WO2018066898A2 - Mtatpg2 protein having function of increasing productivity, improving resistance against stress, and delaying senescence in plant, gene thereof, and use of same protein and gene - Google Patents

Mtatpg2 protein having function of increasing productivity, improving resistance against stress, and delaying senescence in plant, gene thereof, and use of same protein and gene Download PDF

Info

Publication number
WO2018066898A2
WO2018066898A2 PCT/KR2017/010859 KR2017010859W WO2018066898A2 WO 2018066898 A2 WO2018066898 A2 WO 2018066898A2 KR 2017010859 W KR2017010859 W KR 2017010859W WO 2018066898 A2 WO2018066898 A2 WO 2018066898A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
mtatpg2
seq
productivity
Prior art date
Application number
PCT/KR2017/010859
Other languages
French (fr)
Korean (ko)
Other versions
WO2018066898A3 (en
Inventor
이동희
김국진
김동수
Original Assignee
제노마인(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제노마인(주) filed Critical 제노마인(주)
Publication of WO2018066898A2 publication Critical patent/WO2018066898A2/en
Publication of WO2018066898A3 publication Critical patent/WO2018066898A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8266Abscission; Dehiscence; Senescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to a MtATPG2 protein having its productivity enhancing function, stress resistance function and delaying aging function, genes thereof and uses thereof.
  • Plant senescence is considered to be a major step in the plant's lifecycle, and progresses in a highly sophisticated manner at the cellular, tissue, organ and individual levels through genetically regulated reactions. The aging process can occur differently in different organs of the plant. In the case of leaves, the degradation of chloroplasts is followed by the degradation of lipids, proteins and nucleic acids.
  • Cell structures such as cell membranes and intracellular compartments, are maintained until the end and lead to death after rearrangement of the degraded product nitrogen and nutrients (Lohman et al., Physiologia Plantarum, 1994, 92: 322-8 .; Smart, New Phytologist, 1994, 126: 419-48; Pruzinska et al., Plant Physiology, 2005, 139: 52-63).
  • the timing at which plants determine aging is related to nutrient retention and rearrangement, so flowering and seed production are often factors that promote aging. Plants also progress the aging process as a species-wide survival strategy for seasonal or unforeseen external environmental changes.
  • SAGs Senescence Associated Genes
  • Tomatoes have been reported to control the ripening of fruits by inhibiting the ethylene synthesis process (Oeller et al., Science. 1991, 254 (5030): 437-9) and also inhibit the expression of polygalacturonase genes involved in cell wall degradation.
  • Flav-O-Savor which increases the transport and storage properties of tomatoes, may be a typical commercialized example (Giovannoni et al., 1989, Plant Cell 1 (1): 53-63).
  • GmSARK gene and WRKY53 , WRKY6 and AtNAP genes belonging to the NAC family have been reported as genes overexpressed during aging (Miao et al., Plant Mol. Biol. 2004, 55: 853-867; Guo and Gan et al. , Plant J. 2006, 46 (4): 601-12; Li et al., Plant Mol Biol. 2006, 61: 829-844; Besseau et al., J Exp Bot 2012, 63 (7): 2667-79 Genes such as CBF2 and CBF3 are known to inhibit aging (Sobieszczuk-Nowicka et al., Physiol Plant 2007; 130: 590-600).
  • U.S. Pat.No.8420890 discloses a method for delaying aging by inhibiting the expression of AtNAP gene. Recently, studies have been conducted for overexpressing AtNAP to facilitate the harvesting of cotton or the like or to help ripening fruit. (Kou et al., J Exp Bot. 2012, 63 (17): 6139-47).
  • GhCKX a cytokinin regulator gene isolated from cotton
  • TobEA Tobacco Expression Atlas
  • the present invention also discloses a gene having a function of delaying aging and the like, which can improve the productivity of crops and the like.
  • An object of the present invention is to provide a MtATPG2 protein having a productivity enhancing function of a plant, a stress resistance function, and a delaying aging function.
  • Another object of the present invention is to provide a gene encoding the protein.
  • Still another object of the present invention is to provide a method for producing a plant having a yield increasing characteristic.
  • Still another object of the present invention is to provide a method for producing a plant having stress resistance.
  • Still another object of the present invention is to provide a method for producing a plant having aging delay characteristics.
  • the present invention relates to a MtATPG2 protein having a productivity enhancing function of a plant, a stress resistance function, and a delaying aging function.
  • the inventor (s) is based on the nucleotide sequence of the AT-hook motif nuclear localized protein (GeneBank accession number NC_016414.1) of Medicago truncatula , as identified in the following examples
  • the productivity increase characteristics such as the increase in the biomass and / or the seed productivity of the individual were clearly shown, and the resistance to oxidative stress was also clearly shown, and the aging of the plant was delayed. It was confirmed that the phenomenon appeared clearly.
  • MtATPG2 M edicago t runcatula AT -hook p rotein of G enomine 2
  • MtATPG2 M edicago t runcatula AT -hook p rotein of G enomine 2
  • the MtATPG2 protein of the invention is one of the polypeptides of (a), (b) and (c) below.
  • protein are used interchangeably with each other in the same sense as a polypeptide
  • gene is used interchangeably with each other in the same sense as a polynucleotide.
  • a "polypeptide comprising a substantial portion of the amino acid sequence set forth in SEQ ID NO: 2" still retains productivity enhancement and stress tolerance and plant aging delayed functions as compared to the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: It is defined as a polypeptide comprising a portion of an amino acid sequence of SEQ ID NO: 2 sufficient to the following.
  • the length of the polypeptide and the degree of activity of such a polypeptide is not a problem since it still needs to be sufficient to retain productivity and stress resistance and to delay plant aging.
  • polypeptide As such a polypeptide, the polypeptide which deleted the N-terminal part or C-terminal part in the polypeptide containing the amino acid sequence of SEQ ID NO: 2 is mentioned. This is because it is generally known in the art that even if the N- or C-terminal portion is deleted, such a polypeptide has the function of the original polypeptide. Of course, in some cases, the N-terminal or C-terminal moiety is necessary for maintaining the function of the protein, so that a polypeptide deleted with the N-terminal or C-terminal moiety does not exhibit this function. It is within the ordinary skill of one of ordinary skill in the art to distinguish and detect inactive polypeptides from active polypeptides.
  • the deletion of the N-terminal or C-terminal moiety as well as other moieties may still have the function of the original polypeptide.
  • one of ordinary skill in the art will be able to ascertain whether such deleted polypeptide still has the function of the original polypeptide within the scope of its usual ability.
  • the present specification discloses the nucleotide sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 2, furthermore, a polypeptide encoded by the nucleotide sequence of SEQ ID NO: 1 and consisting of the amino acid sequence of SEQ ID NO: 2 increases productivity and stress resistance of plants.
  • the present invention discloses an embodiment confirming whether the plant has a delaying function of aging, and thus, a polypeptide having a partial deletion in the amino acid sequence of SEQ ID NO: 2 may still retain the function of the polypeptide comprising the amino acid sequence of SEQ ID NO: 2 It is very clear that those skilled in the art can fully confirm within the ordinary capability range. Therefore, in the present invention, the "polypeptide comprising a substantial part of the amino acid sequence set forth in SEQ ID NO: 2" as described above, based on the disclosure of the present specification, the productivity of a plant that can be manufactured by those skilled in the art within the range of its usual capacity can be increased. It is to be understood as meaning including all polypeptides in a deleted form having a function, a stress resistance function, and a plant aging delay function.
  • polypeptide substantially similar to the polypeptide of (a) and (b) includes a function comprising one or more substituted amino acids, but comprising the amino acid sequence of SEQ ID NO: 2, ie, the productivity of a plant. It refers to a polypeptide possessing augmentation and stress resistance functions and a delay in plant aging.
  • the degree of activity or amino acid substitution of the polypeptide is not a problem as long as the polypeptide containing at least one substituted amino acid retains the productivity of the plant, the stress resistance function, and the delayed plant aging function.
  • a polypeptide comprising one or more substituted amino acids contains a large number of substituted amino acids, even if its activity is lower than that of a polypeptide comprising the amino acid sequence of SEQ ID NO: 2, the polypeptide is a plant productivity. It is included in the present invention as long as it possesses augmentation and stress tolerance functions, and a plant aging delay function. Even if one or more amino acids are substituted, if the amino acid before substitution is chemically equivalent to the substituted amino acid, the polypeptide comprising such substituted amino acid will still retain the function of the original polypeptide.
  • the polypeptide having such substituted amino acid (s) may be It will still retain the function of the original polypeptide.
  • a negatively charged amino acid such as glutamic acid
  • another negatively charged amino acid such as aspartic acid
  • polypeptide having such substituted amino acid (s) will still retain the function of the original polypeptide even if its activity is low. will be.
  • a polypeptide comprising amino acid (s) substituted at the N-terminal or C-terminal portion of the polypeptide will still retain the function of the original polypeptide.
  • One skilled in the art would prepare a polypeptide that contains one or more substituted amino acids as described above, but still retains the productivity and stress resistance functions of plants comprising the amino acid sequence of SEQ ID NO. can do.
  • polypeptides comprising one or more substituted amino acids still has this function.
  • the present disclosure discloses the nucleotide sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 2, and also the polypeptide comprising the amino acid sequence of SEQ ID NO: 2 has a function of increasing productivity and stress resistance of plants, and delaying plant aging. Since the confirmed examples are disclosed, it is evident that the "polypeptides substantially similar to the polypeptides of (a) and (b)" of the present invention can be easily implemented by those skilled in the art.
  • polypeptide substantially similar to the polypeptide of (a) or (b) above is meant to include all polypeptides that contain one or more substituted amino acids but still have plant productivity and stress resistance and delayed aging of plants. Should be understood as. As such, the term “polypeptide substantially similar to the polypeptide of (a) or (b)” includes all polypeptides that contain one or more substituted amino acids but still have plant productivity and stress resistance functions, and plant aging function. In view of the degree of activity, however, the polypeptide is preferably higher in sequence homology with the amino acid sequence of SEQ ID NO.
  • the polypeptide has at least 60% sequence homology at the lower end of sequence homology, while at the upper limit of sequence homology, it is preferred that the polypeptide has 100% sequence homology. More specifically, the above sequence homology is 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90% , 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% in order of higher.
  • polypeptides substantially similar to the polypeptides of (a) and (b) above are not only “polypeptides substantially similar to polypeptides comprising the entire amino acid sequence of SEQ ID NO: 2", All descriptions above are intended to include “substantially similar to polypeptides comprising the entire amino acid sequence of SEQ ID NO: 2" as well as “amino acids of SEQ ID NO: 2", since the polypeptide comprising substantially part thereof is included. The same applies to polypeptides that are substantially similar to polypeptides comprising substantial portions of the sequence.
  • polypeptide as described above refers to a polypeptide comprising the entire amino acid sequence of SEQ ID NO: 2, a substantial portion of the amino acid sequence of SEQ ID NO. Including polypeptides, and polypeptides substantially similar to the above polypeptides, as well as all polypeptides of the preferred embodiments as described above.
  • the polynucleotide of the present invention is an isolated polynucleotide encoding a polypeptide comprising all or a substantial part of the amino acid sequence of SEQ ID NO: 2 and having a function of increasing productivity and stress resistance of plants, and delaying aging of plants
  • Polypeptides encoding polypeptides that are substantially similar to the polypeptides include isolated polynucleotides and, in a preferred embodiment, the sequences in the order of sequence homology as described above, with increasing plant productivity and stress resistance, and delayed plant aging. It includes an isolated polynucleotide encoding all polypeptides with homology. When amino acid sequences are found, those skilled in the art can readily prepare polynucleotides encoding such amino acid sequences based on those amino acid sequences.
  • isolated polynucleotide includes both chemically synthesized polynucleotides, polynucleotides isolated from organisms, especially Medicago truncatula , and polynucleotides containing modified nucleotides, It is defined as including all polymers of stranded or double stranded RNA or DNA.
  • the present invention relates to a method for producing a plant having productivity enhancing properties.
  • Method for producing a plant having a productivity enhancing feature of the present invention comprises the steps of (a) expressing a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 in the plant and (b) increased productivity And selecting the plant having the characteristic.
  • productivity enhancing properties means that the biomass (size and / or mass) of the whole, stem, root and / or leaves of the plant is increased compared to wild-type plants, and / or the productivity of the plant's seeds (plants) Number and / or mass of seeds per individual) is increased compared to wild type plants.
  • plant is meant to include mature plants, immature plants (plants), plant seeds, plant cells, plant tissues and the like.
  • plant cells or plant tissues are described in European Patent EP0116718, European Patent EP0270822, International Patent WO 84/02913, Gould et al. 1991, Plant Physiol 95,426-434, etc., can be used to develop and grow into mature plants.
  • plant includes all plants for which productivity gains can give useful results to humans. Therefore, the meaning of the plant includes crops (specifically, crops such as edible crops, feed crops, craft crops, and horticultural crops), forest trees, and ornamental plants. Specifically, rice, wheat, barley, corn, soybeans, potatoes, red beans, oats, sorghum, legumes (specifically knotweed, hoe belonging to Medicago truncatula ) from which the MtATPG2 gene of the present invention is isolated.
  • crops specifically, crops such as edible crops, feed crops, craft crops, and horticultural crops
  • forest trees and ornamental plants. Specifically, rice, wheat, barley, corn, soybeans, potatoes, red beans, oats, sorghum, legumes (specifically knotweed, hoe belonging to Medicago truncatula ) from which the MtATPG2 gene of the present invention is isolated.
  • gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 is a gene encoding the first amino acid of SEQ ID NO: 2 while having a base sequence different from that of the gene of SEQ ID NO: 1 due to codon degeneracy
  • homologue of genes consisting of the nucleotide sequence of SEQ ID NO: 1 having the characteristics of increasing the productivity of the plant, etc. due to the evolutionary pathways different according to the type of plant consisting of the nucleotide sequence of SEQ ID NO: 1 and other nucleotide sequences It is meant to include all genes.
  • the gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 is preferably higher in sequence homology with the nucleotide sequence of SEQ ID NO: 1, and most preferably, having 100% sequence homology.
  • the gene has a sequence homology of 60% or more with the nucleotide sequence of SEQ ID NO: 1.
  • sequence homology is 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73 %, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, Higher in order of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% is preferred.
  • step (a) may be performed by a genetic engineering method.
  • Genetic engineering method includes the steps of (i) inserting the gene of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 into an expression vector to be operably linked to a regulatory sequence capable of expressing it, and ( ii) transforming the expression vector into a plant.
  • operably means that the transcription and / or translation of a gene is linked to be affected. For example, if a promoter influences the transcription of a gene linked to it, the promoter and the gene are operably linked.
  • regulatory sequence is meant to include all sequences whose presence may affect the transcription and / or translation of a gene linked thereto, and such regulatory sequences include a promoter sequence and a polyadenylation signal. ), The replication start point .
  • promoter follows the conventional meaning known in the art, specifically located at the top (5 'side) based on the transcription initiation point of a gene, binding to DNA-dependent RNA polymerase By nucleic acid sequences having the function of controlling transcription of one or more genes, including sites, transcriptional initiation sites, transcription factor binding sites, and the like.
  • This promoter may be a TATA box (usually located at the transcription start point (+1) -20 to -30 position) above the transcription initiation point if it is of eukaryotes, and a CAAT box (typically about -75 position compared to the transcription start site) Present), a 5 'enhancer, a transcription repression factor, and the like.
  • Usable promoters include constitutive promoters (promoters which induce expression in all plant tissues at all times), inducible promoters (expression of target genes in response to specific external stimuli) as long as they are capable of expressing the gene of SEQ ID NO. 1 linked thereto. Promoters that induce expression or promoters that specifically induce expression in specific developmental periods or specific tissues). Representative examples of constitutive promoters that can be used include the promoter of the 35S RNA gene of cauliflower mosaic virus (CaMV), and the ubiquitin family of promoters (Christensen et al., 1992, Plant Mol). Biol. 18, 675-689; EP0342926; Cornejo et al., 1993, Plant Mol. Biol.
  • constitutive promoters include the promoter of the 35S RNA gene of cauliflower mosaic virus (CaMV), and the ubiquitin family of promoters (Christensen et al., 1992, Plant Mol). Biol. 18, 675-689; EP0342926; Cornejo et
  • rice actin promoter Zhang et al. 1991, The Plant Cell 3, 1155-1165
  • rice actin promoter Zhang et al. 1991, The Plant Cell 3, 1155-1165
  • inducible promoters include the yeast metallothionein promoter (Mett et al., Proc. Natl. Acad. Sci., USA, 90: 4567, 1993), which is activated by copper ions, substituted by substituted benzenesulfonamides.
  • In2-1 and In2-2 promoters (Hershey et al., Plant Mol. Biol., 17: 679, 1991), GRE regulatory sequences regulated by glucocorticoids (Schena et al., Proc. Natl. Acad.
  • Transcription termination sequence is poly (A ) addition signal ( polyadenylation As a sequence acting as a signal ), it is intended to enhance the integrity and efficiency of transcription.
  • An example of a transcription termination sequence that can be used is nopalin Synthase (NOS) a transcription termination sequence, rice ⁇ - amylase RAmy1 A transcription termination sequence, Agrobacterium Tome Pacific Enschede of the gene of the gene Transcription termination sequence of octopine gene, transcription termination sequence of wheat heat shock protein 17, transcription termination sequence of wheat ubiquitin gene, transcription termination sequence of rice gluterin gene, transcription termination sequence of rice lactate dehydrogenase gene Etc. can be mentioned.
  • NOS nopalin Synthase
  • the expression vector may include a selection marker gene.
  • screening Marker gene means a gene encoding a trait that enables the selection of a plant comprising such a marker gene selectable marker gene may be a number of days antibiotic resistance genes and herbicide tolerance genes. Examples of antibiotic resistance genes Examples of antibiotic resistance genes include puromycin resistance genes (eg Streptomyces).
  • the herbicide resistance gene may include a vasta herbicide resistance bar gene.
  • the term "transformation” refers to a modification of the genotype of a host plant by the introduction of a hereditary gene, and regardless of the method used for the transformation, the herb gene is a host plant, more precisely a cell of the host plant. Introduced into and integrated into the genome of a cell.
  • the hereditary genes include homologous and heterologous genes, wherein “homologous genes” refer to endogenous genes of a host organism or the same species, and “heterologous genes” are genes that do not exist in the organism to which they are transformed.
  • the MtATPG2 gene of the present invention is homologous to Medicago truncatula from which it is isolated, but is heterologous to Arabidopsis and tomato plants.
  • a method of transforming a plant with an exogenous gene may use a method known in the art, such as a direct gene transfer method using a gene gun, an in planta transformation method using a floral dip, pollen mediation, and the like. Transformation methods, protoplast transformation methods, viral mediated transformation methods, liposome mediated transformation methods, and the like can be used.
  • a transformation method suitable for a specific plant for example, a method for transforming corn is described in US Pat. No.
  • Generally used in transforming plants is a method of infecting seedlings, plant seeds and the like with the transformed Agrobacterium.
  • Such Agrobacterium mediated transformation methods are well known in the art (Chilton et al., 1977, Cell 11: 263: 271; European Patent EP 0116718; US Patent US 4,940,838), and methods suitable for particular plants are also known in the art.
  • the Agrobacterium mediated transformation method uses Ti-plasmid, which will contain left and right border sequences that allow the integration of T-DNA into the genome of plant cells.
  • the selection step (b) may be selected through the characteristics of the inserted gene by growing and growing the transformed plant, or, if the selection marker gene is transformed together during transformation, the selection marker gene may be selected. Can be.
  • the characteristics of the inserted gene include the biomass of the plant and / or the productivity of the seed.
  • the present invention relates to a method for producing a plant having stress resistance properties of the present invention.
  • the method for producing a stress resistant plant of the present invention comprises the steps of: (a) expressing a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 in the plant, and (b) having a stress resistant phenotype Comprising plant screening.
  • stress means oxidative stress
  • Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to the method of manufacturing a plant having the productivity increasing characteristic of the present invention.
  • the step (b) is selected by comparing the stress resistance of the plant that is characteristic of the inserted gene (for example, the degree of progress of leaf yellowing or necrosis, the biomass of the leaves and / or stems, chlorophyll content, photosynthetic efficiency, etc.).
  • a selection marker gene When a selection marker gene is transformed together during transformation, it may be selected using a selection marker gene, or may be selected by mixing these methods.
  • the present invention relates to a method for producing a plant having aging delay properties.
  • the method for producing a plant having a aging retardation property of the present invention comprises the steps of: (a) expressing a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 in the plant, and (b) Selecting the plant with the delayed phenotype.
  • aging delay refers to a property of prolonged plant life as compared to wild-type plants, and specifically, the yellowing and / or necrosis of leaves and / or stems is delayed compared to wild-type plants or the chlorophyll content of plants is wild-type. It is more characteristic than plants or photosynthetic efficiency of plants is higher than wild type plants.
  • Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to a method for preparing a plant having productivity enhancing characteristics of the present invention.
  • the selected plant is selected using delayed aging characteristics, which are characteristics of the gene inserted by developing and growing a transformed plant (quantitative evaluation of leaf yellowing or necrosis, chlorophyll content, photosynthetic efficiency, etc.). Method, a method of mixing the above methods, etc.), and when the selection marker gene is transformed together during transformation, the selection may be performed using the selection marker gene.
  • the present invention relates to a method for increasing productivity of a plant.
  • the method for increasing the productivity of a plant of the present invention includes (a) an expression vector such that a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to that of SEQ ID NO: 1 is operably linked to a regulatory sequence capable of expressing it And (b) transforming the expression vector into a plant.
  • the present invention relates to a method for increasing stress resistance of a plant.
  • the method of increasing the stress resistance of a plant of the present invention is (a) operably linking a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to that of SEQ ID NO: 1 to a regulatory sequence capable of expressing it Inserting into the expression vector preferably and (b) transforming the expression vector into a plant.
  • the present invention relates to a method for delaying aging of a plant.
  • the method for delaying aging of a plant of the present invention is to (a) operably link a gene having a nucleotide sequence of SEQ ID NO. 1 or a gene having a sequence similar to that of SEQ ID NO. 1 to a regulatory sequence capable of expressing it. Inserting into the expression vector and (b) transforming the expression vector into a plant.
  • Steps (a) and (b) in the above methods are as described with reference to the method for producing a plant having the productivity enhancing properties of the present invention.
  • the present invention is a gene having a nucleotide sequence of SEQ ID NO: 1, or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant having the productivity enhancing characteristics of the present invention
  • the present invention relates to a transgenic plant having improved productivity.
  • the plant is a transgenic plant having productivity enhancing properties by introducing a gene encoding the MtATPG2 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the gene MtATPG2 having the nucleotide sequence of SEQ ID NO: 1, into the plant .
  • the present invention is a stress resistance that is expressed by a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a stress resistant plant of the present invention
  • the present invention relates to a transgenic plant having characteristics.
  • the plant is a transgenic plant having a stress resistance by introducing a gene encoding the MtATPG2 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the gene MtATPG2 having the nucleotide sequence of SEQ ID NO: 1, into the plant.
  • the present invention is a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant having the aging delay characteristics of the present invention
  • the present invention relates to a transgenic plant having delayed aging characteristics.
  • the plant is a transgenic plant having delayed aging characteristics by introducing a gene encoding the MtATPG2 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the gene MtATPG2 having the nucleotide sequence of SEQ ID NO: 1, into the plant .
  • the "transformed plant” is obtained by crossing with a transformed plant as well as when the gene is introduced and transformed into a plant cell, plant tissue, or plant seed capable of developing and growing into a mature plant. Genome modified plants, plant seeds derived from the plants, plant cells, plant tissues.
  • the MtATPG2 protein and its gene, MtATPG2 which have a productivity enhancing function and a stress resistance function of the plant, and a delaying function of aging. Since the gene provides a function of increasing productivity and stress resistance and delaying aging of the plant, when the plant is transformed with the gene, the gene may not only increase productivity but also produce a plant having a stress-resistant and aging delaying function of the plant. Can be.
  • Figure 1 shows the structure (schematic) of the pCSEN-MtATPG2 recombinant vector in which the MtATPG2 gene having productivity enhancement function, stress resistance function, and aging delay function was introduced in the sense direction.
  • Figure 2 is a photograph of the Arabidopsis grown 50 days and 70 days after germination of the Arabidopsis T 2 line transformed with the pCSEN-MtATPG2 recombinant vector of FIG. DAG, day after germination.
  • MtATPG2-7 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-8 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-15 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-16 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-17 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • Figure 3 shows the results of analyzing the expression of the MtATPG2 gene of Arabidopsis thalass for 25 days after cotyledon generation of the Arabidopsis T 2 line transformed with the pCSEN-MtATPG2 recombinant vector of Figure 1 through qRT-PCR TUB was used as a PCR positive control.
  • MtATPG2-7 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-8 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-15 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-16 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-17 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • FIG. 4 is a diagram for increasing productivity and seed size of the Arabidopsis line of FIG. 3.
  • MtATPG2-7 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-8 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-15 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-16 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2-17 Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
  • Figure 6 is a photograph of the Arabidopsis grown 50 days after germination of the Arabidopsis T 3 or T 4 homo line transformed with the pCSEN-MtATPG2 recombinant vector of FIG. DAG, day after germination.
  • MtATPG2 -7-15-11 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -7-15-12 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -8-7 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -8-8 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-3 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-6 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • Figure 7 is a photograph of the Arabidopsis grown 70 days after germination of the Arabidopsis T 3 or T 4 homo line transformed with the pCSEN-MtATPG2 recombinant vector of FIG. DAG, day after germination.
  • MtATPG2 -7-15-11 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -7-15-12 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -8-7 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -8-8 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-3 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-6 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • FIG. 8 shows the expression patterns of the MtATPG2 gene of Arabidopsis thaliana grown in 25 days after cotyledon generation using T 3 or T 4 homoline transformed with the pCSEN-MtATPG2 recombinant vector of FIG. 1 through qRT-PCR.
  • FIG. One result is shown and TUB was used as a PCR positive control.
  • FIG. 9 is generated after the cotyledons from 16 wild-type Arabidopsis thaliana (Con) and three progress with T 3 or T 4 3-4 times left lobe (rosette leaf) of homo-line observing the phenotype of the leaves to 56 days every 4 days
  • Figure 10 is a figure of the investigation of the chlorophyll content of the leaves for this. DAE, day after emersion.
  • MtATPG2 -7-15-11 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -7-15-12 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -8-7 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -8-8 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-3 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-6 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • FIG. 11 shows the phenotype of leaves up to 6 days every 2 days after detaching the left lobe 3-4 of the Arabidopsis wild-type (Con) and generation-advanced T 3 or T 4 homo lines after germination to maintain cancer status.
  • FIG. 12 is a diagram illustrating the chlorophyll content of leaves. DAT, day after treatment.
  • MtATPG2 -7-15-11 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -7-15-12 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -8-7 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -8-8 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-3 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-6 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • FIG. 13 shows the leaves treated with 4 mM H 2 O 2 in 3 mM MES solution by detaching the left lobe No. 3-4 of the Arabidopsis wild-type (Con) and generation-advanced T 3 or T 4 homo lines 25 days after germination.
  • Fig. 13A shows a phenotypic change in Fig. 13A
  • Fig. 13A shows a phenotypic change in leaves treated with 150 mM NaCl in a 3 mM MES solution for 6 days in a sample under the same conditions (Fig. 13B). DAT, day after treatment.
  • MtATPG2 -7-15-11 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -7-15-12 Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
  • MtATPG2 -8-7 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -8-8 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-3 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • MtATPG2 -15-6 pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
  • 14 and 15 shows the amino acid sequence of the base sequence of each protein and MtATPG2 MtATPG2 gene.
  • Example 1 Medicago truncatula from In addition to increasing productivity and stress tolerance of plants Providing delayed aging MtATPG2 Isolation of genes
  • Medicago uses the MtATPG2 gene, which has increased productivity and stress resistance in plants and also delays aging. To separate from truncatula , the following process was performed.
  • Example 1-1 Medicago planting and cultivation of truncatula
  • Medicago truncatula Jemalong A17 was cultivated in a growth chamber controlled in a soil containing pots at a temperature of 22 ° C. and a cycle of 16/8 hours.
  • Example 1-3 Isolation of MtATPG2 Gene Having Increased Productivity, Stress Tolerance, and Delay in Aging of Plants
  • a forward primer (BglII / MTR8g 098390-F, represented by SEQ ID NO: 3 and containing the sequence of restriction enzyme BglII)
  • a reverse primer (BstEII / MTR8g 098390, 5GAC CTC ATC CTC TTG TCA AGT CAA AGC-3) represented by SEQ ID NO: 4 and containing the sequence of restriction enzyme BstEII were synthesized.
  • the primer was used to amplify and isolate full-length cDNA from M. truncatula cDNA using polymerase chain reaction (PCR).
  • the isolated cDNA As a result of analysis of the isolated cDNA, it has a 1,056 bp transcriptional translation frame (ORF) encoding 351 amino acids having a molecular weight of about 35.9 kDa, it was confirmed that it consists of one exon, AT -hook has a motif I and named it as MtATPG2 (M edicago t runcatula AT -hook p rotein of enomine G 2).
  • ORF transcriptional translation frame
  • the isoelectric point of the MtATPG2 protein encoded by the gene was found to be 10.28 (hereinafter, the gene is called “ MtATPG2 " or " MtATPG2 gene” using italics, and the protein is called “MtATPG2” or “MtATPG2 protein”).
  • a transgenic Arabidopsis in which the MtATPG2 gene was introduced in the sense direction was prepared to change the expression of the MtATPG2 transcript.
  • MtATPG2 cDNA using PCR from cDNA of M. truncatula using a forward primer represented by SEQ ID NO: 3 and containing a sequence of restriction enzyme Bgl II and a reverse primer represented by SEQ ID NO: 4 and a sequence of restriction enzyme BstE II was amplified.
  • the DNA was digested with restriction enzymes Bgl II and BstE II, cloned in the sense direction into a pCSEN vector designed to be controlled by the SEN1 promoter, an inducible promoter, and the pCSEN-MtATPG2 recombinant vector, a sense construct for the MtATPG2 gene.
  • the SEN1 promoter has specificity for the gene expressed according to the growth stage of the plant.
  • FIG. 1 is a diagram illustrating a pCSEN-MtATPG2 recombinant vector in which a MtATPG2 gene is introduced in a sense direction into a pCSEN vector.
  • BAR refers to a BAR gene (phosphinothricin acetyltransferase gene) that confers resistance to Basta herbicide, RB to the right border, LB to the left border, p35S to the CaMV 35S promoter, and T35S to CaMV 35S RNA polyA
  • pSEN refers to the SEN1 promoter
  • NOA-polyA refers to the polyA of the nopaline synthase gene.
  • the pCSEN-MtATPG2 recombinant vector was introduced into Agrobacterium tumefaciens using an electroporation method.
  • the transformed Agrobacterium cultures were incubated at 28 until the OD600 value was 1.0, and the cells were harvested by centrifugation at 5,000 rpm for 10 minutes at 25 ° C.
  • Harvested cells were suspended in Infiltration Medium (IM; 1X MS SALTS, 1X B5 vitamin, 5% sucrose, 0.005% Silwet L-77, Lehle Seed, USA) medium until the final OD600 value was 2.0.
  • IM Infiltration Medium
  • 1X MS SALTS 1X B5 vitamin, 5% sucrose, 0.005% Silwet L-77, Lehle Seed, USA
  • the Arabidopsis was placed in a polyethylene bag for 24 hours. Thereafter, the transformed Arabidopsis cultivars continued to grow to harvest seeds (T 1 ).
  • T 1 a non-transformed wild type Arabidopsis or a Arabidopsis transformed with only a vector (pCSEN vector) containing no MtATPG2 gene was used.
  • Seeds harvested from the transformed Arabidopsis larvae as in ⁇ Example 2-1> were selected by immersing and incubating for 30 minutes in a 0.1% Bassta herbicide (light, South Korea) solution. Thereafter, during the growth of the transformed Arabidopsis, the pollen was treated 5 times with the Basta herbicide, and the transformed Arabidopsis was selected from each pollen.
  • the T 1 Arabidopsis transformed with the pCSEN-MtATPG2 vector compared with the phenotype transformed only with a control (a vector without the MtATPG2 gene (pCSEN vector) or their wild-type Arabidopsis), surprisingly the variants were distinct. Multiple traits and biomass enhancing traits were shown.
  • T 2 transgenic Arabidopsis In order to more accurately identify the phenotypic changes of the transgenic Arabidopsis, the phenotypes of these lines were examined by receiving T 2 transgenic seeds from the T 1 transgenic Arabidopsis. First, T 2 transformed seed that had been cold-treated (4 ° C.) for 3 days was cultivated in a pollen, and then T 2 transgenic Arabidopsis was selected through the treatment of Basta herbicide. Phenotyping of selected Arabidopsis T 2 transformation lines was performed 50 days and 70 days after germination (FIG. 2).
  • RNA was extracted from the control and leaf of the mutant line 25 days after cotyledon formation using the RNasey Plant Mini Kit (QIAGEN, Germany), respectively. . 1 ⁇ g of RNA each as a template and 5 minutes at 65 ° C. using Superscript III Reverse Tanscriptase (INVITROGEN, USA); 60 minutes at 50 ° C; And cDNA was synthesized at 70 ° C. for 15 minutes. Thereafter, the synthesized cDNA was used as a template, and PCR was performed using the primers specific to the following Table 1 for the MtATPG2 gene and the TUB gene used as a PCR positive control.
  • MtATPG2 can be used as an excellent gene source for the development of high-productivity crops, as it is easy to manufacture plants that increase productivity with the same harvesting season as Arabidopsis wild type through the regulation of gene expression.
  • MtATPG2 It is shown in Figure 2 that the plant obtained through the introduction of the gene has an expression trait for multiplicity. In order to analyze the phenotypic characteristics of these multiple traits more accurately, productivity indicators such as seed yields were investigated in five transformation lines and compared with Arabidopsis control.
  • productivity indicators applied are plant height, silique number (NTS), biomass (FW), biomass (DW), total seed weight (TSW), and 1,000 seed weights (1,000 SW). Is the average value of 20 objects per line.
  • MtATPG2 gene mutant lines MtATPG2 -7, MtATPG2 -8, MtATPG2 -15, MtATPG2 -16 and All of MtATPG2 -17 increased seed production more than 1.5 times compared to Arabidopsis control, especially MtATPG2 -16 and MtATPG2 -17 more than doubled seed production compared to the control.
  • all variant lines had a long and numbered pattern of increase.
  • the seed weight is 1,000 or almost've found that similar to the control group, MtATPG2 - 7 as compared to the control group It weighed about 1.4 times or more.
  • MtATPG2-7 increased seed size compared to Arabidopsis control and other transformation lines (FIG. 4). Part of the seed size increased MtATPG2 -7 variants are expected to continue to proceed with further research. Overall, the expression of the MtATPG2 gene does not seem to have a significant effect on the seed size, but it is thought to induce an increase in the long shell length and the number, leading to an increase in seed yield. There was no significant difference in the size of the plant between the mutant and the control, but there was a marked increase in both the biomass and the dry weight, especially in the biodry weight.
  • CLV1 gene involved in the separated MtATPG2 in M. truncatula increase productivity by controlling the cytokinin signaling in Arabidopsis thaliana or / and CLV1 / WUS pathway of cytokinin signaling pathway in order to ensure that provide phenotypic features of senescence delay (receptor protein MtATPG2 the histidine kinase 4, AT2G01830) expression of the gene -: kinase CLAVATA1, AT1G75820) and histidine kinase HK2 (histidine kinase 2, AT5G35750) of the genes having a function, HK3 (histidin kinase3, AT1G27320) and CRE1 (HK4 as cytokinin receptor 7, MtATPG2 -8, and It was aimed at MtATPG2 -15 (Fig.
  • RT-PCR primer information for the applied gene and MtATPG2 and the positive control tubulin are shown in Table 2.
  • Table 2 RT-PCR primer information for the applied gene and MtATPG2 and the positive control tubulin.
  • CLV1 in the cytokinin signaling pathway Primer sequence and sequence number for RT-PCR for the gene, histidine kinase (HK) gene group , MtATPG2 , and positive control TUB gene gene Forward / Reverse Primer (SEQ ID NO) CLV1 CLV1-RT-F: 5'-ACT TAC CTC TGT CTC CCT CA-3 '(SEQ ID NO: 9) / CLV1-RT-R: 5'-GAC CAC CTT TAG ATC CAT GC-3 '(SEQ ID NO: 10) HK3 HK3-RT-F: 5'-CAA CAA CCA GCC CAT ATT CTC-3 '(SEQ ID NO: 11) / HK3-RT-R: 5'-TTC CAA TAC CCA ATC CCC TC-3 '(Dial No.
  • AHP1 from the phosphotransfer proteins (HP) gene family (AT3G21510) , AHP2 (AT3G29350) , AHP3 (AT5G39340), AHP4 (AT3G16360) , AHP5 (AT1G03430) , and AHP6 Expression patterns of the (AT1G80100) gene were also examined (FIG. 5). The expression pattern of the gene was analyzed by RT-PCR, primer information used is shown in Table 3.
  • AHP1, AHP2, and in the case of AHP3 showed a high expression in MtATPG2 MtATPG2 -7 and -15 mutants compared to the control, in the case of AHP4 exhibited high expression in MtATPG2 MtATPG2 -7 and -8 variant compared to the control.
  • AHP1 (AT3G21510)
  • AHP1-RT-F 5'-ATGGATTTGGTTCAGAAGCAGAA-3 '(SEQ ID NO: 17)
  • AHP1-RT-R 5'-TCAAAATCCGAGTTCGACGGCC-3'
  • AHP2 (AT3G29350)
  • AHP2I-RT-F 5'-ATGGACGCTCTCATTGCTCAGC-3 '(SEQ ID NO: 19)
  • AHP2I-RT-R 5'-TTA GTT AAT ATC CAC TTG AGG AAC-3' (SEQ ID NO: 20)
  • AHP3 (AT5G39340)
  • AHP3-RT-F 5'-GGACACACTCATTGCTCAGT-3 '(
  • MtATPG2 is not significantly involved in the CLV1 / WUS pathway in the cytokinin pathway.
  • MtATPG2 regulates the expression of the cytokinin receptor gene family and histidine phosphotransfer proteins (HP) gene family to regulate cytokinin signaling to increase plant yield.
  • Productivity traits such as increased biomass and delayed aging traits, and 3) these phenotypic characteristics are regulated according to the expression level of the MtATPG2 gene. That is, normal or relatively low expression of the MtATPG2 gene provides a phenotype of increased productivity, and a relatively high gene expression provides a phenotype of extended melting with a productivity-enhancing trait.
  • the homologous lines were selected by generation advancement, and then the six phenotypes were identified whether their phenotypes were the same as the previous generation phenotypes. .
  • most of the transformant T 3 or T 4 lines at 50 and 70 days after germination showed distinct multiplicity and biomass enhancement traits as in the previous results.
  • MtATPG2 -7-15-11 and MtATPG2 -7-15-12 lines in the transformation lines exhibited some aging delay traits as well as productivity enhancing traits. Investigation of the gene expression of the transformants showed that the aging delay traits appearing with this multiplicity were due to the increased expression level of the present gene (FIG. 8). This phenotypic characteristic of the transformant may be slightly different from the previous generation, which is believed to be due to changes in gene expression as the homo line is selected from the hetero line.
  • MtATPG2 Gene expression is expected to provide many advantages for stable generation of productivity-enhancing traits when applied to crops in that the expression of genes maintains the stabilization of phenotypic traits for productivity-enhancing traits.
  • MtATPG2 Expression T 3 or T 4 are transformed variants of the melt extending from the gene group that appears coding for the Arabidopsis thaliana are AT-hook protein did not appear very strong, but still in the mutant lines such as gene expression levels are high MtATPG2 -7 variants with the trait of delayed senescence I could see that.
  • MtATPG2-8 and MtATPG2 -15 mutant lines age of wild - I've found similar age-dependent phenomenon MtATPG2 -7 mutant lines were found to have the traits of aging delay compared to the control (Fig. 9).
  • chlorophyll content was measured during age-dependent aging. Chlorophyll content was measured according to the method of Lichtenthaler and Wellburn ( Biochemical Society Transduction 603: 591 ⁇ 592, 1983) using extinction coefficients of 663.2 nm and 664.8 nm.
  • a second study of aging delayed trait analysis examined the characteristics of cancer-induced aging.
  • MtATPG2 -8 and MtATPG2 -15 variant of the control lines are cancer-induced aging and appear nateu or MtATPG2 -7 mutant lines were found to have similar traits of aging delay by keeping the degree to melt even after 6 days (Fig. 11).
  • chlorophyll content was investigated during cancer-induced aging, and the chlorophyll content decrease pattern was proportional to the phenotypic features (FIG. 12).
  • MtATPG2 Since gene expression maintains the stabilization of phenotypic traits against pluripotent traits and aging delayed traits even in generational development, it may be possible to develop multiply crops through stable generation of agricultural traits when applied to crops.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed in the present invention is an MtATPG2 protein having the function of increasing productivity, improving resistance against stress, and delaying senescence in plant, a gene MtATPG2 thereof, and use of the same protein and gene. A plant in which the gene is introduced and expressed has the feature of anti-stress resistance and senescence delay in addition to an increase in productivity.

Description

식물의 생산성 증대 기능, 스트레스 내성 기능 및 노화 지연 기능을 갖는 MTATPG2 단백질과 그 유전자 및 이들의 용도MTATPG2 protein, its genes, and uses thereof, which increase productivity, stress tolerance and delay aging of plants
본 발명은 식물의 생산성 증대 기능, 스트레스 내성 기능 및 노화 지연 기능을 갖는 MtATPG2 단백질과 그 유전자 및 이들의 용도에 관한 것이다.The present invention relates to a MtATPG2 protein having its productivity enhancing function, stress resistance function and delaying aging function, genes thereof and uses thereof.
식물의 노화(plant senescence)는 식물의 생애 주기(lifecycle) 중 주요한 단계로 여겨지며, 유전적으로 조절된 반응들을 통하여 세포, 조직, 기관 및 개체 수준에서 매우 정교하게 연계되어 진행된다. 노화 과정의 진행은 식물체의 여러 기관에서 다르게 일어날 수 있는데 잎의 경우 엽록체의 분해에 이어서 지질, 단백질, 핵산의 분해가 순차적으로 일어난다. 세포막과 세포 내 구획 등의 세포 구조물은 마지막까지 유지되며 분해된 산물인 질소와 영양분의 재배치가 일어난 후 죽음에 이르게 된다(Lohman et al., Physiologia Plantarum, 1994, 92:322-8.; Smart, New Phytologist, 1994, 126:419-48; Pruzinska et al., Plant Physiology, 2005, 139:52-63). 식물체가 노화를 결정하는 시기는 영양분의 보유상태나 재배치와 연관이 있기 때문에 개화나 종자의 생산은 종종 노화를 촉진하는 요인이 된다. 또한 식물체는 계절적인 변화나 예측하지 못했던 외부 환경 변화에 대한 종 전체의 생존 전략으로도 노화 과정을 진행시킨다. Plant senescence is considered to be a major step in the plant's lifecycle, and progresses in a highly sophisticated manner at the cellular, tissue, organ and individual levels through genetically regulated reactions. The aging process can occur differently in different organs of the plant. In the case of leaves, the degradation of chloroplasts is followed by the degradation of lipids, proteins and nucleic acids. Cell structures, such as cell membranes and intracellular compartments, are maintained until the end and lead to death after rearrangement of the degraded product nitrogen and nutrients (Lohman et al., Physiologia Plantarum, 1994, 92: 322-8 .; Smart, New Phytologist, 1994, 126: 419-48; Pruzinska et al., Plant Physiology, 2005, 139: 52-63). The timing at which plants determine aging is related to nutrient retention and rearrangement, so flowering and seed production are often factors that promote aging. Plants also progress the aging process as a species-wide survival strategy for seasonal or unforeseen external environmental changes.
식물에서 유용물질을 얻기 위하여 재배를 할 경우, 유용물질 생산에 사용 가능한 식물의 양과 시기가 한정적이며 기후 풍토 등의 외부 인자에 의한 영향에 민감하게 반응하여 식물이 노화 및 죽음에 이르는 문제점이 있기 때문에 식물의 노화에 대한 연구는 생물학적인 측면에서 생명 현상의 이해를 위해서뿐만 아니라 생산성, 저장성, 수송성 등의 증진을 통한 경제적 이윤 창출 측면에서도 매우 중요하다. When cultivating plants to obtain useful substances, the amount and timing of plants available for producing useful substances are limited, and the plants are sensitive to the influence of external factors such as climate and climate, leading to aging and death. The study of plant aging is very important not only for understanding biological phenomena from a biological point of view, but also for economic profit creation through enhancement of productivity, storage and transport.
노화 과정은 여러 유전자의 발현 변화에 따라 진행되는데 광합성과 기초 대사 관련 유전자의 발현은 감소하며 세포사멸, 스트레스 반응 유전자, 가수분해 효소 관련 유전자의 발현은 증가하게 된다(Hopkins et al., New Phytologist, 2007, 175:201-14; Lim et al., Annual Review of Plant Biology, 2007, 58:115-136). 이러한 식물의 노화 관련 유전자(Senescence Associated Genes, SAGs)에 대한 연구는 학문적, 산업적 측면에서의 중요성 때문에 활발히 이루어지고 있다. The aging process is accompanied by changes in the expression of several genes, leading to a decrease in the expression of photosynthesis and basal metabolism-related genes and an increase in the expression of apoptosis, stress response genes, and hydrolase-related genes (Hopkins et al. 2007, 175: 201-14; Lim et al., Annual Review of Plant Biology, 2007, 58: 115-136). Senescence Associated Genes (SAGs) of these plants are being actively researched due to their importance in academic and industrial terms.
아실-가수분해효소 활성(acyl hydrolase activity)을 지니는 SAG101 유전자의 antisense 서열을 식물체에 도입시켜 노화를 지연시키는 기술(He and Gan, Plant Cell, 2002, 14(4):805-15)과 같이 직접적으로 노화 촉진 유전자의 발현을 저해하는 방법이 개발되었으며 노화 진행 시기 동안 노화를 저해하는 유전자를 과발현하는 방법도 개발되었다. 미국 등록특허 제 5689042호에는 SAG12 SAG13 유전자의 promoter에 cytokinin 합성 관련 유전자를 결합시켜 노화를 지연시키는 방법이 개시되어 있는데 SAG12 유전자의 promoter에 IPT 유전자를 재조합 할 경우 담배에서 50%의 생산성 증대를 볼 수 있었다. 같은 방법으로 상추에 도입시켰을 때 수확 후 저장성이 크게 증가되는 것을 알 수 있었다(McCabe et al., Plant Physiol. 2001, 127(2):505-16). 또한 SAG12 promoter에 옥수수의 homeobox gene(knotted1)을 발현시킨 담배에서 cytokinin의 level이 증가하고 잎의 노화도 지연되었다는 보고가 있었다(Naomi et al., Plant Cell, 1999, 11:1073-1080). Introducing the antisense sequence of the SAG101 gene with acyl hydrolase activity into the plant to delay aging (He and Gan, Plant Cell, 2002, 14 (4): 805-15) As a result, a method of inhibiting the expression of an aging promoter gene has been developed, and a method of overexpressing a gene that inhibits aging during the aging process has also been developed. US Patent No. 5689042 discloses SAG12 I SAG13 There was coupled the cytokinin synthesis genes in the promoter of the gene is disclosed a method for delaying the aging process in the promoter of the IPT gene SAG12 Recombinant genes showed a 50% increase in productivity in tobacco. When introduced into the lettuce by the same method it can be seen that the shelf life after harvest significantly increased (McCabe et al., Plant Physiol. 2001, 127 (2): 505-16). In addition, there were reports of increased cytokinin levels and delayed leaf aging in tobacco expressing corn homeobox gene (knotted1) in SAG12 promoter (Naomi et al., Plant Cell, 1999, 11: 1073-1080).
토마토의 경우 ethylene 합성과정을 저해하여 과일의 숙성을 조절한 사례가 보고되어 있으며(Oeller et al., Science. 1991, 254(5030):437-9) 또한 세포벽 분해와 관련된 polygalacturonase 유전자의 발현을 억제시켜 토마토의 운송성과 저장성을 증가시킨 Flav-O-Savor의 경우가 대표적으로 상업화된 예가 될 수 있다(Giovannoni et al., 1989, Plant Cell 1(1):53-63). Tomatoes have been reported to control the ripening of fruits by inhibiting the ethylene synthesis process (Oeller et al., Science. 1991, 254 (5030): 437-9) and also inhibit the expression of polygalacturonase genes involved in cell wall degradation. For example, Flav-O-Savor, which increases the transport and storage properties of tomatoes, may be a typical commercialized example (Giovannoni et al., 1989, Plant Cell 1 (1): 53-63).
또한 노화 진행시 과발현되는 유전자로서 GmSARK 유전자와 NAC family에 속하는 WRKY53 , WRKY6AtNAP 유전자 등이 보고되었으며(Miao et al., Plant Mol. Biol. 2004, 55:853-867; Guo and Gan et al., Plant J. 2006, 46(4):601-12; Li et al., Plant Mol Biol. 2006, 61:829-844; Besseau et al., J Exp Bot 2012, 63(7):2667-79) CBF2 , CBF3와 같은 유전자들은 노화를 억제시키는 것으로 알려졌다(Sobieszczuk-Nowicka et al., Physiol Plant 2007;130:590-600). 이들 유전자의 발현 조절은 노화를 지연시켜 결과적으로 작물의 생산성 등의 향상을 가져올 수 있다. 미국등록특허 제8420890호에는 AtNAP 유전자의 발현 억제를 통한 노화의 지연 방법이 개시되어 있는데 최근에는 AtNAP를 과발현시켜 목화 등의 수확을 용이하게 하거나 과실의 빠른 성숙을 돕는데 이용하기 위한 연구도 진행되고 있다(Kou et al., J Exp Bot. 2012, 63(17):6139-47).In addition, GmSARK gene and WRKY53 , WRKY6 and AtNAP genes belonging to the NAC family have been reported as genes overexpressed during aging (Miao et al., Plant Mol. Biol. 2004, 55: 853-867; Guo and Gan et al. , Plant J. 2006, 46 (4): 601-12; Li et al., Plant Mol Biol. 2006, 61: 829-844; Besseau et al., J Exp Bot 2012, 63 (7): 2667-79 Genes such as CBF2 and CBF3 are known to inhibit aging (Sobieszczuk-Nowicka et al., Physiol Plant 2007; 130: 590-600). Controlling the expression of these genes can delay aging, resulting in improvements in crop productivity. U.S. Pat.No.8420890 discloses a method for delaying aging by inhibiting the expression of AtNAP gene. Recently, studies have been conducted for overexpressing AtNAP to facilitate the harvesting of cotton or the like or to help ripening fruit. (Kou et al., J Exp Bot. 2012, 63 (17): 6139-47).
최근 적절한 promoter의 적용을 통한 IPT 유전자의 발현 조절은 캐놀라에서 노화 지연과 더불어 생산성 증대의 농업형질을 제공하며, 흥미로운 점은 형질전환 식물에서 cytokinin 과발현에 의한 형태학적, 그리고 표현형적 이상이 전혀 나타나지 않는다는 것이다(Surya Kant et al., PLOS ONE. 2015, 10(1): e0116349. doi:10.1371/journal.pone.0116349). 또한 애기장대의 AT hook 유전자인 ATPG4도 유전자 발현 정도에 따라 노화 지연의 표현형적 특징, 혹은 생산성 증대의 표현형적 특징을 나타낸다고 제안되고 있다(대한민국 특허출원 10-2011-0110593). 한편 ATPG4 유전자의 발현 양상과는 반대로, 면화에서 분리된 cytokinin 조절 유전자인 GhCKX의 발현억제는 생산성 증대와 녹기연장의 형질을 제공하는 것으로 알려졌다. 본 유전자의 극심한 발현 억제는 녹기연장의 형질을, 그런 반면 적절한 발현 억제는 fiber와 종자의 생산성 증대를 유도한다고 보고되고 있다(Zhao et al., Mol Breeding. 2015, 35:60). 이러한 유전자들의 기능은 발현 조절을 통해 생산성 증대 및 노화 지연의 형질을 제공한다는 점에서 유전자 발현 조절과 생산성 증대에 대한 연구는 더욱 가속화될 것이다.In recent years, the regulation of IPT gene expression through the application of appropriate promoters provides agricultural traits of increased productivity as well as delayed aging in canola, and it is interesting to note that morphological and phenotypic abnormalities due to cytokinin overexpression are not observed in transgenic plants. Surya Kant et al., PLOS ONE. 2015, 10 (1): e0116349. Doi: 10.1371 / journal.pone.0116349. In addition, ATPG4, which is the AT hook gene of Arabidopsis, has been suggested to exhibit a phenotypic characteristic of delaying aging or a phenotypic characteristic of increasing productivity according to gene expression level (Korean Patent Application No. 10-2011-0110593). Contrary to the expression patterns of the ATPG4 gene, inhibition of expression of GhCKX , a cytokinin regulator gene isolated from cotton, has been shown to provide traits of increased productivity and extended melting. Severe inhibition of expression of this gene is reported to lead to traits of telogen extension, while adequate inhibition of expression leads to increased productivity of fibers and seeds (Zhao et al., Mol Breeding. 2015, 35:60). The study of gene expression control and productivity increase will be further accelerated in that the function of these genes is to provide expression of increased productivity and delayed aging through expression control.
최근 담배의 생애 주기에 따른 유전자 발현 조사(Edwards et al., BMC Genomics. 2010, 11:142)를 통하여 Tobacco Expression Atlas (TobEA) 데이터베이스가 확보되었으며 식물의 노화와 생장 조절에 대한 유전자 연구는 더욱 가속화되고 있다.The Tobacco Expression Atlas (TobEA) database has been recently obtained through the tobacco life cycle research (Edwards et al., BMC Genomics. 2010, 11: 142) and further accelerated genetic studies on plant aging and growth regulation. It is becoming.
본 발명도 작물의 생산성 등의 향상을 가져올 수 있는 노화 지연 등의 기능을 가지는 유전자 등을 개시한다.The present invention also discloses a gene having a function of delaying aging and the like, which can improve the productivity of crops and the like.
본 발명의 목적은 식물의 생산성 증대 기능을 가지고 스트레스 내성 기능을 가지며 노화 지연 기능을 가지는 MtATPG2 단백질을 제공하는 데 있다. SUMMARY OF THE INVENTION An object of the present invention is to provide a MtATPG2 protein having a productivity enhancing function of a plant, a stress resistance function, and a delaying aging function.
본 발명의 다른 목적은 상기 단백질을 암호화하는 유전자를 제공하는 데 있다.Another object of the present invention is to provide a gene encoding the protein.
본 발명의 또 다른 목적은 생산량 증대 특성을 갖는 식물체의 제조 방법을 제공하는 데 있다.Still another object of the present invention is to provide a method for producing a plant having a yield increasing characteristic.
본 발명의 또 다른 목적은 스트레스 내성을 갖는 식물체의 제조 방법을 제공하는 데 있다.Still another object of the present invention is to provide a method for producing a plant having stress resistance.
본 발명의 또 다른 목적은 노화 지연 특성을 갖는 식물체의 제조 방법을 제공하는 데 있다.Still another object of the present invention is to provide a method for producing a plant having aging delay characteristics.
본 발명의 기타의 목적은 이하에서 제시될 것이다.Other objects of the present invention will be presented below.
본 발명은 일 측면에 있어, 식물의 생산성 증대 기능을 가지고 스트레스 내성 기능을 가지며 노화 지연 기능을 가지는 MtATPG2 단백질에 관한 것이다. In one aspect, the present invention relates to a MtATPG2 protein having a productivity enhancing function of a plant, a stress resistance function, and a delaying aging function.
본 발명자(들)는 하기 실시예에서 확인되는 바와 같이, 메디카고 트룬카툴라(Medicago truncatula)의 AT-hook motif nuclear localized protein(GeneBank accession number NC_016414.1)의 염기서열을 기초로 상기 단백질의 유전자를 분리하고 상기 유전자를 애기장대에 형질전환시켜 발현시켰을 때, 개체의 생체량 증가 및/또는 종자 생산성 증가라는 생산성 증대 특성이 뚜렷하게 나타나고, 산화적 스트레스에 대한 내성 특성도 뚜렷하게 나타나며 이와 더불어 식물의 노화 지연 현상이 뚜렷하게 나타남을 확인하였다. The inventor (s) is based on the nucleotide sequence of the AT-hook motif nuclear localized protein (GeneBank accession number NC_016414.1) of Medicago truncatula , as identified in the following examples When the gene was isolated and transformed into the Arabidopsis, the productivity increase characteristics such as the increase in the biomass and / or the seed productivity of the individual were clearly shown, and the resistance to oxidative stress was also clearly shown, and the aging of the plant was delayed. It was confirmed that the phenomenon appeared clearly.
이러한 실험 결과는 상기 유전자 및 단백질이 식물의 생산성을 증대시키고 스트레스에 대한 내성을 제공하며, 또한 식물체의 노화를 지연시키는 데 관여한다는 것을 의미한다고 할 수 있다. These experimental results may mean that the genes and proteins increase plant productivity, provide resistance to stress, and also contribute to delaying aging of the plant.
본 발명자들은 상기 유전자를 MtATPG2 ( M edicago t runcatula AT-hook protein of Genomine 2) 유전자 및 MtATPG2 단백질로 명명하였으며, 이들 염기 서열 및 아미노산 서열은 각각 서열번호 1(또는 도 14) 및 2(또는 도 15)에 개시되어 있다.We use the gene MtATPG2 ( M edicago t runcatula AT -hook p rotein of G enomine 2) was named as a gene and protein MtATPG2, these nucleotide sequences and amino acid sequences are disclosed in each of SEQ ID NO: 1 (or FIG. 14) and 2 (or FIG. 15).
본 발명의 MtATPG2 단백질은 하기 (a), (b) 및 (c)의 폴리펩티드들 중 하나이다. The MtATPG2 protein of the invention is one of the polypeptides of (a), (b) and (c) below.
(a) 서열번호 2에 기재된 아미노산 서열 전체를 포함하는 폴리펩티드; (a) a polypeptide comprising the entire amino acid sequence of SEQ ID NO: 2;
(b) 서열번호 2에 기재된 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드; 및 (b) a polypeptide comprising a substantial portion of the amino acid sequence set forth in SEQ ID NO: 2; And
(c) 상기 (a) 또는 (b)의 폴리펩티드와 실질적으로 유사한 폴리펩티드. (c) a polypeptide substantially similar to the polypeptide of (a) or (b) above.
본 명세서에서, "단백질"이라는 용어는 폴리펩티드와 동일한 의미로서 서로 혼용되어 사용되며, "유전자"라는 용어는 폴리뉴클레오티드와 동일한 의미로서 서로 혼용되어 사용된다.As used herein, the terms "protein" are used interchangeably with each other in the same sense as a polypeptide, and the term "gene" is used interchangeably with each other in the same sense as a polynucleotide.
본 명세서에서, "서열번호 2에 기재된 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드"는 서열번호 2에 기재된 아미노산 서열로 이루어진 폴리펩티드와 비교하였을 때 여전히 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유하기에 충분한 정도의 서열번호 2의 아미노산 서열의 일부분을 포함하는 폴리펩티드로서 정의된다. 여전히 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유하기에 충분하면 되므로, 상기 폴리펩티드의 길이 그리고 그러한 폴리펩티드가 가지는 활성의 정도는 문제되지는 않는다. 즉 서열번호 2에 기재된 아미노산 서열을 포함하는 폴리펩티드에 비해 활성이 낮더라도, 여전히 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 가지는 폴리펩티드라면 그 길이야 어떻든 상기 "서열번호 2에 기재된 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드"에 포함된다는 것이다. 당업자라면, 즉 본 출원시를 기준으로 공지된 관련 선행기술을 숙지하고 있는 자라면, 서열번호 2에 기재된 아미노산 서열을 포함하는 폴리펩티드에서 일부분이 결실되더라도 그러한 폴리펩티드는 여전히 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유할 것이라고 기대할 것이다. 그러한 폴리펩티드로서 서열번호 2에 기재된 아미노산 서열을 포함하는 폴리펩티드에서 N-말단 부분 또는 C-말단 부분이 결실된 폴리펩티드를 들 수 있다. 그것은 일반적으로 N-말단 부분 또는 C-말단 부분이 결실되더라도 그러한 폴리펩티드는 본래의 폴리펩티드가 가지는 기능을 가진다고 당업계에 공지되어 있기 때문이다. 물론 경우에 따라서는, N-말단 부분 또는 C-말단 부분이 단백질의 기능 유지에 필수적이서 N-말단 부분 또는 C-말단 부분이 결실된 폴리펩티드가 상기 기능을 나타내지 않는 경우가 있을 수 있겠지만, 그럼에도 그러한 비활성의 폴리펩티드를 활성의 폴리펩티드와 구분하고 검출해내는 것은 당업자의 통상의 능력 범위 내에 속한다. 나아가 N-말단 부분 또는 C-말단 부분뿐만 아니라 그 이외의 다른 부분이 결실되더라도 본래의 폴리펩티드가 가지는 기능을 여전히 가질 수 있다. 여기서도 당업자라면 그의 통상의 능력의 범위 내에서 이러한 결실된 폴리펩티드가 여전히 본래의 폴리펩티드가 가지는 기능을 가지는가를 충분히 확인할 수 있을 것이다. 특히 본 명세서가 서열번호 1의 염기서열 및 서열번호 2의 아미노산 서열을 개시하고 있고 나아가 서열번호 1의 염기서열에 의해 암호화되고 서열번호 2의 아미노산 서열로 이루어진 폴리펩티드가 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유하는지를 확인한 실시예를 개시하고 있다는 점에서, 서열번호 2의 아미노산 서열에서 일부 서열이 결실된 폴리펩티드가 서열번호 2의 아미노산 서열을 포함하는 폴리펩티드가 가지는 기능을 여전히 보유할 것인가를 당업자는 그의 통상의 능력 범위 내에서 충분히 확인할 수 있다는 것이 매우 자명해진다. 그러므로 본 발명에 있어서 상기 "서열번호 2에 기재된 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드"는 상기 정의와 같이 본 명세서의 개시 내용에 기초하여 당업자가 그의 통상의 능력 범위 내에서 제조 가능한 식물의 생산성 증대 기능 및 스트레스 내성 기능, 식물 노화 지연 기능을 가지는 결실된 형태의 모든 폴리펩티드를 포함하는 의미로서 이해되어야 한다.As used herein, a "polypeptide comprising a substantial portion of the amino acid sequence set forth in SEQ ID NO: 2" still retains productivity enhancement and stress tolerance and plant aging delayed functions as compared to the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: It is defined as a polypeptide comprising a portion of an amino acid sequence of SEQ ID NO: 2 sufficient to the following. The length of the polypeptide and the degree of activity of such a polypeptide is not a problem since it still needs to be sufficient to retain productivity and stress resistance and to delay plant aging. That is, even if the activity is lower than that of the polypeptide comprising the amino acid sequence of SEQ ID NO: 2, if the polypeptide is still a product having increased productivity, stress resistance, and delayed plant aging, the length of the amino acid sequence of SEQ ID NO: 2 Polypeptide comprising a substantial portion thereof. Those skilled in the art, that is, those skilled in the art, who are familiar with the related prior art known at the time of filing this application, will still be able to increase productivity and stress resistance, even if a portion of the polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2 is deleted, and It will be expected to retain the ability to delay plant aging. As such a polypeptide, the polypeptide which deleted the N-terminal part or C-terminal part in the polypeptide containing the amino acid sequence of SEQ ID NO: 2 is mentioned. This is because it is generally known in the art that even if the N- or C-terminal portion is deleted, such a polypeptide has the function of the original polypeptide. Of course, in some cases, the N-terminal or C-terminal moiety is necessary for maintaining the function of the protein, so that a polypeptide deleted with the N-terminal or C-terminal moiety does not exhibit this function. It is within the ordinary skill of one of ordinary skill in the art to distinguish and detect inactive polypeptides from active polypeptides. Furthermore, the deletion of the N-terminal or C-terminal moiety as well as other moieties may still have the function of the original polypeptide. Here too, one of ordinary skill in the art will be able to ascertain whether such deleted polypeptide still has the function of the original polypeptide within the scope of its usual ability. In particular, the present specification discloses the nucleotide sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 2, furthermore, a polypeptide encoded by the nucleotide sequence of SEQ ID NO: 1 and consisting of the amino acid sequence of SEQ ID NO: 2 increases productivity and stress resistance of plants. In addition, the present invention discloses an embodiment confirming whether the plant has a delaying function of aging, and thus, a polypeptide having a partial deletion in the amino acid sequence of SEQ ID NO: 2 may still retain the function of the polypeptide comprising the amino acid sequence of SEQ ID NO: 2 It is very clear that those skilled in the art can fully confirm within the ordinary capability range. Therefore, in the present invention, the "polypeptide comprising a substantial part of the amino acid sequence set forth in SEQ ID NO: 2" as described above, based on the disclosure of the present specification, the productivity of a plant that can be manufactured by those skilled in the art within the range of its usual capacity can be increased. It is to be understood as meaning including all polypeptides in a deleted form having a function, a stress resistance function, and a plant aging delay function.
또한 본 명세서에서, "상기 (a) 및 (b)의 폴리펩티드와 실질적으로 유사한 폴리펩티드"란 하나 이상의 치환된 아미노산을 포함하지만, 서열번호 2의 아미노산 서열을 포함하는 폴리펩티드가 가지는 기능, 즉 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유하는 폴리펩티드를 말한다. 여기서도 하나 이상의 치환된 아미노산을 포함하는 폴리펩티드가 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유하기만 한다면 그러한 폴리펩티드가 가지는 활성의 정도나 아미노산이 치환된 정도는 문제되지 않는다. 바꿔 얘기해서, 하나 이상의 치환된 아미노산을 포함하는 폴리펩티드가 서열번호 2의 아미노산 서열을 포함하는 폴리펩티드에 비해 그 활성이 아무리 낮더라도 또 많은 수의 치환된 아미노산을 포함하고 있다고 하더라도 그러한 폴리펩티드가 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 보유하기만 한다면 본 발명에 포함된다는 것이다. 하나 이상의 아미노산이 치환되더라도 치환되기 전의 아미노산이 치환된 아미노산과 화학적으로 등가라면, 그러한 치환된 아미노산을 포함하는 폴리펩티드는 여전히 본래의 폴리펩티드의 기능을 보유할 것이다. 예컨대, 소수성 아미노산인 알라닌이 다른 소수성의 아미노산, 예를 들면 글리신, 또는 보다 더 소수성인 아미노산, 예를 들면 발린, 류신 또는 이소류신으로 치환되더라도 그러한 치환된 아미노산(들)을 가지는 폴리펩티드는 활성은 낮더라도 본래의 폴리펩티드가 가지는 기능을 여전히 보유할 것이다. 마찬가지로, 음으로 하전된 아미노산 예컨대, 글루탐산이 다른 음으로 하전된 아미노산, 예컨대 아스파르산으로 치환되더라도 그러한 치환된 아미노산(들)을 가지는 폴리펩티드도 활성은 낮더라도 본래의 폴리펩티드가 가지는 기능을 여전히 보유할 것이며, 또한 양으로 하전된 아미노산, 예컨대 아르기닌이 다른 양으로 하전된 아미노산, 예컨대, 리신으로 치환되더라도 그러한 치환된 아미노산(들)을 가지는 폴리펩티드 또한 활성은 낮더라도 본래의 폴리펩티드가 가지는 기능을 여전히 보유할 것이다. 또한 폴리펩티드의 N-말단 또는 C-말단 부분에서 치환된 아미노산(들)을 포함하는 폴리펩티드도 본래의 폴리펩티드가 가지는 기능을 여전히 보유할 것이다. 당업자라면, 그 전술한 바의 하나 이상의 치환된 아미노산을 포함하면서도, 서열번호 2의 아미노산 서열을 포함하는 폴리펩티드가 가지는 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 여전히 보유하는 폴리펩티드를 제조할 수 있다. 또한 당업자라면 하나 이상의 치환된 아미노산을 포함하는 폴리펩티드가 여전히 위 기능을 가지는가를 확인할 수 있다. 더구나 본 명세서가 서열번호 1의 염기서열 및 서열번호 2의 아미노산 서열을 개시하고 있고 또한 서열번호 2의 아미노산 서열을 포함하는 폴리펩티드가 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 지님을 확인한 실시예를 개시하고 있기 때문에, 본 발명의 "상기 (a) 및 (b)의 폴리펩티드와 실질적으로 유사한 폴리펩티드"는 당업자에게 용이하게 실시 가능한 것임이 분명하다. 그러므로 "상기 (a) 또는 (b)의 폴리펩티드와 실질적으로 유사한 폴리펩티드"는 하나 이상의 치환된 아미노산을 포함하면서도 여전히 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 가지는 모든 폴리펩티드를 포함하는 의미로서 이해되어야 한다. 이처럼 "상기 (a) 또는 (b)의 폴리펩티드와 실질적으로 유사한 폴리펩티드"는 하나 이상의 치환된 아미노산을 포함하면서도 여전히 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 가지는 모든 폴리펩티드를 포함하는 의미이지만, 그럼에도 활성의 정도라는 관점에서 봤을 때, 상기 폴리펩티드는 서열번호 2의 아미노산 서열과 서열 상동성이 높을수록 바람직하다. 상기 폴리펩티드는 서열 상동성의 하한에 있어서 60% 이상의 서열 상동성을 지니는 것이 바람직한 반면, 서열 상동성의 상한에 있어서는 당연히 100%의 서열 상동성을 지니는 것이 바람직하다. 보다 더 구체적으로 위 서열 상동성은 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%의 순서대로 높아질수록 바람직하다. 그리고 본 발명의 "상기 (a) 및 (b)의 폴리펩티드와 실질적으로 유사한 폴리펩티드"는 "서열번호 2의 아미노산 서열 전체를 포함하는 폴리펩티드에 실질적으로 유사한 폴리펩티드" 뿐만 아니라 '서열번호 2의 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드에 실질적으로 유사한 폴리펩티드'를 포함하므로 전술한 바의 모든 설명은 "서열번호 2의 아미노산 서열 전체를 포함하는 폴리펩티드에 실질적으로 유사한 폴리펩티드"에 대해서 뿐만 아니라 "서열번호 2의 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드에 실질적으로 유사한 폴리펩티드"에 대해서도 적용되어진다. Also used herein, "polypeptide substantially similar to the polypeptide of (a) and (b)" includes a function comprising one or more substituted amino acids, but comprising the amino acid sequence of SEQ ID NO: 2, ie, the productivity of a plant. It refers to a polypeptide possessing augmentation and stress resistance functions and a delay in plant aging. Here too, the degree of activity or amino acid substitution of the polypeptide is not a problem as long as the polypeptide containing at least one substituted amino acid retains the productivity of the plant, the stress resistance function, and the delayed plant aging function. In other words, even if a polypeptide comprising one or more substituted amino acids contains a large number of substituted amino acids, even if its activity is lower than that of a polypeptide comprising the amino acid sequence of SEQ ID NO: 2, the polypeptide is a plant productivity. It is included in the present invention as long as it possesses augmentation and stress tolerance functions, and a plant aging delay function. Even if one or more amino acids are substituted, if the amino acid before substitution is chemically equivalent to the substituted amino acid, the polypeptide comprising such substituted amino acid will still retain the function of the original polypeptide. For example, even if the hydrophobic amino acid alanine is substituted with another hydrophobic amino acid such as glycine or a more hydrophobic amino acid such as valine, leucine or isoleucine, the polypeptide having such substituted amino acid (s) may be It will still retain the function of the original polypeptide. Likewise, even if a negatively charged amino acid such as glutamic acid is replaced with another negatively charged amino acid such as aspartic acid, a polypeptide having such substituted amino acid (s) will still retain the function of the original polypeptide even if its activity is low. Also, even if a positively charged amino acid such as arginine is replaced with another positively charged amino acid such as lysine, the polypeptide having such substituted amino acid (s) will still retain the function of the original polypeptide even if its activity is low. will be. In addition, a polypeptide comprising amino acid (s) substituted at the N-terminal or C-terminal portion of the polypeptide will still retain the function of the original polypeptide. One skilled in the art would prepare a polypeptide that contains one or more substituted amino acids as described above, but still retains the productivity and stress resistance functions of plants comprising the amino acid sequence of SEQ ID NO. can do. One skilled in the art can also determine whether a polypeptide comprising one or more substituted amino acids still has this function. Furthermore, the present disclosure discloses the nucleotide sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 2, and also the polypeptide comprising the amino acid sequence of SEQ ID NO: 2 has a function of increasing productivity and stress resistance of plants, and delaying plant aging. Since the confirmed examples are disclosed, it is evident that the "polypeptides substantially similar to the polypeptides of (a) and (b)" of the present invention can be easily implemented by those skilled in the art. Therefore, "polypeptide substantially similar to the polypeptide of (a) or (b) above" is meant to include all polypeptides that contain one or more substituted amino acids but still have plant productivity and stress resistance and delayed aging of plants. Should be understood as. As such, the term "polypeptide substantially similar to the polypeptide of (a) or (b)" includes all polypeptides that contain one or more substituted amino acids but still have plant productivity and stress resistance functions, and plant aging function. In view of the degree of activity, however, the polypeptide is preferably higher in sequence homology with the amino acid sequence of SEQ ID NO. Preferably, the polypeptide has at least 60% sequence homology at the lower end of sequence homology, while at the upper limit of sequence homology, it is preferred that the polypeptide has 100% sequence homology. More specifically, the above sequence homology is 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90% , 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% in order of higher. And "polypeptides substantially similar to the polypeptides of (a) and (b) above" of the present invention are not only "polypeptides substantially similar to polypeptides comprising the entire amino acid sequence of SEQ ID NO: 2", All descriptions above are intended to include "substantially similar to polypeptides comprising the entire amino acid sequence of SEQ ID NO: 2" as well as "amino acids of SEQ ID NO: 2", since the polypeptide comprising substantially part thereof is included. The same applies to polypeptides that are substantially similar to polypeptides comprising substantial portions of the sequence.
본 발명은 다른 측면에 있어서, 전술한 바의 폴리펩티드를 암호화하는 단리된 폴리뉴클레오티드에 대한 것이다. 여기서 "전술한 바의 폴리펩티드"란 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 지니면서 서열번호 2에 기재된 아미노산 서열 전체를 포함하는 폴리펩티드, 서열번호 2에 기재된 아미노산 서열의 실질적인 부분을 포함하는 폴리펩티드, 및 위 폴리펩티드들과 실질적으로 유사한 폴리펩티드를 포함할 뿐만 아니라, 전술한 바의 바람직한 양태의 모든 폴리펩티드들을 포함하는 의미이다. 그러므로 본 발명의 폴리뉴클레오티드는 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 지니면서, 서열번호 2에 기재된 아미노산 서열 전체 또는 그 실질적인 부분을 포함하는 폴리펩티드를 암호화하는 단리된 폴리뉴클레오티드 및 이러한 폴리펩티드들에 실질적으로 유사한 폴리펩티드를 암호화는 단리된 폴리뉴클레오티드를 포함하며, 나아가 바람직한 양태로서 식물의 생산성 증대 및 스트레스 내성 기능, 그리고 식물 노화 지연 기능을 지니면서 전술한 바의 서열 상동성의 순서대로 그 서열 상동성을 지니는 모든 폴리펩티드를 암호화하는 단리된 폴리뉴클레오티드를 포함한다. 아미노산 서열이 밝혀졌을 때, 그러한 아미노산 서열에 기초하여 그러한 아미노산 서열을 암호화하는 폴리뉴클레오티드를 당업자라면 용이하게 제조할 수 있다. In another aspect, the invention is directed to an isolated polynucleotide encoding a polypeptide as described above. Herein, "polypeptide as described above" refers to a polypeptide comprising the entire amino acid sequence of SEQ ID NO: 2, a substantial portion of the amino acid sequence of SEQ ID NO. Including polypeptides, and polypeptides substantially similar to the above polypeptides, as well as all polypeptides of the preferred embodiments as described above. Therefore, the polynucleotide of the present invention is an isolated polynucleotide encoding a polypeptide comprising all or a substantial part of the amino acid sequence of SEQ ID NO: 2 and having a function of increasing productivity and stress resistance of plants, and delaying aging of plants, and Polypeptides encoding polypeptides that are substantially similar to the polypeptides include isolated polynucleotides and, in a preferred embodiment, the sequences in the order of sequence homology as described above, with increasing plant productivity and stress resistance, and delayed plant aging. It includes an isolated polynucleotide encoding all polypeptides with homology. When amino acid sequences are found, those skilled in the art can readily prepare polynucleotides encoding such amino acid sequences based on those amino acid sequences.
한편 본 명세서에서 상기 "단리된 폴리뉴클레오티드"는 화학적으로 합성된 폴리뉴클레오티드, 생물체 특히 메디카고 트룬카툴라(Medicago truncatula)에서 분리된 폴리뉴클레오티드 및 변형된 뉴클레오티드를 함유한 폴리뉴클레오티드를 모두 포함하며, 단일 가닥 또는 이중 가닥의 RNA 또는 DNA의 중합체를 모두 포함하는 것으로서 정의된다. Meanwhile, the term “isolated polynucleotide” as used herein includes both chemically synthesized polynucleotides, polynucleotides isolated from organisms, especially Medicago truncatula , and polynucleotides containing modified nucleotides, It is defined as including all polymers of stranded or double stranded RNA or DNA.
본 발명은 또 다른 측면에 있어, 생산성 증대 특성을 갖는 식물체의 제조 방법에 관한 것이다.In another aspect, the present invention relates to a method for producing a plant having productivity enhancing properties.
본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법은 (a) 식물체에서 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 발현시키는 단계 및 (b) 생산성 증대 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성된다.Method for producing a plant having a productivity enhancing feature of the present invention comprises the steps of (a) expressing a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 in the plant and (b) increased productivity And selecting the plant having the characteristic.
본 명세서에서, "생산성 증대 특성"이란 식물체의 전체, 줄기, 뿌리 및/또는 잎의 생체량(biomass; 크기 및/또는 질량)이 야생형 식물체에 비하여 증가한 특성, 및/또는 식물체의 종자의 생산성(식물 1개체 당 종자의 수 및/또는 질량)이 야생형 식물체에 비하여 증가한 특성을 말한다. As used herein, "productivity enhancing properties" means that the biomass (size and / or mass) of the whole, stem, root and / or leaves of the plant is increased compared to wild-type plants, and / or the productivity of the plant's seeds (plants) Number and / or mass of seeds per individual) is increased compared to wild type plants.
또한 본 명세서에서, "식물체"란 성숙한 식물, 미성숙 식물(유식물체), 식물 종자, 식물 세포, 식물 조직 등을 포함하는 의미이다. 식물 세포나 식물 조직이 형질전환에 사용될 경우에 형질전환된 식물 세포나 식물 조직은 유럽특허 EP0116718, 유럽특허 EP0270822, 국제특허 WO 84/02913, 문헌[Gould et al. 1991, Plant Physiol 95,426-434] 등에 개시된 방법을 사용하여 성숙한 식물체로 발육·생장시킬 수 있다.In addition, in the present specification, "plant" is meant to include mature plants, immature plants (plants), plant seeds, plant cells, plant tissues and the like. When plant cells or plant tissues are used for transformation, the transformed plant cells or plant tissues are described in European Patent EP0116718, European Patent EP0270822, International Patent WO 84/02913, Gould et al. 1991, Plant Physiol 95,426-434, etc., can be used to develop and grow into mature plants.
또한 본 명세서에서, "식물"이란 생산성 증가가 인간에게 유용한 결과를 줄 수 있는 모든 식물을 포함한다. 따라서 상기 식물의 의미에는 작물(구체적으로 식용작물, 사료작물, 공예작물 등의 농작물과 원예작물을 포함함), 임목, 관상식물을 포함한다. 구체적으로는 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수, 본 발명의 MtATPG2 유전자가 분리된 메디카고 트룬카툴라(Medicago truncatula)가 속하는 콩과 식물(구체적으로 매듭풀, 괭이싸리, 돌콩, 새콩, 여우팥, 대두, 완두, 잠두콩, 땅콩,렌주콩, 강낭콩, 루핀콩, 자주개자리 또는 클로버, 칡, 토끼풀, 괴화 등), 배추, 청경채, 케일, 콜리플라워, 브로콜리, 열무(young radish), 무, 갓, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근, 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채, 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나 등이 포함될 것이고, 또한 스위치그라스, 억새, 갈대 등과 같은 바이오에너지 작물과 기타 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스, 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립 등이 포함될 것이다. Also herein, "plant" includes all plants for which productivity gains can give useful results to humans. Therefore, the meaning of the plant includes crops (specifically, crops such as edible crops, feed crops, craft crops, and horticultural crops), forest trees, and ornamental plants. Specifically, rice, wheat, barley, corn, soybeans, potatoes, red beans, oats, sorghum, legumes (specifically knotweed, hoe belonging to Medicago truncatula ) from which the MtATPG2 gene of the present invention is isolated. Fire, stone, bird, red bean, soybean, pea, adzuki bean, peanut, lentil, kidney bean, lupine, alfalfa or clover, 칡, shamrock, lump, etc.), Chinese cabbage, bok choy, kale, cauliflower, broccoli, Young radish, radish, freshly, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion, carrot, ginseng, tobacco, cotton, sesame, sugarcane, beet, perilla, peanut, It will include rapeseed, apple, pear, jujube, peach, lamb, grape, citrus, persimmon, plum, apricot, banana, and other bioenergy crops such as switchgrass, silver grass, reed, and other lygras, red clover. , Orchardgrass, Alpha Alpha, Tolsque Scue, Perennial Lig Las, roses, gladiolus, gerberas, carnations, chrysanthemums, lilies, tulips.
또한 본 명세서에서 "서열번호 1의 염기서열과 유사한 서열로 이루어진 유전자"란 첫째 서열번호 2의 아미노산을 암호화하면서도 코돈의 축퇴성(codon degeneracy)으로 인하여 서열번호 1의 유전자와 다른 염기서열을 갖는 유전자와, 서열번호 1의 염기서열로 이루어진 유전자의 동족체(homologue)로서 식물의 생산성 증대 특성 등을 지니면서 식물의 종류에 따른 진화적 경로의 상이로 인하여 서열번호 1의 염기서열과 다른 염기서열로 이루어진 모든 유전자를 포함하는 의미이다. 여기서 서열번호 1의 염기서열과 유사한 서열로 이루어진 유전자는 서열번호 1의 염기서열과 서열 상동성이 높을수록 바람직하고, 가장 바람직하게는 당연히 100%의 서열 상동성을 지닐 때이다. 한편, 서열 상동성의 하한에 있어서는 상기 유전자가 서열번호 1의 염기서열과 60% 이상의 서열 상동성을 지니는 경우가 바람직할 것이다. 보다 더 구체적으로는 위 서열 상동성이 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 및 99%의 순서대로 높아질수록 바람직하다.In addition, in the present specification, "gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1" is a gene encoding the first amino acid of SEQ ID NO: 2 while having a base sequence different from that of the gene of SEQ ID NO: 1 due to codon degeneracy And, as a homologue of genes consisting of the nucleotide sequence of SEQ ID NO: 1 having the characteristics of increasing the productivity of the plant, etc., due to the evolutionary pathways different according to the type of plant consisting of the nucleotide sequence of SEQ ID NO: 1 and other nucleotide sequences It is meant to include all genes. Herein, the gene consisting of a sequence similar to the nucleotide sequence of SEQ ID NO: 1 is preferably higher in sequence homology with the nucleotide sequence of SEQ ID NO: 1, and most preferably, having 100% sequence homology. On the other hand, in the lower limit of sequence homology, it will be preferable that the gene has a sequence homology of 60% or more with the nucleotide sequence of SEQ ID NO: 1. More specifically, the above sequence homology is 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73 %, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, Higher in order of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% is preferred.
본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법에 있어서, 상기 단계 (a)는 유전공학적 방법으로 수행될 수 있다.In the method for producing a plant having a productivity increasing characteristic of the present invention, step (a) may be performed by a genetic engineering method.
유전공학적인 방법은 (i) 상기 서열번호 1의 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및 (ii) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하여 구성된다.Genetic engineering method includes the steps of (i) inserting the gene of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 into an expression vector to be operably linked to a regulatory sequence capable of expressing it, and ( ii) transforming the expression vector into a plant.
본 명세서에서, "작동 가능하게"란 어떤 유전자의 전사 및/또는 번역이 영향을 받도록 연결된다는 의미이다. 예컨대 어떠한 프로모터가 그것에 연결된 어떤 유전자의 전사에 영향을 준다면 그 프로모터와 그 유전자는 작동 가능하게 연결된 것이다.As used herein, "operably" means that the transcription and / or translation of a gene is linked to be affected. For example, if a promoter influences the transcription of a gene linked to it, the promoter and the gene are operably linked.
또 본 명세서에서, "조절 서열"이란 그것의 존재가 그것에 연결된 유전자의 전사 및/또는 번역에 영향을 미칠 수 있는 모든 서열을 포함하는 의미이며, 이러한 조절 서열에는 프로모터 서열, 전사종결 서열(polyadenylation signal ), 복제 개시점을 포함한다. In addition, in the present specification, "regulatory sequence" is meant to include all sequences whose presence may affect the transcription and / or translation of a gene linked thereto, and such regulatory sequences include a promoter sequence and a polyadenylation signal. ), The replication start point .
또한 본 명세서에서, "프로모터"는 당업계에 알려진 통상의 의미를 따르는데, 구체적으로는 어떤 유전자의 전사 개시점을 기준으로 상위(5'쪽)에 위치하고, DNA-의존 RNA 중합효소에 대한 결합 부위, 전사 개시점, 전사 인자 결합 부위 등을 포함하는, 하나 이상의 유전자의 전사를 제어하는 기능을 갖는 핵산 서열을 의미한다. 이러한 프로모터는 그것이 진핵생물 유래일 경우 전사 개시점 상위에 있는 TATA 박스(통상 전사 개시점(+1) -20 내지 -30 위치에 존재), CAAT 박스(통상 전사 개시 부위와 비교하여 대략 -75 위치에 존재), 5'인핸서, 전사 억제 인자 등을 포함한다. Also in this specification, "promoter" follows the conventional meaning known in the art, specifically located at the top (5 'side) based on the transcription initiation point of a gene, binding to DNA-dependent RNA polymerase By nucleic acid sequences having the function of controlling transcription of one or more genes, including sites, transcriptional initiation sites, transcription factor binding sites, and the like. This promoter may be a TATA box (usually located at the transcription start point (+1) -20 to -30 position) above the transcription initiation point if it is of eukaryotes, and a CAAT box (typically about -75 position compared to the transcription start site) Present), a 5 'enhancer, a transcription repression factor, and the like.
사용 가능한 프로모터는 그것에 연결된 서열번호 1의 유전자를 발현시킬 수 있는 프로모터라면 구성적 프로모터(모든 식물체 조직에서 상시적으로 발현을 유도하는 프로모터), 유도성 프로모터(특정 외부 자극에 반응하여 목적 유전자의 발현을 유도하는 프로모터 또는 특정 발달 시기나 특정 조직에서 특이적으로 발현을 유도하는 프로모터) 모두 사용될 수 있다. 사용 가능한 구성적 프로모터의 대표적인 예로는 콜리플라워 모자이크 바이러스(CaMV: cauliflower mosaic virus)의 35S RNA 유전자의 프로모터를 들 수 있고, 그 밖에 유비퀴틴(ubiquitin) 계열의 프로모터(Christensen et al., 1992, Plant Mol. Biol. 18, 675-689; EP0342926; Cornejo et al., 1993, Plant Mol. Biol. 23, 567-581), 벼 액틴 프로모터(Zhang et al. 1991, The Plant Cell 3, 1155-1165) 등을 들 수 있다. 사용 가능한 유도성 프로모터의 예로는 구리 이온에 의해 활성화되는 효모 메탈로티오네인 프로모터(Mett 등, Proc. Natl. Acad. Sci., U.S.A., 90:4567, 1993), 치환 벤젠설폰아미드에 의해 활성화되는 In2-1 및 In2-2 프로모터(Hershey 등, Plant Mol. Biol., 17:679, 1991), 글루코코르티코이드에 의해 조절되는 GRE 조절 서열(Schena 등, Proc. Natl. Acad. Sci., U.S.A., 88:10421, 1991), 에탄올 조절성 프로모터(Caddick 등, Nature Biotech., 16:177, 1998), 리뷸로스 비스-포스페이트 카르복실라제(ssRUBISCO)의 소 서브유니트에서 유래한 광 조절성 프로모터(Coruzzi 등, EMBO J., 3:1671, 1984; Broglie 등, Science, 224:838, 1984), 만노핀 신타제 프로모터(Velten 등, EMBO J., 3:2723, 1984), 노팔린 신타제(NOS) 프로모터, 옥토핀 신타제(OCS) 프로모터, 열 충격 프로모터(Gurley 등, Mol. Cell. Biol., 6:559, 1986; Severin 등, Plant Mol. Biol., 15:827, 1990) 벼 글루테린(glutelin) 프로모터, 콩 유래 렉틴(lectin) 프로모터, 배추 유래 나핀(napin) 프로모터 등을 들 수 있다.Usable promoters include constitutive promoters (promoters which induce expression in all plant tissues at all times), inducible promoters (expression of target genes in response to specific external stimuli) as long as they are capable of expressing the gene of SEQ ID NO. 1 linked thereto. Promoters that induce expression or promoters that specifically induce expression in specific developmental periods or specific tissues). Representative examples of constitutive promoters that can be used include the promoter of the 35S RNA gene of cauliflower mosaic virus (CaMV), and the ubiquitin family of promoters (Christensen et al., 1992, Plant Mol). Biol. 18, 675-689; EP0342926; Cornejo et al., 1993, Plant Mol. Biol. 23, 567-581), rice actin promoter (Zhang et al. 1991, The Plant Cell 3, 1155-1165), etc. Can be mentioned. Examples of inducible promoters that can be used include the yeast metallothionein promoter (Mett et al., Proc. Natl. Acad. Sci., USA, 90: 4567, 1993), which is activated by copper ions, substituted by substituted benzenesulfonamides. In2-1 and In2-2 promoters (Hershey et al., Plant Mol. Biol., 17: 679, 1991), GRE regulatory sequences regulated by glucocorticoids (Schena et al., Proc. Natl. Acad. Sci., USA, 88 : 10421, 1991), ethanol regulating promoters (Caddick et al., Nature Biotech., 16: 177, 1998), light regulating promoters derived from bovine subunits of ribulose bis-phosphate carboxylase (ssRUBISCO) (Coruzzi et al. , EMBO J., 3: 1671, 1984; Broglie et al., Science, 224: 838, 1984), mannino synthase promoter (Velten et al., EMBO J., 3: 2723, 1984), nopalin synthase (NOS) Promoter, octopin synthase (OCS) promoter, heat shock promoter (Gurley et al., Mol. Cell. Biol., 6: 559, 1986; Severin et al., Plant Mol. Biol., 15: 827, 1990) And a gluten promoter, a soy-derived lectin promoter, a cabbage-derived napin promoter, and the like.
전사 종결 서열은 poly (A ) 첨가 신호( polyadenylation signal )로 작용하는 서열로서 전사의 완결성 및 효율성을 높이기 위한 것이다. 사용될 수 있는 전사 종결 서열의 예로는 노팔린 신타아제 (NOS) 유전자의 전사 종결 서열, 벼 α-아밀라아제 RAmy1 A 유전자의 전사 종결 서열, 아그로박테리움 투메파시엔스의 옥토파인 (Octopine) 유전자의 전사 종결 서열, 밀 열 쇼크 단백질 17의 전사 종결 서열, 밀 유비퀴틴 유전자의 전사 종결 서열, 벼 글루테린 유전자의 전사 종결 서열, 벼 락테이트 디하이드로게나제 유전자의 전사 종결 서열 등을 들 수 있다. Transcription termination sequence is poly (A ) addition signal ( polyadenylation As a sequence acting as a signal ), it is intended to enhance the integrity and efficiency of transcription. An example of a transcription termination sequence that can be used is nopalin Synthase (NOS) a transcription termination sequence, rice α- amylase RAmy1 A transcription termination sequence, Agrobacterium Tome Pacific Enschede of the gene of the gene Transcription termination sequence of octopine gene, transcription termination sequence of wheat heat shock protein 17, transcription termination sequence of wheat ubiquitin gene, transcription termination sequence of rice gluterin gene, transcription termination sequence of rice lactate dehydrogenase gene Etc. can be mentioned.
상기 발현벡터는 선별 마커 유전자를 포함할 수 있다. 여기서 " 선별 마커 유전자"란 그러한 마커 유전자를 포함하는 식물체의 선별을 가능하게 하는 형질을 암호화하는 유전자를 의미한다. 선별 마커 유전자는 항생물질 내성 유전자일 수 있고 제초제 내성 유전자일 수도 있다. 항생물질 내성 유전자의 예로는 항생물질 내성 유전자의 예로는 퓨로마이신 내성 유전자(예컨대 Streptomyces alboniger로부터 유래된 퓨로마이신 N-아세틸 트랜스퍼라제 유전자), 네오마이신 내성 유전자(예컨대 Streptomyces fradiae로부터 유래된 아미노글리코사이드 포스포트랜스퍼라제 유전자), 하이그로마이신 내성 유전자(Streptomyces hygroscopicus 로부터 유래된 하이그로마이신 포스포트랜스퍼라제 유전자), 블레오마이신 내성 유전자(Streptomyces verticillus로부터 유래된 블레오마이신 결합 단백질), 블라스티시딘 내성 유전자(예컨대 Streptomyces verticillum로부터 유래된 블라스티시딘 S-아세틸트랜스퍼라제 유전자), 하이그로마이신 내성 유전자(예컨대 Escherichia coli로부터 유래된 아미노사이클리톨 포스포트랜스퍼라제 유전자), 암피실린 내성 유전자(β-락타마제 유전자) 등을 들 수 있고, 제초제 내성 유전자의 예로는 바스타 제초제 저항성 bar 유전자 등을 들 수 있다. The expression vector may include a selection marker gene. Where "screening Marker gene "means a gene encoding a trait that enables the selection of a plant comprising such a marker gene selectable marker gene may be a number of days antibiotic resistance genes and herbicide tolerance genes. Examples of antibiotic resistance genes Examples of antibiotic resistance genes include puromycin resistance genes (eg Streptomyces). puromycin N-acetyl transferase gene derived from alboniger , neomycin resistance gene (eg Streptomyces) aminoglycoside phosphotransferase gene derived from fradiae , hygromycin resistance gene ( Streptomyces) hygroscopicus Hygromycin phosphotransferase gene derived from, bleomycin resistance gene (bleomycin binding protein derived from Streptomyces verticillus ), blasticidin resistance gene (eg Streptomyces) blasticidine S-acetyltransferase gene derived from verticillum ), hygromycin resistance gene (such as aminocyclitol phosphotransferase gene derived from Escherichia coli ), ampicillin resistance gene (β-lactamase gene), and the like. For example, the herbicide resistance gene may include a vasta herbicide resistance bar gene.
본 명세서에서, 상기 "형질전환"이란 왜래 유전자가 도입됨에 의한 숙주 식물체의 유전자형의 변형을 의미하며, 그 형질전환에 사용된 방법과 상관없이 그 왜래 유전자가 숙주 식물체, 더 정확하게는 숙주 식물의 세포 내로 도입되어 세포의 게놈에 통합된 것을 의미한다. 여기서 왜래 유전자에는 동종성 유전자와 이종성 유전자가 포함되는데, "동종성 유전자"란 숙주 유기체 또는 그와 동일한 생물종의 내인성 유전자를 의미하며, "이종성 유전자"란 그것이 형질전환되는 유기체에서는 존재하지 않는 유전자를 말한다. 예컨대 본 발명의 MtATPG2 유전자는 그것이 분리된 메디카고 트룬카툴라(Medicago truncatula)에는 동종성 유전자이지만, 애기장대나 토마토 식물에서는 이종성 유전자가 된다.As used herein, the term "transformation" refers to a modification of the genotype of a host plant by the introduction of a hereditary gene, and regardless of the method used for the transformation, the herb gene is a host plant, more precisely a cell of the host plant. Introduced into and integrated into the genome of a cell. Here, the hereditary genes include homologous and heterologous genes, wherein "homologous genes" refer to endogenous genes of a host organism or the same species, and "heterologous genes" are genes that do not exist in the organism to which they are transformed. Say. For example, the MtATPG2 gene of the present invention is homologous to Medicago truncatula from which it is isolated, but is heterologous to Arabidopsis and tomato plants.
한편, 외래성 유전자로 식물을 형질전환시키는 방법은 당업계에 공지된 방법을 사용할 수 있는데, 예컨대 유전자 총을 사용한 직접적인 유전자 전달 방법, 프로랄 딥(floral dip)을 이용한 in planta 형질전환 방법, 화분 매개 형질전환 방법, 원형질체의 형질전환 방법, 바이러스 매개 형질전환 방법, 리포좀 매개 형질전환 방법 등을 사용할 수 있다. 또한 특정 식물체에 적합한 형질전환 방법을 선택하여 사용할 수도 있는데, 예컨대 옥수수를 형질전환시키는 방법은 미국특허 US 6,140,553, 문헌(Fromm et al, 1990, Bio/Technology 8, 833-839), 문헌(Gordon-Kamm et al, 1990, The Plant Cell 2, 603-618) 등에 개시된 방법을 사용할 수 있으며, 벼를 형질전환시키기 위한 방법은 문헌(Shimamoto et al, 1989, Nature 338, 274-276), 문헌(Datta et al 1990, Bio/Technology 8, 736-740), 국제특허 WO 92/09696, 국제특허 WO 94/00977, 국제특허 WO 95/06722 등에 개시된 방법을 사용할 수 있다. 또 토마토나 담배 형질전환에 있어서는 문헌(An G. et al., 1986, Plant Physiol. 81: 301-305), 문헌 (Horsch R.B. et al, 1988, In: Plant Molecular Biology Manual A5, Dordrecht, Netherlands, Kluwer Academic Publishers, pp 1-9), 문헌(Koornneef M. et al, 1986, In: Nevins DJ. and R.A. Jones, eds. Tomato Biotechnology, New York, NY, USA, Alan R. Liss, Inc. pp 169-178) 등에 개시된 방법을 사용할 수 있다. 특히 본 발명의 MtATPG2 유전자가 콩과식물에 속하는 메디카고 트룬카툴라(Medicago truncatula)에서 분리되었다는 점에서 본 발명의 MtATPG2 유전자는 그 콩과식물의 품종개량에 유용하게 사용되기 위해 콩과식물에 형질전환될 수 있는데, 이러한 콩과식물의 형질전환 방법 또한 당업계에 다수의 문헌을 통하여 공지되어 있다. 그러한 문헌으로서 예컨대 문헌(Plant Science (Shannon) 150(1), Jan.14, 2000, 41-49), 문헌(J. of Plant Biochemistry & Biotechnology 9(2) July, 2000, 107-110), 문헌(Acta Physiologiae Plantarum 22(2), 2000, 111-119), 문헌(Molecular Breeding 5(1) 1999, 43-51), 문헌(In Vitro Cellular & Developmental Biology, Animal 34 (3 part 2) March, 1998, 53A), 문헌(Plant Cell Reports 16(8), 1997, 513-519 and 541-544), 문헌(Theoretical & Applied Genetics 94(2), 1997, 151-158), 문헌(Plant Science, 117 (1-2), 1996, 131-138), 문헌(Plant Cell Reports 16(1-2), 1996, 32-37) 등을 들 수 있다.Meanwhile, a method of transforming a plant with an exogenous gene may use a method known in the art, such as a direct gene transfer method using a gene gun, an in planta transformation method using a floral dip, pollen mediation, and the like. Transformation methods, protoplast transformation methods, viral mediated transformation methods, liposome mediated transformation methods, and the like can be used. In addition, it is also possible to select and use a transformation method suitable for a specific plant, for example, a method for transforming corn is described in US Pat. No. 6,140,553, Fromm et al, 1990, Bio / Technology 8, 833-839, Gordon- Kamm et al, 1990, The Plant Cell 2, 603-618) and the like can be used, methods for transforming rice are described in Shimamoto et al, 1989, Nature 338, 274-276, Datta et al 1990, Bio / Technology 8, 736-740), international patent WO 92/09696, international patent WO 94/00977, international patent WO 95/06722 and the like. Also, in tomato or tobacco transformation (An G. et al., 1986, Plant Physiol. 81: 301-305), Horsch RB et al, 1988, In: Plant Molecular Biology Manual A5, Dordrecht, Netherlands, Kluwer Academic Publishers, pp 1-9, Koornneef M. et al, 1986, In: Nevins DJ. And RA Jones, eds. Tomato Biotechnology, New York, NY, USA, Alan R. Liss, Inc. pp 169 -178) and the like can be used. In particular, since the MtATPG2 gene of the present invention was isolated from Medicago truncatula belonging to the legumes, the MtATPG2 gene of the present invention was transformed into legumes so as to be useful for breeding the legumes. Methods of transforming such legumes are also known in the art through a number of documents. As such documents, for example, Plant Science (Shannon) 150 (1), Jan. 14, 2000, 41-49, J. of Plant Biochemistry & Biotechnology 9 (2) July, 2000, 107-110, literature (Acta Physiologiae Plantarum 22 (2), 2000, 111-119), Molecular Breeding 5 (1) 1999, 43-51, In Vitro Cellular & Developmental Biology, Animal 34 (3 part 2) March, 1998 , 53A), Plant Cell Reports 16 (8), 1997, 513-519 and 541-544, Theoretical & Applied Genetics 94 (2), 1997, 151-158, Plant Science, 117 ( 1-2), 1996, 131-138), Plant Cell Reports 16 (1-2), 1996, 32-37, and the like.
일반적으로 식물을 형질전환시킴에 있어 많이 사용되는 것이, 형질전환된 아그로박테리움으로 유식물체, 식물 종자 등을 감염시키는 방법이다.Generally used in transforming plants is a method of infecting seedlings, plant seeds and the like with the transformed Agrobacterium.
이러한 아그로박테리움이 매개된 형질전환 방법은 당업계에 잘 공지되어 있으며(Chilton 등, 1977, Cell 11:263:271; 유럽특허 EP 0116718; 미국특허 US 4,940,838), 특정 식물체에 적합한 방법도 당업계에 공지되어 있다. 예컨대 목화에 대해서는 미국특허 US 5,159,135, 콩에 대해서는 미국특허 US 5,824,877, 옥수수에 대해서는 미국특허 US 5,591,616 등을 참조할 수 있다. 아그로박테리움 매개 형질전환 방법은 Ti-플라스미드를 이용하는데, 이 플라스미드에는 T-DNA를 식물 세포의 게놈으로 통합시킬 수 있는 좌우 경계(border) 서열이 포함될 것이다.Such Agrobacterium mediated transformation methods are well known in the art (Chilton et al., 1977, Cell 11: 263: 271; European Patent EP 0116718; US Patent US 4,940,838), and methods suitable for particular plants are also known in the art. Known in See, for example, US Pat. No. 5,159,135 for cotton, US Pat. No. 5,824,877 for soybean, US Pat. No. 5,591,616 for corn, and the like. The Agrobacterium mediated transformation method uses Ti-plasmid, which will contain left and right border sequences that allow the integration of T-DNA into the genome of plant cells.
한편, 상기 (b) 선별 단계는 형질전환된 식물체를 발육·성장시켜 삽입된 유전자의 특성을 통해 선별하거나, 형질전환 시에 선별 마커 유전자가 함께 형질전환될 경우에는 선별 마커 유전자를 이용하여 선별할 수 있다. 삽입된 유전자의 특성으로서는 식물체의 생체량 및/또는 종자의 생산성을 들 수 있다.On the other hand, the selection step (b) may be selected through the characteristics of the inserted gene by growing and growing the transformed plant, or, if the selection marker gene is transformed together during transformation, the selection marker gene may be selected. Can be. The characteristics of the inserted gene include the biomass of the plant and / or the productivity of the seed.
또 다른 측면에 있어서, 본 발명의 스트레스 내성 특성을 갖는 식물체의 제조 방법에 관한 것이다.In another aspect, the present invention relates to a method for producing a plant having stress resistance properties of the present invention.
본 발명의 스트레스 내성 식물체의 제조 방법은 (a) 식물체에서 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 발현시키는 단계 및 (b) 스트레스 내성 표현형을 갖는 식물체를 선별하는 단계를 포함하여 구성된다.The method for producing a stress resistant plant of the present invention comprises the steps of: (a) expressing a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 in the plant, and (b) having a stress resistant phenotype Comprising plant screening.
본 명세서에서, "스트레스"는 산화적 스트레스를 의미한다.As used herein, "stress" means oxidative stress.
상기 (a) 단계는 유전공학적으로 수행될 수 있는데, 이러한 유전공학적 방법에 대해서는 상기 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법과 관련하여 설명한 바와 같다.Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to the method of manufacturing a plant having the productivity increasing characteristic of the present invention.
상기 (b) 단계는 삽입된 유전자의 특성인 식물체의 스트레스 내성을 비교하여 선별하거나(예컨대 잎의 황화 현상이나 괴사 현상의 진행 정도, 잎 및/또는 줄기의 생체량, 엽록소 함량, 광합성 효율 등을 이용하여 선별하는 방법임) 형질전환 시에 선별 마커 유전자가 함께 형질전환될 경우에는 선별 마커 유전자를 이용하여 선별할 수 있으며, 또는 이들의 방법을 혼합하여 선별할 수도 있다. The step (b) is selected by comparing the stress resistance of the plant that is characteristic of the inserted gene (for example, the degree of progress of leaf yellowing or necrosis, the biomass of the leaves and / or stems, chlorophyll content, photosynthetic efficiency, etc.). When a selection marker gene is transformed together during transformation, it may be selected using a selection marker gene, or may be selected by mixing these methods.
또 다른 측면에 있어서, 본 발명은 노화 지연 특성을 갖는 식물체의 제조 방법에 관한 것이다.In another aspect, the present invention relates to a method for producing a plant having aging delay properties.
본 발명의 노화 지연 특성을 갖는 식물체의 제조 방법은 (a) 식물체에서 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 발현시키는 단계 및 (b) 노화가 지연된 표현형을 갖는 식물체를 선별하는 단계를 포함하여 구성된다.The method for producing a plant having a aging retardation property of the present invention comprises the steps of: (a) expressing a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 in the plant, and (b) Selecting the plant with the delayed phenotype.
본 명세서에서, "노화 지연"이란 야생형 식물체에 비하여 식물 수명이 연장된 특성을 말하며, 구체적으로는 잎 및/또는 줄기의 황화 현상 및/또는 괴사 현상이 야생형 식물체 비하여 지연되거나 식물체의 엽록소 함량이 야생형 식물체에 비하여 많거나 식물체의 광합성 효율이 야생형 식물체 비하여 높은 특성 말한다.As used herein, the term "aging delay" refers to a property of prolonged plant life as compared to wild-type plants, and specifically, the yellowing and / or necrosis of leaves and / or stems is delayed compared to wild-type plants or the chlorophyll content of plants is wild-type. It is more characteristic than plants or photosynthetic efficiency of plants is higher than wild type plants.
상기 (a) 단계는 유전공학적으로 수행될 수 있는데, 이러한 유전공학적 방법에 대해서는 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법과 관련하여 설명한 바와 같다.Step (a) may be performed genetically, as for the genetic engineering method, as described with reference to a method for preparing a plant having productivity enhancing characteristics of the present invention.
상기 (b) 선별 단계는 형질전환된 식물체를 발육·성장시켜 삽입된 유전자의 특성인 노화 지연 특성을 이용하여 선별하거나(잎의 황화 현상이나 괴사 현상의 진행 정도, 엽록소 함량, 광합성 효율 등을 정량하는 방법, 상기 방법들을 혼합한 방법 등을 통해 선별하는 방법임), 형질전환 시에 선별 마커 유전자가 함께 형질전환될 경우에는 선별 마커 유전자를 이용하여 선별할 수 있다.In the step (b), the selected plant is selected using delayed aging characteristics, which are characteristics of the gene inserted by developing and growing a transformed plant (quantitative evaluation of leaf yellowing or necrosis, chlorophyll content, photosynthetic efficiency, etc.). Method, a method of mixing the above methods, etc.), and when the selection marker gene is transformed together during transformation, the selection may be performed using the selection marker gene.
또 다른 측면에 있어서, 본 발명은 식물체의 생산성 증대 방법에 관한 것이다.In another aspect, the present invention relates to a method for increasing productivity of a plant.
본 발명의 식물체의 생산성 증대 방법은 (a) 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키고 (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함한다.The method for increasing the productivity of a plant of the present invention includes (a) an expression vector such that a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to that of SEQ ID NO: 1 is operably linked to a regulatory sequence capable of expressing it And (b) transforming the expression vector into a plant.
또 다른 측면에 있어서, 본 발명은 식물체의 스트레스 내성을 증가시키는 방법에 관한 것이다. In another aspect, the present invention relates to a method for increasing stress resistance of a plant.
본 발명의 식물체의 스트레스 내성을 증가시키는 방법은 (a) 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키고 (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함한다.The method of increasing the stress resistance of a plant of the present invention is (a) operably linking a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to that of SEQ ID NO: 1 to a regulatory sequence capable of expressing it Inserting into the expression vector preferably and (b) transforming the expression vector into a plant.
또 다른 측면에 있어서, 본 발명은 식물체의 노화를 지연시키는 방법에 관한 것이다.In another aspect, the present invention relates to a method for delaying aging of a plant.
본 발명의 식물체의 노화를 지연시키는 방법은 (a) 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키고 (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함한다.The method for delaying aging of a plant of the present invention is to (a) operably link a gene having a nucleotide sequence of SEQ ID NO. 1 or a gene having a sequence similar to that of SEQ ID NO. 1 to a regulatory sequence capable of expressing it. Inserting into the expression vector and (b) transforming the expression vector into a plant.
상기 방법들에서 상기 (a) 및 (b) 단계는 상기 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법과 관련하여 설명한 바와 같다.Steps (a) and (b) in the above methods are as described with reference to the method for producing a plant having the productivity enhancing properties of the present invention.
또 다른 측면에 있어서, 본 발명은 상기 본 발명의 생산성 증대 특성을 갖는 식물체의 제조 방법에 의하여 얻어진, 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자가 발현된 생산성 증대 특성을 갖는 형질전환 식물체에 관한 것이다.In another aspect, the present invention is a gene having a nucleotide sequence of SEQ ID NO: 1, or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant having the productivity enhancing characteristics of the present invention The present invention relates to a transgenic plant having improved productivity.
바람직한 측면에 있어서, 상기 식물체는 서열번호 2의 아미노산 서열로 이루어진 MtATPG2 단백질을 암호화하는 유전자, 특히 서열번호 1의 염기서열을 갖는 유전자 MtATPG2이 식물체로 도입되어 발현됨으로써 생산성 증대 특성을 갖는 형질전환 식물체이다.In a preferred aspect, the plant is a transgenic plant having productivity enhancing properties by introducing a gene encoding the MtATPG2 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the gene MtATPG2 having the nucleotide sequence of SEQ ID NO: 1, into the plant .
또 다른 측면에 있어서, 본 발명은 상기 본 발명의 스트레스 내성 식물체의 제조 방법에 의하여 얻어진, 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자가 발현된 스트레스 내성 특성을 갖는 형질전환 식물체에 관한 것이다.In another aspect, the present invention is a stress resistance that is expressed by a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a stress resistant plant of the present invention The present invention relates to a transgenic plant having characteristics.
바람직한 측면에 있어서, 상기 식물체는 서열번호 2의 아미노산 서열로 이루어진 MtATPG2 단백질을 암호화하는 유전자, 특히 서열번호 1의 염기서열을 갖는 유전자 MtATPG2이 식물체로 도입되어 발현됨으로써 스트레스 내성을 갖는 형질전환 식물체이다.In a preferred aspect, the plant is a transgenic plant having a stress resistance by introducing a gene encoding the MtATPG2 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the gene MtATPG2 having the nucleotide sequence of SEQ ID NO: 1, into the plant.
또 다른 측면에 있어서, 본 발명은 상기 본 발명의 노화 지연 특성을 갖는 식물체의 제조 방법에 의하여 얻어진, 서열번호 1의 염기서열을 갖는 유전자 또는 서열번호 1의 염기서열과 유사한 서열을 갖는 유전자가 발현된 노화 지연 특성을 갖는 형질전환 식물체에 관한 것이다.In another aspect, the present invention is a gene having a nucleotide sequence of SEQ ID NO: 1 or a gene having a sequence similar to the nucleotide sequence of SEQ ID NO: 1 obtained by the method for producing a plant having the aging delay characteristics of the present invention The present invention relates to a transgenic plant having delayed aging characteristics.
바람직한 측면에 있어서, 상기 식물체는 서열번호 2의 아미노산 서열로 이루어진 MtATPG2 단백질을 암호화하는 유전자, 특히 서열번호 1의 염기서열을 갖는 유전자 MtATPG2이 식물체로 도입되어 발현됨으로써 노화 지연 특성을 갖는 형질전환 식물체이다.In a preferred aspect, the plant is a transgenic plant having delayed aging characteristics by introducing a gene encoding the MtATPG2 protein consisting of the amino acid sequence of SEQ ID NO: 2, in particular the gene MtATPG2 having the nucleotide sequence of SEQ ID NO: 1, into the plant .
본 명세서에서, 상기 "형질전환 식물체"는 성숙한 식물로 발육·성장할 수 있는 식물 세포, 식물 조직, 또는 식물 종자에 상기 유전자가 도입되어 형질전환된 경우뿐만 아니라 형질전환된 식물과의 교배에 의해 얻어지는 게놈이 변형된 식물체, 그 식물체로부터 유래한 식물 종자, 식물 세포, 식물 조직을 포함한다.In the present specification, the "transformed plant" is obtained by crossing with a transformed plant as well as when the gene is introduced and transformed into a plant cell, plant tissue, or plant seed capable of developing and growing into a mature plant. Genome modified plants, plant seeds derived from the plants, plant cells, plant tissues.
전술한 바와 같이, 본 발명에 따르면 식물의 생산성 증대 기능과 스트레스 내성 기능을 가지고 또한 노화 지연 기능을 가지는 MtATPG2 단백질과 그 유전자인 MtATPG2를 제공할 수 있다. 상기 유전자는 식물의 생산성 증대 기능 및 스트레스 내성 기능과 노화 지연 기능을 제공하므로, 이 유전자로 식물체를 형질전환시킬 경우, 생산성을 증가시킬 뿐만 아니라 식물의 스트레스 내성 기능과 노화 지연 기능을 가지는 식물체를 제작할 수 있다.As described above, according to the present invention, it is possible to provide the MtATPG2 protein and its gene, MtATPG2 , which have a productivity enhancing function and a stress resistance function of the plant, and a delaying function of aging. Since the gene provides a function of increasing productivity and stress resistance and delaying aging of the plant, when the plant is transformed with the gene, the gene may not only increase productivity but also produce a plant having a stress-resistant and aging delaying function of the plant. Can be.
도 1은 식물의 생산성 증대 기능과 스트레스 저항성 기능, 그리고 노화 지연 기능을 가지는 MtATPG2 유전자가 센스 방향으로 도입된 pCSEN-MtATPG2 재조합 벡터의 구조(모식도)를 나타낸 것이다. Figure 1 shows the structure (schematic) of the pCSEN-MtATPG2 recombinant vector in which the MtATPG2 gene having productivity enhancement function, stress resistance function, and aging delay function was introduced in the sense direction.
도 2는 상기 도 1의 pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대의 T2 라인을 발아 후 50일과 70일 동안 생육시킨 애기장대의 사진이다. DAG, day after germination.Figure 2 is a photograph of the Arabidopsis grown 50 days and 70 days after germination of the Arabidopsis T 2 line transformed with the pCSEN-MtATPG2 recombinant vector of FIG. DAG, day after germination.
Con: 애기장대 야생형 혹은 대조구Con: Baby Pole Wild Type or Control
MtATPG2-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-7 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-8 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-15: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-15 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-16: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-16 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-17: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-17 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
도 3은 상기 도 1의 pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대의 T2 라인을 자엽 생성 후 25일 동안 생육시킨 애기장대의 MtATPG2 유전자의 발현 양상을 qRT-PCR을 통하여 분석한 결과를 나타낸 것이며, TUB를 PCR 양성 대조구로 사용하였다. Figure 3 shows the results of analyzing the expression of the MtATPG2 gene of Arabidopsis thalass for 25 days after cotyledon generation of the Arabidopsis T 2 line transformed with the pCSEN-MtATPG2 recombinant vector of Figure 1 through qRT-PCR TUB was used as a PCR positive control.
Con: 애기장대 야생형 Con: Baby Pole Wild
MtATPG2-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-7 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-8 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-15: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-15 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-16: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-16 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-17: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-17 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
도 4는 상기 도 3의 애기장대 라인의 생산성 증대와 종자 크기 비교에 대한 그림이다.FIG. 4 is a diagram for increasing productivity and seed size of the Arabidopsis line of FIG. 3.
Con: 애기장대 야생형 Con: Baby Pole Wild
MtATPG2-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-7 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-8 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-15: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-15 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-16: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-16 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2-17: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T2 라인 MtATPG2-17 : Arabidopsis T 2 line transformed with pCSEN-MtATPG2 recombinant vector
Height: 키, NTS: 장각과 수, FW: 생체량, DW: 생체 건량, TSW: 총 종자 무게, TNS: 총 종자 수, 1,000SW: 1,000개의 종자 무게Height: height, NTS: long angle and number, FW: biomass, DW: biomass, TSW: total seed weight, TNS: total seed count, 1,000SW: 1,000 seed weight
도 5는 MtATPG2 발현 애기장대 T2 형질전환체의 cytokinin signaling pathway에서 CLV1 유전자, histidine kinase (HK) 유전자군, histidine phosphotransfer proteins(HP) 유전자군, 그리고 MtATPG2 유전자의 발현 양상을 RT-PCR을 통하여 분석한 결과를 나타낸 것이며, TUB를 PCR 양성 대조구로 사용하였다. 5 is MtATPG2 CLV1 gene, histidine kinase (HK) gene family, histidine phosphotransfer proteins (HP) gene family, and MtATPG2 in the cytokinin signaling pathway of expression Arabidopsis T 2 transformants The expression of genes was analyzed by RT-PCR, and TUB was used as a PCR positive control.
도 6은 상기 도 1의 pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대의 T3 혹은 T4 homo 라인을 발아 후 50일 동안 생육시킨 애기장대의 사진이다. DAG, day after germination.Figure 6 is a photograph of the Arabidopsis grown 50 days after germination of the Arabidopsis T 3 or T 4 homo line transformed with the pCSEN-MtATPG2 recombinant vector of FIG. DAG, day after germination.
Con: 애기장대 야생형 혹은 대조구Con: Baby Pole Wild Type or Control
MtATPG2 -7-15-11: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-11 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -7-15-12: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-12 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -8-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-7: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -8-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-8: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-3: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-3: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-6: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-6: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
도 7은 상기 도 1의 pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대의 T3 혹은 T4 homo 라인을 발아 후 70일 동안 생육시킨 애기장대의 사진이다. DAG, day after germination.Figure 7 is a photograph of the Arabidopsis grown 70 days after germination of the Arabidopsis T 3 or T 4 homo line transformed with the pCSEN-MtATPG2 recombinant vector of FIG. DAG, day after germination.
Con: 애기장대 야생형 혹은 대조구Con: Baby Pole Wild Type or Control
MtATPG2 -7-15-11: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-11 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -7-15-12: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-12 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -8-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-7: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -8-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-8: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-3: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-3: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-6: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-6: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
도 8은 상기 도 1의 pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대의 T3 혹은 T4 homo 라인을 자엽 생성 후 25일 동안 생육시킨 애기장대의 MtATPG2 유전자의 발현 양상을 qRT-PCR을 통하여 분석한 결과를 나타낸 것이며, TUB를 PCR 양성 대조구로 사용하였다. FIG. 8 shows the expression patterns of the MtATPG2 gene of Arabidopsis thaliana grown in 25 days after cotyledon generation using T 3 or T 4 homoline transformed with the pCSEN-MtATPG2 recombinant vector of FIG. 1 through qRT-PCR. FIG. One result is shown and TUB was used as a PCR positive control.
도 9는 자엽 생성 후 16일부터 애기장대 야생형(Con)과 세대 진전된 T3 혹은 T4 homo 라인의 3-4번 좌엽(rosette leaf)을 매 4일마다 56일까지 잎의 표현형을 관찰한 그림이며, 도 10은 이에 대한 잎의 엽록소 함량의 조사한 그림이다. DAE, day after emersion.FIG. 9 is generated after the cotyledons from 16 wild-type Arabidopsis thaliana (Con) and three progress with T 3 or T 4 3-4 times left lobe (rosette leaf) of homo-line observing the phenotype of the leaves to 56 days every 4 days Figure 10 is a figure of the investigation of the chlorophyll content of the leaves for this. DAE, day after emersion.
Con: 애기장대 야생형 혹은 대조구Con: Baby Pole Wild Type or Control
MtATPG2 -7-15-11: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-11 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -7-15-12: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-12 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -8-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-7: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -8-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-8: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-3: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-3: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-6: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-6: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
도 11은 발아 후 21일째 애기장대 야생형(Con)과 세대 진전된 T3 혹은 T4 homo 라인의 3-4번 좌엽을 detach하여 암상태를 유지하여 매 2일마다 6일까지 잎의 표현형을 관찰한 그림이며, 도 12는 이에 대한 잎의 엽록소 함량을 조사한 그림이다. DAT, day after treatment.11 shows the phenotype of leaves up to 6 days every 2 days after detaching the left lobe 3-4 of the Arabidopsis wild-type (Con) and generation-advanced T 3 or T 4 homo lines after germination to maintain cancer status. FIG. 12 is a diagram illustrating the chlorophyll content of leaves. DAT, day after treatment.
Con: 애기장대 야생형 혹은 대조구Con: Baby Pole Wild Type or Control
MtATPG2 -7-15-11: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-11 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -7-15-12: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-12 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -8-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-7: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -8-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-8: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-3: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-3: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-6: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-6: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
도 13은 발아 후 25일째 애기장대 야생형(Con)과 세대 진전된 T3 혹은 T4 homo 라인의 3-4번 좌엽을 detach하여 6일간 3 mM MES 용액에 4 mM H2O2를 처리한 잎의 표현형 변화를 도시한 그림과(도 13의 A), 동일 조건의 시료에 6일간 3 mM MES 용액에 150 mM NaCl을 처리한 잎의 표현형 변화를 도시한 그림이다(도 13의 B). DAT, day after treatment.FIG. 13 shows the leaves treated with 4 mM H 2 O 2 in 3 mM MES solution by detaching the left lobe No. 3-4 of the Arabidopsis wild-type (Con) and generation-advanced T 3 or T 4 homo lines 25 days after germination. Fig. 13A shows a phenotypic change in Fig. 13A and Fig. 13A shows a phenotypic change in leaves treated with 150 mM NaCl in a 3 mM MES solution for 6 days in a sample under the same conditions (Fig. 13B). DAT, day after treatment.
Con: 애기장대 야생형 혹은 대조구Con: Baby Pole Wild Type or Control
MtATPG2 -7-15-11: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-11 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -7-15-12: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T4 homo 라인 MtATPG2 -7-15-12 : Arabidopsis T 4 homo line transformed with pCSEN-MtATPG2 recombinant vector
MtATPG2 -8-7: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-7: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -8-8: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -8-8: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-3: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-3: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
MtATPG2 -15-6: pCSEN-MtATPG2 재조합 벡터로 형질전환된 애기장대 T3 homo 라인 MtATPG2 -15-6: pCSEN-MtATPG2 Transgenic Arabidopsis T 3 homo line with a recombinant vector
도 14 및 도 15는 각각 MtATPG2 유전자의 염기서열과 MtATPG2 단백질의 아미노산 서열을 나타낸 것이다. 14 and 15 shows the amino acid sequence of the base sequence of each protein and MtATPG2 MtATPG2 gene.
이하 본 발명의 실시예를 참조하여 설명한다. 그러나 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니다.Hereinafter will be described with reference to embodiments of the present invention. However, the scope of the present invention is not limited to these examples.
<< 실시예Example 1>  1> MedicagoMedicago truncatulatruncatula 로부터from 식물의 생산성 증대와 스트레스 내성 기능을 가지고 또한 In addition to increasing productivity and stress tolerance of plants 노화 지연 기능을 제공하는 Providing delayed aging MtATPG2 MtATPG2 유전자의 분리Isolation of genes
식물의 생산성 증대와 스트레스 내성 기능을 가지고 또한 노화 지연 기능을 가지는 MtATPG2 유전자를 Medicago truncatula로부터 분리하기 위하여 다음과 같은 과정을 수행하였다. Medicago uses the MtATPG2 gene, which has increased productivity and stress resistance in plants and also delays aging. To separate from truncatula , the following process was performed.
<실시예 1-1> Medicago truncatula 재배 및 배양 Example 1-1 Medicago planting and cultivation of truncatula
Medicago truncatula Jemalong A17은 토양을 담은 화분에서 22℃의 온도에서 16/8시간 명암 주기로 조절되는 생장 조절기(growth chamber)내에서 재배하였다. Medicago truncatula Jemalong A17 was cultivated in a growth chamber controlled in a soil containing pots at a temperature of 22 ° C. and a cycle of 16/8 hours.
<실시예 1-2> RNA 추출과 cDNA 라이브러리의 제조 Example 1-2 RNA Extraction and Preparation of cDNA Library
Medicago truncatula cDNA 라이브러리를 만들기 위해서 여러 분화 단계의 전체 기관으로부터 RNasey Plant Mini Kit(QIAGEN, Germany)을 사용하여 RNA를 추출하였고, 추출된 전체 RNA로부터 Superscript III Reverse Tanscriptase(INVITROGEN, USA)을 이용하여 cDNA를 합성하였다. Medicago To make truncatula cDNA library, RNA was extracted from whole organs of differentiation stages using RNasey Plant Mini Kit (QIAGEN, Germany), and cDNA was synthesized using Superscript III Reverse Tanscriptase (INVITROGEN, USA) from the extracted whole RNA. It was.
<실시예 1-3> 식물의 생산성 증대와 스트레스 내성 기능을 가지고 또한 노화 지연 기능을 가지는 MtATPG2 유전자 분리 Example 1-3 Isolation of MtATPG2 Gene Having Increased Productivity, Stress Tolerance, and Delay in Aging of Plants
M. truncatula의 AT-hook motif nuclear localized protein(GeneBank accession number NC_016414.1)의 염기서열을 기초로 하여 서열번호 3으로 표시되고 제한효소 BglII의 서열이 포함된 정방향 primer(BglII/MTR8g 098390-F, 5TCT ATG GAT GGG AGA GAG GCT ATG G-3)와 서열번호 4로 표시되고 제한효소 BstEII의 서열이 포함된 역방향 primer(BstEII/MTR8g 098390, 5GAC CTC ATC CTC TTG TCA AGT CAA AGC-3)를 합성하였다. 상기 primer를 사용하여 M. truncatula cDNA로부터 PCR(polymerase chain reaction)을 이용하여 전장 cDNA를 증폭하고 분리하였다. Based on the nucleotide sequence of AT-hook motif nuclear localized protein (GeneBank accession number NC_016414.1) of M. truncatula , a forward primer (BglII / MTR8g 098390-F, represented by SEQ ID NO: 3 and containing the sequence of restriction enzyme BglII) , 5TCT ATG GAT GGG AGA GAG GCT ATG G-3) and a reverse primer (BstEII / MTR8g 098390, 5GAC CTC ATC CTC TTG TCA AGT CAA AGC-3) represented by SEQ ID NO: 4 and containing the sequence of restriction enzyme BstEII were synthesized. . The primer was used to amplify and isolate full-length cDNA from M. truncatula cDNA using polymerase chain reaction (PCR).
상기 분리된 cDNA의 분석 결과, 약 35.9 kDa의 분자량을 갖는 351개의 아미노산을 암호화하는 1,056 bp 크기의 전사 해독 틀(ORF)을 가지고 있으며, 1 개의 엑손(exon)으로 구성되어 있음을 확인하였고, AT-hook motif를 가지고 있어 이를 MtATPG2( M edicago t runcatula AT-hook protein of Genomine 2)로 명명하였다. As a result of analysis of the isolated cDNA, it has a 1,056 bp transcriptional translation frame (ORF) encoding 351 amino acids having a molecular weight of about 35.9 kDa, it was confirmed that it consists of one exon, AT -hook has a motif I and named it as MtATPG2 (M edicago t runcatula AT -hook p rotein of enomine G 2).
상기 유전자가 암호화하는 MtATPG2 단백질의 등전점(isoelectric point)은 10.28로 나타났다(이하 유전자는 이탤릭체를 사용하여 "MtATPG2" 혹은 "MtATPG2 유전자"라 하고, 단백질은 "MtATPG2" 혹은 "MtATPG2 단백질"이라고 한다). The isoelectric point of the MtATPG2 protein encoded by the gene was found to be 10.28 (hereinafter, the gene is called " MtATPG2 " or " MtATPG2 gene" using italics, and the protein is called "MtATPG2" or "MtATPG2 protein").
<< 실시예Example 2>  2> MtATPG2MtATPG2 유전자에 대한 센스 구성체(construct)가 도입된 형질전환 애기장대의 제조 및 특성 분석 Preparation and Characterization of Transgenic Arabidopsis with Sense Constructs for Genes
<실시예 2-1> MtATPG2 유전자에 대한 센스 구성체가 도입된 형질전환 애기장대의 제조 <Example 2-1> Preparation of the transgenic Arabesqueis in which the sense construct for the MtATPG2 gene was introduced
상기 유전자가 식물의 생산성 증대와 스트레스 내성 기능을 가지고 또한 노화 지연을 제공하는지를 확인하기 위하여 MtATPG2 유전자가 센스 방향으로 도입된 형질전환 애기장대를 제조하여 MtATPG2 전사체의 발현을 변화시켰다. In order to confirm whether the gene has a productivity and stress resistance function of the plant and also provides a delay in aging, a transgenic Arabidopsis in which the MtATPG2 gene was introduced in the sense direction was prepared to change the expression of the MtATPG2 transcript.
서열번호 3으로 표시되고 제한효소 BglII의 서열이 포함된 정방향 프라이머 및 서열번호 4로 표시되고 제한효소 BstEII의 서열이 포함된 역방향 프라이머를 이용하여 M. truncatula의 cDNA로부터 PCR을 이용하여 MtATPG2 cDNA를 증폭하였다. 상기 DNA를 제한효소 BglII과 BstEII으로 절단하고, 유도성 프로모터(inducible promoter)인 SEN1 프로모터의 조절을 받도록 제작한 pCSEN 벡터에 센스 방향으로 클로닝하여 MtATPG2 유전자에 대한 센스 구성체인 pCSEN-MtATPG2 재조합 벡터를 제작하였다. 상기 SEN1 프로모터는 식물의 생장 단계에 따라 발현되는 유전자에 대해 특이성을 갖는다. MtATPG2 cDNA using PCR from cDNA of M. truncatula using a forward primer represented by SEQ ID NO: 3 and containing a sequence of restriction enzyme Bgl II and a reverse primer represented by SEQ ID NO: 4 and a sequence of restriction enzyme BstE II Was amplified. The DNA was digested with restriction enzymes Bgl II and BstE II, cloned in the sense direction into a pCSEN vector designed to be controlled by the SEN1 promoter, an inducible promoter, and the pCSEN-MtATPG2 recombinant vector, a sense construct for the MtATPG2 gene. Was produced. The SEN1 promoter has specificity for the gene expressed according to the growth stage of the plant.
한편, 도 1은 pCSEN 벡터에 MtATPG2 유전자가 센스 방향으로 도입된 pCSEN-MtATPG2 재조합 벡터를 도시한 그림이다. 도 1에서 BAR는 바스타 제초제에 대한 저항성을 부여하는 BAR 유전자(phosphinothricin acetyltransferase gene)를 가리키고, RB는 오른쪽 경계(Right Border), LB는 왼쪽 경계(Left Border), p35S는 CaMV 35S 프로모터, T35S는 CaMV 35S RNA polyA, pSEN은 SEN1 프로모터, NOA-polyA는 노파린 합성 유전자(nopaline synthase gene)의 polyA를 가리킨다. 1 is a diagram illustrating a pCSEN-MtATPG2 recombinant vector in which a MtATPG2 gene is introduced in a sense direction into a pCSEN vector. In FIG. 1, BAR refers to a BAR gene (phosphinothricin acetyltransferase gene) that confers resistance to Basta herbicide, RB to the right border, LB to the left border, p35S to the CaMV 35S promoter, and T35S to CaMV 35S RNA polyA, pSEN refers to the SEN1 promoter, NOA-polyA refers to the polyA of the nopaline synthase gene.
상기 pCSEN-MtATPG2 재조합 벡터를 아그로박테리움 튜머파시엔스 (Agrobacterium tumefaciens)에 일랙트로포레이션(electroporation) 방법을 이용하여 도입시켰다. 형질전환된 아그로박테리움 배양액을 28에서 O.D.600 값이 1.0이 될 때까지 배양하였고, 25℃에서 5,000rpm으로 10분 동안 원심분리하여 세포를 수확하였다. 수확된 세포를 최종 O.D.600 값이 2.0이 될 때까지 Infiltration Medium (IM; 1X MS SALTS, 1X B5 vitamin, 5% sucrose, 0.005% Silwet L-77, Lehle Seed, USA) 배지에 현탁하였다. 4주된 애기장대를 진공 챔버(vacuum chamber)에 있는 아그로박테리움 현탁액에 침지시키고, 10분 동안 104 Pa의 진공 하에 두었다. 침지 후, 애기장대를 24시간 동안 폴리에틸렌 백(polyethylene bag)에 두었다. 이후, 형질전환된 애기장대를 계속 생장시켜 종자(T1)를 수확하였다. 대조군으로는 형질전환되지 않은 야생형(wild type) 애기장대 또는 MtATPG2 유전자가 포함되지 않은 벡터(pCSEN 벡터)만으로 형질전환된 애기장대를 사용하였다. The pCSEN-MtATPG2 recombinant vector was introduced into Agrobacterium tumefaciens using an electroporation method. The transformed Agrobacterium cultures were incubated at 28 until the OD600 value was 1.0, and the cells were harvested by centrifugation at 5,000 rpm for 10 minutes at 25 ° C. Harvested cells were suspended in Infiltration Medium (IM; 1X MS SALTS, 1X B5 vitamin, 5% sucrose, 0.005% Silwet L-77, Lehle Seed, USA) medium until the final OD600 value was 2.0. Four week old Arabidopsis immersed in an Agrobacterium suspension in a vacuum chamber and left under vacuum at 104 Pa for 10 minutes. After immersion, the Arabidopsis was placed in a polyethylene bag for 24 hours. Thereafter, the transformed Arabidopsis cultivars continued to grow to harvest seeds (T 1 ). As a control group, a non-transformed wild type Arabidopsis or a Arabidopsis transformed with only a vector (pCSEN vector) containing no MtATPG2 gene was used.
<실시예 2-2> T2 형질전환 애기장대의 특성 분석 Example 2-2 Characterization of T2 Transgenic Arabidopsis
상기 <실시예 2-1>에서와 같이 형질전환한 애기장대에서 수확한 종자는 0.1% 바스타(Basta) 제초제(경농, 한국) 용액에서 30분 동안 침지시키고 배양함으로써 선별하였다. 이후 형질전환한 애기장대의 생육 동안 상기 화분에 바스타 제초제를 5회 처리한 후, 각 화분에서 형질전환된 애기장대를 선별하였다. pCSEN-MtATPG2 벡터로 형질전환된 T1 애기장대는 대조군(MtATPG2 유전자가 포함되지 않은 벡터(pCSEN 벡터)만으로 형질전환된 애기장대 혹은 야생형 애기장대)과 그들의 표현형을 비교하여 볼 때, 놀랍게도 변이체들은 뚜렷한 다수성 형질 및 바이오매스 증대 형질을 보였다. Seeds harvested from the transformed Arabidopsis larvae as in <Example 2-1> were selected by immersing and incubating for 30 minutes in a 0.1% Bassta herbicide (light, South Korea) solution. Thereafter, during the growth of the transformed Arabidopsis, the pollen was treated 5 times with the Basta herbicide, and the transformed Arabidopsis was selected from each pollen. Surprisingly, the T 1 Arabidopsis transformed with the pCSEN-MtATPG2 vector compared with the phenotype transformed only with a control (a vector without the MtATPG2 gene (pCSEN vector) or their wild-type Arabidopsis), surprisingly the variants were distinct. Multiple traits and biomass enhancing traits were shown.
이러한 형질전환 애기장대의 표현형 변화를 보다 정확히 확인하기 위하여 T1 형질전환 애기장대로부터 T2 형질전환 종자를 받아 이들 라인의 표현형을 조사하였다. 우선, 3일 동안 저온 처리(4℃)한 T2 형질전환 종자를 화분에서 재배한 후 바스타 제초제 처리를 통하여 T2 형질전환 애기장대를 선별하였다. 선별된 애기장대 T2 형질전환 라인들의 표현형 확인은 발아 후 50일째, 그리고 70일째 수행하였다(도 2). In order to more accurately identify the phenotypic changes of the transgenic Arabidopsis, the phenotypes of these lines were examined by receiving T 2 transgenic seeds from the T 1 transgenic Arabidopsis. First, T 2 transformed seed that had been cold-treated (4 ° C.) for 3 days was cultivated in a pollen, and then T 2 transgenic Arabidopsis was selected through the treatment of Basta herbicide. Phenotyping of selected Arabidopsis T 2 transformation lines was performed 50 days and 70 days after germination (FIG. 2).
pCSEN-MtATPG2 구성체를 가지고 있는 MtATPG2 -7, MtATPG2 -8, MtATPG2 -15, MtATPG2-16 MtATPG2 -17 변이체 라인 모두는 애기장대 대조구(Col-0)와 비교하여 볼 때, 식물체의 개체 크기 증가와 같은 바이오매스 증대와 장각과 수의 증가 현상이 뚜렷하게 나타났으며, 아울러 이들 변이체들은 종자 생산량에서도 뚜렷한 증가 현상이 유발되었다. 이러한 종자 생산량 증가는 장각과 수의 증가에 기인하는 것으로 판단된다. MtATPG2 -7 with the pCSEN-MtATPG2 construct, MtATPG2 -8, MtATPG2 -15, MtATPG2-16 and Compared to Arabidopsis control (Col-0), all of the MtATPG2 -17 variant lines showed a marked increase in biomass, such as an increase in plant populations, and an increase in long shell length and number. There was a pronounced increase. This increase in seed production seems to be attributable to the increase in the long shell length and the number of seeds.
이러한 표현형적 특징이 도입 유전자의 발현에 의해 유도되는 지를 확인하기 위하여 우리는 자엽 형성 후 25일째의 대조구와 변이체 라인의 잎으로부터 RNasey Plant Mini Kit(QIAGEN, Germany)을 사용하여 전체 RNA를 각각 추출하였다. 각각 1㎍의 RNA를 주형으로 하고, Superscript III Reverse Tanscriptase(INVITROGEN, USA)을 이용하여 65℃에서 5분; 50℃에서 60분; 및 70℃에서 15분의 조건으로 cDNA를 합성하였다. 이후, 합성된 cDNA를 주형으로 하고, 하기 MtATPG2 유전자와 PCR 양성 대조구로 사용된 TUB 유전자에 대해 하기 표 1의 특이적인 프라이머를 사용하여 PCR을 수행하였다. PCR은 94℃에서 2분간 가열하여 주형 DNA를 변성시킨 후, 94℃에서 1분; 55℃에서 1분 30초; 및 72℃에서 1분을 한 사이클로 하여 총 30회 반복 수행한 다음, 72℃에서 15분간 최종 반응시켜 수행하였다. 이후, 1% 아가로스 겔 전기영동으로 PCR 산물을 확인하였으며, 그 결과는 도 3에 도시되었다. 그 결과, 5종의 변이체 라인 모두 애기장대 대조구에 비하여 MtATPG2 유전자의 도입으로 인한 정상적 발현이 나타남을 확인하였으며, 이러한 사실은 본 변이체들이 MtATPG2 유전자가 도입된 변이체임을 증명하고 있다. 바이오매스 증대와 종자 생산량 증가는 형질전환 라인 마다 약간씩 차이가 있었는데 이는 도입된 유전자 MtATPG2 유전자의 상대적 발현량 차이에 기인하는 것으로 나타났다. 한편 본 변이체들은 애기장대의 AT-hook protein을 암호화하는 ATPG 유전자 그룹에서 나타나는(Lim et al., Plant J. 2007, 52:1140, 대한민국 특허출원 10-2011-0110593) 녹기 연장의 형질은 본 유전자의 발현의 높은 라인에서 나타났다. To confirm whether these phenotypic features are induced by the expression of the transgene, we extracted the total RNA from the control and leaf of the mutant line 25 days after cotyledon formation using the RNasey Plant Mini Kit (QIAGEN, Germany), respectively. . 1 μg of RNA each as a template and 5 minutes at 65 ° C. using Superscript III Reverse Tanscriptase (INVITROGEN, USA); 60 minutes at 50 ° C; And cDNA was synthesized at 70 ° C. for 15 minutes. Thereafter, the synthesized cDNA was used as a template, and PCR was performed using the primers specific to the following Table 1 for the MtATPG2 gene and the TUB gene used as a PCR positive control. PCR denatured template DNA by heating at 94 ° C. for 2 minutes and then 1 minute at 94 ° C .; 1 minute 30 seconds at 55 ° C; And 1 cycle at 72 ℃ one cycle was performed a total of 30 times, followed by a final reaction for 15 minutes at 72 ℃. Then, the PCR product was confirmed by 1% agarose gel electrophoresis, the results are shown in FIG. As a result, it was confirmed that all five variant lines showed normal expression due to the introduction of the MtATPG2 gene as compared to Arabidopsis control, and these facts prove that the variants were introduced into the MtATPG2 gene. The increase in biomass and seed production were slightly different for each transformation line due to the difference in relative expression of the introduced MtATPG2 gene. On the other hand, these variants were found in the ATPG gene group encoding the Arabidopsis AT-hook protein (Lim et al., Plant J. 2007, 52: 1140, Korean Patent Application 10-2011-0110593). Appeared in a high line of expression.
따라서 본 유전자의 발현량 조절은 생산성 증대와 노화 지연에 대한 표현형적 특징을 가진 식물을 임의로 제작할 수 있을 것으로 판단된다. 특히 유전자의 발현 조절을 통하여 애기장대 야생형과 같은 수확시기를 가지고 생산성이 증대되는 식물의 제작이 용이함에 따라 MtATPG2는 우량 생산성 증대 작물 개발에 있어 훌륭한 유전자원으로 활용할 수 있을 것이다. Therefore, the expression level control of the present gene is thought to be able to arbitrarily produce plants with phenotypic characteristics for increased productivity and delay aging. In particular, MtATPG2 can be used as an excellent gene source for the development of high-productivity crops, as it is easy to manufacture plants that increase productivity with the same harvesting season as Arabidopsis wild type through the regulation of gene expression.
MtATPG2 유전자와 TUB 유전자 발현을 위한 프라이머 서열 및 서열번호 Primer Sequence and Sequence Number for MtATPG2 and TUB Gene Expression
유전자명Gene name 정방향/역방향 프라이머 (서열번호) Forward / Reverse Primer (SEQ ID NO)
MtATPG2MtATPG2 5'-TCT ATG GAT GGG AGA GAG GCT ATG G-3'(서열번호 5)5'-TCT ATG GAT GGG AGA GAG GCT ATG G-3 '(SEQ ID NO: 5) 5'-GAC CTC ATC CTC TTG TCA AGT CAA AGC-3'(서열번호 6)5'-GAC CTC ATC CTC TTG TCA AGT CAA AGC-3 '(SEQ ID NO: 6)
TubulinTubulin 5'-AAG AGG TTC TCA GCA GTA-3'(서열번호 7)5'-AAG AGG TTC TCA GCA GTA-3 '(SEQ ID NO: 7) 5'-CCT TCT TCA TCC GCA GTT-3'(서열번호 8)5'-CCT TCT TCA TCC GCA GTT-3 '(SEQ ID NO: 8)
<실시예 3> <Example 3> MtATPG2MtATPG2 발현 변이체의 생산성 증대에 대한 특성 분석 Characterization of productivity increase of expression variants
MtATPG2 유전자의 도입을 통하여 얻어진 식물체가 다수성에 대한 표현 형질을 가짐이 도 2에서 나타나 있다. 이러한 다수성 형질에 대한 표현형적 특징을 보다 정확히 분석하기 위하여 5종의 형질전환 라인을 대상으로 종자 수확량 등과 같은 생산성 지표를 조사하여 애기장대 대조구와 비교해 보았다. MtATPG2 It is shown in Figure 2 that the plant obtained through the introduction of the gene has an expression trait for multiplicity. In order to analyze the phenotypic characteristics of these multiple traits more accurately, productivity indicators such as seed yields were investigated in five transformation lines and compared with Arabidopsis control.
적용된 생산성 지표는 식물의 키(height), 장각과(silique) 수(NTS), 생체량(FW), 생체 건량(DW), 총 종자 무게(TSW), 그리고 1,000개의 종자 무게(1,000SW)이며, 결과는 라인별로 각 20개체의 평균값이다. The productivity indicators applied are plant height, silique number (NTS), biomass (FW), biomass (DW), total seed weight (TSW), and 1,000 seed weights (1,000 SW). Is the average value of 20 objects per line.
그 결과, 놀랍게도 MtATPG2 유전자 발현 변이체 라인, MtATPG2 -7, MtATPG2 -8, MtATPG2 -15, MtATPG2 -16 MtATPG2 -17 모두는 애기장대 대조구에 비하여 1.5배 이상의 종자 생산이 증가하는 것으로 나타났으며, 특히 MtATPG2 -16 MtATPG2 -17은 대조구에 비하여 2배 이상의 종자 생산이 증가하였다. 이러한 종자 생산의 증가와 비례하여 모든 변이체 라인들은 장각과 수의 증가 패턴을 가졌다. 한편 종자 1,000개의 무게는 거의 대부분이 대조구와 비슷한 것으로 나타났으나, MtATPG2 - 7는 대조구에 비하여 약 1.4배 이상의 무게를 나타내었다. 본 연구팀은 이러한 종자 1,000개의 무게에 대한 세부 연구로 종자 크기를 해부현미경으로 관찰하였다. 그 결과 MtATPG2-7는 애기장대 대조구 및 다른 형질전환 라인에 비하여 종자 크기가 증가하였음을 확인하였다(도 4). MtATPG2 -7 변이체의 종자 크기 증가에 대한 부분은 추후 계속 연구를 진행할 예정이다. 전체적으로 보면 MtATPG2 유전자의 발현은 종자 크기에는 큰 영향을 미치지 않는 것으로 생각되는 반면, 장각과 수의 증가를 유도하여 최종적으로 종자 생산량 증가를 이끄는 것으로 생각된다. 그리고 식물체의 크기에는 변이체와 대조구에 있어서 큰 차이가 없었으나 생체량과 생체 건량에 있어서는, 특히 생체 건량에 있어서는 변이체 모두는 대조구에 비하여 뚜렷한 증가 현상이 나타났다. As a result, surprisingly MtATPG2 gene mutant lines, MtATPG2 -7, MtATPG2 -8, MtATPG2 -15, MtATPG2 -16 and All of MtATPG2 -17 increased seed production more than 1.5 times compared to Arabidopsis control, especially MtATPG2 -16 and MtATPG2 -17 more than doubled seed production compared to the control. In proportion to this increase in seed production, all variant lines had a long and numbered pattern of increase. The seed weight is 1,000 or almost've found that similar to the control group, MtATPG2 - 7 as compared to the control group It weighed about 1.4 times or more. In the detailed study of the weight of 1,000 seeds, the team observed the size of the seeds under an anatomical microscope. As a result, it was confirmed that MtATPG2-7 increased seed size compared to Arabidopsis control and other transformation lines (FIG. 4). Part of the seed size increased MtATPG2 -7 variants are expected to continue to proceed with further research. Overall, the expression of the MtATPG2 gene does not seem to have a significant effect on the seed size, but it is thought to induce an increase in the long shell length and the number, leading to an increase in seed yield. There was no significant difference in the size of the plant between the mutant and the control, but there was a marked increase in both the biomass and the dry weight, especially in the biodry weight.
흥미로운 사실은 생산성 증대 특정 형질을 가지는 변이체 라인들의 수확 시기는 애기장대 대조구와 큰 차이가 없다는 것이다. 이러한 사실은 본 유전자의 발현으로 인한 생산성 증대는 대조구의 수확시기가 비슷하여 작물의 수확시기에 대한 문제점을 최소화할 수 있다는 것이다. Interestingly, the timing of harvesting variant lines with specific traits is not significantly different from Arabidopsis control. This fact is that the increase in productivity due to the expression of the gene is similar to the harvest time of the control can minimize the problem of harvest time.
따라서 본 유전자의 타 작물 적용은 다수성 형질 및 바이오매스 증대와 같은생산성 증대라는 측면에서 효용 가치가 매우 높을 것으로 생각된다. Therefore, the application of this crop to other crops is considered to have a very high utility value in terms of productivity, such as multiplicity of traits and biomass.
<< 실시예Example 4>  4> MtATPG2MtATPG2 발현  Expression 변이체의Variant cytokinincytokinin signaling pathway에 대한 특성 분석 Characterization of signaling pathway
M. truncatula에서 분리한 MtATPG2가 애기장대의 cytokinin signaling을 조절하여 생산성 증대 혹은/그리고 노화지연의 표현형적 특징을 제공하는 지를 확인하기 위하여 cytokinin signaling pathway 중 CLV1/WUS pathway에 관여하는 CLV1 유전자(receptor protein kinase CLAVATA1, AT1G75820)와 cytokinin receptor로서 기능을 가지는 histidine kinase 유전자군의 HK2(histidine kinase 2, AT5G35750), HK3(histidin kinase3, AT1G27320) 그리고 CRE1(HK4: histidine kinase 4, AT2G01830) 유전자의 발현을 MtATPG2 -7, MtATPG2 -8, 그리고 MtATPG2 -15를 대상으로 조사하였다(도 5). 적용된 유전자 및 MtATPG2와 양성대조구인 tubulin에 대한 RT-PCR용 primer 정보는 표 2에서 제시하였다. 그 결과 HK 유전자군에서 HK2HK3 유전자의 발현은 변이체에서 모두 대조구에 비하여 증가하였으며, CRE1 유전자의 발현은 대조구에 비하여 변이체에서 비슷한 수순을 유지하거나 감소하는 현상을 나타내었다. 한편 CLV1 유전자의 발현은 대조구와 비교하여 변이체 모두에서 큰 차이를 가지지 않았다. CLV1 gene involved in the separated MtATPG2 in M. truncatula increase productivity by controlling the cytokinin signaling in Arabidopsis thaliana or / and CLV1 / WUS pathway of cytokinin signaling pathway in order to ensure that provide phenotypic features of senescence delay (receptor protein MtATPG2 the histidine kinase 4, AT2G01830) expression of the gene -: kinase CLAVATA1, AT1G75820) and histidine kinase HK2 (histidine kinase 2, AT5G35750) of the genes having a function, HK3 (histidin kinase3, AT1G27320) and CRE1 (HK4 as cytokinin receptor 7, MtATPG2 -8, and It was aimed at MtATPG2 -15 (Fig. 5). RT-PCR primer information for the applied gene and MtATPG2 and the positive control tubulin are shown in Table 2. As a result, the expressions of HK2 and HK3 genes in the HK gene group were increased in all of the variants compared to the control, and the expression of the CRE1 gene showed similar or similar procedures in the variants compared to the control. On the other hand, the expression of the CLV1 gene did not have a big difference in all of the variants compared to the control.
cytokinin signaling pathway에서 CLV1 유전자, histidine kinase (HK) 유전자군, MtATPG2 , 그리고 양성 대조구 TUB 유전자에 대한 RT-PCR용 primer 서열 및 서열번호 CLV1 in the cytokinin signaling pathway Primer sequence and sequence number for RT-PCR for the gene, histidine kinase (HK) gene group , MtATPG2 , and positive control TUB gene
유전자gene 정방향/역방향프라이머 (서열번호) Forward / Reverse Primer (SEQ ID NO)
CLV1CLV1 CLV1-RT-F : 5'-ACT TAC CTC TGT CTC CCT CA-3'(서열번호 9)/CLV1-RT-F: 5'-ACT TAC CTC TGT CTC CCT CA-3 '(SEQ ID NO: 9) / CLV1-RT-R : 5'-GAC CAC CTT TAG ATC CAT GC-3'(서열번호 10)CLV1-RT-R: 5'-GAC CAC CTT TAG ATC CAT GC-3 '(SEQ ID NO: 10)
HK3HK3 HK3-RT-F : 5'-CAA CAA CCA GCC CAT ATT CTC-3'(서열번호 11)/ HK3-RT-F: 5'-CAA CAA CCA GCC CAT ATT CTC-3 '(SEQ ID NO: 11) / HK3-RT-R : 5'-TTC CAA TAC CCA ATC CCC TC-3'(서얼번호 12) HK3-RT-R: 5'-TTC CAA TAC CCA ATC CCC TC-3 '(Dial No. 12)
CRE1CRE1 WOL-RT-F : 5'-CTG AGG AGC AGT CAT TAT CG-3'(서열번호 13)/ WOL-RT-F: 5'-CTG AGG AGC AGT CAT TAT CG-3 '(SEQ ID NO: 13) / WOL-RT-R : 5'-GGT TTT GTT GGG AGA GGA GA-3'(서열번호 14) WOL-RT-R: 5'-GGT TTT GTT GGG AGA GGA GA-3 '(SEQ ID NO: 14)
HK2HK2 HK2-RT-F : 5'-GTA TGG CTC AGA AAT TGG GG-3'(서열번호 15)/ HK2-RT-F: 5'-GTA TGG CTC AGA AAT TGG GG-3 '(SEQ ID NO: 15) / HK2-RT-R : 5'-GCC AGA GAG GAG AGA TGA AA-3'(서열번호 16) HK2-RT-R: 5'-GCC AGA GAG GAG AGA TGA AA-3 '(SEQ ID NO: 16)
MtATPG2MtATPG2 5'-TCT ATG GAT GGG AGA GAG GCT ATG G-3'(서열번호 5)/5'-TCT ATG GAT GGG AGA GAG GCT ATG G-3 '(SEQ ID NO: 5) / 5'-GAC CTC ATC CTC TTG TCA AGT CAA AGC-3'(서열번호 6)5'-GAC CTC ATC CTC TTG TCA AGT CAA AGC-3 '(SEQ ID NO: 6)
TubulinTubulin 5'-AAG AGG TTC TCA GCA GTA-3'(서열번호 7)5'-AAG AGG TTC TCA GCA GTA-3 '(SEQ ID NO: 7) 5'-CCT TCT TCA TCC GCA GTT-3'(서열번호 8)5'-CCT TCT TCA TCC GCA GTT-3 '(SEQ ID NO: 8)
우리는 cytokinin signaling의 다음 단계인 histidine phosphotransfer proteins(HP) 유전자군의 AHP1 (AT3G21510), AHP2 (AT3G29350), AHP3 (AT5G39340), AHP4 (AT3G16360), AHP5 (AT1G03430), 그리고 AHP6 (AT1G80100) 유전자의 발현 양상 또한 조사하였다(도 5). 상기 유전자의 발현 양상은 RT-PCR을 통하여 분석하였으며, 사용된 프라이머 정보는 표 3에서 제시하였다. 그 결과, AHP1 , AHP2 , 그리고 AHP3의 경우 대조구에 비하여 MtATPG2 -7MtATPG2 -15 변이체에서 높은 발현을 나타내었으며, AHP4의 경우 대조구에 비하여 MtATPG2 -7MtATPG2 -8 변이체에서 높은 발현을 나타내었다. We describe histidine , the next step in cytokinin signaling. AHP1 from the phosphotransfer proteins (HP) gene family (AT3G21510) , AHP2 (AT3G29350) , AHP3 (AT5G39340), AHP4 (AT3G16360) , AHP5 (AT1G03430) , and AHP6 Expression patterns of the (AT1G80100) gene were also examined (FIG. 5). The expression pattern of the gene was analyzed by RT-PCR, primer information used is shown in Table 3. As a result, AHP1, AHP2, and in the case of AHP3 showed a high expression in MtATPG2 MtATPG2 -7 and -15 mutants compared to the control, in the case of AHP4 exhibited high expression in MtATPG2 MtATPG2 -7 and -8 variant compared to the control.
Cytokinin signaling pathway에서 histidine phosphotransfer proteins(HP) 유전자군, MtATPG2, 그리고 양성 대조구 TUB 유전자에 대한 RT-PCR용 primer 서열 및 서열번호 RT-PCR primer sequence and sequence number for histidine phosphotransfer proteins (HP) gene group, MtATPG2 , and positive control TUB genes in the cytokinin signaling pathway
유전자gene 정방향/역방향프라이머 (서열번호) Forward / Reverse Primer (SEQ ID NO)
AHP1 (AT3G21510) AHP1 (AT3G21510) AHP1-RT-F: 5'-ATGGATTTGGTTCAGAAGCAGAA-3'(서열번호 17)/AHP1-RT-R: 5'-TCAAAATCCGAGTTCGACGGCC-3'(서열번호 18)AHP1-RT-F: 5'-ATGGATTTGGTTCAGAAGCAGAA-3 '(SEQ ID NO: 17) / AHP1-RT-R: 5'-TCAAAATCCGAGTTCGACGGCC-3' (SEQ ID NO: 18)
AHP2 (AT3G29350) AHP2 (AT3G29350) AHP2I-RT-F: 5'-ATGGACGCTCTCATTGCTCAGC-3'(서열번호 19)/AHP2I-RT-R: 5'-TTA GTT AAT ATC CAC TTG AGG AAC-3'(서열번호 20)AHP2I-RT-F: 5'-ATGGACGCTCTCATTGCTCAGC-3 '(SEQ ID NO: 19) / AHP2I-RT-R: 5'-TTA GTT AAT ATC CAC TTG AGG AAC-3' (SEQ ID NO: 20)
AHP3 (AT5G39340) AHP3 (AT5G39340) AHP3-RT-F: 5'-GGACACACTCATTGCTCAGT-3'(서열번호 21)/AHP3-RT-R: 5'-CTGCAAACATCTCACACACC-3'(서열번호 22)AHP3-RT-F: 5'-GGACACACTCATTGCTCAGT-3 '(SEQ ID NO: 21) / AHP3-RT-R: 5'-CTGCAAACATCTCACACACC-3' (SEQ ID NO: 22)
AHP4 (AT3G16360) AHP4 (AT3G16360) AHP4I-RT-F: 5'-ATGCAGAGGCAAGTGGCACTCA-3'(서열번호 23)/AHP4I-RT-R: 5'-TTACTTGGGCCTACGTGCTGTC-3'(서열번호 24)AHP4I-RT-F: 5'-ATGCAGAGGCAAGTGGCACTCA-3 '(SEQ ID NO: 23) / AHP4I-RT-R: 5'-TTACTTGGGCCTACGTGCTGTC-3' (SEQ ID NO: 24)
AHP5 (AT1G03430) AHP5 (AT1G03430) AHP5-RT-F: 5'-GGTAGTAGCTCCAGTGTCG-3'(서열번호 25)/AHP5-RT-R: 5'-CTAATTTATATCCACTTGAGGAAT-3'(서열번호 26)AHP5-RT-F: 5'-GGTAGTAGCTCCAGTGTCG-3 '(SEQ ID NO: 25) / AHP5-RT-R: 5'-CTAATTTATATCCACTTGAGGAAT-3' (SEQ ID NO: 26)
AHP6 (AT1G80100) AHP6 (AT1G80100) AHP6-3UTR-F: 5'-CAAGCCGACATCAACCGGCTC-3'(서열번호 27)/AHP6-3UTR-R: 5'-AGGGTTTCGCTTCGGTAGCTT-3'(서열번호 28)AHP6-3UTR-F: 5'-CAAGCCGACATCAACCGGCTC-3 '(SEQ ID NO: 27) / AHP6-3UTR-R: 5'-AGGGTTTCGCTTCGGTAGCTT-3' (SEQ ID NO: 28)
MtATPG2MtATPG2 5'-TCT ATG GAT GGG AGA GAG GCT ATG G-3'(서열번호 5)/5'-TCT ATG GAT GGG AGA GAG GCT ATG G-3 '(SEQ ID NO: 5) / 5'-GAC CTC ATC CTC TTG TCA AGT CAA AGC-3'(서열번호 6)5'-GAC CTC ATC CTC TTG TCA AGT CAA AGC-3 '(SEQ ID NO: 6)
TubulinTubulin 5'-AAG AGG TTC TCA GCA GTA-3'(서열번호 7)5'-AAG AGG TTC TCA GCA GTA-3 '(SEQ ID NO: 7) 5'-CCT TCT TCA TCC GCA GTT-3'(서열번호 8)5'-CCT TCT TCA TCC GCA GTT-3 '(SEQ ID NO: 8)
이러한 분석을 통하여 우리는 다음과 같은 가설을 세울 수 있었다. 1) MtATPG2는 cytokinin pathway 중 CLV1/WUS pathway에는 크게 관여하지 않고, 2) MtATPG2는 cytokinin receptor 유전자군과 histidine phosphotransfer proteins (HP) 유전자군의 발현을 조절하여 cytokinin signaling을 조절하여 식물의 종자 수확량 증가, 바이오매스 증가와 같은 생산성 증대의 형질 및 노화 지연의 형질을 제공하며, 3) 이러한 표현형적 특징은 MtATPG2 유전자의 발현 정도에 따라 조절된다. 즉, MtATPG2 유전자의 발현이 정상적이거나 상대적으로 낮으면 생산성 증대의 표현형질을 제공, 그리고 유전자 발현이 상대적으로 높을수록 생산성 증대 형질과 더불어 녹기 연장의 표현형질을 제공한다. 이러한 MtATPG2를 통한 cytokinin signaling 조절 양상은 애기장대 AT-hook 유전자 및 MtATPG1의 조절 양상과는 다르게 나타났다. 따라서 이는 cytokinin signaling에 있어서 본 유전자의 역할이 애기장대 AT-hook 유전자 및 MtATPG1의 역할과는 다르다는 것을 의미한다. 하지만 본 유전자 또한 애기장대 AT-hook 유전자 및 MtATPG1과 같이 cytokinin signaling에 대한 역할을 가지는 것으로 보아, 본 유전자 또한 주요 작물에서도 유사한 기능을 가져 다수성 주요 작물 품종 개발에 많은 장점을 제공하리라 생각된다. Through this analysis, we can hypothesize the following. 1) MtATPG2 is not significantly involved in the CLV1 / WUS pathway in the cytokinin pathway. 2) MtATPG2 regulates the expression of the cytokinin receptor gene family and histidine phosphotransfer proteins (HP) gene family to regulate cytokinin signaling to increase plant yield. Productivity traits such as increased biomass and delayed aging traits, and 3) these phenotypic characteristics are regulated according to the expression level of the MtATPG2 gene. That is, normal or relatively low expression of the MtATPG2 gene provides a phenotype of increased productivity, and a relatively high gene expression provides a phenotype of extended melting with a productivity-enhancing trait. The regulation of cytokinin signaling through MtATPG2 was different from that of Arabidopsis AT-hook gene and MtATPG1 . Therefore, this means that the role of this gene in cytokinin signaling is different from that of Arabidopsis AT-hook gene and MtATPG1 . But this gene is also like the Arabidopsis AT-hook gene and MtATPG1 . Since this gene has a role in cytokinin signaling, this gene may also have similar functions in major crops, thus providing many advantages in the development of a multiplicity of major crop varieties.
<< 실시예Example 5>  5> MtATPG2MtATPG2 발현  Expression 변이체의Variant 세대 진전을 통한 호모 라인 선별  Homo line screening through generation progress 및 기능And function 분석 analysis
변이체의 다수성 형질 및 노화 지연에 대한 표현형질 안정성을 확인하기 위하여 확보된 변이체를 세대 진전시켜 호모 라인을 선별한 후 그들의 표현형이 앞 세대의 표현형과 같은 지를 6종의 변이체를 재료로 하여 확인하였다. 도 6과 7에서 보는 바와 같이 발아 후 50일째와 70일째 형질전환체 T3 혹은 T4 라인의 대부분은 앞선 결과와 마찬가지로 뚜렷한 다수성 형질 및 바이오매스 증대 형질을 나타내었다. 그리고 형질전환 라인 중 MtATPG2 -7-15-11MtATPG2 -7-15-12 라인들의 경우, 생산성 증대 형질뿐만 아니라 일부 노화 지연의 형질을 나타내었다. 형질전환체의 유전자 발현 조사를 통하여 이러한 다수성과 더불어 나타나는 노화 지연의 형질은 본 유전자의 발현량 증가에 기인하는 것으로 나타났다(도 8). 형질전환체의 이러한 표현형적 특징은 앞 세대와 약간의 차이가 있을 수 있는데 이러한 차이점은 헤테로(hetero) 라인으로부터 호모(homo) 라인이 선별되면서 유전자 발현의 변화에 기인하는 것으로 판단된다. In order to confirm the phenotypic stability against pluripotency and aging delay of the variants, the homologous lines were selected by generation advancement, and then the six phenotypes were identified whether their phenotypes were the same as the previous generation phenotypes. . As shown in FIGS. 6 and 7, most of the transformant T 3 or T 4 lines at 50 and 70 days after germination showed distinct multiplicity and biomass enhancement traits as in the previous results. In addition, MtATPG2 -7-15-11 and MtATPG2 -7-15-12 lines in the transformation lines exhibited some aging delay traits as well as productivity enhancing traits. Investigation of the gene expression of the transformants showed that the aging delay traits appearing with this multiplicity were due to the increased expression level of the present gene (FIG. 8). This phenotypic characteristic of the transformant may be slightly different from the previous generation, which is believed to be due to changes in gene expression as the homo line is selected from the hetero line.
세대 진전된 호모 라인들의 생산성 증대에 대한 형질이 재현성을 가지는 지를 확인하기 위하여 본 연구팀은 생산성 지표를 분석하여 형질전환체의 농업형질을 조사하였다. MtATPG2 유전자 발현 변이체 라인 모두는 애기장대 대조구에 비하여 1.2배 이상의 종자 생산 증가가 나타났으며, 특히 MtATPG2 -8-8, MtATPG2 -15-3 MtATPG2-15-6은 애기장대 대조구에 비하여 1.5배 이상의 종자 생산 증가가 나타났다. 흥미로운 점은 유전자 발현 정도에 따라 종자 생산의 차이를 가진다는 점이다. 즉 유전자 발현 정도가 낮은 MtATPG2 - 15 라인들의 평균 종자 생산량이 가장 높은 반면, 유전자 발현 정도가 높은 MtATPG2 - 7 라인들의 평균 종자 생산량이 대조구보단 높았으나 변이체 라인들에선 낮은 것으로 나타났다. 따라서 본 유전자의 발현 조절은 보다 높은 종자 생산성을 제공할 수 있으리라 판단된다. 이러한 종자 생산의 증가와 비례하여 대부분의 변이체 라인들은 장각과 수의 증가 양상을 가졌다. 흥미로운 점은 종자 1,000개의 무게는 대부분의 변이체들이 대조구와 비슷하게 나타났으나, MtATPG2 - 7 라인은 애기장대 대조구 및 다른 형질전환 라인에 비하여 종자 크기가 현저히 증가하였음을 확인하였다. 이러한 사실은 앞 세대의 결과와 일치하며 MtATPG2 -7 변이체 라인의 종자 크기 증가에 대한 부분은 추후 계속 연구를 진행할 예정이다. 또한 생체량과 생체 건량에 있어서도 변이체 모두는 대조구에 비하여 뚜렷한 증가 현상이 나타났다(표 4). 이러한 결과는 앞선 세대의 생산성 증대에 대한 결과와 같은 양상을 나타내었다. 이러한 사실로 미루어보아 MtATPG2 유전자의 발현이 세대진전에 있어서도 생산성 증대 형질에 대한 표현형적 형질의 안정화를 유지한다는 점에서 작물에 적용 시 생산성 증대 형질의 안정적인 세대진전에 대한 많은 장점을 제공하리라 판단된다. In order to confirm the reproducibility of the traits for increasing the productivity of generation-advanced homo lines, the team analyzed the productivity of the transformants by analyzing the productivity indicators. All of the MtATPG2 gene expression variant lines showed 1.2-fold increase in seed production compared to Arabidopsis control, especially MtATPG2 -8-8, MtATPG2 -15-3 and MtATPG2-15-6 , 1.5 times more than the Arabidopsis control. Seed production increased. Interestingly, there is a difference in seed production depending on the degree of gene expression. I.e., gene expression levels are low MtATPG2 - showed that was higher than the average seed yield of control line 7 is low In the mutant line, while the average seed yield by 15 lines the highest, the degree of gene expression higher MtATPG2. Therefore, the expression regulation of the present gene is expected to provide higher seed productivity. In proportion to this increase in seed production, most of the variant lines have had long lengths and increased numbers. Interestingly, the seed weight is 1,000, most of the mutants were similar to the control've found me, MtATPG2 - 7 lines was confirmed that it has the seed size increased significantly compared to control Arabidopsis thaliana and other transgenic lines. This fact is consistent with the results of the previous generation, and part of the seed size increased MtATPG2 -7 mutant lines are expected to continue to proceed with further research. In addition, both the variants in the biomass and biomass showed a marked increase compared to the control (Table 4). This result is the same as the result of the productivity increase of the previous generation. In view of this fact, MtATPG2 Gene expression is expected to provide many advantages for stable generation of productivity-enhancing traits when applied to crops in that the expression of genes maintains the stabilization of phenotypic traits for productivity-enhancing traits.
Figure PCTKR2017010859-appb-T000001
Figure PCTKR2017010859-appb-T000001
한편 앞선 결과에서 보듯이 MtATPG2 발현 T3 혹은 T4 변이체들은 애기장대의 AT-hook protein을 암호화하는 유전자 그룹에서 나타나는 녹기 연장의 형질은 그리 강하게 나타나지 않았으나, 여전히 유전자의 발현 정도가 높은 변이체 MtATPG2 -7 등의 변이체 라인에서는 노화 지연의 형질을 가지고 있음을 알 수 있었다. Meanwhile, as shown in the previous results, MtATPG2 Expression T 3 or T 4 are transformed variants of the melt extending from the gene group that appears coding for the Arabidopsis thaliana are AT-hook protein did not appear very strong, but still in the mutant lines such as gene expression levels are high MtATPG2 -7 variants with the trait of delayed senescence I could see that.
본 유전자의 녹기 연장에 대한 형질을 정확히 분석하기 위하여 세대진전을 통해 확보된 T3 혹은 T4 homo 변이체 라인들을 대상으로 나이-의존적 노화 및 암-유도 노화에 대한 특성을 조사하였다. MtATPG2 발현 변이체의 나이-의존적 노화 지연 형질을 확인하기 위하여, T3 혹은 T4 homo 세대에서 자엽 생성 후 16일 이후부터 3-4번 좌엽(rosette leaf)을 매 4일마다 56일까지 표현형 관찰과 잎 엽록소 함량을 측정하여 애기장대 대조구와 비교하였다. 그 결과, 애기장대 대조구의 경우 32일 이후 잎의 황화 현상이 시작하여 40일째 잎이 괴사(necrosis) 상태에 접어들었다. MtATPG2-8 MtATPG2 -15 변이체 라인들은 야생종의 나이-의존적 노화 현상과 비슷하게 나타났으나 MtATPG2 -7 변이체 라인들은 대조구에 비하여 노화 지연의 형질을 가지는 것으로 나타났다(도 9). 이러한 표현형적 특징을 보다 자세히 조사하기 위하여 나이-의존적 노화 동안 엽록소 함량을 측정하였다. 엽록소 함량은 663.2 nm와 664.8 nm의 흡광 계수를 이용하여 Lichtenthaler와 Wellburn의 방법(Biochemical Society Transduction 603:591~592, 1983)에 따라 측정하였다. 그 결과, 변이체의 표현형적 특징과 마찬가지로 MtATPG2 -8 MtATPG2 -15 변이체 라인들은 야생종의 엽록소 함량 변화와 비슷한 경향을 나타났으나 MtATPG2 -7 변이체 라인들은 대조구에 비하여 엽록소 분해가 현저히 지연되는 것으로 나타났다(도 10). 이러한 결과는 앞선 세대의 노화 지연에 대한 표현형적 특징과 비슷하였다. In order to accurately analyze the traits for the prolongation of the melting of the gene, the characteristics of age-dependent aging and cancer-induced aging were investigated in T 3 or T 4 homo variant lines obtained through generation evolution. To identify age-dependent aging delayed traits of MtATPG2 expressing variants, phenotypic observations were made on the left leaf 3 to 4 times 56 days after the cotyledon production from 16 days after generation of cotyledons in T 3 or T 4 homo generations. Leaf chlorophyll content was measured and compared with Arabidopsis control. As a result, in the Arabidopsis control group, the leaves were yellowed after 32 days, and the leaves entered necrosis at 40 days. MtATPG2-8 and MtATPG2 -15 mutant lines age of wild - I've found similar age-dependent phenomenon MtATPG2 -7 mutant lines were found to have the traits of aging delay compared to the control (Fig. 9). In order to examine these phenotypic features in more detail, chlorophyll content was measured during age-dependent aging. Chlorophyll content was measured according to the method of Lichtenthaler and Wellburn ( Biochemical Society Transduction 603: 591 ~ 592, 1983) using extinction coefficients of 663.2 nm and 664.8 nm. As a result, as with the phenotypic characteristics of the variant MtATPG2 -8 and MtATPG2 -15 mutant lines or've found a similar trend with changes in the chlorophyll content wild MtATPG2 -7 mutant lines are shown to be chlorophyll degradation is significantly delayed compared to the control (Fig. 10). These results were similar to the phenotypic features of aging delay in the previous generation.
노화 지연 형질 분석에 대한 두 번째 연구로 암-유도 노화에 대한 특성을 조사하였다. 노화 촉진 요인으로 알려진 암 처리에 대한 MtATPG2 발현 변이체의 잎의 노화 지연 형질의 특성을 분석하기 위하여 T3 혹은 T4 homo 세대에서 발아 후 21일째 3-4번 좌엽(rosette leaf)을 detach하여 3 mM MES 완충용액(2-[N-morpholino]-ethanesulfonic acid, pH 5.8)에 부유시킨 후, 암 상태를 유지하여 매 2일마다 6일까지 표현형 관찰과 잎 엽록소 함량을 측정하여 애기장대 대조구와 비교하였다. 그 결과, 애기장대 대조구의 경우 암 처리 후 4일 이후부터 잎의 황화 현상이 진행되어 6일째 잎이 괴사(necrosis) 상태에 접어들었다. MtATPG2 -8 MtATPG2 -15 변이체 라인들은 대조구의 암-유도 노화 현상과 비슷하게 나타났으나 MtATPG2 -7 변이체 라인들은 6일째에도 어느 정도 녹기를 유지하여 노화 지연의 형질을 가지는 것으로 나타났다(도 11). 이러한 표현형적 특징을 확인하기 위하여 암-유도 노화 동안 엽록소 함량을 조사한 결과 표현형적 특징과 비례적으로 엽록소 함량 감소 패턴을 가졌다(도 12). 이러한 사실로 미루어보아 MtATPG2 유전자의 발현이 세대진전에 있어서도 다수성 형질 및 노화 지연 형질에 대한 표현형적 형질의 안정화를 유지한다는 점에서 작물에 적용 시 농업 형질의 안정적인 세대진전을 통한 다수성 작물 개발이 가능하리라 판단된다. A second study of aging delayed trait analysis examined the characteristics of cancer-induced aging. To detach the T 3 or T 4 after germination in three homo 3-4 times 21 days left lobe (rosette leaf) in order to analyze the characteristics of aging delay traits of the leaves of the mutant expression MtATPG2 for cancer treatment known to promote aging factor 3 mM After floating in MES buffer (2- [N-morpholino] -ethanesulfonic acid, pH 5.8), the phenotype was observed and leaf chlorophyll content was measured every 6 days until 6 days every 2 days, and compared with Arabidopsis control. . As a result, in the Arabidopsis control group, the leaves were yellowed 4 days after the cancer treatment, and the leaves entered necrosis (necrosis) on the 6th day. MtATPG2 -8 and MtATPG2 -15 variant of the control lines are cancer-induced aging and appear nateu or MtATPG2 -7 mutant lines were found to have similar traits of aging delay by keeping the degree to melt even after 6 days (Fig. 11). In order to identify these phenotypic features, chlorophyll content was investigated during cancer-induced aging, and the chlorophyll content decrease pattern was proportional to the phenotypic features (FIG. 12). In view of this fact, MtATPG2 Since gene expression maintains the stabilization of phenotypic traits against pluripotent traits and aging delayed traits even in generational development, it may be possible to develop multiply crops through stable generation of agricultural traits when applied to crops.
MtATPG2 발현 변이체의 외부 스트레스에 대한 저항성을 조사하기 위하여 우리는 산화 스트레스 및 염 스트레스에 대한 반응을 조사하였다. 산화 스트레스에 대한 저항성을 조사하기 위하여 3 mM MES 완충용액에 4 mM H2O2를 첨가하여 발아 후 25일된 3, 4번 잎을 detach하여 floating한 후 매 3일 간격으로 잎의 표현형적 변화와 엽록소 함량 변화를 조사하여 산화 스트레스에 대한 저항성 정도를 조사하였다. 애기장대 대조구에 비하여 MtATPG2 - 7 라인들은 H2O2 처리에 대한 잎의 황화 현상 지연과(도 13A), 또한 엽록소 함량 감소가 지연됨을 확인할 수 있었다(data not shown). 한편 150 mM NaCl 처리를 통한 salt stress에 대한 저항성을 조사한 결과, 변이체들은 애기장대 대조구에 비하여 잎의 황화 현상 지연이 거의 나타나지 않았으며(도 13B), 엽록소 함량 감소의 지연 현상도 거의 나타나지 않았다(data not shown). 이러한 사실은 MtATPG2의 높은 발현은 식물의 산화 스트레스에 대한 저항성을 제공하는 반면 염 스트레스에 대한 저항성은 유전자 발현량과 관계없이 거의 제공하지 않는다는 것을 의미한다. 따라서 MtATPG2 유전자의 이러한 산화적 스트레스에 대한 저항성은 기존의 유전자 특성인 식물의 생산성 증대 형질과 더불어 생산성 증대 작물 개발에 있어 많은 장점을 제공할 것으로 생각된다.To investigate the resistance of MtATPG2 expression variants to external stress, we examined the responses to oxidative and salt stress. In order to investigate resistance to oxidative stress, 4 mM H 2 O 2 was added to 3 mM MES buffer, and after germination, the leaves were detached and floated 25 and 3 days old. Changes in chlorophyll content were investigated to determine the degree of resistance to oxidative stress. As compared to control Arabidopsis MtATPG2 - 7 lines H 2 O 2 Delaying of the yellowing of leaves with treatment (FIG. 13A) and also a decrease in chlorophyll content was observed (data not shown). On the other hand, as a result of examining the resistance to salt stress through the 150 mM NaCl treatment, the mutants showed little delay in leaf sulfation compared to Arabidopsis control (FIG. 13B), and little delay in decrease in chlorophyll content (data not shown). This suggests that high expression of MtATPG2 provides resistance to oxidative stress in plants, while resistance to salt stress provides little to no difference in gene expression. Thus MtATPG2 The resistance of genes to oxidative stress is thought to provide many advantages in the development of productivity-enhancing crops, along with the existing traits that increase plant productivity.

Claims (14)

  1. 서열번호 2에 개시된 아미노산 서열과 90% 이상의 서열 상동성을 갖고, 식물의 생산성 증대 기능, 스트레스 내성 기능 및 노화 지연 기능을 갖는 MtATPG2 단백질.An MtATPG2 protein having 90% or more sequence homology with the amino acid sequence set forth in SEQ ID NO: 2 and having a productivity enhancing function, a stress resistance function, and an aging delay function of a plant.
  2. 제1항의 단백질을 암호화하는 MtATPG2 유전자. MtATPG2 gene encoding the protein of claim 1.
  3. (a) 제2항의 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, (a) inserting the gene of claim 2 into an expression vector operably linked to a regulatory sequence capable of expressing it,
    (b) 그 발현벡터를 식물체에 형질전환하는 단계, 및(b) transforming the expression vector into a plant, and
    (c) 생산성 증대 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성되는 생산성 증대 특성을 갖는 식물체의 제조 방법.(c) a method for producing a plant having a productivity increasing characteristic, comprising selecting a plant having the productivity increasing characteristic.
  4. 제3항에 있어서, The method of claim 3,
    상기 유전자는 서열번호 1의 염기서열로 이루어진 유전자인 것을 특징으로 하는 생산성 증대 특성을 갖는 식물체의 제조 방법.The gene is a method for producing a plant having productivity enhancement characteristics, characterized in that the gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  5. (a) 제2항의 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, (a) inserting the gene of claim 2 into an expression vector operably linked to a regulatory sequence capable of expressing it,
    (b) 그 발현벡터를 식물체에 형질전환하는 단계, 및 (b) transforming the expression vector into a plant, and
    (c) 스트레스 내성 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성되는 스트레스 내성 특성을 갖는 식물체의 제조 방법.(c) selecting a plant having a stress resistance characteristic comprising the steps of producing a plant having a stress resistance characteristic.
  6. 제5항에 있어서, The method of claim 5,
    상기 유전자는 서열번호 1의 염기서열로 이루어진 유전자인 것을 특징으로 하는 스트레스 내성 특성을 갖는 식물체의 제조 방법.The gene is a method for producing a plant having stress resistance characteristics, characterized in that the gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  7. (a) 제2항의 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, (a) inserting the gene of claim 2 into an expression vector operably linked to a regulatory sequence capable of expressing it,
    (b) 그 발현벡터를 식물체에 형질전환하는 단계, 및 (b) transforming the expression vector into a plant, and
    (c) 노화 지연 특성을 갖는 식물체를 선별하는 단계를 포함하여 구성되는 노화 지연 특성을 갖는 식물체의 제조 방법.(c) selecting a plant having a aging retardation property.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 유전자는 서열번호 1의 염기서열로 이루어진 유전자인 것을 특징으로 하는 노화 지연 특성을 갖는 식물체의 제조 방법.The gene is a method for producing a plant having a aging delay characteristics, characterized in that the gene consisting of the nucleotide sequence of SEQ ID NO: 1.
  9. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및(a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it, and
    (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하는 (b) transforming the plant with the expression vector.
    식물체의 생산성을 증대시키는 방법.How to increase plant productivity.
  10. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및(a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it, and
    (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하는 (b) transforming the plant with the expression vector.
    식물체의 스트레스 내성을 증가시키는 방법.How to increase the stress resistance of plants.
  11. (a) 서열번호 2의 아미노산 서열을 암호화하는 유전자를 그것을 발현시킬 수 있는 조절 서열에 작동 가능하게 연결되도록 발현벡터에 삽입시키는 단계, 및(a) inserting a gene encoding the amino acid sequence of SEQ ID NO: 2 into an expression vector so as to be operably linked to a regulatory sequence capable of expressing it, and
    (b) 그 발현벡터를 식물체에 형질전환하는 단계를 포함하는 (b) transforming the plant with the expression vector.
    식물체의 노화를 지연시키는 방법.How to delay the aging of plants.
  12. 제3항 기재의 방법에 의하여 얻어진 것으로서, 서열번호 2의 아미노산 서열을 암호화하는 유전자가 식물체에 도입되어 발현됨으로써 생산성 증대 특성을 갖는 형질전환 식물체.A transgenic plant obtained by the method according to claim 3, wherein the gene encoding the amino acid sequence of SEQ ID NO: 2 is introduced into a plant and expressed, thereby exhibiting productivity enhancing properties.
  13. 제5항 기재의 방법에 의하여 얻어진 것으로서, 서열번호 2의 아미노산 서열을 암호화하는 유전자가 식물체에 도입되어 발현됨으로써 스트레스 내성 특성을 갖는 형질전환 식물체.A transgenic plant obtained by the method according to claim 5, wherein the gene encoding the amino acid sequence of SEQ ID NO: 2 is introduced into and expressed in the plant and has stress resistance properties.
  14. 제7항 기재의 방법에 의하여 얻어진 것으로서, 서열번호 2의 아미노산 서열을 암호화하는 유전자가 식물체에 도입되어 발현됨으로써 노화 지연 특성을 갖는 형질전환 식물체.A transgenic plant obtained by the method of claim 7, wherein the gene encoding the amino acid sequence of SEQ ID NO: 2 is introduced into and expressed in the plant, thereby exhibiting aging delay characteristics.
PCT/KR2017/010859 2016-10-07 2017-09-28 Mtatpg2 protein having function of increasing productivity, improving resistance against stress, and delaying senescence in plant, gene thereof, and use of same protein and gene WO2018066898A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0129696 2016-10-07
KR1020160129696A KR20180038718A (en) 2016-10-07 2016-10-07 MtATPG2 Protein Providing Yield Increase and Stress Tolerance as well as Delaying Senescence in Plants, the Gene Encoding the Protein and Those Uses

Publications (2)

Publication Number Publication Date
WO2018066898A2 true WO2018066898A2 (en) 2018-04-12
WO2018066898A3 WO2018066898A3 (en) 2018-05-31

Family

ID=61831816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010859 WO2018066898A2 (en) 2016-10-07 2017-09-28 Mtatpg2 protein having function of increasing productivity, improving resistance against stress, and delaying senescence in plant, gene thereof, and use of same protein and gene

Country Status (2)

Country Link
KR (1) KR20180038718A (en)
WO (1) WO2018066898A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850003B1 (en) * 2010-02-08 2018-06-05 제노마인(주) ATHG1 Protein Delaying Senescence and Providing Stress Tolerance of Plants, the Gene Encoding the Protein and Those Use
KR101855136B1 (en) * 2011-04-26 2018-05-09 제노마인(주) ATPG7 Protein Providing Yield Increase and Delaying Senescence and Stress Tolerance of Plants, the Gene Encoding the Protein and Those Use
KR101855137B1 (en) * 2011-04-26 2018-05-09 제노마인(주) ATPG8 Protein Providing Yield Increase and Delaying Senescence and Stress Tolerance of Plants, the Gene Encoding the Protein and Those Use
KR101855134B1 (en) * 2011-10-27 2018-05-09 제노마인(주) ATPG4 Protein Delaying Senescence and Providing Yield Increase and Stress Tolerance in Plants, the Gene Encoding the Protein and Those Uses
KR101855135B1 (en) * 2012-02-20 2018-05-09 제노마인(주) ATPG3 Protein Delaying Senescence and Providing Yield Increase and Stress Tolerance in Plants, the Gene Encoding the Protein and Those Uses
KR20150003099A (en) * 2013-06-28 2015-01-08 제노마인(주) ATPG6 Protein Providing Yield Increase and Stress Tolerance as well as Delaying Senescence in Plants, the Gene Encoding the Protein and Those Uses
KR20150001926A (en) * 2013-06-28 2015-01-07 제노마인(주) ATPG10 Protein Providing Yield Increase and Stress Tolerance as well as Delaying Senescence in Plants, the Gene Encoding the Protein and Those Uses

Also Published As

Publication number Publication date
KR20180038718A (en) 2018-04-17
WO2018066898A3 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
EP1192260B1 (en) Arabidopsis thaliana cdc27 homologs
BRPI0708660A2 (en) methods for improving the performance of a plant grown under conditions of high population density, isolated polynucleotide, expression cassette, plant, seed, method for modulating expression of a polynucleotide of interest in a plant
WO2018084522A1 (en) Oryza sativa-derived gene for enhancing resistance to pre-harvest sprouting, and use thereof
WO2012148121A2 (en) Atpg7 protein having functions of increased productivity, delayed aging, and resistance to stress of plant, gene thereof, and use thereof
WO2011090272A9 (en) OsMPT GENE MODIFYING PLANT ARCHITECTURE (PLANT SHAPE) AND INCREASING YIELD, AND USE THEREOF
WO2018066897A2 (en) Mtatpg1 protein having function of increasing productivity and delaying senescence in plant, gene thereof, and use of the same protein and gene
WO2010095910A2 (en) Polypeptide having function for delaying anthesis or suppressing growth, polynucleotide encoding the same, and use thereof
KR101852532B1 (en) Method for increasing pest resistance in plant using SRA1 gene from Solanum lycopersicum and the plant thereof
WO2013062327A2 (en) Atpg4 protein having productivity increase function, anti-aging function, stress resistance function of plants, genes thereof, and uses thereof
KR101850003B1 (en) ATHG1 Protein Delaying Senescence and Providing Stress Tolerance of Plants, the Gene Encoding the Protein and Those Use
WO2014209060A1 (en) Atpg6 protein and gene thereof having functions of increasing plant yield, resistance to stress, and delaying senescence, and use of same
WO2014209036A1 (en) Atpg10 protein and gene thereof having functions of increasing plant yield, resistance to stress, and delaying senescence, and use thereof
WO2013125835A1 (en) Atpg3 protein having ability to increase productivity, senescence delaying ability and ability for plants to resist stress, gene of atpg3 protein, and use thereof
WO2015046700A1 (en) Phd gene involved in development and formation of plant phloem
WO2018066898A2 (en) Mtatpg2 protein having function of increasing productivity, improving resistance against stress, and delaying senescence in plant, gene thereof, and use of same protein and gene
WO2012148122A2 (en) Atpg8 protein having functions of increased productivity, delayed aging, and resistance to stress of plant, gene thereof, and use thereof
WO2016036195A1 (en) Method for simultaneously increasing photosynthesis efficiency and drought and salt damage resistance of plants
WO2020184764A1 (en) Use of oryza sativa-derived ak102606 gene as controller for antioxidative activity, environmental stress, and crop yield
WO2011096609A1 (en) Athg1 protein having senescence delaying function and stress resisting function of plant, and gene and use of the protein
KR102431656B1 (en) CaAPIK1 gene and Method for improving the resistance to the drought stress using CaAPIK1 in plants
WO2011122761A2 (en) Gsdl2 protein having a life-extension function for plants and a stress resistance function for plants, gene thereof, and use thereof
KR100648146B1 (en) 28 Method for promoting flowering time of plant using AGL28 gene
KR102072276B1 (en) Novel gene related to plant cold stress tolerance and use thereof
KR20190068282A (en) AHL26 Protein Providing Yield Increase, Delayed Senescence and Stress Tolerance of Plants, the Gene Encoding the Same and Those Uses
KR20160053106A (en) Compositions for Enhancing Cold Stress Tolerance and Transgenic Plants Using the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858692

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858692

Country of ref document: EP

Kind code of ref document: A2