WO2018066358A1 - 電気化学測定装置及びトランスデューサ - Google Patents

電気化学測定装置及びトランスデューサ Download PDF

Info

Publication number
WO2018066358A1
WO2018066358A1 PCT/JP2017/033898 JP2017033898W WO2018066358A1 WO 2018066358 A1 WO2018066358 A1 WO 2018066358A1 JP 2017033898 W JP2017033898 W JP 2017033898W WO 2018066358 A1 WO2018066358 A1 WO 2018066358A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode surface
center
coordinate
solution
Prior art date
Application number
PCT/JP2017/033898
Other languages
English (en)
French (fr)
Inventor
亮太 國方
林 泰之
篤史 須田
浩介 伊野
久美 井上
末永 智一
Original Assignee
日本航空電子工業株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本航空電子工業株式会社, 国立大学法人東北大学 filed Critical 日本航空電子工業株式会社
Priority to CN201780058155.2A priority Critical patent/CN109791122B/zh
Priority to EP21214748.2A priority patent/EP4009046A1/en
Priority to US16/336,782 priority patent/US11162064B2/en
Priority to EP21214759.9A priority patent/EP4019968A1/en
Priority to EP17858197.1A priority patent/EP3524972B1/en
Priority to CN202110869700.4A priority patent/CN113533486B/zh
Priority to EP21214746.6A priority patent/EP4040152A1/en
Priority to EP21214766.4A priority patent/EP4001915A1/en
Publication of WO2018066358A1 publication Critical patent/WO2018066358A1/ja
Priority to US17/366,945 priority patent/US11859167B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes

Definitions

  • the present invention relates to an electrochemical measuring device and a transducer used for electrochemically measuring a chemical substance generated or consumed by a biological sample.
  • a biological sample is (1) an element that constitutes a living body, or (2) a collection of elements that constitute a living body, or For example, biopolymers, elements constituting biopolymers, chemical substances necessary for living organisms are included], or (4) a tangible object including one or more of (1) to (3) .
  • the biological sample include non-biological substances including cells, cell masses, tissue pieces, and biological substances.
  • the physiological activity of cells not only changes depending on the surrounding environment such as temperature, pH, medium composition, adjacent cells, extracellular matrix, but also external stimuli such as gene transfer, drug exposure, stress application, etc. It also changes over time according to cellular events such as division and cell death.
  • the cells that are biological samples remain alive (that is, while maintaining the physiological activity of the cells) as close to the environment as possible. It is important to install and further measure in real time the chemicals produced or consumed by the cells against external stimuli and cellular events.
  • spheroids are not single cells but are aggregates of multiple cells and extracellular matrix (ECM) components.
  • ECM extracellular matrix
  • Examples of the cell mass include islet cells collected from the pancreas, fertilized eggs, hepatocytes and neuronal spheroids obtained by cell culture, embryonic bodies of ES (embryonic stem) cells, and the like.
  • the diameter of the cell mass used for the evaluation of cell activity is about 100 to 600 ⁇ m, although it varies depending on the type of constituent cells, the collection site in the living body, the culture conditions, and the like. This is because a small cell mass with a diameter of 100 ⁇ m or less has a small number of constituent cells, so that the physiological activity peculiar to the cell mass does not appear easily. With a large cell mass with a diameter of 600 ⁇ m or more, oxygen diffuses to the cells at the center of the cell mass This is because the cells are not likely to become necrotic.
  • Electrochemical techniques are used as techniques for measuring chemical substances generated or consumed in cells in real time.
  • an electrode for detecting various electrochemical signals of a biological sample is used.
  • the working electrode is placed in a solution in which the biological sample is immersed.
  • Various detection methods exist depending on the difference in potential control or current control of the working electrode.
  • the potential-regulated electrolysis method represented by the chronoamperometry (Chrono Amperometry) method and the cyclic voltammetry (Cyclic Voltammetry)
  • the constant potential electrolysis method is used.
  • the potential of the working electrode is controlled as a function of time, and a current value generated in the working electrode is detected.
  • reaction system in which a chemical substance having redox activity is generated or consumed with cell substance metabolism
  • various systems can be designed according to the target metabolic system.
  • a system utilizing an enzyme reaction is preferably used.
  • alkaline phosphatase ALP
  • the amount of alkaline phosphatase (ALP) that is an enzyme present on the cell surface increases or decreases depending on the differentiation state.
  • Non-patent Document 1 Electrochemical evaluation of the amount of ALP produced is often performed for the purpose of evaluating the differentiation state of embryoid bodies.
  • an embryoid body is placed in a solution in which p-aminophenyl phosphate (PAPP) as a substrate is dissolved, and the dephosphorylation reaction of PAPP is advanced by ALP enzyme activity.
  • PAPP p-aminophenyl phosphate
  • PAP p-aminophenol
  • the PAPP concentration in the solution is sufficiently high, even if the amount of ALP produced by the cells is extremely small, it is possible to integrate the amount of PAP, which is a chemical substance having redox activity, with the enzyme activity over time. It is. Therefore, as a result, it is possible to detect the ALP abundance with high sensitivity.
  • a single electrode formed on a substrate or processed into a probe shape is usually used as a working electrode.
  • a plurality of working electrodes are used.
  • drug screening in order to search for chemical substances that can have an expected effect on certain types of cells (ie, chemical substances that can be candidates for drugs) from among multiple chemical substances with different structures, Multiple cells are exposed to different chemicals, and changes in the physiological activity of the cells are comprehensively evaluated.
  • Cell evaluation in drug screening is performed by various analytical methods.
  • cell evaluation is performed by an electrochemical method, a plurality of cells arranged in the vicinity of each working electrode are simultaneously evaluated using a plurality of working electrodes formed on the same substrate (multi-point simultaneous electrochemical measurement).
  • the time required for evaluation is greatly shortened compared to the case where each cell is evaluated separately.
  • substrate modification, cell pretreatment, and adjustment of measurement conditions are usually performed on a substrate basis. For this reason, by consolidating multiple electrodes and multiple biological samples on a single substrate and performing pretreatment and measurement condition adjustment in a lump, it is possible to save chemicals used, reduce waste liquid, etc. The measurement conditions of each biological sample can be matched more accurately.
  • the chemical substance having redox activity generated in the cell spreads radially from the cell into the solution by the diffusion action. As a result, part of the generated chemical substance reaches the working electrode and undergoes oxidation or reduction. For this reason, the generation amount of the chemical substance and the diffusion distance of the chemical substance to the working electrode greatly affect the amount of current generated at the working electrode. Similarly, the chemical substance consumed by the cells moves toward the vicinity of the cell where the concentration of the chemical substance is reduced by the consumption due to the diffusion action.
  • the distance between the biological sample and the substrate decreases when the biological sample is brought close to the working electrode. Since the supply of the substrate dissolved in the solution to the biological sample is hindered, the amount of chemical substances generated in the biological sample by the enzyme reaction is floating in the solution far from the substrate. Compared to the case, it decreases. In addition, since the volume of the three-dimensional region between the biological sample and the working electrode is very small, most of the generated chemical substances cannot be retained in the three-dimensional region and dissipate far away. Since the distance from the dissipated chemical substance to the working electrode is long, the amount of the chemical substance that reaches the working electrode is reduced and the sensitivity is lowered (Problem 1).
  • the linear distance between the working electrode and the biological sample differs for each measurement.
  • the linear distance generally differs by at least about several ⁇ m for each measurement. For this reason, the diffusion distance of the chemical substance is not constant, and the comparison and reproducibility of the measurement are reduced (Problem 2).
  • the current value flowing through the working electrode is most affected by the amount of chemical substances generated or consumed in the nearest biological sample, It is also influenced by the amount of chemicals produced or consumed in other distant biological samples (crosstalk problem).
  • the current value flowing through the working electrode reflects only the substance metabolism of a single biological sample. For this reason, in order to reduce the influence of the biological sample located far away, the interval between the biological samples and the interval between the working electrodes for evaluating the biological sample should be kept wide. However, when the interval between the working electrodes is increased, the area of the substrate on which the working electrodes are formed increases.
  • Non-Patent Document 1 the amount of chemical substance is measured by a plurality of working electrodes on a substrate, and has the above-mentioned problems 1, 2, and 3.
  • the above problem 1 can be solved by using a probe-like working electrode (probe electrode) instead of the working electrode on the substrate. Since the tip of the probe electrode is generally very fine compared to a biological sample, the probe electrode and the probe electrode support supply the solute in the solution to the biological sample compared to the working electrode on the substrate. There is no significant hindrance. The position of the probe electrode with respect to the biological sample is generally finely controlled by a manipulator on the order of ⁇ m. For this reason, the above-mentioned problem 2 is also solved.
  • probe electrodes are often damaged by inexperienced users.
  • the movement of the probe by the manipulator requires a considerable amount of time, so that the speed of measurement and the identity of the measurement conditions between the biological samples are greatly impaired.
  • an object of the present invention is to provide an electrochemical measurement apparatus and a transducer used for electrochemical measurement, which have higher sensitivity, comparison and reproducibility than conventional ones.
  • an electrochemical measurement apparatus comprising a plurality of working electrodes each having an electrode surface that exchanges electrons with a chemical substance generated or consumed in a biological sample in a solution to perform an oxidation-reduction reaction.
  • a spacer is provided between the at least two electrode surfaces adjacent to each other, provided with a contour surface that satisfies the above-described contour, and is provided with a spacer that prevents intrusion of the biological sample in the region on the one plane side of the contour surface and allows diffusion of the solute in the solution.
  • the electrode surface is an electrode array in which a plurality of electrode surfaces are arranged on a straight line in the first direction, in a second direction orthogonal to the first direction. It is assumed that a wall plate is provided extending in the first direction between electrode rows arranged in a plurality of arrangements and adjacent to each other.
  • the spacer is made of a group of columnar structures that extend in a direction perpendicular to the one plane and stand at intervals of less than 100 ⁇ m.
  • the spacer is made of a porous structure having a pore diameter of less than 100 ⁇ m.
  • an electrochemical measurement apparatus comprising a plurality of working electrodes each having an electrode surface that exchanges electrons with a chemical substance generated or consumed in a biological sample in a solution to perform an oxidation-reduction reaction.
  • a plurality of wall plates that satisfy the conditions and cannot pass through the solute in the solution are arranged in the x direction at intervals of less than 100 ⁇ m.
  • the height of at least one of the two wall plates in order from the smallest distance in the x direction from the center of the electrode surface per electrode surface is assumed that h 3 is changed along the y direction so as to be minimal at a y coordinate equal to the y coordinate of the center of the electrode surface.
  • the x coordinate of at least one of the two wall plates in order from the smallest distance in the x direction from the center of the electrode surface for each electrode surface is locally changed along the y-direction so that the x-direction distance from the center of the electrode surface has a maximum at the y-coordinate equal to the y-coordinate of the center of the electrode surface.
  • the x coordinate of the first wall plate which is one wall plate having the smallest x-direction distance from the center of the electrode surface
  • the y-coordinate that is equal to the y-coordinate of the center of the electrode is locally changed along the y-direction so that the x-direction distance from the center of the electrode surface has a maximum, and the first position across the center of the electrode surface.
  • the distance in the x direction from the center of the electrode surface is maximized when the x coordinate of the second wall plate, which is another wall plate adjacent to the other wall plate, is equal to the y coordinate of the center of the electrode surface.
  • any one of the sixth to tenth aspects of the present invention two electrode surfaces in which the x coordinate of the center is different from each other but there is no other electrode surface having an intermediate x coordinate between the x coordinates.
  • a set is an x-direction adjacent electrode surface
  • at least one set of x-direction adjacent electrode surfaces is extended in the y direction with the entire width intersecting a line connecting the centers of the two electrode surfaces.
  • a tall wall plate having a height larger than the height of the wall plate and not allowing the solute in the solution to pass therethrough is further provided.
  • an electrochemical measurement apparatus comprising a plurality of working electrodes each having an electrode surface that exchanges electrons with a chemical substance generated or consumed in a biological sample in a solution to perform an oxidation-reduction reaction.
  • the electrode surface has the following diameter d el 80 [mu] m, to a plane x-y orthogonal coordinates are defined, so one or more electrode surfaces coincide with the x coordinates of all the center y
  • a plurality of electrode rows arranged in the direction are arranged in a plurality of rows in the x direction, the electrode surfaces are extended in the y direction on the one plane on which the electrode surfaces are arranged, and the electrode surfaces belonging to the nearest electrode row in the x direction.
  • h 4 ⁇ ⁇ (1.05 d el +6.89) m ⁇ ⁇ 0.48 d el ⁇ 2.38 ⁇ 5 [ ⁇ m]
  • a plurality of wall plates that are gradually changed while satisfying the above-described conditions and in which a solute in the solution cannot permeate are arranged at intervals of less than 100 ⁇ m in the x direction.
  • a point that is relatively far out of the 1 ⁇ 2 distance points to the center x coordinate is set as a first end point, and a point of 300 ⁇ m in the other direction in the x direction from the center of the electrode surface or the other point.
  • the height h 4 of at least one wall plate out of the wall plates extending in such a manner that all or part of the width intersects the line connecting the second end point is the y of the center of the electrode surface. Change along the y-direction to make a minimum at the y-coordinate equal to the coordinate It is assumed to be.
  • the height h 4 of all wallboard all of its width to the line segment is drawn to intersect is equal to the y coordinate of the center of the electrode surface It is assumed that the y coordinate is changed along the y direction so as to be minimal.
  • a high-profile wall plate that extends in the y-direction at an intermediate x-coordinate and has a height that is greater than the maximum height of the wall plate so that solutes in the solution cannot pass therethrough. Is done.
  • a chemical solution produced or consumed by the biological sample in the solution is provided on the LSI chip with the solution tank capable of accommodating the solution and the biological sample immersed in the solution.
  • all electrode surfaces may have the following diameter d el 80 [mu] m
  • a spacer is provided between the at least two electrode surfaces adjacent to each other, provided with a contour surface that satisfies the above-described contour, and is provided with a spacer that prevents intrusion of the biological sample in the region on the one plane side of the contour surface and allows diffusion of the solute in the solution.
  • a chemical solution produced or consumed by the biological sample in the solution is provided on the LSI chip with the solution tank capable of accommodating the solution and the biological sample immersed in the solution.
  • all electrode surfaces may have the following diameter d el 80 [mu] m one
  • a mortar-shaped contour surface satisfying, a spacer that prevents intrusion of the biological sample in the region on the one plane side of the contour surface and allows diffusion of the solute in the solution is provided, and at least adjacent to each other Between the two electrode surfaces, it extends across the line connecting the centers of the two
  • an electrode array in which a plurality of electrode surfaces are arranged on a straight line in the first direction is arranged in a second direction orthogonal to the first direction. It is assumed that a wall plate is provided extending in the first direction between adjacent electrode rows arranged in a plurality of arrangements.
  • the spacer is formed of a group of columnar structures extending in a direction perpendicular to the one plane and standing at intervals of less than 100 ⁇ m.
  • the spacer is made of a porous structure having a pore diameter of less than 100 ⁇ m.
  • a solution tank capable of accommodating a solution and a biological sample immersed in the solution is mounted on the LSI chip, and is generated or consumed by the biological sample in the solution.
  • a plurality of wall plates that satisfy the conditions and cannot pass through the solute in the solution are arranged in the x direction at intervals of less than 100 ⁇ m.
  • the height of at least one of the two wall plates in order from the smallest distance in the x direction from the center of the electrode surface per electrode surface is assumed that h 3 is changed along the y direction so as to be minimal at a y coordinate equal to the y coordinate of the center of the electrode surface.
  • the height of two wall plates that extend through both outer sides of the electrode surface and that are parallel to each other without interposing another wall plate therebetween It is assumed that h 3 is changed along the y direction so as to be minimal at a y coordinate equal to the y coordinate of the center of the electrode surface.
  • the x coordinate of at least one of the two wall plates in order from the smallest x-direction distance from the center of the electrode surface is one electrode surface. It is assumed that the y-direction distance from the center of the electrode surface is locally changed along the y-direction so that the x-direction distance from the center of the electrode surface has a maximum at the y-coordinate equal to the y-coordinate of the center of the electrode surface.
  • the x coordinate of the first wall plate which is one wall plate having the smallest distance in the x direction from the center of the electrode surface
  • the x direction distance from the center of the electrode surface is locally changed along the y direction so that the first distance across the center of the electrode surface.
  • the x coordinate of the second wall plate which is another wall plate adjacent to one wall plate
  • the distance in the x direction from the center of the electrode surface has a maximum. It is assumed that it is locally changed along the y direction.
  • two electrode surfaces in which the x coordinate of the center is different from each other but there are no other electrode surfaces having an x coordinate in the middle of the x coordinates When a set is an x-direction adjacent electrode surface, at least one set of x-direction adjacent electrode surfaces is extended in the y direction with the entire width intersecting a line connecting the centers of the two electrode surfaces. Further, it is assumed that a tall wall plate having a height larger than the height of the wall plate and not allowing the solute in the solution to pass therethrough is further provided.
  • a solution tank capable of accommodating a solution and a biological sample immersed in the solution is mounted on the LSI chip, and is generated or consumed by the biological sample in the solution.
  • transducers working electrode having an electrode surface for the redox reaction by performing exchange of material and an electron is more provided in the LSI chip, all the electrode surface has the following diameter d el 80 [mu] m, x -Arranged in a configuration in which one or more electrode surfaces are arranged in the y direction with the x coordinate of all the centers thereof arranged in the y direction on a single plane in which y orthogonal coordinates are defined;
  • the height h 4 depends on the distance m in the x direction from the center of the electrode surface that extends in the y direction and belongs to the closest electrode row in the x direction on the one plane on which the electrode surfaces are arranged.
  • h 4 ⁇ ⁇ (1.05 d el +6.89) m ⁇ ⁇ 0.48 d el ⁇ 2.38 ⁇ 5 [ ⁇ m]
  • a plurality of wall plates that are gradually changed to satisfy the above-described conditions and cannot allow the solute in the solution to permeate are arranged at intervals of less than 100 ⁇ m in the x direction.
  • a point of 300 ⁇ m in one direction in the x direction from the center of the electrode surface or the center of the electrode surface belonging to the electrode row adjacent in one direction A point that is relatively far out of the half-distance points to the x coordinate of is the first end point, and the 300 ⁇ m point or the other point in the other direction in the x direction from the center of the electrode surface.
  • the first end point and the first end point The height h 4 of at least one wall plate out of the wall plates extending all or part of the width of the line connecting the two end points is the y coordinate of the center of the electrode surface. Changes along the y direction to make a local minimum at the y coordinate equal to Are those are.
  • the height h 4 of all the wall plates that are extended by intersecting the line segment with the entire width thereof is equal to the y coordinate of the center of the electrode surface. It is assumed that the y coordinate is changed along the y direction so as to be minimal.
  • a thirty-third aspect of the present invention in any one of the twenty-seventh to thirty-ninth aspects, between at least one pair of electrode rows adjacent to each other in the x direction, the x coordinate of the center of the electrode surface respectively belonging to the two electrode rows It is assumed that there is further provided a high-back wall plate that extends in the y direction at the intermediate x-coordinate and has a height that is greater than the maximum height of the wall plate and cannot allow solutes in the solution to pass therethrough.
  • Electrode - is a graph showing the relationship between the inter-sample distance z and the current value I / reaction rate V max.
  • 4 is a graph showing the relationship between an electrode-sample distance z, a current value I, and a diffusion coefficient D. It is a schematic diagram for demonstrating the principal part structure of 1st Embodiment (type 1) of the electrochemical measuring device by this invention.
  • FIG. 1 is a plan view showing an embodiment of a transducer according to the present invention.
  • FIG. 1 is a cross-sectional view showing an embodiment of a transducer according to the present invention.
  • FIG. 15 is a perspective view of the transducer shown in FIG. 14.
  • the inventors analyzed in detail the relationship between the solute diffusion process in the solution involved in the chemical reaction occurring in the biological sample and the current flowing through the electrode on the substrate in the electrochemical measurement. As a result, the inventors have discovered the following fact: placing the biological sample away from the electrode surface in the vertical direction of the electrode surface by a certain distance determined by the electrode surface diameter and the biological sample diameter; By forming a path for the solute to freely diffuse under the biological sample, the amount of current increases compared to when the biological sample is close to the electrode surface, and the measurement sensitivity is improved.
  • the inventors have also discovered the following fact: current due to low control accuracy of the position of the biological sample relative to the electrode surface by placing the biological sample away from the electrode surface in the direction perpendicular to the electrode surface.
  • the variation in the value is reduced as compared with the variation when the biological sample is close to the electrode surface, and the comparison and reproducibility of the measurement are improved.
  • simulation software COMSOL Multiphysics registered trademark in Japan
  • model sample an embryoid body formed by mouse ES cells was employed.
  • PAP produced by the ALP enzyme reaction on the model sample surface was adopted as the chemical substance generated in the model sample.
  • the chemical (PAP) produced by the model sample diffuses and reaches the electrode surface of the working electrode and is oxidized on the electrode surface. At this time, a current value generated at the working electrode is detected.
  • Other conditions are as follows.
  • a SP is the surface area of the model sample
  • V max is the reaction rate per unit surface area of the model sample when the substrate concentration is infinite
  • K m is the Michaelis constant of the ALP enzyme reaction.
  • [S] is the substrate concentration.
  • the values of V max and K m were 2.65 ⁇ 10 ⁇ 7 mol / (s ⁇ m 2 ) and 1.7 ⁇ 10 ⁇ 3 mol / L, respectively.
  • the initial value of [S] was set to 5.0 ⁇ 10 ⁇ 3 mol / L.
  • i (x, y) and c (x, y) are the current density and the chemical substance concentration to be detected at an arbitrary point (x, y) on the electrode surface, respectively.
  • a el is the electrode area
  • n is the number of electrons involved in the reaction
  • F is the Faraday constant
  • D is the diffusion coefficient of the chemical substance to be detected in the solution
  • z is the electrode surface (xy plane) ) In the direction perpendicular to).
  • n, F and D were set to 2, 9.64 ⁇ 10 4 C / mol and 6.47 ⁇ 10 ⁇ 10 m 2 / s, respectively.
  • the current value I after 200 seconds from the start of the electrode reaction was shown in the measurement results.
  • Position of electrode surface horizontal distance between center coordinates of electrode surface and model sample center coordinates (x, y) is 0
  • Distance z 0 to 80 ⁇ m
  • FIG. 1 is a graph of a simulation result showing the relationship between the current value I and the distance z.
  • the distance z is controlled with an accuracy of several ⁇ m because the surface of the biological sample has irregularities and the shape of the biological sample is not necessarily spherical. It is difficult.
  • the distance z is set to a value close to the maximum value, the variation in the current value I due to the low control accuracy of the distance z can be reduced, and as a result, the quantitative relationship between different measurement objects is determined. Accuracy (comparability) and reproducibility of measurement results for the same measurement object can be improved.
  • This improvement in reproducibility and reproducibility increases as the distance z approaches the maximum value.
  • the improvement is particularly remarkable in the range of the distance z where the current value is 90% or more of the peak current value. For this reason, if the distance z is set to a value within this range, a high effect can be obtained not only in sensitivity but also in comparison and reproducibility.
  • the effective range of the distance z varies greatly depending on the measurement conditions, particularly the electrode diameter and the biological sample diameter. Therefore, in order to evaluate a biological sample having a specific diameter, it is necessary to set an electrode having an appropriate diameter and an appropriate distance z.
  • the diameter of the biological sample varies greatly depending on the type and state of the cell. Furthermore, even when the biological sample is collected from the same location of the same specimen or obtained under the same culture conditions, the variation in the diameter of the biological sample is several ⁇ m to several hundreds. It extends to ⁇ m. It is not practical from the viewpoint of cost to check the diameters of all biological samples before measurement and to set an appropriate electrode diameter and distance z for each. Further, it is extremely difficult to quantitatively compare the measurement results obtained according to different electrode diameters and different distances z.
  • a range of electrode diameters and distances z capable of providing a high effect on all biological samples having various diameters within a common sense range is obtained. It is effective to measure various biological samples with a chemical measuring device.
  • the inventors of the present invention have a high sensitivity and a comparative property when the cell mass is said to reproduce the physiological activity in a living body more accurately when the diameter of the cell mass is in the range of 100 to 600 ⁇ m which is generally used.
  • the range of the electrode diameter and the distance z in which each effect of improving reproducibility was obtained was obtained. The procedure will be described below.
  • FIG. 2 shows the simulation result. If the electrode diameter d el is 20 [mu] m, for each model sample diameter d sp, if the distance z is less z min or z max shown in FIG. 2, the current value I is not less than 90% of the peak current value (Fig. Middle z opt is the optimum value of the distance z giving the peak current value).
  • the model sample diameter d sp is between 100 and 600 ⁇ m. If the distance z is within the range indicated by hatching in FIG. 2 where z min * is the lower limit and z max * is the upper limit, the current value I is 90% or more of the peak current value. It is.
  • FIG. 3 shows the simulation result.
  • the range of the distance z is approximately expressed by the equation (4) that is a function of the electrode diameter del . Therefore, the distance z may be set in the range represented by the formula (4). However, z> 0.
  • Equation (4) cannot be used when the electrode diameter d el is about 80 ⁇ m or more.
  • the range of the effective distance z can also be changed by the generation rate v of the chemical substance from the biological sample and the diffusion coefficient D of the chemical substance.
  • the impact is limited.
  • FIG. 4 shows simulation results of the current value I for various combinations of reaction speed V max and distance z.
  • the vertical axis of the graph shown in FIG. 4 is a current value I is normalized rate of reaction V max. From Figure 4, even if the reaction rate V max is changed, there is little change in the relationship between the current value I and the distance z which is normalized by the reaction rate V max, scarcely change range of effective distance z I understand that.
  • FIG. 5 shows the simulation result of the current value I in various combinations of the diffusion coefficient D and the distance z.
  • the value of the diffusion coefficient D of a chemical substance to be detected generally used in the medical or life science field such as PAP, iron complex, ruthenium complex, and hydrogen peroxide is approximately 1 ⁇ 10 ⁇ 10 to 20 ⁇ 10 ⁇ 10. It is in the range of m 2 / s. From FIG.
  • the expression (4) indicating the relationship between the distance z to be satisfied and the electrode diameter del to obtain the above-mentioned high effect can be expressed by various generation rates v and diffusions. It is also useful in a measurement system having a coefficient D.
  • the electrochemical measuring device has a solution tank 60, spacers 10 and 50, a wall plate 31, and a plurality of working electrodes 21.
  • the spacers 10 and 50, the wall plate 31, and the plurality of working electrodes 21 are all fixed on the flat surface 20 a of the solution tank 60.
  • the flat surface 20a is a bottom surface of the solution tank 60 that comes into contact with the solution in a state where the solution tank 60 contains the solution, and is also a surface of a semiconductor chip on which an integrated circuit is formed, for example.
  • the surface of the working electrode 21 in contact with the solution is an electrode surface 21a.
  • the spacers 10, 50, the electrode surface 21a, and the wall plate 31 are immersed in the solution during the measurement.
  • the biological sample 40 has a diameter of 100 ⁇ m or more and 600 ⁇ m or less.
  • the “diameter” of the biological sample 40 is the diameter of the smallest sphere that contains the biological sample 40 inside.
  • the spacers 10 and 50 have contour surfaces that satisfy the range of the distance z given by the expression (4) in the vertical direction toward the plane 20a.
  • the spacers 10 and 50 allow diffusion of the solute in the solution while preventing the biological sample 40 from entering the region on the flat surface 20a side of the contour surface.
  • the spacers 10 and 50 have the height h 1 (the length from the plane 20a along the normal of the plane 20a) and the biological sample 40 in a state where the biological sample 40 is in contact with the spacers 10 and 50.
  • h 1 is a predetermined value within the range of the distance z given by Equation (4).
  • the biological sample 40 is disposed along the contour surface of the spacers 10 and 50. That is, the biological sample 40 is disposed in contact with the spacers 10 and 50.
  • the “distance between the plane 20a and the biological sample 40” means the shortest distance between the plane 20a and the biological sample 40, and the intersection between the normal of the plane 20a and the plane 20a and the intersection between the normal and the biological sample 40. Is the minimum length of the half line connecting the two.
  • the reason why the term “substantially” is used here is that the distance between the plane 20a and the biological sample 40 may be strictly less than h 1 depending on the shape and posture of the biological sample 40. Even if such a case exists, the shapes of the individual biological samples 40 are strictly different from each other. In addition, the postures of the individual biological samples 40 are also strictly different from each other. The effect of “sensitivity, comparability, reproducibility improvement” is not lost.
  • a h 1 may be a predetermined value within a range of distance z given by Equation (4a) .
  • the upper limit value of the distance z is 21.8 (d el +0.8) / (d el +9.7) +5 [ ⁇ m]
  • the lower limit value of z is 21.8 (d el +0.8) / (d el +9.7) It means +0 [ ⁇ m].
  • h 1 may be a constant independent of the position on the plane 20a, or may be a value determined by a function having the position on the plane 20a as a variable. Even in the latter case, h 1 is a value within the range of the distance z given by Equation (4).
  • the heights 10, 50 of the spacers 10, 50 need not be uniform over the entire area on the plane 20a.
  • the plane 20a there may be a region where the spacers 10, 50 are relatively low and a region where the spacers 10, 50 are relatively high.
  • region where the height of the spacers 10 and 50 changes in steps may exist on the plane 20a.
  • Electrode surface There is no particular limitation on the arrangement of the electrode surfaces.
  • the distance between adjacent electrode surfaces is approximately 120 ⁇ m or more.
  • the center of the first electrode surface corresponding to the first biological sample and the second electrode surface corresponding to the second biological sample (the second biological sample is different from the first biological sample).
  • the distance L from the center is the first biological sample and the first biological sample in a state where the first biological sample is disposed on the first electrode surface and the second biological sample is disposed on the second electrode surface.
  • the condition that the two biological samples are not in contact must be met. That is, in an actual electrochemical measurement, all electrode surfaces may be used, or some electrode surfaces may be used.
  • the electrode surface 21a of each working electrode 21 exchanges electrons with chemical substances generated or consumed by the biological sample 40 having a diameter of 100 ⁇ m or more and 600 ⁇ m or less. As a result, the redox reaction of the chemical substance proceeds. All the electrode surfaces 21a have a diameter of 80 ⁇ m or less.
  • the shape of the electrode surface 21a is preferably circular, but may be elliptical or polygonal. When the shape of the electrode face 21a is other than circular, the diameter d el electrode surface 21a is directed to 2 ⁇ (A / ⁇ ). However, A is the area of the electrode surface 21a.
  • the center of the electrode surface 21a is the geometric center of the electrode surface 21a.
  • the center of the electrode surface 21a is the center of the circle.
  • the center of the electrode surface 21a is the intersection of the major axis and the minor axis of the ellipse.
  • the center of the electrode surface 21a is an intersection of diagonal lines.
  • the center of the smallest circle including the electrode surface 21a is defined as the center of the electrode surface 21a.
  • Electrodes 21a show two electrode surfaces 21a
  • the total number of electrode surfaces 21a is not limited to two.
  • Lattice shape shape in which the electrode surface is located at the intersection of the lattice
  • linear shape shape in which the electrode surface is located on a straight line
  • circular shape shape in which the electrode surface is located on a circle
  • polygonal frame shape Arbitrary arrangement shapes, such as a shape in which the electrode surface is positioned on a polygon side, can be selected.
  • the wall plate 31 is installed between two electrode surfaces 21a adjacent to each other.
  • the wall board 31 has the property that the solute in a solution cannot permeate
  • the shape of the wall plate 31 when the plane 20a is viewed from the front that is, the shape of the wall plate 31 when the plane 20a is viewed from the normal direction of the plane 20a is, for example, linear, broken line, or curved.
  • the shape may be elongated, or may have an annular shape or a polygonal frame shape.
  • the wall plate 31 when the wall plate 31 has a closed structure like the latter, the wall plate 31 must have a structure that does not contact the biological sample 40 when the biological sample 40 is in contact with the spacers 10 and 50. .
  • the wall plate 31 has a height equal to or higher than the height h 1 . That is, the height of the wall plate 31 exceeds the range of the distance z expressed by the equation (4). There is no upper limit on the height of the wall plate 31. From the standpoint of uniform measurement conditions, the solution surface exceeds the height of the wall plate 31 in actual use. Further, it is not essential that the wall plate 31 is formed on the entire plane 20a. For example, the wall plate 31 is not necessary at a location sufficiently away from the electrode surface 21a.
  • ⁇ Type 1> 6A and 6B show an example of the first embodiment of the electrochemical measurement device.
  • the spacer 10 is composed of a plurality of columnar structures 11 that stand.
  • a wall plate 31 is installed between two adjacent electrode surfaces 21a.
  • Each of the columnar structures 11 having a uniform height extends in the normal direction of the plane 20a from the plane 20a of the substrate 20 on which the electrode surface 21a is disposed.
  • the interval between any two columnar structures 11 is less than 100 ⁇ m.
  • an electrochemical measurement device having columnar structures 11 formed at intervals of about 30 ⁇ m is used.
  • the broken line indicates the position of the contour surface that is separated from the plane 20a by the distance h 1 .
  • the interval between the columnar structures 11 When the interval between the columnar structures 11 is set wide (for example, when the interval is slightly smaller than the diameter of the biological sample 40), a sufficient path for the diffusion of the solute in the solution can be ensured. It becomes difficult to set the distance to 40 within the range of the distance z given by Expression (4). Further, when the interval between the columnar structures 11 is set narrow (for example, when the interval is extremely small compared to the diameter of the biological sample 40), the distance z given by the equation (4) is the distance between the plane 20a and the biological sample 40. However, it is difficult to secure a sufficient path for solute diffusion in the solution, and it is difficult to keep the biological sample 40 at a position directly above the electrode surface 21a.
  • the wall plate 31 extends linearly in a direction intersecting with a line segment connecting the centers of two adjacent electrode surfaces 21a. In this example, it extends in the y direction orthogonal to the arrangement direction of the two electrode surfaces 21a arranged in the x direction.
  • the wall plate 31 is installed at a position equidistant from the two adjacent electrode surfaces 21a.
  • the wall plate 31 has a height equal to or higher than the height of the columnar structure 11. That is, the height of the wall plate 31 exceeds the range of the distance z expressed by the equation (4).
  • the biological sample 40 is placed above the electrode surface 21a by pipetting using a microscope or using a guide. That is, the horizontal distance between the electrode surface 21a and the biological sample 40 (distance in a direction parallel to the electrode surface 21a, that is, the plane 20a) is approximately zero. In this case, even if no special operation is performed, the distance z between the electrode surface 21a and the biological sample 40 is generally within the range of the formula (4). Therefore, a path through which the solute in the solution diffuses is formed between the biological sample 40 and the electrode surface 21a. As a result, the amount of chemical substance to be detected generated or consumed by the biological sample 40 increases. Furthermore, since the volume of the three-dimensional region between the biological sample 40 and the electrode surface 21a increases, the amount of the chemical substance generated or consumed increases in the three-dimensional region. These two actions contribute to an increase in the amount of chemical substance that reaches the electrode surface 21a.
  • the diffusion process between the biological sample 40 and the electrode surface 21a is long. Therefore, it is considered that the amount of the chemical substance that dissipates far without reaching the electrode surface 21a increases.
  • the distance between the biological sample 40 and the electrode surface 21a is limited to an appropriate range by the spacer 10, the above-described two actions become dominant, and as a result, the amount of the chemical substance that reaches the electrode surface 21a increases. It is done.
  • a “mortar structure” is adopted in which the height of the spacer located at the position closest to the center of the electrode surface 21a is the lowest, and the height of the spacer gradually increases as the distance from the center of the electrode surface 21a increases. it can. If the biological sample 40 having a specific gravity larger than the specific gravity of the solution is put into the electrochemical measuring apparatus provided with such a spacer 50 by a pipette or the like, the biological sample 40 can be living by its own weight without using a special mechanism. It is possible to drop the sample 40 toward the lower position of the spacer 50, that is, toward the center of the electrode surface 21a. Therefore, regarding the positional relationship of the biological sample 40 with respect to the electrode surface 21a, not only the distance in the normal direction of the plane 20a but also the distance in the direction parallel to the electrode surface 21a, that is, the plane 20a can be optimized.
  • the relationship between the horizontal distance from a certain point X on the plane 20a to the center of the electrode surface 21a (distance in the direction parallel to the electrode surface 21a, that is, the plane 20a) m and the height of the spacer at the point X is appropriately set.
  • the biological sample diameter d sp is a value within the range of 100 to 600 ⁇ m
  • the distance between the plane 20a and the biological sample can be set within the range of the effective distance z obtained by the above simulation. Is possible.
  • FIGS. 7A and 7B exemplify an electrochemical measurement apparatus including a mortar-shaped spacer 50.
  • the mortar-shaped spacer 50 is composed of a plurality of columnar structures 51 having different heights.
  • Each of the columnar structures 51 standing on the forest extends from the plane 20a of the substrate 20 on which the electrode surface 21a is arranged in the normal direction of the plane 20a.
  • the interval between any two columnar structures 51 is less than 100 ⁇ m.
  • an electrochemical measurement device having columnar structures 51 formed at intervals of about 30 ⁇ m is used.
  • the interval between the columnar structures 51 refer to the supplementary explanation regarding the interval between the columnar structures 11.
  • FIG. 7B illustrates two biological samples 40 having different diameters d sp .
  • the diameter d sp several points are appropriately selected from the range of 100 to 600 ⁇ m, and circumscribing the outline of all the biological samples when each biological sample is arranged at the height of the optimum value of z in each of the d sp
  • h 2 as shown by a broken line in FIG. 7B
  • the median of the following equation (5) is obtained.
  • m is the distance [unit: ⁇ m] in the direction parallel to the plane 20a from the center of the electrode surface 21a.
  • m satisfies at least 0 ⁇ m ⁇ L / 2 (however, h 2 > 0).
  • the spacer 50 in this example has a mortar-shaped contour surface in which the distance h 2 in the normal direction of the plane 20a satisfies the formula (5) depending on the distance m [ ⁇ m].
  • the electrochemical measurement is performed in a state where the biological sample 40 is in contact with the contour surface of the spacer 50 in the solution (that is, the columnar structure 51) and is located immediately above the center of the electrode surface 21a.
  • the wall plate 31 extends linearly in a direction crossing a line segment connecting the centers of two adjacent electrode surfaces 21a. In this example, it extends in the y direction orthogonal to the arrangement direction of the two electrode surfaces 21a arranged in the x direction.
  • the wall plate 31 is installed at a position equidistant from the two adjacent electrode surfaces 21a.
  • the wall plate 31 has a height equal to or higher than the maximum height of the columnar structure 51. That is, the wall plate 31 is given by the equation (5) where m is the horizontal distance from the center of the electrode surface 21a closest to the point at a point on the plane 20a located directly below the wall plate 31. Has a height greater than the maximum value in the range of 2 .
  • the biological sample 40 When placing the biological sample 40, the biological sample 40 can be dropped toward the bottom of the mortar-shaped spacer 50 by the dead weight of the biological sample 40 without performing any special operation. At this time, the horizontal distance between the electrode surface 21a and the biological sample 40 (distance in a direction parallel to the electrode surface 21a, that is, the plane 20a) is zero. Incidentally, since the position where the biological sample 40 in accordance with the sample diameter d sp is in contact with the spacer 50 is different, the distance z between the lower end of the electrode surface 21a and the biological sample 40 will vary depending on d sp.
  • the diffusion process between the biological sample 40 and the electrode surface 21a is long. Therefore, it is considered that the amount of the chemical substance that dissipates far without reaching the electrode surface 21a increases.
  • the distance between the biological sample 40 and the electrode surface 21a is limited to an appropriate range by the mortar-shaped spacer 50, the above-described two actions become dominant, and as a result, the amount of the chemical substance that reaches the electrode surface 21a is reduced. It is thought to increase.
  • the spacer is composed of a plurality of columnar structures, but is not limited to such a configuration.
  • a thin plate-like porous structure having a large number of micropores such as agarose gel may be used as the spacer.
  • the diameter of the micropores may not be constant.
  • the porous structure is installed on the flat surface 20a.
  • it is not essential that the spacer of the porous structure is formed on the entire plane 20a.
  • a spacer (porous structure) is unnecessary at a location sufficiently away from the electrode surface 21a.
  • the second embodiment of the electrochemical measurement apparatus of the present invention has the following configuration.
  • the electrochemical measuring device has a solution tank 60, a plurality of wall plates 32 and 33, and a plurality of working electrodes 21.
  • the plurality of wall plates 32 and 33 and the plurality of working electrodes 21 are all fixed on the flat surface 20 a of the solution tank 60.
  • the flat surface 20a is a bottom surface of the solution tank 60 that comes into contact with the solution in a state where the solution tank 60 contains the solution, and is also a surface of a semiconductor chip on which an integrated circuit is formed, for example.
  • the surface of the working electrode 21 in contact with the solution is an electrode surface 21a.
  • the electrode surface 21a and the wall plates 32 and 33 are immersed in the solution during the measurement.
  • the biological sample 40 and the electrode surface 21a are the same as those described in the first embodiment.
  • Two or more wall plates 32 and 33 are installed between two electrode surfaces 21a adjacent to each other.
  • the wall plates 32 and 33 have a property that solutes in the solution cannot permeate. Crosstalk is reduced by the wall plates 32 and 33.
  • each of the wall plates 32 and 33 must be a shape in which a closed three-dimensional region is not formed by the biological sample 40, the plane 20a, and the wall plates 32 and 33 in a state where the biological sample 40 is in contact with the wall plates 32 and 33. I must.
  • a shape extending in a straight line shape, a broken line shape, or a curved shape can be adopted.
  • the wall plates 32 and 33 may be arranged in a cylindrical shape or a polygonal frame shape at some intervals.
  • a cylindrical or polygonal frame structure in which one or more slits are formed can be employed.
  • the interval between the wall plates 32 and 33 may not be constant. Furthermore, it is not essential that the wall plates 32 and 33 are formed on the entire plane 20a. For example, the wall plates 32 and 33 are unnecessary at a location sufficiently away from the electrode surface 21a.
  • the height h 1 of the wall plates 32 and 33 (the length from the plane 20a along the normal line of the plane 20a) is a predetermined value within the range of the distance z given by the equation (4).
  • the plurality of wall plates 32 and 33 have a spacer function.
  • the spacer composed of the plurality of wall plates 32 and 33 has a contour surface that satisfies the range of the distance z given by the expression (4) in the vertical direction toward the plane 20a.
  • the spacer allows diffusion of the solute in the solution while preventing the biological sample 40 from entering the region on the flat surface 20a side of the contour surface.
  • the “distance between the plane 20 a and the biological sample 40” means the shortest distance between the plane 20 a and the biological sample 40, and the intersection between the normal line of the plane 20 a and the plane 20 a, the normal line, and the biological sample 40. Is the minimum length of the half line connecting the two.
  • the reason why the term “substantially” is used here is that the distance between the plane 20a and the biological sample 40 may be strictly less than h 1 depending on the shape and posture of the biological sample 40. Even if such a case exists, the shapes of the individual biological samples 40 are strictly different from each other. In addition, the postures of the individual biological samples 40 are also strictly different from each other. The effect of “sensitivity, comparability, reproducibility improvement” is not lost.
  • a h 1 may be a predetermined value within a range of distance z given by Equation (4a) .
  • h 1 may be a constant independent of the position on the plane 20a, or may be a value determined by a function having the position on the plane 20a as a variable. Even in the latter case, h 1 is a value within the range of the distance z given by Equation (4).
  • the height of the wall plates 32 and 33 does not have to be uniform in the entire region on the plane 20a.
  • the plane 20a there may be a region where the height of the wall plates 32, 33 is relatively low and a region where the height of the wall plates 32, 33 is relatively high.
  • region where the height of the wall boards 32 and 33 changes in steps on the plane 20a may exist.
  • two or more wall plates 32 are arranged on the plane 20a at intervals of less than 100 ⁇ m in the x direction.
  • Each of the wall plates 32 extends linearly in the y direction.
  • the two electrode surfaces 21a are arranged in the x direction on the plane 20a of the substrate 20 in which the xy orthogonal coordinate system is defined.
  • an electrochemical measurement device having a spacer composed of a wall plate 32 appropriately arranged according to the diameter and shape of the biological sample 40 is used.
  • the plurality of wall plates 32 have a uniform height.
  • the height h 3 of the wall plate 32 satisfies the range of z given by Equation (4). That is, the height h 3 satisfies the following formula.
  • the plurality of wall plates 32 have the same function as the plurality of columnar structures 11 shown in FIGS. 6A and 6B, that is, functions as spacers, and further, the wall plates 31 shown in FIGS. 6A and 6B. It has the same function as the wall plate that reduces crosstalk.
  • the y-coordinates of the centers of the two electrode surfaces 21a coincide with each other, but the y-coordinates of the centers of the two electrode surfaces 21a do not necessarily coincide with each other. That is, the line connecting the centers of the two electrode surfaces 21a and the extending direction of the wall plate 32 do not have to be orthogonal. In other words, the angle formed by the line connecting the centers of the two electrode surfaces 21a and the extending direction of the wall plate 32 may be larger than 0 degree and smaller than 90 degrees.
  • the plurality of wall plates 33 have the same function as the plurality of columnar structures 51 shown in FIGS. 7A and 7B, that is, functions as spacers, and further, the wall plates 31 shown in FIGS. 7A and 7B. It has the same function as the wall plate that reduces crosstalk.
  • a plurality of wall plates 33 are arranged at intervals of less than 100 ⁇ m in the x direction.
  • Each of the wall plates 33 extends linearly in the y direction. Refer to the description of the interval between the wall plates 32 for the interval between the wall plates 33.
  • the cross section perpendicular to the y-axis of the wall plate 33 has a cross-sectional shape like a parabola.
  • the contour surface of the wall plate 33 is a groove-like surface extending in the y direction.
  • One or more electrode surfaces 21a are arranged along the groove (bottom of the mortar).
  • the y-coordinates of the centers of the two electrode surfaces 21a are the same.
  • the y-coordinates of the centers of the two electrode surfaces 21a do not necessarily match. That is, the line connecting the centers of the two electrode surfaces 21a and the extending direction of the wall plate 33 do not have to be orthogonal. In other words, the angle formed by the line connecting the centers of the two electrode surfaces 21a and the extending direction of the wall plate 33 may be larger than 0 degree and smaller than 90 degrees.
  • a preferred electrode array is an array in which the electrode surfaces 21a are also aligned in the x direction. There is no limitation on the arrangement (y coordinate) of the electrode surface 21a inside the electrode array. A configuration in which one electrode array includes only one electrode surface 21a is also permitted.
  • the wall plates 32 and 33 in FIGS. 8A and 8B and FIGS. 9A and 9B have a property that solutes in the solution cannot permeate. Crosstalk is reduced by the wall plates 32 and 33.
  • ⁇ Modification> 10 and 11 show modifications of the configuration shown in FIGS. 8A and 8B and FIGS. 9A and 9B, respectively.
  • each wall plate extends linearly and continuously.
  • the heights of the two wall plates 32 positioned immediately beside the electrode surface 21 a have changes along the y direction (the extending direction of the wall plate 32).
  • the change in height is significant in the vicinity of the electrode surface 21a, and there is no change in height except in the vicinity of the electrode surface 21a.
  • the height of the wall plate 32 is the lowest (minimum) in that the perpendicular line from the center of the electrode surface 21a to the wall plate 32 intersects the wall plate 32 when the plane 20a is viewed from the front.
  • the height of the wall plate 32 changes smoothly, but may change stepwise.
  • the minimum value of the height of one of the two wall plates 32 positioned immediately beside the electrode surface 21a and the minimum value of the height of the other are almost the same.
  • the dent 32a is formed in the upper part of each of the two wall plates 32 located immediately beside the electrode surface 21a.
  • the dent 32a is located above the point where the perpendicular line from the center of the electrode surface 21a to the wall plate 32 intersects the wall plate 32 when the plane 20a is viewed from the front.
  • the height of the wall plate 32 at a position where the biological sample 40 is in contact with the wall plate 32 in a state where a biological sample 40 of the sphere is placed in a recess 32a is h 3 above.
  • the height of the wall plate 33 shown in FIG. 11 has a change along the y direction (the extending direction of the wall plate 33).
  • the change in the height of each wall plate 33 is significant in the vicinity of the electrode surface 21a, and there is no change in the height except in the vicinity of the electrode surface 21a.
  • the height of the wall plate 33 is the lowest (minimum) at the point where the perpendicular to the wall plate 33 separated from the center of the electrode surface 21a by the distance m when the plane 20a is viewed from the right intersects the wall plate 33.
  • the height of the wall plate 33 changes smoothly, but may change stepwise.
  • FIG. 11 the height of the wall plate 33 changes smoothly, but may change stepwise.
  • the minimum value of the height at one of the two wall plates 32 that is symmetrical with respect to the center of the electrode surface 21a and the minimum value of the height at the other are substantially the same.
  • the dent 33 a is formed in each upper part of the wall plate 33.
  • the dent 33 a is located above a point where a perpendicular line from the center of the electrode surface 21 a to the wall plate 33 intersects the wall plate 33 when the plane 20 a is viewed from the front.
  • the spherical biological sample 40 is placed in the dent 33a, the biological sample 40 is in contact with the wall plate 33 that is separated from the center of the electrode surface 21a by a distance m.
  • the height is h 4 described above.
  • the dents 32a and 33a are useful for positioning the biological sample in the y direction.
  • the dent 32a is provided on a pair of wall plates 32 adjacent to the electrode surface 21a and sandwiching the electrode surface 21a.
  • the dents 33a are provided on all the wall plates 33. The amounts of dents in the dents 32a and 33a are set in ranges that satisfy the heights h 3 and h 4 , respectively.
  • the y-coordinates of the centers of the two electrode surfaces 21a do not have to coincide with each other as in the example of FIGS. 8A and 8B.
  • the indentation 32a is formed only in the wall plate 32 closest to the center of the electrode surface 21a or the second wall plate 32 (only one when two wall plates 32 exist at the same distance from the center of the electrode surface 21a). It may be formed.
  • the dent 32a is located above the electrode surface 21a. In the vicinity of the electrode surface 21a, a dent 32a may be formed in each of the upper portions of the three or more wall plates 32.
  • the dent 33a is formed in all the wall plates 33 including the entire width in the line segment connecting the first end point and the second end point located on both sides of the electrode surface.
  • the line segment connecting the first end point and the second end point is parallel to the x direction.
  • the first end point and the second end point are the closer of the midpoints of the electrode rows adjacent to the point 300 ⁇ m away from the center of the electrode surface.
  • the first end point and the second end point are the coincidence points.
  • FIG. 11 shows that in such a configuration, the distance in the x direction from each of the two electrode arrays (electrode surface 21a) illustrated to the midpoint of both is shorter than 300 ⁇ m, and the two electrode arrays (electrode surfaces illustrated) 21a) shows a form in the case where there is no other electrode row on both outer sides.
  • the highest wall plate 33 located just above the middle point of the two electrode surfaces 21a includes the entire width in the range having the first and second end points on both the left and right electrode rows as both ends. Therefore, the dent 33a may not be formed or may be formed as in the illustrated example.
  • not all the wall plates 33 included in the range connecting the first and second end points are provided with dents 33a, but at least a part of the width is included in the x-direction range connecting the first and second end points. You may form the dent 33a in the at least 1 wall board 33 in the wall board 33 contained.
  • the biological sample can be positioned in the y direction by a recess formed in the upper part of the wall plate. That is, the biological sample 40 can be positioned almost immediately above the electrode surface 21a.
  • the wall plate 33 is located above the electrode surface 21a, the dent 33a is located above the electrode surface 21a.
  • FIG. 12 shows another modification of the configuration shown in FIGS. 8A and 8B.
  • each wall board 32 is extended
  • the interval between the two wall plates 32 located immediately beside the electrode surface 21 a has a change along the y direction (the extending direction of the wall plate 32).
  • the change in the interval is significant in the vicinity of the electrode surface 21a, and there is no change in the interval except in the vicinity of the electrode surface 21a. Therefore, the extending direction of the portion where the interval does not change (that is, the portion other than the vicinity of the electrode surface 21a) is regarded as the extending direction of the wall plate.
  • the distance between the wall plates 32 is the largest (maximum) at a point where a line perpendicular to the extending direction of the wall plate 32 intersects the wall plate 32 from the center of the electrode surface 21a when the plane 20a is viewed from the front.
  • the interval between the wall plates 32 changes smoothly, but may change stepwise.
  • a recess 32b extending in the height direction of the wall plate (that is, the normal direction of the plane 20a) is formed in each of the two wall plates 32 positioned immediately beside the electrode surface 21a.
  • the recess 32b has an opening toward the center of the electrode surface 21a when the plane 20a is viewed from the front.
  • the biological sample can be positioned by expanding the wall plate interval.
  • the y-coordinates of the centers of the two electrode surfaces 21a match.
  • the y-coordinates of the centers of the two electrode surfaces 21a do not necessarily match. That is, the line connecting the centers of the two electrode surfaces 21a and the extending direction of the wall plate 32 do not have to be orthogonal. In other words, the angle formed by the line connecting the centers of the two electrode surfaces 21a and the extending direction of the wall plate 32 may be larger than 0 degree and smaller than 90 degrees.
  • the recess 32b may be formed in only one wall plate.
  • the one wall plate in this case may be a wall plate that is the second closest from the center of the electrode surface 21a.
  • the shape of the recess when the plane 20a is viewed from the front may be a polygonal line or a curved line.
  • FIG. 13 shows an example in which the electrode surfaces 21a are arranged in a grid pattern.
  • a large number of electrode surfaces 21a are arranged by arranging a plurality of electrode rows 22 in the x direction.
  • a plurality of electrode surfaces 21a are arranged in the y direction.
  • the wall plate 34 that reduces crosstalk extends, for example, in the y direction between adjacent electrode rows 22. In this case, an effect of reducing crosstalk in the x direction can be obtained. Even if the wall plate 34 is installed in this way, the diffusion of the solute in the direction parallel to the wall plate 34 (y direction) is not hindered, so the decrease in the amount of solute supplied is small.
  • the illustration of the spacer is omitted.
  • spacers not shown are the columnar structures 11 and 51, the porous structure shown in FIGS. 6A, 6B, 7A, and 7B.
  • the spacers not shown may be a plurality of wall plates 32 and 33 having the functions of the spacers shown in FIGS.
  • a wall plate 34 partition plate
  • the height of the wall plate 34 may exceed the range of the heights h 3 and h 4 of the wall plates 32 and 33.
  • the biological sample may be a cell mass, a single cell, a tissue piece, a microorganism, a non-biological sample containing a biological substance, or the like.
  • reaction mechanism in which chemical substances are produced or consumed in biological samples.
  • the ALP enzyme reaction on the model sample was selected as the reaction mechanism.
  • the reaction mechanism may be an enzymatic reaction using proteins, peptides, RNA, or the like, or a catalytic reaction using a platinum thin film, a titanium oxide thin film, etc. on a biological sample.
  • the chemical substance may be generated or consumed via various intracellular metabolic pathways or signal transduction pathways, for example, protons released through glycolytic metabolic pathways. Or dopamine released from nerve cells may be used.
  • Working electrode materials include noble metals such as gold and platinum, inorganic substances mainly composed of carbon (eg, graphite, diamond doped with impurities, carbon nanotubes, etc.), conductive polymers (eg, polypyrrole, polyaniline, polythiophene, etc.), etc. Anything can be used as long as it can be used as a working electrode for electrochemical measurements.
  • noble metals such as gold and platinum
  • inorganic substances mainly composed of carbon eg, graphite, diamond doped with impurities, carbon nanotubes, etc.
  • conductive polymers eg, polypyrrole, polyaniline, polythiophene, etc.
  • the shape of the electrode surface of the working electrode is, for example, a circle, an ellipse, or a polygon.
  • the substrate material was not specified. Any material can be used as the substrate material as long as it can be used for a working electrode support for electrochemical measurement, such as quartz, glass, silicon, and ceramics.
  • the spacer is preferably constructed by a technique that can control the height of the spacer on the order of ⁇ m.
  • the spacer has a structure that allows solution diffusion, that is, diffusion of solute in the solution. Furthermore, when the spacer contacts the electrode, the spacer must have an insulating property. If these conditions are satisfied, the spacer is not limited in its construction method and spacer material. In the following, spacer construction techniques and spacer materials that are considered suitable are exemplified.
  • Example 1 of construction of spacer composed of a plurality of columnar structures > 1) A silicon nitride film is formed on the substrate by CVD (chemical vapor deposition). The film thickness of the silicon nitride film on the substrate is uniform. 2) An etching protective layer is patterned on the silicon nitride film by a photolithography method. 3) Etch the silicon nitride film in a region not covered by the etching protection layer by reactive ion etching. A columnar structure is formed by etching. 4) The etching protection layer is removed.
  • CVD chemical vapor deposition
  • the insulating film material is not limited to silicon nitride, and may be, for example, silicon oxide or titanium oxide.
  • the film forming method is not limited to CVD, but may be a vacuum film forming method such as sputtering or vapor deposition, or spin-on-glass.
  • the patterning method of the etching protective layer is not limited to the photolithography method, and may be a screen printing method, an ink jet method, or the like.
  • the etching method is not limited to reactive ion etching, but may be plasma etching, sputter etching, ion beam etching, or wet etching.
  • Example 2 of construction of spacer composed of a plurality of columnar structures 1) A photosensitive resin is coated on an LSI having a current detection element by spin coating. The current detection element includes at least a working electrode. 2) A columnar structure is constructed by photolithography.
  • the photosensitive resin may be any resin having insulating properties and photosensitivity used in general photolithography, and desirably has a resolution required for manufacturing a spacer having an accurate diameter and height.
  • the photosensitive resin necessary to obtain is selected. From the viewpoint of the chemical stability of the columnar structure, an epoxy-based chemically amplified photosensitive resin used as a negative permanent resist is preferable.
  • any coating method can be used as long as it can control the film thickness on the order of ⁇ m. Due to the high controllability of the film thickness, the coating method is not limited to spin coating, but may be spray coating, dip coating, screen coating, roll coating, or the like.
  • a spacer which is a porous structure After adjusting the water dilution of agarose, the water dilution of agarose is heated to 80 ° C. or higher to form a sol. 2) Agarose aqueous solution is dropped on a substrate at 80 ° C., and a thin film is formed by spin coating. In this process, the temperature of the substrate is always kept at 80 ° C. or higher. 3) The substrate is allowed to cool to room temperature to obtain a porous spacer which is an agarose gel.
  • the sol dropped on the substrate may be anything as long as it becomes a porous gel after coating.
  • the heating temperature is appropriately set depending on the type of sol. Agarose, polyvinyl alcohol, cellulose and the like are preferable because of easy adjustment and high biocompatibility.
  • any coating method can be used as long as it can control the film thickness on the order of ⁇ m and has a mechanism for keeping the temperature of the sol constant during the coating process. Due to the high controllability of the film thickness, the coating method is not limited to spin coating, but may be spray coating, dip coating, screen coating, roll coating, or the like.
  • the spacer composed of the columnar structure can be constructed by a molding method (Nanoimprint Lithography, insert molding), a printing method (for example, screen printing, inkjet printing), a machining method, or the like.
  • the spacer which is a porous structure can also be constructed by placing a porous body such as porous silica or nitrocellulose membrane formed in advance on a substrate.
  • the wall plate is preferably constructed by a method capable of controlling the height of the wall plate on the order of ⁇ m. If the wallboard is constructed on contact with the electrodes, the wallboard must be insulating. From these points, the same method as the construction method of the spacer constituted by the columnar structure can be adopted as the construction method of the wall plate. Moreover, the same material as the spacer comprised with a columnar structure can be employ
  • the interval between the columnar structures is appropriately set according to the diameter of the biological sample.
  • the interval between the columnar structures is preferably as wide as possible.
  • the interval between the columnar structures does not need to be uniform, and there may be a region where the columnar structures exist densely and a region where the columnar structures exist sparsely, or there may be a region where no columnar structures exist at all. May be.
  • the diameter of the columnar structure is large enough to secure a strength sufficient to hold the biological sample away from the electrode surface.
  • the diameter of the columnar structure is smaller.
  • the shape of the upper surface of a columnar structure may be a circle or a polygon (for example, a triangle or a rectangle).
  • the shape of the upper surface and the shape of the lower surface are not necessarily the same.
  • the area of the upper surface and the area of the lower surface do not have to be the same.
  • the upper surface area may be intentionally reduced by changing the etching conditions of the insulating layer at the time of creating the columnar structure (that is, a tapered columnar structure may be formed).
  • the contact area and adhesive force between the biological sample and the columnar structure can be reduced by the tapered columnar structure.
  • the tapered columnar structure reduces the force required to peel off the biological sample when the biological sample is collected after the measurement, and as a result, reduces damage to the biological sample.
  • interval of a wall board is suitably set according to the diameter of a biological sample.
  • a wider interval between the wall plates is preferable.
  • ⁇ Wallboard thickness> The thickness of the wall plate is large enough to secure a strength sufficient to hold the biological sample away from the electrode surface.
  • ⁇ Shape of wallboard> The shape of the upper and lower surfaces of the wallboard need not be the same. Moreover, the area of the upper surface and lower surface of a wall board does not need to be the same. For example, the upper surface area may be intentionally reduced by changing the etching conditions of the insulating layer when creating the wall plate (that is, a tapered wall plate may be formed).
  • the contact area and adhesive force between the biological sample and the wall plate can be reduced by the tapered wall plate.
  • the tapered wall plate reduces the force required for peeling the biological sample when the biological sample is collected after measurement, and as a result, reduces damage to the biological sample.
  • Transducer is used for electrochemical measurements of chemicals generated or consumed in biological samples.
  • the transducer has a configuration in which the solution tank 60 is mounted on the LSI chip 70.
  • the solution tank 60 contains the solution 61 and a biological sample immersed in the solution 61.
  • a hole 62 is formed in the center of the solution tank 60.
  • the LSI chip 70 is disposed at the lower end of the hole 62. The hole 62 is blocked by the LSI chip 70.
  • the LSI chip 70 and the solution tank 60 are fixed on the substrate 80.
  • a large number of wiring patterns 81 for connection to an external device for controlling the transducer are formed on the substrate 80.
  • reference numeral 90 indicates a bonding wire that connects the LSI chip 70 and the wiring pattern 81.
  • a sensor region 71 is formed on the upper surface of the LSI chip 70.
  • the sensor region 71 is indicated by hatching.
  • the sensor region 71 is located in the hole 62 on the bottom surface of the solution tank 60.
  • a plurality of electrodes (working electrodes) are formed in the sensor region 71, and a spacer composed of a columnar structure is formed in the sensor region 71.
  • a wall plate is formed between adjacent working electrodes.
  • the LSI chip 70 has a function of applying a voltage to the working electrode, a function of detecting a reaction at the working electrode as a current value, and amplifying the current value.
  • the spacer and the wall plate are as described above.
  • the biological sample is separated from the plane on which the electrode surface is disposed by a desired distance by a spacer or a plurality of wall plates. Therefore, a three-dimensional region where the solute in the solution can diffuse is secured, and the solute is sufficiently supplied to the biological sample.
  • the measurement sensitivity is improved as compared with the conventional electrochemical measurement in which measurement is performed by bringing a biological sample close to the electrode surface.
  • the vertical distance between the working electrode and the biological sample is not constant.
  • the electrochemical measurement device and transducer of the present invention are described as follows.
  • the following description is not inconsistent with the disclosure described in the above-mentioned “Means for Solving the Problems”, and the following description and the above-mentioned “Means for Solving the Problems” are mutually referred to. it can.
  • ⁇ Item 1 An electrochemical measurement device for measuring chemical substances produced or consumed in a biological sample in solution, A solution tank for containing the solution and the biological sample; Two or more electrode surfaces, where each electrode surface is a surface of an electrode in contact with the solution in a state where the solution tank contains the solution, and is oxidized between each electrode surface and the chemical substance.
  • the diameter d el of each of the two or more electrode surfaces is 80 ⁇ m or less
  • the height of the spacer is a predetermined value within the range of h given by the equation (c1)
  • the spacer has a structure in which a three-dimensional region closed by the biological sample, the bottom surface, and the spacer is not formed in a state where the biological sample is in contact with the spacer,
  • the at least one wall plate has a property that a solute in the solution cannot permeate,
  • the at least one wall plate has a height equal to or higher than the height of the spacer; Of the two or more electrode surfaces, at least two electrode surfaces are separated by the at least one wall plate.
  • ⁇ Item 2 An electrochemical measurement device for measuring chemical substances produced or consumed in a biological sample in solution, A solution tank for containing the solution and the biological sample; Two or more electrode surfaces, where each electrode surface is a surface of an electrode in contact with the solution in a state where the solution tank contains the solution, and is oxidized between each electrode surface and the chemical substance.
  • the diameter d el of each of the two or more electrode surfaces is 80 ⁇ m or less
  • the distance in the direction parallel to the bottom surface from the center of one of the two or more electrode surfaces is defined as m
  • the height of the spacer at the position of the distance m from the center of the one electrode surface is A predetermined value within the range of h given by (c2), provided that the center of the other electrode surface closest to the one electrode surface among the two or more electrode surfaces and the center of the one electrode surface
  • the distance L is 0 ⁇ m ⁇ L / 2 and h> 0.
  • the spacer has a structure in which a three-dimensional region closed by the biological sample, the bottom surface, and the spacer is not formed in a state where the biological sample is in contact with the spacer,
  • the at least one wall plate has a property that a solute in the solution cannot permeate,
  • the at least one wall plate has a height equal to or higher than the height of the spacer; Of the two or more electrode surfaces, at least two electrode surfaces are separated by the at least one wall plate.
  • the two or more electrode surfaces include three or more electrode surfaces
  • the at least one wall plate includes two or more wall plates, At least two of the three or more electrode surfaces are disposed on at least one of the at least one or more portions, provided that the at least one or more portions are the two of the bottom surfaces. At least one portion located between two adjacent ones of the plurality of wall plates, or at least located between one wall plate of the two or more wall plates and the side wall of the solution tank. One or more parts.
  • the spacer is composed of a plurality of columnar structures, Each of the plurality of columnar structures extends in the normal direction of the plane.
  • the spacer is a porous structure.
  • ⁇ Item 6 An electrochemical measurement device for measuring chemical substances produced or consumed in a biological sample in solution, A solution tank for containing the solution and the biological sample; Two or more electrode surfaces, where each electrode surface is a surface of an electrode in contact with the solution in a state where the solution tank contains the solution, and is oxidized between each electrode surface and the chemical substance.
  • the reduction reaction proceeds, Including two or more wallboards, The two or more electrode surfaces and the two or more wall plates are disposed on the bottom surface of the solution tank, The diameter d el of each of the two or more electrode surfaces is 80 ⁇ m or less, The height of the two or more wall plates is a predetermined value within the range of h given by the formula (c3), Each of the two or more wall plates has a structure that does not form a closed three-dimensional region together with the biological sample and the bottom surface in a state in contact with the biological sample, Each of the two or more wall plates has a property that the solute in the solution cannot penetrate, At least two of the two or more electrode surfaces are separated by at least one of the two or more wall plates.
  • the reduction reaction proceeds, Including two or more wallboards, The two or more electrode surfaces and the two or more wall plates are disposed on the bottom surface of the solution tank,
  • the diameter d el of each of the two or more electrode surfaces is 80 ⁇ m or less,
  • the height of the wall plate is a predetermined value within the range of h given by the expression (c4), provided that the other electrode surface closest to the one electrode surface among the two or more electrode surfaces.
  • Each of the two or more wall plates has a structure that does not form a closed three-dimensional region together with the biological sample and the bottom surface in a state in contact with the biological sample,
  • Each of the two or more wall plates has a property that the solute in the solution cannot penetrate, At least two of the two or more electrode surfaces are separated by at least one of the two or more wall plates.
  • a recess is formed in the upper part of at least one of the two wall plates, provided that the recess is one of the two or more electrode surfaces when the bottom surface is viewed from the front.
  • the two wall plates are located on both sides of the one electrode surface.
  • At least one of the two or more wall plates is formed with a recess that enlarges the interval between the two wall plates. However, when the recess is viewed from the bottom, Of the two or more electrode surfaces, it is located immediately next to one electrode surface and extends in the normal direction of the bottom surface, and the two wall plates are located on both sides of the one electrode surface. Located in.
  • ⁇ Item 10 In the electrochemical measurement device according to any one of items 6 to 9, Including a wall plate having a height greater than the maximum height of the two or more wall plates, hereinafter referred to as a partition plate, The partition plate has a property that the solute in the solution cannot penetrate, Of the two or more electrode surfaces, at least two electrode surfaces are separated by the partition plate.
  • ⁇ Item 11 A transducer, The electrochemical measurement device according to any one of items 1 to 10, An integrated circuit, The bottom surface of the solution tank is the surface of the integrated circuit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

溶液中の生体サンプルで生成された又は消費される化学物質を測定する電気化学測定装置であって、複数の電極面と、スペーサと、少なくとも1個の壁板を含む。複数の電極面とスペーサと壁板は同じ平面の上に配置されている。各電極面の直径delは80μm以下である。スペーサの高さは、h=21.8(del+0.8)/(del+9.7)±5[μm]の範囲内の所定の値である。スペーサは、生体サンプルがスペーサに接している状態において生体サンプルと平面とスペーサによって閉じた3次元領域が形成されない構造を持つ。壁板は、溶液中の溶質が透過することのできない性質と、スペーサの高さ以上の高さを持つ。2個の電極面は壁板によって隔てられている。

Description

電気化学測定装置及びトランスデューサ
 この発明は、生体サンプルによって生成された又は消費される化学物質を電気化学的に測定するために用いる電気化学測定装置及びトランスデューサに関する。生体サンプルは、(1)生体を構成する要素、または、(2)生体を構成する要素の集合体、または、(3)生体関連物質[生体関連物質は、生物の体内に存在する化学物質であり、例えば生体高分子、生体高分子を構成する要素、生物の生存に必要な化学物質が含まれる]、または、(4)(1)~(3)のうち一つ以上を含む有体物である。生体サンプルとして、細胞、細胞塊、組織片、生体関連物質を含む非生体有体物を例示できる。
 細胞で生成された又は消費される化学物質を定量的に評価する技術の構築は、基礎生化学の発展だけでなく、医療やライフサイエンスの発展に大きく貢献する。当該技術は、例えば、がん検診で用いられる細胞診断、再生医療や免疫細胞治療に用いられる移植用細胞の品質評価、薬効評価や毒性評価における動物実験の代替として利用できる。
 しかし、細胞の生理活性は、温度、pH、培地組成、隣接する細胞、細胞外マトリクスなどの細胞を取り巻く環境によって変化するだけでなく、遺伝子導入、薬物曝露、応力付与などの外部刺激や、細胞分裂や細胞死などの細胞イベントに応じて経時的にも変化する。
 このため、実際に生体内で働く細胞の真の性質を評価するためには、生体サンプルである細胞を生きたまま(つまり、細胞生理活性を保ったまま)生体内と可能な限り近い環境に設置し、さらに、その細胞で生成された又は消費される化学物質を外部刺激や細胞イベントに対してリアルタイムで測定することが重要である。
 生体サンプルである細胞を生体内に近い環境に設置する手法の一つとして、単一細胞ではなく、複数の細胞と細胞外マトリクス(extracellular matrix:ECM)成分の凝集体である細胞塊(spheroids:スフェロイド)を生体サンプルとして用いる手法が知られている。
 細胞が持つ種々の生理活性の多くは、当該細胞が接触する隣接細胞やECMとの相互作用で発現するので、単一細胞よりも細胞塊の方が生体内の環境をより忠実に再現すると考えられる。
 細胞塊として、膵臓から採取される膵島細胞、受精卵、細胞培養によって得られた肝細胞や神経細胞のスフェロイド、ES(embryonic stem)細胞の胚様体などを例示できる。
 細胞活性の評価に用いられる細胞塊の直径は、構成細胞の種類、生体内における採取部位、培養条件などによって異なるものの、100~600μm程度である。これは、直径100μm以下の小さな細胞塊では、構成細胞数が少なすぎるために細胞塊特有の生理活性が現われ難く、直径600μm以上の大きな細胞塊では、細胞塊中心部の細胞にまで酸素が拡散されなくなり、細胞が壊死しやすくなってしまうからである。
 細胞で生成された又は消費される化学物質をリアルタイムで測定する手法として、電気化学的手法が用いられる。電気化学的手法では、生体サンプルの様々な電気化学的シグナルを検出するための電極(作用極)が用いられる。作用極は、生体サンプルが浸される溶液内に設置されている。作用極の電位制御あるいは電流制御の違いに応じて、様々な検出法が存在する。細胞などの代謝活性に関わる測定においては、比較性の高さ、解析の簡易さから、クロノアンペロメトリー(Chrono Amperometry)法やサイクリックボルタンメトリー(Cyclic Voltammetry)法に代表される電位規制電解法(定電位電解法)が使用されている。電位規制電解法は、作用極の電位を時間の関数として制御し、作用極に生じる電流値を検出する。
 一般的な細胞塊で生成された又は消費される化学物質の電気化学的な測定においては、細胞塊の物質代謝に伴い細胞塊内あるいは細胞塊表面にて酸化還元活性を有する化学物質が生成または消費される反応系が予め設定されている。当該化学物質が作用極上で酸化あるいは還元されて電流を生じる。
 細胞の物質代謝に伴い酸化還元活性を有する化学物質が生成または消費される反応系として、注目する代謝系に応じて様々な系が設計され得る。極微量な代謝物質を高感度に検出することを目的とする場合、酵素反応を利用した系が好んで用いられている。
 例えば、マウスES細胞から作製される細胞塊である胚様体では、分化状態に応じて細胞表面に存在する酵素であるアルカリホスファターゼ(Alkaline Phosphatase:ALP)の量が増減する。
 胚様体の分化状態を評価する目的で、しばしばALP生成量の電気化学的評価が行われている(非特許文献1)。この評価系では、基質であるp-アミノフェニルホスフェート(p-Aminophenyl Phosphate:PAPP)が溶解している溶液中に胚様体を置き、ALP酵素活性によってPAPPの脱リン酸反応を進行させ、結果として酸化還元活性を有するp-アミノフェノール(p-Aminophenol:PAP)を生成させる。
 溶液中におけるPAPP濃度が十分に高ければ、細胞が生成するALP量が極微量であったとしても、その酵素活性によって酸化還元活性を有する化学物質であるPAPの量を時間とともに積算することが可能である。このため、結果としてALP存在量を高感度に検出することが可能である。
 このような電気化学的な測定を単一の生体サンプルについて行う場合、通常、作用極には基板上に形成された、あるいは、プローブ状に加工された単一の電極が用いられる。複数の生体サンプルについて電気化学的測定を行う場合、複数の作用極が用いられる。
 例えば、創薬の際に、薬剤スクリーニングと呼ばれる手法が用いられている。薬剤スクリーニングでは、互いに構造が異なる複数の化学物質の中から、ある種の細胞に対して期待する作用を及ぼすことのできる化学物質(つまり、薬の候補となりうる化学物質)を探索するために、複数の細胞をそれぞれ異なる化学物質に曝露し、細胞の生理活性の変化が網羅的に評価される。
 薬剤スクリーニングにおける細胞評価は、様々な分析手法によって行われる。電気化学的手法によって細胞評価を行う場合、同一基板上に形成した複数の作用極を用いて、各作用極近傍に配置された複数の細胞を同時に評価する(多点同時電気化学測定)。
 多点同時電気化学測定によると、各細胞の評価をそれぞれ別個に行った場合と比較して、評価に要する時間が大幅に短縮される。また、基板修飾、細胞の前処理、測定条件(測定液の組成、pH、温度など)の調整はいずれも、通常、基板単位で行われる。このため、複数の電極と複数の生体サンプルを一つの基板上に集積して、前処理と測定条件調整を一括して行うことによって、使用する薬品の節約、廃液の削減などが実現し、さらに、各生体サンプルの測定条件をより正確に一致させることができる。
M.Sen et al.,"Biosensors and Bioelectronics",2013年,48巻,pp.12-18
 外部からの特別な水力学的な作用が無い限り、細胞で生成された酸化還元活性を有する化学物質は、拡散作用によって、細胞から溶液中に放射状に広がる。この結果、生成された化学物質の一部が作用極に到達して酸化もしくは還元を受ける。このため、化学物質の生成量及び化学物質の作用極までの拡散距離は、作用極に生じる電流量に大きな影響を与える。同様に、細胞で消費される化学物質は、拡散作用によって、当該化学物質の濃度が消費によって低減した細胞の近傍に向かって移動する。
 しかし、基板上に作用極が形成されている場合、作用極に生体サンプルを近接させると、生体サンプルと基板との距離が小さくなる。溶液中に溶解している基質の生体サンプルへの供給が阻害されるから、酵素反応によって生体サンプルで生成される化学物質の量は、生体サンプルが基板と遠く離れて溶液中に浮遊している場合と比較して、低下する。また、生体サンプルと作用極との間の3次元領域の体積が微小であるから、生成された化学物質の多くはこの3次元領域内に滞留することができずに遠方へ散逸する。散逸した化学物質から作用極までの距離は長いから、作用極に到達する化学物質の量が減少し、感度が低下する(問題点1)。
 さらに、生体サンプルの表面状態は均一でないし生体サンプルも完全な球体ではないから、測定ごとに作用極と生体サンプルとの間の直線距離は異なる。直線距離は、一般的に、測定ごとに少なくとも数μm程度は異なる。このため、化学物質の拡散距離が一定ではなく、測定の比較性と再現性が低下する(問題点2)。
 また、基板上の複数の作用極によって複数の生体サンプルを同時に評価する場合、作用極に流れる電流値は、最近傍の生体サンプルの化学物質の生成量または消費量の影響を最も強く受けるものの、遠方の他の生体サンプルの化学物質の生成量または消費量の影響も少なからず受ける(クロストークの問題)。各生体サンプルの化学物質の生成量または消費量を正確に検出するためには、作用極に流れる電流値は単一生体サンプルの物質代謝のみを反映するという状態が最も好ましい。このため、遠方に位置する生体サンプルの影響を減じるべく、生体サンプルの間隔とそれを評価するための作用極の間隔はそれぞれ広く確保されるべきである。しかし、作用極の間隔を広くすると、作用極が形成される基板の面積が大きくなる。このため、基板コストの上昇を招く。例えば作用極が形成される基板がLSI(Large Scale Integration)チップの上面にLSIチップの一部として半導体製造技術によって製造される場合、LSIチップの大型化、高価格化が避けられない(問題点3)。
 非特許文献1では、基板上の複数の作用極によって化学物質の量を測定しており、上述の問題点1,2,3を有する。
 上述の問題点1は、基板上の作用極ではなく、プローブ状の作用極(プローブ電極)を用いることによって解消できる。プローブ電極の先端は生体サンプルに比べて一般的に非常に微細であるから、基板上の作用極の場合と比べて、プローブ電極とプローブ電極支持体が溶液中の溶質の生体サンプルへの供給を大きく阻害することはない。また、プローブ電極の生体サンプルに対する位置は一般的にマニピュレータによってμmオーダで精細に制御される。このため、上述の問題点2も解消される。
 しかし、プローブ電極の位置制御には、マニピュレータ、プローブ先端位置を観測するための顕微鏡システムなど、高価な設備が必要である。また、プローブ電極は、経験に乏しい使用者によってしばしば破損される。
 さらに、複数の生体サンプルの評価を行う場合、マニピュレータによるプローブの移動は相当の時間を必要とするため、測定の迅速性と生体サンプル間における測定条件の同一性は大きく損なわれる。
 この発明の目的は、このような状況に鑑み、従来と比較して感度、比較性及び再現性が高い電気化学測定装置及び電気化学測定に用いるトランスデューサを提供することにある。
 請求項1の発明によれば、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置において、電極面は全てが80μm以下の径寸法delを有して一平面に配列され、溶液と生体サンプルとを収容する溶液槽には、前記一平面に対する垂直方向距離h1が、
 h1=21.8(del+0.8)/(del+9.7)±5 [μm]
を満たす輪郭面をもち、輪郭面の前記一平面側の領域において生体サンプルの侵入を阻止し、溶液中の溶質の拡散を許容するスペーサが設けられ、互いに隣接する少なくとも2つの電極面の間には、当該2つの電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対するスペーサの高さ以上の高さを有し、溶液中の溶質が透過することのできない壁板が設けられる。
 請求項2の発明によれば、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置において、電極面は全てが80μm以下の径寸法delを有して一平面に配列され、溶液と生体サンプルとを収容する溶液槽には、最も近い電極面の中心からの前記一平面に対する平行方向距離mに依存して、前記一平面に対する垂直方向距離h2が、
 h2=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
を満たす、すり鉢型の形状を描く輪郭面をもち、輪郭面の前記一平面側の領域において生体サンプルの侵入を阻止し、溶液中の溶質の拡散を許容するスペーサが設けられ、互いに隣接する少なくとも2つの電極面の間には、当該2つの電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対する前記スペーサの最大高さ以上の高さを有し、溶液中の溶質が透過することのできない壁板が設けられる。
 請求項3の発明では請求項1又は2の発明において、電極面は、複数の電極面を第1の方向の一直線上に並べた電極列を、第1の方向と直交する第2の方向に複数並べた構成で配列され、互いに隣接する電極列の間に、壁板が第1の方向に延伸されて設けられているものとされる。
 請求項4の発明では請求項1乃至3のいずれかの発明において、スペーサは前記一平面に対する垂直方向に延伸され、100μm未満の間隔で林立する一群の柱状構造物よりなるものとされる。
 請求項5の発明では請求項1乃至3のいずれかの発明において、スペーサは100μm未満の孔径を有する多孔質構造体よりなるものとされる。
 請求項6の発明によれば、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置において、電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、少なくとも2つの電極面の中心のx座標が相互に異なるように配列され、電極面が配列されている前記一平面上に、y方向に延伸され、高さh3が、
 h3=21.8(del+0.8)/(del+9.7)±5 [μm]
を満たす、溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられる。
 請求項7の発明では請求項6の発明において、1つの電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの壁板のうちの少なくとも一方の壁板の高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項8の発明では請求項6の発明において、1つの電極面につき、当該電極面の両外側を通って延伸され、間に他の壁板を挟むことなく並行する2つの壁板の高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項9の発明では請求項6の発明において、1つの電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの壁板のうちの少なくとも一方の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されているものとされる。
 請求項10の発明では請求項6の発明において、1つの電極面につき、当該電極面の中心からx方向距離が最も小さい1つの壁板である第1の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されるとともに、当該電極面の中心を挟んで第1の壁板と隣接するもう1つの壁板である第2の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されているものとされる。
 請求項11の発明では請求項6乃至10のいずれかの発明において、中心のx座標が相互に異なりつつそれらのx座標の中間のx座標を有する他の電極面が存在しない2つの電極面の組をx方向隣接電極面とするとき、少なくとも1組のx方向隣接電極面の間には、その2つの電極面の中心どうしを結ぶ線分に幅の全部が交差してy方向に延伸され、壁板の高さよりも大きな高さを有する、溶液中の溶質が透過することのできない高背の壁板が更に設けられているものとされる。
 請求項12の発明によれば、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置において、電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、1つ以上の電極面をそのすべての中心のx座標を一致させてy方向に並べてなる電極列をx方向に複数列並べた構成で配列され、電極面が配列されている前記一平面上に、y方向に延伸され、x方向において最も近い電極列に属する電極面の中心からのx方向の距離mに依存して高さh4が、
 h4=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
を満たして徐々に変化し、溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられている。
 請求項13の発明では請求項12の発明において、1つの電極面につき、当該電極面の中心からx方向の一方の向きに300μmの点または前記一方の向きにおいて隣接する電極列に属する電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第1の端点とし、当該電極面の中心からx方向の他方の向きに300μmの点または前記他方の向きにおいて隣接する電極列に属する電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第2の端点とするとき、第1の端点と第2の端点とを結ぶ線分に、その幅の全部または一部が交差して延伸されている壁板のうちの少なくとも1つの壁板の高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項14の発明では請求項13の発明において、前記線分にその幅の全部が交差して延伸されているすべての壁板の高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項15の発明では請求項12乃至14のいずれかの発明において、x方向において互いに隣接する少なくとも1組の電極列の間には、その2つの電極列にそれぞれ属する電極面の中心のx座標どうしの中間のx座標においてy方向に延伸され、前記壁板の最大高さよりも大きな高さを有する、溶液中の溶質が透過することのできない高背の壁板が更に設けられているものとされる。
 請求項16の発明によれば、溶液と溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサsにおいて、電極面は全てが80μm以下の径寸法delを有して一平面に配列され、溶液槽には、前記一平面に対する垂直方向距離h1が、
 h1=21.8(del+0.8)/(del+9.7)±5 [μm]
を満たす輪郭面をもち、輪郭面の前記一平面側の領域において生体サンプルの侵入を阻止し、溶液中の溶質の拡散を許容するスペーサが設けられ、互いに隣接する少なくとも2つの電極面の間には、当該2つの電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対するスペーサの高さ以上の高さを有し、溶液中の溶質が透過することのできない壁板が設けられる。
 請求項17の発明によれば、溶液と溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサにおいて、電極面は全てが80μm以下の径寸法delを有して一平面に配列され、溶液槽には、最も近い電極面の中心からの前記一平面に対する平行方向距離mに依存して、前記一平面に対する垂直方向距離h2が、
 h2=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
を満たす、すり鉢型の形状を描く輪郭面をもち、輪郭面の前記一平面側の領域において生体サンプルの侵入を阻止し、溶液中の溶質の拡散を許容するスペーサが設けられ、互いに隣接する少なくとも2つの電極面の間には、当該2つの電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対する前記スペーサの最大高さ以上の高さを有し、溶液中の溶質が透過することのできない壁板が設けられる。
 請求項18の発明では請求項16又は17の発明において、電極面は、複数の電極面を第1の方向の一直線上に並べた電極列を、第1の方向と直交する第2の方向に複数並べた構成で配列され、互いに隣接する電極列の間に壁板が第1の方向に延伸されて設けられているものとされる。
 請求項19の発明では請求項16乃至18のいずれかの発明において、スペーサは前記一平面に対する垂直方向に延伸され、100μm未満の間隔で林立する一群の柱状構造物よりなるものとされる。
 請求項20の発明では請求項16乃至18のいずれかの発明において、スペーサは100μm未満の孔径を有する多孔質構造体よりなるものとされる。
 請求項21の発明によれば、溶液と溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサにおいて、電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、少なくとも2つの電極面の中心のx座標が相互に異なるように配列され、電極面が配列されている前記一平面上に、y方向に延伸され、高さh3が、
 h3=21.8(del+0.8)/(del+9.7)±5 [μm]
を満たす、溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられる。
 請求項22の発明では請求項21の発明において、1つの電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの壁板のうちの少なくとも一方の壁板の高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項23の発明では請求項21の発明において、1つの電極面につき、当該電極面の両外側を通って延伸され、間に他の壁板を挟むことなく並行する2つの壁板の高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項24の発明では請求項21の発明において、1つの電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの壁板のうち少なくとも一方の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されているものとされる。
 請求項25の発明では請求項21の発明において、1つの電極面につき、当該電極面の中心からのx方向距離が最も小さい1つの壁板である第1の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されるとともに、当該電極面の中心を挟んで第1の壁板と隣接するもう1つの壁板である第2の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されているものとされる。
 請求項26の発明では請求項21乃至25のいずれかの発明において、中心のx座標が相互に異なりつつそれらのx座標の中間のx座標を有する他の電極面が存在しない2つの電極面の組をx方向隣接電極面とするとき、少なくとも1組のx方向隣接電極面の間には、その2つの電極面の中心どうしを結ぶ線分に幅の全部が交差してy方向に延伸され、壁板の高さよりも大きな高さを有する、溶液中の溶質が透過することのできない高背の壁板が更に設けられているものとされる。
 請求項27の発明によれば、溶液と溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサにおいて、電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、1つ以上の電極面をそのすべての中心のx座標を一致させてy方向に並べてなる電極列をx方向に複数列並べた構成で配列され、電極面が配列されている前記一平面上に、y方向に延伸され、x方向において最も近い電極列に属する電極面の中心からのx方向の距離mに依存して高さh4が、
4=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
を満たして徐々に変化し、溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられる。
 請求項28の発明では請求項27の発明において、1つの電極面につき、当該電極面の中心からx方向の一方の向きに300μmの点または一方の向きにおいて隣接する電極列に属する電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第1の端点とし、当該電極面の中心からx方向の他方の向きに300μmの点または前記他方の向きにおいて隣接する電極列に属する電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第2の端点とするとき、第1の端点と第2の端点とを結ぶ線分に、その幅の全部または一部が交差して延伸されている壁板のうちの少なくとも1つの壁板の高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項29の発明では請求項28の発明において、前記線分にその幅の全部が交差して延伸されているすべての壁板の高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されているものとされる。
 請求項30の発明では請求項27乃至29のいずれかの発明において、x方向において互いに隣接する少なくとも1組の電極列の間には、その2つの電極列にそれぞれ属する電極面の中心のx座標どうしの中間のx座標においてy方向に延伸され、壁板の最大高さよりも大きな高さを有する、溶液中の溶質が透過することのできない高背の壁板が更に設けられているものとされる。
 この発明によれば、高い感度、比較性及び再現性で、溶液中の生体サンプルで生成された又は消費される化学物質を測定できる。
電極-モデルサンプル間距離zと電流値Iとの関係を示すグラフである。 モデルサンプル直径dspと効果的な電極-サンプル間距離zの範囲との関係を示すグラフである。 電極直径delと効果的な電極-サンプル間距離zの範囲との関係を示すグラフである。 電極-サンプル間距離zと電流値I/反応速度Vmaxとの関係を示すグラフである。 電極-サンプル間距離zと電流値Iおよび拡散係数Dとの関係を示すグラフである。 本発明による電気化学測定装置の第1実施形態(タイプ1)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第1実施形態(タイプ1)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第1実施形態(タイプ2)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第1実施形態(タイプ2)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態(タイプ1)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態(タイプ1)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態(タイプ2)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態(タイプ2)の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態の変形例の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態の変形例の要部構成を説明するための模式図である。 本発明による電気化学測定装置の第2実施形態の変形例の要部構成を説明するための模式図である。 アレイ状に配列された電極面に対する壁板の配置例を説明するための図である。 本発明によるトランスデューサの一実施形態を示す平面図である。 本発明によるトランスデューサの一実施形態を示す断面図である。 図14に示すトランスデューサの斜視図である。
 発明者らは、電気化学測定において、生体サンプルで生じる化学反応に関わる溶液中の溶質の拡散過程と基板上の電極に流れる電流との関係を詳しく解析した。その結果、発明者らは、次の事実を発見した:電極面直径と生体サンプル直径とによって決定されるある特定の距離だけ、生体サンプルを電極面から電極面の垂直方向に離して配置し、生体サンプルの下に溶質が自由に拡散するための経路を形成することによって、生体サンプルが電極面の直上に近接している時と比較して電流量が増大し、測定の感度が向上する。
 また、発明者らは、次の事実を発見した:生体サンプルを電極面から電極面の垂直方向に離して配置することによって、電極面に対する生体サンプルの位置の制御精度の低さに基因する電流値のバラつきが、生体サンプルが電極面の直上に近接している時のバラつきと比較して減少し、測定の比較性及び再現性が向上する。
 以下、このような発見に至ったシミュレーションの結果を説明する。
 シミュレーションではシミュレーションソフトCOMSOL Multiphysics(日本国登録商標)を用いた。モデルサンプルとして、マウスES細胞で形成される胚様体を採用した。また、モデルサンプルで生成される化学物質として、モデルサンプル表面でのALP酵素反応によって生じるPAPを採用した。モデルサンプルによって生成された化学物質(PAP)は拡散し、そして作用極の電極面に届き、電極面上で酸化される。この際、作用極に生じる電流値が検出される。その他の条件は以下のとおりである。
<酵素反応>
 モデルサンプル表面では、溶液中の溶質であるPAPPを基質としたALP酵素反応が進行し、PAPが生成される。ALP酵素反応の反応速度(生成速度)vは、ミカエリス・メンテン(Michaelis-Menten)の式(1)に従う。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、ASPはモデルサンプルの表面積であり、Vmaxは基質濃度が無限大の時の、モデルサンプルの単位表面積あたりの反応速度であり、KmはALP酵素反応のミカエリス定数であり、[S]は基質濃度である。Vmax、Kmの値をそれぞれ、2.65×10-7mol/(s・m2)、1.7×10-3mol/Lとした。また、[S]の初期値を5.0×10-3mol/Lとした。
<電極反応>
 電極上では、モデルサンプルによって生成されたPAPの二電子酸化反応が進行する。電極電位は、反応が完全な拡散律速となるくらい十分に高いと仮定した。この時の電流値Iは式(2)に従う。
Figure JPOXMLDOC01-appb-M000002
 式(3)において、i(x,y)、c(x,y)はそれぞれ電極表面上の任意の点(x,y)における電流密度及び検出対象の化学物質濃度である。Aelは電極面積であり、nは反応に関わる電子数であり、Fはファラデー定数であり、Dは溶液中における検出対象の化学物質の拡散係数であり、zは電極面(x-y面)に垂直な方向の座標である。n、F、Dをそれぞれ2、9.64×104C/mol、6.47×10-10m2/sとした。また、測定結果には電極反応開始から200秒後における電流値Iを示した。
<その他>
 モデルサンプルの形状:直径dsp=200μmの球状
 電極面の形状:直径del=20μmの円状
 電極面の位置:電極面の中心座標とモデルサンプル中心座標(x,y)の水平距離が0である
 距離z:0~80μm
 本発明者らは、モデルサンプルで生成された化学物質の酸化反応に基づく電流値Iが、電極面とモデルサンプル下端との距離zによってどのように変化するかを調べた。図1は、電流値Iと距離zとの関係を表すシミュレーション結果のグラフである。
 図1から、電流値Iはz=16μmで極大値を持つ。したがって、モデルサンプルをピーク電流値が得られる最適位置に設置することによって、測定の感度が距離z=0μmの場合の感度と比較して大幅に向上することが判明した。このような距離zの傾向は、電極直径del及びモデルサンプル直径dspに依存しない。
 さらに、図1から、距離zが上述の極大値の近傍で変動した場合の電流値Iの変動は、z=0μmの近傍で距離zが変動した場合の電流値Iの変動と比べて大幅に小さいことが分かる。細胞、細胞塊、組織片などを生体サンプルとして採用した場合、生体サンプルの表面に凹凸が存在することや、生体サンプルの形状が必ずしも球形でないことなどから、距離zを数μmの精度で制御することは困難である。しかし、距離zを極大値の近傍の値に設定すれば、距離zの制御精度の低さに基因する電流値Iのバラつきを低減でき、結果として、異なる測定対象間の量的関係を決定する精度(比較性)および同一の測定対象に対する測定結果の再現性を向上できる。
 この比較性及び再現性の向上は、距離zが極大値に近いほど高くなる。当該向上は、とりわけ、電流値がピーク電流値の90%以上となる距離zの範囲において顕著である。このため、距離zをこの範囲内の値に設定すれば、感度の向上だけでなく比較性と再現性の向上について高い効果を得られる。
 発明者らが種々行ったシミュレーション結果から、効果的な距離zの範囲は、測定条件、特に電極直径と生体サンプル直径に依存して大きく変化することが分かった。したがって、特定の直径を持つ生体サンプルを評価するためには、適切な直径を持つ電極及び適切な距離zを設定する必要がある。
 しかし、生体サンプルが細胞、細胞塊、組織片などである場合、生体サンプルの直径は細胞の種類、状態によって大きく異なる。さらに、生体サンプルが同一検体の同一箇所から採取された場合であっても、あるいは、同一の培養条件の下で得られた場合であっても、生体サンプルの直径のバラつきは数μm~数百μmに及ぶ。全ての生体サンプルの直径を測定前に調べ、それぞれに適切な電極直径と距離zを設定することは、コストの観点から現実的でない。また、異なる電極直径と異なる距離zに応じて得られた測定結果について、互いに定量的に比較することは著しく困難である。
 これらの問題を解決するために、常識的な範囲内において様々な直径を持つ全ての生体サンプルに対して高い効果を提供することが可能な電極直径及び距離zの範囲を求め、同一構成の電気化学測定装置によって種々の生体サンプルを測定することが有効である。
 発明者らは、生体内における生理活性をより正確に再現するといわれている細胞塊について、細胞塊の直径が一般的によく用いられる100~600μmの範囲にある場合に、高い感度、比較性と再現性の向上の各効果が得られる電極直径及び距離zの範囲を求めた。以下に、その手順を説明する。
 初めに、発明者らは、電極直径delが20μmの場合、モデルサンプル直径dspに応じて効果的な距離zの範囲の下限値zmin及び上限値zmaxがどのように変化するかを調べた。図2は、そのシミュレーション結果を示している。電極直径delが20μmである場合、各モデルサンプル直径dspについて、距離zが図2に示すzmin以上zmax以下であれば、電流値Iはピーク電流値の90%以上である(図中zoptは、ピーク電流値を与える距離zの最適値である)。さらに、モデルサンプル直径dspが100μmのときのzmaxをzmax *、モデルサンプル直径dspが600μmのときのzminをzmin *とすると、モデルサンプル直径dspが100~600μmの間の値である場合、距離zがzmin *を下限値とし、zmax *を上限値とする図2中に斜線で示した範囲内であれば、やはり電流値Iはピーク電流値の90%以上である。
 次に、発明者らは、電極直径delに応じてzmin *及びzmax *がどのように変化するかを調べた。図3は、そのシミュレーション結果を示している。電極直径delの値が0~80μmの範囲内にあり、かつ、距離zが図3に示すzmin *以上zmax *以下の範囲内であれば、dsp=100~600μmの生体サンプルについて、上述の高い効果が得られる。非線形最小二乗法を用いたフィッティング操作によって、距離zの範囲は、おおよそ、電極直径delの関数である式(4)によって表される。したがって、距離zを式(4)で表される範囲に設定すればよい。但し、z>0である。
Figure JPOXMLDOC01-appb-M000003
 図3からわかるように、電極直径delが約80μm以上の場合に式(4)は使えない。しかし、細胞などの微小な生体サンプルを対象とする電気化学測定では、一般的に、del=50μm以下の電極が使用される。これは、del=50μm以下の電極によると、電流値のS/N比(検出対象の化学物質の酸化還元反応によって生じるファラデー電流と、非検出対象である電解質によって生じる充電電流の比)が有意に増大するからである。よって、式(4)にしたがって距離zを決定することができる。
 電極直径del、生体サンプル直径dspの他に、生体サンプルによる化学物質の生成速度v、化学物質の拡散係数Dによっても、効果的な距離zの範囲は変化し得る。しかし、その影響は限定的である。
 基質濃度[S]が十分に高い場合、生成速度vは基質濃度が無限大の時の反応速度Vmaxによってほぼ決定されることが式(1)からわかる。そこで、発明者らは、効果的な距離zの範囲が反応速度Vmaxによってどのように変化するかを調べた。図4は、様々な反応速度Vmaxと距離zとの組における電流値Iのシミュレーション結果を示している。図4に示すグラフの縦軸は、反応速度Vmaxによって規格化された電流値Iである。図4から、反応速度Vmaxが変化しても、反応速度Vmaxによって規格化された電流値Iと距離zとの関係性はほとんど変化がなく、効果的な距離zの範囲もほぼ変化しないことがわかる。
 同様に、発明者らは、効果的な距離zの範囲が拡散係数Dによってどのように変化するかを調べた。図5は、様々な拡散係数Dと距離zとの組における電流値Iのシミュレーション結果を示している。PAP、鉄錯体、ルテニウム錯体、過酸化水素など、医療またはライフサイエンス分野で使用される一般的な検出対象の化学物質の拡散係数Dの値は、概ね1×10-10~20×10-10m2/sの範囲にある。図5から、拡散係数Dが1×10-10~20×10-10m2/sの範囲にある場合、電流値Iと距離zとの関係性はほとんど変化がなく、効果的な距離zの範囲もほぼ変化しないことがわかる。
 これらの結果から、直径100~600μmの生体サンプルについて、上述の高い効果を得るために満たすべき距離zと電極直径delとの関係性を示す式(4)は、種々の生成速度vと拡散係数Dを有する測定系においても有用である。
<本発明の第1実施形態>
 上述したシミュレーション結果に基づいて、本発明の電気化学測定装置の第1実施形態は次のような構成を持つ。電気化学測定装置は溶液槽60とスペーサ10,50と壁板31と複数の作用極21を持つ。スペーサ10,50と壁板31と複数の作用極21は、全て、溶液槽60の平面20a上に固定されている。平面20aは、溶液槽60が溶液を収容している状態において溶液と接触する溶液槽60の底面であり、例えば集積回路が形成されている半導体チップの表面でもある。溶液と接する作用極21の面が電極面21aである。スペーサ10,50と電極面21aと壁板31は、測定中、溶液に浸される。
<生体サンプル>
 生体サンプル40は100μm以上600μm以下の直径を持つ。生体サンプル40の「直径」とは、生体サンプル40を内部に含む最小の球の直径である。
<スペーサ>
 スペーサ10,50は、平面20aに向かう垂直方向の距離が式(4)で与えられる距離zの範囲を満たす輪郭面を持つ。スペーサ10,50は、輪郭面の平面20a側の領域への生体サンプル40の侵入を阻止しつつ、溶液中の溶質の拡散を許容する。
 換言すると、スペーサ10,50は、h1の高さ(平面20aの法線に沿った、平面20aからの長さ)と、生体サンプル40がスペーサ10,50に接している状態において生体サンプル40と平面20aとスペーサ10,50によって閉じた3次元領域が形成されない構造を持つ。h1は式(4)で与えられる距離zの範囲内の所定の値である。
 生体サンプル40はスペーサ10,50の輪郭面沿いに配置される。つまり、生体サンプル40はスペーサ10,50に接して配置される。
 このような構造によると、平面20aと生体サンプル40との距離を概ねh1に保つことが可能である。「平面20aと生体サンプル40との距離」は、平面20aと生体サンプル40との最短距離を意味し、平面20aの法線と平面20aとの交点と、当該法線と生体サンプル40との交点と、を結ぶ半直線の最小長さである。ここで「概ね」という用語を用いた理由は、生体サンプル40の形状や姿勢に応じて、平面20aと生体サンプル40との距離が厳密にはh1未満になる可能性があるからである。このような場合が存在するとしても、個々の生体サンプル40の形状は厳密には互いに異なり、加えて、個々の生体サンプル40の姿勢も厳密には互いに異なるから、統計的観点から、上述した「感度、比較性、再現性の向上」の効果が失われることはない。
 平面20aと生体サンプル40との距離が厳密にはh1未満になる可能性があることを考慮して、h1を式(4a)で与えられる距離zの範囲内の所定の値としてもよい。式(4a)は、距離zの上限値が21.8(del+0.8)/(del+9.7)+5[μm]であり、zの下限値が21.8(del+0.8)/(del+9.7)+0[μm]であることを意味する。
Figure JPOXMLDOC01-appb-M000004
 h1は、平面20a上の位置に依存しない定数でもよいし、平面20a上の位置を変数とする関数で定まる値でもよい。後者の場合でも、h1は式(4)で与えられる距離zの範囲内の値である。
 つまり、スペーサ10,50の高さ10,50は平面20a上の全領域で均一である必要はない。例えば、平面20a上において、スペーサ10,50の高さが相対的に低い領域とスペーサ10,50の高さが相対的に高い領域が存在してもよい。あるいは、平面20a上において、スペーサ10,50の高さが段階的に変化する領域が存在してもよい。
<電極面>
 電極面の配置に特段の限定は無い。例えば、隣り合う電極面間の距離は概ね120μm以上である。しかし、実際の使用において、第1の生体サンプルに対応する第1電極面の中心と第2の生体サンプル(第2の生体サンプルは第1の生体サンプルと異なる)に対応する第2電極面の中心との距離Lは、第1電極面の上に第1の生体サンプルを配置し、かつ、第2電極面の上に第2の生体サンプルを配置した状態において、第1の生体サンプルと第2の生体サンプルが接触しないという条件を満たさなければならない。つまり、実際の電気化学測定では、全ての電極面を使用してもよいし、一部の電極面を使用してもよい。
 各作用極21の電極面21aは、100μm以上600μm以下の直径を持つ生体サンプル40で生成された又は消費される化学物質と電子の授受を行う。この結果、化学物質の酸化還元反応が進行する。全ての電極面21aは80μm以下の直径を持つ。電極面21aの形状は、好ましくは円形であるが、楕円形、多角形でもよい。電極面21aの形状が円形以外の場合、電極面21aの直径delは、2√(A/π)とする。ただし、Aは電極面21aの面積である。電極面21aの中心は、電極面21aの幾何学的中心である。電極面21aの形状が円である場合には電極面21aの中心は円の中心である。電極面21aの形状が楕円である場合には電極面21aの中心は楕円の長軸と短軸の交点である。電極面21aの形状が矩形である場合には電極面21aの中心は対角線の交点である。電極面21aが複雑な形状を持つ場合には、電極面21aを内部に含む最小の円の中心を電極面21aの中心と定義する。
 後の説明で参照する図6~図12では2つの電極面21aが図示されているが、電極面21aの総数は2に限定されない。3以上の電極面21aの配置形状にも限定はない。格子状(格子の交点に電極面が位置する形状)、線状(直線の上に電極面が位置する形状)、円状(円の上に電極面が位置する形状)、多角形枠状(多角形の辺の上に電極面が位置する形状)など任意の配置形状が選択されえる。
<壁板>
 壁板31は、互いに隣り合う2つの電極面21aの間に設置されている。壁板31は、溶液中の溶質が透過できない性質を持つ。壁板31によってクロストークが低減される。
 平面20aを正視したときの壁板31の形状、つまり、平面20aの法線方向から平面20aを見たときの壁板31の形状は、例えば、直線状、あるいは、折れ線状、あるいは、曲線状に伸長している形状でもよいし、円環状、あるいは、多角形枠状の形状を持っていてもよい。ただし、壁板31が後者のような閉じた構造を持つ場合、生体サンプル40がスペーサ10,50に接している状態において、壁板31は、生体サンプル40と接しない構造を持たなくてはならない。
 壁板31は、高さh1以上の高さを有する。つまり、壁板31の高さは、式(4)で表される距離zの範囲を越える。壁板31の高さの上限値に制限はない。均一な測定条件の観点から、実際の使用では、溶液面は壁板31の高さを超える。さらに、壁板31が平面20aの全部に形成されていることも必須ではない。例えば、電極面21aから十分に離れた場所では壁板31は不要である。
 電極面の数と壁板の数との関係に特段の限定は無い。しかし、徒に多くの壁板を形成する必要は無い。隣り合う壁板と壁板との間、または、壁板と溶液槽の壁との間、に複数の電極面が配置されている構成が許容される。
<タイプ1>
 図6A,6Bは、電気化学測定装置の第1実施形態の一例を示している。スペーサ10は林立する複数の柱状構造物11で構成されている。隣り合う2つの電極面21aの間に壁板31が設置されている。均一な高さを持つ柱状構造物11はそれぞれ、電極面21aが配置されている基板20の平面20aから、平面20aの法線方向に伸長している。この例では、任意の二つの柱状構造物11の間隔は100μm未満である。例えば、100μmの直径を持つ生体サンプル40の測定を行う場合、30μm程度の間隔で形成されている柱状構造物11を持つ電気化学測定装置が利用される。図6B中、破線は、平面20aから距離h1だけ離れている輪郭面の位置を示している。
 柱状構造物11の間隔について補足説明する。柱状構造物11の間隔を広く設定した場合(例えば、間隔が生体サンプル40の直径と比べて僅かに小さい場合)、溶液中の溶質が拡散する経路を十分に確保できるが、平面20aと生体サンプル40との距離を式(4)で与えられる距離zの範囲内に設定することが困難になる。また、柱状構造物11の間隔を狭く設定した場合(例えば、間隔が生体サンプル40の直径と比べて極めて小さい場合)、平面20aと生体サンプル40との距離を式(4)で与えられる距離zの範囲内に設定することは容易であるが、溶液中の溶質が拡散する経路を十分に確保できず、さらに、生体サンプル40を電極面21aの真上の位置に保つことが困難になる。よって、実際の使用では、生体サンプル40の直径と形状に応じて、適切に配置された柱状構造物11で構成されているスペーサを持つ電気化学測定装置が使用される。また、柱状構造物11の間隔は一定でなくてもよい。さらに、柱状構造物11が平面20aの全部に形成されていることも必須ではない。例えば、電極面21aから十分に離れた場所ではスペーサは不要である。
 壁板31は、隣り合う2つの電極面21aの中心を結ぶ線分と交差する方向に直線状に伸長している。この例では、x方向に並ぶ2つの電極面21aの配列方向と直交するy方向に伸長している。壁板31は、隣り合う2つの電極面21aから等距離の位置に設置されている。壁板31は、柱状構造物11の高さ以上の高さを有する。つまり、壁板31の高さは、式(4)で表される距離zの範囲を越える。
 顕微鏡を用いたピペッティング操作あるいはガイドの使用などによって、生体サンプル40は電極面21aの上方に置かれる。つまり、電極面21aと生体サンプル40との水平距離(電極面21aつまり平面20aと平行な方向の距離)は概ね0である。この場合、特別な操作を行わなくても、電極面21aと生体サンプル40との距離zは、式(4)の範囲に概ね収まる。したがって、生体サンプル40と電極面21aとの間に、溶液中の溶質が拡散する経路が形成される。結果として、生体サンプル40によって生成された又は消費される検出対象の化学物質の量が増加する。さらに、生体サンプル40と電極面21aとの間の3次元領域の体積が増加するから、生成された又は消費される化学物質の総量のうち3次元領域内に滞留する量が増加する。これら2つの作用は、電極面21aに到達する化学物質の量の増加に寄与する。
 スペーサ10の存在によって、生体サンプル40と電極面21aとの間における拡散行程は長い。したがって、電極面21aに到達することなく遠方に散逸する化学物質の量が増加すると考えられる。しかし、スペーサ10によって生体サンプル40と電極面21aとの距離が適切な範囲に制限されるから、前述の2つの作用が優勢となり、結果として電極面21aに到達する化学物質の量は増加すると考えられる。
<タイプ2>
 スペーサの構造として、電極面21aの中心に最も近い位置に位置するスペーサの高さが最も低く、電極面21aの中心から離れるに従って、スペーサの高さが徐々に高くなる「すり鉢型構造」を採用できる。このようなスペーサ50を備えている電気化学測定装置に、溶液の比重よりも大きい比重を持つ生体サンプル40をピペットなどで入れれば、特別な機構を使用することなく、生体サンプル40の自重によって生体サンプル40を、スペーサ50の低い位置に向かって、つまり電極面21aの中心に向かって落とすことが可能である。したがって、電極面21aに対する生体サンプル40の位置関係について、平面20aの法線方向の距離のみならず、電極面21aつまり平面20aと平行な方向の距離も最適化できる。
 さらに、平面20a上のある地点Xから電極面21aの中心までの水平距離(電極面21aつまり平面20aと平行な方向の距離)mと、当該地点Xにおけるスペーサの高さとの関係を適切に設定することによって、生体サンプル直径dspが100~600μmの範囲内の値である場合、平面20aと生体サンプルとの距離を上述のシミュレーションで求めた効果的な距離zの範囲内に設定することが可能である。
 図7A,7Bは、すり鉢型構造のスペーサ50を備えている電気化学測定装置を例示している。図7A,7Bでは、すり鉢型構造のスペーサ50は、高さが異なる複数の柱状構造物51によって構成されている。林立する柱状構造物51はそれぞれ、電極面21aが配置されている基板20の平面20aから、平面20aの法線方向に伸長している。この例では、任意の二つの柱状構造物51の間隔は100μm未満である。例えば、100μmの直径を持つ生体サンプル40の測定を行う場合、30μm程度の間隔で形成されている柱状構造物51を持つ電気化学測定装置が利用される。なお、柱状構造物51の間隔については、柱状構造物11の間隔についての上記補足説明を参照されたい。
 図7Bでは、直径dspが異なる2つの生体サンプル40を例示している。直径dspの値として100~600μmの範囲から幾つかの点を適宜に選び、それらの各dspにおけるzの最適値の高さに各生体サンプルを配置した場合の全生体サンプルの外形に外接する曲線、すなわち図7B中に破線で示したようなh2をフィッティングすると、おおよそ次の式(5)の中央値のとおりとなる。mは、電極面21aの中心からの平面20aと平行な方向の距離[単位:μm]である。ただし、最も近い隣り合う二つの電極面21aの中心間距離をLとしたとき、mは少なくとも0<m≦L/2を満たす(ただし、h2>0である)。
Figure JPOXMLDOC01-appb-M000005
 この例のスペーサ50は、距離m[μm]に依存して、平面20aの法線方向の距離h2が式(5)を満たす、すり鉢形状の輪郭面を持つ。生体サンプル40が、溶液中のスペーサ50の輪郭面(つまり、柱状構造物51)に接しており、かつ、電極面21aの中心の直上に位置する状態で、電気化学測定が実行される。
 壁板31は、隣り合う2つの電極面21aの中心を結ぶ線分と交差する方向に直線状に伸長している。この例では、x方向に並ぶ2つの電極面21aの配列方向と直交するy方向に伸長している。壁板31は、隣り合う2つの電極面21aから等距離の位置に設置されている。壁板31は、柱状構造物51の最大高さ以上の高さを有する。つまり、壁板31は、壁板31の真下に位置する平面20a上の点において、当該点に最も近い電極面21aの中心からの水平距離をmとした場合の式(5)で与えられるh2の範囲の最大値以上の高さを有する。
 生体サンプル40を置く際、特別な操作を行わなくても、生体サンプル40の自重によって生体サンプル40を、すり鉢型のスペーサ50の底部に向かって落とすことができる。この時、電極面21aと生体サンプル40との水平距離(電極面21aつまり平面20aと平行な方向の距離)は0となる。なお、サンプル直径dspに応じて生体サンプル40がスペーサ50に接する位置は異なるから、電極面21aと生体サンプル40の下端との距離zはdspに応じて異なる。
 図7A,7Bに示す構成でも、図6A,6Bに示す構成と同様、生体サンプル40と電極面21aとの間に、溶液中の溶質が拡散する経路が形成される。したがって、生体サンプル40によって生成された又は消費される検出対象の化学物質の量が増加する。さらに、生体サンプル40と電極面21aとの間の3次元領域の体積が増加するから、生成された又は消費される化学物質の総量のうち3次元領域内に滞留する量が増加する。これら2つの作用は、電極面21aに到達する化学物質の量の増加に寄与する。
 スペーサ50の存在によって、生体サンプル40と電極面21aとの間における拡散行程は長い。したがって、電極面21aに到達することなく遠方に散逸する化学物質の量が増加すると考えられる。しかし、すり鉢型のスペーサ50によって生体サンプル40と電極面21aとの距離が適切な範囲に制限されるから、前述の2つの作用が優勢となり、結果として電極面21aに到達する化学物質の量が増加すると考えられる。
<変形例>
 スペーサは、上述の例では、複数の柱状構造物で構成されているが、このような構成に限定されない。例えばアガロースゲル(agarose gel)のような多数の微細孔を有する薄板状の多孔質構造体をスペーサとして用いてもよい。微細孔の直径は一定でなくてもよい。多孔質構造体は平面20aに設置される。さらに、多孔質構造体のスペーサが平面20aの全部に形成されることも必須ではない。例えば、電極面21aから十分に離れた場所ではスペーサ(多孔質構造体)は不要である。
<本発明の第2実施形態>
 上述したシミュレーション結果に基づいて、本発明の電気化学測定装置の第2実施形態は次のような構成を持つ。電気化学測定装置は溶液槽60と複数の壁板32,33と複数の作用極21を持つ。複数の壁板32,33と複数の作用極21は、全て、溶液槽60の平面20a上に固定されている。平面20aは、溶液槽60が溶液を収容している状態において溶液と接触する溶液槽60の底面であり、例えば集積回路が形成されている半導体チップの表面でもある。溶液と接する作用極21の面が電極面21aである。電極面21aと壁板32,33は、測定中、溶液に浸される。
<生体サンプルと電極面>
 生体サンプル40と電極面21aについては、上述の第1実施形態の説明と同じである。
<壁板とスペーサ>
 互いに隣り合う2つの電極面21aの間に、2個以上の壁板32,33が設置されている。壁板32,33は、溶液中の溶質が透過できない性質を持つ。壁板32,33によってクロストークが低減される。
 壁板32,33それぞれの形状は、生体サンプル40が壁板32,33に接している状態において、生体サンプル40と平面20aと壁板32,33によって閉じた3次元領域が形成されない形状でなければならない。例えば、平面20aを正視したときの壁板32,33それぞれの形状として、直線状、あるいは、折れ線状、あるいは、曲線状に伸長している形状を採用できる。
 あるいは、壁板32,33をいくつかの間隔を空けて円筒状、あるいは、多角形枠状に配置してもよい。
 あるいは、壁板32,33として、一つ以上のスリットが形成されている円筒状、あるいは、多角形枠状の構造も採用できる。
 壁板32,33の間隔は一定でなくてもよい。さらに、壁板32,33が平面20aの全部に形成されていることも必須ではない。例えば、電極面21aから十分に離れた場所では壁板32,33は不要である。
 壁板32,33の高さh1(平面20aの法線に沿った、平面20aからの長さ)は、式(4)で与えられる距離zの範囲内の所定の値である。
 第2実施形態では、複数の壁板32,33がスペーサの機能を持つ。複数の壁板32,33で構成されるスペーサは、平面20aに向かう垂直方向の距離が式(4)で与えられる距離zの範囲を満たす輪郭面を持つ。スペーサは、輪郭面の平面20a側の領域への生体サンプル40の侵入を阻止しつつ、溶液中の溶質の拡散を許容する。
 このような構造によると、平面20aと生体サンプル40との距離を概ねh1に保つことが可能である。「平面20aと生体サンプル40との距離」は、平面20aと生体サンプル40との最短距離を意味し、平面20aの法線と平面20aとの交点と当該法線と、生体サンプル40との交点と、を結ぶ半直線の最小長さである。ここで「概ね」という用語を用いた理由は、生体サンプル40の形状や姿勢に応じて、平面20aと生体サンプル40との距離が厳密にはh1未満になる可能性があるからである。このような場合が存在するとしても、個々の生体サンプル40の形状は厳密には互いに異なり、加えて、個々の生体サンプル40の姿勢も厳密には互いに異なるから、統計的観点から、上述した「感度、比較性、再現性の向上」の効果が失われることはない。
 平面20aと生体サンプル40との距離が厳密にはh1未満になる可能性があることを考慮して、h1を式(4a)で与えられる距離zの範囲内の所定の値としてもよい。
 h1は、平面20a上の位置に依存しない定数でもよいし、平面20a上の位置を変数とする関数で定まる値でもよい。後者の場合でも、h1は式(4)で与えられる距離zの範囲内の値である。
 つまり、壁板32,33の高さは平面20a上の全領域で均一である必要はない。例えば、平面20a上において、壁板32,33の高さが相対的に低い領域と壁板32,33の高さが相対的に高い領域が存在してもよい。あるいは、平面20a上において、壁板32,33の高さが段階的に変化する領域が存在してもよい。
<タイプ1>
 図8A,8Bに示す例では、平面20a上に、2個以上の壁板32がx方向に100μm未満の間隔で配列されている。壁板32はそれぞれy方向に直線状に伸長している。2つの電極面21aは、x-y直交座標系が定義されている基板20の平面20a上でx方向に配置されている。
 柱状構造物の場合と同様の理由で、実際の使用では、生体サンプル40の直径と形状に応じて、適切に配置された壁板32で構成されているスペーサを持つ電気化学測定装置が使用される。
 図8A,8Bの例では、複数の壁板32は、均一な高さを有する。壁板32の高さh3は、式(4)で与えられるzの範囲を満たす。つまり、高さh3は次式を満たす。
Figure JPOXMLDOC01-appb-M000006
 図8A,8Bに示す構成では、複数の壁板32は、図6A,6Bに示す複数の柱状構造物11と同じ機能つまりスペーサとしての機能を持ち、さらに、図6A,6Bに示す壁板31と同じ機能つまりクロストークを低減する壁板としての機能を持つ。
 なお、図8A,8Bの例では、2つの電極面21aの中心のy座標は一致するが、2つの電極面21aの中心のy座標は必ずしも一致していなくてもよい。つまり、2つの電極面21aの中心を結ぶ線と壁板32の伸長方向とが直交していなくてもよい。換言すると、2つの電極面21aの中心を結ぶ線と壁板32の伸長方向とがなす角度は0度より大きく90度より小さくてもよい。
<タイプ2>
 図9A,9Bに示す構成では、複数の壁板33は、図7A,7Bに示す複数の柱状構造物51と同じ機能つまりスペーサとしての機能を持ち、さらに、図7A,7Bに示す壁板31と同じ機能つまりクロストークを低減する壁板としての機能を持つ。
 平面20a上に、複数の壁板33がx方向に100μm未満の間隔で配列されている。壁板33はそれぞれy方向に直線状に伸長している。壁板33の間隔については壁板32の間隔についての説明を参照されたい。電極面21aの中心からx方向に距離mだけ離れた位置の壁板33の高さh4は式(5)を満たす。つまりh4=h2である。この例では、壁板33の高さはy方向で変化しない。
 壁板33のy軸に垂直な断面は、放物線のような断面形状を持つ。壁板33の輪郭面は、y方向に伸長する溝状の面である。溝(すり鉢の底)に沿って一つ以上の電極面21aが配置されている。
 図9A,9Bの例では、2つの電極面21aの中心のy座標は一致する。しかし、2つの電極面21aの中心のy座標は必ずしも一致していなくてもよい。つまり、2つの電極面21aの中心を結ぶ線と壁板33の伸長方向とが直交していなくてもよい。換言すると、2つの電極面21aの中心を結ぶ線と壁板33の伸長方向とがなす角度は0度より大きく90度より小さくてもよい。好適な電極列は、電極面21aがx方向にも整列するアレイ状の配列である。電極列の内部の電極面21aの配置(y座標)に限定は全く無い。1つの電極列がただ1つの電極面21aを含む構成も許される。
 図8A,8B及び図9A,9Bにおける壁板32,33は、溶液中の溶質が透過できない性質を持つ。壁板32,33によってクロストークが低減する。
<変形例>
 図10及び図11はそれぞれ、図8A,8B及び図9A,9Bに示す構成の変形例を示している。この変形例では、各壁板は直線状かつ連続して伸長している。
 図10に示す壁板32のうち電極面21aのすぐ横に位置する二つの壁板32の高さはそれぞれ、y方向(壁板32の伸長方向)に沿った変化を持つ。この例では、高さの変化は電極面21aの近傍において顕著であり、電極面21aの近傍以外では、高さの変化は無い。平面20aを正視した時に電極面21aの中心から壁板32への垂線が壁板32と交わる点において、壁板32の高さが最も低い(極小)。図10に示す例では、壁板32の高さは滑らかに変化しているが、段階的に変化していてもよい。図10に示す例では、電極面21aのすぐ横に位置する二つの壁板32の一方における高さの最小値と他方における高さの最小値はほぼ同じである。
 換言すると、電極面21aのすぐ横に位置する二つの壁板32のそれぞれの上部にへこみ32aが形成されている。へこみ32aは、平面20aを正視した時に電極面21aの中心から壁板32への垂線が壁板32と交わる点の上方に位置する。
 この例では、球体の生体サンプル40がへこみ32aに置かれている状態で生体サンプル40が壁板32に接している位置での壁板32の高さが上述のh3である。
 同様に、図11に示す壁板33の高さはそれぞれ、y方向(壁板33の伸長方向)に沿った変化を持つ。この例では、各壁板33の高さの変化は電極面21aの近傍において顕著であり、電極面21aの近傍以外では、高さの変化は無い。平面20aを正視した時に電極面21aの中心から距離mだけ離れた壁板33への垂線が当該壁板33と交わる点において、当該壁板33の高さが最も低い(極小)。図11に示す例では、壁板33の高さは滑らかに変化しているが、段階的に変化していてもよい。図11に示す例では、電極面21aの中心に関して対称の位置にある二つの壁板32の一方における高さの最小値と他方における高さの最小値はほぼ同じである。
 換言すると、壁板33のそれぞれの上部にへこみ33aが形成されている。へこみ33aは、平面20aを正視した時に電極面21aの中心から壁板33への垂線が当該壁板33と交わる点の上方に位置する。
 この例では、球体の生体サンプル40がへこみ33aに置かれている状態で生体サンプル40が電極面21aの中心から距離mだけ離れている壁板33に接している位置での当該壁板33の高さが上述のh4である。
 へこみ32a,33aは、生体サンプルのy方向の位置決めに有用である。
 図10ではへこみ32aは電極面21aに隣接して電極面21aを挟む一対の壁板32に設けられており、図11ではへこみ33aは全ての壁板33に設けられている。へこみ32a,33aのへこみ量はそれぞれ高さh3,h4を満たす範囲で設定される。
 壁板にへこみが形成されている変形例においても、図8A,8Bの例と同様に、2つの電極面21aの中心のy座標が一致していなくてもよい。また、電極面21aの中心に最も近いまたは2番目に近い壁板32だけ(電極面21aの中心から等距離の位置に2つの壁板32が存在する場合は任意の一方だけ)にへこみ32aを形成してもよい。壁板32が電極面21aの上方に位置する場合、電極面21aの上方にへこみ32aが位置する。電極面21aの近傍において、3個以上の壁板32の上部のそれぞれにへこみ32aを形成してもよい。
 図11に示す例では、最も近い隣り合う二つの電極面21aの中心間距離をLとしたとき、0<m≦L/2を満たすmについて、電極面21aの中心から距離mだけ離れた位置の壁板33の上部にへこみ33aが形成されている。しかし、生体サンプル40の最大直径が600μmであるから0以上300μm以下のmについて、電極面21aの中心から距離mだけ離れた位置の壁板33の上部にへこみ33aを形成する構造を採用してもよい。
 つまり、電極面の両脇に位置する第1の端点と第2の端点とを結ぶ線分の中に、幅の全部が含まれている壁板33のすべてにへこみ33aを形成する。ただし、第1の端点と第2の端点とを結ぶ線分はx方向と平行である。第1の端点と第2の端点は、電極面の中心から300μm離れた点と隣接する電極列の中点のうち近い方である。ただし、前者の点と後者の点が一致する場合は、第1の端点と第2の端点は当該一致点である。
 図11は、このような構成において、図示される2つの電極列(電極面21a)の各々から両者の中点までのx方向距離が300μmよりも短く、図示される2つの電極列(電極面21a)の両外側には他の電極列が存在しない場合の形態を表している。但し、2つの電極面21aのちょうど中点の上に位置する最も高い壁板33は、左右の電極列に関する上記第1、第2の端点を両端とする範囲にも幅の全部が含まれていないので、へこみ33aを形成しなくてもよいし、図示の例のように形成してもよい。
 また、第1、第2の端点を結ぶ範囲に含まれるすべての壁板33にへこみ33aを設けるのではなく、第1、第2の端点を結ぶx方向範囲の中に幅の少なくとも一部が含まれる壁板33の中の、少なくとも1つの壁板33にへこみ33aを形成してもよい。
 壁板の上部に形成されたへこみによって生体サンプルをy方向に位置決めできる。つまり、生体サンプル40は電極面21aのほぼ直上に位置できる。壁板33が電極面21aの上方に位置する場合、電極面21aの上方にへこみ33aが位置する。
 図12は、図8A,8Bに示す構成の別の変形例を示している。この変形例では、各壁板32は連続して伸長している。
 図12に示す壁板32のうち電極面21aのすぐ横に位置する二つの壁板32の間隔は、y方向(壁板32の伸長方向)に沿った変化を持つ。この例では、間隔の変化は電極面21aの近傍において顕著であり、電極面21aの近傍以外では、間隔の変化は無い。そこで、間隔の変化が無い部分(つまり、電極面21aの近傍以外の部分)の伸長方向を壁板の伸長方向と見なす。平面20aを正視した時に電極面21aの中心から壁板32の伸長方向と直交する線が壁板32と交わる点において、壁板32の間隔が最も広い(極大)。図12に示す例では、壁板32の間隔は滑らかに変化しているが、段階的に変化していてもよい。
 換言すると、電極面21aのすぐ横に位置する二つの壁板32のそれぞれに、壁板の高さ方向(つまり、平面20aの法線方向)に伸びる凹部32bが形成されている。凹部32bは、平面20aを正視した時に電極面21aの中心に向かう開口部を持つ。
 壁板間隔の拡大によって、生体サンプルを位置決めできる。
 図12の例では、2つの電極面21aの中心のy座標は一致する。しかし、2つの電極面21aの中心のy座標は必ずしも一致していなくてもよい。つまり、2つの電極面21aの中心を結ぶ線と壁板32の伸長方向とが直交していなくてもよい。換言すると、2つの電極面21aの中心を結ぶ線と壁板32の伸長方向とがなす角度は0度より大きく90度より小さくてもよい。
 また、図12の例とは異なり、1つの壁板だけに凹部32bを形成してもよい。この場合の1つの壁板は、電極面21aの中心から2番目に近い壁板であってもよい。
 平面20aを正視した時の凹部の形状は、折れ線状や曲線状でもよい。
 図13は、電極面21aが格子状に配列している例を示している。複数の電極列22がx方向に並ぶことによって多数の電極面21aが配列している。各電極列22では、y方向に複数の電極面21aが並んでいる。この構成の場合、クロストークを低減する壁板34は、例えば、隣り合う電極列22の間にy方向に伸長している。この場合、x方向のクロストーク低減効果が得られる。このように壁板34を設置しても、壁板34と平行な方向(y方向)への溶質の拡散は阻害されないから、溶質の供給量の低下は小さい。図13ではスペーサの図示を省略している。
 図13に示す構成において、図示されていないスペーサは、図6A,6B、7A,7Bに示す柱状構造物11,51、多孔質状構造体などである。
 また、図13に示す構成において、図示されていないスペーサは、図8~図12に示すスペーサの機能を持つ複数の壁板32,33であってもよい。言い換えれば、図8~図12に示す構成を持つ電気化学測定装置において、さらに壁板32,33の高さを越える高さを有する壁板34(隔壁板)を追加設置してもよい。壁板34の高さは、壁板32,33の各高さh3,h4の範囲を越えてもよい。壁板34の高さが十分に高い場合、クロストーク低減効果のほとんどは壁板34によって得られる。スペーサが複数の壁板で構成される場合、損壊しにくい頑健な電気化学測定装置を実現できる。
<具体例>
 「生体サンプルで生成された又は消費される化学物質そのものが、電気化学活性を有する、あるいは、電気化学活性を有する他の化学物質に変換される」という条件が満たされれば上述の効果を期待できる。生体サンプルの種類、生体サンプルで検出対象の化学物質が生成または消費される反応機構、作用極、作用極が形成される基板などについて特段の限定は無い。例えば次に挙げる構成が考えられる。
<生体サンプル>
 シミュレーションではマウスES細胞から形成された胚様体が生体サンプルとして選ばれた。しかし、生体サンプルは、細胞塊、単一細胞、組織片、微生物、または生体関連物質を含む非生体サンプルなどでもよい。
<生体サンプルで化学物質が生成または消費される反応機構>
 シミュレーションでは反応機構としてモデルサンプル上のALP酵素反応が選択された。しかし、反応機構は、タンパク質、ペプチド、RNAなどによる酵素反応、あるいは、生体サンプル上の白金薄膜、酸化チタン薄膜などによる触媒反応でもよい。
 また、生体サンプルが細胞などである場合、化学物質は、細胞内の様々な代謝経路やシグナル伝達経路を経て生成または消費されるものでもよく、例えば、解糖系の代謝経路で放出されるプロトンや、神経細胞から放出されるドーパミンでもよい。
<作用極>
 シミュレーションでは、作用極の材料を指定しなかった。作用極の材料として、金、白金などの貴金属、炭素を主体とした無機物(例えばグラファイト、不純物がドープされたダイヤモンド、カーボンナノチューブなど)、導電性高分子(例えば、ポリピロール、ポリアニリン、ポリチオフェンなど)など、電気化学測定の作用極に使用され得るものであれば何でもよい。
 作用極の電極面の形状は、例えば、円形、楕円形、多角形などである。
<基板>
 シミュレーションでは、基板の材料を指定しなかった。基板の材料として、石英、ガラス、シリコン、セラミックスなど、電気化学測定の作用極支持体に使用され得るものであれば何でもよい。
<スペーサ構築法の具体例>
 スペーサは、上述の効果を得るために、望ましくは、スペーサの高さをμmオーダーで制御し得る手法によって構築される。また、スペーサは、溶液透過性、つまり溶液中の溶質の拡散を許容する構造を持つ。さらに、スペーサが電極に接触する場合、スペーサは絶縁性を持たなくてはならない。これらの条件を満たすならば、スペーサはその構築手法とスペーサの材料に限定は無い。以下に、好適と思われるスペーサ構築手法及びスペーサの材料を例示する。
<複数の柱状構造物で構成されるスペーサの構築例1>
1)基板上に、CVD(chemical vapor deposition)によって、窒化ケイ素膜を成膜する。基板上の窒化ケイ素膜の膜厚は均一である。
2)窒化ケイ素膜上に、フォトリソグラフィー(photolithography)法によってエッチング保護層をパターニングする。
3)リアクティブイオンエッチング(Reactive Ion Etching)によって、エッチング保護層によって被覆されていない領域の窒化ケイ素膜をエッチングする。エッチングによって、柱状構造物が形成される。
4)エッチング保護層を除去する。
 絶縁膜材料(柱状構造物の材料)は、窒化ケイ素に限らず、例えば、酸化ケイ素、酸化チタンなどでもよい。
 成膜手法は、CVDに限らず、スパッタ、蒸着などの真空成膜手法、あるいは、スピンオングラス(Spin on Glass)などでもよい。
 エッチング保護層のパターニング手法は、フォトリソグラフィー法に限らず、スクリーン印刷法、インクジェット法などでもよい。
 エッチング手法は、リアクティブイオンエッチングに限らず、プラズマエッチング、スパッタエッチング、イオンビームエッチング、ウェットエッチングでもよい。
<複数の柱状構造物で構成されるスペーサの構築例2>
1)電流検出素子を有するLSI上に、スピンコートによって感光性樹脂をコーティングする。電流検出素子は、少なくとも作用極を含む。
2)フォトリソグラフィー法によって柱状構造物を構築する。
 感光性樹脂は、一般的なフォトリソグラフィーに用いられる絶縁性および感光性を有する樹脂であれば何でもよく、望ましくは、正確な直径と高さを持つスペーサを作製するために必要とされる分解能を得るのに必要な感光性樹脂が選択される。柱状構造物の化学的安定性の観点から、ネガ型の永久レジストとして使用されるエポキシ系化学増幅型感光樹脂が好適である。
 コーティング手法は、μmオーダーで膜厚を制御できる手法であれば何でもよい。膜厚の制御性の高さから、コーティング手法は、スピンコートに限らず、スプレーコート、ディップコート、スクリーンコート、ロールコートなどでもよい。
<多孔質状構造体であるスペーサの構築例>
1)アガロース(agarose)の水希釈液を調整した後、アガロース水希釈液を80℃以上に加熱してゾル化する。
2)80℃の基板上に、アガロース水溶液を滴下し、スピンコートによって薄膜を形成する。この過程では、基板の温度を常に80℃以上に保つ。
3)基板を室温にまで放冷し、アガロースゲルである多孔質状スペーサを得る。
 基板上に滴下されるゾルは、コーティング後に多孔質状ゲルとなるものであれば何でもよい。加熱温度は、ゾルの種類によって適切に設定される。調整の簡易さと生体適合性の高さから、アガロース、ポリビニルアルコール、セルロースなどが好ましい。
 コーティング手法は、μmオーダーで膜厚を制御でき、かつ、コーティング処理中にゾルの温度を一定に保つ機構を備える手法であれば何でもよい。膜厚の制御性の高さから、コーティング手法は、スピンコートに限らず、スプレーコート、ディップコート、スクリーンコート、ロールコートなどでもよい。
<その他>
 柱状構造物で構成されるスペーサは、成型法(ナノインプリント(Nanoimprint Lithography)、インサート成形)、印刷法(例えば、スクリーン印刷、インクジェット印刷)、機械加工法などによって構築され得る。
 多孔質状構造体であるスペーサは、予め成型された多孔質シリカ、ニトロセルロースメンブレンなどの多孔質体を基板上に設置することによっても構築され得る。
<壁板構築法の具体例>
 壁板が図8、図9に示す例のようにスペーサとしての機能も有する場合、壁板は、望ましくは、壁板の高さをμmオーダーで制御できる方法によって構築される。電極上に接触して壁板が構築される場合、壁板は絶縁性を持たなくてはならない。これらの点から、柱状構造物で構成されるスペーサの構築法と同じ方法が壁板の構築法として採用できる。また、柱状構造物で構成されるスペーサと同じ材料が壁板の材料として採用できる。
<柱状構造物で構成されるスペーサの仕様>
 スペーサが複数の柱状構造物で構成される場合、柱状構造物の間隔と形状は、以下のようにして決定される。
<柱状構造物の間隔>
 柱状構造物の間隔は、生体サンプルの直径に応じて適宜に設定される。より高い感度を得るために、つまり、生体サンプル周りの溶質の拡散が柱状構造物によって阻害されることを最小化する観点から、柱状構造物の間隔は広いほど好ましい。
 また、柱状構造物の間隔は均一である必要はなく、柱状構造物が密に存在する領域と疎に存在する領域が存在してもよいし、あるいは、柱状構造物が全く存在しない領域があってもよい。
 例えば、電極面の直上の領域だけ柱状構造物を形成せず、電極面周辺の柱状構造物によってのみ生体サンプルを保持する構造の場合、生体サンプル直下の溶質の拡散阻害が効果的に防止され、より高い感度が得られる。
<柱状構造物の直径>
 柱状構造物の直径は、生体サンプルを電極面から離して保持できるだけの強度を確保できる大きさである。ただし、より高い感度を得るために、つまり、生体サンプル周りの溶質の拡散が柱状構造物によって阻害されることを最小化する観点から、柱状構造物の直径は小さいほど好ましい。
<柱状構造物の上面形状>
 柱状構造物の上面の形状についての制約は無い。柱状構造物の上面の形状は、円形、多角形(例えば三角形、四角形)でもよい。
 また、柱状構造物において上面の形状と下面の形状が同一である必要はない。また、柱状構造物において上面の面積と下面の面積が同一である必要はない。
例えば、柱状構造物の作成時における絶縁層のエッチング条件の変更などによって、意図的に上面面積を減少させてもよい(つまり、テーパー状の柱状構造物を形成してもよい)。
 生体サンプルが細胞、組織片などである場合、テーパー状の柱状構造物によって生体サンプルと柱状構造物との接触面積及び接着力を低減できる。テーパー状の柱状構造物は、測定後に生体サンプルを回収する際、生体サンプルの剥離に必要な力を低減し、この結果、生体サンプルへのダメージを低減する。
<スペーサとして機能する壁板の仕様>
 スペーサが複数の壁板で構成される場合、壁板の間隔と形状は、以下のようにして決定される。
<壁板の間隔>
 壁板の間隔は、生体サンプルの直径に応じて適宜に設定される。より高い感度を得るために、つまり、生体サンプル周りの溶質の拡散が壁板によって阻害されることを最小化する観点から、壁板の間隔は広いほど好ましい。
 例えば、電極面の直上の領域に壁板を形成せず、壁板で電極面を挟むことによって、生体サンプル直下の溶質の拡散阻害が効果的に防止され、かつ、クロストークを効果的に低減できる。
<壁板の厚さ>
 壁板の厚さは、生体サンプルを電極面から離して保持できるだけの強度を確保できる大きさである。
<壁板の形状>
 壁板の上面と下面の形状は同一である必要はない。また、壁板の上面と下面の面積は同一である必要はない。例えば、壁板の作成時における絶縁層のエッチング条件の変更などによって、意図的に上面面積を減少させてもよい(つまり、テーパー状の壁板を形成してもよい)。
 生体サンプルが細胞、組織片などである場合、テーパー状の壁板によって生体サンプルと壁板との接触面積及び接着力を低減できる。テーパー状の壁板は、測定後に生体サンプルを回収する際、生体サンプルの剥離に必要な力を低減し、この結果、生体サンプルへのダメージを低減する。
<トランスデューサ>
 次に、本発明によるトランスデューサの具体的な構成例を図14及び図15を参照して説明する。トランスデューサは、生体サンプルで生成された又は消費される化学物質の電気化学測定に用いられる。
 トランスデューサは、溶液槽60がLSIチップ70上に搭載されている構成を持つ。溶液槽60は、溶液61と、溶液61中に浸漬される生体サンプルとを収容する。溶液槽60の中央に穴62が形成されている。LSIチップ70は、穴62の下端に配置されている。穴62はLSIチップ70によって塞がれている。
 LSIチップ70及び溶液槽60は、基板80上に固定されている。基板80に、トランスデューサの制御を行う外部装置との接続用の多数の配線パターン81が形成されている。図14B中、符号90は、LSIチップ70と配線パターン81とを接続するボンディングワイヤを示している。
 LSIチップ70の上面に、センサ領域71が形成されている。図14Aでは、センサ領域71は、ハッチングで示されている。センサ領域71は、溶液槽60の底面の穴62に位置している。図示を省略しているが、この例では、センサ領域71に複数の電極(作用極)が形成されており、さらにセンサ領域71に柱状構造物で構成されるスペーサが形成されている。また、隣り合う作用極の間に壁板が形成されている。LSIチップ70は、作用極への電圧印加機能、作用極での反応を電流値として検出し、電流値を増幅する機能などを有している。スペーサと壁板については既述のとおりである。
 上述のように、生体サンプルは、スペーサあるいは複数の壁板によって、電極面が配置されている平面から望ましい距離だけ離れている。したがって、溶液中の溶質が拡散できる3次元領域が確保され、生体サンプルへの溶質の供給が十分に行われる。
 よって、本発明によると、作用極で検出される化学物質の量が増大するから、電極面に生体サンプルを近接させて測定を行う従来の電気化学測定と比べて、測定感度が向上する。
 生体サンプルの形状や表面状態に応じて、作用極と生体サンプルとの間の垂直方向距離は一定ではない。しかし、生体サンプルを電極面から望ましい距離だけ離すことによって、作用極と生体サンプルとの間の垂直方向距離の相違に伴う化学物質の拡散距離の相違の影響を低減することができ、従来の電気化学測定と比べて、測定の比較性及び再現性が向上する。
 さらに、本発明によると、隣り合う電極面の間に形成されている、溶液中の溶質が透過することのできない壁板によって、検出対象の化学物質の溶液中での拡散による電極面間のセンシングのクロストークが低減される。
 例えば複数の生体サンプルの同時評価の場合において、各作用極における電流値に対する遠方サンプルの影響を防止できる。よって、生体サンプルの評価の定量性が向上する。また、電極面の間隔を狭くしえるから、基板のコストを低減できる。
 別の観点から本発明の電気化学測定装置とトランスデューサを述べると以下のとおりである。なお、以下の説明は上記の「課題を解決するための手段」に記載されている開示事項と矛盾するものではなく、以下の記載と上記の「課題を解決するための手段」は相互に参照できる。
・アイテム1
 溶液中の生体サンプルで生成された又は消費される化学物質を測定する電気化学測定装置であって、
 上記溶液と上記生体サンプルを収容するための溶液槽と、
 2個以上の電極面と、ただし、当該各電極面は上記溶液槽が上記溶液を収容している状態において溶液と接する電極の面であり、当該各電極面と上記化学物質との間で酸化還元反応が進行する、
 スペーサと、
 少なくとも1個の壁板と
を含み、
 上記2個以上の電極面と上記スペーサと上記少なくとも1個の壁板は上記溶液槽の底面に配置されており、
 上記2個以上の電極面のそれぞれの直径delは、80μm以下であり、
 上記スペーサの高さは、式(c1)で与えられるhの範囲内の所定の値であり、
Figure JPOXMLDOC01-appb-M000007

 上記スペーサは、上記生体サンプルが上記スペーサに接している状態において上記生体サンプルと上記底面と上記スペーサによって閉じた3次元領域が形成されない構造を持ち、
 上記少なくとも1個の壁板は、上記溶液中の溶質が透過することのできない性質を持ち、
 上記少なくとも1個の壁板は、上記スペーサの高さ以上の高さを持ち、
 上記2個以上の電極面のうち少なくとも2個の電極面は、上記少なくとも1個の壁板によって隔てられている。
・アイテム2
 溶液中の生体サンプルで生成された又は消費される化学物質を測定する電気化学測定装置であって、
 上記溶液と上記生体サンプルを収容するための溶液槽と、
 2個以上の電極面と、ただし、当該各電極面は上記溶液槽が上記溶液を収容している状態において溶液と接する電極の面であり、当該各電極面と上記化学物質との間で酸化還元反応が進行する、
 スペーサと、
 少なくとも1個の壁板と
を含み、
 上記2個以上の電極面と上記スペーサと上記少なくとも1個の壁板は上記溶液槽の底面に配置されており、
 上記2個以上の電極面のそれぞれの直径delは、80μm以下であり、
 上記2個以上の電極面のうち一つの電極面の中心からの上記底面と平行な方向の距離をmとして、当該一つの電極面の中心から距離mの位置における上記スペーサの高さは、式(c2)で与えられるhの範囲内の所定の値であり、ただし、上記2個以上の電極面のうち当該一つの電極面に最も近い他の電極面の中心と当該一つの電極面の中心との距離をLとして、0<m≦L/2且つh>0である、
Figure JPOXMLDOC01-appb-M000008

 上記スペーサは、上記生体サンプルが上記スペーサに接している状態において上記生体サンプルと上記底面と上記スペーサによって閉じた3次元領域が形成されない構造を持ち、
 上記少なくとも1個の壁板は、上記溶液中の溶質が透過することのできない性質を持ち、
 上記少なくとも1個の壁板は、上記スペーサの高さ以上の高さを持ち、
 上記2個以上の電極面のうち少なくとも2個の電極面は、上記少なくとも1個の壁板によって隔てられている。
・アイテム3
 アイテム1またはアイテム2に記載の電気化学測定装置において、
 上記2個以上の電極面は、3個以上の電極面を含み、
 上記少なくとも1個の壁板は、2個以上の壁板を含み、
 少なくとも一つ以上の部分の少なくとも一つに上記3個以上の電極面のうち少なくとも2個の電極面が配置されている、ただし、当該少なくとも一つ以上の部分は、上記底面のうち、上記2個以上の壁板のうち隣り合う二つの間に位置する少なくとも一つ以上の部分、または、上記2個以上の壁板のうち一個の壁板と上記溶液槽の側壁との間に位置する少なくとも一つ以上の部分、である。
・アイテム4
 アイテム1からアイテム3のいずれかに記載の電気化学測定装置において、
 上記スペーサは、複数の柱状構造物で構成されており、
 上記複数の柱状構造物のそれぞれは、上記平面の法線方向に伸長している。
・アイテム5
 アイテム1からアイテム3のいずれかに記載の電気化学測定装置において、
 上記スペーサは多孔質構造体である。
・アイテム6
 溶液中の生体サンプルで生成された又は消費される化学物質を測定する電気化学測定装置であって、
 上記溶液と上記生体サンプルを収容するための溶液槽と、
 2個以上の電極面と、ただし、当該各電極面は上記溶液槽が上記溶液を収容している状態において溶液と接する電極の面であり、当該各電極面と上記化学物質との間で酸化還元反応が進行する、
 2個以上の壁板と
を含み、
 上記2個以上の電極面と上記2個以上の壁板は上記溶液槽の底面に配置されており、
 上記2個以上の電極面のそれぞれの直径delは、80μm以下であり、
 上記2個以上の壁板の高さはそれぞれ、式(c3)で与えられるhの範囲内の所定の値であり、
Figure JPOXMLDOC01-appb-M000009

 上記2個以上の壁板のそれぞれは、上記生体サンプルと接している状態において、上記生体サンプルと上記底面と共に閉じた3次元領域を形成しない構造を持ち、
 上記2個以上の壁板はそれぞれ、上記溶液中の溶質が透過することのできない性質を持ち、
 上記2個以上の電極面のうち少なくとも2個の電極面は、上記2個以上の壁板のうち少なくとも1個の壁板によって隔てられている。
・アイテム7
 溶液中の生体サンプルで生成された又は消費される化学物質を測定する電気化学測定装置であって、
 上記溶液と上記生体サンプルを収容するための溶液槽と、
 2個以上の電極面と、ただし、当該各電極面は上記溶液槽が上記溶液を収容している状態において溶液と接する電極の面であり、当該各電極面と上記化学物質との間で酸化還元反応が進行する、
 2個以上の壁板と
を含み、
 上記2個以上の電極面と上記2個以上の壁板は上記溶液槽の底面に配置されており、
 上記2個以上の電極面のそれぞれの直径delは、80μm以下であり、
 上記2個以上の電極面のうち一つの電極面の中心からの上記底面と平行な方向の距離をmとして、上記2個以上の壁板のうち当該一つの電極面の中心から距離mの位置にある壁板の高さは、式(c4)で与えられるhの範囲内の所定の値であり、ただし、上記2個以上の電極面のうち当該一つの電極面に最も近い他の電極面の中心と当該一つの電極面の中心との距離をLとして、0<m≦L/2且つh>0である、
Figure JPOXMLDOC01-appb-M000010

 上記2個以上の壁板のそれぞれは、上記生体サンプルと接している状態において、上記生体サンプルと上記底面と共に閉じた3次元領域を形成しない構造を持ち、
 上記2個以上の壁板はそれぞれ、上記溶液中の溶質が透過することのできない性質を持ち、
 上記2個以上の電極面のうち少なくとも2個の電極面は、上記2個以上の壁板のうち少なくとも1個の壁板によって隔てられている。
・アイテム8
 アイテム6またはアイテム7に記載の電気化学測定装置において、
 上記2個以上の壁板のうち2個の壁板のうち少なくとも一方の上部に凹みが形成されている、ただし、当該凹みは、上記底面を正視した時に上記2個以上の電極面のうち1個の電極面のすぐ横に位置しており、当該2個の壁板は当該1個の電極面の両脇に位置する。
・アイテム9
 アイテム6からアイテム8のいずれかに記載の電気化学測定装置において、
 上記2個以上の壁板のうち2個の壁板のうち少なくとも一方に、当該2個の壁板の間隔を拡大する凹部が形成されている、ただし、当該凹部は、上記底面を正視した時に上記2個以上の電極面のうち1個の電極面のすぐ横に位置し、且つ、上記底面の法線方向に伸びており、当該2個の壁板は当該1個の電極面の両脇に位置する。
・アイテム10
 アイテム6からアイテム9のいずれかに記載の電気化学測定装置において、
 上記2個以上の壁板の高さの最大値よりも大きい高さを持つ壁板、以下、隔壁板という、を含み、
 上記隔壁板は、上記溶液中の溶質が透過することのできない性質を持ち、
 上記2個以上の電極面のうち少なくとも2個の電極面は、上記隔壁板によって隔てられている。
・アイテム11
 トランスデューサであって、
 アイテム1からアイテム10のいずれかに記載の電気化学測定装置と、
 集積回路と
を含み、
 上記溶液槽の底面が上記集積回路の表面である。

Claims (30)

  1.  溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置であって、
     前記電極面は全てが80μm以下の径寸法delを有して一平面に配列され、
     前記溶液と前記生体サンプルとを収容する溶液槽には、前記一平面に対する垂直方向距離h1が、
     h1=21.8(del+0.8)/(del+9.7)±5 [μm]
    を満たす輪郭面をもち、前記輪郭面の前記一平面側の領域において前記生体サンプルの侵入を阻止し、前記溶液中の溶質の拡散を許容するスペーサが設けられ、
     互いに隣接する少なくとも2つの前記電極面の間には、当該2つの前記電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対する前記スペーサの高さ以上の高さを有し、前記溶液中の溶質が透過することのできない壁板が設けられていることを特徴とする電気化学測定装置。
  2.  溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置であって、
     前記電極面は全てが80μm以下の径寸法delを有して一平面に配列され、
     前記溶液と前記生体サンプルとを収容する溶液槽には、最も近い前記電極面の中心からの前記一平面に対する平行方向距離mに依存して、前記一平面に対する垂直方向距離h2が、
     h2=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
    を満たす、すり鉢型の形状を描く輪郭面をもち、前記輪郭面の前記一平面側の領域において前記生体サンプルの侵入を阻止し、前記溶液中の溶質の拡散を許容するスペーサが設けられ、
     互いに隣接する少なくとも2つの前記電極面の間には、当該2つの前記電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対する前記スペーサの最大高さ以上の高さを有し、前記溶液中の溶質が透過することのできない壁板が設けられていることを特徴とする電気化学測定装置。
  3.  請求項1又は2記載の電気化学測定装置において、
     前記電極面は、複数の前記電極面を第1の方向の一直線上に並べた電極列を、前記第1の方向と直交する第2の方向に複数並べた構成で配列され、
     互いに隣接する前記電極列の間に、前記壁板が前記第1の方向に延伸されて設けられていることを特徴とする電気化学測定装置。
  4.  請求項1乃至3記載のいずれかの電気化学測定装置において、
     前記スペーサは前記一平面に対する垂直方向に延伸され、100μm未満の間隔で林立する一群の柱状構造物よりなることを特徴とする電気化学測定装置。
  5.  請求項1乃至3記載のいずれかの電気化学測定装置において、
     前記スペーサは100μm未満の孔径を有する多孔質構造体よりなることを特徴とする電気化学測定装置。
  6.  溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置であって、
     前記電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、少なくとも2つの前記電極面の中心のx座標が相互に異なるように配列され、
     前記電極面が配列されている前記一平面上に、y方向に延伸され、高さh3が、
     h3=21.8(del+0.8)/(del+9.7)±5 [μm]
    を満たす、前記溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられていることを特徴とする電気化学測定装置。
  7.  請求項6記載の電気化学測定装置において、
     1つの前記電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの前記壁板のうちの少なくとも一方の前記壁板の前記高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とする電気化学測定装置。
  8.  請求項6記載の電気化学測定装置において、
     1つの前記電極面につき、当該電極面の両外側を通って延伸され、間に他の前記壁板を挟むことなく並行する2つの前記壁板の前記高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とする電気化学測定装置。
  9.  請求項6記載の電気化学測定装置において、
     1つの前記電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの前記壁板のうちの少なくとも一方の前記壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されていることを特徴とする電気化学測定装置。
  10.  請求項6記載の電気化学測定装置において、
     1つの前記電極面につき、当該電極面の中心からのx方向距離が最も小さい1つの前記壁板である第1の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されるとともに、当該電極面の中心を挟んで前記第1の壁板と隣接するもう1つの前記壁板である第2の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されていることを特徴とする電気化学測定装置。
  11.  請求項6乃至10記載のいずれかの電気化学測定装置において、
     中心のx座標が相互に異なりつつそれらのx座標の中間のx座標を有する他の前記電極面が存在しない2つの前記電極面の組をx方向隣接電極面とするとき、少なくとも1組の前記x方向隣接電極面の間には、その2つの前記電極面の中心どうしを結ぶ線分に幅の全部が交差してy方向に延伸され、前記壁板の高さよりも大きな高さを有する、前記溶液中の溶質が透過することのできない高背の壁板が更に設けられていることを特徴とする電気化学測定装置。
  12.  溶液中の生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極を複数備えてなる電気化学測定装置であって、
     前記電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、1つ以上の前記電極面をそのすべての中心のx座標を一致させてy方向に並べてなる電極列をx方向に複数列並べた構成で配列され、
     前記電極面が配列されている前記一平面上に、y方向に延伸され、x方向において最も近い前記電極列に属する前記電極面の中心からのx方向の距離mに依存して高さh4が、
     h4=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
    を満たして徐々に変化し、前記溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられていることを特徴とする電気化学測定装置。
  13.  請求項12記載の電気化学測定装置において、
     1つの前記電極面につき、当該電極面の中心からx方向の一方の向きに300μmの点または前記一方の向きにおいて隣接する前記電極列に属する前記電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第1の端点とし、当該電極面の中心からx方向の他方の向きに300μmの点または前記他方の向きにおいて隣接する前記電極列に属する前記電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第2の端点とするとき、前記第1の端点と前記第2の端点とを結ぶ線分に、その幅の全部または一部が交差して延伸されている前記壁板のうちの少なくとも1つの前記壁板の前記高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とする電気化学測定装置。
  14.  請求項13記載の電気化学測定装置において、
     前記線分にその幅の全部が交差して延伸されているすべての前記壁板の前記高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とする電気化学測定装置。
  15.  請求項12乃至14記載のいずれかの電気化学測定装置において、
     x方向において互いに隣接する少なくとも1組の前記電極列の間には、その2つの前記電極列にそれぞれ属する前記電極面の中心のx座標どうしの中間のx座標においてy方向に延伸され、前記壁板の最大高さよりも大きな高さを有する、前記溶液中の溶質が透過することのできない高背の壁板が更に設けられていることを特徴とする電気化学測定装置。
  16.  溶液と前記溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、前記溶液中の前記生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサであって、
     前記電極面は全てが80μm以下の径寸法delを有して一平面に配列され、
     前記溶液槽には、前記一平面に対する垂直方向距離h1が、
     h1=21.8(del+0.8)/(del+9.7)±5 [μm]
    を満たす輪郭面をもち、前記輪郭面の前記一平面側の領域において前記生体サンプルの侵入を阻止し、前記溶液中の溶質の拡散を許容するスペーサが設けられ、
     互いに隣接する少なくとも2つの前記電極面の間には、当該2つの前記電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対する前記スペーサの高さ以上の高さを有し、前記溶液中の溶質が透過することのできない壁板が設けられていることを特徴とするトランスデューサ。
  17.  溶液と前記溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、前記溶液中の前記生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサであって、
     前記電極面は全てが80μm以下の径寸法delを有して一平面に配列され、
     前記溶液槽には、最も近い前記電極面の中心からの前記一平面に対する平行方向距離mに依存して、前記一平面に対する垂直方向距離h2が、
     h2=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
    を満たす、すり鉢型の形状を描く輪郭面をもち、前記輪郭面の前記一平面側の領域において前記生体サンプルの侵入を阻止し、前記溶液中の溶質の拡散を許容するスペーサが設けられ、
     互いに隣接する少なくとも2つの前記電極面の間には、当該2つの前記電極面の中心どうしを結ぶ線に交差して延伸され、前記一平面に対する前記スペーサの最大高さ以上の高さを有し、前記溶液中の溶質が透過することのできない壁板が設けられていることを特徴とするトランスデューサ。
  18.  請求項16又は17記載のトランスデューサにおいて、
     前記電極面は、複数の前記電極面を第1の方向の一直線上に並べた電極列を、前記第1の方向と直交する第2の方向に複数並べた構成で配列され、
     互いに隣接する前記電極列の間に、前記壁板が前記第1の方向に延伸されて設けられていることを特徴とするトランスデューサ。
  19.  請求項16乃至18記載のいずれかのトランスデューサにおいて、
     前記スペーサは前記一平面に対する垂直方向に延伸され、100μm未満の間隔で林立する一群の柱状構造物よりなることを特徴とするトランスデューサ。
  20.  請求項16乃至18記載のいずれかのトランスデューサにおいて、
     前記スペーサは100μm未満の孔径を有する多孔質構造体よりなることを特徴とするトランスデューサ。
  21.  溶液と前記溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、前記溶液中の前記生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサであって、
     前記電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、少なくとも2つの前記電極面の中心のx座標が相互に異なるように配列され、
     前記電極面が配列されている前記一平面上に、y方向に延伸され、高さh3が、
     h3=21.8(del+0.8)/(del+9.7)±5 [μm]
    を満たす、前記溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられていることを特徴とするトランスデューサ。
  22.  請求項21記載のトランスデューサにおいて、
     1つの前記電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの前記壁板のうちの少なくとも一方の前記壁板の前記高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とするトランスデューサ。
  23.  請求項21記載のトランスデューサにおいて、
     1つの前記電極面につき、当該電極面の両外側を通って延伸され、間に他の前記壁板を挟むことなく並行する2つの前記壁板の前記高さh3が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とするトランスデューサ。
  24.  請求項21記載のトランスデューサにおいて、
     1つの前記電極面につき、当該電極面の中心からのx方向距離が最も小さいものから順に2つの前記壁板のうち少なくとも一方の前記壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されていることを特徴とするトランスデューサ。
  25.  請求項21記載のトランスデューサにおいて、
     1つの前記電極面につき、当該電極面の中心からのx方向距離が最も小さい1つの前記壁板である第1の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されるとともに、当該電極面の中心を挟んで前記第1の壁板と隣接するもう1つの前記壁板である第2の壁板のx座標が、当該電極面の中心のy座標と等しいy座標において当該電極面の中心からのx方向距離が極大をなすように、y方向に沿って局所的に変化されていることを特徴とするトランスデューサ。
  26.  請求項21乃至25記載のいずれかのトランスデューサにおいて、
     中心のx座標が相互に異なりつつそれらのx座標の中間のx座標を有する他の前記電極面が存在しない2つの前記電極面の組をx方向隣接電極面とするとき、少なくとも1組の前記x方向隣接電極面の間には、その2つの前記電極面の中心どうしを結ぶ線分に幅の全部が交差してy方向に延伸され、前記壁板の高さよりも大きな高さを有する、前記溶液中の溶質が透過することのできない高背の壁板が更に設けられていることを特徴とするトランスデューサ。
  27.  溶液と前記溶液中に浸漬される生体サンプルとを収容することができる溶液槽がLSIチップ上に搭載されてなり、前記溶液中の前記生体サンプルで生成または消費される化学物質と電子の授受を行って酸化還元反応をさせる電極面を備えた作用極が前記LSIチップに複数設けられているトランスデューサであって、
     前記電極面は全てが80μm以下の径寸法delを有し、x‐y直交座標が定義される一平面に、1つ以上の前記電極面をそのすべての中心のx座標を一致させてy方向に並べてなる電極列をx方向に複数列並べた構成で配列され、
     前記電極面が配列されている前記一平面上に、y方向に延伸され、x方向において最も近い前記電極列に属する前記電極面の中心からのx方向の距離mに依存して高さh4が、
     h4=√{(1.05del+6.89)m}-0.48del-2.38±5 [μm]
    を満たして徐々に変化し、前記溶液中の溶質が透過することのできない壁板がx方向に100μm未満の間隔で配列されて複数設けられていることを特徴とするトランスデューサ。
  28.  請求項27記載のトランスデューサにおいて、
     1つの前記電極面につき、当該電極面の中心からx方向の一方の向きに300μmの点または前記一方の向きにおいて隣接する前記電極列に属する前記電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第1の端点とし、当該電極面の中心からx方向の他方の向きに300μmの点または前記他方の向きにおいて隣接する前記電極列に属する前記電極面の中心のx座標までの1/2の距離の点のうちの相対的に遠くない方の点を第2の端点とするとき、前記第1の端点と前記第2の端点とを結ぶ線分に、その幅の全部または一部が交差して延伸されている前記壁板のうちの少なくとも1つの前記壁板の前記高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とするトランスデューサ。
  29.  請求項28記載のトランスデューサにおいて、
     前記線分にその幅の全部が交差して延伸されているすべての前記壁板の前記高さh4が、当該電極面の中心のy座標と等しいy座標において極小をなすようにy方向に沿って変化されていることを特徴とするトランスデューサ。
  30.  請求項27乃至29記載のいずれかのトランスデューサにおいて、
     x方向において互いに隣接する少なくとも1組の前記電極列の間には、その2つの前記電極列にそれぞれ属する前記電極面の中心のx座標どうしの中間のx座標においてy方向に延伸され、前記壁板の最大高さよりも大きな高さを有する、前記溶液中の溶質が透過することのできない高背の壁板が更に設けられていることを特徴とするトランスデューサ。
PCT/JP2017/033898 2016-10-06 2017-09-20 電気化学測定装置及びトランスデューサ WO2018066358A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201780058155.2A CN109791122B (zh) 2016-10-06 2017-09-20 电化学测定装置及转换器
EP21214748.2A EP4009046A1 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
US16/336,782 US11162064B2 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
EP21214759.9A EP4019968A1 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
EP17858197.1A EP3524972B1 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
CN202110869700.4A CN113533486B (zh) 2016-10-06 2017-09-20 电化学测定装置及转换器
EP21214746.6A EP4040152A1 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
EP21214766.4A EP4001915A1 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
US17/366,945 US11859167B2 (en) 2016-10-06 2021-07-02 Electrochemical measurement device and transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197818 2016-10-06
JP2016197818A JP6218199B1 (ja) 2016-10-06 2016-10-06 電気化学測定装置及びトランスデューサ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/336,782 A-371-Of-International US11162064B2 (en) 2016-10-06 2017-09-20 Electrochemical measurement device and transducer
US17/366,945 Continuation US11859167B2 (en) 2016-10-06 2021-07-02 Electrochemical measurement device and transducer

Publications (1)

Publication Number Publication Date
WO2018066358A1 true WO2018066358A1 (ja) 2018-04-12

Family

ID=60156858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033898 WO2018066358A1 (ja) 2016-10-06 2017-09-20 電気化学測定装置及びトランスデューサ

Country Status (6)

Country Link
US (2) US11162064B2 (ja)
EP (5) EP4009046A1 (ja)
JP (1) JP6218199B1 (ja)
CN (2) CN109791122B (ja)
TW (1) TWI660171B (ja)
WO (1) WO2018066358A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219919B2 (ja) * 2019-05-20 2023-02-09 日本航空電子工業株式会社 触媒反応生成物の電気化学的測定方法及びトランスデューサ
CN110586269A (zh) * 2019-10-21 2019-12-20 江苏福多美生物科技有限公司 一种应用于大蒜加工的蒜泥机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035412A (ja) * 1998-07-17 2000-02-02 Daikin Ind Ltd 酸素消費量測定装置
JP2007225425A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd 細胞電気生理センサとそれを用いた測定方法およびその製造方法
WO2014073195A1 (ja) * 2012-11-06 2014-05-15 パナソニック株式会社 生体由来物の検査デバイス
WO2015151395A1 (ja) * 2014-03-31 2015-10-08 パナソニックIpマネジメント株式会社 電気化学測定デバイス
JP6086412B1 (ja) * 2015-12-22 2017-03-01 日本航空電子工業株式会社 電気化学測定方法、電気化学測定装置及びトランスデューサ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038873A2 (en) * 1999-11-24 2001-05-31 Biotronic Technologies, Inc. Devices and methods for detecting analytes using electrosensor having capture reagent
FR2802078B1 (fr) * 1999-12-14 2003-10-03 Univ Joseph Fourier Microelectrode support de cellules a membrane excitable
CA2407973C (en) * 2000-05-03 2011-06-07 Jen-Jr Gau Biological identification system with integrated sensor chip
WO2002045835A2 (en) * 2000-12-08 2002-06-13 The Regents Of The University Of California Microelectronic arrays for cell-based functional genomics / high throughput phenotyping by electrokinetic assembly
EP2332651A3 (en) * 2001-10-25 2011-08-31 Bar Ilan University Interactive transparent individual cells biochip processor
JP4576505B2 (ja) * 2003-10-20 2010-11-10 アークレイ株式会社 血液試料における特定成分の濃度測定方法および濃度測定装置
US7341834B2 (en) * 2003-12-15 2008-03-11 Geneohn Sciences, Inc. Multiplexed electrochemical detection system and method
JP4812271B2 (ja) * 2004-08-30 2011-11-09 一般社団法人オンチップ・セロミクス・コンソーシアム 心筋拍動細胞を用いた細胞バイオアッセイチップおよびこれを用いるバイオアッセイ
WO2008149976A1 (ja) * 2007-06-08 2008-12-11 National University Corporation Tokyo Medical And Dental University 心臓リエントリーモデルチップおよび心臓リエントリーモデルチップによる薬剤の評価装置および方法
JPWO2012043820A1 (ja) * 2010-09-30 2014-02-24 国立大学法人 東京医科歯科大学 心筋毒性検査および心筋細胞評価のための方法および装置
JP4933656B1 (ja) * 2010-12-28 2012-05-16 日本航空電子工業株式会社 電気化学計測チップ用電極装置
JP2013094168A (ja) * 2012-07-06 2013-05-20 Tokyo Medical & Dental Univ 心筋毒性検査および心筋細胞評価のための方法および装置
JP6331266B2 (ja) * 2013-05-24 2018-05-30 セイコーエプソン株式会社 センサーユニット並びに電子機器および運動体
JP2016092803A (ja) * 2014-11-11 2016-05-23 三菱重工業株式会社 整合回路及び無線通信装置
JP6116075B1 (ja) 2015-11-20 2017-04-19 日本航空電子工業株式会社 電気化学測定方法、電気化学測定装置及びトランスデューサ
JP6116080B1 (ja) 2016-04-26 2017-04-19 日本航空電子工業株式会社 電気化学測定方法、電気化学測定装置及びトランスデューサ
JP6344775B2 (ja) 2016-05-20 2018-06-20 国立大学法人東北大学 電気化学イメージング方法、電気化学測定装置及びトランスデューサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035412A (ja) * 1998-07-17 2000-02-02 Daikin Ind Ltd 酸素消費量測定装置
JP2007225425A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd 細胞電気生理センサとそれを用いた測定方法およびその製造方法
WO2014073195A1 (ja) * 2012-11-06 2014-05-15 パナソニック株式会社 生体由来物の検査デバイス
WO2015151395A1 (ja) * 2014-03-31 2015-10-08 パナソニックIpマネジメント株式会社 電気化学測定デバイス
JP6086412B1 (ja) * 2015-12-22 2017-03-01 日本航空電子工業株式会社 電気化学測定方法、電気化学測定装置及びトランスデューサ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOSUKE INO ET AL.: "Electrochemical Device with Interdigitated Ring Array Electrodes for Investigating the Relationship between Cardiomyocyte Differentiation from Embryonic Stem Cell and Alkaline Phosphatase activity", ELECTROCHEMISTRY, vol. 81, no. 9, 2013, pages 682 - 687, XP055397248, DOI: doi:10.5796/electrochemistry.81.682 *
MUSTAFA SEN ET AL.: "LSI-based amperometric sensor for real-time monitoring of embryoid bodies", BIOSENSORS AND BIOELECTRONICS, vol. 48, 2013, pages 12 - 18, XP055397247, DOI: doi:10.1016/j.bios.2013.03.069 *
SEN ET AL., BIOSENSORS AND BIOELECTRONICS, vol. 48, 2013, pages 12 - 18
YUSUKE KANNO ET AL.: "Simulation Analysis of Positional Relationship between Embryoid Bodies and Sensors on an LSI-based Amperometric Device for Electrochemical Imaging of Alkaline Phosphatase Activity", ANALYTICAL SCIENCES, vol. 31, 10 July 2015 (2015-07-10), pages 715 - 719, XP055397245, DOI: doi:10.2116/analsci.31.715 *

Also Published As

Publication number Publication date
US11859167B2 (en) 2024-01-02
TW201814281A (zh) 2018-04-16
TWI660171B (zh) 2019-05-21
CN113533486A (zh) 2021-10-22
EP3524972A1 (en) 2019-08-14
CN113533486B (zh) 2024-03-01
EP4001915A1 (en) 2022-05-25
EP4040152A1 (en) 2022-08-10
EP3524972B1 (en) 2022-07-20
JP6218199B1 (ja) 2017-10-25
EP3524972A4 (en) 2019-11-27
EP4009046A1 (en) 2022-06-08
US11162064B2 (en) 2021-11-02
US20190256816A1 (en) 2019-08-22
CN109791122B (zh) 2021-12-07
CN109791122A (zh) 2019-05-21
JP2018059823A (ja) 2018-04-12
US20210332321A1 (en) 2021-10-28
EP4019968A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
JP6086412B1 (ja) 電気化学測定方法、電気化学測定装置及びトランスデューサ
US11859167B2 (en) Electrochemical measurement device and transducer
TWI640768B (zh) 電化學測定方法、電化學測定裝置及變頻器
TWI617807B (zh) Electrochemical measurement method, electrochemical measurement device and transducer
CN117030824A (zh) 一种基于玻璃基的单细胞呼吸率测定传感器及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017858197

Country of ref document: EP

Effective date: 20190506