착하는 96 wel l pl ate의 표면적에 한계가 있으며 나노 소포체의 특정 부위가 plate에 부착되고 나면 그와 인접한 항체 분석은 어렵다는 한계가 있다.  Methods of detecting specific proteins or nucleic acids of nano vesicles after separating and capturing nano vesicles include protein analysis comparing expression levels of specific antigens and nucleic acid analysis analyzing genetic information of generated cells. ELISA (Enzyme-1 inked i 隱 unosorbent assay) using a 96 wel l plate, which is a conventional protein analysis method, is a method of detecting a specific antibody or protein specific nano vesicles on a plate and then detecting them using other antibodies. . However, in the conventional method, there is a limitation in the surface area of the 96 wel l plate attaching the nano endoplasmic reticulum, and it is difficult to analyze the antibody adjacent to the specific area of the nano vesicle after it is attached to the plate.
【발명의 내용]  [Contents of the Invention]
【해결하고자 하는 과제】  Problem to be solved
시료로부터 나노 입자를 검출하는 전과정이 일체화되어 보다 간편하게 사용할 수 있도록 된 나노 입자 검출 장치 및 이를 이용한 나노 입자 검출 방법을 제공한다. The whole process of detecting nanoparticles from a sample is integrated The present invention provides a nanoparticle detection device and a nanoparticle detection method using the same.
복수의 항원에 대한 검출을 수행할 수 있도록 된 나노 입자 검출 장치 및 이를 이용한 나노 입자 검출 방법을 제공한다.  Provided are a nanoparticle detection device capable of performing detection of a plurality of antigens and a nanoparticle detection method using the same.
보다 정확한 검출과 분석이 가능한 나노 입자 검출 장치 및 이를 이용한 나노 입자 검출 방법을 제공한다.  Provided are a nanoparticle detection device capable of more accurate detection and analysis, and a nanoparticle detection method using the same.
【과제의 해결 수단】  [Measures of problem]
본 구현예의 검출 장치는, 원심력에 의한 유체의 이송이 이루어지는 디스크, 상기 디스크에 형성되어 시료를 수용하는 시료수용부, 상기 시료수용부에 연결되고 이송된 시료를 여과하여 나노 입자를 분리하기 위한 미세 여과막을 구비한 필터부, 상기 필터부에 연결되어 여과막에 분리된 나노 입자 검출을 위한 검출액을 공급하는 공급부, 상기 필터부 출측에 연결되어 여과막을 거친 용액을 수용하는 폐액수용부, 상기 디스크에 형성되어 유체가 이송되는 유로, 및 상기 유로를 선택적으로 개폐하는 밸브를 포함할 수 있다.  The detection device of the present embodiment is a disk for transferring fluid by centrifugal force, a sample accommodating part formed on the disk to accommodate a sample, and a fine particle for separating nanoparticles by filtering a sample transported and conveyed to the sample accommodating part. A filter unit having a filtration membrane, a supply unit connected to the filter unit for supplying a detection liquid for detecting nanoparticles separated from the filtration membrane, a waste solution receiving unit connected to the filter unit outlet side and accommodating a solution having passed through the filtration membrane, to the disk It may include a flow path is formed and the fluid is transferred, and a valve for selectively opening and closing the flow path.
상기 시료수용부는 상기 디스크에 형성되어 시료를 수용하는 시료챔버, 상기 시료챔버와 필터부를 연결하며 디스크의 원심력에 따라 시료가 이송되는 게 1 유로, 상기 제 1 유로를 개폐하는 게 1 밸브를 포함할 수 있다. ·  The sample accommodating part may include a sample chamber formed on the disk to accommodate a sample, connecting the sample chamber to the filter part, and having a flow path for transferring the sample according to the disc centrifugal force, and opening and closing the first flow path. Can be. ·
상기 시료챔버는 디스크 원심력에 따라 시료를 원심분리하고, 원심력 방향을 따라 디스크의 외측을 향하는 선단에 원심 분리된 시료가 수용되는 침강부가 길게 연장 형성되고, 상기 제 1 유로는 디스크의 회전 중심을 향해 상기 시료챔버의 침강부 경계지점에 연결되어 원심분리된 상층액을 필터부로 이송할 수 있다.  The sample chamber has a centrifugal separation of the sample according to the disc centrifugal force, and a settling portion for accommodating the centrifuged sample is elongated at the distal end of the disc along the centrifugal force direction, and the first flow path is directed toward the center of rotation of the disc. The supernatant centrifuged by being connected to the settling boundary of the sample chamber may be transferred to the filter unit.
상기 침강부는 디스크의 방사방향에 대해 기울어져 경사지게 형성될 수 있다.  The settled portion may be formed to be inclined with respect to the radial direction of the disk.
상기 침강부는 상기 경계지점에서 원심력 방향을 따라 끝단으로 갈수록 바닥면이 점차적으로 상향 경사질 수 있다.  The settling portion may gradually incline the bottom surface toward the end in the centrifugal force direction at the boundary point.
상기 침강부의 끝단에 형성되어 시료에서 원심분리된 불순물이 수용되는 홈부를 더 포함할 수 있다. 상기 시료챔버의 침강부 출측과 상기 폐액수용부와 연결되어 침강된 용액을 이송하는 배출 유로 및 상기 배출 유로를 개폐하는 배출 밸브를 더 포함할 수 있다. It may further include a groove portion formed at the end of the settling portion to accommodate the impurities centrifuged from the sample. The discharge chamber may further include a discharge passage configured to be connected to the settling portion exit side of the sample chamber and the waste liquid receiving portion to transfer the settled solution, and a discharge valve to open and close the discharge passage.
상기 필터부는 유체 이동방향을 따라 입측공간과 출측공간을 구비하며 입측공간과 출측공간 사이에 상기 여과막이 설치된 필터챔버를 포함하고, 상기 입측공간은 시료수용부와 연결되어 시료가 유입되고 여과된 나노 입자가 수용되며, 상기 출측공간은 폐액수용부와 연결될 수 있다. 상기 여과막은 기공이 lnm 내지 lOOOnm로 형성될 수 있다.  The filter part includes a filter chamber having an entrance space and an exit space along a fluid movement direction, and a filter chamber in which the filtration membrane is installed between the entrance space and the exit space, and the entrance space is connected to the sample accommodating part, and the sample is introduced and filtered. Particles are accommodated, and the exit space may be connected to the waste liquid receiving portion. The filtration membrane may be formed with pores of lnm to 100m.
상기 여과막은 폴리카보네이트, 폴리스타이렌', 폴리메틸메타크릴레이트, 사이클릭 을레핀 코폴리머를 포함한 열경화성 플라스틱, 양극산화알루미늄 니켈, 또는 실리콘 재질로 이루어질 수 있다. 상기 필터부는 입측공간과 출측공간 사이에 적어도 두 개 이상의 여과막이 적층되고, 상기 각 여과막은 유체 이송방향을 따라 기공이 점차적으로 작아질 수 있다. The filtration membrane may be made of polycarbonate, polystyrene ' , polymethyl methacrylate, a thermosetting plastic including cyclic olefin polymers, anodized aluminum nickel, or silicon. The filter unit may have at least two filtration membranes stacked between the entry space and the exit space, and the pores may gradually decrease in the fluid transport direction.
상기 필터부는 적어도 두 개 이상의 유체 이송 방향을 따라 순차적으로 배치되고 각 필터부에 구비된 여과막은 기공의 크기가 서로 상이하여, 각각 서로 다른 크기 범위의 나노 입자를 분리하는 구조일 수 있다.  The filter unit may be sequentially disposed along at least two fluid transfer directions, and the filtration membranes provided in each filter unit may have different pore sizes from each other to separate nanoparticles having different size ranges.
상기 필터부는 적어도 두 개 이상이 유체 이송방향을 따라 순차적으로 배치되고, 각 필터부에 구비된 여과막은 유체 이송방향을 따라 기공이 점차적으로 작아질 수 있다.  At least two or more filter units may be sequentially disposed along the fluid transfer direction, and the filtration membranes provided in each filter unit may gradually decrease pores along the fluid transfer direction.
상기 여과막은 디스크에서 착탈가능하게 설치될 수 있다.  The filtration membrane may be installed detachably from the disk.
상기 디스크에 착탈가능하게 설치되어 상기 필터챔버를 개폐하는 덮개, 상기 덮개를 디스크에 고정하는 체결부를 더 포함할 수 있다.  A cover detachably installed on the disk may further include a cover configured to open and close the filter chamber, and a fastening part configured to fix the cover to the disk.
상기 공급부는 상기 디스크에 형성되어 나노 입자 검출을 위해 제공되는 항체를 수용하는 항체챔버, 상기 항체챔버와 필터부를 연결하며 디스크의 원심력에 따라 항체를 필터부로 이송하는 제 2 유로, 상기 제 2 유로를 개폐하는 제 2 밸브를 포함할 수 있다.  The supply unit is formed in the disk and the antibody chamber for receiving the antibody provided for nanoparticle detection, the second flow path for connecting the antibody chamber and the filter unit and transfer the antibody to the filter unit in accordance with the centrifugal force of the disk, the second flow path It may include a second valve for opening and closing.
상기 공급부는 상기 디스크에 형성되어 나노 입자를 검출하는 항체의 표지를 위해 제공되는 시약이 수용된 시약챔버, 상기 시약챔버와 필터부를 연결하며 디스크의 원심력에 따라 시약을 필터부로 이송하는 게 3 유로, 상기 제 3 유로를 개폐하는 게 3 밸브를 포함할 수 있다. The supply unit includes a reagent chamber containing a reagent formed on the disk for labeling an antibody for detecting nanoparticles, the reagent chamber and a filter unit. It may include three valves for connecting and transferring the reagent to the filter unit according to the centrifugal force of the disk, and three valves for opening and closing the third channel.
상기 공급부는 상기 디스크에 형성되어 나노 입자 검출반웅을 위해 제공되는 기질액을 수용하는 기질액챔버, 상기 기질액챔버와 필터부를 연결하며 디스크의 원심력에 따라 기질액을 필터부로 이송하는 제 4 유로, 상기 게 4유로를 개폐하는 게 4 밸브를 더 포함할 수 있다.  The supply part is formed in the disk and the substrate liquid chamber for receiving the substrate liquid provided for the detection of nanoparticles, the fourth flow path for connecting the substrate liquid chamber and the filter unit and transfer the substrate liquid to the filter unit in accordance with the centrifugal force of the disk, The crab may further include four valves for opening and closing the four euros.
상기 .공급부는 공급부는 디스크에 형성되어 나노 입자 검출 반웅을 멈추기 위해 제공되는 정지용액 (stop solut ion)을 수용하는 정지용액챔버, 상기 정지용액챔버와 기질액챔버를 연결하는 연결유로, 및 상기 연결유로를 개폐하는 연결밸브를 포함하여, 정지용액을 기질액챔버를 거쳐 필터챔버로 공급할 수 있다.  The supply part is a supply part is formed in the disc is a stop solution chamber for receiving a stop solution (stop solut ion) provided to stop the nanoparticle detection reaction, a connecting flow path for connecting the stop solution chamber and the substrate liquid chamber, and the connection Including a connecting valve for opening and closing the flow path, the stop solution can be supplied to the filter chamber via the substrate liquid chamber.
상기 공급부는 상기 필터부로 세척액을 이송하여 필터부를 세척하는 세척부를 더 포함할 수 있다.  The supply unit may further include a washing unit for cleaning the filter unit by transferring the washing liquid to the filter unit.
상기 세척부는 상기 디스크에 형성되어 세척액을 수용하는 세척액챔버, 상기 세척액챔버와 필터부를 연결하며 디스크의 원심력에 따라 세척액을 필터부로 이송하는 제 5 유로, 상기 제 5 유로를 개폐하는 거 15 밸브를 포함할 수 있다.  The washing unit includes a washing liquid chamber formed in the disk to receive the washing liquid, a fifth flow passage connecting the washing liquid chamber to the filter unit and transferring the washing liquid to the filter unit according to the centrifugal force of the disk, and opening and closing the fifth passage. can do.
상기 세척액챔버는 복수개로 구분되고, 각각의 세척액챔버에 세척액이 구분 수용되고, 각 세척액챔버의 출측 유로에는 세척액을 배출하는 출측 밸브가 설치될 수 있다.  The washing liquid chamber may be divided into a plurality of washing liquids, and the washing liquid is separately received in each washing liquid chamber, and an outlet valve for discharging the washing liquid may be installed in the outlet flow path of each washing liquid chamber.
상기 폐액수용부는 상기 디스크에 형성되어 폐액이 수용되는 폐액챔버, 상기 폐액챔버와 상기 필터부를 연결하며 디스크의 원심력에 따라 폐액을 폐액챔버로 이송하는 게 6 유로를 포함할 수 있다.  The waste liquid receiving part may include a waste fluid chamber formed on the disk to connect the waste liquid chamber and the filter unit to accommodate the waste liquid, and transfer the waste liquid to the waste liquid chamber according to the centrifugal force of the disk.
상기 디스크에 형성되고 상기 필터부에 연결되어 여과막에 의해 분리된 나노 입자가 회수되는 회수챔버, 상기 회수챔버와 필터부를 연결하여 나노 입자를 회수챔버로 이송하는 계 7 유로, 상기 게 7 유로를 개폐하는 제 7 밸브를 더 포함할 수 있다.  A recovery chamber formed in the disk and connected to the filter part to recover the nanoparticles separated by the filtration membrane, a seven-channel flow path connecting the recovery chamber and the filter part to transfer the nanoparticles to the recovery chamber, and opening and closing the seven-channel flow path A seventh valve may be further included.
상기 시료는 생체입자를 포함하는 혈액, 림프액, 조직액, 오줌, 타액 뇌척수액 및 객담에서 선택되는 생체시료 또는 나노 입자가 분산된 수용액 또는 이들의 조합일 수 있다. 상기 시료수용부, 상기 필터부, 상기 공급부 및 상기 폐액수용부는 하나의 유닛을 이루고, 상기 유닛은 디스크의 원주방향을 따라 복수개가 간격을 두고 배치될 수 있다. The sample may be an aqueous solution containing a biological sample or nanoparticles selected from blood, lymph, tissue fluid, urine, saliva cerebrospinal fluid, and sputum including bioparticles, or a combination thereof. The sample accommodating part, the filter part, the supply part, and the waste liquid receiving part constitute one unit, and the unit may be arranged at a plurality of intervals along the circumferential direction of the disc.
이웃하는 두 램버를 연결하는 유로는 입구가 출구보다 디스크 증심쪽에 위치하여, 디스크의 원심력 방향을 따라 입구가 일측 챔버의 출측에 연결될 수 있다.  The flow path connecting two neighboring rambers is located in the disk center side rather than the outlet, the inlet may be connected to the outlet side of the one chamber along the disc centrifugal force direction.
상기 디스크는 비특이적 항체 부착을 방지할 수 있도록 단백질이나, 고분자, 또는 유기분자로 표면 개질될 수 있다.  The disc may be surface modified with proteins, polymers, or organic molecules to prevent nonspecific antibody attachment.
본 구현예의 나노 입자 검출 방법은, 디스크에 시료를 공급하는 단계, 디스크에 원심력을 가해 시료를 필터부로 이송하고 여과막을 통해 여과하여 나노 입자를 분리하는 단계, 디스크에 원심력을 가해 나노 입자 검출을 위한 검출액을 필터부로 공급하여 여과막 상의 나노 입자를 검출하는 단계를 포함할 수 있다.  Nanoparticle detection method of the present embodiment, the step of supplying a sample to the disk, centrifugal force applied to the disk to transfer the sample to the filter portion and filtering through a filtration membrane to separate the nanoparticles, applying a centrifugal force to the disk for nanoparticle detection Supplying a detection liquid to the filter unit may include detecting the nanoparticles on the filtration membrane.
상기 나노 입자를 검출하는 단계는, 디스크에 원심력을 가해 항체를. 필터부로 공급하여 나노 입자를 검출하고, 필터부로 시약을 공급하여 나노 입자에 붙은 항체를 표지하는 단계를 포함할수 있다.  Detecting the nanoparticles, applying a centrifugal force to the disk to the antibody. The nanoparticles may be supplied to the filter unit to detect the nanoparticles, and the reagents may be supplied to the filter unit to label the antibodies attached to the nanoparticles.
상기 시료를 필터부로 이송하기 전에, 디스크에 원심력을 가해 시료를 원심 분리하는 분리 단계를 더 포함할 수 있다.  Before the sample is transferred to the filter unit, a separation step of centrifuging the sample by applying a centrifugal force to the disk may be further included.
상기 나노 입자를 분리하는 단계는, 기공 크기가서로 상이한 복수의 여과막을 거쳐 서로 다른 크기 범위의 나노 입자를 분리할 수 있다.  The separating of the nanoparticles may separate nanoparticles of different size ranges through a plurality of different filtration membranes having different pore sizes.
상기 나노 입자를 분리하는 단계는, 기공이 점차 작아지는 복수의 여과막을 순차적으로 거쳐 서로 다른 크기 범위의 나노 입자를 분리할 수 있다.  The separating of the nanoparticles may sequentially separate nanoparticles having different size ranges through a plurality of filtration membranes in which pores gradually decrease.
상기 디스크에 원심력을 가해 필터부로 세척액을 공급하여 세척하는 단계를 더 포함할 수 있다.  Applying a centrifugal force to the disk may further comprise the step of supplying the washing liquid to the filter unit to wash.
상기 세척하는 단계는, 나노 입자 검출 후 여분의 항체를 세척하여 제거하는 단계, 및 나노 입자를 표지한 후 여분의 시약을 제거하는 단계를 포함할 수 있다.  The washing may include washing and removing excess antibody after detection of nanoparticles, and removing excess reagent after labeling nanoparticles.
상기 나노 입자를 표지한 후 기질액을 공급하는 단계를 더 포함할 수 있다. 상기 여과막에서 분리된 나노 입자를 회수하는 단계를 더 포함할 수 있다. The method may further include supplying a substrate solution after labeling the nanoparticles. The method may further include recovering the nanoparticles separated from the filtration membrane.
상기 나노 입자를 검출하는 단계에서, 분리된 나노 입자에 핵산 추출용 시약을 공급하여 핵산을 추출하는 단계를 더 포함할 수 있다.  In the detecting of the nanoparticles, the method may further include extracting nucleic acids by supplying a nucleic acid extracting reagent to the separated nanoparticles.
상기 나노 입자를 검출하는 단계에서, 상기 디스크에서 여과막을 분리하는 단계를 포함하여, 디스크 외부에서 나노 입자 검출이 이루어질 수 있다.  In the detecting of the nanoparticles, including separating the filtration membrane from the disk, nanoparticle detection may be performed outside the disk.
【발명의 효과】  【Effects of the Invention】
이와 같이 본 구현예에 의하면, 시료로부터 나노 입자를 검출하는 전 과정을 일체화하여 단일 디스크 내에서 간단히 수행함으로써, 나노 입자 검출에 소요되는 시간과 노력을 최소화할 수 있게 된다. 이에, 전문 인력의 투입을 최소화하면서 나노 입자에 대한 분석과 진단을 보다 용이하게 수행할 수 있다.  As described above, according to the present exemplary embodiment, the whole process of detecting nanoparticles from a sample may be integrated and simply performed in a single disk, thereby minimizing time and effort required for detecting nanoparticles. Accordingly, analysis and diagnosis of nanoparticles can be performed more easily while minimizing the input of skilled workers.
나노 입자가 분리된 공간 내에 항체를 공급하여 검출이 이루어짐으로써, 나노 입자의 표면의 모든 항원을 효과적으로 검출할 수 있게 된다. 이에, 단시간 내에서 나노 입자를 검출할 수 있고, 검출을 위한 항체의 효율을 높일 수 있게 된다.  By detecting the antibody by supplying the antibody in the space where the nanoparticles are separated, it is possible to effectively detect all antigens on the surface of the nanoparticles. Accordingly, the nanoparticles can be detected within a short time, and the efficiency of the antibody for detection can be increased.
따라서, 나노 소포체의 연구 및 이를 이용한 암을 비롯한 질병을 효과적으로 진단할수 있게 된다.  Therefore, it is possible to effectively diagnose diseases including the research of nano vesicles and cancer using the same.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 실시예에 따른 나노 입자 검출 장치를 도시한 개략적인 평면도이다.  1 is a schematic plan view of a nanoparticle detection apparatus according to the present embodiment.
도 2는 또다른 실시예에 따른 나노 입자 검출 장치를 도시한 개략적인 평면도이다.  2 is a schematic plan view of a nanoparticle detection apparatus according to another embodiment.
도 3은 본 실시예에 따른 나노 입자 검출 장치의 시료수용부를 도시한 개략적인 단면도이다.  3 is a schematic cross-sectional view showing a sample accommodating part of the nanoparticle detection device according to the present embodiment.
도 4는 본 실시예에 따른 나노 입자 검출 장치의 필터부를 도시한 개략적인 단면도이다.  4 is a schematic cross-sectional view showing a filter part of the nanoparticle detection device according to the present embodiment.
도 5는 또다른 실시예에 따른 나노 입자 검출 장치를 도시한 개략적인 평면도이다. 도 6은 본 실시예에 따른 나노 입자 검출 장치의 나노 입자 검출 원리를 설명하기 위한 개략적인 도면이다. 5 is a schematic plan view of a nanoparticle detection device according to another embodiment. 6 is a schematic view for explaining the principle of nanoparticle detection of the nanoparticle detection apparatus according to the present embodiment.
도 7은 본 실시예에 따라 나노 입자의 단백질 검출 결과를 나타낸 도면이다.  7 shows protein detection results of nanoparticles according to the present embodiment.
도 8은 본 실시예에 따른 소변 유래 나노 입자의 단백질 발현량을 종래와 비교하여 나타낸 도면이다.  8 is a view showing the protein expression amount of the urine-derived nanoparticles according to the present embodiment in comparison with the prior art.
도 9는 본 실시예에 따른 나노 입자의 핵산 검출 결과를 종래와 비교하여 나타낸 도면이다.  9 is a view showing the nucleic acid detection results of the nanoparticles according to the present embodiment compared with the conventional.
도 10은 본 실시예에 따라 암 세포 유래 나노 소포체를 혈장에 spike한 샘플로부터 나노 입자를 분리 후 검출한 결과를 종래와 비교하여 나타낸 도면이다.  10 is a view showing a result of detecting the nanoparticles separated from the sample spiked into the plasma of cancer cell-derived nano endoplasmic reticulum according to the present embodiment compared with the conventional.
도 11은 본 실시예에 따라 암 세포 유래 나노 소포체를 혈장에 spike한 샘플로부터 스핀 조건에 따라 나노 입자를 분리 후 검출한 결과를 나타낸 도면이다.  FIG. 11 is a diagram illustrating a result of detection after separation of nanoparticles according to spin conditions from a sample spiked with plasma of cancer cell-derived nano endoplasmic reticulum according to the present embodiment.
도 12는 본 실시예에 따라, 암 세포 유래 나노 소포체를 혈장에 spike한 샘플의 부피에 따라 나노 입자를 분리 후 검출한 결과를 종래와 비교하여 나타낸 도면이다.  12 is a view showing a result of detecting the nanoparticles after separation according to the volume of the sample spiked into the plasma of the cancer cell-derived nano endoplasmic reticulum according to this embodiment compared with the conventional.
도 13은 본 실시예에 따라 암 환자 혈장과 정상인 혈장 유래 나노 입자의 분리 및 단백질 검출 결과를 종래와 비교하여 나타낸 도면이다. 도 14는 본 실시예에 따라 정상인 혈장 유래 나노 입자의 분리 및 핵산 검출 결과를 종래와 비교하여 나타낸 도면이다  FIG. 13 is a diagram illustrating the results of separation and protein detection of plasma from cancer patients and normal plasma-derived nanoparticles according to the present embodiment. 14 is a diagram showing the results of separation and nucleic acid detection of normal plasma-derived nanoparticles according to the present embodiment compared with the conventional
도 15는 본 실시예에 따라 단백질 분해 효소 처리 단계를 거친 혈장과 거치지 않은 혈장 유래 나노 입자의 분리 및 핵산 검출 결과를 나타낸 도면이다.  FIG. 15 is a diagram illustrating separation and nucleic acid detection results of plasma-derived nanoparticles undergoing proteolytic enzyme treatment and plasma-free nanoparticles according to the present embodiment.
도 16은 도 5의 실시예에 따른 나노 입자 검출 장치의 나노 입자 단백질 검출 결과를 나타낸 도면이다.  16 is a view showing a nanoparticle protein detection results of the nanoparticle detection device according to the embodiment of FIG.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다. Hereinafter, with reference to the accompanying drawings, it will be described an embodiment of the present invention to be easily implemented by those skilled in the art. Those skilled in the art to which the present invention belongs As can be easily understood, the embodiments described below can be modified in various forms without departing from the spirit and scope of the invention. Where possible, the same or similar parts are represented using the same reference numerals in the drawings.
이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특정 특성, 영역 , 정수, 단계, 동작,ᅳ 요소, 성분 및 /또는 군의 존재나 부가를 제외시키는 것은 아니다.  The terminology used below is merely to refer to specific embodiments, and is not intended to limit the present invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the meaning of “comprising” embodies a particular characteristic, domain, integer, step, operation, element and / or component, and other specific characteristic, domain, integer, step, operation, component, component and / or It does not exclude the presence or addition of groups.
이하에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  All terms including technical terms and scientific terms used below have the same meaning as those commonly understood by those skilled in the art. Terms defined in advance are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하 설명에서, 본 실시예는 시료로부터 나노 소포체를 검출하는 구조를 예로서 설명한다. 나노 소포체는 혈액, 림프액, 조직액, 오줌, 타액, 뇌척수액, 및 객담을 포함하는 생체시료 또는 나노 입자가 분산된 수용액을 포함하여 다양한 시료로부터 포획될 수 있다. 본 실시예는 나노 소포체 검출에 한정되지 않으며, 다양한 나노 입자에 대한 검출에 모두 적용 가능하다.  In the following description, this embodiment describes a structure for detecting nano vesicles from a sample as an example. Nanovesicles can be captured from a variety of samples, including blood, lymph, tissue fluids, urine, saliva, cerebrospinal fluid, and biological samples containing sputum or aqueous solutions in which nanoparticles are dispersed. This embodiment is not limited to the detection of nano vesicles, it is applicable to the detection of various nanoparticles.
본 실시예의 검출 장치는, 원심력에 의한 유체의 이송이 이루어지는 디스크, 디스크에 형성되어 시료를 수용하는 시료수용부, 시료수용부에 연결되고 이송된 시료를 여과하여 나노 입자를 분리하기 위한 여과막을 구비한 필터부, 필터부에 연결되어 여과막에 분리된 나노 입자 검출을 위한 검출액을 공급하는 공급부, 필터부 출측에 연결되어 여과막을 거친 용액을 수용하는 폐액수용부, 디스크에 형성되어 유체가 이송되는 유로, 및 유로를 선택적으로 개폐하는 밸브를 포함할 수 있다. 여기서, 검출이란 나노 입자의 특정 항원 존재 유무를 감지하고 확인하는 것, 나노 입자의 핵산을 추출하는 것을 포함하여, 나노 입자의 특정 단백질이나 핵산을 검출하고 분석하는 모든 것을 의미할 수 있다. 디스크 (di sc)는 장치의 몸체를 이룬다. 디스크는 내부에 각 구성부를 구비한다. The detection apparatus of the present embodiment includes a disk for transferring fluid by centrifugal force, a sample accommodating portion formed on the disk for accommodating a sample, and a filtration membrane for separating nano particles by filtering the transferred sample. A filter part, a supply part connected to the filter part to supply a detection liquid for detecting nanoparticles separated from the filtration membrane, a waste fluid receiving part connected to the filter part exit side to receive a solution passed through the filtration membrane, and formed on a disk to convey fluid It may include a flow path, and a valve for selectively opening and closing the flow path. Here, the detection may mean all of detecting and confirming the presence or absence of a specific antigen of the nanoparticle, and detecting and analyzing a specific protein or nucleic acid of the nanoparticle, including extracting a nucleic acid of the nanoparticle. The disc (di sc) forms the body of the device. The disc has respective components therein.
디스크의 형태는 다양하게 변형가능하다. 본 실시예에서, 디스크는 원형의 판 구조물로 이루어질 수 있다. 디스크의 중심은 회전축을 이룬다. 디스크는 외부로부터 제공되는 구동력에 의해 회전축을 중심으로 회전된다. 디스크의 회전에 따라 원심력이 발생되고 내부 유체에 원심력을 가하여 유체를 이송한다.  The shape of the disc can be variously modified. In this embodiment, the disk may be of circular plate structure. The center of the disk forms the axis of rotation. The disk is rotated about the rotation axis by the driving force provided from the outside. As the disk rotates, centrifugal force is generated and centrifugal force is applied to the fluid to transfer the fluid.
디스크는 원판 형태의 상판과 하판 두 개의 판 구조물을 접합하여 형성될 수 있다. 디스크는 상판과 하판 두 개의 판 접합 구조 외에 다양한 개수의 판을 접합하여 형성할 수 있다. 예를 들어, 디스크는 상판과 하판 사이에 벨브가 형성된 판 구조물이 더 구비될 수 있다.  The disk may be formed by joining two plate structures of the upper plate and the lower plate in the form of a disk. The disk may be formed by joining various numbers of plates in addition to the upper plate and the lower plate joining structure. For example, the disk may be further provided with a plate structure formed with a valve between the upper plate and the lower plate.
상판과 하판의 내면에는 각 구성부와 유로를 형성하기 위해 설정된 형태의 캐비티가 형성될 수 있다. 상판과 하판 사이에 형성되는 공간이 유체를 수용하거나 이송하기 위한 챔버와 유로를 이룬다. 디스크를 이루는 상판과 하판은 유체와 접하는 표면이 생물학적으로 비활성인 소재로 이루어질 수 있다. 또한, 상판과 하판은 광학적 투과성을 구비한 소재로 이루어질 수 있다. 예를 들어, 상판과 하판은 폴리스타이렌 (polysrene , PS) , 폴리 디메틸실록산 (poly dimethyl si loxane , PDMS) , 폴리 메틸메타크릴레이트 (poly methlmethacrylate , PMMA) , 폴리아크릴레이트 (polyacrylate) , 폴리카보네이트 (polycarbonate) , 폴리실릭 올레핀 (polyccl i c olef ins) , 폴리이미드 (polyimide) 폴리우레탄 (polyurethanes) 등의 소재로 형성될 수 있다.  The inner surface of the upper plate and the lower plate can be formed with a cavity of the type set to form each component and the flow path. The space formed between the upper plate and the lower plate forms a flow path with the chamber for receiving or transporting the fluid. The upper and lower plates constituting the disk may be made of a material whose surface in contact with the fluid is biologically inert. In addition, the upper plate and the lower plate may be made of a material having optical transmission. For example, the top and bottom plates may be made of polystyrene (PS), poly dimethyl siloxane (PDMS), poly methyl methacrylate (PMMA), polyacrylate, polycarbonate, and polycarbonate. ), Polysilic olefins (polyccl ic olef ins), polyimide (polyimide) polyurethane (polyurethanes) and the like.
또한, 디스크를 이루는 상판과 하판은 비특이적 항체 부착을 방지할 수 있도록 단백질이나, 고분자, 유기분자 등으로 표면 개질된 구조일 수 있다.  In addition, the top and bottom plate constituting the disk may be a structure that is surface-modified with proteins, polymers, organic molecules and the like to prevent non-specific antibody adhesion.
이에, 디스크 내에 시료를 공급하여 유로를 따라 이동하였을 경우, 시료가 디스크와 반웅하지 않고 표면에 부착되지 않아, 생물학적 안전성을 확보할 수 있고 항체와의 반웅성을 높일 수 있다. 또한, 분리된 나노 입자를 디스크 외부로 배출시키지 않고도 광학 검출기를 통해 상판과 하판을 투과하여 검출할 수 있게 된다. Therefore, when the sample is fed into the disk and moved along the flow path, the sample does not react with the disk and does not adhere to the surface, thereby improving biological safety. It can be secured and the reaction with an antibody can be improved. In addition, the separated nanoparticles can be detected through the upper plate and the lower plate through the optical detector without discharging the outside of the disk.
본 실시예는 하나의 디스크를 이용하여 복수의 서로 상이한 나노 입자를 검출하는 구조일 수 있다. 이를 위해, 나노 입자 검출을 위해 필요한 시료수용부, 필터부, 공급부 및 폐액수용부는 하나의 유닛을 이루고, 이 유닛은 디스크의 원주방향을 따라 복수개가 간격을 두고 배치될 수 있다. 도 1은 예를 들어, 두 개의 유닛이 배치된 구조를 예시하고 있다. 디스크의 크기나 각 유닛의 크기 등에 따라 다양한 개수의 유닛을 하나의 디스크에 구비할 수 있다. ' This embodiment may be a structure for detecting a plurality of different nanoparticles using one disk. To this end, the sample accommodating part, the filter part, the supplying part, and the waste liquid receiving part which are necessary for detecting the nanoparticles constitute one unit, and a plurality of units may be arranged at intervals along the circumferential direction of the disk. 1 illustrates, for example, a structure in which two units are arranged. According to the size of the disk, the size of each unit, etc., various numbers of units may be provided in one disk. '
이에, 디스크에 구비된 복수의 유닛에 각각 서로 상이한 시료 또는 검출액을 준비하여 하나의 디스크로 복수의 나노 입자를 동시에 검출할 수 있다.  Accordingly, different samples or detection liquids may be prepared in a plurality of units provided on the disks, and a plurality of nanoparticles may be detected simultaneously with one disk.
디스크의 회전중심에서 원심력 방향을 따라 시료수용부와 공급부, 필터부, 및 폐액수용부가 순차적으로 위치한다. 이에, 유체는 시료수용부와 공급부에서 필터부로, 필터부에서 폐액수용부로 흐른다. 따라서, 디스크를 회전시켜 원심력을 가함으로써, 유체를 순차적으로 이동하여 원하는 공정을 수행할 수 있다.  At the center of rotation of the disk, the sample receiving part, the supplying part, the filter part, and the waste liquid receiving part are sequentially positioned along the centrifugal force direction. Accordingly, the fluid flows from the sample receiving part and the supply part to the filter part and from the filter part to the waste liquid receiving part. Thus, by applying the centrifugal force by rotating the disk, it is possible to sequentially move the fluid to perform the desired process.
디스크의 각 구성부 사이에 유로가 형성된다. 유로는 이웃하는 구성부의 챔버 사이를 연결한다. 유로는 유체가 유입되는 입구와 유체가 나가는 출구를 구비하며, 입구는 출구보다 디스크의 중심쪽에 위치할 수 있다. 이에, 디스크의 원심력이 가해졌을 때 유체는 상대적으로 디스크 중심쪽에 위치한 입구에서 출구를 따라 보다 원활하게 이동할 수 있게 된다.  A flow path is formed between each component of the disk. The flow path connects between the chambers of neighboring components. The flow path has an inlet through which the fluid enters and an outlet through which the fluid exits, and the inlet may be located toward the center of the disk rather than the outlet. Thus, when centrifugal force of the disk is applied, the fluid can move more smoothly along the outlet from the inlet located relatively to the center of the disc.
유로는 예를 들어, 불순물이 역류하기 어려운 미세유로일 수 있다. 미세유로라 함은, 유로가 유체의 역류를 방지할 수 있는 저항을 갖는 크기로 형성된 유로를 의미할 수 있다. 이에, 예를 들어, 필터부를 거쳐 폐액수용부로 배출된 유체에 포함된 불순물이 유로를 따라 필터부로 다시 역류하는 것을 방지할 수 있게 된다.  The flow path may be, for example, a micro flow path in which impurities hardly flow back. The fine flow path may mean a flow path formed in a size having a resistance capable of preventing a back flow of the fluid. Thus, for example, it is possible to prevent the impurities contained in the fluid discharged through the filter portion to the waste liquid receiving portion from flowing back to the filter portion along the flow path.
또한, 유로는 디스크의 원심력 방향을 따라 입구가 각 구성부의 출측에 연결될 수 있다. 구성부의 출측이라 함은 해당 구성부에서 유체가 유출되는 부분으로 원심력 방향을 따라 디스크의 외측 선단에 근접한 쪽을 의미한다 . In addition, the flow path has an inlet in each component part along the disc centrifugal force direction. Can be connected to the exit. The exit of a component is the portion of the fluid outflow from the component and means the side near the outer leading edge of the disk along the direction of centrifugal force.
이에, 디스크에 원심력이 가해졌을 때, 각 구성부에 수용된 유체는 원심력에 의해 유로의 입구쪽으로 모여 유로를 따라 모두 이동할 수 있게 된다. 따라서, 각 구성부의 챔버에 유체가 잔류하지 않아 유체의 손실을 최소화할 수 있게 된다. .  Thus, when centrifugal force is applied to the disk, the fluid contained in each component portion is able to move toward the inlet of the flow path by the centrifugal force and move all along the flow path. Therefore, no fluid remains in the chamber of each component, thereby minimizing the loss of the fluid. .
예를 들어, 시료수용부는 출측에 유로가 연결됨에 따라 시료수용부에 수용된 시료를 모두 유로를 통해 필터부로 이동시킬 수 있게 된다 . 따라서 , 보다 적은 시료나 항체를 이용하여 나노 입자 검출을 효과적으로 수행할 수 있게 된다.  For example, as the sample receiving unit is connected to the flow path at the outlet side, all the samples accommodated in the sample receiving unit can move to the filter unit through the channel. Therefore, nanoparticle detection can be effectively performed using fewer samples or antibodies.
밸브는 유로 일측에 위치하여 유로를 선택적으로 개폐한다. 밸브는 유로를 차단하거나 개방할 수 있는 다양한 구조로 이루어질 수 있다. 밸브는 자체적으로 동력을 가하여 유로를 개폐하거나, 디스크 외부에서 구동력을 받아유로를 개폐할 수 있다.  The valve is located at one side of the flow path to selectively open and close the flow path. The valve may be of various structures that can block or open the flow path. The valve may open and close the flow path by applying power to itself, or may open and close the flow path by a driving force from outside the disc.
밸브가 구동되어 유로가 폐쇄되면 유로로 연결된 구성부 사이의 유체 이송이 차단된다. 필요시 밸브가 구동되어 유로가 개방되면 구성부 간에 유체가 이송되어 필요한 공정이 개시된다.  When the valve is driven and the flow path is closed, fluid transfer between components connected to the flow path is interrupted. If necessary, the valve is driven to open the flow path and fluid is transferred between the components to initiate the required process.
이와 같이, 본 장치는 디스크 내에 구비된 시료수용부, 공급부, 필터부 및 폐액수용부를 통해 시료에서 나노 입자를 분리하여 검출하는 일련의 과정을 일괄적으로 수행할 수 있게 된다.  As described above, the apparatus can perform a series of processes of separating and detecting nanoparticles from a sample through a sample accommodating part, a supply part, a filter part, and a waste liquid accommodating part provided in the disk.
이하, 도 1을 참조하여 일 실시예에 따른 나노 입자 검출 장치의 각 구성부에 대해 구체적으로 설명한다.  Hereinafter, each component of the nanoparticle detection apparatus according to an embodiment will be described in detail with reference to FIG. 1.
이하 설명에서, 디스크에 형성되는 각 유로, 밸브, 챔버는 설명의 편의를 위해 그 구성부에 따라 개별적으로 구분하여 지칭한다. 또한, 유로, 밸브, 챔버라고 기재한 경우는 디스크에 형성된 유로, 밸브, 챔버 전체를 지칭할 수 있다.  In the following description, each of the flow paths, valves, and chambers formed in the disk will be referred to separately according to their configuration for convenience of description. In addition, when describing as a flow path, a valve, and a chamber, it may refer to the flow path, a valve, and the whole chamber formed in the disc.
본 실시예에서, 디스크 ( 10)는 원판 형태의 상판 (도 4의 12 참조)과 하판 (도 4의 14 참조) 두 개의 판 구조물을 접합하여 형성될 수 있다. In the present embodiment, the disk 10 may be formed by joining two plate structures of a disk-shaped upper plate (see 12 in FIG. 4) and a lower plate (see 14 in FIG. 4).
본 실시예의 ' 시료수용부 (20)는 디스크 (10)에 형성되어 시료를 수용하는 시료챔버 (21), 시료챔버 (21)와 필터부 (30)를 연결하며 디스크 (10)의 원심력에 따라 시료가 이송되는 제 1 유로 (22), 제 1 유로 (22)를 개폐하는 제 1 밸브 (23)를 포함할 수 있다. The sample accommodating portion 20 of the present embodiment is formed on the disk 10 to provide a sample. It connects the sample chamber 21, the sample chamber 21 and the filter part 30 to receive, and opens and closes the 1st flow path 22 and the 1st flow path 22 which a sample is conveyed according to the centrifugal force of the disk 10. FIG. It may comprise a first valve (23).
시료챔버 (21)는 디스크 ( 10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 시료챔버 (21)는 제 1 유로 (22)를 통해 필터부 (30)와 연결된다. 시료챔버 (21)는 일측에 시료를 주입하기 위한 홀이 형성될 수 있다. 시료챔버 (21)에 수용된 시료는 디스크 ( 10)의 원심력에 의해 게 1 유로 (22)를 통해 이동된다. 게 1 유로 (22) 일측에는 제 1 유로 (22)를 개폐하기 위한 제 1 밸브 (23)가 설치된다. 이에, 게 1 밸브 (23)를 작동시켜 제 1 유로 (22)를 개방시키게 되면, 시료챔버 (21)의 시료가 제 1 유로 (22)를 따라 필터부 (30)로 이동된다.  The sample chamber 21 can be understood as an empty space formed inside the disk 10. The sample chamber 21 is connected to the filter unit 30 through the first flow passage 22. The sample chamber 21 may be formed with a hole for injecting a sample on one side. The sample contained in the sample chamber 21 is moved through the one flow path 22 by the centrifugal force of the disk 10. One side of the first flow passage 22 is provided with a first valve 23 for opening and closing the first flow passage 22. Accordingly, when the first flow passage 22 is opened by operating the crab valve 23, the sample in the sample chamber 21 is moved to the filter portion 30 along the first flow passage 22.
필터부 (30)는 유체 이동방향을 따라 입측공간 (32)과 출측공간 (33)을 구비하며 입측공간 (32)과 출측공간 (33) 사이에 상기 여과막 (34)이 설치된 필터챔버 (31)를 포함할 수 있다. 필터챔버 (31)는 디스크 ( 10) 내에 형성되는 내부가 빈 공간으로 여과막 (34)을 경계로 입측공간 (32)과 출측공간 (33)으로 구분될 수 있다. 필터챔버 (31)의 입측공간 (32)은 시료 등 유체가 유입되는 공간이며, 여과된 나노 입자를 수용하는 공간이다. 입측공간 (32)에서 나노 입자의 검출이 이루어진다.  The filter unit 30 has an entrance space 32 and an exit space 33 along the fluid movement direction, and the filter chamber 31 is provided with the filtration membrane 34 between the entrance space 32 and the exit space 33. It may include. The filter chamber 31 is an empty space formed in the disk 10 and may be divided into an entry space 32 and an exit space 33 with a boundary of the filtration membrane 34. The entrance space 32 of the filter chamber 31 is a space into which fluid, such as a sample, flows in, and is a space for receiving filtered nanoparticles. The nanoparticles are detected in the entrance space 32.
필터챔버 (31) 일측에는 원활한 여과가 이루어질 수 있도록 통풍구가 형성될 수 있다. 통풍구는 예를 들어, 상판에 형성될 수 있다. 이에, 시료 여과시 필터챔버 (31) 내에 존재하던 공기 등이 디스크 ( 10) 외부로 배출되면서 여과가보다 원활하게 이루어지게 된다.  One side of the filter chamber 31 may be provided with a vent so that smooth filtration can be made. The vent may be formed in the top plate, for example. As a result, air that is present in the filter chamber 31 when the sample is filtered is discharged to the outside of the disk 10, so that the filtration is more smoothly performed.
입측공간 (32)은 제 1 유로 (22)를 통해 시료수용부 (20)의 시료챔버 (21)와 연결된다. 출측공간 (33)은 폐액수용부 (70)와 연결된다. 이에, 입측챔버로 유입된 시료는 여과막 (34)을 거쳐 나노 입자가 분리된다. 분리된 나노 입자는 입측공간 (32)에 수용되며, 여과막 (34)을 통과한 여과액은 출측공간 (33)에 연결된 폐액수용부 (70)로 배출 처리된다.  The entrance space 32 is connected to the sample chamber 21 of the sample accommodating portion 20 through the first flow passage 22. The exit space 33 is connected to the waste liquid receiving part 70. As a result, the nanoparticles are separated from the sample introduced into the entrance chamber via the filtration membrane 34. The separated nanoparticles are accommodated in the entrance space 32, and the filtrate passing through the filtration membrane 34 is discharged to the waste solution receiving portion 70 connected to the exit space 33.
본 실시예에서, 필터챔버 (31)의 출측공간 (33)에는 투과액이 미리 수용될 수 있다.  In this embodiment, the permeate may be previously contained in the exit space 33 of the filter chamber 31.
투과액은 시료에서 나노 입자가 분리된 상태와 동일한 용액, 즉 쪄과막 (34)을 통해 여과되고 나온 여과액과 동일한 용액일 수 있다. 또는 투과액은 분리 대상 입자가 없고 시료나 여과액에 영향을 주지 않는 용액으로, 여과막 (34)의 출측면에서 여과막 (34) 기공의 모세관 압력을 줄일 수 있는 용액이면 모두 적용 가능하다. The permeate is the same solution as the nanoparticles separated from the sample, It may be the same solution as the filtrate which has been filtered through the membrane 34. Alternatively, the permeate is a solution that does not have particles to be separated and does not affect the sample or the filtrate, and any solution can be applied as long as it can reduce the capillary pressure of the pores of the filter membrane 34 at the exit side of the filter membrane 34.
이에, 여과막 (34)의 입측공간 (32)으로 유입된 시료가 보다 작은 압력하에서도 여과막 (34)의 미세한 기공을 용이하게 통과할 수 있게 된다. 따라서, 보다 신속하게 시료를 여과하여 나노 입자를 분리해낼 수 있게 된다.  Accordingly, the sample introduced into the entrance space 32 of the filtration membrane 34 can easily pass the fine pores of the filtration membrane 34 even under a smaller pressure. Therefore, the sample can be filtered more quickly to separate the nanoparticles.
투과액은 예를 들어, 장치 제조 시 필터챔버 (31) 출측공간 (33)에 미리 수용시킬 수 있다. 또는, 디스크 ( 10) 하판의 출측공간 (33)과 연결되는 별도의 주입구를 형성하여, 장치 제조 후 상기 주입구를 통해 출측공간 (33)에 투과액을 주입할 수 있다.  The permeate can be accommodated in the filter chamber 31 exit space 33, for example, during device manufacture. Alternatively, by forming a separate injection port connected to the exit space 33 of the lower plate of the disk 10, after the manufacture of the device can be injected into the exit space 33 through the injection hole.
여과막 (34)은 표면에 수많은 기공이 형성된 막 구조물이다. 본 실시예에서, 여과막 (34)은 시료에 포함된 나노 입자 분리를 위해 기공이 lnm 내지 lOOOnm로 형성될 수 있다. 여과막 (34)은 분리하고자 하는 나노 입자의 종류나 크기에 따라 상기 범위 내에서 적절한 기공 크기로 선택될 수 있다. 여과막 (34)의 기공 크기가 상기 범위를 벗어나는 경우 나노 입자의 분리가 이루어지지 않거나 분리 효율이 저하될 수 있다.  The filtration membrane 34 is a membrane structure in which numerous pores are formed on the surface. In the present embodiment, the filtration membrane 34 may be formed with pores of lnm to 100nm for separation of nanoparticles contained in the sample. The filtration membrane 34 may be selected to an appropriate pore size within the above range according to the type or size of the nanoparticles to be separated. If the pore size of the filtration membrane 34 is out of the above range, the nanoparticles may not be separated or the separation efficiency may be reduced.
여과막 (34)은 생체 세포나 무기재료 입자 또는 유기재료 입자 등을 여과할 수 있도록 다양한 소재로 형성될 수 있다. 여과막 (34)은 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 올레핀 코폴리머를 포함한 열경화성 플라스틱, 양극산화알루미늄, 니켈, 실리콘 등의 재질로 형성될 수 있다. 예를 들어, 양극산화알루미늄 재질로 형성된 여과막은 타 재질에 비해 높은 기공도와 비교적 균일한 지름의 기공을 갖는다.  The filtration membrane 34 may be formed of various materials to filter living cells, inorganic material particles, organic material particles, and the like. The filtration membrane 34 may be formed of a material such as polycarbonate, polystyrene, polymethyl methacrylate, thermosetting plastic including cyclic olefin copolymer, anodized aluminum, nickel, silicon, or the like. For example, the filtration membrane formed of anodized aluminum has higher porosity and relatively uniform diameter pores than other materials.
본 실시예의 여과막 (34)은 생체 시료에 적용할 수 있도록 생물학적으로 비활성인 소재로 형성될 수 있다. 또한, 여과막 (34)은 동시에 광학적 투과성을 구비한 소재로 형성될 수 있다. 이를 통해, 상기 여과막 (34)을 디스크 ( 10)로부터 분리하지 않고도 광학 검출기를 이용하여 나노 입자를 검출할 수 있다. 본 장치는 디스크 ( 10) 상에서 나노 입자를 검출하는 구조 외에, 디스크 (10)에서 여과막 (34)을 분리하여 검출 공정을 수행할 수 있다. 여과막 (34) 분리 구조에 대해서는 뒤에서 다시 상세하게 설명한다. The filtration membrane 34 of the present embodiment may be formed of a biologically inert material so that it can be applied to a biological sample. In addition, the filtration membrane 34 may be formed of a material having optical transparency at the same time. Through this, nanoparticles can be detected using an optical detector without separating the filtration membrane 34 from the disk 10. In addition to the structure for detecting nanoparticles on the disk 10, the apparatus may perform the detection process by separating the filtration membrane 34 from the disk 10. The separation structure of the filtration membrane 34 will be described later in detail.
필터부는 하나의 여과막이 구비되거나, 하나의 필터챔버 내에 두 개 이상의 여과막을 구비한 구조일 수 있다. 필터챔버에 두 개 이상의 여과막이 구비된 구조의 경우 입측공간과 출측공간 사이에 복수개의 여과막이 적층되어 배치될 수 있다. 그리고 각 여과막은 유체 이송방향을 따라 즉, 입측공간에서 출측공간을 향해 기공 크기가 점차적으로 작아지는 구조일 수 있다. 예를 들어, 입측공간쪽에 배치된 여과막은 기공 크기가 50nm 이고, 출측공간을 향해 그 아래 적층된 여과막은 기공 크기가 5nm 일 수 있다.  The filter unit may be provided with one filtration membrane or may have a structure including two or more filtration membranes in one filter chamber. In the case where the filter chamber is provided with two or more filtration membranes, a plurality of filtration membranes may be stacked and disposed between the entrance space and the exit space. Each filtration membrane may have a structure in which the pore size gradually decreases along the fluid transfer direction, that is, from the entrance space to the exit space. For example, the filtration membrane disposed in the entrance space may have a pore size of 50 nm, and the filtration membrane stacked below the exit space may have a pore size of 5 nm.
이에, 나노 입자를 포함하는 시료는 먼저 입측공간쪽으로 배치된 기공이 큰 여과막을 통과하면서 일차 입자가 분리되고, 다음 기공이 작은 여과막을 통과하면서 나노 입자가 분리된다. 따라서, 특정 크기 범위의 나노 입자만을 선별하여 분리 포집할 수 있게 된다.  Accordingly, in the sample including nanoparticles, primary particles are separated while the pores disposed toward the entrance space pass through the large filtration membrane, and nanoparticles are separated while the pores pass through the small filtration membrane. Therefore, only nanoparticles of a specific size range can be screened and separated.
상기한 구조 외에, 필터부는 적어도 두 개 이상이 유체 이송방향을 따라 순차적으로 배치되고, 각 필터부에 구비된 여과막 (34)은 유체 이송방향을 따라 기공이 점차적으로 작아지는 구조일 수 있다. 이러한 구조는 도 2에 도시되어 있으며, 뒤에서 다시 설명하도록 한다. 이러한 구조 역시, 나노 입자를 포함하는 시료는 기공이 큰 여과막을 통과하면서 일차 입자가 분리되고, 다음 필터부에서 기공이 작은 여과막을 통과하면서 나노 입자가 분리된다. 따라서, 특정 크기 범위의 나노 입자만을 선별하여 분리 포집할 수 있게 된다.  In addition to the above-described structure, at least two or more filter units may be sequentially disposed along the fluid transfer direction, and the filtration membranes 34 provided in each filter unit may have a structure in which pores gradually decrease along the fluid transfer direction. This structure is shown in FIG. 2 and will be described later. Also in this structure, the sample containing the nanoparticles is separated from the primary particles while passing through the filter membrane with large pores, and the nanoparticles are separated while passing through the filter membrane with small pores in the next filter portion. Therefore, only the nanoparticles of a specific size range can be separated and collected.
본 실시예에서, 공급부 (40)는 여과막 (34)에 분리된 나노 입자 검출을 위한 것으로, 검출액을 필터부 (30)로 공급하는 구조일 수 밌다. 검출액은 나노 입자 검출을 위한 물질로, 예를 들어 항원에 붙는 항체, 항체 표지를 위한 시약, 반응용 기질액, 핵산 추출 용액, 세척액 등일 수 있다. 검출액은 필터부에서 분리된 나노 입자를 검출하는 데 이용될 수 있는 물질이면 모두 적용가능하다.  In the present embodiment, the supply unit 40 is for detecting nanoparticles separated from the filtration membrane 34, and may have a structure for supplying the detection liquid to the filter unit 30. The detection solution is a material for detecting nanoparticles, and may be, for example, an antibody attached to an antigen, a reagent for labeling an antibody, a reaction substrate solution, a nucleic acid extracting solution, a washing solution, or the like. The detection liquid is applicable to any material that can be used to detect nanoparticles separated from the filter unit.
이를 위해, 공급부 (40)는 디스크 ( 10)에 형성되어 나노 입자 검출을 위해 제공되는 항체를 수용하는 항체챔버 (41), 항체챔버 (41)와 필터부 (30)를 연결하며 디스크 (10)의 원심력에 따라 항체를 필터부 (30)로 이송하는 제 2 유로 (42), 제 2 유로 (42)를 개폐하는 게 2 밸브 (43)를 포함할 수 있다. To this end, the supply 40 is formed in the disk 10 to detect nanoparticles. A second flow passage 42 which connects the antibody chamber 41, the antibody chamber 41, and the filter portion 30 containing the antibodies provided for the purpose and transfers the antibody to the filter portion 30 according to the centrifugal force of the disk 10. ), Opening and closing the second flow path 42 may include two valves 43.
항체챔버 (41)는 디스크 ( 10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 항체챔버 (41)는 제 2 유로 (42)를 통해 필터챔버 (31)와 연결된다. 항체챔버 (41)는 일측에 항체를 주입하기 위한 홀이 형성될 수 있다. 항체챔버 (41)에 수용된 항체는 디스크 ( 10)의 원심력에 의해 게 2 유로 (42)를 통해 이동된다. 게 2 유로 (42) 일측에는 제 2 유로 (42)를 개폐하기 위한 게 2 밸브 (43)가 설치된다. 이에, 제 2 밸브 (43)를 작동시켜 제 2 유로 (42)를 개방시키게 되면, 항체챔버 (41)의 항체가 제 2 유로 (42)를 따라 필터챔버 (31)로 이동된다.  The antibody chamber 41 can be understood as an empty space formed inside the disk 10. The antibody chamber 41 is connected to the filter chamber 31 through the second flow passage 42. The antibody chamber 41 may be formed with a hole for injecting the antibody on one side. The antibody contained in the antibody chamber 41 is moved through the two flow paths 42 by the centrifugal force of the disk 10. One side of the crab 2 flow passage 42 is provided with a crab 2 valve 43 for opening and closing the second flow passage 42. Accordingly, when the second flow passage 42 is opened by operating the second valve 43, the antibody of the antibody chamber 41 is moved to the filter chamber 31 along the second flow passage 42.
본 실시예에서, 항체는 나노 입자의 바이오마커와 결합하여 바이오마커를 붙잡아 고정하는 1차 검출 항체로, biot in이 붙은 검출 항체 (detect ion ant ibody)일 수 있다.  In the present embodiment, the antibody is a primary detection antibody that binds to the biomarker of the nanoparticles and captures and fixes the biomarker, and may be a detection ion ant ibody having a biot in.
공급부 (40)는 시약 공급을 위해, 디스크 (10)에 형성되어 나노 입자를 검출하는 항체의 표지를 위해 제공되는 시약을 수용하는 시약챔버 (44), 시약챔버 (44)와 필터부 (30)를 연결하며 디스크 ( 10)의 원심력에 따라 시약을 필터부 (30)로 이송하는 제 3 유로 (45) , 제 3 유로 (45)를 개폐하는 거 13 밸브 (46)를 더 포함할 수 있다.  The supply section 40 is formed on the disk 10 for reagent supply, and includes a reagent chamber 44, a reagent chamber 44, and a filter section 30 containing a reagent provided for labeling an antibody for detecting nanoparticles. And a third valve 45 for opening and closing the third flow path 45 and the third flow path 45 for transferring the reagent to the filter unit 30 according to the centrifugal force of the disk 10.
시약챔버 (44)는 디스크 ( 10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 시약챔버 (44)는 계 3 유로 (45)를 통해 필터챔버 (31)와 '연결된다. 시약챔버 (44)는 일측에 시약를 주입하기 위한 홀이 형성될 수 있다. 시약챔버 (44)에 수용된 시약는 디스크 ( 10)의 원심력에 의해 제 3 유로 (45)를 통해 이동된다. 제 3 유로 (45) 일측에는 게 3 유로 (45)를 개폐하기 위한 게 3 밸브 (46)가 설치된다. 이에, 게 3 밸브 (46)를 작동시켜 제 3 유로 (45)를 개방시키게 되면, 시약챔버 (44)의 시약이 제 3 유로 (45)를 따라 필터챔버 (31)로 이동된다. The reagent chamber 44 may be understood as an empty space formed inside the disk 10. The reagent chamber 44 'is connected to the filter chamber 31 through the three flow paths 45. The reagent chamber 44 may be formed with a hole for injecting a reagent on one side. The reagent contained in the reagent chamber 44 is moved through the third flow path 45 by the centrifugal force of the disk 10. One side of the third flow passage 45 is provided with a crab three valve 46 for opening and closing the crab three flow passage 45. Accordingly, when the third flow passage 45 is opened by operating the crab valve 46, the reagent of the reagent chamber 44 is moved to the filter chamber 31 along the third flow passage 45.
본 실시예에서, 시약은 항체에 결합되는 형광이 붙은 2차 검출 항체일 수 있다. 시약은 형광 발광 등 광학신호를 이용하여 바이오마커를 분석 및 정량화할 수 있는 물질이면 모두 적용가능하다. 예를 들어, 시약은 항체 시그널을 증폭시키기 위한 streptavidin-H P 일 수 있다. 시약을 통해 검출 항체의 신호가 증폭되어 측정에 유리하다. In this embodiment, the reagent may be a fluorescent secondary detection antibody that binds to the antibody. The reagent uses a biosignal such as fluorescent light to biomarker Any material that can be analyzed and quantified is applicable. For example, the reagent may be streptavidin-H P to amplify the antibody signal. The reagent amplifies the signal of the detection antibody, which is advantageous for measurement.
공급부 (40)는 상기 디스크 (10)에 형성되어 나노 입자 검출반응을 위해 제공되는 기질액을 수용하는 기질액챔버 (47), 상기 기질액챔버 (47)와 필터부 (30)를 연결하며 디스크 (10)의 원심력에 따라 기질액을 필터부 (30)로 이송하는 게 4 유로 (48), 상기 제 4 유로 (48)를 개폐하는 제 4 밸브 (49)를 더 포함할 수 있다.  The supply unit 40 is formed in the disk 10 and connects the substrate liquid chamber 47 containing the substrate liquid provided for the nanoparticle detection reaction, the substrate liquid chamber 47 and the filter unit 30. According to the centrifugal force of (10), it may further include a fourth flow passage 48 for transferring the substrate liquid to the filter portion 30 and a fourth valve 49 for opening and closing the fourth flow passage 48.
기질액챔버 (47)는 디스크 (10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 기질액챔버 (47)는 제 4 유로 (48)를 통해 필터챔버 (31)와 연결된다. 기질액챔버 (47)는 일측에 기질액을 주입하기 위한 홀이 형성될 수 있다. 기질액챔버 (47)에 수용된 기질액은 디스크 ( 10)의 원심력에 의해 제 4 유로 (48)를 통해 이동된다. 제 4 유로 (48) 일측에는 제 4 유로 (48)를 개폐하기 위한 제 4 밸브 (49)가 설치된다. 이에, 제 4 밸브 (49)를 작동시켜 제 4 유로 (48)를 개방시키게 되면, 기질액챔버 (47)의 기질액이 제 4 유로 (48)를 따라 필터챔버 (31)로 이동된다.  Substrate liquid chamber 47 can be understood as an internal space formed in the disk (10). The substrate liquid chamber 47 is connected to the filter chamber 31 through the fourth flow path 48. Substrate liquid chamber 47 may be formed with a hole for injecting the substrate liquid on one side. The substrate liquid contained in the substrate liquid chamber 47 is moved through the fourth flow path 48 by the centrifugal force of the disk 10. One side of the fourth flow passage 48 is provided with a fourth valve 49 for opening and closing the fourth flow passage 48. Accordingly, when the fourth valve 49 is operated to open the fourth flow passage 48, the substrate liquid of the substrate liquid chamber 47 is moved to the filter chamber 31 along the fourth flow passage 48.
본 실시예에서, 기질액은 TMB(Tetramethylbenzidine) 용액일 수 았다. TMB는 HRP의 기질로 HRP에 의해 구조가 바뀌면서 색상을 나타낸다. ΤΜΒ(3 , 3 ' , 5 , 5 ' -tetramethylbenzidine)는 Peroxidase 촉매 작용에 의해 수소 과산화물로 산화될 때 파란색을 띄고 370nm 및 652nm에서 최대 흡광도 (0D;0pt i cal densi ty)값을 가지며 , 산에 의해 '반웅을 정지시키면 노란색으로 바뀌며, 450nm에서 최대 0D값을 나타낸다. " In this example, the substrate solution may be TMB (Tetramethylbenzidine) solution. TMB is a substrate of HRP and changes color by HRP. ΤΜΒ (3,3 ', 5,5'-tetramethylbenzidine) is blue when oxidized to hydrogen peroxide by Peroxidase catalysis and has maximum absorbance (0D; 0pt i cal densi ty) at 370nm and 652nm. 'When the reaction is stopped, it turns yellow and shows the maximum 0D value at 450nm. "
또한, 공급부 (40)는 나노 입자 검출 반웅을 멈추기 위해 제공되는 정지용액 (stop solut ion)을 제공하는 구조일 수 있다. 이를 위해, 공급부 (40)는 디스크 ( 10)에 형성되어 정지용액을 수용하는 정지용액챔버 (50)를 더 구비하며, 정지용액챔버 (50)는 연결유로 (51)를 통해 기질액챔버 (47)에 연결되고, 연결유로 (51) 일측에 설치된 연결밸브 (52) 구동에 따라 정지용액을 기질액챔버 (47)를 거쳐 필터챔버 (31)로 공급하는 구조일 수 있다.  In addition, the supply unit 40 may be a structure that provides a stop solut ion provided to stop the nanoparticle detection reaction. To this end, the supply unit 40 is further provided with a stop solution chamber 50 formed in the disk 10 to receive the stop solution, the stop solution chamber 50 is the substrate liquid chamber 47 through the connecting passage 51 ) And the stop solution may be supplied to the filter chamber 31 through the substrate liquid chamber 47 according to the driving of the connection valve 52 installed at one side of the connection flow path 51.
정지용액은 강산이 포함된 용액일 수 있다. 정지용액은 기질액이 효소에 의해 색을 변화시키는 반응을 정지시킨다. The stop solution may be a solution containing a strong acid. The stop solution is a substrate solution Stop the reaction of changing the color by the enzyme.
항체챔버 (41), 시약챔버 (44) 및 기질액챔버 (47)와 기질액챔버 (47)에 연결되는 정지용액챔버 (50)는 디스크 ( 10)의 원심력 방향을 따라 필터챔버 (31)보다 디스크 (10) 중심쪽에 위치한다. 이에, 원심력이 가해지면 항체챔버 (41) , 시약챔버 (44), 기질액챔버 (47) 및 정지용액챔버 (50)에 수용되어 있는 유체가 원심력에 의해 유로를 따라 필터챔버 (31)로 이송된다. 각 유로 상에 설치된 밸브는 공정 순서에 따라 해당 유로를 개방 또는 폐쇄작동하여 필요한 유체를 필터챔버 (31)로 순차 공급한다.  The antibody chamber 41, the reagent chamber 44, and the stationary solution chamber 50 connected to the substrate liquid chamber 47 and the substrate liquid chamber 47 are more than the filter chamber 31 along the centrifugal force direction of the disc 10. Located at the center of the disk (10). Accordingly, when centrifugal force is applied, the fluid contained in the antibody chamber 41, the reagent chamber 44, the substrate liquid chamber 47, and the stop solution chamber 50 is transferred to the filter chamber 31 along the flow path by the centrifugal force. do. Valves provided on each flow path open or close the flow path according to the process sequence to sequentially supply the required fluid to the filter chamber 31.
또한, 공급부 (40)는 보다 효율적이고 정확한 검출을 위해 필터부 (30)를 세척하기 위한 세척부 (60)를 더 포함할 수 있다.  In addition, the supply unit 40 may further include a washing unit 60 for washing the filter unit 30 for more efficient and accurate detection.
본 실시예에서, 세척부 (60)는 상기 디스크 ( 10)에 형성되어 세척액을 수용하는 세척액챔버 (61), 세척액챔버 (61)와 필터부 (30)를 연결하며 디스크 ( 10)의 원심력에 따라 세척액을 필터부 (30)로 이송하는 겨 15 유로 (62), 제 5 유로 (62)를 개폐하는 게 5 밸브 (63)를 포함할 수 있다. In the present embodiment, the washing unit 60 is formed in the disk 10 to connect the washing liquid chamber 61, the washing liquid chamber 61 and the filter unit 30 to receive the washing liquid, and to the centrifugal force of the disk 10. Accordingly, the chaff 15 may include the five valves 63 to open and close the fifteen flow passages 62 and the fifth flow passage 62 to transfer the washing liquid to the filter unit 30.
세척액챔버 (61)는 디스크 ( 10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 세척액챔버 (61)는 제 5 유로 (62)를 통해 필터챔버 (31)와 연결된다. 세척액챔버 (61)는 일측에 세척액을 주입하기 위한 홀이 형성될 수 있다. 세척액챔버 (61)에 수용된 세척액은 디스크 ( 10)의 원심력에 의해 제 5 유로 (62)를 통해 이동된다. 제 5 유로 (62) 일측에는 제 5 유로 (62)를 개폐하기 위한 게 5 밸브 (63)가 설치된다. 이에, 게 5 밸브 (63)를 작동시켜 제 5 유로 (62)를 개방시키게 되면, 세척액챔버 (61)의 세척액이 제 5 유로 (62)를 따라 필터챔버 (31)로 이동된다.  The washing liquid chamber 61 may be understood as an empty space formed inside the disk 10. The washing liquid chamber 61 is connected to the filter chamber 31 through the fifth flow path 62. The washing liquid chamber 61 may be formed with a hole for injecting the washing liquid on one side. The washing liquid contained in the washing liquid chamber 61 is moved through the fifth flow path 62 by the centrifugal force of the disk 10. One side of the fifth flow passage 62 is provided with a five-valve 63 for opening and closing the fifth flow passage 62. Accordingly, when the fifth flow passage 62 is opened by operating the crab 5 valve 63, the washing liquid of the washing liquid chamber 61 is moved to the filter chamber 31 along the fifth flow passage 62.
세척액은 필터챔버 (31)에 잔존하고 있는 여분의 항체나 시약 등을 세척하여 제거하게 된다. 필터챔버 (31)로 이동되어 필터챔버 (31)의 입측공간 (32)을 세척한 후 세척액은 여과막 (34)을 통과하여 출측공간 (33)으로 이동된 후 출측공간 (33)과 연결된 유로를 통해 폐액수용부 (70)로 배출된다. ·  The washing liquid is removed by washing out any excess antibody or reagent remaining in the filter chamber 31. After being moved to the filter chamber 31 to wash the entrance space 32 of the filter chamber 31, the washing liquid passes through the filtration membrane 34 to the exit space 33, and then passes through a flow path connected to the exit space 33. Through the waste liquid receiving portion 70 is discharged. ·
이 과정에서 나노 입자에 결합되지 않은 과량의 항체나 항체에 결합되지 않은 과량이 시약이 필터챔버 (31)의 입측공간 (32) 내에서 세척되어 세척액과 함께 출측공간 (33)으로 제거된다. 본 실시예에서, 세척액챔버 (61)는 복수개로 구비되어 세척액이 각 세척액챔버 (61)에 구분 수용될 수 있다. 이에, 필요시 복수회에 걸쳐 필터챔버 (31) 내부를 세척할 수 있다. 이러한 구조는, 각 세척액챔버 (61)의 출측 유로가 제 5 유로 (62)에 연결되어 게 5 유로 (62)를 통해 필터챔버 (31)로 세척액을 공급할 수 있다. 또한, 도 1에 도시된 바와 같이, 각 세척액챔버 (61)의 출측이 서로 연결되며, 이 연결부에 세척액을 배출하는 출측 밸브 (64)가 설치될 수 있다. 즉, 각 세척액챔버 (61)는 나란하게 배치되고 이웃하는 세척액챔버 (61)간에 외측 단부가 서로 연결된다. 이에 필요시 제 5 밸브 (63)와 각 세척액챔버 (61)의 연결부에 설치된 출측밸브 (64)를 순차적으로 개방 작동하여 각 세척액챔버 (61)의 세척액을 차례로 필터챔버 (31)에 공급할 수 있다. In this process, the excess antibody that is not bound to the nanoparticles or the excess antibody that is not bound to the antibody is washed in the entry space 32 of the filter chamber 31 and removed together with the washing liquid into the exit space 33. In this embodiment, the washing liquid chamber 61 is provided in plurality, so that the washing liquid can be separately accommodated in each washing liquid chamber 61. Accordingly, the filter chamber 31 may be washed in a plurality of times as necessary. With this structure, the outlet flow passage of each washing liquid chamber 61 is connected to the fifth flow passage 62 so that the washing liquid can be supplied to the filter chamber 31 through the cradle 5 passage 62. In addition, as shown in Figure 1, the outlet side of each washing liquid chamber 61 is connected to each other, the outlet valve 64 for discharging the washing liquid may be provided in this connection portion. That is, each washing liquid chamber 61 is arranged side by side and the outer end is connected to each other between neighboring washing liquid chamber 61. Therefore, if necessary, the outlet valve 64 provided at the connecting portion of the fifth valve 63 and each washing liquid chamber 61 may be sequentially opened to supply the washing liquid of each washing liquid chamber 61 to the filter chamber 31 in turn. .
세척액챔버 (61)는 공급부 (40 )의 다른 챔버와 마찬가지로 디스크 (10)의 원심력 방향을 따라 필터챔버 (31)보다 디스크 ( 10) 중심쪽에 위치한다. 이에, 원심력이 가해지면 세척액챔버 (61)에 수요오디어 있는 세척액이 원심력에 의해 유로를 따라 필터챔버 (31)로 이송된다. The washing liquid chamber 61 is located at the center of the disk 10 rather than the filter chamber 31 along the centrifugal force direction of the disk 10 like the other chambers of the supply part 40 . Accordingly, when centrifugal force is applied, the washing liquid demanded in the washing liquid chamber 61 is transferred to the filter chamber 31 along the flow path by the centrifugal force.
폐액수용부 (70)는 디스크 ( 10)에 형성되어 폐액이 수용되는 폐액챔버 (71), 폐액챔버 (71)와 필터부 (30)를 연결하며 디스크 ( 10)의 원심력에 따라 폐액을 폐액챔버 (71)로 이송하는 계 6 유로 (72)를 포함할 수 있다. 제 6 유로 (72) 일측에는 제 6 유로 (72)를 개폐하는 게 6 밸브 (도 2의 73 참조)가 더 설치될 수 있다. The waste liquid receiving portion 70 is formed in the disk 10 to connect the waste liquid chamber 71, the waste liquid chamber 71, and the filter portion 30 , in which the waste liquid is received, and the waste liquid chamber according to the centrifugal force of the disk 10. The system may include a sixth flow path 72 that is transferred to the 71. One side of the sixth flow passage 72 may further include a six valve (see 73 of FIG. 2) to open and close the sixth flow passage 72.
폐액챔버 (71)는 디스크 (10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 폐액챔버 (71)는 제 6 유로 (72)를 통해 필터챔버 (31)와 연결된다. 필터챔버 (31)의 출측공간 (33)으로 이동된 폐액은 디스크 (10)의 원심력에 의해 제 6 유로 (72)를 통해 폐액챔버 (71)로 이동된다.  The waste liquid chamber 71 can be understood as an empty space formed inside the disk 10. The waste liquid chamber 71 is connected to the filter chamber 31 through the sixth flow path 72. The waste liquid moved to the outlet space 33 of the filter chamber 31 is moved to the waste liquid chamber 71 through the sixth flow path 72 by the centrifugal force of the disk 10.
폐액챔버 (71)는 일측에는 필터챔버 (31)의 여과막 (34)을 거쳐 폐액이 출측공간 (33)으로 원활하게 이동될 수 있도록 통풍구가 형성될 수 있다. 통풍구는 예를 들어, 상판에 형성될 수 있다. 이에, 시료 여과시 필터챔버 (31) 출측공간 (33)과 폐액챔버 (71)에 존재하던 공기 등이 디스크 ( 10) 외부로 배출되면서 여과가보다 원활하게 이루어지게 된다. 상기한 구조로 되어, 본 장치는 시료 주입 후 나노 소포체 추출 및 검출 전 과정이 하나의 디스크 ( 10)를 통해 일괄적으로 수행된다. 이에, 나노 입자 검출 작업을 보다 간편하게 신속하고 효과적으로 수행할 수 있게 된다. The waste liquid chamber 71 may have a vent hole at one side thereof so that the waste liquid may be smoothly moved to the exit space 33 through the filtration membrane 34 of the filter chamber 31. The vent may be formed in the top plate, for example. As a result, the air, which is present in the filter chamber 31 exiting space 33 and the waste liquid chamber 71 when the sample is filtered, is discharged to the outside of the disk 10, so that the filtration is more smoothly performed. With the structure described above, the device extracts nano vesicles after sample injection and The whole process of detection is carried out collectively via one disc 10. Accordingly, the nanoparticle detection operation can be performed more simply and quickly and effectively.
도 2는 나노 입자 검출 장치의 또 다른 실시예를 도시하고 있다. 도 2에 도시된 실시예 역시 디스크 ( 10)의 형태나 디스크 (10) 내에 구비되는 시료수용부 (20), 공급부 (40), 필터부 (30) 및 폐액수용부 (70)의 기본 구성은 도 1에 도시된 실시예와 동일하다. 이에, 이하 설명에서 동일한 구성에 대해서는 동일한 도면부호를 사용하며 그 상세한 설명은 생략한다.  2 shows another embodiment of a nanoparticle detection device. In the embodiment shown in FIG. 2, the basic configuration of the sample receiving portion 20, the supply portion 40, the filter portion 30 and the waste liquid containing portion 70 provided in the form of the disc 10 or in the disc 10 is Same as the embodiment shown in FIG. 1. Therefore, in the following description, the same reference numerals are used for the same components, and detailed description thereof will be omitted.
도 2에 도시된 바와 같이, 본 실시예의 시료수용부 (20)는 시료를 정제하여 불순물을 포함한 비표적물질올 제거하는 구조일 수 있다.  As shown in FIG. 2, the sample accommodating part 20 of the present exemplary embodiment may have a structure for removing a non-target material including impurities by purifying a sample.
. 이를 위해, 시료수용부 (20)는 디스크 ( 10)에 형성되어 시료를 수용하는 시료챔버 (21)가 디스크 ( 10) 원심력에 따라 시료를 원심 분리하는 구조이고, 원심력 방향을 따라 디스크 (10)의 외측을 향하는 선단에 원심 분리된 시료가 수용되는 침강부 (24)가 길게 연장 형성되고, 게 1 유로 (22)는 디스크 ( 10)의 회전 중심을 향해 상기 시료챔버 (21)의 침강부 (24)의 경계지점에 연결되어 원심분리된 상층액을 필터부 (30)로 이송하는 구조일 수 있다. 비표적물질이란 정제 대상인 나노 입자를 포함하는 용액 이외의 불순물을 의미할 수 있다.  . To this end, the sample accommodating part 20 is formed in the disk 10 so that the sample chamber 21 for accommodating the sample centrifugally separates the sample according to the disc 10 centrifugal force, and the disc 10 along the direction of the centrifugal force. The settling part 24 which accommodates the centrifuged sample is extended in the front-end | tip toward the outer side, The crab 1 flow path 22 is the settling part of the said sample chamber 21 toward the rotation center of the disk 10 ( Connected to the boundary point 24 may be a structure for transferring the centrifuged supernatant to the filter unit (30). The non-target material may mean impurities other than a solution containing nano particles to be purified.
시료챔버 (21)에 주입된 시료는 디스크 ( 10)의 회전에 따른 원심력에 의해 원심 분리되어 정제된다. 이에 시료는 나노 입자가 포함된 용액과 나노 입자 외 고상의 불순물로 분리된다. 원심력 방향을 따라 고상의 불순물은 이 디스크 (10)의 외측 선단쪽으로 밀려나고 디스크 (10)의 중심쪽으로 불순물과 분리된 용액이 위치한다.  The sample injected into the sample chamber 21 is centrifuged and purified by the centrifugal force according to the rotation of the disk 10. Thus, the sample is separated into a solution containing nanoparticles and impurities other than the nanoparticles. Solid impurities along the centrifugal force direction are pushed toward the outer leading end of the disk 10 and a solution separated from the impurities is located toward the center of the disk 10.
본 실시예에서, 시료챔버 ( 21 )는 공간 내에서 나노 입자가 포함된 용액과 불순물 간의 분리가 명확히 나타나도록 원심력 방향을 따라 침강부 (24)가 길게 연장 형성된다. 침강부 (24)는 불순물이 보다 용이하게 침강될 수 있도록 출측으로 갈수록 폭이 좁아지는 호퍼 형태를 이를 수 있다. 이에, 원심 분리되어 침강된 불순물과 용액의 분리가 확실하게 이루어져 용액 이외의 비표적물질이 필터챔버 (31)로 유입되는 것을 최소화할 수 있게 된다. In the present embodiment, the sample chamber 21 is formed by extending the settling portion 24 along the centrifugal force direction so that the separation between the impurities and the solution containing the nanoparticles in the space is clearly shown. The settling portion 24 may have a hopper shape that becomes narrower toward the exit side so that impurities can be more easily settled. Therefore, it is possible to ensure separation of the precipitated impurities and the solution by centrifugal separation, so that non-target materials other than the solution flow into the filter chamber 31. It can be minimized.
게 1 유로 (22)의 입구는 시료챔버 (21)의 비표적물칠과 용액간의 경계지점에서 디스크 (10)의 회전 중심 쪽을 향하는 부분에 연결될 수 있다. 이에, 디스크 (10) 회전에 따라 가해지는 원심력에 의해 원심분리된 나노 입자 포함 용액 만이 게 1 유로 (22)를 통해 필터챔버 (31)로 이송될 수 있다. 침강부 (24)로 침강된 불순물은 원심력 방향을 따라 제 1 유로 (22)의 입구 외측에 위치하므로, 불순물은 게 1 유로 (22)를 통해 이송되지 못한다.  The inlet of the crab 1 flow passage 22 may be connected to the portion facing the center of rotation of the disk 10 at the boundary point between the non-targeted coating of the sample chamber 21 and the solution. Thus, only the nanoparticle-containing solution centrifuged by the centrifugal force applied as the disk 10 rotates may be transferred to the filter chamber 31 through the one flow path 22. Since the impurities precipitated in the settling portion 24 are located outside the inlet of the first flow passage 22 along the centrifugal force direction, the impurities cannot be transferred through the crab 1 flow passage 22.
이와 같이, 시료를 원심분리하여 정제한 후 필터챔버 (31)로 제공함으로써, 여과막 (34)을 통한 나노 물질 분리 및 검출 효과를 보다 높일 수 있게 된다.  As described above, the sample is centrifuged and purified, and then provided to the filter chamber 31, so that the effect of separating and detecting nanomaterials through the filtration membrane 34 can be further enhanced.
시료챔버 (21)의 침강부 (24) 출측은 폐액챔버 (71)와 연결되어, 시료챔버 (21)에서 정제된 불순물을 폐액챔버 (71)로 배철하여 처리할 수 있다. 시료챔버 (21)의 침강부 (24) 출측과 폐액챔버 (71) 사이에는 불순물이 이송되는 배출 유로 (26)가 형성되고, 배출 유로 (26) 일측에는 배출 유로를 개폐하는 배출 밸브 (27)가설치된다.  The settling part 24 exiting side of the sample chamber 21 is connected to the waste liquid chamber 71, and it can process and process the impurity refine | purified in the sample chamber 21 to the waste liquid chamber 71. FIG. A discharge flow path 26 through which impurities are transferred is formed between the exit of the settling portion 24 and the waste liquid chamber 71 of the sample chamber 21, and a discharge valve 27 that opens and closes the discharge flow path on one side of the discharge flow path 26. Is installed.
이에, 시료를 원심분리 한 후 표적물질인 용액을 필터챔버 (31)로 이송한 후 배출 유로 (26)를 개방하여 시료챔버 (21)에 잔류하는 비표적물질을 폐액챔버 (71)로 배출하여 제거할 수 있다.  Accordingly, after centrifuging the sample, the target material is transferred to the filter chamber 31, and then the discharge passage 26 is opened to discharge the non-target substance remaining in the sample chamber 21 to the waste liquid chamber 71. Can be removed.
본 실시예의 시료수용부 (20)는 시료 정제 효율을 높이기 위해, 침강부 (24)가 디스크 ( 10)의 방사방향에 대해 기울어져 경사지게 형성될 수 있다. 도 2에 도시된 바와 같이, 침강부 (24)는 디스크 (10)의 방사방향에 대해 '어느 한쪽으로 소정 각도 (A)로 기울어져 형성된다. 이에, 원심 분리 과정에서 고상의 불순물은 디스크 방사방향에 대해 침강부 (24)의 기울어진 경사면을 따라 용이하게 홀러내려가게 되어 침강이 보다 잘 이루어져 분리 효과를 높일 수 있게 된다. In the sample accommodating part 20 of the present embodiment, the settling part 24 may be formed to be inclined with respect to the radial direction of the disc 10 so as to increase the sample purification efficiency. 2, the depression 24 is formed, it turned to one side inclined at a predetermined angle (A) for the radial direction of the disk 10. Accordingly, the solid phase impurities in the centrifugal separation process are easily pulled down along the inclined surface of the settling portion 24 with respect to the radial direction of the disk, so that the settling is better and the separation effect can be enhanced.
또한, 도 3에 도시된 바와 같이, 침강부 (24)는 상기 경계지점에서 원심력 방향을 따라 끝단으로 갈수록 바닥면 (28)이 점차적으로 상향 경사져 형성되고, 침강부 (24)의 끝단에는 시료에서 원심분리된 불순물이 수용되는 홈부 (25)를 더 포함할 수 있다. 도 3은 디스크 ( 10)의 폭방향 단면 구조를 나타내고 있다. 도 3에서 y축 방향을 따라 위쪽이 상부이고 아래쪽이 하부이다. 시료챔버 (21)의 침강부 (24)는 하부 바닥면 (28)에서 끝단의 출측으로 갈수록 상향 경사지게 형성된다. 그리고, 침강부 (24)의 출측은 수직 방향으로 깊이 파여 깊은 홈부 (볼트 (91) )를 이룬다. 이에, 원심력에 의해 침강부 (24) 출측으로 침강된 고상의 불순물이 침강부 (24)의 경사진 바닥면을 따라 이동하다 홈부 (25)로 떨어져 역류되지 못하게 된다. In addition, as shown in Figure 3, the settling portion 24 is formed in the bottom surface 28 is gradually inclined upward toward the end along the direction of the centrifugal force at the boundary point, the end of the settling portion 24 in the sample It may further include a groove portion 25 for receiving the centrifuged impurities. 3 shows a cross-sectional structure in the width direction of the disk 10. In FIG. 3, the upper part is upper part and the lower part is located along the y axis direction. Lower part. The settling portion 24 of the sample chamber 21 is formed to be inclined upward from the lower bottom surface 28 toward the exit side of the end. Then, the exit side of the settling portion 24 forms a deep groove portion (bolt 91) deeply dug in the vertical direction. As a result, the solid impurities settled toward the settling portion 24 exited by the centrifugal force move along the inclined bottom surface of the settling portion 24 and fall back to the groove portion 25 to prevent flow back.
즉, 홈부 (25)는 깊이를 갖는 구멍으로 내주면이 가로막고 있어, 고상의 불순물이 홈부 (25)로 떨어지게 되면 원심력이 가해지지 않은 상태에서도 불순물이 홈부 (25)에서 빠져나가지 못하게 된다. 따라서, 불순물이 시료챔버 (21)의 경계지점으로 역류하는 것을 최소화하여 정제된 시료만을 필터챔버 (31)로 공급할 수 있게 된다. 배출 유로는 홈부 (25)에 연결되어 이어, 홈부 (25)로 떨어진 블순물은 배출유로 (26)를 통해 폐액챔버 (71)로 배출 처리된다.  That is, the groove portion 25 is blocked by the inner circumferential surface with a hole having a depth, and when the solid impurities fall into the groove portion 25, the impurities cannot escape from the groove portion 25 even when no centrifugal force is applied. Therefore, it is possible to supply only the purified sample to the filter chamber 31 by minimizing the backflow of impurities to the boundary point of the sample chamber 21. The discharge flow path is connected to the groove portion 25, and the pure water dropped to the groove portion 25 is discharged to the waste liquid chamber 71 through the discharge passage 26.
도 2에 도시된 바와 같이, 본 실시예의 필터부는 두 개의 필터챔버를 구비할 수 있다.  As shown in FIG. 2, the filter unit of the present embodiment may include two filter chambers.
두 개의 필터챔버는 유체 이송방향을 따라 순차적으로 배치된다. 각 필터챔버에 구비된 여과막은 유체 이송방향을 따라 기공이 점차적으로 작아지는 구조일 수 있다. 이하 설명의 편의를 위해, 두 개의 필터챔버 중 최종적으로 나노 입자에 대한 검출이 이루어지는 필터챔버 (31) 앞에 배치되는 필터챔버를 예비챔버 (35)라 한다. 예비챔버는 시료챔버 (21)와 필터챔버 (31) 사이에 연결된다.  The two filter chambers are arranged sequentially along the fluid conveying direction. The filtration membrane provided in each filter chamber may have a structure in which pores gradually decrease along the fluid transport direction. For convenience of description below, the filter chamber disposed before the filter chamber 31 in which the detection of the nanoparticles is finally made out of the two filter chambers is referred to as a prechamber 35. The prechamber is connected between the sample chamber 21 and the filter chamber 31.
예비챔버 (35)는 제 1 유로 (22)를 통해 시료챔버 (21)와 연결되며, 필터챔버 (31)는 게 6 유로 (72)를 통해 폐액챔버 (71)와 연결된다. 예비챔버 (35)와 필터챔버 (31) 사이에는 이송유로 (36)가 형성된다. 이송유로 (36) 일측에는 이송류로를 개폐하는 이송밸브 (37)가 설치된다. 이에, 이송밸브 (37)를 개방시키게 되면 예비챔버 (35)에서 여과된 여과액이 이송유로 (36)를 통해 필터챔버 (31)로 이동된다.  The preliminary chamber 35 is connected to the sample chamber 21 through the first flow passage 22, and the filter chamber 31 is connected to the waste liquid chamber 71 through the crab 6 flow passage 72. A conveyance passage 36 is formed between the preliminary chamber 35 and the filter chamber 31. One side of the conveyance passage 36 is provided with a conveyance valve 37 for opening and closing the conveying flow passage. Accordingly, when the transfer valve 37 is opened, the filtrate filtered in the prechamber 35 is moved to the filter chamber 31 through the transfer passage 36.
필터부 (30)가 예비챔버와 필터챔버, 두 개의 챔버를 구비함에 따라 시료챔버 (21)에서 이송된 나노 입자를 포함하는 시료는 예비챔버 (35)의 기공이 큰 여과막 (34)을 통과하면서 일차적으로 나노 입자 외 크기가 큰 입자가 분리된다. 그리고 다음 필터챔버 (31)에서 기공이 작은 여과막 (34)을 통과하면서 최종적으로 나노 입자가 분리된다. 따라서, 특정 크기 범위의 나노 입자만을 선별하여 분리 포집할 수 있게 된다. As the filter unit 30 includes the prechamber, the filter chamber, and the two chambers, the sample including the nanoparticles transferred from the sample chamber 21 passes through the filtration membrane 34 having large pores in the prechamber 35. Firstly, large particles other than nanoparticles are separated. In the next filter chamber 31, a small pore filtration membrane 34 is removed. As it passes, the nanoparticles finally separate. Therefore, only the nanoparticles of a specific size range can be separated and collected.
공급부 (40)는 필터챔버 (31)에 연결되어 필터챔버 (31)의 입측공간 (32)으로 나노 입자 검출에 필요한 유체를 공급한다. 이에, 나노 입자에 대한 검출은 최종적으로 필터챔버 (31)에서 이루어질 수 있다.  The supply unit 40 is connected to the filter chamber 31 to supply the fluid required for nanoparticle detection to the entrance space 32 of the filter chamber 31. Thus, the detection for the nanoparticles can be finally made in the filter chamber 31.
또한, 본 실시예는, 필터부 (30)에서 분리된 나노 입자를 회수하여 필요한 검출 작업을 수행하는 구조일 수 있다. 이를 위해, 본 장치는 디스크 ( 10)에 형성되고 필터부 (30)에 연결되어 여과막 (34)에 의해 분리된 나노 입자가 회수되는 회수챔버 (80) , 회수챔버 (80)와 필터부 (30)를 연결하여 나노 입자를 회수챔버 (80)로 이송하는 게 7 유로 (81), 제 7 유로 (81)를 개폐하는 제 7 밸브 (82)를 더 포함할 수 있다.  In addition, the present embodiment may have a structure for recovering the nanoparticles separated from the filter unit 30 to perform a necessary detection operation. To this end, the apparatus is formed in the disk 10 and connected to the filter section 30, the recovery chamber 80, the recovery chamber 80 and the filter section 30 is recovered, the nanoparticles separated by the filtration membrane 34 is recovered. (7) may further include a seventh flow path 81 to transfer the nanoparticles to the recovery chamber 80 and a seventh valve 82 to open and close the seventh flow path 81.
도 2에 도시된 바와 같이, 회수챔버 (80)는 디스크 ( 10) 내에 형성되는 내부가 빈 공간으로 이해할 수 있다. 회수챔버 (80)는 게 7 유로 (81)를 통해 필터챔버 (31)와 연결된다. 또한, 회수챔버 (80)는 일측에 내부로 핵산 추출을 위한 시약을 주입하기 위한 홀이 형성될 수 있다. 이에, 회수챔버에 형성된 홀을 통해 페놀 성분을 포함하여 핵산 추출용 시약을 주입함으로써, 본 장치를 통해 시료로부터 핵산까지 추출할 수 있게 된다.  As shown in FIG. 2, the recovery chamber 80 may be understood as an empty space formed inside the disc 10. The recovery chamber 80 is connected to the filter chamber 31 through the crab 7 flow path 81. In addition, the recovery chamber 80 may be formed with a hole for injecting a reagent for extracting nucleic acid into one side. Thus, by injecting a nucleic acid extraction reagent including a phenol component through the hole formed in the recovery chamber, it is possible to extract from the sample to the nucleic acid through the apparatus.
도 4에 도시된 바와 같이, 게 7 유로 (81)는 필터챔버 (31)의 입측공간 (32)과 회수챔버 (80) 사이를 연결한다. 이에, 필터챔버 (31)의 입측공간 (32) 내에 수용된 나노 입자 포함 유체는 원심력에 의해 제 7 유로 (81)를 통해 이동된다. 제 7 유로 (81) 일측에 게 7 유로 (81)를 개폐하기 위한 게 7 밸브 (82)가 설치된다. 이에, 제 7 밸브 (82)를 작동시켜 제 7 유로 (81)를 개방시키게 되면, 필터챔버 (31) 내 입측공간 (32)에 머물고 있는 나노 입자포함 유체가 게 7유로 (81)를 따라 회수챔버 (80)로 이동된다. 이에, 회수챔버 (80)로 이송된 나노 입자 포함 유체에 폐놀 성분을 비롯한 핵산추출용 시약을 주입하여 핵산 추출 작업을 수행할 수 있다. 핵산 추출 작업은 본 장치 외부에서 별도로 수행 가능하다. 이를 위해, 본 실시예의 필터부 (30)는 필터챔버 (31)에 구비된 여과막 (34)을 디스크 ( 10)에서 착탈하는 구조일 수 있다. 이와 같이, 필터챔버 (31)에서 여과막 (34)을 분리함으로써, 디스크 ( 10) 외측에서 여과막 (34)에 걸러진 나노 입자에 대한 핵산 추출 작업을 별도로 수행할 수 있게 된다. As shown in FIG. 4, the crab 7 flow path 81 connects the entry space 32 of the filter chamber 31 and the recovery chamber 80. Accordingly, the fluid containing nanoparticles contained in the entry space 32 of the filter chamber 31 is moved through the seventh flow path 81 by centrifugal force. A seventh valve 82 is provided on one side of the seventh flow path 81 to open and close the seven flow path 81. Accordingly, when the seventh valve 82 is operated to open the seventh flow path 81, the nanoparticle-containing fluid remaining in the entrance space 32 in the filter chamber 31 is recovered along the seven flow path 81. Is moved to chamber 80. Thus, a nucleic acid extraction operation may be performed by injecting a nucleic acid extraction reagent including a spentol component into the fluid containing nanoparticles transferred to the recovery chamber 80. Nucleic acid extraction can be performed separately from the outside of the device. To this end, the filter unit 30 of the present embodiment may have a structure in which the filtration membrane 34 provided in the filter chamber 31 is detached from the disk 10. In this way, by separating the filtration membrane 34 from the filter chamber 31, the filtration membrane 34 filtered out from the disk 10 outside. Nucleic acid extraction can be performed separately for the nanoparticles.
이를 위해, 본 장치는 디스크 ( 10)에 착탈가능하게 설치되어 상기 필터챔버 (31)를 개폐하는 덮개 (90) , 덮개 (90)를 디스크 (10)에 고정하는 체결부를 더 포함할 수 있다.  To this end, the apparatus may further include a cover 90 detachably installed on the disk 10 to open and close the filter chamber 31, and a fastening part fixing the cover 90 to the disk 10.
도 4에 도시된 바와 같이, 덮개 (90)는 디스크 (10)의 상판 (12)에 착탈가능하게 설치된다. 상판 ( 12)은 필터챔버 (31) 형성 공간 상에서 외측으로 개방 형성된다. 덮개 (90)는 상판 ( 12)에 설치되어 상판의 일부를 이룬다. 본 실시예에서 체결부는 볼트 (91)를 이용한 체결 구조일 수 있다. 체결부는 볼트 (91) 이외에 다양한 구조가 적용될 수 있다. 덮개 (90)와 이에 대웅되는 상판에는 볼트 (91) 체결을 위한 체결홀 (92)이 형성될 수 있다. 이에, 볼트 (91)를 상기 체결홀 (92)에 체결함으로써, 상판 (12)에 덮개 (90)를 착탈가능하게 결합할 수 있다.  As shown in FIG. 4, the cover 90 is detachably installed on the top plate 12 of the disk 10. The upper plate 12 is formed to be opened outward on the filter chamber 31 forming space. The cover 90 is installed on the top plate 12 to form part of the top plate. In the present embodiment, the fastening part may be a fastening structure using the bolt 91. The fastening part may be applied to various structures in addition to the bolt 91. A fastening hole 92 for fastening the bolt 91 may be formed on the cover 90 and the upper plate that is opposed thereto. Accordingly, by fastening the bolt 91 to the fastening hole 92, the cover 90 can be detachably coupled to the upper plate 12.
도 5는 나노 입자 검출 장치의 또 다른 실시예를 도시하고 있다. 도 5에 도시된 실시예 역시 디스크 ( 10)의 형태나 디스크 ( 10) 내에 구비되는 시료수용부 (20), 필터부 (30) 및 폐액수용부 (70)의 기본 구성은 도 1에 도시된 실시예와 동일하다. 또한, 도시되지는 않았으나, 공급부 (도 1의 40 참조)에 대한 구성역시 동일하게 구비될 수 있다. 이에, 이하 설명에서 동일한 구성에 대해서는 동일한 도면부호를 사용하며 그 상세한 설명은 생략한다.  5 shows another embodiment of a nanoparticle detection device. 5 is also in the form of a disk 10 or the basic configuration of the sample receiving portion 20, the filter portion 30 and the waste liquid receiving portion 70 provided in the disk 10 is shown in FIG. Same as the embodiment. In addition, although not shown, the configuration for the supply unit (see 40 of FIG. 1) may also be provided in the same manner. Therefore, in the following description, the same reference numerals are used for the same components, and detailed description thereof will be omitted.
도 5에 도시된 바와 같이, 본 실시예의 필터부 (30)는 3 개의 필터챔버를 구비할 수 있다. 필터부는 3 개의 필터챔버 외에 4개 이상의 복수개로 구비될 수 있다.  As shown in FIG. 5, the filter unit 30 of the present embodiment may include three filter chambers. The filter unit may be provided in plurality of four or more besides three filter chambers.
3 개의 필터챔버는 유체 이송방향을 따라 순차적으로 배치된다. 이하 설명의 편의를 위해, 3 개의 필터챔버는 유체 흐름 방향을 따라 제 1 필터챔버 (311), 제 2 필터챔버 (312) 및 게 3 필터챔버 (313)라 한다. 필터챔버 (31)라 함은 3개의 필터챔버 모두를 지칭할 수 있다. 각 필터챔버 (31)는 내부에 구비된 여과막 (34)의 기공 크기만을 제외하고 그 구조는 동일하다. 제 1 필터챔버 (311)는 제 1 유로 (22)를 통해 시료챔버 (21)와 연결된다. 제 2 필터챔버 (312)의 입측 공간은 유로 (315)를 통해 제 1 필터챔버 (311)의 출측공간과 연결된다. 제 2 필터챔버 (312)의 출측공간은 별도의 유로 (317)를 통해 제 3 필터챔버 (313)의 입측 공간과 연결된다. 이에, 유체는 시료챔버 (21)에서 제 1 필터챔버 (311) , 제 2 필터챔버 (312) 및 게 3 필터챔버 (131)를 거치면서 차례로 여과되어 나노 입자가 분리된다. 본 실시예 역시 각 유로 (315 , 317) 일측에는 별도의 개폐밸브 (도시되지 않음)가 설치되어 필요시 각 유로를 선택적으로 개폐할 수 있다. The three filter chambers are arranged sequentially along the fluid conveying direction. For convenience of explanation, the three filter chambers are referred to as a first filter chamber 311, a second filter chamber 312 and a crab three filter chamber 313 along the fluid flow direction. The filter chamber 31 may refer to all three filter chambers. Each filter chamber 31 has the same structure except for the pore size of the filtration membrane 34 provided therein. The first filter chamber 311 is connected to the sample chamber 21 through the first flow passage 22. The entrance space of the second filter chamber 312 is connected to the exit space of the first filter chamber 311 through the flow path 315. Of the second filter chamber 312 The exit space is connected to the entrance space of the third filter chamber 313 through a separate flow path 317. Accordingly, the fluid is sequentially filtered while passing through the first filter chamber 311, the second filter chamber 312, and the crab 3 filter chamber 131 in the sample chamber 21 to separate the nanoparticles. In this embodiment, a separate on-off valve (not shown) is installed at one side of each of the flow paths 315 and 317 to selectively open and close each flow path if necessary.
각 필터챔버 (31)에 구비된 여과막 (34)은 기공의 크기가 서로 상이하여, 각각 서로 다른 크기 범위의 나노 입자를 분리하는 구조일 수 있다. 이에, 하나의 장치를 통해 서로 상이한 크기의 나노 입자를 분리 회수할 수 있게 된다.  The filter membrane 34 provided in each filter chamber 31 may have a structure in which pores are different in size from each other and separate nanoparticles having different size ranges from each other. Thus, it is possible to separate and recover nanoparticles of different sizes through one device.
본 실시예에서, 각 필터챔버 (31)에 구비된 여과막은 유체 이송방향을 따라 기공이 점차적으로 작아지는 구조일 수 있다. 본 실시예에서, 3개의 필터챔버 (31)는 각각 서로 상이한 기공 크기를 갖는 여과막 (34)을 구비하여 서로 상이한 크기의 나노 입자를 분리할 수 있다. 각 필터챔버에 구비되는 여과막의 조합은 다양하게 변형가능하다. 예를 들어, 제 1 필터챔버 (311)에는 lOOnm의 기공 크기를 갖는 여과막이 구비되고, 게 2 필터챔버 (312)에는 50皿의 기공 크기를 갖는 여과막이 구비되고, 제 3 필터챔버 (313)에는 2nm의 기공 크기를 갖는 여과막이 구비되어 하나의 장치 내에 조합될 수 있다. 따라서, 하나의 장치 내에서 여과막의 조합에 따라 서로 상이한 크기의 나노 입자를 각각의 필터챔버에 분리 회수할 수 있게 된다. ' 본 실시예에 따라, 사료챔버 (21)에서 이송된 나노 입자를 포함하는 시료는 게 1 필터챔버 (311)의 기공이 큰 여과막 (34)을 통과하면서 일차적으로 설정된 크기의 나노 입자가 분리된다. 그리고 다음 제 2 필터챔버 (312)로 이송된 시료는 게 2 필터챔버에 구비된 여과막 (34)을 통과하면서 이차적으로 설정된 크기의 나노 입자가 분리된다. 그리고 다음 제 3 필터챔버 (313)로 이송된 시료는 제 3 필터챔버에 구비된 여과막을 통과하면서 최종적으로 설정된 크기의 나노 입자가 분리된다. 이에, 특정 크기 범위의 나노 입자만을 각 필터챔버에 선별하여 분리 포집할 수 있게 된다. 따라서, 하나의 디스크 내에서 서로 상이한 크기 분포를 갖는 나노 입자를 구분하여 분리 회수할 수 있게 된다. In the present embodiment, the filtration membrane provided in each filter chamber 31 may have a structure in which pores gradually decrease along the fluid conveying direction. In the present embodiment, the three filter chambers 31 may be provided with filtration membranes 34 each having a different pore size to separate nanoparticles of different sizes from each other. The combination of the filtration membranes provided in each filter chamber can be variously modified. For example, the first filter chamber 311 is provided with a filtration membrane having a pore size of 100 nm, the crab 2 filter chamber 312 is provided with a filtration membrane having a pore size of 50 mm 3, and the third filter chamber 313. It is equipped with a filtration membrane having a pore size of 2 nm can be combined in one device. Therefore, nanoparticles of different sizes can be separated and recovered in each filter chamber according to the combination of the filtration membranes in one device. According to the present embodiment, the sample including the nanoparticles transferred from the feed chamber 21 is separated from the nanoparticles having the first set size while passing through the large filtration membrane 34 having the pores of the crab 1 filter chamber 311. . Then, the sample transferred to the second filter chamber 312 passes through the filtration membrane 34 provided in the crab 2 filter chamber, and nanoparticles having a secondary size are separated. Then, the sample transferred to the third filter chamber 313 passes through the filtration membrane provided in the third filter chamber, and finally, nanoparticles having a predetermined size are separated. Thus, only nanoparticles of a specific size range can be separated and collected in each filter chamber. Thus, nanos with different size distributions in one disk Particles can be separated and recovered.
이하, 본 실시예에 따른 나노 입자 검출 장치를 이용한 나노 입자 검출 과정을 설명하면 다음과 같다. 이하 설명은 도 2에 도시된 실시예의 장치를 참조하여 설명한다.  Hereinafter, a nanoparticle detection process using the nanoparticle detection apparatus according to the present embodiment will be described. The following description is made with reference to the apparatus of the embodiment shown in FIG.
먼저 디스크 ( 10)에 나노 입자 검출을 위한 항체, 시약, 기질액, 세척액, 여과막 (34) 등을 탑재하여 준비한다. 준비 상태에서 디스크 (10)의 각 유로에 설치된 밸브는 폐쇄작동되어 각 유로를 닫혀진 상태를 유지할 수 있다.  First, the disk 10 is prepared by mounting an antibody, a reagent, a substrate liquid, a washing liquid, a filtration membrane 34, and the like for detecting nanoparticles. In the ready state, the valves installed in the respective flow paths of the disc 10 may be closed to maintain the closed state.
준비가 완료되면 디스크 (10)의 시료챔버 (21)에 시료를 공급한다 . 그리고, 디스크 ( 10)를 회전시켜 원심력을 가한다.  When the preparation is completed, the sample is supplied to the sample chamber 21 of the disk 10. Then, the disk 10 is rotated to apply centrifugal force.
원심력에 의해 시료챔버 (21)에 공급된 시료는 원심 분리되어 일차적으로 정제된다. 원심분리되어 시료는 불순물이 제거되고 나노 입자를 포함하는 용액만이 필터부 (30)로 이송된다. 필터부 (30)로 이송된 용액은 디스크 ( 10)의 회전에 따른 원심력에 의해 예비챔버 (35)의 여과막 (34)을 거치면서 나노 입자 외 크기가큰 입자가 분리된다.  The sample supplied to the sample chamber 21 by centrifugal force is centrifuged and purified primarily. The sample is centrifuged to remove impurities and only the solution containing the nanoparticles is transferred to the filter unit 30. The solution transferred to the filter part 30 passes through the filtration membrane 34 of the prechamber 35 by centrifugal force due to the rotation of the disk 10, and the large particles other than the nanoparticles are separated.
예비챔버 (35)의 여과막 (34)을 거친 용액은 필터챔버 (31)로 이송된다. 그리고 나노 입자는 필터챔버 (31)의 여과막 (34)을 통해 분리되어 필터챔버 (31)의 입측공간 (32) 내에서 여과막 (34) 상에 잔류하게 된다. 필터챔버 (31)의 여과막 (34)을 통과한 여과액은 폐액챔버 (71)로 배출 처리된다.  The solution which has passed through the filtration membrane 34 of the prechamber 35 is transferred to the filter chamber 31. The nanoparticles are separated through the filtration membrane 34 of the filter chamber 31 and remain on the filtration membrane 34 in the entrance space 32 of the filter chamber 31. The filtrate that has passed through the filtration membrane 34 of the filter chamber 31 is discharged to the waste liquid chamber 71.
이와 같이, 여과막 (34)을 통해 나노 입자를 분리 포획한 상태에서 필터챔버 (31)의 입측공간 (32)으로 항체, 시약, 기질액 등을 순차 공급하여 나노 입자를 검출한다.  As described above, the nanoparticles are detected by sequentially supplying the antibody, the reagent, the substrate liquid, and the like into the entrance space 32 of the filter chamber 31 while the nanoparticles are separated and captured through the filtration membrane 34.
도 6은 본 실시예에 따라, 필터챔버 (31)의 여과막 (34) 위쪽 입측공간 (32) 상에서 분리 포획된 나노 입자에 항체와 시약, 및 기질액이 공급되어 나노 입자를 검출하는 과정을 나타내고 있다.  FIG. 6 illustrates a process of detecting the nanoparticles by supplying an antibody, a reagent, and a substrate liquid to the nanoparticles separated and captured on the side space 32 above the filtration membrane 34 of the filter chamber 31 according to the present embodiment. have.
필터챔버 (31)로 공급된 항체는 여과막 (34) 상의 입측공간 (32) 내에서 나노 입자에 붙게 된다. 항체는 공간 상에서 가두어져 고정되지 않은 상태의 나노 입자의 표면에 가서 붙게 되므로 단시간 내에 나노 입자에 전 표면에 항체가 부착될 수 있다. 이와 달리 나노 입자가 어느 표면에 고정된 경우, 나노 입자의 일부 표면에 대해서만 항체가 부착 가능하며, 전 표면에 대해 항체가 부착되지 못한다. 이에, 본 실시예의 경우 단시간 내에 모든 나노 입자의 전 표면에 대한 항원 검출이 가능하게 된다. The antibody supplied to the filter chamber 31 adheres to the nanoparticles in the side space 32 on the filtration membrane 34. Since the antibody is confined in space and adheres to the surface of an unfixed nanoparticle, the antibody can be attached to the entire surface of the nanoparticle in a short time. On the other hand, In this case, the antibody may be attached only to some surfaces of the nanoparticles, and the antibody may not be attached to the entire surface. Thus, in the present embodiment, it is possible to detect the antigen on the entire surface of all the nanoparticles within a short time.
항체 공급 후 나노 입자에 부착되지 않은 여분의 항체는 세척액을 통해 제거된다. 필터챔버 (31)로 세척액을 공급하고 디스크 ( 10)를 회전시키게 되면 나노 입자 부착후 남은 과잉의 항체는 원심력에 의해 세척액과 함께 여과막 (34)을 통과하여 제거된다. After antibody supply, excess antibody not attached to the nanoparticles is removed through the wash solution. When the washing liquid is supplied to the filter chamber 31 and the disk 10 is rotated, the excess antibody remaining after the nanoparticles are attached is removed by passing through the filtration membrane 34 together with the washing liquid by centrifugal force.
세척액으로 입측공간 (32)을 세척한 후, 시약을 공급하여 항체를 표지한다. 시약은 나노 입자에 붙은 항체에 결합된다. 시약은 형광이 붙은 After washing the entry space 32 with the washing solution, the reagent is supplied to label the antibody. The reagent binds to the antibody attached to the nanoparticles. Reagents are fluorescent
2차 검출 항체로, 최종적으로 나노 입자에 붙은 항체 시그널을 증폭시킨다. 시약 공급 후 항체에 부착되지 않은 여분의 시약은 세척액을 통해 제거된다. 필터챔버 (31)로 세척액을 공급하고 디스크 ( 10)에 원심력을 가하게 되면 항체에 부착되고 남은 과잉의 시약은 세척액과 함께 여과막 (34)을 통과하여 제거된다. As a secondary detection antibody, the antibody signal finally attached to the nanoparticles is amplified. After reagent supply, excess reagents not attached to the antibody are removed through the wash solution. When the washing solution is supplied to the filter chamber 31 and centrifugal force is applied to the disk 10, the excess reagent is attached to the antibody and the remaining reagent is removed through the filtration membrane 34 together with the washing solution.
세척액으로 입측공간 (32)을 세척한 후에는 입측공간 (32)으로 기질액을 공급할 수 있다. 입측공간 (32) 내에 반웅을 위한 기질액이 공급된 후, 정지용액을 공급한다.  After washing the entry space 32 with the washing liquid, the substrate liquid may be supplied to the entry space 32. After the substrate solution for reaction is supplied in the entrance space 32, the stop solution is supplied.
그리고, 정지용액을 포함하여 나노 입자가 표지된 용액을 회수챔버 (80)로 이송하여 읍티컬 덴시티 (opt ical densi ty) 등을 측정할 수 있다. 회수챔버 (80)로 이송된 용액의 나노 입자는 형광 표지된 상태로, 예를 들어, 형광 신호 기반의 측정법을 이용하여 나노 입자를 검출 및 분석할 수 있다.  In addition, the nanoparticle-labeled solution including the stop solution may be transferred to the recovery chamber 80 to measure optical density and the like. The nanoparticles of the solution transferred to the recovery chamber 80 may be fluorescently labeled, for example, to detect and analyze the nanoparticles using a fluorescence signal based measurement method.
본 실시예의 경우, 기존의 나노 소포체를 96 wel l plate표면에 부착한 이후 검출하는 방식과 달리, 특정 챔버 안에 분리된 나노 소포체를 가둔 상태에서 검출하기 때문에 모든 항원을 단시간 내에 분석할 수 있다. 이와 같이, 본 실시예의 검출 방법은 biot in이 붙은 항체와 시그널을 증폭시키가 위한 streptavidin-HRP를 사용하고 있으며 l abel ing을 마친 후에 TMB를 주입하여 ODCopt i cal densi ty)를 측정할 수 있다.  In the present embodiment, unlike the conventional method for detecting after attaching the nano vesicles to the surface of 96 wel l plate, all antigens can be analyzed in a short time because the nano vesicles are separated in a specific chamber. As described above, the detection method of the present embodiment uses streptavidin-HRP for amplifying the antibody with the biot in and a signal and can measure ODCopt i cal densi ty) by injecting TMB after lbeling.
또한, 회수챔버 (80)로 폐놀을 포함한 핵산 추출용 시약을 주입하여 나노 입자의 핵산 추출 작업을 수행하거나, 디스크 ( 10)의 필터챔버 (31)를 개방하여 여과막 (34)을 분리한 후 외부에서 핵산 추출과정을 수행할 수 있다. In addition, a nucleic acid extraction reagent including spent phenol is injected into the recovery chamber 80 to perform nucleic acid extraction of nanoparticles, or the filter chamber 31 of the disk 10 is removed. After opening to separate the filtration membrane 34, the nucleic acid extraction process can be performed from the outside.
이와 같이, 하나의 디스크 ( 10) 내에서 시료의 나노 입자 분리와 검출 또는 핵산 추출 작업까지도 일괄적으로 보다 간편하고 용이하게 수행할 수 있다.  As such, even nanoparticle separation and detection or nucleic acid extraction of a sample in a single disc 10 can be performed more simply and easily.
[실험예]  Experimental Example
도 7은 도 2의 실시예에 따른 장치를 이용하여 LNCaP (전립선암 세포주) 세포 배양액과 소변 샘플에서 나노 소포체를 분리 후 검출한 결과를 나타내고 있다.  FIG. 7 shows the results obtained after separation of the nano endoplasmic reticulum from the LNCaP (prostate cancer cell line) cell culture medium and the urine sample using the apparatus according to the example of FIG. 2.
도 7의 A 그래프는 두 개의 필터챔버에 구비된 여과막의 조합에 따른 나노 소포체 검출 결과를 나타내고 있다. 그래프는 각각 100-600nm , 20-200nm , 및 20-600nm 범위 내의 나노 소포체 회수 결과를 나타내고 있다. 그래프에서 필터 I은 도 2에서 예비챔버를 지칭하고 필터 Π는 필터챔버를 지칭한다. 실험 결과, 2으600 nm 의 범위로 여과막을 조합하였을 때 나노 소포체가 가장 많이 검출되었다. ' 도 7의 B 그래프는 세포 배양액의 주입 볼륨을 늘릴 수록 나노 소포체의 . CD9의 항원 발현량도 증가하는 양상을 보여준다. A graph of FIG. 7 shows the results of nano-vesicle detection according to the combination of the filtration membranes provided in the two filter chambers. The graph shows nano vesicle recovery results within the range of 100-600 nm, 20-200 nm, and 20-600 nm, respectively. In the graph, filter I refers to the prechamber in FIG. 2 and filter π refers to the filter chamber. As a result of the experiment, when the filter membranes were combined in the range of 2600 nm, the nano vesicles were detected the most. 'B graph of Figure 7 shows that the increase in the infusion volume of the cell culture . The expression level of CD9 also increases.
도 7의 C 사진은 디스크 (di sc)에 정상인과 방광암환자의 소변 샘플 400 ^를 시료로 주입한 후 디스크를 구동하여 최종적으로 나노 소포체를 검출한 0D(opt i cal densi ty) 결과를 나타내고 있다. C 사진에서 N은 정상인에 대한 결과를 나타내며 , P는 방광암환자에 대한 결과를 나타낸다. 검출 결과, 본 장치를 통해 방광암환자의 소변 샘플로부터 충분히 나노 소포체를 검출할 수 있음을 확인할 수 있다.  FIG. 7C shows the results of 0D (opt i cal densi ty) in which the nano vesicles were finally detected by injecting 400 ^ urine samples of normal people and bladder cancer patients into the discs. . In the C picture, N represents the result for a normal person, and P represents the result for a bladder cancer patient. As a result of the detection, it can be confirmed that the nanovesicles can be sufficiently detected from the urine sample of the bladder cancer patient through the device.
도 8은 본 실시예에 따른 장치와 종래 장치를 통한 나노 소포체 검출 결과를 비교하여 나타내고 있다.  Figure 8 shows the comparison results of the nano-vesicle detection results by the device according to the present embodiment and the conventional device.
도 8에서 실시예에 대한 결과는 Exodi sc로 표시되어 있으며, 도 2의 실시예에 따른 장치를 이용하여 정상인과 방광암환자의 소변 샘플에서 나노 소포체를 분리 후 검출한 결과를 나타내고 있다.  In FIG. 8, the results of the examples are indicated by Exodi sc, and the results obtained after separation of the nano-vesicles from urine samples of normal people and bladder cancer patients using the apparatus according to the example of FIG. 2 are shown.
그리고, 도 8에서 비교예들은 UC와 Exospin으로 표시되어 있으며, 실시예와 비교되는 종래의 기술에 따른 검출 결과를 나타내고 있다. UC로 표시된 그래프는 기존에 많이 이용되는 방법인 초원심분리 (UC ;ul tracentr i fugat ion)를 통해 나노 소포체를 분리하여 96 wel l pi ate를 통한 ELISA 검출 방법으로 검출한 결과이다. Exospin으로 표시된 그래프는 상용화키트은 Exospin으로 분리된 나노 소포체를 96 wel l plate를 통한 ELISA 검출 방법으로 검출한 결과이다. 비교예들 역시 실시예와 동일하게 정상인과 방광암 환자의 소변 샘플에서 나노 소포체를 분리하여 검출하였다. 분리된 나노 소포체는 나노 소포체에서 발현되는 단백질 마커인 CD9와 CD81을 통해 검출하였다. In addition, in FIG. 8, comparative examples are represented by UC and Exospin, and show detection results according to the related art compared with the embodiment. To UC The displayed graph is the result of detecting the nano vesicles through ultra-ultracentrifugation (UC; ul tracentr i fugat ion), which is a widely used method, and detected by ELISA detection method using 96 wel l piate. The graph labeled Exospin shows the results of commercialization kit detecting nano vesicles separated by Exospin by ELISA detection method through 96wel l plate. Comparative Examples were also detected by separating nano vesicles from urine samples of normal people and bladder cancer patients as in Example. The separated nano vesicles were detected through CD9 and CD81, protein markers expressed in nano vesicles.
실험 결과, 실시예에서 방광암환자 (n=5)의 소변 샘플에서 .분리된 나노 소포체가 정상인 (n=5)보다 높은 양상으로 나타남을 확인할 수 있다. 이에, 본 장치를 통해 방광암환자의 소변 샘플로부터 충분히 나노 소포체를 검출할수 있음을 확인할 수 있다. Experimental results, in the example in the urine samples of bladder cancer patients (n = 5) . It can be seen that the isolated nano vesicles appear higher than normal (n = 5). Thus, it can be confirmed that the present invention can sufficiently detect the nano-vesicles from the urine samples of bladder cancer patients.
또한, 종래 기술에 따른 비교예들과 비교하여, 실시예의 경우 방광암환자에 대한 나노 소포체 검출값이 더 높게 나타남을 확인할 수 있다. 이에, 본 실시예의 나노 입자 검출 효과가 종래와 비교하여 월등히 향상되었음을 알수 있다.  In addition, compared with the comparative examples according to the prior art, it can be seen that in the case of the nano-vesicle detection value for the bladder cancer patient in the case of the embodiment is higher. Thus, it can be seen that the nanoparticle detection effect of the present embodiment is significantly improved compared to the conventional.
도 9는 본 실시예에 따른 장치와 종래 장치를 통한 나노 소포체의 핵산 검출 결과를 비교하여 나타내고 있다.  9 shows a comparison of nucleic acid detection results of nano-vesicles by the device according to the present embodiment and the conventional device.
도 9에서 실시예에 대한 결과는 Exodi sc로 표시되어 있으며, 도 2의 실시예에 따른 장치를 이용하여 LNCaP (전립선암 세포주) 세포배양액에서 나노 소포체를 분리 후 페놀 성분의 시약을 주입하여 핵산을 추출하고 검출한 결과를 나타내고 있다.  In FIG. 9, the results of the examples are represented by Exodi sc. After the separation of the nano endoplasmic reticulum from the LNCaP (prostate cancer cell line) cell culture medium using the apparatus according to the example of FIG. The result of extraction and detection is shown.
그리고, 도 9에서 비교예들은 UC와 Exospin으로 표시되어 있으며, 실시예와 비교되는 종래의 기술에 따른 검출 결과를 나타내고 있다. UC와 Exospin은 위에서 설명한 바와 동일하다. 비교예들 역시 실시예와 동일하게 LNCaP (전립선암 세포주) 세포배양액에서 나노 소포체를 분리하고, 폐놀 성분의 시약을 주입하여 핵산을 추출하고 검출하였다.  In addition, in FIG. 9, comparative examples are represented by UC and Exospin, and show detection results according to the related art compared with the embodiment. UC and Exospin are the same as described above. Comparative Examples were also isolated from the endoplasmic reticulum in the LNCaP (prostate cancer cell line) cell culture medium, and the nucleic acid was extracted and detected by injecting the reagents of the phenol.
도 9의 A 그래프는 bioanalyzer를 이용한 RNA 전기영동 결과를 나타내고 있다. 실험예와 비교예에 의해 분리된 나노 소포체로부터 RNA의 크기와 농도를 분석하였다. 실험 결과, 실시예와 비교예들 모두 같은 H기 양상을 보였으며 나노 소포체와 연관된 250 nt 이하의 많은 RNA가 추출되었다. 또한, 醒 농도 검출 결과에 있어서 본 실시예의 검출 장치를 이용하여 분리한 나노 소포체의 경우 핵산 추출 결과, 비교예들보다 더 높은 RNA농도를 나타내 검출 효과를 증대할 수 있음을 확인할 수 있다. A graph of FIG. 9 shows RNA electrophoresis results using a bioanalyzer. RNA size and concentration were analyzed from the nano vesicles separated by the experimental and comparative examples. Experimental results, the same H group in both Examples and Comparative Examples Many RNAs of 250 nt or less associated with the endoplasmic reticulum were extracted. In addition, it can be seen that the nano-vesicles separated by the detection apparatus of this embodiment in the concentration detection result showed higher RNA concentration than the nucleic acid extraction results and the comparative examples, thereby increasing the detection effect.
도 9의 B그래프는 추출한 핵산으로 RT-PCR을 통해 GAPDH , CD9 , PSA , PSMA의 검출 CT 값을 나타내고 있다. 9B shows extracted C T values of GAPDH, CD9, PSA, and PSMA through RT-PCR.
도 9의 B그래프에서, GAPDH는 house keeping gene , CD9는 나노소포체 검출 마거, PSA(prostate-speci f i c ant igen)는' 전립선암 검출에 사용되는 마커, PSMA(prostate-speci f i c membrane ant igen)은 전립선암 검출에 사용되는 마커를 나타내고, CT는 값이 낮을수록 고농도를 의미한다. 예를 들어ᅳ CT 값이 7 차이나면, 27으로 128배를 의미한다. - 도 9의 B 그래프에 나타낸 바와 같이, Real t ime-PCR 결과, 본 실시예에 따른 검출 장치를 이용한 경우 나노 소포체의 GAPDH , CD9 , PSA , PSMA의 mRNA가 비교예인 종래 UC 대비 100배 이상 높은 농도를 나타냄을 확인할 수 있다. In the B graph of Figure 9, GAPDH is a house keeping gene, CD9 nano ER detection mageo, PSA (prostate-speci fic ant igen) is a marker, PSMA (prostate-speci fic membrane ant igen) used in the "prostate cancer detection It represents a marker used for detecting prostate cancer, and C T means a high concentration as the value is lower. For example, if the value of C T is seven orders of magnitude, 2 7 means 128 times. -As shown in the graph B of Figure 9, Real time-PCR results, when using the detection apparatus according to this embodiment, the mRNA of the GAPDH, CD9, PSA, PSMA of the nano endoplasmic reticulum is more than 100 times higher than the conventional UC of the comparative example It can be seen that the concentration.
즉, 본 실시예의 경우 비교예인 초원심분리 (UC) 대비, GAPDH : 169배, CD9: 158배, PSA: 111배, PSMA: 208배의 차이가 나는 것을 알 수 있다. 이에, 본 실시예의 경우 종래와 비교예들과 비교하여 검출 효과를 보다 증대시킬 수 있음을 알 수 있다.  That is, in the case of the present embodiment, it can be seen that there is a difference of GAPDH: 169 times, CD9: 158 times, PSA: 111 times, and PSMA: 208 times compared to ultracentrifugal separation (UC) which is a comparative example. Thus, it can be seen that the present embodiment can further increase the detection effect compared with the conventional and comparative examples.
도 9의 C그래프는 CT 값을 바탕으로 초원심분리기법인 UC 대비 상대 발현양을 비교하여 나타내고 있다. 실험 결과, 4 가지 유전자 모두 본 실시예의 검출 장치를 이용한 경우, 비교예보다 더 높은 검출양이 나타남을 확인할 수 있다. 이에, 본 실시예의 경우 핵산 검출 효과에 있어서도 종래와 비교하여 월등히 향상되었음을 알 수 있다.  9C shows the relative expression amount compared to UC, which is an ultracentrifugal separation technique, based on CT values. As a result of the experiment, it can be seen that when all four genes were used in the detection apparatus of this example, a higher detection amount was shown than in the comparative example. Thus, in the case of the present embodiment it can be seen that the nucleic acid detection effect is significantly improved compared to the conventional.
도 9의 D그래프는 PCR산물을 전기 영동한 이미지를 나타내고 있다. 도 9의 D 그래프는 C 그래프와 같은 PCR산물을 전기 영동한 이미지이다. 실험 결과, 4 가지 유전자 모두 본 실시예의 검출 장치를 이용한 경우 비교예들보다 더 높은 검출양이 나타남을 확인할 수 있다.  9D shows an image obtained by electrophoresis of the PCR product. 9 is an image of electrophoresis of a PCR product such as a C graph. As a result of the experiment, it can be seen that all four genes showed higher detection amounts than the comparative examples when the detection device of the present example was used.
도 10은 본 실시예에 따른 장치와 종래 장치를 이용하여 나노 소포체를 분리 후 검출한 결과를 나타내고 있다. 본 실험은 LNCaP 세포 유래 나노 소포체를 혈장 100 mi crol i ter에 spike하여 이루어졌다. s ike 이후의 초기 나노입자수는 3.98( ±±0. 16) E10/mL이고 총 단백질은 66.45 ( ±±0.095) mg/mL 이다. Figure 10 shows the results of the detection after separation of the nano-vesicles using the apparatus according to the present embodiment and the conventional apparatus. This experiment was accomplished by spiked LNCaP cell-derived nano endoplasmic reticulum into plasma 100 mi crol iter. The initial number of nanoparticles after s ike is 3.98 (±± 0.16) E10 / mL and total protein is 66.45 (±± 0.095) mg / mL.
먼저, 실험을 통해 본 실시예에 따른 장치의 여과막 ,기공 크기와 디스크 회전속도에 대한 최적화 값을 구하였다.  First, the optimization values for the filtration membrane, pore size and disk rotation speed of the apparatus according to the present embodiment were obtained through experiments.
도 10의 A 그래프는 여과막의 기공 크기와 본 실시예에 따른 디스크 (di sc) 회전 속도 조합에 따른 나노소포체 검출 결과를 나타내고 있다. 그래프는 각각 20nm 3000 rpm (364 G) 및 100 nm , 1000 rpm (40 G) 조합 조건에서의 NTA에 의한 나노 입자 회수 결과를 나타내고 있다. 그래프 내에 파란색 선은, LNCaP 세포 배양액 유래 나노 소포체를 spike 하지 않은 혈장을 대조군으로 하여 나노 소포체를 검출한 결과를 나타낸다. 실험 결과, 종래의 소변 샘플에서 나노 소포체를 분리할 때의 조건인, 20 nm 3000 rpm (364 G) 의 조건으로 나노 입자를 분리 하였을 때, 나노 입자가 가장 많이 검출되었다. 하지만, human pl asma의 경우 혈액 내에 순수한 나노 소포체 외의 지질 및 단백질 나노 입자가 불순물로 다량 존재하기 때문에, 20 nm 기공을 이용한 경우 검출된 나노 입자의 대부분이 지질 및 단백질 입자로 이루어진 것으로 보인다.  A graph of FIG. 10 shows the results of nanovesicle detection according to the pore size of the filtration membrane and the rotational speed of the disc (di sc) according to the present embodiment. The graph shows the results of nanoparticle recovery by NTA at 20 nm 3000 rpm (364 G) and 100 nm, 1000 rpm (40 G) combination conditions, respectively. The blue line in the graph shows the result of detecting the nano endoplasmic reticulum using plasma which did not spike the nano endoplasmic reticulum derived from the LNCaP cell culture medium as a control. As a result of the experiment, when the nanoparticles were separated under the condition of 20 nm 3000 rpm (364 G), which is a condition when the nanovesicles were separated from the conventional urine sample, the nanoparticles were most detected. However, in the case of human pl asma, since lipid and protein nanoparticles other than pure nano vesicles are present in the blood as impurities, most of the nanoparticles detected using 20 nm pores seem to be composed of lipid and protein particles.
도 10의 B 그래프는 여과막의 기공 크기와 본 실시예에 따른 디스크 (di sc) 회전 속도 조합에 따른 총 단백질 검출 결과를 나타내고 있다. 그래프는 각각 20 nm 3000 rpm (364 G), 100 nm 3000 rpm (364 G) 및 100 nm 1000 rpm (40G) 조합 조건에서의 BCA에 의한 총 단백질 검출 결과를 나타내고 있다. 실험 결과, 20 nm 3000 rpm (364 G) 의 조건으로 나노 입자를 분리하였을 때, 총 단백질이 가장 많이 검출되었다. 즉, 20nm 의 기공 크기와 300rpm의 회전속도의 경우, NTA를 사용하여 측정하였을 때 나노 입자의 개수가 많은 것으로 나타나나, BCA로 측정한 결과 총 단백질량도 많아서 순도 (pur i ty)가 떨어지는 것을 알수 있다.  10B shows the total protein detection result according to the pore size of the filtration membrane and the rotation speed of the disc (di sc) according to the present embodiment. The graph shows the results of total protein detection by BCA at 20 nm 3000 rpm (364 G), 100 nm 3000 rpm (364 G) and 100 nm 1000 rpm (40G) combination conditions, respectively. As a result of the experiment, when the nanoparticles were separated under the condition of 20 nm 3000 rpm (364 G), the total protein was detected the most. That is, in the case of the pore size of 20 nm and the rotational speed of 300 rpm, the number of nanoparticles appears to be large when measured using NTA. However, the purity of Pur i ty decreases due to the large amount of protein as measured by BCA. Able to know.
상기 실험 결과에 따라, 20 nm 3000 rpm (364 G) 조건의 경우, 100 nm 1000 rpm (40 G) 조건의 경우보다 나노 소포체 분리 순도가 낮은 것을 확인할 수 있다.  According to the experimental results, it can be seen that in the case of 20 nm 3000 rpm (364 G) condition, the purity of the nano-vesicle separation purity is lower than in the case of 100 nm 1000 rpm (40 G) conditions.
도 10의 C 그래프는 본 실시예의 여과막 기공 크기와 디스크 (di sc) 회전 속도 조합에 따른 분리된 나노 소포체 샘플의 순도를 나타낸다. 실험 결과, 100 nm 1000 rpm (40 G) 의 조건이, 가장 높은 순도로 나노 소포체를 분리함을 확인할 수 있다. C graph of Figure 10 shows the filter membrane pore size and disk (di sc) of this embodiment The purity of the separated nano vesicle samples according to the rotational speed combination is shown. Experimental results, it can be seen that the conditions of 100 nm 1000 rpm (40 G), the nano-vesicles are separated in the highest purity.
도 10의 D 그래프는 여과막의 기공 크기와 본 실시예에 따른 디스크 (di sc) 회전 속도 조합에 따른, 암 검출에 사용되는 마커 (EpCAM)와 나노 소포체 검출 마커 (CD81)의 검출 결과를 나타낸다. 실험 결과, 100 nm 1000 rpm (40 G) 조건에서 총 나노 소포체 및 암 세포 유래 나노 소포체가 가장 많이 검출되어, 나노 입자를 많이 잃어버리지 않으면서도 순도가 높은 나노 입자를 회수할 수 있음을 알 수 있다.  FIG. 10D shows the detection results of the marker (EpCAM) and the nano vesicle detection marker (CD81) used for cancer detection, according to the pore size of the filtration membrane and the rotation speed of the disc (di sc) according to the present embodiment. Experimental results show that the total number of nano vesicles and cancer cell-derived endoplasmic reticulum was detected at 100 nm and 1000 rpm (40 G), and high-purity nanoparticles can be recovered without losing many nanoparticles. .
도 10의 E 그래프는 본 실시예와 비교예의 나노 소포체 회수율을 나타내고 있다.  The E graph of FIG. 10 shows the recovery rate of the nano vesicles of the present example and the comparative example.
도 10의 E 그래프에서 실시예에 대한 결과는 DISC로 표시되어 있고, 여과막의 기공 크기와 디스크 회전 속도에 따라 구분되어 각각 검출 결과를 나타내고 있다. 비교예는 UC(ul tracentr i fugat ion)로 표시되어, 실시예와 비교되는 종래의 기술에 따른 검출 결과를 나타내고 있다.  In the E graph of FIG. 10, the results of the examples are represented by DISC, and the detection results are divided according to the pore size and the disk rotation speed of the filtration membrane. The comparative example is represented by UC (ul tracentr i fugat ion) and shows the detection result by the conventional technique compared with an Example.
초기 LNCaP 세포유래 나노 소포체는 CD9/CD81 (CD9 capture/CD81 detect ion) 검출 시에 1.34의 0D값을 나타내었다. 혈장에 나노 소포체를 spike 해서 종래 장치로 실험한 결과, 20 nm 3000 rpm (364 G) 조건에서 1. 18의 0D를 나타냈고, 100 nm 1000 rpm (40 G) 조건에서 1. 12의 0D값을 나타내었다. 즉, 실험 결과 도 10의 E 그래프에서 나타낸 바와 같이, 종래의 나노 소포체 표준 분리 방법인 Ul tracentr i fuge (UC)로 분리한 경우보다, 본 실시예에 따른 디스크 (di sc)에서 20 nm 3000 rpm (364 G) 및 100 nm 1000 rpm (40G) 조건으로 분리 한 경우 80% 이상의 우수한 회수율을 보임을 확인하였다.  Early LNCaP cell-derived nano vesicles exhibited a 0D value of 1.34 upon detection of CD9 / CD81 (CD9 capture / CD81 detect ion). Nano-vesicles spiked into the plasma and tested by a conventional apparatus showed 0D of 1.18 at 20 nm 3000 rpm (364 G) and 0D value of 1.12 at 100 nm 1000 rpm (40 G). Indicated. That is, as shown in the E graph of Fig. 10, 20 nm 3000 rpm in the disc (di sc) according to the present embodiment than when separated by the conventional nano-vesicle standard separation method Ul tracentr i fuge (UC) When separated under (364 G) and 100 nm 1000 rpm (40G) conditions it was confirmed that the excellent recovery of more than 80%.
도 11은 본 실시예에 따른 장치에 100 nm 기공 크기를 가지는 여과막을 이용하여 나노 소포체를 분리 후 검출한 결과를 나타내고 있다. 실험은, LNCaP 세포 유래 나노 소포체를 혈장 100 microl i ter에 spike하여 이루어졌다. spike 이후의 초기 나노 입자수는 6.34(±±0. 12) ElO/mL 이다.  FIG. 11 shows the detection result after the nano vesicles were separated using a filtration membrane having a pore size of 100 nm in the apparatus according to the present embodiment. In the experiment, LNCaP cell-derived nano endoplasmic reticulum was spiked into 100 microliters of plasma. The initial number of nanoparticles after the spike is 6.34 (±± 0.12) ElO / mL.
도 11의 그래프는 각각 600 rpm (15 G) , 900 rpm (33 G), 1200 rpm (58 G) , 1800 rpm ( 131 G) 및 2400 rpm (233 G)의 디스크 (di sc) 회전 속도에 따른 나노 소포체 검출 결과를 나타내고 있다. The graphs in FIG. 11 are 600 rpm (15 G), 900 rpm (33 G) and 1200 rpm (58, respectively). G), nano vesicle detection results according to the rotational speed of the disc (di sc) at 1800 rpm (131 G) and 2400 rpm (233 G) are shown.
도 11의 A 그래프는 디스크 회전 속도에 따른 나노 입자의 개수를 나타낸다. 실험 결과, 900 rpm (33 G)에서부터 회전 속도를 증가시킬수록 나노 입자의 개수가 감소하는 양상을 보여준다.  A graph of FIG. 11 shows the number of nanoparticles according to the disk rotation speed. Experimental results show that the number of nanoparticles decreases as the rotation speed increases from 900 rpm (33 G).
도 11의 B 그래프는 디스크 회전 속도에 따른 총 단백질 량을 나타낸다. 실험 결과, 900 rpm (33G)에서부터 회전 속도를 증가시킬수록 총 단백질 량이 감소하는 양상을 보여준다. ' The B graph of FIG. 11 shows the total protein amount according to the disk rotation speed. Experimental results show that the total protein decreases with increasing rotation speed from 900 rpm (33G). '
도 11의 C 그래프는 디스크 회전 속도에 따른 나노 소포체 분리 시간 (좌측, Open ci rcles) 및 순도 (우측, Closed squares)를 나타낸다. 실험 결과, 600 rpm (15 G)에서부터 회전 속도를 증가시킬수록 나노 소포체 분리 시간이 감소하는 양상을 보여주고, 600 rpm ( 15 G) 내지 1200 rpm (58 G) 범위에서 높은 순도를 나타내고, 1800 rpm ( 131 G)에서부터는 순도가 점차 감소하는 양상을 보여준다.  FIG. 11C shows the nano vesicle separation time (left, open cicles) and purity (right, closed squares) according to disk rotation speed. Experimental results show that the separation time of nano endoplasmic reticulum decreases with increasing rotation speed from 600 rpm (15 G), and shows high purity in the range of 600 rpm (15 G) to 1200 rpm (58 G), 1800 rpm From 131 G, purity gradually decreases.
도 11의 D 그래프는 디스크 회전 속도에 따른 나노 소포체 표면의 CD81 항원 발현량을 나타낸다. 실험 결과, 600rpm ( 15 G) 내지 1200 rpm (58 G) 범위에서 비교적 높은 CD81 항원 발현량을 보이고, 1800 rpm (131 G)에서부터는 급격히 감소하는 양상을 보여준다.  FIG. 11D shows the amount of CD81 antigen expression on the surface of the nano vesicles according to the disk rotation speed. As a result of the experiment, CD81 antigen expression was relatively high in the range of 600rpm (15G) to 1200rpm (58G), and rapidly decreased from 1800rpm (131G).
도 L1을 통해 종합적으로 확인해 볼 때 , 회전 속도가 900rpm (33 G) 내지 1200 rpm (58 G) 범위에서 우수한 회수율, 순도, 짧은 분리시간을 확보할 수 있음을 확인 할 수 있다.  Comprehensive confirmation through Figure L1, it can be seen that a good recovery rate, purity, a short separation time can be obtained in the rotational speed range from 900rpm (33G) to 1200rpm (58G).
도 12는 본 실시예와 비교예에 대한 나노 소포체 분리 후 검출 결과를 나타내고 있다.  Figure 12 shows the detection results after the separation of nano-vesicles for this Example and Comparative Example.
도 12에서 실시예에 대한 결과는 Di sc 로 표시되어 있다. 실시예는 100 nm 기공 크기를 가지는 여과막을 구비한 디스크를 900 rpm (33 G) 조건으로 동작하여 나노 소포체를 분리한 후 검출한 결과를 나타내고 있다. 비교예는 UC (ult racentr i f ligat ion)로 표시되어, 실시예와 비교되는 종래의 기술에 따른 검출 결과를 나타내고 있다.  The results for the examples in FIG. 12 are labeled Di sc. The example shows the result of detecting the nano vesicles after separating the disks with the filtration membrane having the pore size of 100 nm by operating at 900 rpm (33 G). The comparative example is denoted by UC (ult racentr i ligat ion), and shows the detection result according to the prior art compared with the example.
실험은 실시예와 비교예 모두 동일하게 LNCaP 세포 유래 나노 소포체를 혈장에 spike하여 이루어졌다. spike 이후의 초기 나노 입자수는 6.34(±±0. 12) ElO/mL 이다. The experiments were performed by spiked plasma of LNCaP cell-derived nano endoplasmic reticulum in the same manner as in Examples and Comparative Examples. The initial nanoparticle count after the spike 6.34 (±± 0.12) ElO / mL.
도 12의 A그래프는 검출된 나노 소포체의 개수를 나타내고 있다. 도 12의 A 그래프에 나타낸 바와 같이, 실시예의 경우 LNCaP 세포 유래 나노 소포체를 spike한 혈장의 주입부피의 따라 분리한 입자 수가, 5 mi crol i ter 내지 200 mi crol i ter 범위에서 선형 관계 ( l inear relat ionship)로 증가하는 것을 확인할 수 있다. 이에, 실시예의 경우 비교예인 UC와 비교하여 더 많은 개수로 나노 입자를 분리할 수 있어 보다우수함을 알수 있다.  A graph of FIG. 12 shows the number of nano-vesicles detected. As shown in the graph A of FIG. 12, in the example, the number of particles separated according to the injection volume of the plasma spiked with the LNCaP cell-derived nano-endoplasmic reticulum, was linear relationship in the range of 5 mi crol i to 200 mi crol i ter (l inear relat ionship). Thus, in the case of the embodiment it can be seen that the nanoparticles can be separated in a larger number compared to the comparative example UC is superior.
도 12의 B그래프는 검출된 나노 소포체의 ELISA에 의한 표면 단백질 정량 분석 결과를 나타내고 있다. 도 12의 B 그래프에 나타낸 바와 같이, 실시예의 경우 LNCaP 세포 유래 나노 소포체를 spike 한 혈장의 주입부피의 '따라 나노 소포체 표면의 CD9/CD81 (CD9 capture/CD81 detect ion) 발현량이, 5 mi crol i ter 내지 200 microl i ter 범위에서 선형 관계로 증가하는 것을 확인할 수 있다. 이에, 실시예의 경우 비교예인 UC와 비교하여, 더 높은 발현량을 보이는 것을 알 수 있다. 따라서, 본 실시예의 디스크 (di sc)를 활용하여 혈액 내 나노소포체의 정량 분석이 가능하다.  FIG. 12B shows the result of quantitative analysis of surface proteins by ELISA of the detected nano vesicles. As shown in the graph B of FIG. 12, in the case of the example, the expression volume of CD9 / CD81 (CD9 capture / CD81 detect ion) on the surface of the nano-endoplasmic reticulum was changed according to the injection volume of plasma spiked with LNCaP cell-derived nano-endoplasmic reticulum. It can be seen that the linear increase in the range ter to 200 microl i ter. Thus, in the case of the example, it can be seen that the higher expression amount, compared to the comparative example UC. Therefore, the quantitative analysis of the blood endoplasmic reticulum is possible by utilizing the disc (di sc) of the present embodiment.
도 12의 C 그래프는 나노 소포체 유래 R A를 분리한 결과를 나타내고 있다.  The graph C of FIG. 12 shows the result of separating R A derived from a nano endoplasmic reticulum.
실험은 실시예와 비교예 모두 동일하게 LNCaP 세포 유래 나노 소포체를 혈장 100 microl i ter에 spike하고, 나노 소포체를 분리한 후 페놀 성분의 시약을 주입하여 나노 소포체 유래 RNA를 추출하여 이루어졌다. Bioanalyzer를 이용하고, 추출한 RNA를 전기영동하여 RNA의 크기와 농도를 분석하였다.  The experiments were performed in the same manner as in Examples and Comparative Examples, spiked the LNCaP cell-derived nano endoplasmic reticulum in plasma 100 microliter, separated the nano vesicles, and injected the reagent of the phenol component to extract the nano-vesicle-derived RNA. Bioanalyzer was used and the extracted RNA was subjected to electrophoresis to analyze the size and concentration of RNA.
도 12의 C 그래프에 나타낸 바와 같이, 실험 결과, 실시예와 비교예들 모두 같은 크기 양상을 보였으며 나노 소포체와 연관된 250 nt 이하의 많은 RNA가 추출되었다. 또한, RNA 농도 검출 결과에 있어서 본 실시예의 검출 장치를 이용하여 분리한 나노 소포체 핵산 추출 결과, 비교예들보다 더 높은 RNA 농도를 나타내 검출 효과를 증대할 수 있음을 확인 할 수 있다. 이와 같이, 나노 소포체 유래 RNA를 분리한 결과에서도 비교예인 UC에서는 RNA 검출이 어려운 반면, 실시예의 디스크를 이용하여 분리한 샘플에서는 Exosomal RNA가 검출됨을 확인할 수 있다. 도 13은 실시예의 조건 별로, 정상인 혈장과 암 환자의 혈장 200 mi crol i ter 로부터 분리한 나노 소포체의 검출결과를 종래와 비교하여 나타낸다. 도 13에서 H는 정상인 혈장, L은 폐암환자의 혈장, S는 위암환자의 혈장을 의미한다. As shown in the C graph of FIG. 12, the experimental results showed that both the Examples and Comparative Examples had the same size, and many RNAs of 250 nt or less associated with the nano-vesicles were extracted. In addition, it can be confirmed that the RNA concentration detection results can be increased by the nano-vesicle nucleic acid extraction results separated using the detection device of the present embodiment, showing a higher RNA concentration than the comparative examples to increase the detection effect. As described above, RNA was difficult to detect in UC, which is a comparative example, even in the result of separating the nano-vesicle-derived RNA, whereas Exosomal RNA was detected in the sample separated using the disk of the example. Figure 13 shows the detection results of the nano-vesicles separated from the normal plasma and plasma 200 mi Crol iter of the cancer patients according to the conditions of the embodiment compared with the conventional. In Figure 13, H is the normal plasma, L is the plasma of lung cancer patients, S means the plasma of gastric patients.
도 13에서 실시예에 대한 결과는 Di sc 로 표시되어 있다. Di sc— 20은 20nm의 기공 크기를 갖는 여과막을 구비한 디스크를 3000rpm(364 G)으로 회전 구동한 조건에서의 실험 결과를 나타내고, Di sc-100은 lOOnm의 기공 크기를 갖는 여과막을 구비한 디스크를 1200rpm (58 G)으로 회전 구동한 조건에서의 실험 결과를 나타낸다. 비교예는 UC(ul tracentr i fugat ion)로 표시되어, 실시예와 비교되는 종래의 기술에 따른 검출 결과를 나타내고 있다.  The results for the examples in FIG. 13 are labeled Di sc. Di sc-20 shows the experimental results under the conditions of rotating and driving a disk having a filtration membrane having a pore size of 20 nm at 3000 rpm (364 G), and Di sc-100 has a disk having a filtration membrane having a pore size of 100 nm. The experimental results are shown under the condition of driving rotationally at 1200 rpm (58 G). The comparative example is represented by UC (ul tracentr i fugat ion) and shows the detection result by the conventional technique compared with an Example.
도 13의 그래프 A는 나노 소포체 분리 방법에 따른 총 단백질량을 나타낸다. 실험 결과, 20 nm 3000 rpm (364 G) 조건으로 실시된 Di sc-20 실시예에서 총 단백질량이 가장 높았고, 비교예인 UC 및 Di sc-100( 100 nm 1200 rpm (58 G) )의 경우에는 유사하게 총 단백질량이 낮았다.  Graph A of Figure 13 shows the total protein amount according to the nano-vesicle separation method. As a result, the total protein content was the highest in Di sc-20 at 20 nm 3000 rpm (364 G) and similar for UC and Di sc-100 (100 nm 1200 rpm (58 G)). Total protein was low.
도 13의 그래프 B는 나노 소포체 분리 방법에 따른 나노 입자 회수 결과를 나타내고 있다. 실험 결과, 20 nm 3000 rpm (364 G) 조건으로 실시된 Di sc-20 실시예에서 가장 많은 양의 나노 입자가 회수가 되었지만, 정상인 샘플과 암환자 샘플간의 나노 입자 개수의 차이를 보이지 않았다. 100 nm 1200 rpm (58 G) 조건으로 실시된 di sc-100 실시예에서는 비교예인 UC 보다 많은 양의 .나노 입자가 회수되었고, 정상인 샘플과 암환자 샘플간의 나노 입자 개수의 차이를 보였다. Graph B of FIG. 13 shows a result of recovering nanoparticles according to a method for separating nanovesicles. As a result, the largest amount of nanoparticles was recovered in the Di sc-20 example at 20 nm 3000 rpm (364 G), but there was no difference in the number of nanoparticles between the normal sample and the cancer patient sample. In the di sc-100 example, which was carried out at 100 nm 1200 rpm (58 G), the amount of . The nanoparticles were recovered and there was a difference in the number of nanoparticles between normal and cancer patients.
도 13의 그래프 C는 나노 소포체 분리 방법에 따른 나노 입자의 순도를 나타낸다. 실험 결과, 모든 샘플 군에서, 100 nm 1200 rpm (58 G) 조건으 '로 실시된 di sc-100 실시예의 경우 가장 높은 순도를 나타내었다. 도 13의 그래프 D는 나노 소포체 분리 방법에 따른 나노 소포체 표면의 암 검출에 사용되는 마커 (EpCAM)의 발현량을 나타낸다. 실험 결과, 비교예인 UC 분리 방법과 비교하였을 때, 실시예인 Di sc-20과 Di sc-100 모두 전체적으로 높은 항원 발현량이 나타났고, 정상인 환자와 암 환자간의 큰 EpCAM항원 발현량 차이를 보였다. 도 13의 A,B,C ,D 그래프에 나타낸 바와 같이, 4가지 실험을 통해 환자 혈액 유래 나노 소포체를 총 단백질량 (BCA) , 총 나노 입자수 (NTA) , 순도 (NTA로 측정한 나노 입자수를 BCA로 측정한 총단백질량으로 나눈 값), ELISA로 분석한 나노 소포체 표면 마커 결과, Di sc-100 실시예에서 우수한 결과가 나타남을 확인할 수 있다. Graph C of Figure 13 shows the purity of the nanoparticles according to the nano-vesicle separation method. The experimental results, in all of the sample groups, exhibited the highest purity, if the exemplary embodiment as a di sc-100 100 nm 1200 rpm (58 G) conditions coming from "example. Graph D of FIG. 13 shows the expression level of a marker (EpCAM) used for cancer detection of the surface of the nano endoplasmic reticulum according to the method for separating nano vesicles. As a result of the experiment, when compared to the UC isolation method of the comparative example, both Di sc-20 and Di sc-100 showed high antigen expression overall, and showed a large difference in the expression level of EpCAM antigen between normal patients and cancer patients. As shown in the graphs A, B, C, and D of FIG. 13, the patient's blood-derived nano endoplasmic reticulum (BCA), total number of nanoparticles (NTA), and purity (NTA measured by NTA) were measured through four experiments. The number divided by the total protein mass measured by BCA), the nano-vesicle surface markers analyzed by ELISA results, it can be seen that excellent results in the Di sc-100 Example.
도 14는 본 실시예에 따른 장치와 종래 장치를 통한 나노 소포체 검출 결과의 검출 CT값을 비교하여 나타내고 있다. 실험은, 200 microl i ter의 정상인 혈장으로부터 분리된 혈액 유래 나노 소포체의 핵산을 추출하고 real-t ime PCR 로 검출하여 이루어졌다.  FIG. 14 compares and shows detection CT values of nano-vesicle detection results through the device according to the present embodiment and the conventional device. The experiment was performed by extracting the nucleic acid of blood-derived nano endoplasmic reticulum isolated from the normal plasma of 200 microliters and detecting it by real-time PCR.
도 14에서 실시예에 대한 결과는 Exodi sc로 표시되어 있으며ᅳ 비교예들은 UC와 Exospin으로 표시되어 있고, 실시예와 비교되는 종래의 기술에 따른 검출 결과를 나타내고 있다.  In FIG. 14, the results of the examples are denoted by Exodi sc, and ᅳ Comparative Examples are denoted by UC and Exospin, and show detection results according to the prior art compared with the examples.
실험결과, 본 실시예의 따른 장치를 사용한 경우, 비교예의 UC 및 Exospin의 경우보다, 나노 소포체 표면 항원 CD81 , CD63 , CD9의 발현량 및 검출율이 월등히 높았다.  As a result of the experiment, the expression level and detection rate of the nano vesicle surface antigens CD81, CD63, and CD9 were significantly higher than those of the UC and Exospin of the comparative example.
도 15는 본 실시예에 따른 장치를 이용하고, Proteinase K 용액을 이용한 샘플 전처리 단계를 거친 혈장과 전처리 단계를 거치지 않은 혈장으로부터 혈액 .유래 나노 소포체의 핵산을 추출하고 real-t ime PCR (RT-PCR)로 검출한 결과를 나타낸 그래프이다.  Figure 15 shows the extraction of nucleic acid of blood-derived nano-endoplasmic reticulum from the plasma subjected to the sample pretreatment step and the plasma pretreatment step using the proteinase K solution using the apparatus according to the present embodiment and real-t ime PCR (RT- PCR shows a result of detection.
실험은 본 실시예에 따른 장치를 이용하여 200 microl i ter의 정상인 혈장으로부터 분리된 나노 소포체에서 핵산을 추출하여 이루어졌다. 도 15의 그래프는 본 실시예에 따라 추출한 핵산으로 RT-PCR을 통해 GAPDH (House keeping gene) , CD9 , CD63 , CD81 (나노 소포체 검출 마커)의 검출 CT 값을 나타내고 있다.  The experiment was performed by extracting nucleic acids from nano vesicles separated from the normal plasma of 200 microliters using the device according to the present example. The graph of FIG. 15 shows detection CT values of GAPDH (House keeping gene), CD9, CD63, and CD81 (nano vesicle detection marker) through RT-PCR with nucleic acids extracted according to the present example.
실험 결과에 나타난 바와 같이, Proteinase K (단백질을 분해하는 효소)을 이용하여 샘플 전처리 과정을 거치는 경우, 처리하지 않은 pl asma 샘플에 비해 5배 정도 높은 mRNA 발현량이 나타났다. 즉 혈장 내에 존재하는, 나노 소포체 외의 다른 단백질이 핵산 검출 결과에 영향을 즐 수 있음을 의미하고, Proteinase K를 이용한 샘플 전처리 과정에 의해 핵산 증폭 성능이 개선됨을 확인할 수 있다. 도 16은 도 5의 실시예에 따른 장치를 이용하여 BT474유방암 세포주) 세포배양액에서 나노소포체를 크기 차이에 따라 분리하고, 각 크기 분포를 가지는 나노소포체 fract ion의 표면 단백질을 분석한 그래프이다. 예를 들어, 기공크기 20 nm 및 600 nm를 가지는 2개의 여과막을 사용하는 구조의 경우, 20 nm AA0 필터 위에는 크기가 20nm— 600nm 범위의 모든 나노입자의 흔합물이 존재하게 되고, 이 나노입자의 표면 단백질 및 분자특성은 도 7 도 9에 나타난 바와 같다. As shown in the experimental results, when sample pretreatment was performed using Proteinase K (enzyme that degrades protein), mRNA expression was about five times higher than that of untreated pl asma sample. That is, it means that other proteins in the plasma, other than the nano-vesicles, may enjoy the nucleic acid detection results, and nucleic acid amplification performance may be improved by sample pretreatment using Proteinase K. FIG. 16 is a graph illustrating separation of nanovesicles from BT474 breast cancer cell line) cell culture medium according to size differences and analysis of surface proteins of nanovesicle fract ions having respective size distributions using the apparatus according to the embodiment of FIG. 5. For example, in a structure using two filtration membranes with pore sizes of 20 nm and 600 nm, a mixture of all nanoparticles ranging in size from 20 nm to 600 nm will be present on the 20 nm AA0 filter. Surface protein and molecular properties are as shown in FIG.
이와 같이, 나노 입자를 크기 차이에 의해 분리하여 각 크기 분포를 가지는 나노 입자에 대한 분석을 분리 수행할수 있다.  As such, the nanoparticles may be separated by a size difference, and analysis for the nanoparticles having each size distribution may be performed.
본 실험에서는, 도 5의 실시예와 같이 기공크기가 200nm, lOOnm, 20nm인 M0 여과막을 순차적으로 구비한 디스크를 이용하여, 각 여과막에 회수된 나노입자의 크기를 분석하였다. 도 16의 A 그래프는 세 개의 필터챔버에 구비된 여과막의 조합에 따른 나노 소포체 분리 결과를 나타내고 있다. A 그래프에서 on AA0 200nm는 제 1 필터챔버의 여과막 (200nm)에서 검출된 나노 소포체이며, on M0 100 nm는 게 2 필터챔버의 여과막 ( lOOnm)에서 검출된 나노 소포체이며, on AA0 20 nm는 제 3 필터챔버의 여과막 (20nm)에서 검출된 나노 소포체를 나타낸다. Post-f i l trat ion은 저 13 필터챔버의 여과막 (20nm)를 통과한 이후의 용액을 의미한다.  In this experiment, the size of the nanoparticles recovered in each filtration membrane was analyzed using a disk having a M0 filtration membrane having a pore size of 200 nm, 100 nm, and 20 nm as in the example of FIG. 5. Graph A of FIG. 16 shows the results of nano-vesicle separation according to the combination of the filtration membranes provided in the three filter chambers. In the A graph, on AA0 200 nm is a nano vesicle detected in the filtration membrane (200 nm) of the first filter chamber, on M0 100 nm is a nano vesicle detected in the filtration membrane (100 nm) of the crab 2 filter chamber, and on AA0 20 nm is The nano vesicles detected in the filtration membrane (20 nm) of the three filter chambers are shown. Post-f l trat ion refers to a solution after passing through a filtration membrane (20 nm) in a low 13 filter chamber.
도 16의 A그래프에 나타낸 바와 같이 AA0 200 nm, AA0 100 nm , AA0 20 nm 모든 필터를 통과해 나온 용액 (Post-f i l trat ion)에서 각각 평균 255nm, 141nm, 78nm, 10nm의 크기를 가지는 나노입자 용액을 회수할 수 있다.  As shown in the graph A of FIG. 16, the nanoparticles having the average size of 255 nm, 141 nm, 78 nm, and 10 nm, respectively, in the solution (post-f il trat ion) passed through all the filters, AA0 200 nm, AA0 100 nm and AA0 20 nm The particle solution can be recovered.
따라서, 실험 결과, 그래프 A에 나타낸 바와 같이, 각 필터챔버의 여과막 상에서 원하는 크기의 나노 소포체가 검출되었다. 이에, 본 장치를 통해 다양한크기의 나노 소포체를 분리하여 검출할 수 있음을 알 수 있다. 도 16의 B 그래프는 각 필터챔버의 여과막에서 분리된 BT474 유방암 세포 유래 나노 소포체의 검출 결과를 나타내고 있다. 도 16의 B 그래프는 해당 나노 소포체의 EpCAM과 Sial i c acid의 표면 단백질양을 기준으로 normal i ze한 것을 나타낸다.  Therefore, as a result of the experiment, as shown in Graph A, nano-vesicles of a desired size were detected on the filtration membranes of the respective filter chambers. Thus, it can be seen that the present invention can be detected by separating the nano-vesicles of various sizes. The graph B of FIG. 16 shows the detection results of BT474 breast cancer cell-derived nano vesicles separated from the filter membrane of each filter chamber. The graph B of FIG. 16 shows normal i ze based on the amount of surface proteins of EpCAM and Sial i c acid of the nano vesicles.
20nm M0 only의 경우, 20nm M0 여과막을 이용하여 20nm 여과막 위에 회수된 나노소포체를 의미한다. 즉, 3개의 필터챔버를 구비한 실시예의 경우 제 1 필터챔버 (200nm의 여과막)와 제 2 필터챔버 (lOOnm의 여과막)를 거치지 않고 제 3 필터챔버 (20nm의 여과막)에서 검출된 20nm 이상의 크기를 갖는 나노 소포체를 의미한다. Exofree medium의 경우, 나노 소포체가 없는 순수 배양액을 20nm 여과막을 통과시킨 것을 의미한다. In the case of 20 nm M0 only, it means a nano-vesicle recovered on the 20 nm filter membrane using a 20 nm M0 filter membrane. That is, in the case of the embodiment having three filter chambers It refers to a nano-vesicle having a size of 20 nm or more detected in the third filter chamber (20 nm filtration membrane) without passing through the first filter chamber (200 nm filtration membrane) and the second filter chamber (100 nm filtration membrane). In the case of exofree medium, it means that the pure culture solution without the nano-vesicles was passed through a 20 nm filtration membrane.
실험 결과, EPCAM (Epi thel i al cel l adhesion molecule , 암 검출에 사용되는 마커)은 On 20nm MO에서 발현량아 가장 높게 나타나, 20-100 nm 사이 범위를 갖는 크기가 비교적 작은 나노 소포체 fract ion에서 더 많이 검출되됨을 알 수 있다. 또한, Si al ic acid (암 검출에 사용되는 마커)의 발현량은 On lOOnm AA0에서 가장 높게 나타나, 100-200 nm사이 범위를 갖는 나노 소포체 fract ion에서 더 많이 검출됨을 확인할 수 있다.  Experimental results show that EPCAM (Epi theel Cel l adhesion molecule, a marker used for cancer detection) is the highest expression level on On 20nm MO, more in relatively small nano-vesicle fract ion with a range between 20-100 nm It can be seen that a lot of detection. In addition, the expression level of Sialic acid (marker used for cancer detection) is the highest in On 100nm AA0, it can be confirmed that more detected in the nano-vesicle fract ion having a range between 100-200 nm.
이에, 본 실시예를 통해 서로 다른 크기 분포를 가지는 나노 소포체 fract ion을 선택적으로 회수할 수 있음을 알 수 있다.  Thus, it can be seen that the present invention can selectively recover the nano vesicles fract ion having a different size distribution.
이와 같은 실험을 통해, 본 실시예에 따른 검출 장치를 이용하여 나노 입자를 보다 효과적으로 검출할 수 있음을 알수 있다.  Through such experiments, it can be seen that the nanoparticles can be detected more effectively using the detection apparatus according to the present embodiment.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한본 발명의 범위에 속하는 것은 당연하다.  In the above description of the preferred embodiment of the present invention, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range of.
【부호의 설명】  [Explanation of code]
10 : 디스크 12 : 상판  10 : Disc 12 : Top plate
14 : 하판 20 : 시료수용부  14 : Bottom plate 20 : Sample holding part
21 : 시료챔버 22 : 제 1 유로  21: sample chamber 22: first flow path
23 : 거 U 밸브 24 : 침강부  23 : U-valve 24 : Sedimentation part
25 : 홈부 30 : 필터부  25 : Groove 30 : Filter
31 : 필터챔버 311 : 거 11 필터챔버  31 : Filter chamber 311: Giant 11 filter chamber
312: 제 2 필터챔버 313: 제 3 필터챔버  312: 2nd filter chamber 313: 3rd filter chamber
315 , 317 : 유로 32 : 입측공간  315, 317: Euro 32: Entrance space
33 : 줄즉공간 34 : 여과막  33 : Reduced space 34 : Filtration membrane
35 : 예비챔버 36 : 이송유로  35: preliminary chamber 36: transfer path
37 : 이송밸브 40 : 고그ᄇ  37 : Transfer valve 40 : Goggles
ᄋ ᄇ丁 항체챔버 42 제 2 유로 게 2 밸브 44 시약챔버 제 3 유로 46 제 3 밸브 기질액챔버 48 유로 제 4 밸브 50 정지액챔버 세척부 61 세척액챔버 제 5 유로 63 ^15 밸브 폐액수용부 71 폐액챔버 거 16 유로 73 거 16 밸브 회수챔버 81 제 7유로 제 7 밸브 90 덮개 볼트 ᄋ ᄇ 丁 Antibody chamber 42 2nd flow path 2 valve 44 Reagent chamber 3rd flow path 46 3rd valve Substrate fluid chamber 48th flow path 4th valve 50 Stopper chamber cleaning part 61 Washing liquid chamber 5th flow path 63 ^ 15 Valve waste liquid receiving part 71 Waste liquid chamber ger 16 Euro 73 Geo 16 Valve return chamber 81 7 Euro 7 valve 90 Cover bolt

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
원심력에 의한 유체의 이송이 이루어지는 디스크,  A disk carrying fluid by centrifugal force,
상기 디스크에 형성되어 시료를 수용하는 시료수용부,  A sample accommodating part formed on the disc to accommodate a sample;
상기 시료수용부에 연결되고 이송된 시료를 여과하여 나노 입자를 분리하기 위한 미세 여과막을 구비한 필터부,  A filter part connected to the sample accommodating part and having a fine filtration membrane for separating the nanoparticles by filtering the transferred sample;
상기 필터부에 연결되어 여과막에 분리된 나노 입자 검출을 위한 검출액을 공급하는 공급부,  A supply unit connected to the filter unit and supplying a detection liquid for detecting nanoparticles separated from the filtration membrane;
상기 필터부 출측에 연결되어 여과막을 거친 용액을 수용하는 폐액수용부,  A waste liquid containing part connected to the filter part outlet side to receive the solution passed through the filtration membrane;
상기 디스크에 형성되어 유체가 이송되는 유로, 및  A flow path formed in the disk to transfer fluid,
상기 유로를 선택적으로 개폐하는 밸브  A valve for selectively opening and closing the flow path
를 포함하는 나노 입자 검출 장치 .  Nanoparticle detection device comprising a.
【청구항 2】  [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 필터부는 유체 이동방향을 따라 입측공간과 출측공간을 구비하며 입측공간과 출측공간 사이에 상기 여과막이 설치된 필터챔버를 포함하고,  The filter unit includes a filter chamber having an entrance space and an exit space along a fluid movement direction, and the filtration membrane is installed between the entrance space and the exit space.
상기 입측공간은 시료수용부와 연결되어 시료가 유입되고 여과된 나노 입자가 수용되며, 상기 출측공간은 폐액수용부와 연결된 나노 입자 검출 장치 .  The entrance space is connected to the sample receiving portion and the sample is introduced and the filtered nanoparticles are accommodated, and the exiting space is connected to the waste liquid receiving portion.
【청구항 3]  [Claim 3]
제 2 항에 있어서,  The method of claim 2,
상기 여과막은 기공이 lnm 내지 lOOOnm로 형성된 나노 입자 검출 장치.  The filtration membrane is a nanoparticle detection device the pores are formed of lnm to 100m.
【청구항 4】  [Claim 4]
제 2 항에 있어서,  The method of claim 2,
상기 여과막은 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 올레핀 코폴리머를 포함한 열경화성 플라스틱, 양극산화알루미늄, 니켈, 또는 실리콘 재질로 이루어지는 나노 입자 검출 장치. The filtration membrane is made of a polycarbonate, polystyrene, polymethyl methacrylate, a thermosetting plastic containing a cyclic olefin copolymer, anodized aluminum, nickel, or silicon material Particle detection device.
【청구항 5]  [Claim 5]
제 2 항에 있어서 ,  The method of claim 2,
상기 필터부는 입측공간과 출측공간 사이에 적어도 두 개 이상의 여과막이 적층되고, 상기 각 여과막은 유체 이송방향을 따라 기공이 점차적으로 작아지는 나노 입자 검출 장치 .  The filter unit is at least two filtration membrane is stacked between the entrance space and the exit space, each of the filtration membrane nanoparticle detection device that the pores gradually decrease along the fluid transport direction.
【청구항 6】  [Claim 6]
2 항에 있어서, The method of claim 2 ,
상기 필터부는 적어도 두 개 이상의 유체 이송 방향을 따라 순차적으로 배치되고, 각 필터부에 구비된 여과막은 기공의 크기가 서로 상이하여, 각각 서로 다른 크기 범위의 나노 입자를 분리하는 나노 입자 검출 장치 .  The filter unit is disposed sequentially along at least two or more fluid transfer direction, the filter membrane provided in each filter unit is different in size of pores, each nanoparticle detection device for separating the nanoparticles of different size range.
【청구항 7】  [Claim 7]
제 6 항에 있어서,  The method of claim 6,
상기 필터부는 적어도 두 개 이상이 유체 이송방향을 따라 순차적으로 배치되고, 각 필터부에 구비된 여과막은 유체 이송방향을 따라 기공이 점차적으로 작아지는 나노 입자 검출 장치 .  At least two filter units are disposed sequentially in the fluid transfer direction, and the filtration membranes provided in each filter unit gradually decrease pores along the fluid transfer direction.
【청구항 8】  [Claim 8]
제 2 항에 있어서,  The method of claim 2,
상기 여과막은 상기 디스크의 필터챔버에 착탈가능하게 설치된 나노 입자 검출 장치.  And the filtration membrane is detachably installed in the filter chamber of the disk.
【청구항 9】  [Claim 9]
제 8 항에 있어서,  The method of claim 8,
상기 필터부는 상기 디스크에 착탈가능하게 설치되어 상기 필터챔버를 개폐하는 덮개, 상기 덮개를 디스크에 고정하는 체결부를 더 포함하는 나노 입자 검출 장치 .  The filter unit further comprises a cover detachably installed on the disk for opening and closing the filter chamber, the fastening unit for fixing the cover to the disk.
【청구항 10】  [Claim 10]
게 1 항에 있어서,  According to claim 1,
상기 시료수용부는 상기 디스크에 형성되어 시료를 수용하는 시료챔버, 상기 시료챔버와 필터부를 연결하며 디스크의 원심력에 따라 시료가 이송되는 제 1 유로, 및 상기 제 1 유로를 개폐하는 제 1 밸브를 포함하는 나노 입자 검출 장치 . The sample accommodating part is formed in the disc to accommodate a sample chamber for accommodating the sample, and connects the sample chamber and the filter part according to the centrifugal force of the disc. And a first flow path through which a sample is transferred, and a first valve for opening and closing the first flow path.
【청구항 11】  [Claim 11]
제 10 항에 있어서,  The method of claim 10,
상기 시료챔버는 디스크 원심력에 따라 시료를 원심분리하고, 원심력 방향을 따라 디스크의 외측을 향하는 선단에 원심 분리된 시료가수용되는 침강부가 길게 연장 형성되고,  The sample chamber is a centrifugal separation of the sample in accordance with the disc centrifugal force, and the settling portion for receiving the sample centrifuged at the leading end toward the outside of the disc in the direction of the centrifugal force is formed elongated,
상기 제 1 유로는 디스크의 회전 중심을 향해 상기 시료챔버의 침강부 경계지점에 연결되어 원심분리된 상층액을' 필터부로 이송하는 나노 입자 검출 장치. The first flow path is nano-particle detection apparatus is towards the center of rotation of the disk connected to the depression border of the sample chamber, transferring the centrifuged supernatant portion "filter.
【청구항 12]  [Claim 12]
제 11 항에 있어서,  The method of claim 11,
상기 침강부는 디스크의 방사방향에 대해 기울어져 경사지게 형성된 나노 입자 검출 장치.  The settling portion is nanoparticle detection device formed inclined inclined with respect to the radial direction of the disk.
【청구항 13】  [Claim 13]
제 11 항에 있어서,  The method of claim 11,
상기 침강부는 상기 경계지점에서 원심력 방향을 따라 끝단으로 갈수록 바닥면이 점차적으로 상향 경사지고, 상기 침강부의 끝단에 형성되어 시료에서 원심분리된 불순물이 수용되는 홈부를 더 포함하는 나노 입자 검출 장치 .  The settling portion further comprises a groove portion in which the bottom surface is gradually inclined upward toward the end along the direction of the centrifugal force at the boundary point, is formed at the end of the settling portion to accommodate the impurities centrifuged from the sample.
【청구항 14]  [Claim 14]
거 1 1 항에 있어서,  According to the clause 1 1,
상기 시료는 생체입자를 포함하는 혈액, 림프액, 조직액, 오줌, 타액, 뇌척수액 및 객담에서 선택되는 생체시료 또는 나노 입자가 분산된 수용액 또는 이들의 조합인 나노 입자 검출 장치 .  The sample is a nanoparticle detection device that is a biological sample or a nanoparticles dispersed in the blood, lymph, tissue, urine, saliva, cerebrospinal fluid and sputum containing bioparticles or a combination thereof.
【청구항 15】  [Claim 15]
제 1 항에 있어서,  The method of claim 1,
상기 시료수용부, 상기 필터부, 상기 공급부 및 상기 폐액수용부는 하나의 유닛을 이루고, 상기 유닛은 디스크의 원주방향을 따라 복수개가 간격을、두고 배치되는 나노 입자 검출 장치. And the sample accommodating part, the filter part, the supplying part, and the waste liquid receiving part constitute one unit, and the unit is arranged in a plurality spaced apart along the circumferential direction of the disk.
【청구항 16] [Claim 16]
제 1 항에 있어서,  The method of claim 1,
상기 디스크의 이웃하는 두 구성부를 연결하는 상기 유로는 입구가 출구보다 디스크 중심쪽에 위치하여, 디스크의 원심력 방향을 따라 입구가 일측 챔버의 출측에 연결된 나노 입자 검출 장치.  The flow path connecting the two adjacent components of the disk inlet is located in the center of the disk than the outlet, the inlet is connected to the outlet side of the chamber along the direction of the centrifugal force of the disk.
【청구항 17]  [Claim 17]
제 1 항에 있어서,  The method of claim 1,
상기 디스크는 비특이적 항체 부착을 방지할 수 있도록 단백질이나, 고분자, 또는 유기분자로 표면 개질된 나노 입자 검출 장치.  The disk is a nanoparticle detection device surface-modified with proteins, polymers, or organic molecules to prevent non-specific antibody adhesion.
【청구항 18]  [Claim 18]
거 1 1 항 내지 제 17 항 중 어느 한 항에 있어서,  The method according to any one of claims 1 to 17,
상기 공급부는 상기 디스크에 형성되어 나노 입자 검출을 위해 제공되는 항체를 수용하는 항체챔버, 상기 항체챔버와 필터부를 연결하며 디스크의 원심력에 따라 항체를 필터부로 이송하는 제 2 유로, 및 상기 제 2 유로를 개폐하는 게 2 밸브를 포함하는 나노 입자 검출 장치.  The supply unit is formed in the disk and the antibody chamber for receiving the antibody provided for nanoparticle detection, the second flow path for connecting the antibody chamber and the filter unit and transfer the antibody to the filter unit in accordance with the centrifugal force of the disk, and the second flow path Nanoparticle detection device comprising two valves to open and close the.
【청구항 19】  [Claim 19]
제 18 항에 있어서,  The method of claim 18,
상기 공급부는 상기 디스크에 형성되어 나노 입자를 검출하는 항체의 표지를 위해 제공되는 시약이 수용된 시약챔버, 상기 시약챔버와 필터부를 연결하며 디스크의 원심력에 따라 시약을 필터부로 이송하는 제 3 유로, 및 상기 게 3 유로를 개폐하는 게 3 밸브를 더 포함하는 나노 입자 검출 장치. .  The supply part is formed in the disk, a reagent chamber containing a reagent provided for labeling an antibody for detecting nanoparticles, a third flow path connecting the reagent chamber and the filter part and transferring the reagent to the filter part according to the centrifugal force of the disk, and The nanoparticle detection device further comprises a three-valve valve for opening and closing the three-channel crab. .
【청구항 20] [Claim 20]
게 19 항에 있어서,  According to claim 19,
상기 공급부는 상기 디스크에 형성되어 나노 입자 검출반웅을 위해 제공되는 기질액을 수용하는 기질액챔버, 상기 기질액챔버와 필터부를 연결하며 디스크의 원심력에 따라 기질액을 필터부로 이송하는 제 4 유로, 및 상기 제 4 유로를 개폐하는 게 4 밸브를 더 포함하는 나노 입자 검출 장치 ·  The supply part is formed in the disk and the substrate liquid chamber for receiving the substrate liquid provided for the detection of nanoparticles, the fourth flow path for connecting the substrate liquid chamber and the filter unit and transfer the substrate liquid to the filter unit in accordance with the centrifugal force of the disk, And a fourth valve for opening and closing the fourth flow path.
【청구항 21】  [Claim 21]
제 20 항에 잇어서 , 상기 공급부는 공급부는 디스크에 형성되어 나노 입자 검출 반웅을 멈추기 위해 제공되는 정지용액 (stop solut ion)을 수용하는 정지용액챔버, 상기 정지용액챔버와 기질액챔버를 연결하는 연결유로, 및 상기 연결유로를 개폐하는 연결밸브를 더 포함하는 나노 입자 검출 장치. In accordance with paragraph 20, The supply part is a supply part is formed in the disk is a stop solution chamber for receiving a stop solution (stop solut ion) provided to stop the nanoparticle detection reaction, a connection flow path for connecting the stop solution chamber and the substrate liquid chamber, and the connection flow path Nanoparticle detection device further comprising a connection valve for opening and closing the.
【청구항 22】  [Claim 22]
제 21 항에 있어서,  The method of claim 21,
상기 공급부는 상기 필터부로 세척액을 이송하여 필터부를 세척하는 세척부를 더 포함하는 나노 입자 검출 장치.  The supply unit further comprises a washing unit for cleaning the filter unit by transferring the washing liquid to the filter unit.
【청구항 23】  [Claim 23]
제 22 항에 있어서,  The method of claim 22,
상기 세척부는 상기 디스크에 형성되어 세척액을 수용하는 세척액챔버, 상기 세척액챔버와 필터부를 연결하며 디스크의 원심력에 따라 세척액을 필터부로 이송하는 제 5 유로, 상기 계 5 유로를 개폐하는 제 5 밸브를 포함하는 나노 입자 검출 장치.  The washing unit includes a washing liquid chamber formed in the disk to receive the washing liquid, a fifth flow passage connecting the washing liquid chamber to the filter unit and transferring the washing liquid to the filter unit according to the centrifugal force of the disk, and a fifth valve opening and closing the fifth flow passage. Nanoparticle detection device.
【청구항 24]  [Claim 24]
제 22 항에 있어서,  The method of claim 22,
상기 세척액챔버는 복수개로 구분되고, 각각의 세척액챔버에 세척액이 구분 수용되고, 각 세척액챔버의 출측 유로에는 세척액을 배출하는 출측 밸브가 설치된 나노 입자 검출 장치.  The cleaning liquid chamber is divided into a plurality, the cleaning liquid is contained in each of the cleaning liquid chamber, and the nanoparticle detection device is provided with an outlet valve for discharging the cleaning liquid in the outlet flow path of each washing liquid chamber.
【청구항 25】  [Claim 25]
제 22 항에 있어서,  The method of claim 22,
상기 디스크에 형성되고 상기 필터부에 연'결되어 여과막에 의해 분리된 나노 입자가 회수되는 회수챔버, 상기 회수챔버와 필터부를 연결하여 나노 입자를 회수챔버로 이송하는 게 7 유로, 상기 게 7 유로를 개폐하는 제 7 밸브를 더 포함하는 나노 입자 검출 장치 . To 7 flow path is formed in the disc transport of nanoparticles in recovery chamber to open, is determined connection recovery chamber where the number of the nanoparticles separated by a filtration membrane, the recovery chamber and the filter unit to the filter unit, the crab 7 euros Nanoparticle detection device further comprises a seventh valve for opening and closing the.
【청구항 26】  [Claim 26]
디스크에 시료를 공급하는 단계 ,  Feeding the sample to the disc,
디스크에 원심력을 가해 시료흩 필터부로 이송하고 여과막을 통해 여과하여 나노 입자를 분리하는 단계, 및  Applying a centrifugal force to the disk and transferring the sample to the filter filter and separating the nanoparticles by filtration through the filtration membrane; and
디스크에 원심력을 가해 검출액을 필터부로 공급하여 여과막 상의 나노 입자를 검출하는 단계 The centrifugal force is applied to the disk and the detection liquid is supplied to the filter unit to Detecting nanoparticles
를 포함하는 나노 입자 검출 방법 .  Nanoparticle detection method comprising a.
【청구항 27]  [Claim 27]
제 26 항에 있어서,  The method of claim 26,
상기 나노 입자를 분리하는 단계는, 기공 크기가서로 상이한 복수의 여과막을 거쳐 서로 다른 크기 범위의 나노 입자를 분리하는 나노 입자 검출 방법.  Separating the nanoparticles, nanoparticle detection method for separating the nanoparticles of different size range through a plurality of different membranes with different pore sizes.
[청구항 28】  [Claim 28]
제 27 항에 있어서,  The method of claim 27,
상기 나노 입자를 분리하는 단계는, 기공이 점차 작아지는 복수의 여과막을 순차적으로 거쳐 서로 다른 크기 범위의 나노 입자를 분리하는 나노 입자 검출 방법 .  Separating the nanoparticles, nanoparticle detection method for separating the nanoparticles of different size range sequentially through a plurality of filtration membranes the pores are gradually smaller.
【청구항 29】  [Claim 29]
제 26 항에 있어서,  The method of claim 26,
상기 시료를 필터부로 이송하기 전에, 디스크에 원심력을 가해 시료를 원심 분리하는 정제 단계를 더 포함하는 나노 입자 검출 방법 .  And a purification step of centrifuging the sample by applying a centrifugal force to the disk before transferring the sample to the filter portion.
【청구항 30】 [Claim 30]
제 26 항 내지 제 29 항 중 어느 한 항에 있어세  30. The method according to any one of claims 26 to 29
상기 나노 입자를 검출하는 단계는, 디스크에 원심력을 가해 항체를 필터부로 공급하여 나노 입자를 검출하고, 필터부로 시약을 공급하여 나노 입자에 붙은 항체를 표지하는 단계를 포함하는 나노 입자 검출 방법 .  The detecting of the nanoparticles includes applying a centrifugal force to the disk to supply the antibody to the filter unit to detect the nanoparticles, and supplying a reagent to the filter unit to label the antibody attached to the nanoparticles.
[청구항 31】  [Claim 31]
거 1 29 항에 있어서,  According to clause 1 29
상기 디스크에 원심력을 가해 필터부로 세척액을 공급하여 세척하는 단계를 더 포함하는 나노 입자 검출 방법 .  The nanoparticle detection method further comprises the step of applying a centrifugal force to the disk and supplying the washing solution to the filter.
【청구항 32]  [Claim 32]
제 31 항에 있어서  The method of claim 31, wherein
상기 세척하는 단계는, 항체를 필터부로 공급한 후 여분의 항체를 세척하여 제거하는 단계, 및 시약을 필터부로 공급하여 항체를 표지한 후 여분의 시약을 세척하여 제거하는 단계를 포함하는 나노 입자 검출 방법 . The washing step includes detecting the nanoparticles by supplying the antibody to the filter unit and washing and removing the excess antibody, and supplying the reagent to the filter unit to label the antibody and washing and removing the extra reagent. Way .
【청구항 33】 [Claim 33]
제 32 항에 있어서,  The method of claim 32,
상기 나노 입자를 검출하는 단계는, 디스크에 원심력을 가해 나노 입자에 기질액을 공급하는 단계를 더 포함하는 나노 입자 검출 방법 .  The detecting of the nanoparticles may further include supplying a substrate solution to the nanoparticles by applying a centrifugal force to the disk.
【청구항 34]  [Claim 34]
제 33 항에 있어서,  The method of claim 33,
상기 기질액 공급 후, 나노 입자 검출 용액을 회수하는 단계를 더 포함하는 나노 입자 검출'방법 . The substrate solution was fed after the nanoparticle is detected further includes the step of recovering the nanoparticles detection solution "method.
【청구항 35】  [Claim 35]
제 26 항에 있어서,  The method of claim 26,
상기 나노 입자를 검출하는 단계에서, 분리된 나노 입자에 핵산 추출용 시약을 공급하여 핵산을 추출하는 단계를 더 포함하는 나노 입자 검출 방법.  In the detecting of the nanoparticles, the nanoparticle detection method further comprises the step of extracting the nucleic acid by supplying a nucleic acid extraction reagent to the separated nanoparticles.
【청구항 36】  [Claim 36]
제 26 항에 있어서,  The method of claim 26,
상기 나노 입자를 검출하는 단계에서, 상기 디스크에서 여과막을 분리하는 단계를 포함하여, 디스크 외부에서 나노 입자를 검출하는 나노 입자 검출 방법 .  In the step of detecting the nanoparticles, comprising the step of separating the filter membrane from the disk, the nanoparticle detection method for detecting nanoparticles from the outside of the disk.
PCT/KR2017/011136 2016-10-07 2017-10-10 Apparatus for nanoparticle detection and method for nanoparticle detection using same WO2018066979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160129545 2016-10-07
KR10-2016-0129545 2016-10-07

Publications (1)

Publication Number Publication Date
WO2018066979A1 true WO2018066979A1 (en) 2018-04-12

Family

ID=61831832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011136 WO2018066979A1 (en) 2016-10-07 2017-10-10 Apparatus for nanoparticle detection and method for nanoparticle detection using same

Country Status (2)

Country Link
KR (1) KR102013819B1 (en)
WO (1) WO2018066979A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426526A (en) * 2019-08-08 2019-11-08 重庆科技学院 A kind of multi-layer micro-fluidic chips for detection of heavy metal ion
CN111558305A (en) * 2019-05-10 2020-08-21 华中科技大学同济医学院附属协和医院 Adjustable nano molecular diameter selective filter and screening process
CN115639030A (en) * 2022-11-28 2023-01-24 北京慧荣和科技有限公司 Aerosol is adopted and is washed all-in-one and unmanned transportation equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102134482B1 (en) * 2018-07-16 2020-07-15 서울시립대학교 산학협력단 Sample holder
US20220381768A1 (en) * 2019-09-30 2022-12-01 Tokyo Ohka Kogyo Co., Ltd. Method for screening secretion-producing cells and kit for screening secretion-producing cells
KR102404002B1 (en) * 2020-02-27 2022-05-31 주식회사 클리노믹스 Driving method of centrifuge device
WO2022107918A1 (en) * 2020-11-19 2022-05-27 주식회사 제우스 Apparatus for manufacturing nanoparticles and method for manufacturing nanoparticles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228308B1 (en) * 2007-05-23 2013-01-31 삼성전자주식회사 Disk type microfluidic device using microfluidic chip and disk type microfluidic device using biomolecule microarray chip
KR20130015491A (en) * 2011-08-03 2013-02-14 국립대학법인 울산과학기술대학교 산학협력단 Centrifugal force-based microfluidic device for multiplxed analysis and detection method using the same
KR20140071814A (en) * 2012-12-04 2014-06-12 삼성전자주식회사 Microfluidic apparatus and method of enriching target in boilogical sample
KR20150045816A (en) * 2013-10-21 2015-04-29 삼성전자주식회사 Microfluidic apparatus and target cell detecting method using the same
KR101613104B1 (en) * 2013-03-11 2016-04-18 큐 인코퍼레이티드 Systems and methods for detection and quantification of analytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228308B1 (en) * 2007-05-23 2013-01-31 삼성전자주식회사 Disk type microfluidic device using microfluidic chip and disk type microfluidic device using biomolecule microarray chip
KR20130015491A (en) * 2011-08-03 2013-02-14 국립대학법인 울산과학기술대학교 산학협력단 Centrifugal force-based microfluidic device for multiplxed analysis and detection method using the same
KR20140071814A (en) * 2012-12-04 2014-06-12 삼성전자주식회사 Microfluidic apparatus and method of enriching target in boilogical sample
KR101613104B1 (en) * 2013-03-11 2016-04-18 큐 인코퍼레이티드 Systems and methods for detection and quantification of analytes
KR20150045816A (en) * 2013-10-21 2015-04-29 삼성전자주식회사 Microfluidic apparatus and target cell detecting method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111558305A (en) * 2019-05-10 2020-08-21 华中科技大学同济医学院附属协和医院 Adjustable nano molecular diameter selective filter and screening process
CN110426526A (en) * 2019-08-08 2019-11-08 重庆科技学院 A kind of multi-layer micro-fluidic chips for detection of heavy metal ion
CN115639030A (en) * 2022-11-28 2023-01-24 北京慧荣和科技有限公司 Aerosol is adopted and is washed all-in-one and unmanned transportation equipment

Also Published As

Publication number Publication date
KR20180039005A (en) 2018-04-17
KR102013819B1 (en) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018066979A1 (en) Apparatus for nanoparticle detection and method for nanoparticle detection using same
US11077439B2 (en) Micro-fluidic system using micro-apertures for high throughput detection of cells
US10018632B2 (en) Microfluidic devices for the capture of biological sample components
TWI588262B (en) Methods and compositions for separating or enriching cells
Rana et al. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers
CN102162815B (en) Plasma separating chip and preparation method thereof
CN100564541C (en) Preprocessed chip of porous silica microfluid sample
US10343164B2 (en) Microfluidic device that separates cells
EP2315848A1 (en) Methods and systems for microfluidic dna sample preparation
KR101891890B1 (en) Centrifugal force-baced nano particle isolation device, and nano particle isolation methods
US20150076049A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
TW201332661A (en) Centrifugal microfluidic disk and processing method using the same
US20220347686A1 (en) Size-based asymmetric nanopore membrane (anm) filtration for high-efficiency exosome isolation, concentration, and fractionation
CN110079457A (en) Micro-fluidic chip and excretion body extracting method
WO2016148085A1 (en) Microparticle separation chip, microparticle separation system in which said microparticle separation chip is used, microparticle separation method in which said microparticle separation system is used, and microparticle extraction method
WO2011063324A2 (en) Microfluidic systems for isolating microvesicles
US9421541B2 (en) Microfluidic apparatus with increased recovery rate of target material from a sample
Ma et al. Exosome subpopulations: the isolation and the functions in diseases
CN107090399A (en) The Fast Purification device and method for rapidly purifying of pathogen in Sputum samples
WO2021003392A1 (en) Microfluidic platform for selective exosome isolation
CN110551680A (en) Method and system for extracting pleural effusion exosomes
Campos et al. Analytical technologies for liquid biopsy of subcellular materials
CN114959046A (en) Kit for detecting lncRNA-NEAT1 in gastric cancer exosomes and application of kit in gastric cancer diagnosis
Xie et al. Effective Separation of Cancer‐Derived Exosomes in Biological Samples for Liquid Biopsy: Classic Strategies and Innovative Development
Kim Fully Automated Lab-on-a-Disc for Isolation of Circulating Biomarkers in Blood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858773

Country of ref document: EP

Kind code of ref document: A1