WO2020184764A1 - Use of oryza sativa-derived ak102606 gene as controller for antioxidative activity, environmental stress, and crop yield - Google Patents

Use of oryza sativa-derived ak102606 gene as controller for antioxidative activity, environmental stress, and crop yield Download PDF

Info

Publication number
WO2020184764A1
WO2020184764A1 PCT/KR2019/003087 KR2019003087W WO2020184764A1 WO 2020184764 A1 WO2020184764 A1 WO 2020184764A1 KR 2019003087 W KR2019003087 W KR 2019003087W WO 2020184764 A1 WO2020184764 A1 WO 2020184764A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
gene
plant
seq
oryza sativa
Prior art date
Application number
PCT/KR2019/003087
Other languages
French (fr)
Korean (ko)
Inventor
윤호성
박성임
김진주
김일섭
김영생
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2020184764A1 publication Critical patent/WO2020184764A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention investigated the use of the AK102606 gene derived from rice ( Oryza sativa ) as a regulator of antioxidant activity, environmental stress, and crop yield.
  • Abiotic stress refers to climate or soil conditions that interfere with plant cell homeostasis and eventually inhibit plant growth. Water excess or lack of, toxic ions (Al 3+, Cl -, Cd 2+, Fe 2+, Na + and the like), food shortage (Fe 3+, N, P, S, Zn 2+, etc), high temperature, low temperature , Atmospheric ozone (O 3 ), etc. are examples.
  • transient stress high temperature during the day, etc.
  • continuous stress chronic stress; Na + in high salinity soil, etc.
  • the stress experienced during the young vegetative growth period slows plant growth by inhibiting cell division and cell growth, but does not significantly affect the crop yield.
  • stress during reproductive growth has a serious impact on crop yields. Since abiotic stress comes in a complex way, it is necessary to improve various adaptation mechanisms to maintain crop productivity. Minimizing the damage caused by abiotic stress is ultimately the way to increase agricultural productivity.
  • the present inventors transformed rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice ( Oryza sativa ), resulting in high antioxidant activity , excellent resistance to environmental stress, and excellent initial growth.
  • the present invention was completed by confirming that the crop yield was large.
  • an object of the present invention is to increase the environmental stress tolerance and antioxidant activity of plants, including the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice. To provide a way.
  • Another object of the present invention is to provide rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased environmental stress resistance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1.
  • Another object of the present invention is a plant biomass and yield comprising the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice. ) To provide a way to increase.
  • Another object of the present invention is to provide a biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 and rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased yield.
  • increasing the environmental stress tolerance and antioxidant activity of plants comprising the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice. Provides a way to do it.
  • the present invention is a step of transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice;
  • It provides a method for producing a plant having increased environmental stress tolerance and antioxidant activity, comprising the step of re-differentiating the rice plant from the transformed rice plant cells.
  • the present invention provides a transgenic plant with increased environmental stress tolerance and antioxidant activity and seeds thereof.
  • the present invention provides a composition for increasing environmental stress tolerance and antioxidant activity of plants, containing the AK102606 gene derived from rice consisting of the nucleotide sequence of SEQ ID NO: 1.
  • the present invention provides rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased environmental stress tolerance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1.
  • the present invention is a plant biomass (biomass) and yield (yield) comprising the step of overexpressing the AK102606 gene by transforming the recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice in rice Provides a way to increase
  • It provides a method for producing a biomass and a plant having an increased yield, comprising the step of re-differentiating the rice plant from the transformed rice plant cells.
  • the present invention provides a transgenic plant with increased biomass and yield and seeds thereof.
  • the present invention provides a biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 and rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased yield.
  • Transgenic plants into which the AK102606 gene of the present invention has been introduced has high antioxidant capacity, excellent resistance to environmental stress, excellent initial growth, and a large crop yield. Therefore, the AK102606 gene was introduced into useful crops to provide antioxidant activity, environmental stress and crops. It will be useful to develop plants with increased yield.
  • FIG. 1 is a photograph and graph showing the results of abiotic resistance analysis and antioxidant capacity measurement of transgenic rice into which the AK102606 gene was introduced:
  • Figure 2 is a photograph and a graph confirming the phenotype in the initial growth stage of the transgenic rice into which the AK102606 gene was introduced:
  • Figure 3 is a photograph and graph showing the results of analyzing the natural growth state and antioxidant capacity of the transformed rice plant in the Gunwi experimental package:
  • Figure 4 is a photograph and graph showing the results of analysis of the reproductive growth stage phenotype and agricultural trait between control Ilmi rice and transformants over 2016 (T 5 ), 2017 (T 6 ), and 2018 (T 7 ):
  • Total plant fresh weight (TPW), stem weight (CW), number of tillers (NT), number of panicles per hill (NP), total grain weight (total) Grain weight, TGW), number of total grains (NTG), number of spikelets per panicle (NSP), and 1,000 grain weight (1000 GW) were shown relatively.
  • the control, Ilmi rice, is set at 100%.
  • Figure 5 is a graph showing the temperature and precipitation analysis of the experimental pavement at Kyungpook National University located in Hyoryeong-myeon, Gunwi-gun, Gyeongbuk for 3 years in 2016 (T 5 ), 2017 (T 6 ), and 2018 (T 7 ):
  • Figure 6 is a photograph of the transgenic rice introduced with the AK102606 gene, which was recovered after exposing it to a drought environment of 10% PEG400 for 5 days.
  • the present invention confirmed that resistance to environmental stress, antioxidant activity, and yield were increased by transforming rice into rice using the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice ( Oryza sativa ).
  • rice Oryza sativa L. japonica AK102606 with increased environmental stress tolerance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 was entrusted to the Korea Research Institute of Bioscience and Biotechnology under the accession number KCTC 13810BP (2019.02. 13).
  • biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 of the present invention and rice ( Oryza sativa L. japonica ) AK102606 with increased yield were entrusted to the Korea Research Institute of Bioscience and Biotechnology as accession number KCTC 13810BP (2019.02. .13).
  • the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 may be an amino acid sequence represented by SEQ ID NO: 2.
  • the present invention includes the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice, increasing the resistance to environmental stress, antioxidant activity, and yield. It is characterized in that it increases, but is not limited thereto.
  • environmental stress refers to an external factor that decreases the growth or productivity of a plant, and is largely classified into biological stress and abiotic stress.
  • Biological stress includes pathogens, and non-biological stress includes high concentration of salt, drought (dry), low temperature, high temperature and oxidative stress.
  • Environmental stress tolerance refers to a trait in which a decrease in growth or a decrease in productivity of a plant due to the above environmental stress is suppressed or delayed.
  • the environmental stress may be salt, low temperature, high temperature, or drought stress, but is not limited thereto.
  • the gene includes a nucleotide sequence having sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95% of the nucleotide sequence of SEQ ID NO: 1 can do.
  • The% of sequence homology for a polynucleotide is identified by comparing two optimally aligned sequences with a comparison region, and some of the polynucleotide sequences in the comparison region are reference sequences (including additions or deletions) for the optimal alignment of the two sequences. May include additions or deletions compared to).
  • the term recombination refers to a cell in which a cell replicates or expresses a heterologous nucleic acid, or a cell expressing a protein encoded by a peptide, a heterologous peptide or a heterologous nucleic acid, wherein the recombinant cell is not in the natural form of the cell.
  • the modified gene was reintroduced into the cell by artificial means. The gene may be in sense or antisense form.
  • the AK102606 gene sequence may be inserted into a recombinant expression vector.
  • recombinant expression vector means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus or other vector.
  • any plasmid and vector can be used as long as they can replicate and stabilize in the host.
  • An important characteristic of the expression vector is that it includes an origin of replication, a promoter, a marker gene, and a translational regulatory element.
  • the present invention is a step of transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice;
  • It provides a method for producing a plant having increased environmental stress tolerance and antioxidant activity of the plant comprising the step of re-differentiating the rice plant from the transformed rice plant cells.
  • An expression vector comprising the AK102606 gene sequence of the present invention and an appropriate transcription/translational control signal can be constructed by methods well known to those skilled in the art.
  • the method includes in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombinant technology.
  • the DNA sequence can be effectively linked to an appropriate promoter in the expression vector to guide mRNA synthesis.
  • the expression vector may include a ribosome binding site and a transcription terminator as a translation initiation site.
  • a preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a part of itself, a so-called T-region, to plant cells when present in a suitable host such as Agrobacterium tumerfaciens.
  • a Ti-plasmid vector capable of transferring hybrid DNA sequences into protoplasts from which new plants can be produced that properly insert plant cells or hybrid DNA into the plant's genome.
  • a particularly preferred form of Ti-plasmid vector is a so-called binary vector as claimed in EP 0 120 516 B1 and in US Pat. No. 4,940,838.
  • viral vectors such as those that can be derived from double-stranded plant viruses (e.g., CaMV) and single-stranded viruses, Gemini viruses, etc.
  • CaMV double-stranded plant viruses
  • it can be selected from incomplete plant viral vectors.
  • the use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
  • Transformed plant cells must be regenerated into whole plants. Techniques for the regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species.
  • the present invention provides a transgenic plant and a seed thereof in which the content of biomass and yield is increased by controlling the tolerance to environmental stress produced by the above method.
  • the plants are Arabidopsis, potato, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, beetroot, sweet potato, celery, carrot, parsley, parsley, cabbage, cabbage, radish, watermelon, melon, cucumber, It may be a dicotyledonous plant such as pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, and pea, or a monocotyledonous plant such as rice, barley, wheat, rye, corn, sugarcane, oats, onions, preferably monocotyledons, and more It may preferably be a rice plant, but is not limited thereto.
  • Agrobacterium tumefaciens LBA4404 was used to transform rice calli derived from scutellum of mature seeds of Japanese rice according to the conventional Agrobacterium tumefaciens mediated transformation method (Hiei et al. 1994).
  • the AK102606 transformation line (T 0 ) was selected, and a genetically modified organism (GMO) was transferred to the farmland of Kyungpook National University and T 1 seed Were harvested, and the following year, T 1 plants were transplanted to farmland to harvest T 2 seeds. And T 2 plants were evaluated for four independent AK102606 transgenic lines (TG 1, 2, 3, 4) according to DNA genotyping.
  • GMO genetically modified organism
  • Rice O. sativa L. var. japonica cv. Ilmi (WT) was used for transformation. Rice seeds were sterilized with 0.05% insecticide (SPOOTAC: prochloraz 25%) for 24 hours, rinsed thoroughly, and immersed in distilled water for 7 days in a growth chamber at 28°C. After seed germination, seedlings are transplanted into soil and grown in a greenhouse at 28°C to 32°C for 4 weeks (repeated cycle of 16 hours light condition and 8 hours dark condition), and then a genetically modified organism (GMO) at Kyungpook National University. It was used for stress test and cultivation in farmland.
  • SPOOTAC insecticide
  • GMO genetically modified organism
  • RNA extraction and RT-PCR quantitative real-time PCR
  • PrxA2 accession number AK104730
  • Prx11 accession number AK060295
  • Prx accession number AF014467
  • PrxA2-F CCCAGCTGCCTAGCTAAATG
  • PrxA2-R TCCACGAGCTAACACAC number 8 Prx11-F TTGCTCTCTGCCTGGCTTGT
  • Prx11-R TTCGGGCAGGTCTTTGAGTAG SEQ ID NO: 10
  • Prx-F CGTACGCTTGTATGCCAATG SEQ ID NO: 11
  • Prx-R AGCATGCCACTCTTGTAGGG SEQ ID NO: 12
  • Ferrous ammonium sulfate/xylenolorange was used to measure the H 2 O 2 content of rice leaves.
  • the composition of the FOX assay reagent is as follows: 250 ⁇ M of ferrous ammonium sulfate, 100 ⁇ M of sorbitol, 100 ⁇ M of xylenol orange and 25 mM of H 2 SO 4 .
  • 50 ⁇ L of a crude extract was added to 950 ⁇ L FOX assay reagent at room temperature, thoroughly mixed, and incubated in a dark room at 25° C. for 30 minutes. The absorbance was measured to be 560 nm.
  • the concentration of hydroperoxide was determined by the standard curve using H 2 O 2 reported previously (Gay et al., 1999).
  • MDA malondialdehyde
  • -0.1 g of leaf samples were homogenized with liquid nitrogen and mixed with a solution containing 20% (w/v) trichloroacetate and 0.65% (w/v) thiobarbitusic acid. Then, it was heated in a water bath at 95° C. for 25 minutes, and then centrifuged at 12,000 rpm at 4° C. for 10 minutes (Hodges et al., 1999).
  • the MDA concentration of the resulting supernatant was measured at 532 nm based on 600 nm, and was calculated using a molar extinction coefficient of 1.56 x 10 5 cm -1 M -1 for MDA (Gueta -Dahan Y et al., 1997). The results of hydroperoxide and MDA are shown based on WT rice (100%).
  • the leaves of TG and WT rice grown for 6 weeks in paddy fields were divided into 10 pieces each 1 cm in size. Ten leaf pieces were suspended in a 10 ⁇ M MV (methyl viologen) solution (9.0 cm diameter Petri dish), and incubated in a dark room at 20° C. for 12 hours to diffuse MV into the pieces. After pre-cultivation, the leaf pieces were left on the plant growth bed (16 hours light condition and 8 hours dark condition) at 20°C for 72 hours (Kwon et al., 2003). Ion leakage was measured at a designated time for 72 hours using an ion conductivity meter (455C, Isteck Co. Ltd., Seoul, Korea). Then, the sample was autoclaved at 121° C. for 15 minutes to release the ions of the cells. After autoclaving, ion leakage of the sample was measured again, and counter ion leakage was calculated using these values.
  • MV methyl viologen
  • Total plant fresh weight (TPW), stem weight (CW), number of tillers (NT), number of panicles per hill (NP), total grain weight (total) Grain weight, TGW), number of total grain per panicle (NTG), number of spikelets per panicle (NSP), and 1,000 grain weight (1000 GW) I did.
  • H 2 O 2 , MDA, and relative agronomic traits were calculated based on rice (100%) of WT (wild type), and at least 3 experiments were performed to obtain biochemical results.
  • Transgenic rice into which the AK102606 gene was introduced was analyzed for resistance to abiotic stresses such as salt (200 mMNaCl), low temperature (15°C), heat (42°C) and drought stress in a greenhouse.
  • abiotic stresses such as salt (200 mMNaCl), low temperature (15°C), heat (42°C) and drought stress in a greenhouse.
  • qPT-PCR was performed to confirm the expression of the AK10206 gene and the peroxidase ( Prx ) gene.
  • the AK102606 gene was highly expressed in the transformant compared to Japan and the United States (FIG. 1B), and thus 3 types of Prx genes were also highly expressed (FIG. 1C). In particular, it was highest in heat stress.
  • the transformant into which the AK102606 gene of rice was introduced increased the expression of the antioxidant gene than that of the control, Ilmi rice, so that the antioxidant capacity was increased and was resistant to all stresses.
  • the transgenic rice introduced with the AK102606 gene showed superior adaptability to nature at the early stage of growth compared to Japanese and American controls.
  • the seedlings of the transgenic rice with the AK102606 gene introduced were transplanted to the experimental package of Kyungpook National University located in Hyoryeong -myeon, Gunwi-gun, Gyeongsangbuk-do, and then the increase in the number of seeds, ROS staining, and ion leakage were analyzed from 4 to 7 weeks.
  • TGW total grain weight
  • NGW total grain count
  • NTP side index per ear
  • 1,000 grain weight 1,000 grain weight
  • the transformant overexpressing the AK102606 gene increased antioxidant capacity in natural paddy fields with various environmental stresses than the control, Ilmi rice, resulting in superior initial growth, resulting in increased yield (FIG. 4 ).
  • the transformant into which the AK102606 gene was introduced was exposed in a cold chamber at 10° C. for a certain period (about 7 days), and then moved to a normal 28° C. chamber and grown, and the change in growth of the transgenic rice according to the cold stress was observed.
  • the transformant 4 plant into which the AK102606 gene was introduced was transferred to a 50 ml conical tube, treated with 10% polyethylene glycol (PEG), which interferes with the water absorption of the plant, and then visually observed the phenotypic change over time, After the stress was treated for 5 days, it was observed to recover with normal water.
  • PEG polyethylene glycol

Abstract

The present invention relates to a use of Oryza sativa-derived AK102606 gene as a controller for antioxidative activity, environmental stress, and crop yield. A plant transformed with the AK102606 gene of the present invention exhibits high antioxidative activity, excellent tolerance to environmental stresses, notable initial growth, and high crop yield. Thus, the introduction of AK102606 gene into valuable crops can be advantageously used to develop plants superb in terms of antioxidative activity, abiotic stress, and crop yield.

Description

벼 유래의 AK102606 유전자의 항산화능, 환경 스트레스 및 수확량 조절자로서의 용도The use of rice-derived AK102606 gene as a regulator of antioxidant activity, environmental stress and yield
본 발명은 벼(Oryza sativa) 유래 AK102606 유전자의 항산화능, 환경 스트레스 및 작물 수확량 조절자로서의 용도를 규명한 것이다. The present invention investigated the use of the AK102606 gene derived from rice ( Oryza sativa ) as a regulator of antioxidant activity, environmental stress, and crop yield.
인류가 직면하고 있는 중대한 과제는 급변하는 기후와 감소하는 경작지 등의 위기 속에서 식량을 얼마나 안정적으로 수급하느냐이다. 실제로 지난 수십 년간 열악한 환경 속에 작물 생산성은 줄어들고 있다고 한다. 더욱 심각한 것은 앞으로 홍수와 가뭄, 고온, 저온 등의 발생이 더욱 빈번해 질 것이라고 예측된다는 것이다. 이런 요인에 의해 주요 작물인 옥수수나 밀, 벼의 생산성도 향후 더욱 감소할 것이라고 예상된다. The critical task that humanity faces is how to stably supply and supply food amid the crisis of a rapidly changing climate and declining cropland. In fact, it is said that crop productivity has declined in the past decades amid harsh conditions. Even more serious, it is predicted that floods, droughts, high temperatures and low temperatures will become more frequent in the future. Due to these factors, the productivity of major crops such as corn, wheat and rice is expected to decrease further in the future.
1960대 이후로 다양한 유전자원 (germplasm)의 개발 등을 통하여 주요 작물들의 생산성을 상승시키는 노력이 이어지고 있으나, 밀집된 재배 조건은 제한된 경작지 내에서 양분과 수분에 대한 경합을 초래하여 기후에 의한 피해를 더욱 증가시키고 있다. 그러므로 이러한 환경에 대하여 내성을 지니고 생산성을 유지할 수 있는 작물의 개발이 필요하다.Since the 1960s, efforts have been made to increase the productivity of major crops through the development of various genetic resources (germplasm), but dense cultivation conditions lead to competition for nutrients and moisture within limited arable land, further damaging the climate. Is increasing. Therefore, it is necessary to develop crops that are resistant to this environment and can maintain productivity.
식물은 세포대사로부터 생리와 발달까지 다양한 조절 기작을 통하여 여러 가지 환경에 적응하며 살아가고 있다. 특히 비생물적 스트레스 (abiotic stress)에 대한 기작이 중요한 적응 요인인데, 비생물적 스트레스란 식물세포의 항상성을 방해하여 결국 식물 성장을 저해하는 기후나 토양 조건을 일컫는다. 수분 과잉이나 부족, 독성 이온 (Al3+, Cl-, Cd2+, Fe2+, Na+ 등), 양분 부족 (Fe3+, N, P, S, Zn2+ 등), 고온, 저온, 대기 오존(O3) 등이 그 예이다. 이러한 스트레스는 일시적인 스트레스 (transient stress; 낮 동안의 고온 등)와 지속적인 스트레스 (chronic stress; 고염분 토양의 Na+ 등)로 나누어지고, 하루 중 혹은 발달과정 중 언제 스트레스를 받느냐에 따라 작물에게 미치는 영향이 달라진다. 어린 영양생장 시기에 받는 스트레스는 세포분열 및 세포성장을 저해하여 식물 성장을 더디게 하지만 작물의 수확량에 큰 영향을 미치지는 않는다. 반면 생식생장 시기의 스트레스는 작물의 수확량에 심각한 영향을 미친다. 비생물적 스트레스는 복합적으로 찾아오기 때문에 작물 생산성을 유지시키기 위해서는 다양한 적응 기작을 증진시키는 것이 필요하다. 비생물적 스트레스에 의한 피해를 최소화시키는 것이 결국 농업 생산성을 증대시키는 길이다.Plants live by adapting to various environments through various regulatory mechanisms from cell metabolism to physiology and development. In particular, the mechanism for abiotic stress is an important adaptation factor. Abiotic stress refers to climate or soil conditions that interfere with plant cell homeostasis and eventually inhibit plant growth. Water excess or lack of, toxic ions (Al 3+, Cl -, Cd 2+, Fe 2+, Na + and the like), food shortage (Fe 3+, N, P, S, Zn 2+, etc), high temperature, low temperature , Atmospheric ozone (O 3 ), etc. are examples. These stresses are divided into transient stress (high temperature during the day, etc.) and continuous stress (chronic stress; Na + in high salinity soil, etc.), and the effect on crops depends on when stressed during the day or during the development process. It changes. The stress experienced during the young vegetative growth period slows plant growth by inhibiting cell division and cell growth, but does not significantly affect the crop yield. On the other hand, stress during reproductive growth has a serious impact on crop yields. Since abiotic stress comes in a complex way, it is necessary to improve various adaptation mechanisms to maintain crop productivity. Minimizing the damage caused by abiotic stress is ultimately the way to increase agricultural productivity.
이에 본 발명자들은 벼(Oryza sativa) 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환한 결과 항산화능이 높으며, 환경 스트레스에 대한 내성이 우수하고, 초기 생장이 뛰어나며, 작물 수확량이 많은 것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors transformed rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice ( Oryza sativa ), resulting in high antioxidant activity , excellent resistance to environmental stress, and excellent initial growth. The present invention was completed by confirming that the crop yield was large.
따라서 본 발명의 목적은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 환경 스트레스 내성 및 항산화능을 증가시키는 방법을 제공하는 것이다.Therefore, an object of the present invention is to increase the environmental stress tolerance and antioxidant activity of plants, including the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice. To provide a way.
본 발명의 다른 목적은 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 환경 스트레스 내성 및 항산화능이 증가된 벼(Oryza sativa L. japonica) AK102606(KCTC 13810BP)를 제공하는 것이다. Another object of the present invention is to provide rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased environmental stress resistance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1.
본 발명의 다른 목적은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 바이오매스(biomass) 및 수확량(yield)을 증가시키는 방법을 제공하는 것이다.Another object of the present invention is a plant biomass and yield comprising the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice. ) To provide a way to increase.
본 발명의 다른 목적은 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 바이오매스 및 수확량이 증가된 벼(Oryza sativa L. japonica) AK102606(KCTC 13810BP)을 제공하는 것이다.Another object of the present invention is to provide a biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 and rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased yield.
상기 목적을 해결하기 위하여, 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 환경 스트레스 내성 및 항산화능을 증가시키는 방법을 제공한다. In order to solve the above object, increasing the environmental stress tolerance and antioxidant activity of plants comprising the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice. Provides a way to do it.
또한, 본 발명은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터로 벼의 식물세포에 형질전환하는 단계; 및In addition, the present invention is a step of transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice; And
상기 형질전환된 벼 식물세포로부터 벼 식물을 재분화하는 단계를 포함하는 환경 스트레스 내성 및 항산화능이 증가된 식물체의 제조방법을 제공한다. It provides a method for producing a plant having increased environmental stress tolerance and antioxidant activity, comprising the step of re-differentiating the rice plant from the transformed rice plant cells.
또한, 본 발명은 환경 스트레스 내성 및 항산화능이 증가된 형질전환 식물체 및 이의 종자를 제공한다.In addition, the present invention provides a transgenic plant with increased environmental stress tolerance and antioxidant activity and seeds thereof.
또한, 본 발명은 서열번호 1의 염기서열로 이루어진 벼 유래 AK102606 유전자를 함유하는, 식물체의 환경 스트레스 내성 및 항산화능 증가용 조성물을 제공한다. In addition, the present invention provides a composition for increasing environmental stress tolerance and antioxidant activity of plants, containing the AK102606 gene derived from rice consisting of the nucleotide sequence of SEQ ID NO: 1.
또한, 본 발명은 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 환경 스트레스 내성 및 항산화능이 증가된 벼(Oryza sativa L. japonica) AK102606(KCTC 13810BP)를 제공한다.In addition, the present invention provides rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased environmental stress tolerance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1.
또한, 본 발명은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 바이오매스(biomass) 및 수확량(yield)을 증가시키는 방법을 제공한다. In addition, the present invention is a plant biomass (biomass) and yield (yield) comprising the step of overexpressing the AK102606 gene by transforming the recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice in rice Provides a way to increase
또한, 본 발명은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터로 벼의 식물세포에 형질전환하는 단계; 및In addition, the present invention is a step of transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice; And
상기 형질전환된 벼 식물세포로부터 벼 식물을 재분화하는 단계를 포함하는 바이오매스 및 수확량(yield)이 증가된 식물체의 제조방법을 제공한다. It provides a method for producing a biomass and a plant having an increased yield, comprising the step of re-differentiating the rice plant from the transformed rice plant cells.
또한, 본 발명은 바이오매스 및 수확량(yield)이 증가된 형질전환 식물체 및 이의 종자를 제공한다.In addition, the present invention provides a transgenic plant with increased biomass and yield and seeds thereof.
또한, 본 발명은 서열번호 1의 염기서열로 이루어진 벼 유래 AK102606 유전자를 함유하는, 식물체의 바이오매스 및 수확량 증가용 조성물을 제공한다. In addition, the present invention provides a composition for increasing the biomass and yield of plants containing the AK102606 gene derived from rice consisting of the nucleotide sequence of SEQ ID NO: 1.
아울러, 본 발명은 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 바이오매스 및 수확량이 증가된 벼(Oryza sativa L. japonica) AK102606(KCTC 13810BP)을 제공한다. In addition, the present invention provides a biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 and rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased yield.
본 발명의 AK102606 유전자를 도입한 형질전환 식물체는 항산화능이 높으며, 환경 스트레스에 대한 내성이 우수하고, 초기 생장이 뛰어나며, 작물 수확량이 많으므로 AK102606 유전자를 유용작물에 도입하여 항산화능, 환경 스트레스 및 작물 수확량이 증가된 식물체를 개발하는 유용하게 이용할 수 있을 것이다.Transgenic plants into which the AK102606 gene of the present invention has been introduced has high antioxidant capacity, excellent resistance to environmental stress, excellent initial growth, and a large crop yield. Therefore, the AK102606 gene was introduced into useful crops to provide antioxidant activity, environmental stress and crops. It will be useful to develop plants with increased yield.
도 1은 AK102606 유전자를 도입한 형질전환 벼의 비생물적 내성능 분석 및 항산화 능력을 측정한 결과를 나타낸 사진과 그래프이다:1 is a photograph and graph showing the results of abiotic resistance analysis and antioxidant capacity measurement of transgenic rice into which the AK102606 gene was introduced:
(A) 염(200 mMNaCl), 저온(15℃), 열(42℃), 가뭄 스트레스를 14, 7, 28, 3일간 처리 후 대조구인 일미벼와 형질전환체의 표현형(A) Phenotypes of control, Ilmi rice and transformants after treatment with salt (200 mMNaCl), low temperature (15°C), heat (42°C), and drought stress for 14, 7, 28, and 3 days
(B), (C) 염과 저온 스트레스에 12시간, 열과 가뭄 스트레스에 24시간 동안 노출되었을 때 qPT-PCR 분석을 통한 AK10206 유전자와 peroxidase 유전자의 발현분석 (B), (C) Expression analysis of AK10206 gene and peroxidase gene through qPT -PCR analysis when exposed to salt and cold stress for 12 hours and heat and drought stress for 24 hours
(D), (E) 염 스트레스 7일, 저온 스트레스 4일, 열 스트레스 10일 및 가뭄 스트레스 2일 동안 노출시켰을 때의 상대적인 H2O2와 MDA 분석.(D), (E) Relative H 2 O 2 and MDA analysis when exposed for salt stress 7 days, low temperature stress 4 days, heat stress 10 days and drought stress 2 days.
도 2는 AK102606 유전자를 도입한 형질전환 벼의 초기 생육단계에서 표현형을 확인한 사진과 그래프이다:Figure 2 is a photograph and a graph confirming the phenotype in the initial growth stage of the transgenic rice into which the AK102606 gene was introduced:
(A) 자연 생육상태에서의 이앙 후 4주가 된 벼 식물체 표현형(A) Phenotype of rice plant 4 weeks after transplantation in natural growing state
(B) 이앙 후 6주 된 벼 식물체 표현형(B) 6 weeks old rice plant phenotype after transplantation
(C) 이앙 후 4일째부터 4일 간격으로 뿌리 길이를 측정(C) Measure root length at intervals of 4 days from the 4th day after transplanting
(D) 4주 된 식물체의 생량과 건량.(D) The yield and dry weight of the four-week-old plant.
도 3은 군위 실험포장지에서 형질전환 벼 식물체의 자연생육상태와 스트레스에 대한 항산화 능력을 분석한 결과를 나타낸 사진과 그래프이다:Figure 3 is a photograph and graph showing the results of analyzing the natural growth state and antioxidant capacity of the transformed rice plant in the Gunwi experimental package:
(A) 자연생육상태에서의 이앙 후 6주된 벼 식물체 표현형(A) 6-week-old rice plant phenotype after transplantation in natural growing state
(B) 이앙 후 변화된 벼 식물체 분얼수 증가량(B) Changed rice plant powder count after transplantation
(C) 이앙 후 6주 된 벼 잎의 NBT, DAB 염색 후 사진(C) Photograph after NBT and DAB staining of rice leaves 6 weeks after transplanting
(D) 이앙 후 6주 된 식물체의 MV(methyl viologen) 처리에 따른 이온누수량과 72시간 때 NBT 염색.(D) The amount of ion leakage according to MV (methyl viologen) treatment of 6 weeks old plant after transplantation and NBT staining at 72 hours.
도 4는 2016(T5), 2017(T6), 2018(T7)에 걸쳐 대조구 일미벼와 형질전환체 사이의 생식성장단계 표현형 및 농업형질분석한 결과를 나타낸 사진과 그래프이다:Figure 4 is a photograph and graph showing the results of analysis of the reproductive growth stage phenotype and agricultural trait between control Ilmi rice and transformants over 2016 (T 5 ), 2017 (T 6 ), and 2018 (T 7 ):
(A) 2016년 농업형질(T5) 비교분석(A) Comparative analysis of 2016 agricultural traits (T 5 )
(B) 2017년 농업형질(T6) 비교분석 (B) Comparative analysis of agricultural traits in 2017 (T 6 )
(C) 2018년 농업형질(T7) 비교분석 (C) Comparative analysis of agricultural traits in 2018 (T 7 )
총 식물생체중 (total plant fresh weight, TPW), 줄기 생체중(culm weight, CW), 분얼수(number of tillers, NT), 이랑당 이삭수(number of panicles per hill, NP), 총곡물무게(total grain weight, TGW), 총곡물수(number of total grains, NTG), 이삭당 곁가지수(number of spikelets per panicle; NSP), 및 천립중(1,000 grain weight, 1000GW) 각각의 결과를 상대적으로 나타내었으며, 대조구인 일미벼를 100%로 둠.Total plant fresh weight (TPW), stem weight (CW), number of tillers (NT), number of panicles per hill (NP), total grain weight (total) Grain weight, TGW), number of total grains (NTG), number of spikelets per panicle (NSP), and 1,000 grain weight (1000 GW) were shown relatively. The control, Ilmi rice, is set at 100%.
도 5는 2016(T5), 2017(T6), 2018(T7)의 3년 동안의 경북 군위군 효령면에 위치한 경북대학교 실험포장지의 기온 및 강수량 분석한 그래프이다:Figure 5 is a graph showing the temperature and precipitation analysis of the experimental pavement at Kyungpook National University located in Hyoryeong-myeon, Gunwi-gun, Gyeongbuk for 3 years in 2016 (T 5 ), 2017 (T 6 ), and 2018 (T 7 ):
(A) 평균최저기온(A) Average minimum temperature
(B) 평균최고기온(B) Average maximum temperature
(C) 강수량.(C) precipitation.
도 6은 AK102606 유전자를 도입한 형질전환 벼를 PEG400 10%의 가뭄 환경에 5일 동안 노출 시킨 후 회복시킨 사진이다.Figure 6 is a photograph of the transgenic rice introduced with the AK102606 gene, which was recovered after exposing it to a drought environment of 10% PEG400 for 5 days.
본 발명은 벼(Oryza sativa) 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 이용하여 벼에 형질전환하여 환경 스트레스에 대한 저항성 및 항산화능 및 수확량이 증가한 것을 확인한 것이다.The present invention confirmed that resistance to environmental stress, antioxidant activity, and yield were increased by transforming rice into rice using the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice ( Oryza sativa ).
본 발명은 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 환경 스트레스 내성 및 항산화능이 증가된 벼(Oryza sativa L. japonica) AK102606를 한국생명공학연구원에 수탁번호 KCTC 13810BP로 수탁하였다(2019.02.13).In the present invention, rice ( Oryza sativa L. japonica ) AK102606 with increased environmental stress tolerance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 was entrusted to the Korea Research Institute of Bioscience and Biotechnology under the accession number KCTC 13810BP (2019.02. 13).
또한, 본 발명의 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 바이오매스 및 수확량이 증가된 벼(Oryza sativa L. japonica) AK102606를 한국생명공학연구원에 수탁번호 KCTC 13810BP로 수탁하였다(2019.02.13).In addition, the biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 of the present invention and rice ( Oryza sativa L. japonica ) AK102606 with increased yield were entrusted to the Korea Research Institute of Bioscience and Biotechnology as accession number KCTC 13810BP (2019.02. .13).
상기 서열번호 1의 염기서열로 표시되는 AK102606 유전자는 서열번호 2로 표시되는 아미노산 서열일 수 있다. The AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 may be an amino acid sequence represented by SEQ ID NO: 2.
본 발명은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 환경 스트레스에 대한 저항성 및 항산화능 및 수확량이 증가한 것이 증가하는 것을 특징으로 하나, 이에 제한되지 않는다.The present invention includes the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice into rice, increasing the resistance to environmental stress, antioxidant activity, and yield. It is characterized in that it increases, but is not limited thereto.
본 발명에서 "환경 스트레스"란 식물체의 성장 또는 생산성을 저하시키는 외부적인 요인을 말하며 크게 생물학적 스트레스(biotic stress)와 비생물학적 스트레스(abiotic stress)로 대별된다. 생물학적 스트레스로는 대표적으로 병원균을 들 수 있으며 비생물학적 스트레스로는 고농도의 염, 가뭄(건조), 저온, 고온 및 산화 스트레스 등이 포함된다. "환경 스트레스 내성"이란 상기와 같은 환경 스트레스에 의한 식물체의 성장 저하 또는 생산성의 저하가 억제되거나 지연되는 형질을 말한다.In the present invention, "environmental stress" refers to an external factor that decreases the growth or productivity of a plant, and is largely classified into biological stress and abiotic stress. Biological stress includes pathogens, and non-biological stress includes high concentration of salt, drought (dry), low temperature, high temperature and oxidative stress. "Environmental stress tolerance" refers to a trait in which a decrease in growth or a decrease in productivity of a plant due to the above environmental stress is suppressed or delayed.
본 발명의 일 구현 예에 따른 방법에서, 상기 환경 스트레스는 염, 저온, 고온 또는 가뭄 스트레스일 수 있으나, 이에 제한되지 않는다.In the method according to the embodiment of the present invention, the environmental stress may be salt, low temperature, high temperature, or drought stress, but is not limited thereto.
또한 상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 구체적으로 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 서열상동성의 %는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제를 포함할 수 있다.In addition, variants of the base sequence are included within the scope of the present invention. Specifically, the gene includes a nucleotide sequence having sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95% of the nucleotide sequence of SEQ ID NO: 1 can do. The% of sequence homology for a polynucleotide is identified by comparing two optimally aligned sequences with a comparison region, and some of the polynucleotide sequences in the comparison region are reference sequences (including additions or deletions) for the optimal alignment of the two sequences. May include additions or deletions compared to).
용어 재조합은 세포가 이종의 핵산을 복제하거나 상기 핵산을 발현하거나또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것으로, 재조합 세포는 상기 세포의 천연 형태가 아닌 변형된 유전자를 인위적인 수단에 의해 세포 내 재도입한 것이다. 상기 유전자는 센스 또는 안티센스 형태일 수 있다.The term recombination refers to a cell in which a cell replicates or expresses a heterologous nucleic acid, or a cell expressing a protein encoded by a peptide, a heterologous peptide or a heterologous nucleic acid, wherein the recombinant cell is not in the natural form of the cell. The modified gene was reintroduced into the cell by artificial means. The gene may be in sense or antisense form.
본 발명에서 상기 AK102606 유전자 서열은 재조합 발현 벡터 내로 삽입될 수 있다.In the present invention, the AK102606 gene sequence may be inserted into a recombinant expression vector.
본 발명의 용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포바이러스, 포유동물 세포 바이러스 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절요소 등을 포함하는 것이다.The term "recombinant expression vector" of the present invention means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus or other vector. In general, any plasmid and vector can be used as long as they can replicate and stabilize in the host. An important characteristic of the expression vector is that it includes an origin of replication, a promoter, a marker gene, and a translational regulatory element.
또한, 본 발명은 벼 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터로 벼의 식물세포에 형질전환하는 단계; 및In addition, the present invention is a step of transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice; And
상기 형질전환된 벼 식물세포로부터 벼 식물을 재분화하는 단계를 포함하는 식물의 환경 스트레스 내성 및 항산화능이 증가된 식물체의 제조방법을 제공한다. It provides a method for producing a plant having increased environmental stress tolerance and antioxidant activity of the plant comprising the step of re-differentiating the rice plant from the transformed rice plant cells.
본 발명의 AK102606 유전자 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.An expression vector comprising the AK102606 gene sequence of the present invention and an appropriate transcription/translational control signal can be constructed by methods well known to those skilled in the art. The method includes in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombinant technology. The DNA sequence can be effectively linked to an appropriate promoter in the expression vector to guide mRNA synthesis. In addition, the expression vector may include a ribosome binding site and a transcription terminator as a translation initiation site.
본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 제미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a part of itself, a so-called T-region, to plant cells when present in a suitable host such as Agrobacterium tumerfaciens. Another type of Ti-plasmid vector (see EP 0 116 718 B1) is currently being used to transfer hybrid DNA sequences into protoplasts from which new plants can be produced that properly insert plant cells or hybrid DNA into the plant's genome. . A particularly preferred form of Ti-plasmid vector is a so-called binary vector as claimed in EP 0 120 516 B1 and in US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host are viral vectors such as those that can be derived from double-stranded plant viruses (e.g., CaMV) and single-stranded viruses, Gemini viruses, etc. For example, it can be selected from incomplete plant viral vectors. The use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
본 발명의 방법은 본 발명에 따른 재조합 벡터로 식물 세포를 형질전환하는 단계를 포함하는데, 상기 형질전환은 예를 들면, 아그로박테리움 튜머파시엔스(Agrobacterium tumefiaciens)에 의해 매개 될 수 있다. 또한, 본 발명의 방법은 상기 형질전환된 식물 세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물 세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.The method of the present invention includes transforming a plant cell with the recombinant vector according to the present invention, the transformation may be mediated by, for example, Agrobacterium tumefiaciens . In addition, the method of the present invention includes the step of regenerating a transformed plant from the transformed plant cell. Any method known in the art may be used as a method of regenerating a transformed plant from a transformed plant cell.
형질전환된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다.Transformed plant cells must be regenerated into whole plants. Techniques for the regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species.
또한, 본 발명은 상기 방법에 의해 제조된 환경 스트레스에 대한 내성이 조절되어 바이오매스 및 수확량의 함량이 증대된 형질전환 식물체 및 이의 종자를 제공한다.In addition, the present invention provides a transgenic plant and a seed thereof in which the content of biomass and yield is increased by controlling the tolerance to environmental stress produced by the above method.
상기 식물체는 애기장대, 감자, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물일 수 있으며, 바람직하게는 단자엽 식물이며, 더욱 바람직하게는 벼 식물체일 수 있으나, 이에 제한되지 않는다.The plants are Arabidopsis, potato, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, beetroot, sweet potato, celery, carrot, parsley, parsley, cabbage, cabbage, radish, watermelon, melon, cucumber, It may be a dicotyledonous plant such as pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, and pea, or a monocotyledonous plant such as rice, barley, wheat, rye, corn, sugarcane, oats, onions, preferably monocotyledons, and more It may preferably be a rice plant, but is not limited thereto.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단Hereinafter, the present invention will be described in more detail by examples. These examples are only
지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.For the purpose of describing the present invention in more detail, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited to these examples.
<실시예 1> 실험 재료 및 방법<Example 1> Experimental materials and methods
<1-1> 플라스미드 구조 및 벼의 형질전환<1-1> Plasmid structure and transformation of rice
AK102606 유전자를 코딩하는 전장(full-length) cDNA (GenBank accession no: AK102606)를 바이나리벡터(binary vector) p600-Rab21(GenBank accession no: AB027256 명지대)에 삽입하였다. 생성된 유전자 구조를 AK102606로 명명하고 Agrobacterium tumefaciens LBA4404로 벼 묘종(O. sativa L. japonica cv. 일미)에 형질전환시켰다. Agrobacterium tumefaciens LBA4404는 종래의 Agrobacterium tumefaciens 매개형질전환방법(Hiei et al. 1994)에 따라 일미벼의 성숙한 종자의 배반(scutellum)으로부터 유도된 쌀미(rice calli)를 형질전환하는데 사용되었다. 비알라포스(bialaphos)에 대한 내성과 DNA 유전형질분석(genotyping)에 따라 AK102606 형질전환계통(T0)을 선택하여, 경북대학교 유전자변형생물체(genetically modified organism ;GMO) 농지에 이앙하여 T1 종자를 수확하고, 그 다음해 T1 식물체를 농지에 이앙하여 T2 종자를 수확하였다. 그리고 T2 식물체를 DNA 유전형질분석(genotyping)에 따라 4개의 독립적인 AK102606 형질전환계통(TG 1, 2, 3, 4)을 평가하였다. The full-length cDNA (GenBank accession no: AK102606) encoding the AK102606 gene was inserted into the binary vector p600-Rab21 (GenBank accession no: AB027256 Myeongji). The resulting gene structure was named AK102606 and transformed into a rice seedling ( O. sativa L. japonica cv. Japan and the United States) with Agrobacterium tumefaciens LBA4404. Agrobacterium tumefaciens LBA4404 was used to transform rice calli derived from scutellum of mature seeds of Japanese rice according to the conventional Agrobacterium tumefaciens mediated transformation method (Hiei et al. 1994). According to resistance to bialaphos and DNA genotyping, the AK102606 transformation line (T 0 ) was selected, and a genetically modified organism (GMO) was transferred to the farmland of Kyungpook National University and T 1 seed Were harvested, and the following year, T 1 plants were transplanted to farmland to harvest T 2 seeds. And T 2 plants were evaluated for four independent AK102606 transgenic lines ( TG 1, 2, 3, 4) according to DNA genotyping.
<1-2> 식물재료, 생육조건, 스트레스 조건<1-2> Plant material, growth condition, stress condition
벼(O. sativa L. var. japonica) cv. 일미(WT)를 형질전환에 사용하였다. 벼 종자는 0.05% 살충제(SPOOTAC :prochloraz 25 %)로 24시간 소독하고 완전히 헹군 후, 28℃의 암실생육상(growth chamber)에서 7일 동안 증류수에 침지시켰다. 종자발아 후, 모종을 토양에 이식하여 4주 동안 28℃ 내지 32℃의 온실(16시간 광조건 및 8시간 암조건의 반복주기)에서 생육한 후, 경북대학교 유전자변형생물체(genetically modified organism ;GMO) 농지에서 스트레스 실험 및 재배에 사용하였다. 온실에 파종 후 4주된 묘목에 염(200 mM NaCl), 저온(15℃), 열(42℃), 가뭄 스트레스를 14, 7, 28, 3일간 처리 후 대조구인 일미벼(WT)와 형질전환체(TG)의 표현형을 관찰하였다. 독립적인 4개 계통의 T7 세대를 후속상세분석에 사용하였다.Rice ( O. sativa L. var. japonica ) cv. Ilmi (WT) was used for transformation. Rice seeds were sterilized with 0.05% insecticide (SPOOTAC: prochloraz 25%) for 24 hours, rinsed thoroughly, and immersed in distilled water for 7 days in a growth chamber at 28°C. After seed germination, seedlings are transplanted into soil and grown in a greenhouse at 28°C to 32°C for 4 weeks (repeated cycle of 16 hours light condition and 8 hours dark condition), and then a genetically modified organism (GMO) at Kyungpook National University. It was used for stress test and cultivation in farmland. Four-week-old seedlings after sowing in a greenhouse were treated with salt (200 mM NaCl), low temperature (15℃), heat (42℃), and drought stress for 14, 7, 28, and 3 days, followed by control, Ilmi rice (WT) and transformants. The phenotype of (TG) was observed. T 7 generations of 4 independent lines were used for further analysis.
<1-3> RNA 추출 및 RT-PCR(quantitative real-time PCR)<1-3> RNA extraction and RT-PCR (quantitative real-time PCR)
TRIzol 시약(Invitrogen, Waltham, MA, USA)을 사용하여 제조사의 지침에 따라 이식 4주 후 TG 및 WT 벼 식물의 잎에서 총 RNA를 추출하였다. 역전사반응은SuperScript III First-Strand Synthesis System(Invitrogen)을 사용하여 총 RNA 2 μg을 사용하여 수행하였다. AK102606(accession number AK102606) 발현을 확인하기 위하여, AK102606-F1(5'- ATAGTTTGCGGTGGATCTGG-3'(서열번호 3)) 및 AK102606-R1(5'-CTTGGAGGTGCAGAGTTAGC-3'(서열번호 4)) 프라이머세트를 사용하였다. Tub-F (5'-GAGTACCCTGACCGCATGAT-3'(서열번호 5)) 및 Tub-R (5'-GTGGTCAGCTTGAGAGTCCT-3'(서열번호 6)) 프라이머 세트를 갖는 벼 튜불린(Tub) 유전자(accession number AK072502)를 동일한 PCR 조건하에서 양성 하우스키핑(housekeeping) 대조군으로 사용하였다. 3 종류의 peroxidase 유전자인 PrxA2(accession number AK104730), Prx11(accession number AK060295), Prx(accession number AF014467)의 발현을 확인하기 위해 PrxA2-F CCCAGCTGCCTAGCTAAATG(서열번호 7), PrxA2-R TCCACGAGCTAACACACAGC(서열번호 8), Prx11-F TTGCTCTCTGCCTGGCTTGT(서열번호 9), Prx11-R TTCGGGCAGGTCTTTGAGTAG(서열번호 10), Prx-F CGTACGCTTGTATGCCAATG(서열번호 11), Prx-R AGCATGCCACTCTTGTAGGG(서열번호 12) 프라이머를 사용하였다. Total RNA was extracted from the leaves of TG and WT rice plants 4 weeks after transplantation according to the manufacturer's instructions using TRIzol reagent (Invitrogen, Waltham, MA, USA). The reverse transcription reaction was performed using 2 μg of total RNA using SuperScript III First-Strand Synthesis System (Invitrogen). In order to confirm AK102606 (accession number AK102606) expression, AK102606-F1 (5'-ATAGTTTGCGGTGGATCTGG-3' (SEQ ID NO: 3)) and AK102606-R1 (5'-CTTGGAGGTGCAGAGTTAGC-3' (SEQ ID NO: 4)) primer sets were used. Used. Tub-F (5'-GAGTACCCTGACCGCATGAT-3' (SEQ ID NO: 5)) and Tub-R (5'-GTGGTCAGCTTGAGAGTCCT-3' (SEQ ID NO: 6)) rice tubulin gene (accession number AK072502) with primer sets ) Was used as a positive housekeeping control under the same PCR conditions. To confirm the expression of three types of peroxidase genes PrxA2 (accession number AK104730), Prx11 (accession number AK060295), and Prx (accession number AF014467), PrxA2-F CCCAGCTGCCTAGCTAAATG (SEQ ID NO: 7), PrxA2-R TCCACGAGCTAACACAC number 8 ), Prx11-F TTGCTCTCTGCCTGGCTTGT (SEQ ID NO: 9), Prx11-R TTCGGGCAGGTCTTTGAGTAG (SEQ ID NO: 10), Prx-F CGTACGCTTGTATGCCAATG (SEQ ID NO: 11), Prx-R AGCATGCCACTCTTGTAGGG (SEQ ID NO: 12) primers were used.
정량 실시간 PCR 분석을 위해 희석된 (1:10) 1차 스탠드 cDNA 템플릿 2 μL과 SYBR Green PCR master mix (Applied Biosystems, Foster, CA, USA) 18 μL를 사용하였다. 반응은 95℃에서 10분간의 초기 변성 단계, 95℃에서 15초, 60℃에서 10분간 40회 반복하였다. 데이터는 StepOne Software v2.1 (Applied Biosystems)을 사용하여 수집하고 분석했습니다. 표준화 및 상대 정량화는 2-ΔΔCt 방법을 사용하여 수행되었다.For quantitative real-time PCR analysis, 2 μL of diluted (1:10) primary stand cDNA template and 18 μL of SYBR Green PCR master mix (Applied Biosystems, Foster, CA, USA) were used. The reaction was repeated 40 times at 95° C. for 10 minutes at an initial denaturation step, 95° C. for 15 seconds, and 60° C. for 10 minutes. Data was collected and analyzed using StepOne Software v2.1 (Applied Biosystems). Normalization and relative quantification were performed using the 2 -ΔΔCt method.
<1-4> H2O2 분석 및 지질과 산화 <1-4> H 2 O 2 analysis and lipid peroxidation
염 스트레스 7일, 저온 스트레스 4일, 열 스트레스 10일 및 가뭄 스트레스 2일 동안 노출시킨 벼 식물체의 잎으로 측정하였다. It was measured with leaves of rice plants exposed for 7 days of salt stress, 4 days of low temperature stress, 10 days of heat stress, and 2 days of drought stress.
Ferrous ammonium sulfate/xylenolorange(FOX) 방법을 사용하여 벼 잎의 H2O2 함량을 측정하였다. FOX 분석시약의 조성은 다음과 같다: 250 μM의 철황산암모늄(ferrous ammonium sulfate), 100 μM의 솔비톨(sorbitol), 100 μM의 크실레놀오렌지 및 25 mM의 H2SO4. 각 샘플에 대해 조추출물(crude extract) 50 μL를 실온에서 950 μL FOX assay 시약에 첨가하여 완전히 혼합한 후, 25℃의 암실에서 30분 동안 배양하였다. 흡광도는 560 nm로 측정되었다. 하이드로퍼옥사이드(hydroperoxide)의 농도는 기존에 보고된 H2O2를 사용하는 표준곡선(Gay et al., 1999)에 의해 결정하였다. 막지질의 불포화지방산과 산화로부터 유도된 말론디알데히드(malondialdehyde; MDA)의 양은 총티오바르비투산(thiobarbituric acid) 반응물질분석을 사용하여 측정하였다. 구체적으로, ~ 0.1 g의 잎 샘플을 액체질소를 사용하여 균질화시키고, 20%(w/v) 트리클로로아세테이트및 0.65%(w/v) 티오바르비투산을 함유하는 용액과 혼합하였다. 이후, 95℃의 수조에서 25분 동안 가열한 다음, 4℃에서 12,000 rpm으로 10분간 원심분리하였다(Hodges et al., 1999). 최종적으로, 생성된 상층액(supernatant)의 MDA 농도는 600 nm를 기준으로하여 532 nm에서 측정되었고, MDA에 대해 1.56 x 105 cm-1 M-1의 몰흡광계수를 사용하여 계산하였다(Gueta-Dahan Y 등, 1997). 하이드로퍼옥사이드와 MDA의 결과는 WT 벼(100%)를 기준으로 나타내었다.Ferrous ammonium sulfate/xylenolorange (FOX) was used to measure the H 2 O 2 content of rice leaves. The composition of the FOX assay reagent is as follows: 250 μM of ferrous ammonium sulfate, 100 μM of sorbitol, 100 μM of xylenol orange and 25 mM of H 2 SO 4 . For each sample, 50 μL of a crude extract was added to 950 μL FOX assay reagent at room temperature, thoroughly mixed, and incubated in a dark room at 25° C. for 30 minutes. The absorbance was measured to be 560 nm. The concentration of hydroperoxide was determined by the standard curve using H 2 O 2 reported previously (Gay et al., 1999). The amount of malondialdehyde (MDA) derived from the oxidation of unsaturated fatty acids in membrane lipids was measured using total thiobarbituric acid reactant analysis. Specifically, -0.1 g of leaf samples were homogenized with liquid nitrogen and mixed with a solution containing 20% (w/v) trichloroacetate and 0.65% (w/v) thiobarbitusic acid. Then, it was heated in a water bath at 95° C. for 25 minutes, and then centrifuged at 12,000 rpm at 4° C. for 10 minutes (Hodges et al., 1999). Finally, the MDA concentration of the resulting supernatant was measured at 532 nm based on 600 nm, and was calculated using a molar extinction coefficient of 1.56 x 10 5 cm -1 M -1 for MDA (Gueta -Dahan Y et al., 1997). The results of hydroperoxide and MDA are shown based on WT rice (100%).
<1-5> 초기생장평가<1-5> Early growth evaluation
심한 일교차를 나타나낸 논에서 식물의 환경적응을 평가하기 위하여, 이식 4일 후 독립계통당 4개의 벼 식물체를 샘플링하여 4일 간격으로 뿌리길이를 측정하였다. 이앙 후 한 달이 되었을 때 독립계통당 4개의 벼 식물체를 샘플링하여 생체중(fresh weight) 및 건체중(dry weight)을 측정하였다.In order to evaluate the environmental adaptation of plants in paddy fields with severe daily temperature differences, 4 rice plants per independent line were sampled 4 days after transplantation and root lengths were measured at 4 days intervals. At one month after transplanting, 4 rice plants per independent line were sampled to measure fresh weight and dry weight.
<1-6> 조직화학염색<1-6> Histochemical staining
잎에서 스트레스에 의해 생성된 O2-는 남색이 나타날 때까지 10 mM 인산나트륨 완충액에서 1% nitro blue tetrazolium(NBT)으로 염색하여 검출하였고(Lin et al., 2009), H2O2는 식물생장상(growth chamber)에서 적갈색이 나타날 때까지 3,3-디아미노벤지딘(3,3-diaminobenzidine; DAB)-HCl (pH 3.8)과 함께 배양하여 검출하였다(Thordal-Christensen et al., 1997).O 2- produced by stress in leaves was detected by staining with 1% nitro blue tetrazolium (NBT) in 10 mM sodium phosphate buffer until indigo color appeared (Lin et al., 2009), and H 2 O 2 was detected in plants. It was detected by incubation with 3,3-diaminobenzidine (DAB)-HCl (pH 3.8) until a reddish brown color appeared in the growth chamber (Thordal-Christensen et al., 1997). .
<1-7> 메틸비올로겐(MV) 처리 및 이온 누출 분석<1-7> Methylviologen (MV) treatment and ion leakage analysis
논에서 6주 동안 재배된 TG 및 WT 벼의 잎을 크기가 각각 1 cm인 10개의 조각으로 나누었다. 10개의 잎 조각을 10 μM MV(methyl viologen) 용액(9.0 cm 직경의페트리접시)에 부유시키고, 20℃ 암실에서 12시간 동안 배양하여 MV를 조각으로 확산시켰다. 예비배양 후, 잎 조각을 20℃에서 72시간 동안 식물생장상(16시간 광조건 및 8시간 암조건)에 방치하였다(Kwon et al., 2003). 이온전도도측정기(455C, Isteck Co. Ltd., Seoul, Korea)를 사용하여 72시간 동안 지정된 시간에 이온누출을 측정하였다. 이후 샘플을 121℃에서 15분 동안 고압증기멸균(autoclave)로 세포의 이온을 방출시켰다. 고압증기멸균 후, 샘플의 이온누출을 재측정하였고, 이들 값을 이용하여 상대이온 누출을 계산하였다.The leaves of TG and WT rice grown for 6 weeks in paddy fields were divided into 10 pieces each 1 cm in size. Ten leaf pieces were suspended in a 10 μM MV (methyl viologen) solution (9.0 cm diameter Petri dish), and incubated in a dark room at 20° C. for 12 hours to diffuse MV into the pieces. After pre-cultivation, the leaf pieces were left on the plant growth bed (16 hours light condition and 8 hours dark condition) at 20°C for 72 hours (Kwon et al., 2003). Ion leakage was measured at a designated time for 72 hours using an ion conductivity meter (455C, Isteck Co. Ltd., Seoul, Korea). Then, the sample was autoclaved at 121° C. for 15 minutes to release the ions of the cells. After autoclaving, ion leakage of the sample was measured again, and counter ion leakage was calculated using these values.
<1-8> 논에서 재배된 벼의 농업적 특성 평가<1-8> Evaluation of agricultural characteristics of rice grown in paddy fields
자연 논조건에서 TG 벼의 수확량을 조사하기 위하여, 한 달 동안 온실에서 자란 WT 벼 및 TG 벼의 4개의 독립계통을 2016년(T5), 2017년(T6) 및 2018년(T7)에 경북대학교 산하 GMO 포장지(군위)에 위치한 논에 20 x 60 cm의 간격으로 이랑(hill)당 하나씩 이식하였다. 논에서 자란 벼가 성숙하여 이삭이 여물었을 때, 종자를 손으로 수확하였다. 총 식물생체중 (total plant fresh weight, TPW), 줄기 생체중(culm weight, CW), 분얼수(number of tillers, NT), 이랑당 이삭수(number of panicles per hill, NP), 총곡물무게(total grain weight, TGW), 총곡물수(number of total grain per panicle, NTG), 이삭당 곁가지수(number of spikelets per panicle; NSP), 및 천립중(1,000 grain weight, 1000GW) 등의 농업적 특성을 평가하였다.In order to investigate the yield of TG rice in natural paddy conditions, four independent strains of WT rice and TG rice grown in a greenhouse for one month were selected in 2016 (T 5 ), 2017 (T 6 ) and 2018 (T 7 ). In the rice fields located in GMO packaging (Gunwi) under Kyungpook National University, one transplant was carried out per hill at intervals of 20 x 60 cm. When the rice grown in the paddy field matured and the ear was growing, the seeds were harvested by hand. Total plant fresh weight (TPW), stem weight (CW), number of tillers (NT), number of panicles per hill (NP), total grain weight (total) Grain weight, TGW), number of total grain per panicle (NTG), number of spikelets per panicle (NSP), and 1,000 grain weight (1000 GW) I did.
<1-9> 통계분석<1-9> Statistical analysis
H2O2, MDA, 상대적인 작물학적 특성(agronomic traits)은 WT(야생형)의 벼(100%)를 기준으로 계산하였고, 생화학적 결과를 얻기 위해서는 적어도 3번 실험을 수행하였다.H 2 O 2 , MDA, and relative agronomic traits were calculated based on rice (100%) of WT (wild type), and at least 3 experiments were performed to obtain biochemical results.
<실시예 2> 실험 결과<Example 2> Experimental results
<2-1> <2-1> AK102606 AK102606 유전자를 도입한 형질전환 벼의 비생물학적 스트레스에 따른 내성 분석Tolerance analysis of transgenic rice with gene introduction according to abiotic stress
AK102606 유전자를 도입한 형질전환 벼를 온실(glasshouse)에서 비생물학적 스트레스인 염(200 mMNaCl), 저온(15℃), 열(42℃) 및 가뭄 스트레스에 대한 내성을 분석하였다. Transgenic rice into which the AK102606 gene was introduced was analyzed for resistance to abiotic stresses such as salt (200 mMNaCl), low temperature (15°C), heat (42°C) and drought stress in a greenhouse.
그 결과, AK102606 유전자를 도입한 형질전환 벼에서 대조구인 일미벼(WT)보다 모든 스트레스에서 생존율이 높았다(도 1A). As a result, in the transgenic rice into which the AK102606 gene was introduced, the survival rate was higher under all stress than the control, Ilmi rice (WT) (Fig. 1A).
또한, AK102606 유전자를 도입한 형질전환 벼를 염과 저온 스트레스에 12시간, 열과 가뭄 스트레스에 24시간 동안 노출 시킨 후 qPT-PCR을 수행하여 AK10206 유전자와 peroxidase(Prx) 유전자의 발현을 확인하였다. In addition, after exposing the transgenic rice to which the AK102606 gene was introduced to salt and cold stress for 12 hours and to heat and drought stress for 24 hours, qPT-PCR was performed to confirm the expression of the AK10206 gene and the peroxidase ( Prx ) gene.
그 결과, AK102606 유전자가 형질전환체에서 대조구 일미에 비해 높게 발현되었고(도 1B), 그로 인해 3 타입의 Prx 유전자도 높게 발현되었다(도 1C). 특히 열 스트레스에서 가장 높게 발현되었다. As a result, the AK102606 gene was highly expressed in the transformant compared to Japan and the United States (FIG. 1B), and thus 3 types of Prx genes were also highly expressed (FIG. 1C). In particular, it was highest in heat stress.
<2-2> <2-2> AK102606 AK102606 유전자를 도입한 형질전환 벼의 항산화능 분석Analysis of Antioxidant Activity of Transgenic Rice Introduced Genes
AK102606 유전자를 도입한 형질전환 벼의 항산화 능력을 확인하기 위해 염, 염 스트레스 7일, 저온 스트레스 4일, 열 스트레스 10일 및 가뭄 스트레스 2일 동안 노출시킨 벼 식물체의 잎에 생성된 활성산소인 H2O2와 그로 인해 산화되는 지방산(MDA) 값을 측정하였다. In order to confirm the antioxidant ability of transgenic rice with AK102606 gene introduced, H, an active oxygen produced in the leaves of rice plants exposed for 7 days of salt, salt stress, 4 days of low temperature stress, 10 days of heat stress, and 2 days of drought stress. 2 O 2 and the resulting fatty acid (MDA) value was measured.
그 결과, 대조구 일미에 비해 형질전환체의 활성산소 및 산화된 지방값이 낮았다(도 1D, E). As a result, the amount of active oxygen and oxidized fat of the transformant was lower than that of Japan and the United States of the control (Fig. 1D, E).
결과적으로, 벼의 AK102606 유전자를 도입한 형질전환체가 대조구인 일미벼보다 항산화 유전자의 발현을 증가시키므로 항산화 능력이 증가하였고, 모든 스트레스에 내성을 가졌다.As a result, the transformant into which the AK102606 gene of rice was introduced increased the expression of the antioxidant gene than that of the control, Ilmi rice, so that the antioxidant capacity was increased and was resistant to all stresses.
PEG 10%를 처리한 후 회복시켰을 때 대조구 일미 벼에 비해 AK102606 형질전환 벼의 회복율이 더 높으므로 가뭄 스트레스에 내성을 가지는 것을 확인하였다(도 6).When recovering after treatment with 10% PEG, it was confirmed that the AK102606 transgenic rice had a higher recovery rate than that of the control Japanese rice, and thus had resistance to drought stress (FIG. 6 ).
<2-3> <2-3> AK102606 AK102606 유전자를 도입한 형질전환 벼의 초기 생육 분석Early growth analysis of transgenic rice with gene introduction
경북 군위군 효령면에 위치한 경북대학교 GMO 실험포장지에 이식 후, 각각의 형질전환 벼 식물체의 초기생육단계를 관찰하기 위하여 이앙 후 4일째 되는 날부터 식물체를 뽑아 뿌리 길이를 측정하고 한 달이 되는 날에는 식물체의 생체량 및 건조량을 측정하였다.After transplanting to the GMO test site of Kyungpook National University located in Hyoryeong-myeon, Gunwi-gun, Gyeongsangbuk-do, in order to observe the initial growth stage of each transgenic rice plant, the plant was pulled from the fourth day after transplanting, and the root length was measured. The biomass and dry weight of were measured.
그 결과, 초기생육단계에서 지속적으로 형질전환체가 대조구 일미에 비해 뿌리 길이 및 생육 상태가 우수했으며(도 2C), 한 달이 되었을 때 표현형 및 식물의 생체량도 대조구 일미에 비해 AK102606 유전자를 도입한 형질전환 벼에서 우수한 결과를 보였다(도 2A, D). As a result, in the early stage of growth, the transformant continued to have superior root length and growth status compared to the Japanese and American controls (Fig. 2C), and the phenotype and biomass of the plant at one month were also introduced with the AK102606 gene compared to the Japanese and American controls. Excellent results were shown in the converted rice (Fig. 2A, D).
결과적으로, AK102606 유전자를 도입한 형질전환 벼가 대조구 일미에 비해 초기생육단계에서 자연에 대한 적응력이 우수하였다.As a result, the transgenic rice introduced with the AK102606 gene showed superior adaptability to nature at the early stage of growth compared to Japanese and American controls.
<2-4> <2-4> AK102606 AK102606 유전자를 도입한 형질전환 벼의 생육상태와 항산화능력 분석Analysis of growth status and antioxidant capacity of transgenic rice with gene introduction
AK102606 유전자를 도입한 형질전환 벼의 묘목을 경북 군위군 효령면에 위치한 경북대학교 실험포장지에 이앙 후, 4주부터 7주까지 분얼 수 증가량과 ROS 염색 및 이온 누출(ion leakage)량 분석하였다.The seedlings of the transgenic rice with the AK102606 gene introduced were transplanted to the experimental package of Kyungpook National University located in Hyoryeong -myeon, Gunwi-gun, Gyeongsangbuk-do, and then the increase in the number of seeds, ROS staining, and ion leakage were analyzed from 4 to 7 weeks.
그 결과, 이앙 후 6주에서 7주 사이에 분얼수가 급속히 증가하였고, 대조구에 비해 형질전환체의 증가율이 더 높았다(도 3B). 이앙 후 6주 된 잎으로부터 항산화 능력을 확인하기 위해 NBT (슈퍼옥사이드와 결합), DAB (H2O2와 결합) 염색을 실시하였고, 대조구 일미벼에 비해 형질전환체의 잎에서 ROS 생산량이 더 낮은것을 확인하였다(도 3C). As a result, between 6 and 7 weeks after transplantation, the number of powders rapidly increased, and the increase rate of transformants was higher than that of the control (FIG. 3B ). NBT (binding with superoxide) and DAB (binding with H 2 O 2 ) staining were performed to confirm the antioxidant ability from 6 weeks old leaves after transplantation, and ROS production was lower in the leaves of the transformant compared to the control group Ilmi rice. It was confirmed (Fig. 3C).
또한, 동일한 잎에 10 μM의 MV (광합성저해제 및 ROS 유도제)를 72시간 동안 처리한 후 세포파괴시 누수되는 이온양을 측정하고, 72시간 때 발생한 ROS 양을 확인하기 위해 NBT 염색을 실시한 결과 대조구인 일미벼에서 형질전환체보다 더 많은 ROS가 발생했고 그로 인해 누수된 이온 함량이 높았다(도 3D). 이러한 환경스트레스와 광합성 차단제 및 활성산소 유도제에 대한 항산화 능력이 형질전환체에서 높았기 때문에 결과적으로 상기 실시예 2-3에 나타난 바와 같이 군위 실험포장지에서 초기 표현형과 성장률이 우수한 것이다.In addition, after treatment with 10 μM of MV (photosynthesis inhibitor and ROS inducer) on the same leaf for 72 hours, the amount of ions leaked during cell destruction was measured, and NBT staining was performed to confirm the amount of ROS generated at 72 hours. In Japanese rice, more ROS than the transformant was generated and the content of leaked ions was high (Fig. 3D). Since the antioxidant ability against these environmental stresses, photosynthesis blockers and active oxygen inducing agents was high in the transformants, as a result, the initial phenotype and growth rate were excellent in the group experimental packaging as shown in Example 2-3.
<2-5><2-5> AK102606 AK102606 유전자를 도입한 형질전환 벼의 수확량 분석Analysis of the yield of transgenic rice with gene introduction
2016(T5), 2017(T6), 2018(T7)년 동안 AK102606 유전자를 도입한 형질전환 벼의 묘목을 경북 군위군 효령면에 위치한 경북대학교 실험포장지에 이앙 후 수확량 검정하였다. 기후조건이 다른 3년 동안 대조구 일미에 비해 형질전환체의 바이오매스 증가를 확인할 수 있는 지표인 전체 식물무게(TPW), 줄기 생체중(CW), 분얼수(NT) 및 이랑당 이삭수(NP)가 모두 증가하였다.For 2016 (T 5 ), 2017 (T 6 ), and 2018 (T 7 ), the seedlings of transgenic rice with the AK102606 gene introduced were transplanted into the experimental field at Kyungpook National University located in Hyoryeong -myeon, Gunwi-gun, Gyeongsangbuk-do. Total plant weight (TPW), stem fresh weight (CW), number of stalks (NT), and number of ears per ridge (NP), which are indicators that can confirm the increase in biomass of transformants compared to Japan and the US for 3 years with different climatic conditions. All increased.
또한, 대조구 일미에 비해 형질전환체의 생산성의 증가를 확인할 수 있는 지표인 총곡물무게(TGW), 총곡물수(NTG), 한 이삭당 달려 있는 곁가지수(NSP) 및 천립중(1,000 grain weight, 1000GW)이 모두 증가하였다.In addition, compared to Japan and the US control, the total grain weight (TGW), total grain count (NTG), side index per ear (NSP) and 1,000 grain weight, which are indicators that can confirm the increase in productivity of transformants, 1000GW) all increased.
따라서, AK102606 유전자를 과발현시킨 형질전환체가 대조구인 일미벼보다 다양한 환경 스트레스가 존재하는 자연 논에서의 항산화 능력이 증가하여 초기 생장이 우수했고, 결과적으로 수확량이 증가하였다(도 4). Therefore, the transformant overexpressing the AK102606 gene increased antioxidant capacity in natural paddy fields with various environmental stresses than the control, Ilmi rice, resulting in superior initial growth, resulting in increased yield (FIG. 4 ).
<2-6> <2-6> AK102606 AK102606 유전자를 도입한 형질전환 벼의 기온 및 가뭄 스트레스 내성 및 생산성 증대 분석Analysis of temperature and drought stress tolerance and productivity increase of transgenic rice with gene introduction
2016(T5), 2017(T6), 2018(T7)년 동안 AK102606 유전자를 도입한 형질전환 벼의 묘목을 경북 군위군 효령면에 위치한 경북대학교 실험포장지에 이앙 후 기온 및강수량을 측정하였다.During 2016 (T 5 ), 2017 (T 6 ), and 2018 (T 7 ), the temperature and precipitation were measured after transplanting the seedlings of the transgenic rice with the AK102606 gene introduced into the experimental field at Kyungpook National University located in Hyoryeong -myeon, Gunwi-gun, Gyeongsangbuk-do.
그 결과, 벼가 이앙되는 5월-6월에는 평균 10℃ 이하의 기온을 나타내며(도 5A), 벼가 한창 생장하는 8월에는 평균적으로 40℃의 기온을 나타낸다(도 5B). 벼가 성숙하는 9-10월에는 5℃ 이하로 기온이 떨어진다(도 5A). As a result, in May-June when rice is transplanted, the average temperature is 10°C or less (FIG. 5A), and in August when the rice is growing in full swing, the average temperature is 40°C (FIG. 5B). In September-October, when the rice is mature, the temperature drops below 5℃ (Fig. 5A).
포장지에 이앙된 식물들은 의도치 않게, 저온 및 고온 스트레스에 처하게 된다. 그리고 3년 동안 강수량은 매년 차이가 있다(도 5C). 3년 동안 다른 기후 조건에서도 AK102606 유전자를 도입한 형질전환 벼의 수확량은 지속적으로 유사한 패턴을 보인다(도 4).Plants transplanted to the packaging are unintentionally subjected to low and high temperature stress. And there is a difference in precipitation every year for three years (Fig. 5C). Even under different climatic conditions for 3 years, the yield of the transgenic rice introduced with the AK102606 gene continued to show a similar pattern (FIG. 4).
<2-7> <2-7> AK102606 AK102606 유전자를 도입한 형질전환 벼의 가뭄 스트레스 내성 분석 Analysis of drought stress tolerance of transgenic rice with gene introduction
AK102606 유전자를 도입한 형질전환체를 10℃의 저온 챔버에서 일정 기간 동안(약 7일) 노출 후, 다시 정상적인 28℃의 챔버로 옮겨 키우며 저온 스트레스에 따른 형질전환 벼의 생장변화를 관찰하였다. The transformant into which the AK102606 gene was introduced was exposed in a cold chamber at 10° C. for a certain period (about 7 days), and then moved to a normal 28° C. chamber and grown, and the change in growth of the transgenic rice according to the cold stress was observed.
구체적으로, AK102606 유전자를 도입한 형질전환체 4 plant를 50 ml conical tube에 옮겨서 식물의 물 흡수를 방해하는 polyethylene glycol(PEG) 10%를 처리한 후, 시간에 따른 표현형 변화를 시각적으로 관찰하고, 스트레스를 5일 처리한 후 다시 일반적인 물을 주어 회복하는 것을 관찰하였다. Specifically, the transformant 4 plant into which the AK102606 gene was introduced was transferred to a 50 ml conical tube, treated with 10% polyethylene glycol (PEG), which interferes with the water absorption of the plant, and then visually observed the phenotypic change over time, After the stress was treated for 5 days, it was observed to recover with normal water.
그 결과, PEG 10%를 처리한 후 회복시켰을 때 대조구 일미 벼에 비해 AK102606 유전자를 도입한 형질전환체의 회복율이 더 높으므로 가뭄 스트레스에 내성을 가지는 것을 확인하였다(도 6). As a result, when recovered after treatment with 10% PEG, it was confirmed that the transformant introduced the AK102606 gene had a higher recovery rate than that of Japanese rice in the control, and thus had resistance to drought stress (FIG. 6 ).
[미생물 기탁증][Microorganism deposit certificate]
기탁기관명 : 한국생명공학연구원Name of deposit institution: Korea Research Institute of Bioscience and Biotechnology
수탁번호 : KCTC 13810BPAccession number: KCTC 13810BP
수탁일자 : 2019213Consignment Date: 2019213
Figure PCTKR2019003087-appb-I000001
Figure PCTKR2019003087-appb-I000001

Claims (13)

  1. 벼(Oryza sativa) 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 환경 스트레스 내성 및 항산화능을 증가시키는 방법.Rice ( Oryza sativa ) A method for increasing the environmental stress tolerance and antioxidant activity of plants comprising the step of overexpressing the AK102606 gene by transforming a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 in rice.
  2. 제 1항에 있어서, 상기 환경 스트레스는 염, 저온, 고온 또는 가뭄 스트레스인 것인 방법.The method of claim 1, wherein the environmental stress is salt, low temperature, high temperature or drought stress.
  3. 벼(Oryza sativa) 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터로 벼의 식물세포에 형질전환하는 단계; 및Transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice ( Oryza sativa ); And
    상기 형질전환된 벼 식물세포로부터 벼 식물을 재분화하는 단계를 포함하는 환경 스트레스 내성 및 항산화능이 증가된 식물체의 제조방법.A method for producing a plant having increased environmental stress tolerance and antioxidant activity, comprising the step of re-differentiating a rice plant from the transformed rice plant cells.
  4. 제 3항의 방법에 의해 제조된 환경 스트레스 내성 및 항산화능이 증가된 형질전환 식물체.Transgenic plants with increased environmental stress tolerance and antioxidant activity produced by the method of claim 3.
  5. 제 4항에 따른 식물체의 종자.The seed of the plant according to claim 4.
  6. 서열번호 1의 염기서열로 이루어진 벼(Oryza sativa) 유래 AK102606 유전자를 함유하는, 식물체의 환경 스트레스 내성 및 항산화능 증가용 조성물. AK102606 derived from rice ( Oryza sativa ) consisting of the nucleotide sequence of SEQ ID NO: 1 A composition for increasing environmental stress tolerance and antioxidant activity of plants containing a gene.
  7. 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 환경 스트레스 내성 및 항산화능이 증가된 벼(Oryza sativa L. japonica) AK102606(KCTC 13810BP).Rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased environmental stress tolerance and antioxidant activity including the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1.
  8. 벼(Oryza sativa) 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터를 벼에 형질전환시켜 AK102606 유전자를 과발현하는 단계를 포함하는 식물의 바이오매스(biomass) 및 수확량(yield)을 증가시키는 방법.Rice ( Oryza sativa ) The biomass and yield of plants including the step of overexpressing the AK102606 gene by transforming rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 How to increase.
  9. 벼(Oryza sativa) 유래 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 재조합 벡터로 벼의 식물세포에 형질전환하는 단계; 및Transforming the plant cells of rice with a recombinant vector containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1 derived from rice ( Oryza sativa ); And
    상기 형질전환된 벼 식물세포로부터 벼 식물을 재분화하는 단계를 포함하는 바이오매스 및 수확량이 증가된 식물체의 제조방법.A method for producing a plant with increased biomass and yield comprising the step of regenerating a rice plant from the transformed rice plant cells.
  10. 제 9항의 방법에 의해 제조된 바이오매스 및 수확량이 증가된 형질전환 벼 식물체.A transgenic rice plant with increased yield and biomass produced by the method of claim 9.
  11. 제 10항에 따른 식물체의 종자.The seed of the plant according to claim 10.
  12. 서열번호 1의 염기서열로 이루어진 벼(Oryza sativa) 유래 A102606 유전자를 함유하는, 식물체의 바이오매스 및 수확량 증가용 조성물.Rice consisting of the nucleotide sequence of SEQ ID NO: 1 ( Oryza sativa ) containing the A102606 gene derived, a composition for increasing the biomass and yield of plants.
  13. 서열번호 1의 염기서열로 표시되는 AK102606 유전자를 포함하는 바이오매스 및 수확량이 증가된 벼(Oryza sativa L. japonica) AK102606(KCTC 13810BP).Rice ( Oryza sativa L. japonica ) AK102606 (KCTC 13810BP) with increased yield and biomass containing the AK102606 gene represented by the nucleotide sequence of SEQ ID NO: 1.
PCT/KR2019/003087 2019-03-11 2019-03-18 Use of oryza sativa-derived ak102606 gene as controller for antioxidative activity, environmental stress, and crop yield WO2020184764A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190027725A KR102127184B1 (en) 2019-03-11 2019-03-11 Use of AK102606 gene from Oryza sativa as regulator of antioxidant activity, environmental stresses and crop yield
KR10-2019-0027725 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020184764A1 true WO2020184764A1 (en) 2020-09-17

Family

ID=71121111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003087 WO2020184764A1 (en) 2019-03-11 2019-03-18 Use of oryza sativa-derived ak102606 gene as controller for antioxidative activity, environmental stress, and crop yield

Country Status (2)

Country Link
KR (1) KR102127184B1 (en)
WO (1) WO2020184764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126654A (en) * 2020-11-06 2020-12-25 浙江大学 Application of OsKEAP1 gene in regulation and control of salt stress resistance of rice

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185101A (en) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF
KR20130022561A (en) * 2011-08-25 2013-03-07 경북대학교 산학협력단 Use of mdhar gene from oryza sativa as regulator of yield and environmental stresses
CN103290023A (en) * 2012-03-01 2013-09-11 华中农业大学 Gene 03g induced to express by tissue culture and preparation method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185101A (en) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF
KR20130022561A (en) * 2011-08-25 2013-03-07 경북대학교 산학협력단 Use of mdhar gene from oryza sativa as regulator of yield and environmental stresses
CN103290023A (en) * 2012-03-01 2013-09-11 华中农业大学 Gene 03g induced to express by tissue culture and preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE NUCLEOTIDE 4 December 2008 (2008-12-04), "Oryza sativa Japonica Group cDNA clone:J033098P07, full insert sequence", XP055627155, Database accession no. AK102606.1 *
KIM, JINJU ET AL.: "PF-60: Development and Application of the Global Gene Improving Environmental Adaptation and Grain Yield to Climate Change", 2018 KSBS- BG 21 -GSP JOIN! SYMPOSIUM. RAMADA PLAZA HOTEL, 13 July 2018 (2018-07-13), Jeju, Korea *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126654A (en) * 2020-11-06 2020-12-25 浙江大学 Application of OsKEAP1 gene in regulation and control of salt stress resistance of rice

Also Published As

Publication number Publication date
KR102127184B1 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2018084522A1 (en) Oryza sativa-derived gene for enhancing resistance to pre-harvest sprouting, and use thereof
CN101544987A (en) Function and application of miR164 genes in controlling development and fertility of root system of rice
CN106011146B (en) Application of the OsMADS47 gene in adjusting and controlling rice grain shape
CN108728449B (en) Application of cotton gene GhDTX27 in aspects of salt tolerance, drought tolerance and cold stress of plants
WO2019235907A1 (en) Composition for editing flavonoid biosynthetic gene by using crispr/cas9 system, and use thereof
WO2011090272A9 (en) OsMPT GENE MODIFYING PLANT ARCHITECTURE (PLANT SHAPE) AND INCREASING YIELD, AND USE THEREOF
CN100540665C (en) Regulate the gene of plant branching, contain the carrier of this gene,, and utilize this microorganism to regulate the method for plant branching by this carrier microorganism transformed
WO2012148121A2 (en) Atpg7 protein having functions of increased productivity, delayed aging, and resistance to stress of plant, gene thereof, and use thereof
WO2020184764A1 (en) Use of oryza sativa-derived ak102606 gene as controller for antioxidative activity, environmental stress, and crop yield
CN101358193A (en) Identification of specificity promoter for rice leaf senescence
CN112430604B (en) Gene engineering application of gene OsPIN10b
WO2014061932A1 (en) Production method for genetically modified plant having enhanced immune capacity with respect to pathogenic microorganisms using reca1 gene derived from arabidopsis thaliana, and plant therefrom
WO2018066897A2 (en) Mtatpg1 protein having function of increasing productivity and delaying senescence in plant, gene thereof, and use of the same protein and gene
WO2015046700A1 (en) Phd gene involved in development and formation of plant phloem
CN109609515B (en) Gene for regulating growth and development of chloroplast and influencing leaf color under low-temperature stressCDE4And applications
WO2011049334A9 (en) OsLRP GENE FOR INCREASING PLANT DISEASE RESISTANCE, AND USE THEREOF
WO2013027905A1 (en) Usage of plant-derived dhar or mdhar genes as controllers of plant crop yields and environmental stress
WO2018164293A1 (en) Rice-derived roc10 gene for increasing plant resistance to drought stress, and use thereof
WO2012148122A2 (en) Atpg8 protein having functions of increased productivity, delayed aging, and resistance to stress of plant, gene thereof, and use thereof
WO2014209036A1 (en) Atpg10 protein and gene thereof having functions of increasing plant yield, resistance to stress, and delaying senescence, and use thereof
US7405346B2 (en) Gene capable of imparting salt stress resistance
CN104673803A (en) Application of gene methylation in gene expression regulation
CN112521467B (en) Plant stress resistance related gene AGL103, and coding protein and application thereof
CN117305266B (en) Gene OsBDG1 related to rice stress resistance and application of coded protein thereof
KR101108990B1 (en) Transgenic esculent plants producing high amount of S-adenosylmethionine and use thereof, and a method for controlling physiological cycle of plant by changing amount of S-adenosylmethionine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919347

Country of ref document: EP

Kind code of ref document: A1